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ON THE NON-EXISTENCE OF ELEMENTS OF KERVAIRE
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ABSTRACT. We show that the Kervaire invariant one elements 6; € mo;+1_S°
exist only for j < 6. By Browder’s Theorem, this means that smooth framed
manifolds of Kervaire invariant one exist only in dimensions 2, 6, 14, 30, 62, and
possibly 126. Except for dimension 126 this resolves a longstanding problem
in algebraic topology.
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1. INTRODUCTION

The existence of smooth framed manifolds of Kervaire invariant one is one of
the oldest unresolved issues in differential and algebraic topology. The question
originated in the work of Pontryagin in the 1930’s. It took a definitive form in the
paper [37] of Kervaire in which he constructed a combinatorial 10-manifold with no
smooth structure, and in the work of Kervaire-Milnor [38] on h-cobordism classes
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of manifolds homeomorphic to a sphere. The question was connected to homotopy
theory by Browder in his fundamental paper [11] where he showed that smooth
framed manifolds of Kervaire invariant one exist only in dimensions of the form
(271 — 2), and that a manifold exists in that dimension if and only if the class
2 2,29 %1
h; € Exty” (Z/2,Z/2)
in the Es-term of the classical Adams spectral represents an element
6‘j S 7T2j+1,250

in the stable homotopy groups of spheres. The classes #; for j < 5 were shown to
exist by Barratt-Mahowald, and by Barratt-Jones-Mahowald (see [8]).
The purpose of this paper is to prove the following theorem

Theorem 1.1. For j > 7 the class h} € Exti{2j+1(Z/2,Z/2) does not represent

an element of the stable homotopy groups of spheres. In other words, the Kervaire
invariant elements 6; do not exist for j > 7.

Smooth framed manifolds of Kervaire invariant one therefore exist only in di-
mensions 2, 6, 14, 30, 62, and possibly 126. At the time of writing, our methods
still leave open the existence of 6.

Many open issues in algebraic and differential topology depend on knowing
whether or not the Kervaire invariant one elements 6; exist for j > 6. The fol-
lowing results represent some of the issues now settled by Theorem [[LII In the
statements, the phrase “exceptional dimensions” refers to the dimensions 2, 6, 14,
30, 62, and 126. In all cases the situation in the dimension 126 is unresolved.
By Browder’s work [I1] the results listed below were known when the dimension
in question was not 2 less than a power of 2. Modulo Browder’s result [I1] the
reduction of the statements to Theorem [Tl can be found in the references cited.

Theorem 1.2 ([38, [42]). Fzxcept in the siz exceptional dimensions, every stably
framed smooth manifold is framed cobordant to a homotopy sphere. O

In the first five of the exceptional dimensions it is known that not every sta-
bly framed manifold is framed cobordant to a homotopy sphere. The situation is
unresolved in dimension 126.

Theorem 1.3 ([38]). Let M™ be the manifold with boundary constructed by plumb-
ing together two copies of the unit tangent bundle to S***1 (so m = 4k +2), and
set Y™~ = 9M™. Unless m is one of the six exceptional dimensions, the space
M™ /Y™ s a triangulable manifold which does not admit any smooth structure,

and the manifold ¥™~ 1 (the Kervaire sphere) is homoemorphic but not diffeomor-
phic to S™L. O

In the first five of the exceptional cases, the Kervaire sphere is known to be
diffeomorphic to the ordinary sphere, and the Kervaire manifold can be smoothed.

Theorem 1.4 ([38| [42]). Let ©,, be the Kervaire-Milnor group of h-cobordism
classes of homotopy n-spheres. Unless (4k+2) is one of the siz exceptional dimen-
sions,

Oupta & Tapt2S”
and

)

Oak+1] = ak |mars1S°
where ay is 1 if k is even, and 2 if k is odd.
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Theorem 1.5 ([7]). Unless n is 1, or one of the siz exceptional dimensions, the
Whitehead square [ty i1, tni1] € Tone1S™ Tt is not divisible by 2. O

1.1. Outline of the argument. Our proof builds on the strategy used by the
third author in [63] and on the homotopy theoretic refinement developed by the
second author and Haynes Miller (see [66]).

We construct a multiplicative cohomology theory €2 and establish the following
results:

Theorem 1.6 (The Detection Theorem). If 6; € mai+1_9S° is an element of Ker-
vaire invariant 1, and j > 2, then the “Hurewicz” image of 0; in 92_2H1(pt) 18
non-zero.

Theorem 1.7 (The Periodicity Theorem). The cohomology theory ) is 256-fold
periodic: For all X,
Q*(X) ~ Q*+256(X).

Theorem 1.8 (The Gap Theorem). The groups Q¢(pt) are zero for 0 < 4 < i.

These three results easily imply Theorem [[LIl The Periodicity Theorem and the
Gap Theorem imply that the groups Qi(pt) are zero for i = 2 mod 256. By the
Detection Theorem, if 6; exists it has a non-zero Hurewicz image in 272" (pt).
But this latter group is zero if j > 7.

1.2. The cohomology theory ). Write C,, for the cyclic group of order n. Our
cohomology theory €2 is part of a pair (2, Q) analogous to the orthogonal and
unitary K-theory spectra KO and KU. The role of complex conjugation on KU
is played by an action of Cg on (g, and € arises as its fixed points. It is better to
think of Qg as generalizing Atiyah’s Cy-equivariant Kr-theory [6], and in fact Qg
is constructed from the corresponding real bordism spectrum, as we now describe.

Let MUg be the Cs-equivariant real bordism spectrum of Landweber [39] and
Fujii [22]. Roughly speaking one can think of MUg as describing the cobordism
theory of real manifolds, which are stably almost complex manifolds equipped with
a conjugate linear action of Cs, such as the space of complex points of a smooth
variety defined over R. A real manifold of real dimension 2n determines a homotopy
class of maps

S"P2 — MUR

where nps is the direct sum of n copies of the real regular representation of Cs, and
S™P2 is its one point compactification.
Write
MU©S) = MUz A MUg A MUg A MUg

for the Cg-equivariant spectrum gotten by smashing 4 copies of M Ug together and
letting Cg act by
(a,b,c,d) + (d,a,b,c).

Very roughly speaking, MU() can be thought of as the cobordism theory of
stably almost manifolds equipped with a Cg-action, with the property that the
restriction of the action to Co C Cg determines a real structure. If M is a real
manifold then M x M x M x M with the Cg-action

(a” b7 C’ d) H (d_’ a7 b’ C)
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is an example. A suitable Cg-manifold M of real dimension 8n determines a homo-
topy class of maps

gmes s MU (Cs),

where npg is the direct sum of n copies of the real regular representation of Cg, and
S™Ps is its one point compactification.
To define €2 we invert an equivariant analogue

D Strs 5 p(Cs)

of the Bott periodicity class and form the Cs-equivariant spectrum Qg = D~ MU (Cs)
(in fact ¢ works out to be 19). The cohomology theory 2 is defined to be the ho-
motopy fixed point spectrum of the Cg-action on Qg.

There is some flexibility in the choice of D, but it needs to be chosen in order
that the Periodicity Theorem holds, and in order that the map from the fixed point
spectrum of Qg to the homotopy fixed point spectrum be a weak equivalence. It
also needs to be chosen in such a way that the Detection Theorem is preserved
(see Remark [TI4). That such an D can be chosen with these properties is a
relatively easy fact, albeit mildly technical. It is specified in Corollary [@.21l It can
be described in the form M x M x M x M for a suitable real manifold M, though
we do not do so.

1.3. The Detection Theorem. Since the non-equivariant spectrum g underly-
ing Qg is complex orientable, the inclusion of the unit S° —  induces a map

Ethi‘\};U*MU(MU*a MU*) = Wt_SSO

| |

H:(Cg;mQ0) = Tp—§)

from the Adams-Novikov spectral sequence to the Cs homotopy fixed point spec-
tral sequence for 7,Q. In §I1.3.3] we give an ad hoc construction of this spectral
sequence, conveniently adapted to describing the map of Fa-terms. It gives the
horizontal arrow in the diagram of spectral sequences below.

Cs homotopy
fixed point
spectral sequence

Adams-Novikov
spectral sequence

|

Classical Adams
spectral sequence

The Detection Theorem is proved by investigating this diagram, and follows from
a purely algebraic result.

Theorem 1.9 (Algebraic Detection Theorem). If
j+1
€ Bxtyyy oy (MU, MU.)

is any element mapping to hf in the Es-term of the classical Adams spectral se-
quence, and j > 2, then the image of x in H*(Cg;Te+1Q0) is nonzero.
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The restriction j > 2 is not actually necessary, but the other values of j require
separate arguments. Since we do not need them, we have chosen to leave them to
the interested reader.

To deduce the Detection Theorem from the Algebraic Detection Theorem sup-
pose that 6; : 527 =2 5 60 i a map represented by h3 in the classical Adams
spectral sequence. Then #; has Adams filtration 0, 1 or 2 in the Adams-Novikov

spectral sequence, since the Adams filtration can only increase under a map. Since
both

Extyfy v (MU MU and  Extyl, vt (MU, MUL)

are zero, the class 6; must be represented in Adams filtration 2 by some element x
which is a permanent cycle. By the Algebraic Detection Theorem, the element x has
a non-trivial image b; € H?(Cs; m95+10), representing the image of 6; in mos+1_o.
If this image is zero then the class b; must be in the image of the differential

ds : HO(Cg;W2j+1,19@) — H2(Og;7T2j+IQ@).

But 754420 = 0, so this cannot happen.

The proof of the Algebraic Detection Theorem is given in §I11 The method of
proof is similar to that used in [63], where an analogous result is established at
primes greater than 3.

1.4. The slice filtration and the Gap Theorem. While the Detection Theorem
and the Periodicity Theorem involve the homotopy fixed point spectral sequence for
Q, the Gap Theorem results from studying (g as an honest equivariant spectrum.
What permits the mixing of the two approaches is the following result, which is
part of Theorem

Theorem 1.10 (Homotopy Fixed Point Theorem). The map from the fized point
spectrum of Qg to the homotopy fized point spectrum of Qg is a weak equivalence.

In particular, for all n, the map
WSSQ@ — wnﬂgcs =71,0

is an isomorphism, in which the symbol 7$¥Qq denotes the group of equivariant
homotopy classes of maps from S™ (with the trivial action) to Qg.

We study the equivariant homotopy type of (g using an analogue of the Post-
nikov tower. We call this tower the slice tower. Versions of it have appeared in
work of Dan Dugger [18], Hopkins-Morel (unpublished), Voevodsky |76, [74} [75], and
Hu-Kriz [33].

The slice tower is defined for any finite group G. For a subgroup K C G, let px
denote its regular representation and write

~

S(m,K):G+I/}SmPK m € Z.
Definition 1.11. The set of slice cells (for G) is
{S(m,K),S"'8(m,K) |m € Z, K C G}.

Definition 1.12. A slice cell S is free if it is of the form G4 A S™ for some m. An
isotropic slice cell is one which is not free.
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We define the dimension of a slice cell § by
dim S(m, K) = m|K|
dim®~15(m, K) = m|K| — 1.

Finally the slice section P" X is constructed by attaching cones on slice cells S with
dim S > n to kill all maps S — X with dim S > n. There is a natural map

P"X - Plx
The n-slice of X is defined to be its homotopy fiber P X.

In this way a tower {P"X}, n € Z is associated to each equivariant spectrum
X. The homotopy colimit holign P" X is contractible, and hol'gln P"X is just X.
The slice spectral sequence for X is the spectral sequence of the slice tower, relating
m P X to . X.

The key technical result of the whole paper is the following.

Theorem 1.13 (The Slice Theorem). The Cs-spectrum PP MU(Cs) s contractible
if nis odd. If n is even then PP MU(CS) s weakly equivalent to HZ AW, where
HZ is the Eilenberg-Mac Lane spectrum associated to the constant Mackey functor
Z, and W is a wedge of isotropic slice cells of dimension n.

The Slice Theorem actually holds more generally for the spectra MU(C2r)
formed like MU(C#) | using the smash product of 25~ copies of MUgr. The more
general statement is Theorem

The Gap Theorem depends on the following result.

Lemma 1.14 (The Cell Lemma). Let G = Can for somen # 0. If S is an isotropic
slice cell of even dimension, then the groups 7 HZ N\ S are zero for —4 < k < 0.

This is an easy explicit computation, and reduces to the fact that the orbit space
S™PG /G is simply connected, being the suspension of a connected space.

Since the restriction of pg to a subgroup K C G is isomorphic to (|G/K]) px
there is an equivalence

mpG NPK ) g (n+m|G/K|)px
S A (G4 I/} S™PE) ~ Gy I/} S .

It follows that if S is a slice cell of dimension d, then for any m, S™PS¢ A S is a slice
cell of dimension d + m|G|. Moreover, if S is isotropic, then so is S™P¢ A S. The
Cell Lemma and the Slice Theorem then imply that for any m, the group

nCsgmecs p MU(©e)
is zero for —4 < ¢ < 0. Since
i * Qo = lim m S~ es MU ()
this implies that
7TZ-C o =mN =0

for —4 < i < 0, which is the Gap Theorem.

The Periodicity Theorem is proved with a small amount of computation in the
RO(Cs)-graded slice spectral sequence for Qg. It makes use of the fact that Qg is an
equivariant commutative ring spectrum. Using the nilpotence machinery of [I5] [30]

instead of explicit computation, it can be shown that the groups 7. ) are periodic
with some period which a power of 2. This would be enough to show that only
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finitely many of the 6; can exist. Some computation is necessary to get the actual
period stated in the Periodicity Theorem.

All of the results are fairly easy consequences of the Slice Theorem, which in
turn reduces to a single computational fact: that the quotient of MU(Cs) by the
analogue of the “Lazard ring” is the Eilenberg-Mac Lane spectrum HZ associated
to the constant Mackey functor Z. We call this the Reduction Theorem and its
generalization to Con appears as Theorem It is proved for G = C5 in Hu-
Kriz [33], and the analogue in motivic homotopy theory is the main result of the
(unpublished) work of the second author and Morel mentioned earlier, where it is
used to identify the Voevodsky slices of M GL. It would be very interesting to find
a proof of Theorem along the lines of Quillen’s argument in [62].

During the long period between revisions of this paper, Haynes Miller’s Bourbaki
talk on this material has appeared [57]. We refer the reader there for a incisive
overview.

1.5. Summary of the contents. We now turn to a more detailed summary of
the contents of this paper. In §2lwe recall the basics of equivariant stable homotopy
theory, establish many conventions and explain some simple computations. One of
our main new constructions, introduced in §2.2.3]is the multiplicative norm functor.
We merely state our main results about the norm, deferring the details of the proofs
to the appendices. Another useful technique, the method of twisted monoid rings,
is described in §2.41 Tt is used in constructing convenient filtrations of rings, and
in forming the quotient of an equivariant commutative ring spectrum by a regular
sequence, in the situation in which the group is acting non-trivially on the sequence.

Section Ml introduces the slice filtration, and establishes many of its basic proper-
ties, including the strong convergence of the slice spectral sequence (Theorem [£.42]),
and an important result on the distribution of groups in the FEs-term (Corol-
lary £43]). The notions of pure spectra, isotropic spectra, and spectra with cellu-
lar slices are introduced in §4.6.20 In these terms, the Slice Theorem states that
MU(©2") is both pure and isotropic. Most of the material of these first sections
makes no restriction on the group G.

From §0l forward we restrict attention to the case in which G is cyclic of order
a power of 2, and we localize all spectra at the prime 2. The spectra MU(%) are
introduced and some of the basic properties are established. The groundwork is
laid for the proof of the Slice Theorem. The Reduction Theorem (Theorem [6.3]) is
stated in §61 The Reduction Theorem is the backbone of the Slice Theorem, and is
the only part that is not “formal” in the sense that it depends on the outcome of
certain computations.

The Slice Theorem is also proved in §6l assuming that the Reduction Theorem
holds. The proof of the Reduction Theorem is in §71 The Gap Theorem in proved
in §8] the Periodicity theorem in §9l The Homotopy Fixed Point Theorem is proved
in 10l and the Detection Theorem in §IT1

The paper concludes with two appendices devoted to the foundations of equi-
variant stable homotopy theory.
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2. EQUIVARIANT STABLE HOMOTOPY THEORY

We will work in the category of equivariant orthogonal spectra [49, 48]. In this
section we survey some of the main properties of the theory and establish some
notation. The definitions, proofs, constructions, and other details are explained in
Appendices[Aland [Bl The reader is also referred to the books of tom Dieck [73] [72],
and the survey of Greenlees and May [24] for an overview of equivariant stable
homotopy theory, and for further references.

2.1. G-spaces. Let G be a finite group, and T the topological category of pointed
left G-spaces and spaces of equivariant maps. The category T is a closed Sym-
metric monoidal category under the smash product operation. The tensor unit is
the O-sphere S° equipped with the trivial G-action.

We call a category enriched over TC a G-equivariant topological category. Since
it is closed monoidal, 7¢ may be regarded as enriched over itself. We denote the
enriched category by 7a. Thus T is the G-equivariant topological category of
G-spaces and G-spaces of continuous, not necessarily equivariant maps, on which
G acts by conjugation. There is an isomorphism

TYX,Y) =Ta(X,Y)C.
See §A. 1.3l and JA.2.1] for further background and discussion.

The homotopy set (group, for n > 0) 71 (X) of a pointed G-space is defined for
H C G and n > 0 to be the set of H-equivariant homotopy classes of pointed maps

S" — X.

This is the same as the ordinary homotopy set (group) m,(X*) of the space of H
fixed-points in X.

A weak equivalence in T is a map inducing an isomorphism on equivariant
homotopy groups w2 for all H C G and all n > 0. The homotopy theory of pointed
G-spaces is specified by the category TY equipped with the weak equivalences
just described. It can be completed to a topological model category in which a
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fibration is a map X — Y which for every H C G is a Serre fibration on fixed
points X — YH_ The smash product of G-spaces makes 7 into a symmetric
monoidal category in the sense of Schwede-Shipley [68], Definition 3.1], and T¢ into
an enriched model category.

Every pointed G-space is weakly equivalent to a G-CW complex constructed
inductively from the basepoint by attaching equivariant cells of the form G/H x D™
along maps from G/H x S"~1.

We will write both

ho 79 (X,Y) and [X,Y]¢
for the set of maps from X to Y in the homotopy category of 7¢. When X is
cofibrant and Y is fibrant this can be calculated as the set of homotopy classes of
maps from X to Y in T¢

(X, V)¢ =noTE(X,Y) = a§Ta(X,Y).

We will make frequent use of finite dimensional real orthogonal representations of
G. To keep the terminology simple we will simply refer to these as representations
of G.

An important role is played by the equivariant spheres SV arising as the one point
compactification of representations V' of G. When V is the trivial representation
of dimension n, SV is just the n-sphere S™ with the trivial G-action. We combine
these two notations and write

SV—i—n — SVED]R"

Associated to SV is the equivariant homotopy set
X =[SV, X]¢

defined to the be the set of homotopy classes of G-equivariant maps from SV to X.
The set 71'€X is a group if dim V& > 0 and an abelian group if dim V¢ > 1, where
V& is the space of G-invariant vectors in V.

Also associated to sphere SV one has the equivariant suspension XV X = SV A X
and the equivariant loop space QX = T¢(SY, X).

Now suppose that V; and V5 are two orthogonal representations of G and that
for each irreducible representation U of G occurring in V4 one has

(2.1) dim hom® (U, V4) > dim hom® (U, V7).

Then one may choose an equivariant linear isometric embedding ¢ : V; — V5 and
form

(2.2) e (X)),

in which V5 —¢(V1) denotes the orthogonal complement of the image of V4 in V5. If
instead of (2.I) the one has Vo > V; in the sense of Definition 2.3] below, then the
Stiefel manifold O(Vy, V2)% of equivariant linear isometric embeddings is connected.
In that case the group (Z2)) is independent of the choice of embedding ¢, and we
may simply write,

Definition 2.3. Let V; and V5 be two non-zero G-representations. We write V1 <
V4 if for every irreducible G-representation U,

dim hom® (U, V1) < dim hom® (U, V).
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This relation makes the set of G-representations into a partially ordered set.
We will shortly (§2.2.4) be interested in the special case in which V; is a trivial
representation of dimension k. As above we will write

Wgz—k(X )

for this group. In this way, for any n € Z there is a well-defined group
7T€+n (X)

provided dim VG > _n+1.

2.2. Equivariant stable homotopy theory.

2.2.1. The equivariant Spanier- Whitehead category. There is a choice to be made
when stabilizing equivariant homotopy theory. If one only seeks that fibration se-
quences and cofibration sequences become weakly equivalent, then one stabilizes in
the usual way, using suspensions by spheres with trivial G-action. But if one wants
to have Spanier-Whitehead duals of finite G-CW complexes, one needs to stabilize
with respect to the spheres S¥ where V is a finite dimensional representation of G.

The G-equivariant Spanier- Whitehead category SWY is the category whose ob-
jects are finite pointed G-CW complexes and with maps

{X,Y}C =1lm[SY A X, 8V A Y],
\4

in which the colimit is taken over the partially ordered set of G-representations.
For an informative discussion of this category the reader is referred to [4].

There is a direct analogue [4, [77] of Spanier-Whitehead duality in SWE . in which
a finite based G-CW complex embedded in a representation sphere SV is “V-dual”
to the unreduced suspension of its complement.

Ezxample 2.4. Suppose that X is a finite pointed G-set B. If there is an equivariant
embedding B C SV (for instance when V is the G-representation with basis B) the
V-dual of B works out to be SV A B.

If one wants finite G-CW complexes to have actual duals, in the sense of ob-
jects in a symmetric monoidal category, then one must enlarge the category SWE
by formally adding, for each finite G-CW complex Y and each finite dimensional
representation V of G, an object S~V A'Y defined by

(2.5) {X,87VAY}E = {SV A X, V)E

Since {SYV A (—),Y}¥ is a functor on SWC, this amounts to simply working in an
enlargement of the Yoneda embedding of SWY. One checks that for any Z, the map
Z — S™V NSV A Z corresponding to the identity map of SV A Z under (Z7) is an
isomorphism, and that symmetric monoidal structure given by the smash product
extends to this enlarged category. If X and Y are V-duals in SWY, then X and
S~V AY are duals in the enlarged equivariant Spanier-Whitehead category.

Example 2.6. From Example2.4] B is self-dual in the enlarged equivariant Spanier-
Whitehead category.

As in the non-equivariant case, the equivariant Spanier-Whitehead category still
suffers the defect that it is also not quite set up for doing homotopy theory. What
one wants is a complete closed symmetric monoidal category 8¢ of G-equivariant
spectra, equipped with the structure of a a Quillen model category (or at least a
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homotopical category in the sense of [I9] (see §B.)), and related to 7 by a pair
of adjoint (suspension spectrum and zero space) functors

2> TY 585 . Q.
One would like this data to satisfy
Sp$ The functors ¥°° and Q> induce adjoint functors
LY :ho 7% = ho8Y : RQ™.
on the homotopy categories.

Sp$ The symmetric monoidal structure on 8¢ induces a closed symmetric monoidal
structure on the homotopy category ho8¢ and the functor LY is sym-
metric monoidal.

Sp§ The functor LY extends to a fully faithful, symmetric monoidal embed-
ding of SW into ho 8€.

Sp§ The objects SV are invertible in ho8% under the smash product, so in
particular the above embedding of SW extends to an embedding of the
extended Spanier-Whitehead category.

Sp$ Arbitrary coproducts (denoted V) exist in ho8¢ and can be computed by
the formation of wedges. If {X,} is a collection of objects of 8§ and K is
a finite G-CW complex, then the map

Phos?(K, Xa) = ho 89 (K, \/ Xa)

is an isomorphism.
Sp§ Up to weak equivalence every object X is presentable in 8¢ as a homotopy
colimit
= STV A Xy, = STV A Xy,

in which {V,,} is a fixed increasing sequence of representations eventually
containing every finite dimensional representation of G, and each Xy, is
weakly equivalent to an object of the form YX* Ky, , with Ky, a G-CW
complex.

These properties aren’t meant to constitute a characterization of 8¢, though
they nearly do. The first five insist that 8¢ not be too small, and the last that it
not be too big. Combined they show that, any computation one wishes to make in
ho 8% can, in principle, be reduced to a computation in SWE.

In all of the common models, and in particular in equivariant orthogonal spectra,
the presentation Sp§ is functorial. We call this the canonical homotopy presenta-
tion. It is described in detail in §B.4.31 For many purposes one can ignore most of
the technical details of equivariant spectra, and just think in terms of the canonical
homotopy presentation.

Finally, unless the emphasis is on foundations, we will drop the L and R and

implicitly assume that all of the functors have been derived, unless otherwise spec-
ified.

2.2.2. Equivariant orthogonal spectra. An orthogonal G-spectrum consists of a col-
lection of pointed G-spaces Xy indexed by the finite dimensional orthogonal rep-
resentations V' of G, an action of the orthogonal group O(V) (of non-equivariant
maps) on Xy, and for each (not necessarily G-equivariant) orthogonal inclusion
t:V cWamap SVt A Xy — Xy, in which W —¢(V) denotes the orthogonal
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complement of the image of V' in W. These maps are required to be compatible
with the actions of G and O(V'). Maps of equivariant orthogonal spectra are defined
in the evident manner. For a more detailed description see [A.2.4]

Depending on the context, we will refer to orthogonal G-spectra as “equivariant
orthogonal spectra,” “orthogonal spectra,” “G-spectra,” and sometimes just as
“spectra”.

As with G-spaces, there are two useful ways of making the collection of G-spectra
into a category. There is the topological category 8¢ just described, and the G-
equivariant topological category 8¢ of equivariant orthogonal spectra and G-spaces
of non-equivariant maps. Thus for equivariant orthogonal spectra X and Y there
is an identification

8Y9(X,Y) = 8a(X,Y)“.

We will use the abbreviated notation 8 to denote 8¢ when G is the trivial group.
If V and W are two orthogonal representations of G the same dimension, and
O(V, W) is the G-space of (not necessarily equivariant) orthogonal maps, then

O(V, W)+ O(\V) Xv = Xw

is a G-equivariant homeomorphism. In particular an orthogonal G-spectrum X is
determined by the Xy with V' a trivial G-representation. This implies that the
category 8¢ is equivalent to the category of objects in 8 equipped with a G-action

(Proposition [A.T9).

Both 8¢ and 8¢ are tensored and cotensored over G-spaces:
(X A\ K)V =XvANK
(XK)V = (XV)K'
Both categories are complete and cocomplete.

Definition 2.7. The suspension and 0-space functors are defined by
(E*°K)y =SV AK

where {0} is the zero vector space.

The suspension spectrum functor is left adjoint to the 0-space functor. One has
YK = S° A K and more generally (K A L) = (X*°K) A L. The functors
¥°° and Q% may be regarded as topological functors between 7¢ and 8¢ or as
T enriched functors relating 7 and Sq.

For each G-representation V there is a G-spectrum S~V characterized by the
existence of a functorial equivariant isomorphism

(2.8) 8c(S7V, X))~ Xy

(see JA2A). By the enriched Yoneda Lemma, every equivariant orthogonal G-
spectrum X is functorially expressed as a reflexive coequalizer

(2.9) \ STV ASG(STV, STV)AXy =\ STV AXY = X
V,W 14

We call this the tautological presentation of X.
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The category 8¢ is a closed symmetric monoidal category under the smash prod-
uct operation. The tensor unit is the sphere spectrum S°. There are canonical
identifications

STVASW g VeW

and in fact the association
VSV

is a symmetric monoidal functor from the category of finite dimensional represen-
tations of G (and isomorphisms) to 8. Because of the tautological presentation,
this actually determine the smash product functor (see JA2.H).

Regarding the adjoint functors

EOO:’TG:SG:QOO,

the left adjoint X°° is symmetric monoidal. We will usually drop the X°° and either
not distinguish in notation between the suspension spectrum of a G-space and the
G-space itself, or use SO A K.

2.2.3. Change of group and indexed monoidal products. The fact that the category
8¢ is equivalent to the category of objects in 8§ equipped with a G-action has an
important and useful consequence. It means that if a construction involving spectra
happens to produce something with a G-action, it defines a functor with values in
G-spectra. For example, if H C G is a subgroup, there is a restriction functor
it 89 — 8 given by simply restricting the action to H. This functor has both
a left and a right adjoint. The left adjoint is given by

X|—>G+I/}X

and may be written as a “wedge”
VX
i€G/H
where X; = (H;)+ 1/1\r X with H; C G the coset indexed by . Similarly, the right

adjoint is given by the H-fixed points of the internal function spectrum from G to
X, and may be written as a kind of product

II x~ I] x
i€H\G i€G/H
where X* = hom™ (H?, X) and H' is the left H-coset with index i. The identifi-
cation of the two expressions is made using the map g — g~'. There is also an

analogous construction involving the smash product
Nix = N\ X
i€G/H
These are special cases of a more general construction.
Suppose that G is a finite group, and J is a finite set on which G acts. Write

B;G for the category with object set .J, in which a map from 5 to j’ is an element
g € G with g - j = j'. We abbreviate this to BG in case J = pt. Given a functor

XB]G—)S
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define the indexed wedge, indexed product and indexed smash product of X to be

\ X, [[x5 and A Xj

jeJ jeJ jeJ
respectively. The group G acts naturally on the indexed wedge and indexed smash
product and so they define functors from the category of B;G-diagrams of spectra
to 8¢. For more details, see JA.3.21

Suppose that H is a subgroup of G and J = G/H. In this case the inclusion

BieyH — ByG of the full subcategory containing the identity coset is an equiva-
lence. The restriction functor and its left Kan extension therefore give an equiva-
lence of the category of B;G-diagrams of spectra with 7. Under this equivalence,
the indexed wedge works out to be the functor

Gy AN(—).

PA(=)

The indexed smash product is the norm functor
NG : 8 — 8¢,

sending an H-spectrum X to the G-spectrum

N X

JjEG/H

Remark 2.10. When the context is clear, we will sometimes abbreviate the NE
simply to IV in order to avoid clustering of symbols.

The norm distributes over wedges in much the same way as the iterated smash
product. A precise statement of the general “distributive law” appears in §A.3.3]

The functor Ng is symmetric monoidal, commutes with sifted colimits, and
so filtered colimits and reflexive coequalizers (Proposition [A.53]). The fact that
V + S~V is symmetric monoidal implies that

(2.11) NG§~V = g-indiV,

where ind% V is the induced representation. From the definition, one also concludes
that for a pointed G-space T,

N§ (S™VAT) =5 ™%V AN§T,

where N§T is the analogous norm functor on spaces.

Th norm first appeared in group cohomology (Evens [21]), and is often referred
to as the “Evens transfer” or the “norm transfer.” The analogue in stable homotopy
theory originates in Greenlees-May [25].

2.2.4. Stable weak equivalences. The inequality of Definition gives the set of
finite dimensional orthogonal G-representations the structure of a partially ordered
set. When V; is the trivial representation of dimension k the condition Vo > V;
means that dim V% > k, and we will use instead the abbreviation Vo > k. We
extend this to all k € Z by declaring V' > k to be true for all £ < 0.

Suppose we are given X € 8¢, K € T¢, and two representations Vi < V.
Choose an equivariant isometric embedding ¢ : V3 — V, and let W be the orthogonal
complement of ¢(V7) in Va. Define

(2.12) [SY' A K, Xv,]¢ = [SV2 A K, Xy,
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by using the identification S A SV* ~ SV2 and the structure map SV A Xy, —
Xy, to form the composite

[SV* A K, Xy, ]9 =[S ASYTAK, SV A Xy, 9 — [SY2 AK, Xy,)C.
The condition V; < V, implies that ([212]) is independent of the choice of .

Definition 2.13. Let X be a G-spectrum and k € Z. For H C G the H -equivariant
kth stable homotopy group of X is the group

H : H
V>—k

in which the colimit is taken over the partial ordered set of orthogonal G-representations
V satisfying V > —k.

The colimit can be computed as
lim 7y} A
"

in which V;, C V,,41 C --- is any of finite dimensional orthogonal representations
of G having the property that any finite dimensional representation V' of G admits
an equivariant embedding in some V,,. It will be convenient to have a name for the
key property of the sequence {V,,}.

Definition 2.14. An increasing sequence V,, C V41 C --- of finite dimensional
representations of G is ezhausting if any finite dimensional representation V of G
admits an equivariant embedding in some V.

Definition 2.15. A stable weak equivalence (or just weak equivalence, for short) is
amap X — Y in 8% inducing an isomorphism of stable homotopy groups ﬂ',? for
all k € Z and H C G.

Equipped with the stable weak equivalences, the category 8¢ becomes a homo-
topical category in the sense of [19], and both the homotopy category ho 8% and the
functor 8¢ — ho 8% are defined and characterized uniquely up to unique isomor-
phism by the following universal property: for every category D, and every functor
F : 8¢ — D taking the stable weak equivalences isomorphisms, there is a unique
functor ho 8¢ — D making the diagram

8§¢ —=ho 8¢
N
D
commute. As with G-spaces, we will often employ the notation
[x,v)¢

for ho 8% (X,Y). See §B.1lfor more on the theory of homotopical categories, and for
an explanation of the notion of left (L) and right (R) derived functors appearing
in the discussion below.
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2.2.5. Properties Sp$-Sp§. We now describe how properties Sp$-Sp§ are veri-
fied. The first five assert things only about the homotopy category and, save the
fact that the symmetric monoidal structure is closed, they can be established using
only the language of homotopical categories.

For Sp§, one checks directly from the definition that the functor $°° pre-
serves weak equivalences between G-spaces with non-degenerate base points, so
that LX*° X can be computed as X°>° X if X has a non-degenerate base point, or as
¥°°X in general, where X is formed from X by adding a whisker at the base point.
The right derived functor R2°° is given by choosing any exhausting sequence and
forming

RQ*X = holim Qv Xy,

(See Proposition [B.:24)). Verifying that LX> and RQ> are adjoint functors makes
use of formula (2.I6]) below.

Regarding the symmetric monoidal structure (SpS), the smash product is not
known to preserve weak equivalences between all objects but it is homotopical on
the full subcategory of 8¢ x 8% consisting of pairs (X,Y) for which one of X or Y’
is cellular in the sense that it constructed inductively, starting with * and attaching
cells of the form G /}} STV A D', with V' a representation of H. Every G-spectrum

receives a functorial weak equivalence from a cellular object, so this is enough to
induce a symmetric monoidal smash product on ho8%. See §B.3.7 The fact that
the symmetric monoidal structure is closed is best understood in the context of
model categories. See §B.4.2] and especially Corollary [B.80l

For Sp§, there is a useful formula for maps in ho 8% in good cases. Choose
an exhausting sequence {V,}. For K a finite G-CW complex, ¢ € Z, and any
Y € 8% the definition of stable weak equivalence and some elementary facts about
homotopical categories lead to the formula (Proposition [B.44])

(2.16) ho89(S° A K, Y) = lim[SY"** A K, Yy, |9,

Using this one easily checks that functor K — S° A K extends to a symmet-
ric monoidal functor SWY — ho8%. A little more work gives the generalization

(Proposition [B:49))
(2.17) ho89(S™Y A K,Y) = im[S*" A K, Yvev,]%,

in which V a representation of G,
For any representations V, W of G, and any X € 8¢, the map

STVASYAX o X

is a weak equivalence (Proposition [B.30). This ultimately implies that SV is in-
vertible in ho 8¢ (Corollary [B:48)). This establishes Sp$.

The fact that the formation of arbitrary wedges is homotopical gives the first
part of Property Sp$ (Corollary B.23). The second part follows from (Z.16).

The canonical homotopy presentation of Sp§ is constructed by choosing an
exhausting sequence V' = {V,,} and letting X,, be an equivariant CW approximation
to Xy, . Since it involves more than just the homotopy category, the construction
is easier to describe with a model category structure in place. For the details see

.43
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Indexed monoidal products have convenient homotopical properties in 8. The
formation of indexed wedges is homotopical, and so need not be derived. The same
is true of the formation of finite indexed products. The map

\/Xa—>HXa

from a finite indexed wedge to a finite indexed product is always a weak equivalence.
This means in particular that for H C G, the map from the left to the right adjoint
of the restriction functor

8¢ — s
is always a weak equivalence. Thus for X € 8% and Y € 8¥ there are isomorphisms
G - [C H
(2.18) (X GenYf=[x [T vi]” =Xy
i€G/H

The composite is the Wirthmaller isomorphism. Because of it, the right adjoint to
the restriction functor tends not to appear explicitly when discussing the homotopy
category.

The formation of indexed smash products can be computed using cellular ap-
proximations. Combining this with the properties of the norm listed in §2.2.3]leads
to a useful description of NgX in terms of the canonical homotopy presentation

N§X = boling §~ 5 V2 A NG Xy, .
Vi

Finally, note that the formula (2.16)) also implies that for any k € Z
T X ~ ho 8% (S*, X) ~ ho8% (G A S* X)

where for k > 0 S~ is defined to be S~®" with R¥ the trivial representation.

2.2.6. The model structure. Not all of the functors one wishes to consider have
convenient homotopy theoretic properties.

Ezxample 2.19. For a G-spectrum X let
Sym" X = X"\"/%,

be the orbit spectrum of the n-fold iterated smash product by the action of the
symmetric group. The map

S7taSt —» 89
is a weak equivalence. However, the induced map

Sym™(S™' A S') — Sym™ S°

is not. The right side is S° since it is the tensor unit, while the left side works out

(Proposition [BI1T) to be weakly equivalent to the suspension spectrum of classify-
ing space for G-equivariant principal ¥,,-bundles, pointed by a disjoint basepoint.

In order to go further it is useful to refine the homotopical category structure on
8% to a model category. Let Acor be the set of maps
(2.20) Acot = {G STVAST 5 Gy A SV ADT}
in which H C G is a subgroup of G and V is a representation of H containing

a non-zero invariant vector. The set Ao is the set of generating cofibrations in
the positive complete model structure on 8. The weak equivalences are the stable
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weak equivalences and the fibrations are the maps having the right lifting property
against the acyclic cofibrations. See §B.4.1] for more details.

It works out that the symmetric power construction is homotopical on the class
of cofibrant objects in the positive complete model structure (Proposition [B.113).

Remark 2.21. The condition that V contains a non-zero invariant vector is the
positivity condition. It is due to Jeff Smith, and arose first in the theory of sym-
metric spectra. The choice is dictated by two requirements. One is that sym-
metric power construction sends weak equivalences between cofibrant objects to
weak equivalences. This is the key point in showing that the forgetful functor
from commutative algebras in 8¢ to 8¢ creates a model category structure on 8¢
(Proposition [B.130). The other is that the geometric fixed point functor (§B.10)
preserves (acyclic) cofibrations. The first requirement could be met by replacing
“positive” with dim V' > 0. The second requires dim V& > 0, once one is using a
positive model structure on §.

2.2.7. Virtual representation spheres and RO(G)-graded cohomology. Using the spec-
tra S™"1 and the spaces S'° one can associate a stable “sphere” to each virtual
representation V' of G. To do so, one first represents V as difference [Vp] — [V4] of
representations, and then sets

SV =851 A 8",
If (Vo, V1) and (Wy, Wh) are two pairs of orthogonal representations representing
the same virtual representation
V = [Vo] = 1] = [Wo] = [Wh] € RO(G),
then there is a representation U, and an equivariant orthogonal isomorphism
WieVoaeU=ViaWyaU.
A choice of such data gives weak equivalences
S7W1 /\Swo « S7W1€9VOEBU /\SwoéBVUEBU

~ S—V1G9W0€DU A SWO@VO@U — S_Vl A SVO

Thus, up to weak equivalence
SV =87V A5

depends only on V. However, the weak equivalence between the spheres arising
from different choices depends on data not specified in the notation. This leads
to some subtleties in grading equivariant stable homotopy groups over the real
representation ring RO(G). See [4l, §6] and [51, Chapter XIII]. The virtual repre-
sentation spheres arising in this paper always occur as explicit differences of actual
representations.

In the positive complete model structure, the spectrum S~ A SY° will be cofi-
brant if and only if the dimension of the fixed point space V¢ is positive.

Definition 2.22. Suppose that V is a virtual representation of G. A positive
representative of V consists of a pair of representations (Vp, V1) with dim V¢ > 0
and for which

V = Vo] - ] € RO(G).
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Associated to every subgroup H C G and every representation V € RO(H) is
the group
T (X) =[SV, X]".
An equivariant cohomology theory is associated to every equivariant orthogonal
spectrum F, by
E¥(X)=[X,8" A El°
En(X) =[S, EAX]C =7C(E A X).
There is also an RO(G)-graded version, defined by
EV(X)=[X,SY AE]¢
Ey(X)=[SY,EAX]Y=7(FEAX).
2.3. Multiplicative properties.

2.3.1. Commutative and associative algebras.

Definition 2.23. An equivariant commutative algebra (or just commutative al-
gebra) is a unital commutative monoid in 8¢ with respect to the smash product
operation. An equivariant associative algebra (associative algebra) is a unital asso-
ciative monoid with respect to the smash product.

There is a weaker “up to homotopy notion” that sometimes comes up.

Definition 2.24. A homotopy associative algebra is an associative algebra in ho 8¢.
A homotopy commutative algebra is a commutative algebra in ho 8¢.

The category of commutative algebras in 8 and spaces of equivariant multiplica-
tive maps will be denoted Comm®. The T%-enriched category of G-equivariant
commutative algebras and G-spaces of non-equivariant multiplicative maps will
be denoted Commg. The categories Comm© and Commyg are tensored and
cotensored over 7 and T¢ respectively. The tensor product of an equivariant com-
mutative algebra R and a G-space T will be denoted

R®T
to distinguish it from the smash product. By definition
Commg(R® T, E) = T¢(T, Commeg(R, E)).

We make CommY into a homotopical category by defining a map to be a weak
equivalence if the underlying map of orthogonal G-spectra is. The free commutative
algebra functor

X Sym(X) = \/ Sym" X,
n>0
is left adjoint to the forgetful functor. It takes weak equivalences between cofibrant
spectra to weak equivalences (Proposition [B.IT3)). This is the key point in showing
that the forgetful functor
Comm© — 8¢

creates a (T-enriched) model category from the positive complete model structure
on 8¢ (Proposition [B.130), and that

Commg — 3¢
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creates a T g-enriched model structure. For H C G the forgetful functor Comm% —
Comm?’ and its left adjoint form a Quillen morphism. A similar set of results ap-
plies to associative algebras.

Modules over an equivariant commutative ring are defined in the evident way
using the smash product. The category of left modules over R and equivariant
maps will be denoted M. A map of R-modules is defined to be a weak equivalence
if the underlying map of spectra is a weak equivalence. The adjoint “free module”

and “forgetful” functors
X—RAX:8S Mpr:M—M

create a model category structure on Mp. It becomes an enriched symmetric
monoidal model category under the operation

M AN
R
where M is regarded as a right R-module via

MARER RA M= M,

and M /1% N is defined by the coequalizer diagram
M/\R/\NZKM/\N—>M§N.

There are also the related notions of Eo, and A, algebras. It can be shown that
the categories of F, and commutative algebras are Quillen equivalent, as are those
of A~ and associative algebras.

2.3.2. Commutative algebras and indexed monoidal products. Because it is symmet-
ric monoidal, the functor NV take commutative algebras to commutative algebras,
and so induces a functor

N =NG: Comm” — Comm©.
The following result is proved in the Appendices, as Corollaries [A.56] and [B.134

Proposition 2.25. The functor
N : Comm” — Comm?©.

is left adjoint to the restriction functor i*. Together they form a Quillen morphism
of model categories. O

Corollary 2.26. There is a natural isomorphism
NG (5 R) — R (G/H),
under which the counit of the adjunction is identified with the map
R® (G/H) — R® (pt)
given by the unique G-map G/H — pt.

Proof: Since both R ® (G/H) and the left adjoint to restriction corepresent the
same functor, this follows from Proposition 2.2]] O

A useful consequence Corollary [Z26] is that the group N(H)/H of G-automor-
phisms of G/H acts naturally on N (i%)R. The result below is used in the main
computational assertion of Proposition .50
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Corollary 2.27. For vy € N(H)/H the following diagram commutes:

N§(i%R) —>NG (5 R)

\/

Proof: ITmmediate from Corollary [2.20] O

At this point a serious technical issue arises. The spectra underlying commuta-
tive rings are almost never cofibrant. This means that there is no guarantee that
the norm of a commutative ring has the correct homotopy type. The fact that it
does is one of the main results of Appendix B. The following is a consequence of
Proposition

Proposition 2.28. Suppose that R is a cofibrant commutative H-algebra, and
R — R is a cofibrant approzimation of the underlying H-spectrum. If Z — Z is a
weak equivalence of G-spectra then

NS(RYANZ - NG(R)AZ
is a weak equivalence. (|

We refer to the property exhibited in Proposition 2.2§ by saying that cofibrant
commutative rings are very flat.

2.3.3. Other uses of the norm. There are several important constructions derived
from the norm functor which also go by the name of “the norm.”
Suppose that R is a G-equivariant commutative ring spectrum, and X is an
H-spectrum for a subgroup H C G. Write
Ry (X) = [X, i R)"
There is a norm map
fi 1 Ry(X) = RG(NGX)
defined by sending an H-equivariant map X — R to the composite
NfX — N§ (i R) = R,
in which the second map is the counit of the restriction-norm adjunction. This is
the norm map on equivariant spectrum cohomology, and is the form in which the
norm is described in Greenlees-May [25].
When V is a representation of H and X = SV the above gives a map
N =NG: TR — wﬁdvR

in which ind V' is the induced representation which we call the norm map on the
RO(G)-graded homotopy groups of commutative rings
Now suppose that X is a pointed G-space. There is a norm map

N§ : RY(X) = RL(X)
sending
x € RY(X)=[S°AX, iy R
to the composite

SOANX - S°AN(X)~ N(S°AX) = N(ij;R) — R,



22 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

in which the equivariant map of pointed G-spaces

X = N§(X)

x- I xi—» A\ X,

JEG/H jEG/H

is the “diagonal”

whose j*' component is the inverse to the isomorphism
Xj=H)+ pX = X

given by action map. That this is actually equivariant is probably most easily seen
by making the identification

X; ~homp (H; ', X)
in which H ;1 denotes the left H-coset consisting of the inverses of the elements of
Hj, and then writing
H X, ~ homy (G, X).
JjEG/H
Under this identification, the “diagonal” map is the map

X — homp (G, X)

adjoint to the action map
Gx X — X,
H

which is clearly equivariant.
One can combine these construction to define the norm on RO(G)-graded coho-
mology of a G-space X
Nf : R} (X) — REV(X)
sending
SOAX S SY ANiILR
to the composite
SOANX = SOANX B8 5indV A N R SV AR,

2.4. The method of twisted monoid rings. In this section we describe the
method of twisted monoid rings. The basic constructions are categorical, and in
8241242l we do not make any homotopy theoretic considerations. In §2.4.3] we
take up the homotopy theoretic aspects of our constructions.

2.4.1. Twisted monoid rings. We start with a subgroup H of GG, and a positive
representative (Vp, V1) of a virtual representation V of H. Let

SO[SV] — \/ (SV)/\]C
k>0
be the free H-equivariant associative algebra generated by SV = S~"1 A SY, and
T € mil SOSVY]
the homotopy class of the generating inclusion. When |Z| = 0, the spectrum S°[SV]
is the monoid ring of the free monoid on one generator, and is in fact commutative.

For general z it is the Thom spectrum of an associative monoid map from the
free monoid on one generator to the classifying space for H-equivariant real vector
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bundles, hence a twisted monoid ring. It is not typically a commutative algebra,
though the RO(H )-equivariant homotopy groups make it appear so, since 7 S9[SV]
is a free module over 7150 with basis {1,Z,z2,...}. It will be convenient to use
the notation

S%z] = S°[SY].
Using the norm functor we can form the G-equivariant twisted monoid ring

Ni(8U8Y]) = $°[G4 A 57T,

This spectrum can also be described as a Thom spectrum over the free commutative
monoid generated by G/H. Things will look cleaner, and better resemble the
(polynomial) algebras we are modeling if we use the alternate notation

SO[G - SV] and S°[G - 7).
Though the symbol H is omitted in this notation, it is still referenced. The rep-
resentation V' is representation of H, and Z is an H-equivariant map with domain
SV,

By smashing examples like these together we can make associative algebras that
are twisted forms of free commutative monoid algebras over S, in which the group
G is allowed to act on the monoid. More explicitly, suppose we are given a sequence
(possibly infinite) of subgroups H; C G and for each i a positive representative
((Vi)o, (Vi)1) of a virtual representation V; of H;. For each i form

SYIG - ]
as described above, smash the first m together to make
SUG - Zy,...,G T,
and then pass to the colimit to construct the G-equivariant associative algebra
T=5°G"71,G - To,...].

The twisted monoid ring T' can also be described as a Thom spectrum over the
free commutative monoid generated by the G-set

o0
J =[] ¢c/H.
i=1
By construction, it is an indexed smash product of an indexed wedge

(2.29) =/ f} gV G)

j€J n=0

where for j = gH;, V(j) is the virtual representation of gH;g !

representative

with positive

V(i) = (V(i)o,V(i)1) = (9H:) x ((Vi)o, (Vi)1)

All of this can be done relative to an equivariant commutative algebra R by
defining
R[G - %1,G - Za,...]
to be
RASG-71,G - Z,...].
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Because they can fail to be commutative, these twisted monoid rings do not have
all of the algebraic properties one might hope for. But it is possible to naturally
construct all of the equivariant monomial ideals. Here is how.

Applied to ([229) the distributive law of §A.3.3] gives an isomorphism of T" with

the indexed wedge
7=\ 8%

feny

in which f is running through the set of functions
J—=Ng=1{0,1,2,...}

taking non-zero values on only finitely many elements (finitely supported functions).
The group G acts on the set NJ through its action on .J, and V¢ is the virtual
representation
Vi=Y 1) V)
jedJ

of the stabilizer Hy of f, with the evident positive representation

DV, @viu)Y

JjeJ jeJ

The G-set N is a commutative monoid under addition of functions, and the ring
structure on 7T is the indexed sum of the obvious isomorphisms

SViASYe  §Vr®Ve oy §Vitg,

Recall (for example from [I3]) that an ideal in a commutative monoid L is a
subset I C L with the property that L + I C I. Given a G-stable ideal I C N7
form the G-spectrum

Ty = \/ SV
fel

The formula for the multiplication in T implies that 77 is an equivariant sub bi-
module of T, and that the association I — T7 is an inclusion preserving function
from the set of ideals in Ny to the set of sub-bimodules of 7. For a more general
and systematic discussion see JA 3.6

Ezxample 2.30. The monomial ideal corresponding to the set I of all non-zero ele-
ments of N is the augmentation ideal (up to homotopy it is the fiber of the map
T — S9). Tt is convenient to denote this 7' bi-module as (G - Z1,G - Za,...). More
generally, for an integer n > 0 the set n/ = I +---+ I of n-fold sums of elements of
I is a monoid ideal. It corresponds to the monomial ideal given by the n'" power
of the augmentation ideal.

Ezample 2.31. Let dim : NJ — Ny be the function given by
dim f = dim Vy = > f(j) dim V.
jeJ

If for all 4, dimV; > 0, then the set {f | dim f > d} is a monoid ideal in N7
and corresponds to the monomial ideal M C T consisting the wedge of spheres of
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dimension greater than d. The quotient bimodule My/M,_1 can be identified with
the indexed coproduct
Vos%

dim f=d
on which T is acting through the augmentation T'— SY. These monomial ideals
play an important role in the proof of the Slice Theorem in §6

2.4.2. The method of twisted monoid rings.
Definition 2.32. Suppose that
fiZBi—>R, t=1,...m

are algebra maps from associative algebra B; to a commutative algebra R. The
smash product of the f; is the algebra map

7\f17\Bl—>7\R—>R,

in which the right most map is the iterated multiplication. If B is an H-equivariant
associative algebra, and f : B — ¢}, R is an algebra map, we define the norm of f
to be the G-equivariant algebra map

N$B — R
given by
N$B — N§S(i4R) — R,
in which the rightmost map is the counit of the adjunction described in Proposi-
tion [2.29]

These constructions make it easy to map a twisted monoid ring to a commutative
algebra. Suppose that R is a fibrant G-equivariant commutative algebra, and we're
given a sequence

z; €y R, i=1,2,....
A choice of positive representative ((Vp)i, (V1);) of V; and a map
SVi 5 R
representing Z; determines an associative algebra map
S%[z;] — R.
Applying the norm gives a G-equivariant associative algebra map
S°G -z = R.
By smashing these together we can make a sequence of equivariant algebra maps
SUIG-zy,...,G Zp] = R.
Passing to the colimit gives an equivariant algebra map
(2.33) SUG-%,G - %y,...] = R

representing the sequence Z;. We will refer to this process by saying that the
map (233) is constructed by the method of twisted monoid rings. The whole con-
struction can also be made relative to a commutative algebra S, leading to an
S-algebra map

(234) S[G.’Z‘l,G,fg,]%R

when R is a commutative S-algebra.
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2.4.3. Quotient modules. One important construction in ordinary stable homotopy
theory is the formation of the quotient of a module M over a commutative algebra
R by the ideal generated by a sequence {z1,x2,...} C m.R. This is done by
inductively forming the cofibration sequence of R-modules

(2.35) Slenl M@y, xn 1) = M/ (21, .. 20_1) = M/ (z1,...,2,)

and passing to the homotopy colimit in the end. There is an evident equivalence
M/(.Il,) m"iM/}%R/(Il,)

in case M is a cofibrant R-module. The situation is slightly trickier in equivariant

stable homotopy theory, where the group G might act on the elements z;, and

prevent the inductive approach described above. The method of twisted monoid

rings (§24.7)) can be used to get around this difficulty.
Suppose that R is a fibrant equivariant commutative algebra, and that

zZemp(R)  i=1,2,...

is a sequence of equivariant homotopy classes. Using the method of twisted monoid
rings, construct an associative R-algebra map

Using this map, we may regard an equivariant R-module M as a T-module. In
addition to (236 we will make use of the augmentation € : 7' — R sending the z;
to zero.

Definition 2.37. The quotient module M /(G - Z1,...) is the R-module
L
MAR
T
in which T acts on M through the map (2:36) and on R through the augmentation.
L
The symbol A denotes derived smash product. By Proposition [B.140] it can be
computed by taking a cofibrant approximation in either variable.
Let us check that this construction reduces to the usual one when the group

acting is the trivial group and M is a cofibrant R-module. For ease of notation,
write

T = Rxy,...]
T, = Rl[z1,...,2,].
Using the isomorphism
Rlzy,...| = R|z1,. .., %) /I%R[xn+1,...]
one can construct an associative algebra map
T — R[xpt1,---]
by smashing the augmentation
Rlxy,...,zp] =& R

sending each z; to 0, with the identity map of R[zp41,...]. By construction, the
evident map of T-algebras

@R[.Ingrl,.. ] — R
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is an isomorphism, and hence so is the map
hﬂMé\R[In+l7...] —)M/T\R.

In fact this isomorphism is also a derived equivalence. To see this construct a
sequence

— -+ Npg1 — Npyo---

of cofibrations of cofibrant left T-module approximations to
— - Rlxpi1,...] = R[Tpyo,...] = -
We have
o lim N & lim . N ~ li_ng(w*R)[;vk, ...]=R

from which one concludes that the map

ligNk — ligR[xk, ..
is a cofibrant approximation. It follows that

M/(x1,...) ~ holigM/(xl, ey X))

To compare M /(z1,...,2zn—1) with M/(z1,...,2,) let T, — R[z,] be associative
algebra map constructed from the isomorphism

T ~ Tp_1 A Rlzy).
R

by smashing the augmentation of T,_; with the identity map of R[z,]. We have
M/(x1,...,2p-1)~M N Rx=MAT, N Rx~M A R[x,].
Ty Tn—l Tn

1—1 n
By Proposition [B.1401 M %\ R[z,] is a cofibrant R[x,]-module. The cofibration
sequence (2.35)) is now constructed by applying the functor

(238) M/(,Tl,...,l'n_l)R[/z\n](—).

to the pushout diagram of R[x,] bimodules
(2.39) (xn) — R[z4)]

|

x— s> R

and appealing to Corollary [B.141]
A similar discussion applies to the equivariant situation, giving

M/(G-Zq,...) mligM/(G-il,...,G-:En),
a relation

M/(G-fcl,...,G-:En)%M/(G-g’cl,...,G-:En_l)R[é\i ]R,

and a cofibration sequence
(G-Zp) M/(GZ1,...,GTp-1) > M/(G-Z1,...,GTpp_1) = M/(G-Z1,...,G-Ty),
derived by applying the functor

M/(G'jl""’G'j"‘l)R[éf ](—)
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to
(G- %n) — R[G - 7] — R.

One can also easily deduce the equivalences

(2.40) R/(G-Z1,...,G -Zp) = R/(G-T1) /g---/ﬂ\)R/(G-fcl)
and
(2.41) R/(G~§:1,...)zligR/(G-a‘:l)Q--éR/(G.:fn).

These expressions play an important role in the proof Lemma [7.7, which is a key
step in the proof the Reduction Theorem.

2.5. Fixed points, isotropy separation and geometric fixed points.

2.5.1. Fized point spectra. The fized point spectrum of a G-spectrum X is defined
to be the spectrum of G fixed points in the underlying, non-equivariant spectrum
16X . In other words it is given by

X = (i5X)°.

The notation 5 X% can get clumsy and we will usually abbreviate it to X¢.

The functor of fixed points has a left adjoint which sends S~V A Xy € 8§ to
S~V A Xy € 8%, where in the latter expression V is regarded as a representation
of GG with trivial G-action and Xy is regarded as a space with trivial G-action. It
can be computed for general X in terms of the tautological presentation

V VW) ASWAaXxy = \[STVAXy - X
V,W 1%

for the trivial group (see (A.13])), once one observes that

S VW) = Ja(V,W)

when V' and W have trivial G-action.

Under the equivalence between 8¢ and the category of objects in 8 equipped with
a G-action, the fixed point spectrum functor is formed by passing to objectwise fixed
points, and its left adjoint is given by regarding a non-equivariant spectrum as a
G-object with trivial G-action.

The fixed point functor and its left adjoint form a Quillen morphism in the
positive complete model structures. Neither the fixed point functor nor its left
adjoint is homotopical and so both need to be derived. As one can easily check
from the definition, if X is fibrant (or more generally has the property that for some
exhausting sequence {V,,}, the map Xy, — QV»+1=V» Xy, is a weak equivalence)
there is an isomorphism

T (X9 ~7¢X.

The (derived) fixed point functor on spectra doesn’t always have the properties
one might be led to expect by analogy with spaces. For example even though
the composition of the fixed point functor with its left adjoint is the identity, the
composition of the derived functors is not. The derived fixed point functor does
not generally commute with smash products, or with the formation of suspension
spectra.
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2.5.2. Isotropy separation and geometric fixed points. A standard approach to get-
ting at the equivariant homotopy type of a G-spectrum X is to nest X between
two pieces, one an aggregate of information about the spectra i3, X for all proper
subgroups H C G, and the other a localization of X at a “purely G” part. This is
the isotropy separation sequence of X.

More formally, let P denote the family of proper subgroups of GG, and EP the
“classifying space” for P, characterized up to equivariant weak equivalence by the
property that the space of fixed points EP% is empty, while for any proper H C G,
EPH is weakly contractible. For convenience we will assume that EP has been
chosen to be a G-CW complex. Such a model can be constructed as the join of
infinitely many copies of G/H with H ranging through the proper subgroups of G.
It can also be constructed as the unit sphere in the sum of infinitely many copies
of the reduced regular representation of G. Any G-CW complex EP admits an
equivariant cell decomposition into cells of the form (G/H)4 A D™ with H a proper
subgroup of G.

Let EP be the mapping cone of EP — pt, with the cone point taken as base
point. The G-CW complex EP is characterized up to equivariant homotopy equiv-
alence by the property

0 _
x  H#G.
The important isotropy separation sequence is constructed by smashing a G spec-
trum X with the defining cofibration sequence for EP

(2.42) EP,ANX - X - EPAX.

The term on the left can be described in terms of the action of proper subgroups
H C G on X. The homotopy type of the term on the right is determined by its
right derived fixed point spectrum

o4 (X) = (EP A X)) ,

in which the subscript f indicates a functorial fibrant replacement. The functor
O (X) is the geometric fized point functor and has many remarkable properties.

Proposition 2.43. i) The functor ®° sends weak equivalences to weak equiva-
lences.

ii) The functor ® commutes with filtered homotopy colimits.

iii) For a G-space A and a representation V of G there is a weak equivalence
PGSV ANA) ~ SV N AC where VE C V is the subspace of G-invariant vectors.

iv) For G-spectra X andY the spectra
X AY) and DC(X)ADE(Y).
are related by a natural chain of weak equivalences.

Remark 2.44. Note that in terms of the canonical homotopy presentation

X =~ holigS_V AN Xy
%

properties i)-iii) of Proposition 243 imply that

(2.45) PYX ~ holim S~V A X
\4
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Sketch of proof: The first assertion follows from the fact that smashing with EP
is homotopical (§B.3.7), so need not be derived, and that the fixed point functor is
homotopical on the full subcategory of fibrant objects. The second is straightfor-
ward. Part iii) is Proposition[B.I86l By the remark above, the canonical homotopy
presentation reduces part iv) to the case X = S~V A A, Y = S~ A B, with A and
B G-CW complexes. One easily checks the assertion in this case using part iii). O

Remark 2.46. When G = Csn, the space EP is the space ECy with G acting
through the epimorphism G — Cs. Taking S° with the antipodal action as a
model of EC5, this leads to an identification

EP ~ lim S"°,

n—oo

in which S™° denotes the one point compactification of the direct sum of n copies
of the real sign representation of G.

Remark 2.47. The isotropy separation sequence often leads to the situation of need-
ing to show that a map X — Y of cofibrant G-spectra induces a weak equivalence

EPAX — EPAY.
Since for every proper H C G, wa’P ANX = wa’P AY = 0, this is equivalent
to showing that the map of geometric fixed point spectra ®¢X — ®CY is a weak
equivalence.
Remark 2.48. Since for every proper H C G, 7H EP A X =0, it is also true that
[T,EPAX]Y =0

for every G-CW spectrum 7 built entirely from G-cells of the form G 1/1\1 D™ with
H a proper subgroup of G. Similarly, if T" is gotten from Ty by attaching G-cells
induced from proper subgroups, then the restriction map

[T, EP A X)¢ — [Ty, EP A X)€
is an isomorphism. This holds, for example, if T is the suspension spectrum of a

G-CW complex, and Ty C T is the subcomplex of G-fixed points.

Remark 2.49. For a subgroup H C G and a G-spectrum X, it will be convenient
to use the abbreviation

oH X
for the more correct ®#i%, X . This situation comes up in our proof of the “homotopy
fixed point” property of Theorem[I0.8 where the more compound notation becomes
a little unwieldy.

We end this section with a simple result whose proof illustrates a typical use of
the geometric fixed point spectra.

Proposition 2.50. Suppose that X is a G-spectrum with the property that for
all H C G, the geometric fized point spectrum ®H X is contractible. Then X is
contractible as a G-spectrum.

Proof: By induction on |G| we may assume that for proper H C G, the spectrum
i3; X is contractible. Since both G 1/1\1 (—) and the formation of mapping cones

are homotopical it follows that T'A X is contractible for any G-CW complex built
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entirely from cells of the form G I/} D™ with H C G proper. This applies in

particular to T'= EP;. The isotropy separation sequence then shows that
X - EPAX

is a weak equivalence. But Remark 2.47 and our assumption that ®CX is con-
tractible imply that EP A X is contractible. O

2.5.3. Monoidal geometric fixed points. For some purposes it is useful to have a
version of the geometric fixed point functor which is lax symmetric monoidal. For
example, such a functor automatically takes (commutative) algebras to (commu-
tative) algebras. The geometric fixed point functor defined in [48, §V.4] has this
property. We denote it @%i[ and refer to it as the monoidal geometric fized point
functor in order to distinguish it from ®“. The construction is described in §B.10l

Proposition 2.51. The monoidal geometric fized point functor has the following
properties:

i) It preserves acyclic cofibrations.
il) It s laz symmetric monoidal.
iii) If X andY are cofibrant, the map
G (X) AN DG (V) = DG (X AY)
is an isomorphism.
iv) It commutes with cobase change along a closed inclusion.

v) It commutes with directed colimits.

Property iii) implies that @%i[ is weakly symmetric monoidal in the sense of the
definition below.

Definition 2.52 (Schwede-Shipley [68]). A functor F' : C — D between (symmet-
ric) monoidal model categories is weakly (symmetric) monoidal if it is lax (symmet-
ric) monoidal, and the map

F(X)ANF(Y)— F(XAY)
is a weak equivalence when X and Y are cofibrant.

The next result is [48, Proposition V.4.17], and is discussed in more detail as

Proposition [B.202

Proposition 2.53. The left derived functor of ®5; is ®“. More specifically, there
are natural transformations

PY(X) = B (X) < 2 (X)

in which the rightmost arrow is a always weak equivalence and the leftmost arrow
is a weak equivalence when X is cofibrant. (|

Because ®€ is lax monoidal, it determines functors
%, - Alg® — Alg

Y, Comm® — Comm,
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and for each associative algebra R a functor
(I)% : MR — M.:I)AG/IR.

In addition, if R is an associative algebra, M a right R-module and N a left R-
module there is a natural map

(2.54) (M AN) = OHM N OFN.
R TR

The argument for [48, Proposition V.4.7] shows that (254 is a weak equivalence
(in fact an isomorphism) if M and N are cofibrant and R is “cellular.” See Propo-
sition (Recently, Blumberg and Mandell [9, Appendix A] have shown that
one need only require one of M or N to be cofibrant in order to guarantee that this
map is an isomorphism.)

While these properties if @%i[ are very convenient, they must be used with cau-
tion. The value ®§;(X) is only guaranteed to have the “correct” homotopy type on
cofibrant objects. The spectrum underlying a commutative algebra is rarely known
to be cofibrant, making the monoidal geometric fixed point functor difficult to use
in that context. The situation is a little better with associative algebras. The weak
equivalence ([2.54]) leads to an expression for the geometric fixed point spectrum of
a quotient module which we will use in 7.3 In order to do so, we need criteria
guaranteeing that the monoidal geometric fixed point functor realizes the correct
homotopy type. Such criteria are described in §B.10.4l

2.5.4. Geometric fized points and the norm. The geometric fixed point construction
interacts well with the norm. Suppose H C G is a subgroup, and that X is an H-
spectrum. The following result is proved as Proposition[B.210l Our original version
merely concluded that the transformation in question was a weak equivalence on
cofibrant objects. Andrew Blumberg and Mike Mandell pointed out that it is in
fact an isomorphism on cofibrant objects, and at their request we have included a
proof of the stronger statement.

Proposition 2.55. There is a natural map
X — 0§, (NGX)
which is an isomorphism, hence a weak equivalence, on cofibrant objects.

Because of Proposition and the fact that the norm preserves cofibrant ob-
jects (Proposition [B:89), the above result gives a natural zig-zag of weak equiv-
alences relating ®#(X) and ®(N§X) when X is cofibrant. In fact there is a
natural zig-zag of maps

X & dY(NGX)
which is a weak equivalence not only for cofibrant X, but for suspension spectra
of cofibrant G-spaces and for the spectra underlying cofibrant commutative rings.
The actual statement is somewhat technical, and is one of the main results of
Appendix B. The condition is described in the statement of Proposition[B.214l See
also Remarks and [B217

Corollary 2.56. For the spectra satisfying the condition of Proposition [B.21]], the
composite functor

Yo NG :87 =8
preserves, up to weak equivalence, wedges, directed colimits along closed inclusions
and cofiber sequences.
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Proof: The properties obviously hold for ®*. O

There is another useful result describing the interaction of the geometric fixed
point functor with the norm map in RO(G)-graded cohomology described in §2.3.3
Suppose that R is a G-equivariant commutative algebra, X is a G-space, and V' €
RO(H) a virtual real representation of a subgroup H C G. In this situation one
can compose the norm

N : Ry (X) — RV (X)
with the geometric fixed point map
% : RV(X) - (89R)V" (X9,

where VH C V is the subspace of H-fixed vectors, and X is the space of G-fixed
points in X.

Proposition 2.57. The composite
3% o N : R%(X) = (#°R)V" (X9)

is a ring homomorphism.

Proof: Multiplicativity is a consequence of the fact that both the norm and the
geometric fixed point functors are weakly monoidal. Additivity follows from the
fact that the composition ®“ o N preserves wedges (Corollary Z.56). O

3. MACKEY FUNCTORS, HOMOLOGY AND HOMOTOPY

)

3.1. Mackey functors. In equivariant homotopy theory, the role of “abelian group’
is played by the notion of a Mackey functor (Dress [16]). The following is the sum-
mary of Dress’ definition as it appears in Greenlees-May [24].

Definition 3.1 (Dress [16]). A Mackey functor consists of a pair M = (M., M™*) of
functors from the category of finite G-sets to the category of abelian groups. The
two functors have the same object function (denoted M) and take disjoint unions to
direct sums. The functor M, is covariant, while M* is contravariant, and together
they take a pullback diagram of finite G-sets

S

y l

|

to a commutative square

where o* = M*(a), 8. = M.(B), etc.
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The contravariant maps M*(«) are called the restriction maps, and the covariant
maps M., (8), the transfer maps.

A Mackey functor can also be defined as a contravariant additive functor from
the full subcategory of 8 consisting of the suspension spectra X*° B, of finite G-
sets B. It is a theorem of tom Dieck that these definitions are equivalent. See [24]
85].

The equivariant homotopy groups of a G-spectrum X are naturally part of the
Mackey functor 7,, X defined by

X)*(B) = [S" A By, X|¢
X).(B) =[S",X A B¢,

(m,

(m,,

The identification of the two object functors
[S" A By, X% ~[S", X A B,
comes from the self-duality of finite G-sets (Example [Z8]). For B = G/H one has
7, X(B)=rlX.

The Mackey functor m,S° is the Burnside ring Mackey functor A. It is the free
Mackey functor on one generator. For a G-set B, the value A(B) is the group
completion of the monoid of isomorphism classes of finite G-sets T" — B over B
under disjoint union. The restriction maps are given by pullback, and the transfer
maps by composition. The group A(G/H) works out to be isomorphic to the abelian
group underlying the Burnside ring of finite H-sets.

Just as every abelian group can occur as a stable homotopy group, every Mackey
functor M can occur as an equivariant stable homotopy group. In fact associated
to each Mackey functor M is an equivariant Eilenberg-Mac Lane spectrum HM,
characterized by the property

M n=20

m, HM =<7~
{O n # 0.

See [24] §5] or [43].
The homology and cohomology groups of a G-spectrum X with coefficients in
M are defined by

HE(X;M)=nSHM A X
HE(X; M) = [X, 2"HM]C.
For a pointed G-space Y one defines
H (Y M) = Hi (S%Y; M)
HE(Y; M) = Ho(5Y; M).
We emphasize that the equivariant (co)homology groups of pointed G-spaces Y we
consider will always be reduced (co)homology groups.
We will have need to consider the ordinary, non-equivariant homology and co-

homology groups of the spectrum i§X underlying a G-spectrum X. It will be
convenient to employ the shorthand notation

HR (X, Z) = Ho(igX; Z)
H,(X;Z) = H"(iy X Z)
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for these groups.

3.2. Constant and permutation Mackey functors. The constant Mackey func-
tor Z is the functor represented on the category of finite G-sets by the abelian group
Z with trivial G-action. The value of Z on a finite G-set B is the group of functions

Z(B) = hom®(B,Z) = hom(B/G, Z).

The restriction maps are given by precomposition, and the transfer maps by sum-
ming over the fibers. For K C H C G, the transfer map associated by Z to

G/K —- G/H
is the map Z — Z given by multiplication by the index of K in H.

Definition 3.2. Suppose that S is a G-set, and write Z{S} for the free abelian
group generated by S, and Z° for the ring of functions S to Z. The permutation
Mackey functor Z{S} is the Mackey functor

Z{S}(B) = hom“ (B, Z{5}),

whose restriction maps are given by precomposition and transfer maps by summing
over the fibers.

The permutation Mackey functor Z{S} is naturally isomorphic to the Mackey
functor myHZ N\ S4. To see this note that restricting to underlying non-equivariant
spectra gives a map

noHZ A S1(B) = [By, HL A S4]% — [By, HZ A S4],
whose image lies in the G-invariant part. Since
[By,HZ A S+] = hom(B,Z{S})
this gives a natural transformation
noHZ NSy — Z{S}.

Since both sides take filtered colimits in S to filtered colimits, to check that it is
an isomorphism, it suffices to do so when S is finite. In that case we can use the
self duality of finite G-sets to compute

By, HLAS)% ~ [By A Sy, HZJ,

and then observe that by definition of the constant Mackey functor Z, the forgetful
map

[B+ A Sy, HZ] — [By A Sy, HZ)
is an isomorphism with the G-invariant part of the target. The claim then follows
from the compatibility of equivariant Spanier-Whitehead duality with the restric-
tion functor to non-equivariant spectra.

The properties of permutation Mackey functors listed in the Lemma below follow
immediately from the definition. They are used in §4.6.2 to establish some of our
basic tools for investigating the slice tower. To formulate part [iil), note that every
G-set B receives a functorial map from a free G-set, namely G x B, and the group
of equivariant automorphisms of G x B over B is canonically isomorphic to G. For
instance, one can give G x B the product of the left action on G and the trivial
action on B, and take the map G x B — B to be the original action mapping. With
this choice the automorphisms G x B over B are of the form (g,b) — (g, z~b)
with x € G.
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Lemma 3.3. Let M be a permutation Mackey functor and B finite G-set.
i) If B — B is a surjective map of finite G-sets, then
M(B)— M(B') = M(B' x B)
B

is an equalizer.
ii) Restriction along the action map G X B — B gives an isomorphism
M(B) - M(G x B)“.
iii) The restriction mapping M(G/H) — M(G) gives an isomorphism
M(G/H) — M(G)"

of M(G/H) with the H-invariant part of M(G).

iv) A map M — M’ of permutation Mackey functors is an isomorphism if and
only if M(G) — M'(G) is an isomorphism.
O

3.3. Equivariant cellular chains and cochains. The Mackey functor homology
and cohomology groups of a G-CW spectrum X can be computed from a chain
complex analogous to the complex of cellular chains (see, for example [24, §5]).
Write X () for the n-skeleton of X so that

XMW /x=D ~ X, AS"
with X,, a discrete G-set. Set
CNX; M) =7CHM AX™W /XD =28 HM A X,
PG M) = (XM x0D srg MG = (82X, , HM]C.

cell
The map
X(n)/X(n—l) N EX("_l)/X("_Q)
defines boundary and coboundary maps
Crel(X; M) — Crly (X5 M)

n

CI (X5 M) — Cly(X 3 M).

cell
The equivariant homology and cohomology groups of X with coeflicients in M are
the homology and cohomology groups of these complexes. By writing the G-set X,
as a coproduct of finite G-sets X2 one can express CS'(X; M) and C7,(X; M) in
terms of the values of the Mackey functor M on the X¢.

Ezample 3.4. Write pg for the (real) regular representation of G and pg — 1 for the
reduced regular representation. The groups

1 (571 01)

play an important role in equivariant stable homotopy theory. To describe them
we need an equivariant cell decomposition of S#¢~1. Since SP¢~! is the mapping
cone of the map
S(pc —1) — pt

from the unit sphere in (pg — 1) it suffices to construct an equivariant cell decom-
position of S(pg — 1). Write g = |G|. Think of R as the vector space with basis
the elements of G. The boundary of the standard simplex in this space is equiv-
ariantly homeomorphic to S(pg — 1). The simplicial decomposition of this simplex
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is not an equivariant cell decomposition, but the barycentric subdivision is. Thus
S(pe — 1) is homeomorphic to the geometric realization of the poset of non-empty
proper subsets of GG. This leads to the complex

(3.5) M(G/G) = M(So) = M(S1) = -+ — M(Sy-1)

in which Sy is the G-set of flags Fy C --- C F}, C G of proper inclusions of subsets
of G, with G acting by translation. The coboundary map is the alternating sum of
the restriction maps derived by omitting one of the sets in a flag.

Corollary 3.6. For any Mackey functor M, the group
po 1 HM = HG (8771 M)

is given by
) ker (M(G/G) — M(G/H)).

HGCG

Proof: Using the complex (B3] it suffices to show that the orbit types occurring
in Sy are precisely the transitive G-sets of the form G/H with H a proper subgroup
of G. The set Sy is the set of non-empty proper subsets S C G. Any proper
subgroup H of G occurs as the stabilizer of itself, regarded as a subset of G. Since
the subsets are proper, the group G does not occur as a stabilizer. (I

Example 3.7. Let X be the sphere S%~1 with the action of Cy» given by the antipo-
dal map, and pointed by adding a disjoint base point. The usual cell decomposition
into hemispheres is equivariant for the action of Cs», and for this cell structure one
has X /XU~ = Cyny A S7. The complex of cellular chains C¢°"'(X; M) works
out to be the complex of length d

M(Cyn) — ++- 225 M(Con) =25 M(Cyn)

in which v € Can is the generator.

Ezxample 3.8. Let G = Cy» and o the sign representation of G. Suspending the
cell decomposition of Example B.7 gives an equivariant cell decomposition of S
whose k-skeleton is S** and whose set of k-cells is Co x D*, in which G acts on
C5 through the unique surjective map G — C5. The complex of cellular chains
Ceell(S4e; M) works out to be the complex of length (d + 1)

M(Ca) = =+ = M(Cy) — M(pt)
in which v € G is the preferred generator.

If M is the constant Mackey functor Z, then C<®!(X; M) is the permutation
Mackey functor Z{X,}, and associates to a finite G-set B the group of equivariant
functions

B — Z{X,} = C"X.
In this way the entire Mackey functor chain complex C¢"(X;Z) is encoded in the
ordinary cellular chain complex C¢(X) for %X, equipped with the action of G.
The equivariant homology group HE(X;Z) are just the homology groups of the
complex

homg (G/G, C5(X)) = C5(X)©
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of G-invariant cellular chains. Similarly the equivariant cohomology groups Hf (X; Z)

are given by the cohomology groups of the complex
:ell (X)G

of equivariant cochains. The equivariant homology and cohomology groups depend
only on the equivariant chain homotopy type of these complexes of permutation
Mackey functors.

Ezxample 3.9. If X is a G-space admitting the structure of a G-CW complex, then
the cohomology groups H{(X;Z) are isomorphic to the cohomology groups

H*(X/G:7)

of the orbit space. Indeed the equivariant cell decomposition of X induces a cell
decomposition of X/G and one has an isomorphism

Coan(X)¢ = Ciy(X/G).
Ezxample 3.10. Suppose that V is a representation of G of dimension d, and consider
the equivariant cellular chain complex
CE(SY52) - C5(8Y2) - = C5(8Y5 ),
associated to an equivariant cell decomposition of S¥'. The underlying homology
groups are those of the sphere SV. In particular, the kernel of
C5(sV:z) — 08V 2)
is isomorphic, as a G-module, to H}j(SV;Z). If V is orientable then the G-action
is trivial, and one finds that the restriction map
Hg (SV;2) — Hy(SY;Z)
is an isomorphism. A choice of orientation gives an equivariant isomorphism
HY(SV;7Z) ~ 7.
Thus when V is oriented there is a unique isomorphism
HF(SV;Z)~Z
extending the non-equivariant isomorphism given by the orientation.

3.4. Homology and geometric fixed points. In addition to the Mackey functor
homotopy groups m, X there are the RO(G) graded homotopy groups 7& X defined
by
X =[SV, X]¢ Ve RO(G).
Here RO(G) is the Grothendieck group of real representations of G. The use of
x for the wildcard symbol in 7¢ is taken from Hu-Kriz [33]. The RO(G)-graded
homotopy groups are also part of a Mackey functor x, (X) defined by
my X(B) =[S A By, X]°.
As with Z-graded homotopy groups, we’ll use the abbreviation
*HX = (2 X)(G/H).

In this section we will make use of RO(G)-graded homotopy groups to describe the
geometric fixed point spectrum ®%HZ when G = Con (Proposition [3.18 below).
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There are a few distinguished elements of RO(G)-graded homotopy groups we
will need. Let V be a representation of G and S® — SV the one point compactifi-
cation of the inclusion {0} C V.

Definition 3.11. The element

ay € 7%, 8°
is the element corresponding under the suspension isomorphism FE;VSO ~ m5SsY
to the map S° < SV described above.

The element ay is the Euler class of V in RO(G)-graded equivariant stable coho-
motopy. If V contains a trivial representation then ay = 0. For two representations
V and W one has

ayew = ayaw € W?V_WSO.

When V is oriented, Example provides a preferred generator of HY (SV; Z).

We give the corresponding RO(G)-graded homotopy class name.

Definition 3.12. Let V be an oriented representation of G of dimension d. The
element

uy € 75 HLZ.
is the element corresponding to the preferred generator of T HZASY = H$ (SV;Z)
given by Example .10

If V is trivial then uy = 1. If V and W are two oriented representations of G,
and V @ W is given the direct sum orientation, then
UVeWw = UVUW.
Among other things this implies that the class uy is stable in V' in the sense that

Uy4+1 = uy.
For any V, the representation V & V has a canonical orientation, giving

G
Uyay € Toy_oyHZ.

When V is oriented this class can be identified, up to sign, with u%/
The elements ay and uy behave well with respect to the norm. The following
result is a simple consequence of the fact (211 that NSV = SndV.

Lemma 3.13. Suppose that V is a d-dimensional representation of a subgroup
H C G. Then

Nay = Ginav
Uindd * Nuy = Uina v,

where ind V = indg V' is the induced representation and d is the trivial representa-
tion. (]

Remark 3.14. As is standard in algebra, we will adopt the convention that the
operation of mutiplication by an element of a ring on a module is denoted by the
element of the ring. We will also use it in closely related contexts. For example,
for a G-spectrum X we will refer to the to the maps

av/\lxtS_V/\X—>X
wyAlx : STVAX 5 HZAX
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as multiplication by ay and uy respectively, and, when no confusion is likely, denote
them simply by ay and uy. Note that X might be a virtual representation sphere.
This means that we will not usually distinguish in notation between these maps
and their suspensions. Similarly, if R is any equivariant algebra, and x € W‘C}SO
then the product of x with 1 € 7§’ R will be denoted z € 7% R. In accordance with
this, at various places in this paper the symbol ay might refer to a map S~ — S°,
or its suspension S® — SV or the Hurewicz image S° — HZ A SV or equivalently
an element of 7§’ HZ A SV

Example 3.15. Let SV be the colimit of the spaces S™ under the standard
inclusions. Each of these inclusions is “multiplication by ay.” Smashing with a
G-spectrum X we find that SV A X is the colimit of the sequence

X W GV AX L GVOV A XL WY gV A X DY L

Using the suspension isomorphism to replace 7¢ 5™V AX with 7&_ 2vX the sequence
of the RO(G)-graded groups becomes

D¢ a—v>7rf_VX--- a—v>7Tf_an"'
from which one gets an isomorphism
188>V AN X ~ ay ' 1CX.

Under this isomorphism the effect in RO(G)-graded homotopy groups induced by
the inclusion
S™VAX = SV AX

sends z € 7¢X ~ 7% |, S"V A X to ay"z € ay' ¢ X.

Ezample 3.16. Specializing Example3.8l let G = Cy» and o the sign representation.
Consider the equivariant homology of S%° with coefficients in the constant Mackey
functor Z. The complex of cellular chains works out to be (Example B8) the
complex of length (d 4 1)

z—--2352%72%7,
Our conventions provide nomenclature for the homology classes. When d is odd the
group Hy(S%;Z) is zero. When d is even, the representation do acquires a canonical
orientation, the group Hl?Q (S99;Z) is canonically isomorphic to the integers, and
the preferred generator is the class u4, (RemarkB.14). For every even 0 < k < d the
group HY (597, Z) is cyclic of order 2 generated by the image of uy, € HS (S*7;Z)
under the map induced by the inclusion S** C §%. As explained in Remark [B3.14]
this induced map is multiplication by a(4_x)s, and so this generator corresponds to
the element

A(d—k)o " Uko € W]?-dg (HZ)
under the suspension isomorphism

a0 (HZ) = mg (HL A S) = Hi (S 2).

Ezxample 3.17. Passing to the limit as d — oo and using the last part of Exam-
ple B.15 we find that a(q_)o - uks is sent to

—1 —1
Ay * A(d—k)o * Uko = Oy Uk € T S,
Writing b = a;,' us, we find that the homogeneous component

TSPHZ A S C 72 HZ A S8 = a5 n“?HZ
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is cyclic of order 2, generated by b™.

We now explicitly describe the geometric fixed point spectrum of HZ when
G = Cyn. The computation plays an important role in the proof of the Reduction
Theorem.

Proposition 3.18. Let G = Can. For any G-spectrum X, the RO(G)-graded
homotopy groups of EP A X are given by

rS(EP AX) =a;'7%(X).
The homotopy groups of the commutative algebra ®CHZ are given by
m(CHZ) = Z,/2[b],
where b = ug,a;? € m(P°HZ) = 7§ (EP A HZ) C a;'7C HZ.

Proof: As mentioned in Remark 246, the space EP can be identified with

lim S™.

n—oo
The first assertion therefore follows from Example [3.15 The second assertion fol-
lows from ExampleB.I7and the fact that the map a, '7¢ X — 7¢ EP A X is a ring
homomorphism when X is an equivariant algebra. ([l

3.5. A gap in homology. We conclude §3] with some further observations about
SPc—1. Proposition 3.20 below constitutes the computational part of the Gap
Theorem, and contains the Cell Lemma as a special case.

Ezample 3.19. Suppose that G is not the trivial group. In §4.6.2 we will encounter
the group

7§ G HL~ HE(SP572),

which, by Example [3.9] is isomorphic to
HY(SP¢71/G; 7).

The G-space S¢~1 is the unreduced suspension of the unit sphere S(pg — 1), and
so the orbit space is also a suspension. If |G| > 2 then S(pg — 1) is connected,
hence so is the orbit space. If G = Cs, then S(pg — 1) &~ G and the orbit space
is still connected. In all cases then, the unreduced suspension SP¢~1/G is simply
connected. Thus

S o HL ~ HE(S7%; Z) ~ HE (S~ 2) = 0.

In fact, the same argument shows that for n > 0 the orbit space S"(PG*D/G is
simply connected, and hence

H(S"Pe=1): 7)) = HL(S™Pe=1;72) = 0
or, equivalently

G e .
71—"(Pc—l)‘HZ = ﬂ—n(pg—l)—lHZ =0.

Building on this, we have
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Proposition 3.20. Let G be any non-trivial finite group and n > 0 an integer.
Except in case G =Cs, 1 =3, n =1 the groups

HE (S04 2)
are zero for 0 < i < 4. In the exceptional case one has

HZ(SPes;2) = 7.

Proof: Since
Hg (5", Z) = Hg " (5"~ 1),
connectivity and Example B.I9 show that HS(S™¢;Z) = 0 for i < n+ 1. This

takes care of the cases in which n+1 > 3, leaving only n = 1, and in that case only
the group

HE(SP742)

which is isomorphic to
H?*(SP¢71)G; 7).
Since the orbit space S”¢~1 /G is simply connected, the universal coefficient theorem
gives an inclusion
H?(SP¢71 )G, 7)) — H?*(SP¢71/G; Q).
It therefore suffices to show that
H?*(S7¢71/G;Q) = 0.

But since G is finite, this group is just the G-invariant part of

H?*(SP¢71Q)

which is zero since G does not have order 3. When G does have order 3 the group
is Q. The claim follows since the homology groups are finitely generated. O

4. THE SLICE FILTRATION

The slice filtration is an equivariant analogue of the Postnikov tower, to which
it reduces in the case of the trivial group. In this section we introduce the slice
filtration and establish some of its basic properties. We work for the most part with
a general finite group G, though our application to the Kervaire invariant problem
involves only the case G = Cy». While the situation for general GG exhibits many
remarkable properties, the reader should regard as exploratory the apparatus of
definitions at this level of generality.

From now until the end of §I1] our focus will be on homotopy theory. Though
it will not appear in the notation, all spectra should be replaced by cofibrant or
fibrant approximations where appropriate.

4.1. Slice cells.
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4.1.1. Slice cells and their dimension. For a subgroup K C G let px denote its
regular representation, and write

~

S(m,K):GJrI/}SmpK m € 7.
Definition 4.1. The set of slice cells is
{S(m,K),S"'8(m,K) |m € Z,K C G}.

This brings two notions of “cell” into the story: the slice cells and the cells
of the form G/H; A D™, used to manufacture G-CW spectra. We'll refer to the
traditional equivariant cells as “G-cells” in order to distinguish them from the slice
cells.

Definition 4.2. A slice cell is regular if it is of the form §(m, K).
Definition 4.3. A slice cell is induced if it is of the form
G4+ 1/1\1 S,
where S is a slice cell for H and H C G is a proper subgroup. It is free if H is the
trivial group. A slice cell is isotropic if it is not free.
Since
Gy 1S, X9~ [S, i X]"  and
1X,G 5|9 = (i3 X, 8],

induction on |G| usually reduces claims about cells to the case of those which are

not induced. The slice cells which are not induced are those of the form S™P¢ and
gmea—1

Definition 4.4. The dimension of a slice cell is defined by
dim S(m, K) = m|K|
dim 7' S(m, K) = m|K]| — 1.
In other words the dimension of a slice cell is that of its underlying spheres.

Remark 4.5. Not every suspension of a slice cell is a slice cell. Typically, the
spectrum Y 728(m, K) will not be a slice cell, and will not exhibit the properties of
a slice cell of dimension dim S(m, K) — 2.

The following is immediate from the definition.

Proposition 4.6. Let H C G be a subgroup. If§ is a G-slice cell of dimension
d, then i3S is a wedge of H-slice cells of dimension d. If S is an H-slice cell of
dimension d then G4 1/1\1 S is a G-slice cell of dimension d. O

The regular slice cells behave well under the norm.

Proposition 4.7. Let H C G be a subgroup. If Wis a wedge of regular H-slice
cells, then NGW is a wedge of regular G-slice cells.
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Proof: The wedges of regular H-slice cells are exactly the indexed wedges (in
the sense of §2.3.2) of spectra of the form S™*% for K C H, and m € Z. Since
regular representations induce to regular representations, the identity (2I1]) and
the distribution formula (Proposition[A.37) show that the norm of such an indexed
wedge is an indexed wedge of S™P¥ with K C G and m € Z. The claim follows. [

4.1.2. Slice positive and slice null spectra. Underlying the theory of the Postnikov
tower is the notion of “connectivity” and the class of (n — 1)-connected spectra.
In this section we describe the slice analogues of these ideas. There is a simple
relationship between “connectivity” and “slice-positivity” which we will describe in

detail in §4.4]
Definition 4.8. A G-spectrum Y is slice n-null, written
Y<n or Y<n-1
if for every slice cell S with dim S > n the G-space
8c(S,Y)
is equivariantly contractible. A G-spectrum X is slice n-positive, written
X>n or X>n+1
if
Sa(X.Y)
is equivariantly contractible for every Y with Y < n.

We will use the terms slice-positive and slice-null instead of “slice 0-positive”
and “slice 0-null.” The full subcategory of 8 consisting of X with X > n will be
denoted Sgn or Sgn 41. Similarly, the full subcategory of 8% consisting of X with
X < n will be denoted Sgn or Sgn_l.

G
>n

the slice cells S with dim S > n and possessing the following properties:

Remark 4.9. The category 8, is the smallest full subcategory of 8¢ containing

i) If X is weakly equivalent to an object of Sgn, then X is in Sgn.
ii) Arbitrary wedges of objects of Sgn are in Sgn.
iii) If X - Y — Z is a cofibration sequence and X and Y are in Sgn then so
is Z.
iv) If X =Y — Z is a cofibration sequence and X and Z are in Sgn then so
isY.
More briefly, these properties are that Sgn is closed under weak equivalences, ho-
motopy colimits (properties ii) and iii)), and extensions.

Remark 4.10. The fiber of a map of slice n-positive spectra is not assumed to be
slice n-positive, and need not be. For example, the fiber of x — §#¢ is §¢~1 which
is not slice (|G| — 1)-positive, even though both * and S°¢ are.

For n = 0, —1, the notions of slice n-null and slice n-positive are familiar.

Proposition 4.11. For a G-spectrum X the following hold
i) X >0 < X is (—1)-connected, i.e. m;, X =0 for k <0;
i) X > -1 < X is (—2)-connected, i.e. ;X =0 for k < —1;
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iii) X <0 < X is 0-coconnected, i.e. m, X =0 for k > 0;

iv) X < -1 <= X is (—1)-coconnected, i.e. ;X =0 for k > —1;

Proof: These are all straightforward consequences of the fact that S is a slice
cell of dimension 0, and S~ is a slice cell of dimension (—1). O

Remark 4.12. Tt is not the case that if Y > 0 then mgY = 0. In Proposition [f.T5] we
will see that the fiber F' of S° — HZ has the property that F' > 0. On the other
hand 7y F' is the augmentation ideal of the Burnside ring. Proposition below
gives a characterization of slice-positive spectra.

The classes of slice n-null and slice n-positive spectra are preserved under change
of group.

Proposition 4.13. Suppose H C G, that X is a G-spectrum and Y is an H-
spectrum. The following implications hold

X>n = igX>n

X<n = igX<n

Y>n = G AY >n
H

Y<n = G+/I}Y<n.

Proof: The second and third implications are straightforward consequences of
Proposition .6l The fourth implication follows from the Wirthmiiller isomorphism
and Proposition [£.6] and the first implication is an immediate consequence of the
fourth. O

We end this section with a mild simplification of the condition that a spectrum
be slice n-null.

Lemma 4.14. For a G-spectrum X, the following are equivalent
i) X <n;
ii) For all slice cells S with dim S > n, [S, X]¢ = 0.

Proof: The first condition trivially implies the second. We prove that the second
implies the first by induction on |G|. By the induction hypothesis we may assume
that the G-space

éG(S’\aX)

is corﬁcraetible foi all induced slice cells S with dim S > n, and that for all slice
cells S with dim S > n, and all proper H C G, the space

§G (‘/9\7 X)H
is contractible. We therefore also know that the G-space

8c(T' A S, X)
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is contractible, for all slice cells S with dim§ > n and all (—1)-connected G-CW
spectra T built entirely from induced G-cells. We must show that for each ¢ > 0,
the groups
[StAs™Pe=l X1¢  m|Gl-1>n
[St A S™Pe X m|G| >n

are zero. They are zero by assumption when ¢ = 0. For ¢ > 0, the first case is a
special case of the second, since S* A S™P¢~1 is a slice cell of dimension m|G/|. Let
T be the homotopy fiber of the map

St c §tre,
and consider the exact sequence
(9176 A S™P9, X9 = [S* A STPS X]C — [T AS™<, X]9.

The leftmost group is zero since S%¢ A S™PG is a slice cell of dimension (¢ +
m)|G| > n. The rightmost group is zero by the induction hypothesis since T is
(—1)-connected and built entirely from induced G-cells. It follows from exactness
that the middle group is zero. ([

4.2. The slice tower. Let P"X be the Bousfield localization, or Dror Farjoun
nullification ([17,28]) of X with respect to the class 8, , and P, 41X the homotopy
fiber of X — P"X. Thus, by definition, there is a functorial fibration sequence

Pi1X - X = P"X.
The functor P"X can be constructed as the colimit of a sequence of functors
WoX - W1 X —---.

The W; X are defined inductively starting with Wy X = X, and taking W; X to be
the cofiber of

\/ 28 = Wi X,
I

in which the indexing set I is the set of maps NS — Wi_1X with S > n aslice cell
and t > 0. By Lemmal[£14] the functors P™ can also be formed using the analogous
construction using only slice cells themselves, and not their suspensions.

Proposition 4.15. A spectrum X is slice n-positive if an only if it admits (up to
weak equivalence) a filtration
XoCXqiC---

whose associated graded spectrum \/ Xy, /Xy_1 is a wedge of slice cells of dimension
greater than n. For any spectrum X, P,41X is slice n-positive.

Proof: This follows easily from the construction of P"X described above. O
The map P,+1 X — X is characterized up to a contractible space of choices by
the properties
i) for all X, P,y1X €85 ;

ii) for all A € 85, and all X, the map 8¢ (A, P,i1X) — 8¢(A4, X) is a weak
equivalence of G-spaces.
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In other words, P,11X — X is the “universal map” from an object of Sgn to X.
Similarly X — P™X is the universal map from X to a slice (n+ 1)-null G-spectrum
Z. More specifically

iii) the spectrum P"X is slice (n + 1)-null;
iv) for any slice (n + 1)-null Z, the map

Sa(P"X,Z) = 8c(X, 2)
is a weak equivalence.
These conditions lead to a useful recognition principle.
Lemma 4.16. Suppose X is a G-spectrum and that
Pyi1 — X — P

is a fibration sequence with the property that P" < n and Pn+1 > n. Then the
canonical maps Ppy1 — P41 X and P"X — P" are weak equivalences.

Proof: We show that the map X — P" satisfies the universal property of P"X.
Suppose that Z < n, and consider the fibration sequence of G-spaces

8c(P",Z) = 8c(X,Z) = 8¢(Put1, Z)

The rightmost space is contractible since P,,; > n, so the map 8q(P", Z) —
8c(X, Z) is a weak equivalence. O

The following consequence of Lemma [4.16]is used in the proof of the Reduction
Theorem.

Corollary 4.17. Suppose that X — Y — Z is a cofibration sequence, and that the
mapping cone of P*X — P"Y is slice (n+ 1)-null. Then both

P"X - P'Y - P"Z
and
PnJrlX — PnJrlY — PnJrlZ

are cofibration sequences.

Proof: Consider the diagram

Pop1X —=Po)Y —= P17

! I |

X Y A
l | |
P"X Py Pz

in which the rows and columns are cofibration sequences. By construction, Pn+1Z

is slice n-positive (Remark [£.9). If P"Z < n then the right column satisfies the

condition of A.16] and the result follows. O
G

Since Sgn C 83,,_1, there is a natural transformation
P"X — P"'X.
Definition 4.18. The slice tower of X is the tower {P"X },ecz. The spectrum
P"X is the n' slice section of X.
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When considering more than one group, we will write P*"X = P2 X and P, X =
PEX.
Let Pl X be the fiber of the map
P"X — P"X.
Definition 4.19. The n-slice of a spectrum X is P' X. A spectrum X is an n-slice
it X =PrX.

The spectrum P, ;1 X is analogous to the n-connected cover of X, and for two
values of n they coincide. The following is a straightforward consequence of Propo-

sition LTT1
Proposition 4.20. For any spectrum X, PoX is the (—1)-connected cover of X
and P_1X is the (—2)-connected cover of X. The (—1)-slice of X is given by
P X =Y"'Hr_,X.
O

The formation of slice sections and therefore of the slices themselves behave well
with respect to change of group.

Proposition 4.21. The functor P" commutes with both restriction to a subgroup
and left induction. More precisely, given H C G there are natural weak equivalences

in(PeX) = P (i X)

and
Gy I/L\I (PpX) — PA(G+ I/} X).

Proof: This is an easy consequence of Lemma [£.16] and Proposition [£13 O

Remark 4.22. When G is the trivial group the slice cells are just ordinary cells
and the slice tower becomes the Postnikov tower. It therefore follows from Propo-
sition [£.:2]] that the tower of non-equivariant spectra underlying the slice tower is
the Postnikov tower.

4.3. Multiplicative properties of the slice tower. The slice filtration does not
quite have the multiplicative properties one might expect. In this section we collect
a few results describing how things work. One important result is Corollary
asserting that the slice sections of a (—1)-connected commutative or associative
algebra are (—1)-connected commutative or associative algebras. We’ll show in §4.7]
the slice filtration is multiplicative for the special class of “pure” spectra, defined
in §2.6.21

Lemma 4.23. Smashing with S™% gives a bijection of the set of slice cells S with
dim S = k and those with dim S = k + m|G].

Proof: Since the restriction of pg to K C G is |G/K|pk there is an identity
SPG A (G+ I/}Smpk) ~ G+ I/} (SPG A Smpx) ~ G+ I/}SOG/KHm)pK.

The result follows easily from this. O
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Corollary 4.24. Smashing with S™PS gives an equivalence

G G
83n = S3nimial -

O
Corollary 4.25. The natural maps
S™PE A Ppp1 X — Pk+m|G|+1 (SmpG A X)
smea g pRx — pEHmIGH(gmee A X))
are weak equivalences. O

Proposition 4.26. If X > n, Y > m, and n is divisible by |G| then X \Y > n+m.

Proof: By smashing X with S(—"/I6Dre and using Corollary @25 we may assume
n = 0. Suppose that Z < m. Since Y > m, the zero space of function spectrum Z
is contractible, and so Z¥ is O-coconnected. Since X is (—1)-connected (Proposi-

tion [4.11))
SG(X AY,Z) ~8c(X,2")
is contractible and so X AY > m. O
Definition 4.27. A map X — Y is a P"-equivalence if P"X — P™Y is an equiv-
alence. Equivalently, X — Y is a P™-equivalence if for every Z < n, the map
8c(Y,Z) = 8a(X, Z)
is a weak equivalence.

Lemma 4.28. If the homotopy fiber F of f : X — Y isin Sgn, then f is a a P"
equivalence.

Proof: Immediate from the fibration sequence
§G(Ya Z) — éG(Xv Z) — §G(Fa Z)
O
Remark 4.29. The converse of the above result is not true. For instance, * — S° is
a P~!-equivalence, but the fiber S~! is not in ngl.

Lemma 4.30. i) IfY — Z is a P"-equivalence and X > 0, then X \Y — X NZ
is a P™-equivalence;

ii) For Xq,..., Xk ESSO, the map
XiN-- ANXp = P" XA AP X},

is a P™-equivalence.
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Proof: Since P,11X and P,41Y are both slice n-positive the vertical map in the
square below are P"-equivalences by Lemmas [4.2§ and [4.20]

XANY XNZ

l |

XNPY —= XANP"Z .

The bottom row is a weak equivalence by assumption. It follows that the top row
is a P"-equivalence. The second assertion is proved by induction on k, the case
k =1 being trivial. For the induction step consider

XN ANXp i ANXy ——=P"X A AP" X1 A Xy

|

P*Xy N ANP" X1 N P" X}

The first map is a P™-equivalence by the induction hypothesis and part i). The
second map is a P™-equivalence by part i). (I

Remark 4.31. Lemma 430 can be described as asserting that the functor
P" : {(—1)-connected spectra} — {Sgn -null spectra}

is weakly monoidal.

Corollary 4.32. Let R be a (—1)-connected G-spectrum. If R is a homotopy
commutative or homotopy associative algebra, then so is P"R for all n. O

The following additional results are proved in §B.9l The first two are Proposi-
tions [B.172, [B.I78] and the third is easily deduced from Proposition [B.180

Proposition 4.33. Suppose that n > 0 is an integer. If A is a slice (n—1)-positive
H -spectrum then NEA is a slice (n — 1)-positive G-spectrum. (|

Proposition 4.34. Suppose that n > 0 is an integer. If A is a slice (n — 1)-
positive G-spectrum then for every m > 0, the symmetric smash power Sym™ A is
slice (n — 1)-positive. O

Proposition 4.35. Suppose that n > 0 is an integer. If R is a (—1)-connected equi-
variant commutative ring, then the slice section P"R can be given a the structure
of an equivariant commutative ring in such a way that R — P"™R is a commutative
ring homomorphism. Moreover this commutative ring structure is unique. ([

4.4. The slice spectral sequence. The slice spectral sequence is the homotopy
spectral of the slice tower. The main point of this section is to establish strong
convergence of the slice spectral sequence, and to show that for any X the Es-term
is distributed in the gray region of Figure [l We begin with some results relating
the slice sections to Postnikov sections.

4.4.1. Connectivity and the slice filtration. Our convergence result for the slice spec-
tral sequence depends on knowing how slice cells are constructed from G-cells. We
will say that a space or spectrum X decomposes into the elements of a collection
of spectra {T,,} if X is weakly equivalent to a spectrum X admitting an increasing
filtration

XoCX1C---
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with the property that X,,/X,,_1 is weakly equivalent to a wedge of T,,.

Remark 4.36. A G-spectrum X decomposes into a collection of spectra {G/H A
S™}, with H and m ranging through some indexing list, if and only if X is weakly
equivalent a G-CW spectrum with G-cells of the form G/H. A D™, with H and m
ranging through the same list.

Remark 4.37. To say that X decomposes into the elements of a collection of compact
objects {T,} means that X is in the smallest subcategory of 8¢ closed under weak
equivalences, arbitrary wedges, and the formation of mapping cones and extensions
(i.e., the properties listed in Remark [£.9]).

Lemma 4.38. Let S be a slice cell. If dim S =n >0, then S decomposes into the
spectra G/H, A S* with [n/|G|| <k <n. IfdimS = n < 0 then S decomposes
into G/Hy A S* withn <k < |n/|G|].

Proof: The cell structure of S?¢~1 described in Example B.4] has G-cells rang-
ing in dimension from 0 to |G| — 1, and suspends to a cell decomposition of S°¢
with G-cells whose dimension ranges from 1 to |G|. The cases S = §mre and
S = §mre—1 with m > 0 are handled by smashing these together and passing to
suspension spectra. For m < 0, Spanier-Whitehead duality gives an equivariant cell
decomposition of S™¢ into cells whose dimensions range from m|G| to m and of
$718™r6 into cells whose dimensions range from n = m|G|—1tom—1= [n/|G|].
Finally, the case in which S is induced from a subgroup K C G is proved by left
inducing its K-equivariant cell decomposition. (|

Corollary 4.39. LetY € Sgn. Ifn >0, then'Y can be decomposed into the spectra

G/HAS™ withm > |n/|G|]. If n <0 thenY can be decomposed into G/H ANS™
with m > n.

Proof: The class of G-spectra Y which can be decomposed into G/H A S™ with
m > |n/|G|] is closed under weak equivalences, homotopy colimits, and extensions.
By Lemma [£3§] it contains the slice cells S with dim S > n. It therefore contains
allY € Sgn by Remark A similar argument handles the case n < 0. (]

Proposition 4.40. Write g = |G|.
i) If n >0 and k > n then (G/H)4+ A S* > n.
) If m < —1 and k > m then (G/H); ANS* > (m+1)g— 1.
iii) If Y > n withn >0, then m,Y =0 for i < [n/g].
iv) If Y > n withn <0, then ;Y =0 fori < n.

ii

Proof: We start with the first assertion. We will prove the claim by induction
on |G|, the case of the trivial group being obvious. Using Proposition we may
assume by induction that (G/H)y A S* > n when n > 0 and H C G is a proper
subgroup. This implies that if T is an equivariant CW-spectrum built from G-cells
of the form (G/H), A S* with k > n and H C G a proper subgroup, then T > n.
The homotopy fiber of the natural inclusion

S* — ghee
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can be identified with the suspension spectrum of S(kpg — k)4 A S*, and so is such
a T. Since S¥*¢ > k|G| > kg > n the fibration sequence

T — SF — Ghra

exhibits S* as an extension of two slice n-positive spectra, making it slice n-positive.
The second assertion is trivial for £ > 0 since in that case G/H4 A Sk > 0 and
(m+1)g— 1< —1. The case k < —1 is handled by writing

(G/H)y AS* =27 YG/H)4 A SFFDre g g=(kt1)(pe—1)
Since —(k + 1) > 0, the spectrum S~ *+1(Pc=1) is a suspension spectrum and so
(G/H) 4 ANS* > (k+1)g—1> (m+1)g—1.
The third and fourth assertions are immediate from Corollary O

Remark 4.41. We’ve stated part ) of Proposition in the form in which it is
most clearly proved. When it comes up, it is needed as the implication that for
n < 0,

k>|(n+1)/g] = G/H, NS*>n.

To relate these, write m = [(n+1)/g], so that
m+1>(n+1)/g
and by part [l) of Proposition 40
G/H, NS* > (m+1)g—1>n.

4.4.2. The spectral sequence. The slice spectral sequence is the spectral sequence
associated to the tower of fibration { P"X}, and it takes the form

Eyt =7¢ PIX — 7% X,

It can be regarded as a spectral sequence of Mackey functors, or of individual
homotopy groups. We have chosen our indexing so that the display of the spectral
sequence is in accord with the classical Adams spectral sequence: the E$*-term is
placed in the plane in position (¢ — s, s). The situation is depicted in Figure[ll The
differential d, maps E3* to EST™!T=1 or in terms the display in the plane, the
group in position (¢t — s, s) to the group in position (t —s — 1,5+ r).

The following is an immediate consequence of Proposition As there, we
write g = |G].

Theorem 4.42. Let X be a G-spectrum. The Mackey functor homotopy groups of
P X satisfy

k>n ifn>0

kE>|(n+1)/g] ifn<0

and the map X — P"X induces an isomorphism

E<|(n+1)/g] ifn>0

kE<mn ifn<0.

. P"X =0 for {

0. X = 1, P"X for {

Thus for any X,
liﬂ P"X
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slope |G| — 1

contribution from
an individual P} X

F1GURE 1. The slice spectral sequence
is contractible, the map
X = 1limP"X
o
is a weak equivalence, and for each k, the map

{m,(X)} = {m, P" X}

from the constant tower to the slice tower of Mackey functors is a pro-isomorphism.

O
Corollary 4.43. If M is an n-slice then
mM =0
if n > 0 and k lies outside of the region |n/g] < k <mn, orifn <0 and k lies
outside of the region n <k < |(n+1)/g]. O

Theorem gives the strong convergence of the slice spectral sequence, while
Corollary shows that the Fs-term vanishes outside of a restricted range of
dimensions. The situation is depicted in Figure [l The homotopy groups of indi-
vidual slices lie along lines of slope —1, and the groups contributing to =, P" X lie
to the left of a line of slope —1 intersecting the (¢ — s)-axis at (t — s) = n. All of
the groups outside the gray region are zero. The vanishing in the regions labeled
1-4 correspond to the four parts of Proposition
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Proposition .40 also gives a relationship between the Postnikov tower and the
slice tower.

Corollary 4.44. If X is an (n —1)-connected G-spectrum with n > 0 then X > n.

Proof: The assumption on X means it is weakly equivalent to a G-CW spectrum
having G-cells G/H AS™ only in dimensions m > n. By partll) of Proposition 440
e
these are in 83,,. O
We end this section with an application. The next result says that if a tower
looks like the slice tower, then it is the slice tower.
Proposition 4.45. Suppose that X — {P"} is a map from X to a tower of
fibrations with the properties

i) the map X — @Pn 18 a weak equivalence;
il) the spectrum hgn Pm™ is contractible;
iil) for all n, the fiber of the map P — P s an n-slice.

Then P is the slice tower of X.

Proof: We first show that P" is slice (n + 1)-null. We will use the criteria of
Lemma [£T4l Suppose that S is a slice cell with dim S > n. By condition [, the
maps

[S,P")¢ - [S,P" 1Y — [S, P29 — ...

are all monomorphisms. Since S is finite, the map

lim[S, P*|% — [S, lim P*¢

k<n k<n
is an isomorphism. It then follows from assumption [) that [§, P”]G = 0. This
shows that P™ is slice (n+ 1)-null. Now let P,,;+1 be the homotopy fiber of the map
X — P". By Lemma .16 the result will follow if we can show P,11 > n. By
assumption [, for any N > n + 1, the spectrum

P11 UCPy
admits a finite filtration whose layers are m-slices, with m > n + 1. It follows that
p’n,+1 U OpN >n.

In view of the cofibration sequence

PN — Pn-‘,—l — Pn-‘,—l @] CPN,

to show that Pn“ > n it suffices to show that Py > n for some N > n.
Let Z be any slice (n + 1)-null spectrum. We need to show that the G-space

8c(Pn,Z)

is contractible. We do this by studying the Mackey functor homotopy groups of the
spectra involved, and appealing to an argument using the usual equivariant notion
of connectivity. By Theorem [£.42] there is an integer m with the property that for
k> m,

.2 = 0.
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By Corollary .43 and assumption [ii)), for N > 0 and any N’ > N,
EkPNUCPN/ZO, k<m,
SO
7, Py — m, Py
is an isomorphism for £ < m. Since hol'&n N Py is contractible this implies that
for N> 0
EkPN = 0, k S m.
Thus for N > 0, Py is m-connected in the usual sense and so

8c(Pn,Z)

is contractible. O

4.5. The RO(G)-graded slice spectral sequence. Applying RO(G)-graded ho-
motopy groups to the slice tower leads to an RO(G)-graded slice spectral sequence

sV _ G dim V G
Ey" =7my_Pimv X = my_,X.

The grading convention is chosen so that it restricts to the one of §4.4.21 when V is
a trivial virtual representation. The 7' differential is a map

. s,V s+r,V+4+(r—1)
d.: By — E, .

The RO(G)-graded slice spectral sequence is a sum of spectral sequences, one for
each element of RO(G)/Z. We will call the spectral sequence corresponding to
the coset V 4+ Z € RO(G)/Z the slice spectral sequence for m{}, X. This spectral
sequence can be displayed on the (z,y)-plane, and we will do so following Adams
conventions, with the term E;VH displayed at a position with z-coordinate (V +
t — s) and y-coordinate s. For an example, see Figures 2] Bl and [ in §01

4.6. Special slices. In this section we investigate special slices of spectra, and
introduce the notion of a spectrum with cellular slices, and of a pure G-spectrum.
Our main result (Proposition £.50) asserts that a map X — Y of G-spectra with
cellular slices is a weak equivalence if and only if the underlying map of non-
equivariant spectra is. This result plays an important role in the proof of the
Reduction Theorem in §71 We also include material useful for investigating the
slices of more general spectra.

4.6.1. Slice positive spectra, 0-slices and (—1)-slices. In this section we will describe
methods for determining the slices of spectra, and introduce a convenient class of
equivariant spectra. Our first results make use of the isotropy separation sequence
(§25.2) obtained by smashing with the cofibration sequence of pointed G-spaces

EP, — 5° = EP.

The space EP, is an equivariant CW-complex built from G-cells of the form
(G/H)4+ N S™ with H C G a proper subgroup. It follows that if W is a pointed G-
space whose H-fixed points are contractible for all proper H C G, then T (EPy, W)
is contractible.

Lemma 4.46. Fiz an integer d. If X is a G-spectrum with the property that
1y X > d for all proper H C G, then EPL AN X > d.
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Proof: Suppose that Z < d. Then
8G(EP+ ANX,7Z) = Ta(EP+,8¢(X, 2)).

By the assumption on X, the G-space 8¢(X, Z) has contractible H fixed points
for all proper H C . The Lemma now follows from the remark preceding its
statement. (]

Lemma 4.47. Write g = |G|. The suspension spectrum of EP isin Sggfr

Proof: The map EPAS? — EPASP¢~1 is a weak equivalence (Proposition 2.43]
and Remark 7). The suspension spectrum of EP is in Sgo, since it is (—1)-
connected (Proposition EIT). So EP A SP¢~1 > g — 1 by Proposition E26 O

Proposition 4.48. A G-spectrum X is slice positive if and only if it is (—1) con-
nected and 7wy X = 0 (i.e.,the non-equivariant spectrum i§X underlying X is 0-
connected,).

Proof: The only if assertion follows from the fact that the slice cells of positive
dimension are (—1)-connected and have 0-connected underlying spectra. The “if”
assertion is proved by induction on |G|, the case of the trivial group being trivial.
For the induction step we may assume X is (—1)-connected and has the property
that ¢3; X > 0 for all proper H C GG. Consider the isotropy separation sequence for
X

EP,ANX - X - EPAX.

The leftmost term is slice-positive by Lemma 46, and the rightmost term is by
Propositions & 1T and [£.26] and Lemma[£47 It follows that X is slice-positive. [

Ezample 4.49. Suppose that f : S — S’ is a surjective map of G-sets. Proposi-
tion [£.48] implies that the suspension spectrum of the mapping cone of f is slice
positive. This implies that if HM is an Eilenberg-MacLane spectrum which is a zero
slice then for every surjective S — S’ the map M (S’) — M (S) is a monomorphism.
The proposition below shows that this is also a sufficient condition.

Proposition 4.50. i) A spectrum X is a (—1)-slice if and only if it is of the
form X = S YHM, with M an arbitrary Mackey functor.

i) A spectrum X is a 0-slice if and only if it is of the form HM with M a Mackey
functor all of whose restriction maps are monomorphisms.

Remark 4.51. The condition on M in [ is that if S — S’ is a surjective map
of finite G-sets then M (S’) — M (S) is a monomorphism. Let G act on G x S
and G x S’ through its left action on G. Then G x S — G x S’ has a section,
so M(G x S") - M(G x S) is always a monomorphism. Using this one easily
checks that condition is also equivalent to requiring that for every finite G-set S’,
the map M (S") = M(G x S’), induced by the action mapping G x §" — 5’ is a
monomorphism.
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Proof: The first assertion is immediate from Proposition f.20] which, combined
with part ) of Proposition [£40, also shows that a 0O-slice is an Eilenberg-MacLane
spectrum. Example gives the “only if” part of the second assertion. For the
“if” part, suppose that M is a Mackey functor all of whose restrictions maps are
monomorphisms, and consider the sequence

P HM — HM — P°HM.

Since PPHM > 0 it is (—1)-connected, and so PyHM is an Eilenberg-MacLane
spectrum. For convenience, write

M' =rm,PPHM
M" = xyP°HM
so that there is a short exact sequence
M — M — M".
Suppose that S is any finite G-set and consider the following diagram

M'(S) M(S) ——— M"(5)

| l l

M(GxS)—=M(GxS)—=M"(GxS)

in which the rows are short exact, and the vertical maps are induced by the action
mapping, as in Remark 51l The bottom right arrow is an isomorphism since
isHM — iy PPHM is an equivalence. Thus M'(G x S) = 0 (this also follows from
Proposition 4.48). The claim now follows from a simple diagram chase. (Il

Remark 4.52. The second assertion of Proposition[4.50l can also be deduced directly
from Corollary

Corollary 4.53. If X = HM is a zero slice and 7§ X = 0 then X is contractible.
O

Corollary 4.54. The (—1)-slice of S~! is X"*HA. The zero slice of S° is HZ.

Proof: The first assertion follows easily from Part i) of Proposition 50 For the
second assertion note that the S° — HA is a P%-equivalence, so the zero slice of
5% is PYHA. Consider the fibration sequence

HI - HA— HZ,
in which I = ker A — Z is the augmentation ideal. The leftmost term is slice
positive by Proposition 448 and the rightmost term is in Sgo by Proposition [4.50
The claim now follows from Lemma O
Corollary 4.55. For K C G, the m|K|-slice of S(m, K) is

HZ A S(m, K)

and the (m|K| — 1)-slice of ©~18(m, K) is

HAAY'S(m, K).
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Proof: Using the fact that G4 I/} (—) commutes with the formation of the slice

tower (Proposition [L21]) it suffices to consider the case K = G. The result then
follows from Corollaries [1.25] and 57 O

4.6.2. Cellular slices, isotropic and pure spectra.

Definition 4.56. A d-slice is cellular if it is of the form HZ A W, where W is a
wedge of slice cells of dimension d. A cellular slice is isotropic if W can be written
as a wedge of slice cells, none of which is free (i.e., of the form G4 AS™). A cellular

slice is pure if W can be written as a wedge of regular slice cells (those of the form
S(m, K), and not X~1S(m, K)).

Definition 4.57. A G-spectrum X has cellular slices if P X is cellular for all d,
and is isotropic or pure if its slices are isotropic or pure.

Lemma 4.58. Suppose that f : X — Y is a map of cellular d-slices and 7y f is an
isomorphism. Then [ is a weak equivalence.

Proof: The proof is by induction on |G|. If G is the trivial group, the result is
obvious since X and Y are Eilenberg-MacLane spectra. Now suppose we know the
result for all proper H C GG, and consider the map of isotropy separation sequences

EP,ANX —>X —>EPAX

.

EP.ANY —=Y —= EPAY .

By the induction hypothesis, the left vertical map is a weak equivalence. If d is not
congruent to 0 or —1 modulo |G| then the rightmost terms are contractible, since
every slice cell of dimension d is induced. Smashing with S™?¢ for suitable m, we
may therefore assume d = 0 or d = —1. Smashing with S! in case d = —1 we
reduce to the case d = 0 and therefore assume that X = HMy and Y = HM; with
My and M permutation Mackey functors. The result then follows from part [iv)) of
Lemma 33 O

Proposition 4.59. Suppose that X and Y have cellular slices. If f : X — Y has
the property that ¥ f is an isomorphism. Then f is a weak equivalence.

Proof: 1t suffices to show that for each d the induced map of slices
(4.60) PiX — Py

is a weak equivalence. Since the map of ordinary spectra underlying the slice tower
is the Postnikov tower, the map satisfies the conditions of Lemma 58 and the
result follows. O

For certain slices, the condition on Y in Proposition [4.59] can be dropped.

Lemma 4.61. Suppose that f : X — Y is a map of 0-slices and X s cellular. If
o f is an isomorphism then f is an equivalence.
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Proof: Write X = HM and Y = HM’, and let S be a finite G-set. Consider the
diagram

M(S) ——— M'(5)

Nl lm

M(G x 8)¢ —= M'(G x 5)¢

in which the vertical maps come from the action mapping G x S — S (see the
discussion preceding Lemma [B3]). The bottom arrow is an isomorphism by as-
sumption. The vertical maps are monomorphisms by Proposition The left
vertical map is an isomorphism since M is a permutation Mackey functor (part [
of Lemma [B3)). The result follows. O

Proposition 4.62. Suppose that f: X — Y is a map of d-slices, X is cellular and
d # —1 mod p for any prime p dwiding |G|. If 74X — w}Y is an isomorphism
then f is a weak equivalence.

Proof: Let C be the mapping cone of f. We know that C' > d. We will show
that

(5,019 =0

for all slice cells S with dim § > d. This will show (Lemma E14) that C' < d and
hence must be contractible since its identity map is null. The assertion is obvious
when G is the trivial group. By induction on |G| we may assume S is not induced.
If d is divisible by |G| we may smash with S=%I¢1P¢ and reduce to the case d = 0
which is Lemma ELBIl It remains to show that 5, C = 0 when m|G| > d and
that 7& C' =0 when m|G| — 1 > d. Since

mpg—1
d#0,-1 mod |G|,

the conditions in fact implies m|G|—1 > d. So we are in the situation m|G|—1 > d

and we need to show that both 7& 0. C and & p—1C are zero. The exact sequence

G G G
ﬂ'mpGY — meGO — mecle

G

mpe C For the remaining case consider the exact sequence

gives the vanishing of 7

G
mec—ly — T

G

G
mpg_lc — T

G
mpc—zX — mec—2Y-

As above, the left group vanishes since Y is a d-slice and $™¢~! > d. Lemma £.63|
below implies that the left vertical map in

G G
mecsz — wmpG72Y

| l

u u
Tmg—2X — < Tmg—2Y

is monomorphism, and therefore so is the top horizontal map. Thus ﬁgp «—1C =0
by exactness. (I
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Lemma 4.63. Suppose S is a slice cell of dimension d. If m|G| —1 > d then the
restriction mapping

75 e o HLAS — g JHZAS

is a monomorphism.

Proof: When G is trivial the map is an isomorphism. By induction on |G| we

may therefore assume G is not the trivial group and that S is not induced, in which
case S = Skre or § = Skra—1 Note that

gmea=2 — gm=bpc=1 n gra=l > (1p —1)|G| —1 > (m — 2)|G|
so that both x$, ., HZAS*S and 75, , . o HZAS* ! are zero unless k = m —1.
The group 75, oHZ A S(m=1r6=1 s zero since it is isomorphic to
Wﬁpc—lHZ/\ S(m—1)pa
and S™P¢~1 > m|G| — 1 > (m — 1)|G|. This leaves the group
TG oo HL A S VP 7 HZ

whose triviality was established in Example [3.19 O

4.6.3. The special case in which G is a finite 2-group. In this section we record
some results which are special to the case in which G has order a power of 2. The
results about even slices are used in the proof of the Reduction Theorem in §7.2
The results on odd slices were used in an earlier approach to the main results of
this paper, but are no longer. We include them here because they provide useful
tools for investigating slices of various spectra. Throughout this section the group
G will be a finite 2-group.

Suppose that X is a G-spectrum with the property that 7j; X is a free abelian
group. In §5.3] we will define a refinement of 7 X to be a map

c: W= X
in which W is a wedge of slice cells of dimension d, with the property that the map
W — w3 X is an isomorphism.
Proposition 4.64. If/V[7 — X is a refinement of 5, X then the canonical map
HZAW — PEX

is an equivalence.

Proof: By Corollary 53] (and the fact that the formation of slices commutes
with the formation of wedges), the map

W — HLAW
induces an equivalence
P2W — HZAW.
Applying P2F to W — X then leads to a map
HZAW — P2FX
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which, since the slice tower refines the Postnikov tower, is an equivalence of under-
lying non-equivariant spectra. The result now follows from Proposition [4.62] since
the only prime dividing |G| is 2. O

Proposition [£.64] gives some control over the even slices of a G-spectrum X when
G is a 2-group. The odd slices are something of a different story, and getting at
them requires some knowledge of the equivariant homotopy type of X. Note that
by Proposition any Mackey functor can occur in an odd slice. On the other
hand, only special ones can occur in even slices.

Corollary 4.65. If S is a slice cell of odd dimension d, then for any X,

S, X]¢ ~ [S, P{x]¢

Proof: Since the formation of P¢X commutes with the functors i%;, induction

on |G| reduces us to the case when S is not an induced slice cell. So we may assume

S = §mra=1_ Smashing S and X with S~™¢, and using Corollary FL25 reduces to
the case m = 0, which is given by Proposition - O

The situation most of interest to us in this paper is when the odd slices are
contractible. Proposition [4.66] below gives a useful criterion.

Proposition 4.66. For a G spectrum X and an odd integer d, the following are
equivalent:

i) The d-slice of X is contractible;

i) For every slice cell S of dimension d, [S, X]C =

Proof: By Corollary (which requires d to be odd), there is an isomorphism
S, X1 =[S, P{x]¢

By Lemma T4 the vanishing of this group implies that P¢X < d and hence must
be contractible, since it is also > d. O

Corollary 4.67. Suppose that d is odd. If X —Y — Z is a cofibration sequence,
and the d-slices of X and Z are contractible, then the d-slice of Y is contractible.

Proof: This is immediate from Proposition [4.66] and the long exact sequence of
homotopy classes of maps. O

Remark 4.68. Using the slice spectral sequence one can easily show that a pure
spectrum always admits a refinement of homotopy groups. Thus the results above
say that a spectrum X is pure if and only if the even homotopy groups admit an
equivariant refinement, and the “slice homotopy groups” wﬂpH_lX are all zero
whenever H C (G is non-trivial.
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4.7. Further multiplicative properties of the slice filtration. In this section
we show that the slice filtration has the expected multiplicative properties for pure
spectra. Our main result is Proposition [£.69] below. It has the consequence that if
X and Y are pure spectra, and ES?(—) is the slice spectral sequence, then there
is a map of spectral sequences

E3Y(X) @ BSV(Y) = BEsF Y (X AY)

representing the pairing 7, X A7, Y — 7, (X AY). In other words, multiplication
in the slice spectral sequence of pure spectra behaves in the expected manner. We
leave the deduction of this property from Proposition [4.69] to the reader.

Proposition 4.69. If X > n is pure and Y > m has cellular slices, then X NY >
n-+m.

Proof: We need to show that P"*™~1(X AY) is contractible. By Lemma
the map

XAY = prim-lx A prtm-ly

is a P"t™~l_equivalence, so we may reduce to the case in which the slice filtrations
of X and Y are finite. That case in turn reduces to the situation in which

X = HZAS(m, K)
Y =HZAS
in which S is any slice cell. By induction on |G| the assertion further reduces to
the case in which neither S nor S’ is induced. Thus we may assume
X = HZ A SkPe
Y =HZASYS or HZAYLL1S%c,
in which case the result follows from Proposition [£.26 O

5. THE COMPLEX COBORDISM SPECTRUM

From here forward we specialize to the case G = Cs», and for convenience localize
all spectra at the prime 2. Write

9=1Gl,
and let v € G be a fixed generator.

5.1. The spectrum MU(%), We now introduce our equivariant variation on the
complex cobordism spectrum by defining

MU = N§ MUg,

where MUy is the Cs-equivariant real bordism spectrum of Landweber [39] and
Fujii [22] (and further studied by Araki [5] and Hu-Kriz [33]). In §B.12 we will give
a construction of MUg as a commutative algebra in §“2. The norm is taken along
the unique inclusion Cy C G. Since the norm is symmetric monoidal, and its left
derived functor may be computed on the spectra underlying cofibrant commutative
rings (Proposition[B.148), the spectrum MU () is an equivariant commutative ring
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spectrum. For H C @G the unit of the restriction-norm adjunction (Proposition[2:25)
gives a canonical commutative algebra map

(5.1) MU 5 MU (@),

By analogy with the shorthand if for restriction along the inclusion of the trivial
group, we will employ the shorthand notation

i7 = i2~2

for the restriction map 8¢ — 8“2 induced by the unique inclusion Cy C G. Re-
stricting, one has a Cy-equivariant smash product decomposition

g/2—1
(5.2) MU = N\~ MUg.

j=0
5.2. Real bordism, real orientations and formal groups. We begin by re-
viewing work of Araki [5] and Hu-Kriz [33] on real bordism.

5.2.1. The formal group. Consider CP"™ and CP° as pointed Cs-spaces under the
action of complex conjugation, with CP" as the base point. The fixed point spaces
are RP™ and RP°. There are homeomorphisms

(5.3) CP"/CP" ! = §g"r2,
and in particular an identification CP! = §r2.

Definition 5.4 (Araki [5]). Let E be a Cy-equivariant homotopy commutative ring
spectrum. A real orientation of E is a class = € E¢; (CP>) whose restriction to

- 1 - ~ 70
Eg, (CPY) = E, (S7) = Eg, (pt)
is the unit. A real oriented spectrum is a Ce-equivariant ring spectrum E equipped

with a real orientation.

If (F,Z) is a real oriented spectrum and f : E — E’ is an equivariant multiplica-
tive map, then
f«(z) € (E')*(CP™)
is a real orientation of E’. We will often not distinguish in notation between z and

<.
Ezample 5.5. The zero section CP* — MU(1) is an equivariant equivalence, and
defines a real orientation
T e MUR*(CP™),
making MUp into a real oriented spectrum.
Ezxample 5.6. From the map
MUy — it MU
provided by (51J), the spectrum i MU (@) gets a real orientation which we’ll also

denote
i e (MU= (CP>).

Ezample 5.7. If (H,Zg) and (E,Tg) are two real oriented spectra then H A E has
two real orientations given by

Ig=rg®land Zp =1R Tg.
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The following result of Araki follows easily from the homeomorphisms (&.3)).

Theorem 5.8 (Araki [5]). Let E be a real oriented cohomology theory. There are
isomorphisms

E*(CP%) ~ E*[[7]
E*(CP™ x CP™®) ~ E* [t ® 1,1 ® 7]

Because of Theorem [5.8] the map CP*> x CP* — CP classifying the tensor
product of the two tautological line bundles defines a formal group law over 7¢E.
Using this, much of the theory relating formal groups, complex cobordism, and
complex oriented cohomology theories works for Cs-equivariant spectra, with MUy
playing the role of MU. For information beyond the discussion below, see [5] [33].

Remark 5.9. A real orientation Z corresponds to a coordinate on the corresponding
formal group. Because of this we will use the terms interchangeably, preferring
“coordinate” when the discussion predominantly concerns the formal group, and
“real orientation” when it concerns spectra.

The standard formulae from the theory of formal groups give elements in the
RO(Cy)-graded homotopy groups 7¢2 E of real oriented E. For example, there is a
map from the Lazard ring to 72 E classifying the formal group law. Using Quillen’s
theorem to identify the Lazard ring with the complex cobordism ring this map can
be written as

MU, — n€2E.
It sends MUs,, to WSEQE. When E = MUy this splits the forgetful map
(5.10) 752 MUp — w4, MUg = 2, MU,

which is therefore surjective. A similar discussion applies to iterated smash products
of MUy giving

Proposition 5.11. For every m > 0, the above construction gives a ring homo-
morphism

u C
(5.12) ¢ \ MUz — @wj;z /\ MUz
j
splitting the forgetful map

(5.13) Pz 7\ MUy — 7% 7\ MUp.

j
In particular, (513) is a split surjection. O
It is a result of Hu-Kriz[33] that (BI3)) is in fact an isomorphism. This result,

and a generalization to MU(%) can be recovered from the slice spectral sequence.
The class

Ty € HE, (CP™; Zy)
corresponding to 1 € Hg2 (pt, Z(z)) under the isomorphism

Hg‘Z(CPOO§Z(2)) ~ ng(CP2§Z(2)) ~ H& (pt7Z(2))



KERVAIRE INVARIANT ONE 65

defines a real orientation of HZ). As in Example B.7, the classes T and Ty give
two orientations of £ = HZy N MUg. By Theorem 5.8 these are related by a
power series

Ty = logp(ZT)
=z+y matt
i>0
with
mi € w2 HZ gy N MUz,
This power series is the logarithm of F. Similarly, the invariant differential on F'
gives classes (n + 1)m,, € 7r%2M Ur. The coefficients of the formal sum give
~ c
Qij € T j-1)p, MUr-
Remark 5.14. Since the generator of Cy acts by (—1)" on
HonigS"* = my, HL N S,
it acts also acts by (—1)™ on the non-equivariant class m,, underlying m,, and by
(=)™ on 7%, A" MUg = w2, N\ MU.
If (F,Zg) is a real oriented spectrum then E A MUy has two orientations
T =T ®1
TrR=1®2.
These two orientations are related by a power series
(5.15) Zr=» bl
defining classes -
b =bf € 2 EA MUk,
The power series (5.15)) is an isomorphism over 72 E A MUg
Fg — Fg
of the formal group law for (E,Zg) with the formal group law for (M Ug, Z).
Theorem 5.16 (Araki [B]). The map
E,[bi,bo,...] = 72E AN MUy

is an isomorphism. O

Araki’s theorem has an evident geometric counterpart. For each j choose a map
5772 — E N MUg
representing Bj. As in §2.4 let
Sl = \/ s+
k>0
be the free associative algebra on S772 and
Slb;] = EAMUg

the homotopy associative algebra map extending (539). Using the multiplication
map, smash these together to form a map of spectra

(5.17) Elb1,b,...] = EAMU@),
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where

Elb1, bz, ...] = E Aholim S[bi] A S[ba] A -+~ A S[bx].
The map on RO(C5)-graded homotopy Iigroups induced by (517 is the isomorphism
of Araki’s theorem. This proves
Corollary 5.18. If E is a real oriented spectrum then there is a weak equivalence
EAMUg = Elby, b, ...].
O

Remark 5.19. If F is strictly associative then (B.I7) is a map of associative algebras,
and the above identifies E A MUr as a twisted monoid ring over E.

As in §2.4 write

S°b1, b, ... ] = holim S°[ba] A S%[b2] A+~ A S°[bi],
k
and B B o
SIG by, G - by,...] = NG S b1, ba, . . ..

Using Proposition 7 one can easily check that S°[G - b1, G - ba,...] is a wedge of
isotropic regular slice cells. Finally, let

MUG by,G - by,...] = MU ASYIG - by,G by, ... ]
Corollary 5.20. For H C G of index 2, there is an equivalence of H -equivariant
associative algebras

i MU ~ MU H by H - by, ...

Proof: Apply N to the decomposition of Corollary BEI8 with E = MUg. O

5.2.2. The unoriented cobordism ring. Passing to geometric fixed points from
z: CP™ — X2 MUy
gives the canonical inclusion
a:RP* =MO(1) > XMO,

defining the M O Euler class of the tautological line bundle. There are isomorphisms

MO*(RP>) = MO*[a]

MO*(RP* x RP®) ~ MO*[a®1,1® a]

and the multiplication map RP> x RP* — RP gives a formal group law over
MO.,. By Quillen [60], it is the universal formal group law F over a ring of char-
acteristic 2 for which F(a,a) = 0.

As described by Quillen [62] Page 53|, the formal group can be used to give
convenient generators for the unoriented cobordism ring. Let

e € H'(RP>;Z/2)

be the HZ/2 Euler class of the tautological line bundle. Over m,HZ/2 A MO there
is a power series relating e and the image of the class a

e=/{(a)=a+ Z ana™tt.
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Lemma 5.21. The composite series
(5.22) (a—|—Zo¢2j,1a2j)*1 ol(a) :a—|—Zhjaj+1
7>0
has coefficients in m.MO. The classes h; with j +1 = 2% are zero. The remaining
h; are polynomial generators for the unoriented cobordism ring

(5.23) MO = Z/2[h;,j # 2% —1].

Proof: The assertion that h; = 0 for j + 1 = 2% is straightforward. Since the
sequence

(5.24) MO — 7, HZJ2 A MO = 7, HZ/2 AN HZ/2 N MO

is a split equalizer, to show that the remaining h; are in 7, MO it suffices to show
that they are equalized by the parallel maps in (5.24]). This works out to showing
that the series (5.22)) is invariant under substitutions of the form

(5.25) e—e+ Z Cme?”,
The series (5:22)) is characterized as the unique isomorphism of the formal group
law for unoriented cobordism with the additive group, having the additional prop-

erty that the coefficients of a2" are zero. This condition is stable under the
substitutions (2.25). The last assertion follows from Quillen’s characterization of
T MO. O

Remark 5.26. Recall the real orientation Z of i¥ MU(%) of Example Applying
the RO(G)-graded cohomology norm (§2.3.3]) to &, and then passing to geometric
fixed points, gives a class

®EN(z) € MO (RP™).
One can easily check that ®“N(z) coincides with the MO Euler class a defined at
the beginning of this section. Similarly one has

PEN(Zy) =e.
Applying ®“N to logz and using the fact that it is a ring homomorphism (Propo-
sition 257 gives
e=a-+ Z ®YN (1 )ar L.
It follows that
@GN(mk) = Q.

5.3. Refinement of homotopy groups. We begin by focusing on a simple con-
sequence of Proposition 5111

Proposition 5.27. For every m > 1, every element of
m
T2k </\ MU>

can be refined to an equivariant map

§hez — 7\MUR.
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This result expresses an important property of the Cs-spectra given by iterated
smash products of MUg. Our goal in this section is to formulate a generalization
to the case G = Can.

Definition 5.28. Suppose X is a G-spectrum. A refinement of m;! X is a map
c: W= X
in which W is a wedge of slice cells of dimension &, inducing an isomorphism
wgﬁ/\ — i X.

A refinement of the homotopy groups of X (or a refinement of homotopy of X) is a
map

/V[7 = \/ Wk — X
whose restriction to each Wk is a refinement of 7.

Remark 5.29. Let o¢(Z) be the sign representation of G on Z. There is an G-
module isomorphism 7T‘U’G‘SPG ~ 0¢(Z), and more generally

T (G A S"0) = indy op (Z)°"

This implies that when k is even, a necessary condition for 7' X to admit a refine-
ment is that it be isomorphic as a G-module to a sum

@ My i

HCG

where Mj; . is zero unless |H| divides k and is a sum of copies of ind% (ou(2)%")
when k = ¢|H|. Adding the further condition that for every H C G, with k = ¢|H|,
every element in 71X transforming in oy (Z)®* refines to an element of wﬁHX
makes it sufficient. A similar analysis describes the case in which k is odd.

Remark 5.30. Using Remark [5.29 one can check that a refinement of 7' X consists
of isotropic slice cells if and only if 7! X does not contain a free G-module as a
summand.

The splitting (5I12)) used to prove Proposition 527 is multiplicative. This too
has an important analogue.

Definition 5.31. Suppose that R is an equivariant associative algebra. A mul-
tiplicative refinement of homotopy is an associative algebra map W — R which,
when regarded as a map of G-spectra is a refinement of homotopy.

Proposition 5.32. For every m > 1 there exists a multiplicative refinement of
homotopy

W — \ MU,
with W a wedge of reqular isotropic slice cells.

Two ingredients form the proof of Proposition[5.321 The first, Lemma[5.33 below,
is a description of ﬂ'ZjMU((G)) as a G-module. The computation is of interest in its
own right, and is used elsewhere in this paper. It is proved in §5.41 The second is
the classical description of 7*(A™ MU m > 1, as a 7* MU ()-module.
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Lemma 5.33. There is a sequence of elements r; € wgiMU((G)) with the property
that

(534) W:MU((G)):ZQ[G'Tl,G'TQ,...],
in which G - r; stands for the sequence
(riy...v37 1)

of length g/2.

We refer to the condition (5.34) by saying that the elements r; € 7% MU(G)
form a set of G-algebra generators for ¢ MU,

Remark 5.35. Lemma [5.33] completely describes 74 MU() as a representation of
G. To spell it out, recall from Remark [5.14] that the action of the generator of Cy
on 7 MU(E) is by (—1)’. The elements r; € 73 MU therefore satisty y3r; =
(—1)%; and transform in the representation induced from the sign representation
of C5 if 7 is odd and in the representation induced from the trivial representation of
Cs if 7 is even. Lemma [5.33 implies that the the map from the symmetric algebras
on the sum of these representations to 7% MU(%) is an isomorphism.

Remark 5.36. The fact that the action of Cy on 7% MU(E) is either a sum of sign
or trivial representations means that it cannot contain a summand which is free.
The same is therefore true of the G-action. By Remark this implies that only
isotropic slice cells may occur in a refinement of i, MU ().

Over 7 MUG) A MU(E)| there are two formal group laws, F, and Fr coming
from the canonical orientations of the left and right factors. There is also a canonical
isomorphism between them, which can be written as

TR = g bjaijJrl.

G-b

Write

for the sequence
bi, "ybl, N 7,.)/5]/2*1()1_.

The following result is a standard computation in complex cobordism.
Lemma 5.37. The ring n*MU) A MUE) is given by
MU A MU = 22 UG by, G - by, ...

Form > 1,

m m—1

v /\MU((G)) =7t MU A /\ MuG@)

is the polynomial ring
e MU@ (G - b)),
with
i=1,2,..., and
j=1...,m—1.

The element bz(-j) is the class b; arising from the j** factor of MU ip, /\mf1 MU©),
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Proof: The second assertion follows from the first and the Kiinneth formula. If
not for the fact that G acts on both factors of iy MU(E) | the first assertion would
also follow immediately from the Kiinneth formula and the usual description of
MU,MU. The quickest way to deduce it from the apparatus we have describe so
far is to let G C G’ be an embedding of index 2 into a cyclic group, write

MU A MUCE) ~ Z'*GMU((G'))
and use Corollary O

Remark 5.38. As with Lemma [£.33 the lemma above actually determines the
structure of ¢ MU A MU(E) as a G-equivariant 7% MU(E)-algebra. See Re-
mark

Proof of Proposition [5.32, assuming Lemma [5.33: This is a straightforward
application of the method of twisted monoid rings of §241 To keep the notation
simple we begin with the case m = 1. Choose a sequence 7; € 7% MU() with the
property described in Lemma Let

(5.39) 7 S — MU (©),

be a representative of the image of r; under the splitting (£.12). Since MU is a
commutative algebra, the method of twisted monoid rings can be used to construct
an associative algebra map

(5.40) SO1G 71, G T, ... ] = MU,

Using Proposition BT one can easily check that SO[G - 71,G - 7a,...] is a wedge of
regular isotropic G-slice cells. Using Lemma[5.33 one then easily checks that (5.40)
is multiplicative refinement of homotopy. The case m > 1 is similar, using in
addition Lemma [5.37 and the collection {r;,b;(j)}. O

5.4. Algebra generators for 7*MU(S), In this section we will describe con-
venient algebra generators for 7*MU(E) . Our main results are Proposition
(giving a criterion for a sequence of elements 7; to “generate” m*MU(%) as a G-
algebra, as in Lemma [5.33)) and Corollary [£.49 (specifying a particular sequence of
r;). Proposition directly gives Lemma

We remind the reader that the notation H!X refers to the homology groups
H,(i§X) of the non-equivariant spectrum underlying X.

5.4.1. A criterion for a generating set. Let
m; € Hyy MU = ngHZ/\MUR
be the coefficient of the universal logarithm. Using the identification (5.2))

g/2—1
f{MU((G)) — /\ I MUg
j=0

and the Kiinneth formula, one has

HijU((G)) =Z) [,ijk]7
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where

k=1,2,...,

j=0,...,9/2—1.

By the definition of the v7m;, and Remark [5.14] the action of G on H*MU() is
given by

(5.41) g = {’Yj-i-lmk ] <g/2-1
(=1)*my, j=g/2-1.
Let
I =kern!MU®) — 7,
Iy =ker H*MU@) — 7,
denote the augmentation ideals, and
Q. =1/I?
QH. = Iu/I}
the modules of indecomposable, with Qs,,, and @ Hs,, indicating the homogeneous
parts of degree 2m (the odd degree parts are zero). The module Q H, is the free abe-

lian group with basis {7/my}, and from Milnor [58], one knows that the Hurewicz
homomorphism gives an isomorphism

Qa2 — QHap,
if 2k is not of the form 2(2¢ — 1), and an exact sequence
(5.42) Q2(2@71) — QH2(2/»’71) — Z/2

in which the rightmost map is the one sending each v/my, to 1.
Formula (5.47]) implies that the G-module Q Hay, is the module induced from the
sign representation of C if k is odd and from the trivial representation if k is even.

Lemma 5.43. Letr =Y ajv/my € QHay. The unique G-module map
Z(g) [G] — QHQk
1l—r

factors through a map
Zo)[G/ (4% = (1)) = QHa

which is an isomorphism if and only if > a; =1 mod 2.

Proof: The factorization is clear, since v9/2 acts with eigenvalue (—1)F on QHoy,.
Use the unique map Z)[G] — QHay, sending 1 to my to identify QHap, with A =
L) [G]/(v9/%2 —(~1)¥). The main assertion is then that an element r = 3" a;y’ € A
is a unit if and only if > a; = 1 mod 2. Since A is a finitely generated free
module over the Noetherian local ring Z), Nakayama’s lemma implies that the
map A — A given by multiplication by r is an isomorphism if and only if it is after
reduction modulo 2. So r is a unit if and only if it is after reduction modulo 2. But
A/(2) = Z/2[]/(v9/? = 1) is a local ring with nilpotent maximal ideal (y —1). The
residue map

A/(2) = AJ(2,v—1)=1Z/2
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sends Y a;v'my to Y a;. The result follows. O

Lemma 5.44. The G-module Q2¢_1y is isomorphic to the module induced from
the sign representation of Cy. Fory € QHy(ge_yy, the unique G-map

Z2)|G] = QHy(ge_y)
1=y

factors through a map
A =172 [G]/(ng +1) = Qa2e—1)

which is an isomorphism if and only if y = (1 — v)r where r € QHype_qy satisfies
the condition > a; =1 mod 2 of Lemma [543

Proof: Identify QHjy(e_1y with A by the map sending 1 to mg._;. In this case
A is isomorphic to Z)[¢], with ¢ a primitive g'" root of unity, and in particular
is an integral domain. Under this identification, the rightmost map in (542) is the
quotient of A by the principal ideal (¢ — 1). Since A is an integral domain, this
ideal is a rank 1 free module generated by any element of the form (1 — ~)r with
r € A a unit. The result follows. O

This discussion proves

Proposition 5.45. Let
{r1,ra,...} C 7 MU

be any sequence of elements whose images
Sk € QHap

have the property that for k # 2° — 1, s = > a;v9my, with

Zaj =1 mod 2,
and spe_y = (L —7) (X ajyimge_y), with

Zajzl mod 2.

Then the sequence
g_1 g_1
{ri,...y2 7 ri,ra, .., ¥2 g, }

generates the ideal I, and so
Zgy[r1, - - - EI STR ST StV SN J= e MU(©)

is an isomorphism. (I
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5.4.2. Specific generators. We now use the action of G on i{MU((G)) to define spe-
cific elements 7; € wicl;i MU refining a sequence satisfying the condition of Propo-
sition

Write

(. 7)
for the formal group law over 7¢2 M U@ and
logp(Z) =2+ mpztt!
i>0
for its logarithm. This defines elements
M, € 2 HZgy A MU,
We define the elements
(5.46) € w2 MU

to be the coefficients of the unique strict isomorphism of F with the 2-typification
of F7. The Hurewicz images

T € w2 HZpy A MU

are given by the power series identity
-1

(5.47) kaa‘;k“ = (a‘c + ZV(T?LQZ_l)J_jQ[) ology(%).

Modulo decomposables this becomes

i My — YMg E=2t—-1
b= My, otherwise.

(5.48)

This shows that the elements 7, satisfy the condition of Proposition [5.45] hence

Corollary 5.49. The classes r, = i§Ty form a set of G-algebra generators for
at MU, O

These are the specific generators with which we shall work. Though it does not
appear in the notation, the classes 7; depend on the group G. In §9 we will need
to consider the classes 7; for a group G and for a subgroup H C G. We will then

use the notation

7 and 7

to distinguish them.

The following result establishes an important property of these specific 7. In the
statement below, the symbol N is the norm map on the RO(G)-graded homotopy
groups of commutative rings.

Proposition 5.50. For all k
®EN (7g) = hy, € m MO,

where the hy are the classes defined in §5.2.2 In particular, the set
{ON (%) | k #2° — 1}

is a set of polynomial algebra generators of m. MO, and for all £

@GN('FQE_l) - h2l_1 - 0
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Proof: From Remark we know that
P°Nz=a

PNzy =e

PCNm, = ay.
Corollary implies that

BC Ny, = N,

so we also know that

PCN YMy = Q.
Since the Hurewicz homomorphism

7. G MUE) —— m DG (HZ ) A MU(®)
MO ————— 7w, HZ/2[b] A MO

is a monomorphism, we can calculate ®“ N7, using (5.47). Applying ®¢N to (5.47),
and using the fact that it is a ring homomorphism gives

at» (PN )kt
= (a + Z(@GN”Ymﬂ—l)azl) © (a + Z((I)GNmk)akJrl)
= (a4 Y age?) o (at Y et

But this is the identity defining the classes hy. (I

In addition to

-1

h = ®°N (i) € mp@ MU = 1, MO
there are some important classes fi attached to these specific 7.

Definition 5.51. Set
fr=ak N7y, € mf MU,
where pg = pg — 1 is the reduced regular representation.

The relationship between these classes is displayed in the following commutative
diagram.

Sk

h
a® k
1e lf’\

ko N A (@) o Bp A MU(G)

6. THE SLICE THEOREM AND THE REDUCTION THEOREM

Using the method of twisted monoid rings one can show the Slice Theorem and
the Reduction Theorem to be equivalent. In §6.1] we formally state the Reduction
Theorem, and assuming it, prove the Slice Theorem. In §6.2] we establish a con-
verse, for associative algebras R which are pure and which admit a multiplicative
refinement of homotopy by a polynomial algebra. Both assertions are used in the
proof of the Reduction Theorem in {7l
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6.1. From the Reduction Theorem to the Slice Theorem. We now state the
Slice Theorem, using the language of §4.6.21

Theorem 6.1 (Slice Theorem). The spectrum MU is an isotropic pure spec-
trum.

For the proof of the slice theorem, let
A=58°G-7,G Fy,...] » MU
be the multiplicative refinement of homotopy constructed in §5.3 using the method

of twisted monoid rings, and the specific generators of §5.4.21 Let J be the left
G-set defined by

J=]]G/Co.
As described in §2.4] the spectrum A is the indexed wedge
A=\ 87,
feng
in which p; is the unique multiple of the regular representation of the stabilizer
group of f having dimension
dim f =2 5 f(j)-
jedJ
As in Example 23] let
MgCA

be the monomial ideal consisting of the indexed wedge of the S*/ with dim f > d.
Then My 1 = Moy, and the My, fit into a sequence

o Magyo — Mag — Mag 2 — -+ .

The quotient

Mzq/Maay2
is the indexed wedge
(6.2) Wa= \/ 8
dim f=2d

on which A is acting through the multiplicative map A — S° (Examples 2.31]
and [A-49). The G-spectrum (6.2) is a wedge of regular isotropic slice cells of
dimension 2d.

Replace MU(S) with a cofibrant A-module, and form

Koq = MU() A Mag.
The Ksq4 fit into a sequence
Kogyo — Kog — -+ .
Lemma 6.3. The sequences
Kaato — Kaqg — Koa/Koa2
Kaa/Kaas = MU [Koqis - MU /Koy
are weakly equivalent to cofibration sequences. There is an equivalence

(6.4) Koa/Kaaro ~ R(00) A Wag
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in which
R(c0) = MU A S0,

Proof: Since the map Kogyo — Koq is the inclusion of a wedge summand it is an
h-cofibration of spectra, and the first assertion follows from Proposition [B.20] and
Corollary B141l The second assertion follows from the associativity of the smash
product

MU A (Maa/Maasn) = (MU A S%) A Wag ~ R(00) A Waq.
This completes the proof. ([l

The Thom map
MU — HZ,,,

factors uniquely through an MU(“)-module map
R(c0) — HZy).

The following important result will be proved in §7.3

Theorem 6.5 (The Reduction Theorem). The map
R(0c0) — HZs)

is a weak equivalence.

The case G = C of the Reduction Theorem is Proposition 4.9 of Hu-Kriz[33].
Its analogue in motivic homotopy theory appears in unpublished work of the second
author and Morel.

To deduce the Slice Theorem from Theorem we need two simple lemmas.

Lemma 6.6. The spectrum Ksq1o is slice 2d-positive.

Proof: The class of left A-modules M for which M /2 Mosgio > 2d is closed

under homotopy colimits and extensions. It contains every module of the form
YFG/H, A A, with k& > 0. Since A is (—1)-connected this means it contains
every (—1)-connected cofibrant A-module. In particular it contains the cofibrant
replacement of MU (), O

Lemma 6.7. If Theorem[6.9 holds then MU((G))/K2d+2 < 2d.

Proof: This is easily proved by induction on d, using the fact that
R(00) A Wag = MU [ Kyyio — MU /Ky,

is weakly equivalent to a cofibration sequence (Lemma [6.3)). O

Proof of the Slice Theorem assuming the Reduction Theorem: It follows from the
fibration sequence

Kapo — MU — MU /Koy,
Lemmas and above, and Lemma that
P21 Q) o P2 pr Q) o MU((G))/K2d+2.
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Thus the odd slices of MU (%) are contractible and the 2d-slice is weakly equivalent
to

R(OO) A WQd ~ HZ(Q) A ﬁ/\Qd.
This completes the proof. (I

6.2. A converse. The arguments of the previous section can be reversed. Suppose
that R is a (—1)-connected associative algebra which we know in advance to be pure,
and that A — R is a multiplicative refinement of homotopy, with

A=8G 71,...]

a twisted monoid ring having the property that |Z;| > 0 for all .. Note that this
implies that 7y R = Z and that PR = HZ. Let My, C A be the monomial ideal
consisting of the slice cells in A of dimension > d, write

Piy1R= My, Q} R
and
P%&:RﬂaHRz(Am@H)QR
Then the P?R form a tower. Since Mg41 > d and R > 0 (Proposition [£.20), the
spectrum P;11 R is slice d-positive. There is therefore a map
(6.8) PR — PR,
compatible with variation in d.

Proposition 6.9. The map [©.8) is a weak equivalence. The tower {P*R} is the
slice tower for R.

By analogy with the slice tower, write Pj/R for the homotopy fiber of the map
PR PUIR,

when d’ < d.
We start with a lemma concerning the case d = 0.

Lemma 6.10. Let n > 0. If the map
P°R— P°R

becomes an equivalence after applying P™, then for every d > 0 the map
PYR — PR

becomes an equivalence after applying P+,

Proof: Write Wd = My/Mg+1. Then there are equivalences
AﬁRzW%Rzﬁyuﬁngd%A@R
Since A — R is a refinement of homotopy and R is pure, the analogous map

WiA PR — PR
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is also a weak equivalence. Now consider the following diagram

Wy A PP(POR) —— W, A P"(POR)

| |

P (W A POR) — P41 (W, A POR)

Nl lw

P47 (PYR) Pt (PIR)

The top map is an equivalence by assumption. The bottom vertical maps are the
result of applying P%" to the weak equivalences just described. Since Wd is a
wedge of regular slice cells of dimension d, Corollary implies that the upper
vertical maps are weak equivalences. It follows that the bottom horizontal map is
a weak equivalence as well. (Il

Proof of Proposition[6.9: We will show by induction on k that for all d, the map
Pd+]€ (PdR) — Pd+/€ (PdR)

is a weak equivalence. By the strong convergence of the slice tower (Theorem [.42)
this will give the result. The induction starts with k& = 0 since Pd_HR > d and so
R— PiRisa Pd-equivalence. For the induction step, suppose we know the result
for some k > 0, and consider

PdJrkPgR 5 PdJrk(PdR) 5 Pd+k(Pd71R)

PdJrk(PgR) S PdJrk(PdR) S PdJrk(PdflR)
The bottom row is a cofibration sequence since it can be identified with
PR — PR — P 'R.

The middle vertical map is a weak equivalence by the induction hypothesis, and the
left vertical map is a weak equivalence by the induction hypothesis and Lemma [6.10
It follows that the cofiber of the upper left map is weakly equivalent to P4+* (P41 R)
and hence is (d + k + 1)-slice null (in fact d slice null). The top row is therefore a
cofibration sequence by Corollary .T7 and so the rightmost vertical map is a weak
equivalence. This completes the inductive step, and the proof. O

7. THE REDUCTION THEOREM

We will prove the Reduction Theorem by induction on g = |G|. The case in which
G is the trivial group follows from Quillen’s results. We may therefore assume that
we are working with a non-trivial group G and that the Reduction Theorem is
known for all proper subgroups of G. In the first subsection below we collect some
consequences of this induction hypothesis. The proof of the induction step is in

7.3
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7.1. Consequences of the induction hypothesis. This next result holds for
general G.

Lemma 7. 1 Suppose that X is pure spectrum and W is a wedge of reqular slice
cells. Then WAX is pure. If X is pure and isotropic and W is regular isotropic,
then W A X is pure and isotropic.

Proof: Using Proposition 4.21] one reduces to the case in which W = §mree. In
that case the claim follows from Corollary [4.25 O

Proposition 7.2. Suppose H C G has index 2. If the Slice Theorem holds for H
then the spectrum ij‘qMU((G)) 18 an isotropic pure spectrum.

Proof: This is an easy consequence of Corollary [5.20] which gives an associative
algebra equivalence

i MU ~ MU H by H - by, .. .].

This shows that i7; MU (&) is a wedge of smash products of even dimensional
isotropic slice cells with MU and hence (by Lemma [Z1) an isotropic pure
spectrum since MU ) js, ([l

Proposition 7.3. Suppose H C G has index 2. If the Slice Theorem holds for H
then the map
i R(00) = i HZ2)

is an equivalence.

Proof: By Proposition we know that i%, MU(%) is pure. The claim then
follows from Proposition O

7.2. Certain auxiliary spectra. Our proof of the Reduction Theorem will require
certain auxiliary spectra. For an integer k > 0 we define

R(k)=MUD )G -7,...,G 7)) = MU nA

where

AZSO[G-fl,G'fQ,...]

A/ = SO[G . Fk+1,G . ’I:k+2, .. ]
The spectrum R(k) is a right A’-module, and as in the case of MU() described
in g6 the filtration of A’ by the “dimension” monomial ideals leads to a filtration
of R(k) whose associated graded spectrum is

R(co) N A,

Thus the reduction theorem also implies that R(k) is a pure isotropic spectrum. By
the results of the previous section, the induction hypothesis implies that i}, R(k) is
pure and isotropic.
We know from Proposition [£.64] that when m is even, the slice P R(k) is given
by
PI'R(k) ~ HZ ) A W,
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where W C A’ is the summand consisting of the wedge of slice cells of dimension
m. When m is odd the above discussion implies that T'A P R(k) is contractible
for any G-CW spectrum 7" built entirely from induced G-cells. In particular, the
equivariant homotopy groups of EP, A R(k) may be investigated by smashing the
slice tower of R(k) with EP, and we will do so in §7.3] where we will exploit some
very elementary aspects of the situation.

7.3. Proof of the Reduction Theorem. As mentioned at the beginning of the
section, our proof of the Reduction Theorem is by induction on |G|, the case of
the trivial group being a result of Quillen. We may therefore assume that G is
non-trivial, and that the result is known for all proper subgroups H C G. By
Proposition [7.3] this implies that the map

R(c0) = HZy)

becomes a weak equivalence after applying 7};.
For the induction step we smash the map in question with the isotropy separation

sequence (2.42)
EP, A R(c0) = R(c0) = EP A R(c0)

"
EPy NHZgy > HZ )~ EP A HZy, .

By the induction hypothesis, the map f is an equivalence. It therefore suffices to
show that the map h is, and that, as discussed in Remark 247 is equivalent to
showing that

(7.4) Th 7 @9 R(00) = m. D HZy)

is an isomorphism.
We first show that the two groups are abstractly isomorphic.

Proposition 7.5. The ring W*(I)GHZ@) is given by
T O HZ ) = Z/2[b],
with
b=usga,” € ma® HLy) C ay ' mg HL ).

The groups T.®% R(c0) are given by

Z]2 n >0 even

7, ®Y R(0c0) = ,
0 otherwise.

Proof: The first assertion is a restatement of Proposition B.I8 For the second
we will make use of the monoidal geometric fixed point functor ®$;. The main
technical issue is to take care that at key points in the argument we are working
with spectra X for which ®¢X and @%X are weakly equivalent.

Recall the definition

R(o0) = MU A 80
c A ?
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where for emphasis we’ve written M Ué(G)) as a reminder that MU() has been
replaced by a cofibrant A-module (see §2.4)). Proposition [B:2209 implies that R(co)
is cofibrant, so there is an isomorphism

T, @9 R(00) &~ 7,85, R(c0)

(Proposition [B2202). For the monoidal geometric fixed point functor, Proposi-
tion [B.209] gives an isomorphism

O (R(o0)) = 0§, (MU A 5% =~ oG, MU ol SO,
M

We next claim that there are associative algebra isomorphisms
DG A~ SO [OY N, DCNFy, ... ~ SO[@2F, d%27,, .. ).

For the first, decompose A into an indexed wedge, and use Proposition [B.193 For
the second use the fact that the monoidal geometric fixed point functor distributes
over wedges, and for V' and W representations of Cs, can be computed in terms of
the isomorphisms

O (NS (S ASY)) m 0§ (S™ M6 A 57196 V) & 952(S7W A V).
By Proposition B203, ®¢, MU is a cofibrant ®¢, A-module, and so

G MULD NS @G MU J(OF Ny, OF N7, ... ).

o5 A

Since M Uc((G» is a cofibrant A-module, and the polynomial algebra A has the

property that S~' A A is cofibrant, the spectrum underlying M UC((G)) is cofibrant
(Corollary [B:2208). This means that

oG, MU

and
MU ~ oMU ~ MO

are related by a functorial zig-zag of weak equivalences (Proposition[B.202)). Putting
all of this together, we arrive at the equivalence

PYR(00) ~ MO/ (D27, 27y, . ..).
By Proposition [5.50)

. k _
o7, = hi 1#2" -1
0 i=2F-1.

From this is an easy matter to compute 7, MO/(®%F;, ®EF,,...) using the cofi-
bration sequences described at the end of 2431 The outcome is as asserted. O

Before going further we record a simple consequence of the above discussion
which will be used in §9.11

Proposition 7.6. The map
MU = 1 MO — T @9 HZ )
is zero for x > 0. O

A simple multiplicative property reduces the problem of showing that (7.4]) is an
isomorphism to showing that it is surjective in dimensions which are a power of 2.
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Lemma 7.7. If for every k > 1, the class v2" s in the image of
(78) Tok @GMU((G))/(G . 'sz_l) — Tok @GHZ(Q),

then (T4 s surjective, hence an isomorphism.

Proof: By writing

R(0) = MU ) (G-7) A MU /)G -7) A -
MU(&) MU(G)

we see that if for every k > 1, »"" is in the image of (Z.8)), then all products of
the v " are in the image of

(7.9) T @9 R(00) = @ HZ).

Hence every power of b is in the image of ([T.9]). O

In view of Lemma [.7], the Reduction Theorem follows from

Proposition 7.10. For every k > 1, the class v2"" s in the image of
mox @G (MU [(G - 7yn_1)) — 7ox @Y (HL ).
To simplify some of the notation, write
cp=2"—1
and
My, = MU /(G -7,,).
Since S°P<¢ is obtained from S° by attaching induced G-cells, the restriction map
78 i1 EP A My, — 78 EP A My
is an isomorphism (Remark 2:48). The element of interest in this group (the one

hitting b2° ") arises from the class
g

N7, e 78 MU(©)

CkPG

and the fact that it is zero for two reasons in 7& v EP A M (it has been coned

off in the formation of My, and it is zero in wngE’P A MUG) = T, MO by
Proposition[5.50). We make this more precise and prove Proposition[Z.I0 by chasing
the class N7,, around the sequences of equivariant homotopy groups arising from

the diagram

(7.11) EP. AMUG) - MU(@) ~ EPp A MU
EPL N My M;, EP A M,

.

EP{ NHZ ) —> HLy —= EP NHZ, .
We start with the top row. By Proposition [5.50] the image of N7, in

78 e EP AMUD ~ 728 EP A MU ~ 7, MO

CkPG
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is zero. There is therefore a class

yp € 78 EP,. AMUE)

CkPG

lifting N7.,. The key computation, from which everything follows is
Proposition 7.12. The image under

78 EPy AMUSD) — 78 EPL AHZy,

kPG

of any choice of yi above, is non-zero.

Proof of Proposition[7.10] assuming Proposition[7.12; We continue chasing around
the diagram (CI1)). By construction the image of yj in chipc EP, N My, maps to

zero in wg po M. 1t therefore comes from a class

Yk € ngG+1EP A M.
The image of g in wgchHE’P N HZs) is non-zero since it has a non-zero image in

e
by Proposition [[.121 Now consider the commutative square below, in which the
horizontal maps are the isomorphisms (Remark [Z48]) given by restriction along the
fixed point inclusion §2° C Serpe+l;

78 i1 EP A M, TG EP A My

| |

ﬂ-chG‘FlE,P AN HZ(2) ?F%EP A HZ(Q) .

The group on the bottom right is cyclic of order 2, generated by v We've just
shown that the image of 7, under the left vertical map is non-zero. It follows that
the right vertical map is non-zero and hence that b2 s in its image. O

The remainder of this section is devoted to the proof of Proposition

The advantage of Proposition is that it entirely involves G-spectra which
have been smashed with EP,, and which (as discussed in §7.2)) therefore fall under
the jurisdiction of the induction hypothesis. In particular, the map

(7.13) EPL AMU) — EPL AHZ,,

can be studied by smashing the slice tower of MU() with EP, .
We can cut down some the size of things by making use of the spectra introduced

in §7.2 Factor (CI3) as
EPy AMU Y — EPL AR(cy, — 1) = EPy AHZy),
and replace y;, with its image

yr €78 EP. AR(c —1).

CkPG



84 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

Lemma 7.14. For 0 < m < cxg,
Tewpa EP+ N Py R(c, — 1) = 0.
There is an exact sequence

EP_ AP, Rcy —1) —=aC _EP, AR(cp — 1)

|

EPL ANHZy =Z/2 .

CkPG CkPG

CkPG

Proof: Because of the induction hypothesis, we know that the spectrum
EPL ANPT'R(ck, — 1)
is contractible when m is odd, and that when m is even it is equivalent to

EP. AHZ AWy,

where W C §° [G - T¢,,...] is the summand consisting of the wedge of slice cells of
dimension m. Since 1 < m < c¢kg all of these cells are induced. This implies that
the map

EP.ANHZAW,, — HZ AW,
is an equivalence, since
EP+ — SO

is an equivalence after restricting to any proper subgroup of G. But

HZ AW, = 7§ HZ A S™P6 AT,

Ck 2]
since

HZ A S=Pc AW,

is an (m — c¢g)-slice and m — ¢,g < 0. This proves the first assertion. It implies
that the map

78 oEP+ A PogR(ci, — 1) = 78 _EP. A PiR(cy — 1)

is surjective. As mentioned in §7.21 Proposition FL64] implies that P{R(cy — 1) =
HZ3), and so the second assertion follows from the exact sequence of the fibration

EPy AP R(cy —1) = EPL A R(c, — 1) = EPy A PYR(cky — 1).

kPG

O

The exact sequence in Lemma [T.14] converts the problem of showing that y; has

non-zero image in chpGE,P+ N HZ4y to showing that it is not in the image of

EP. APy gR(ck — 1).

CkPG'
We now isolate a property of this image that is not shared by yi. Recall that ~ is
a fixed generator of G.

Proposition 7.15. The image of

Rc, — 1) Lo, e, g R(ck — 1)

c

EPy AP, ,R(ck —1) —

Ck PG CkPG

is contained in the image of (1 — ).
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The class yi does not have the property described in Proposition[T.T5l Its image
in w¢  R(ck — 1) is igNT., which generates a sign representation of G occurring as
a summand of ¢  R(ck —1). Thus once Proposition [.T5]is proved the proof of the
Reduction Theorem is complete.

The proof of Proposition makes use of the RO(G)-graded Mackey functor
Teppe (X)

—CkPG

and the transfer map

(7.16) Teppe (X)(C2) = e, o (X) (DY),

—CkPG —CE PG

in which Cy is regarded as a finite G-set through the unique surjective map G —
C>. By definition (§3.0]) of the covariant part m., .  of the Mackey functor, the
map ([I0) is given by the map of equivariant homotopy groups

8 (X ACop) — 78 (X)

CLpPG CkpG
induced by the unique surjective map Cs — pt.

There are two steps in the proof of Proposition First it is shown (Corol-
lary [[.19) that the image of

78 EPyAP.gR(ck —1) = 7%  R(cp —1)

CkPG kPG

is contained in the image of the transfer map just described. We then show
(Lemma [.20) that the image of the transfer map in 7  R(cy, — 1) is in the image
of (1 —7).

Lemma 7.17. Let M > 0 be a G-spectrum, and regard Co as a finite G-set using
the unique surjective map G — Cy. The image of

wg EPL ANM — wg M
is the image of the transfer map

7T§M/\Cg+ —)W(?M.

Proof: As mentioned in Remark[Z.46] the space EP, can be taken to be the space
S$° on which v acts through the antipodal action. The standard cell decomposition
in this model has 0-skeleton Co, . Since M is (—1)-connected (Proposition 11
this implies that 7§ Co  AM — 7§ EP AM is surjective, and the claim follows. [J

Corollary 7.18. The image of
7 EPyAP.4R(ck —1) =78  P. ,R(ck —1)

CkPG CkPG

is contained in the image of the transfer map.

Proof: This follows from Lemma [T.T7 above, after the identification
78 e PengR(ck — 1) = 7§ ST APy g R(cp — 1)
and the observation that
STHwPE N P gR(ck — 1) = Po(S™°P¢ A R(cx, — 1))

is > 0. [l
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Corollary 7.19. The image of
78 EP. AP.gR(cr, —1) =75 R(c, —1)

CEPG CkpG

is contained in the image of the transfer map.

Proof: Immediate from Corollary [[. 1§ and the naturality of the transfer. O

The remaining step is the special case X = P, gR(cy — 1), V = cixpg of the next
result.

Lemma 7.20. Let X be a G-spectrum, V a virtual representation of G of virtual
dimension d, and regard Co as a finite G-set through the unique surjective map

G — Cy. Write € € {£1} for the degree of
y:igSY — SV,
The image of
T3 (X AN Cop) = 1GX — 14X
is contained in the image of

(I+ey): 75X - mi X.

Proof: Consider the diagram

THX A Cyy) —= 78X

| |

THX ANCyy ) ——= 74X .
The non-equivariant identification
Coy =~ 50y g0
gives an isomorphism of groups of non-equivariant stable maps
SV, XACo ]~ [SY,X]@[SY, X],
and so an isomorphism of the group in the lower left hand corner with
g X @y X
under which the generator v € G acts as
(a,b) — (evb, eva).

The map along the bottom is (a,b) — a+b. Now the image of the left vertical map
is contained in the set of elements invariant under ~ which, in turn, is contained in
the set of elements of the form

(a,eva).
The result follows. O

Proof of Proposition[7.15: As described after its statement, Proposition [717] is
a consequence of Corollary [[.19 and Lemma [7.20] (|
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8. THE GAP THEOREM

The proof of the Gap Theorem was sketched in the introduction, and various
supporting details were scattered throughout the paper. We collect the story here
for convenient reference.

Given the Slice Theorem, the Gap Theorem is a consequence of the following
special case of Proposition

Proposition 8.1. Suppose that G = Caon is a non-trivial group, and m > 0. Then
HE (8™ L)) = 0 for 0 <i < 4.
O

Lemma 8.2 (The Cell Lemma). Let G = Can for some n > 0. If S is an isotropic
slice cell of even dimension, then the groups WEHZ(Q) A S are zero for —4 < k < 0.

Proof: Suppose that
g — mpHa
S=G4 /P} S
with H C G non-trivial. By the Wirthmiiller isomorphism
W]?HZ(Q) A\ § ~ W}?HZ(Q) A\ SmpH,

so the assert/i\on is reduced to the case § = S™¢ with G non-trivial. If m > 0 then
ngZ(z) A S =0 for k < 0. For the case m < 0 write i = —k, m’ = —m > 0, and

T HL gy NS = HE(S™ 7% L),
The result then follows from Proposition Rl O

Theorem 8.3. If X is pure and isotropic, then
T¢X =0 —4<i<0.

Proof: Immediate from the slice spectral sequence for X and the Cell Lemma. [

Corollary 8.4. IfY can be written as a directed homotopy colimit of isotropic pure
spectra, then
T¢X =0 —4<i<0.
O

Theorem 8.5 (The Gap Theorem). Let G = Can withn > 0 and D € my,, MU (@)
be any class. Then for —4 <i <0

7D TMUE) = .

Proof: The spectrum D' MU is the homotopy colimit
holim » 77 ¢ pru (@),
i

By the Slice Theorem, MU() is pure and isotropic. But then the spectrum
s—itea prrr(@)



88 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL
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FIGURE 2. The slice spectral sequence for w§2m0+*MU((G))

is also pure and isotropic, since for any X
Py X & ZPGP,?Z:QQX

by Corollary A28l The result then follows from Corollary B4l O

9. THE PERIODICITY THEOREM

In this section we will describe a general method for producing periodicity results
for spectra obtained from MU(%) by inverting suitable elements of 7¢ MU(F), The
Periodicity Theorem (Theorem [0.19) used in the proof of Theorem [[LTlis a special
case. The proof relies on a small amount of computation of 7& MU (),
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om+1 g
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o
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—(2m+1)o 2m — (2m+1)o

F1GURE 3. The slice spectral sequence for wg( MU(&)

2m+1)o+x*

9.1. The RO(G)-graded slice spectral sequence for MU(%), Let 0 = o be
the real sign representation of GG, and

U = U2y € ﬂ'gi%HZ@)
the element defined in Definition Since
pé)MU((G)) = HZ
the powers u"™ define elements
u™ e EYPmTEme — G PIMU(D)

in the Es-term of the RO(G)-graded slice spectral sequence
Byt = a8 PN — my MU,

imt



90 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

s=(9— l)((t —s)+ QmU) +2m
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FIGURE 4. Differentials on «™

with t € —2mo +7Z. Our periodicity theorems depend on the fate of these elements.
To study them it is convenient to consider odd negative multiples of ¢ as well, and
to investigate the slice spectral sequences for m,_x, for k > 0.

It turns out to be enough to investigate the groups Eg’t with s > (g — 1)((t —
s)— (k—ko)), where g = |G|. The situation is depicted in Figures 24l We have, in
fact, already described all of the groups in this range. To see this write ¢ = dim ¢
so that t =t + (k — ko), and

Eyt =75 5% A PYMUG),

Since S*7 A Ptt,lMU((G)) > t/, part iii) of Proposition tells us that this group
vanishes if
t'—s+k<|[t'/g],
and hence if
s> (g—1)((t — s) + ko) + k.
This gives the vanishing line depicted in FiguresPlfdl Now Ptt,/ MU is contractible
unless ' is even, in which case it a wedge of G-spectra of the form HZ A S where
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S is a slice cell of dimension #'. Since the restriction of o to any proper subgroup
is trivial, when S = G 1/1\1 SYPH is an induced slice cell, there are isomorphisms

§* NHLNS = G p (S AHLAS 1) ~ Gy p (S AHL NS
an so 775_5+kSk‘7 NHZ N S is isomorphic to
mH HZASYPe.

This group vanishes if

t'—s<{ =t/h (h=|H|),
so certainly when

t—s<t/g,

or, equivalently when

s> (g—1)((t - 5) - (k — ko).
Thus in this range only the non-induced slice cells contribute.

The only even dimensional slice cells which are not induced are those of the form
St We are therefore studying the groups

TS HZ A S A StPe
with 7 </ +k and k,¢ > 0.
Lemma 9.1. For k., >0 and j <+ k the group
TS HZ A S A StPe

is given by
0 if (j—4) <0 or(j—12) is odd
mf HL A SM N S%e = §7/2 - {afal ™ ug}  if (j =€) =2m >0 and £ >0
Loy - {usy} if(j—€)=2m >0 and £ =0.

Proof: This computation reduces to the one described in Example .16l To see
this, write
Ska’ A SlpG _ S(k+l)a’ A SE A SE(PG*Grfl)7
and consider the map

(9.2) ab_, 7S HLAS*TO7 NS — 7P HZ A % A S0

given by multiplication by afjfg. When ¢ = 0 this map it is an isomorphism. When
¢ > 0, the space S“Pa=7=1) has the structure of a G-CW complex with one 0-cell
and all other G-cells of positive dimension and induced from proper subgroups.
Smashing with S®**9 and using the fact that the restriction of ¢ to every proper
subgroup of G is trivial, one finds that S¥* A §¢ is obtained from S*+07 A S¢
by attaching induced G-cells of dimension greater than (k + 2¢). This implies that
the map afjfg is an isomorphism for j < k4 2¢, and so certainly for j < k + ¢ since
¢ > 0. Thus in the range of interest, multiplication by afF
the computation reduces to the evaluation of

rSHZ A SETO7 A S
These groups were described in Example 3.16 (I

» is isomorphism, and
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To complete the description of the Es-term of the RO(G)-graded slice spectral
sequence in this range we need to identify the summand of non-induced slices of
MU, From the associative algebra equivalence

\/ PEMUD) ~ HZ A SOG o, ]
keZ

this is equivalent to identifying the summand of non-induced slice cells in the twisted
monoid ring

SO[G'fl,...].

Since the smash product of an induced spectrum with any spectrum is induced, we
can do this by identifying the summand of non-induced slice cells in each

SYIG - 7]

and smashing them together.
Take the generating inclusion

70 5% — SO,
apply ]\]g2 to obtain
N7;: 89 — SO1G - 7],
and extend it to an associative algebra map
(9.3) SO[N7;] — S°[G - 7).

Lemma 9.4. The map [@3)) is the inclusion of the summand of non-induced slice
cells.

Proof: The distributive law expresses S°[G-7;] = N& S°[F;] as an indexed wedge
(see 22
slG-ml~ \/ s,
f:G/CQ ‘)No

and Vy = Y / 2 v f(v")pc,. We now decompose the right hand side into an ordinary
wedge over the G-orbits. Since an indexed wedge over a G-orbit is induced from
the stabilizer of any element of the orbit, the summand of non-induced slice cells
consists of those f which are constant. If f : G/Cs is the constant function with
value n, then V¢ = npg, so the summand of non-induced slice cells is

\/ s,

The result follows easily from this. O
Smashing these together gives
Corollary 9.5. The associative algebra map
SNy, ...] = S°G - 71,.. ]

is the inclusion of the summand of non-induced slice cells.
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To put this all together, consider the Z x RO(G)-graded ring
Z(Q) [a/u fi7 U]/(2(I, 2fl)

with
lal = (1,1 - )
|fil = (i(g — 1), ig)
lu] = (0,2 — 20).
Define a map
(9.6) Zyla, fi,u]/(20,2f;) = D E5*
5,k>0
t€*7ka'

by
fir alef- € Ei(g_l)’ig = wiGPf;’MU((G»
ar a, € E1 1=o _ ngP(?OMU((G»

and by sending u to the element u € Eg’2_20 described at the beginning of this
section. The combination of Lemmas and gives

Proposition 9.7. The map
(9.8) Zegyla, fi,u]/(2a,2f;) — EB B3t

$,k>0
t€*7ka'

is an isomorphism in the range
s 2 (9=t —s) — (k — ko)).
O
We now turn to the differentials. By construction, the f; are the representatives
at the Es-term of the slice spectral sequence of the elements defined in Defini-
tion 5T (and also called f;). They are therefore permanent cycles. Similarly, the
element a is the representative of a, and also a permanent cycle. This leaves the
powers of u. The case G = C of the following result appears in unpublished work
of Araki and in Hu-Kriz [33].
Theorem 9.9 (Slice Differentials Theorem). In the slice spectral sequence for
7GMUCED the differentials diu2kf1 are zero fori <r =1+ (2F — 1)g, and
2k71 2k
dru =a f2k71'
Remark 9.10. It follows from Proposition[0.7] that what lies on the “vanishing line”
s=(g-1)(t—s) +ko)+k
is the algebra
Zayla, fi]/(2a,2f;).
In Proposition [5.50] it was shown that the kernel of the map
Zioylao, fil/(2a,2f;) — 7S MU - 76@ MU = 7, MO[aE]

is the ideal (2, f1, f3, f7,...). The only possible non-trivial differentials into the
vanishing line must therefore land in this ideal.
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For the proof of Theorem the reader may find it helpful to consult Figure @

Proof of Theorem [2.9: We establish the differential by induction on k. Assume
the result for k" < k. Then what’s left in the range s > (¢ — 1)(t — s — k) after the
differentials assumed by induction is the sum of two modules over Z)[fi]/(2f:).

One is generated by a2" and is free over the quotient ring

Z)2[fi)/(f1, f3y -y far—1_1).

The other is generated by u2""". Since the differential must take its value in the
ideal (2,a, f1, f3,...), the next (and only) possible differential on u?" ™" is the one
asserted in the theorem. So all we need do is show that the classes u2* " do not
survive the spectral sequence. For this it suffices to do so after inverting a. Consider
the map
a;'mE MU = o 7CHZ ).

We know the Z-graded homotopy groups of both sides, since they can be identified
with the homotopy groups of the geometric fixed point spectrum. If w7 s a

_9ok ok—1 ., .
permanent cycle, then the class a™* u is as well, and represents a class with
non-zero image in 7¢®%H Zzy- This contradicts Proposition (Il

Remark 9.11. After inverting a,, the differentials described in Theorem [@.9describe
completely the RO(G)-graded slice spectral sequence. The spectral sequence starts
from

Z/2[f17 ailv U’]
The class u2" ' hits a unit multiple of for_, and so the F-term is
Z/2(fivi # 28 = 1][a™'] = MO.[a™]

which we know to be the correct answer since ¢ MU(S) = MO. This also shows
that the class u2 ' is a permanent cycle modulo (7ox_q). This fact corresponds to
the main computation in the proof of Theorem [ (which, of course we used in the
above proof). The logic can be reversed, and in [33] the results are established in
the reverse order (for the group G = Cs).

Write
0 = Nigi_, € W(sz_l)pGMU((G»,
and note that with this notation
Jar_1 = G%k_lﬁk-
In the proof of the corollary below we will make use of the identity
ok+

_ 1= _ k—
(9.12) fort1_10 = ap 10;9_;,_10;9 = fgk_la% Ok41-

The map 3, : S@* ~Dre — MUGD is represented at the Es-term of the RO(G)-

graded slice spectral sequence by a map S -Npc P((Qz::ll);MU((G» which we

will also call 9. Multiplying, this defines elements 6ku2k in the Fs-term of the
RO(G)-graded slice spectral sequence.

Corollary 9.13. In the RO(G)-graded slice spectral sequence for MU | the class
wu? s a permanent cycle.
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Proof: Write
r=1+ (21 —1)g.

Theorem [0.0 implies that differentials d;(dxu?") = dpd; (u?") are zero for i < r, and
— k — k41 k+1 k—
dT(DkUQ )= DkaQ fort1_1 = a? fgk_la% 0k+1,

the second equality coming from ([@.I12) above. But from the earlier differential
dr/u2k71 = azkfzk_l
where 7' =1+ (2¥ — 1)g < r, we also have

k— k41

2k71 Qk 2 2 2k_
dr(u a” a; Vt1) =a for_1a5 Vg1

so that in fact dT(ﬁkqu) = 0. The target of the remaining differentials work out
to be in a region of the spectral sequence which is already zero at the Fs-term. So
once we check this, the proof is complete.

To check the claim about the vanishing region first note that with our conven-
tions, differential d;;1 of the RO(G)-graded slice spectral sequence maps a sub-
quotient of

T¢ Prx
to a sub-quotient of
G n-+1
7Tmbflf)n-l-i X.
The class in question starts out at the Fs-term as
k
6’“u2k < 7Tg@(2720)+(2’“fl)po P((22k :11)).5MU((G))

so we are interested in the groups

G (2" =1)g+i G
7T2k(272g)+(2k71)p071P(2k_1)gg+i MU(( ))

or, equivalently

Wgc+1,1 (S2k+lg A S—(zk_l)pc A P((;::ll))(f:;MU((G»)

with i +1 > r = 1 + (2¥*! — 1)g. To simplify the notation, write

_ a—(2F—1 (2" —1)g+i G
X; =85 ( e /\P(2k—1)§+iMU(( ),

so that the group we are interested in is
9.14 7S (82T AX).
2 1
Now
X; > .
so Proposition [£.40] implies that
for j < |i/g]. Since 52" g (—1)-connected this means that if i > 2¥T1g the

group (@.I4) is trivial. The remaining values of i are strictly between (2¥+1 — 1)g

and (2¥+1)g, and hence not divisible by g. But since MU (©) is pure, when 1 is not
k .

divisible by g the spectrum P((sz :f;;:;M U() is induced from a proper subgroup

of G, hence so is X;. There is therefore an equivalence

§2 A X~ 82 A X,
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and so

2k+1a, 2k+1

7T§c+1_1 (S A\ Xl) = 7T2Ci+1_1(5 A XZ) =0
since X; > 0. O

9.2. Periodicity theorems. We now turn to our main periodicity theorem. As
will be apparent to the reader, the technique can be used to get a much more
general result. We have chosen to focus on a case which contains what is needed
for the proof of Theorem [Tl and yet can be stated for general G = Can.

Our motivating example is the spectrum Kpg of “real” K-theory [6]. Multi-
plication by the real Bott class 71 € m,, Kg is an isomorphism, giving Kr an 5°2-
periodicity. On the other hand, the representation 4p, admits a Spin structure, and
the construction of the K O-orientation of Spin bundles leads to a “Thom” class
u € 7T802K]R A S%2. This class is represented at the Ey-term of the slice spectral
sequence by u4,,. Multiplication by 7{u is then an equivariant map S8 A Kg — Kg
whose underlying map of non-equivariant spectra is an equivalence. It therefore
gives an equivalence S8 A Kﬂg@ ~ Kﬂg@. Since the map KO — Kﬂg@ is an equiv-
alence, this gives the 8-fold periodicity of KO.

In our situation we begin with an equivariant commutative ring R, a represen-
tation V of G, and an element D € 7T€R. We manually create a spectrum with
SV -periodicity by working with the homotopy colimit, D~'R, of the sequence

RESVARE S AR ...

The unit inclusion
S°—D7'R
gives a map
HZ=P)S° — PID'R

and hence defines, for every representation W of G, elements

uw € Taimw-w Py R = ES’dimW‘W
in the Ep-term of the RO(G)-graded slice spectral sequence for 7¢D~'R. We
will show, under certain hypotheses on D, that there is an integer £ > 0 with
the property that uzy is a permanent cycle. Let u € 7¥D~'R be any element
representing ugy. Then the equivariant map

. k
SgkdimV A p=1p U oV A p-1p 27, p-1p

induces an equivalence of underlying, non-equivariant spectra, and hence an equiv-
alence of homotopy fixed point spectra

($%4mV A DTIR)" & (DT'R)".

This establishes a periodicity theorem for the homotopy fixed point spectrum
(D7IR)hC,

The exposition is cleanest when one exploits multiplicative properties of the
spectrum D' R. There are some easy general things to say at first. The spectrum
D7 'R is certainly an R-module, and inherits a homotopy commutative multipli-
cation (over R) from R. The technique of [20] §VIII.4] can be used to show that
the non-equivariant spectrum underlying D! R has a unique commutative algebra
structure for which the map i§R — i D~ 'R is a map of commutative rings.
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With an additional assumption on D, one can go further. Let H C G be a
subgroup, and suppose that there is an m > 0 for which the norm NE (zj‘qD) divides
D™, Write D™ = D’ - Ng (i*HD), and to keep the notation compact abbreviate
N§i (i3;D) to NGD. Then there is a commutative diagram

N (D) N (D)

NSR NG(SV AR) NG (S2V AR)---

]l% N (D) N (D)

SV'AR i S2V'AR...

1 lD’ lD/Q

D §—mV AR DT g-2mVAR...

R

in which V' = indg V. Passing to the colimit gives a map
N§it;(D™'R) - D™'R
extending the iterated multiplication. This allows one to form norms of elements
in 7 D71R as if D™'R were an equivariant commutative ring.
A necessary condition for D™ R to actually be an equivariant commutative ring,

is that for every H C G the norm N§i}D divides a power of D. In fact the
condition is also sufficient. The proof of the result below is described in [27].

Proposition 9.15. Let R be an equivariant commutative ring and D € 79 R. If D
has the property that for every H C G, the element Ngi*HD divides a power of D,
then the spectrum D™'R has a unique equivariant commutative algebra structure
for which the map R — D™'R is a map of commutative rings. ([l

We will not make use of Proposition[@.15] as the ad hoc formation of norms from
the non-trivial subgroups of G is sufficient for our purpose.

Suppose that t € RO(G) and u € 72 D~1R is represented at the Es-term of
the RO(H)-graded slice spectral sequence by the image of v/ € 7! HZ under the
map 7 HZ — mf P)D7'R induced by the unit. We then have an H-equivariant
commutative diagram

St

D 'R<— P D'R— > P)D'R<~——HZ.

The maps in the bottom row are maps of homotopy commutative ring spectra. Since
the formation of slice sections commutes with filtered colimits, if N§D divides a
power of D then the spectra along the bottom row also come equipped with maps
N§(—) — (—) extending the iterated multiplication, and compatible with the
maps between them. This means we may apply the norm to the whole diagram to
produce

gind§ ¢

D'R<—P D 'R——~ P(?D_lR ~— HZ.
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showing that N§u' is a permanent cycle representing the class NGu € TindG «D71R.

We will take R to be the spectrum MU, In order to specify the element
D we need to consider all of the spectra MU for H ¢ G, and we’ll need to
distinguish some of the important elements of the homotopy groups we’ve specified.
We use (B to map

I U)o H Q)
and make all of our computations in 72 MU(E), Let
P en2 MUUD ¢ 702 MU(S)
be the element defined in §5.4.2 and
ot = NE (P _y) € moi_yy,, MU,

Finally, in addition to g = |G| we will write h = |H| for H C G.

Theorem 9.16. Let D € Wg)GMU((G» be any class having the property that for
every nontrivial H C G, the element Ngi}ID divides a power of D, and whose

(©) 4s divisible by 2, 9/h" The class ugz/; is a permanent cycle in

the RO(G)-graded slice spectral sequence for 7¢ D~ MU,

image in T MU

29/h
20y

Proof: By Corollary[@.13] for each nontrivial subgroup H C G, the class 0, 9/l

is a permanent cycle in the RO(H)-graded slice spectral sequence for 7 MU (%),

Since i3, D is divisible by 55/}1, the class u%i/hh is then a permanent cycle in the

RO(G)-graded slice spectral sequence for 77 D=*MU(), From this inventory of
29/2

permanent cycles, and the ad hoc norm described above, we will show that u3,, is
also a permanent cycle.

To begin, note that if H C G has index 2, then indg 1=1+o0¢g. It follows from
Lemma [3.13] that

_..9/2 \rG
U2pe = uzaGNHUZpH-

kh/2
1L2pc - ]TI ]VQ¥ 20}{ .
0£HCG

When k = 29/2 we have kh/2 = 29/2h/2 > 29/" for every h # 1 dividing g, so every
term in the product is a permanent cycle (the inequality is an equality only when
h = 2). This completes the proof. O

Write AY = g, 0§

This leads to the formula

Corollary 9.17. In the situation of Theorem [9.10 the class

g/2 /2 — g/2
(9.18) (A9 =3, (07)*?

is a permanent cycle. Any class in 7TG 2g/2D_1MU((G)) represented by (QI8) re-
stricts to a unit in 7D~ MU(E)

Proof: The fact that (O.I8)) is a permanent cycle is immediate from Theorem .16l
Since the slice tower refines the Postnikov tower, the restriction of an element in the
RO(G)-graded group n¢D*MU(E) to 7 D-'MU(S) is determined entirely by
any representative at the Eo-term of the slice spectral sequence. Since uy, restricts



KERVAIRE INVARIANT ONE 99

to 1, the restriction of any representative of (@.I8) is equal to the restriction of
(5?)2'29/2, which is a unit since 3§ divides D. O
This gives
Theorem 9.19. With the notation of Theorem [O.106l if M is any equivariant
D YMU) -module, then multiplication by (AG)29/2 is a weak equivalence
$292"% 0 M
and hence an isomorphism
(AG)QQ/2 : e MME 7T*+2,g,29/2MhG.
O

For example, in the case of G = Cy the groups m, (D~ MU(EN)'E are periodic
with period 2 * 2% 2 = 8 and for G = C, there is a periodicity of 2 x 4 x 22 = 32.
For G = Cg we have a period of 2 x 8 x 24 = 256.

Remark 9.20. Suppose that D € 7¢R is of the form
D = N¢ z.
Then for Co, C H C G one has
N§i%D = D9/",
Indeed,
N§iyD = NGiy NS v = NG (NE 9/" = NG x9/h = DI/".
Since each 91 has this form, any class D which is a product of NG0# has the
property required for Theorems and
Corollary 9.21 (The Periodicity Theorem). Let G = Cs, and
D = (N&:0g?) (NE5*) (07%) € nfy,, MU,
Then multiplication by (A%)16 gives an isomorphism
T (DTIMUNRG 5 7 o (D™ IMU GG,
O

Remark 9.22. For a periodicity theorem, one gets a sufficient inventory of powers
of ugs, as permanent cycles as long as for each H, some 6;1 is inverted. This is
also enough to prove the Homotopy Fixed Point Theorem. Our particular choice

of 55/ ,, is dictated by the requirements of the Detection Theorem.

10. THE HomoTOPY FIXED POINT THEOREM

Until now we haven’t had occasion to refer to the function G-spectrum of maps
from a pointed G-space S to a G-spectrum X, which exists as part of the com-
pleteness of 8¢ as a topological G-category. We will write X for this object, so
that

892, X%) =8%(Z S, X).

Definition 10.1. A G-spectrum X is cofree if the map
(10.2) X — XEC+

adjoint to the projection map EGL A X — X is a weak equivalence.
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If X is cofree then the map
WSX — WEXEG+ = . X"

is an isomorphism. The main result of this section (Theorem [T0.8]) asserts that any
module over D~*MU(E) is cofree.

The map (I0.2) is an equivalence of underlying spectra, and hence becomes
an equivalence after smashing with any G-CW spectrum built entirely out of free
G-cells. In particular, the map

(10.3) EGy NX 5 EGy A (XECG+)
is an equivariant equivalence. One exploits this, as in [12], by making use of the
pointed G-space EG defined by the cofibration sequence
(10.4) EG, — S — EG.
Lemma 10.5. For a G-spectrum X, the following are equivalent:
i) For all non-trivial H C G, the spectrum ® X is contractible.
il) The map EG4 A X — X is a weak equivalence.
iii) The G-spectrum EG A X is contractible.

Proof: The equivalence of the second and third conditions is immediate from the
cofibration sequence defining EG. Since EG. is built from free G-cells, condition
ii) implies condition i). For H C G non-trivial, we have

T(EG A X) = dH(EG) AT (X) ~ SO A dH(X).
Since the non-equivariant spectrum underlying EG is contractible, condition i)

therefore implies that ®H(EG A X) is contractible for all H C G. But this means
that FG A X is contractible (Proposition [Z50). O

Corollary 10.6. If R is an equivariant ring spectrum satisfying the equivalent
conditions of Lemma 1.0 then any module over R is cofree.

The condition of Corollary requires R to be an equivariant ring spectrum
in the weakest possible sense, namely that R possesses a unital multiplication (not
necessarily associative) in ho8%. Similarly, the “module” condition is also one
taking place in the homotopy category.

Proof: Let M be an R-module. Consider the diagram

(10.7) EG, ANM M EGAM

| .

EGy AN MFG+ — = MPG+ — > EG A MPC+

obtained by smashing M — MFP%+ with the sequence (I0.4). The fact that R
satisfies the condition i) of Lemma implies that any R-module M’ does since
®H (M) is a retract of ®H (R A M) ~ ®7(R) A ®H (M). Thus both M and MFCG+
satisfy the conditions of Lemma [[05 and the terms on the right in (I07) are
contractible. The left vertical arrow is the weak equivalence (I0.3). It follows that
the middle vertical arrow is a weak equivalence. (I
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Turning to our main purpose, we now consider a situation similar to the one in

§9.2] and fix a class
D enf, MU

with the property that for all non-trivial H C G the restriction of D to 7 MU ()
is divisible by 9 for some k which may depend on H.

Theorem 10.8 (Homotopy Fixed Point Theorem). Any module M over D~ MU ()
is cofree, and so

7M — 7, M

is an isomorphism.

Proof: We will show that D~'MU(%) satisfies condition i) of Lemma 0.5 The
result will then follow from Corollary Suppose that H C G is non-trivial.
Then

(DT MU ~ o (D)o (MU(D),
But D is divisible by 2, and so ®(D) is divisible by
(I)H(ékH) = (I)H(Ngz (772%—1))?/ = (1)02(72%—1)
which is zero by Proposition [5.501 This completes the proof. O

Corollary 10.9. In the situation of Corollary [9.21] the map “multiplication by
AC7 gives an isomorphism

DT MU 5 78, (DT MU,

Proof: In the diagram

7G (DT MUE)) 79 s (DLMU(O))

| |

T (DTIMUENG o G (DI MUED)RE

the vertical maps are isomorphisms by Theorem [I0.8] and the bottom horizontal
map is an isomorphism by Corollary [0.21] (|

11. THE DETECTION THEOREM

11.1. Outline of the proof. We now turn to the proof of the Detection Theorem.
For the convenience of the reader, we restate the result.

Theorem 11.1 (The Detection Theorem). If 6; € mg+1_5S° is an element of
Kervaire invariant 1, and j > 2, then the image of 0; in myi+1_58) is non-zero.

As explained in the introduction, the Detection Theorem is a consequence of a
purely algebraic result.
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Theorem 11.2 (Algebraic Detection Theorem). If
9.9J+1
T € ExtA}[U*(MU) (MU, MU,)
is any element mapping to
2 e Bxt3? " (2/2,2/2)
in the Ea-term of the classical Adams spectral sequence, and j > 2, then the image
of © in H?(Cs; mgi+1Q0) is nonzero.

We will prove the Algebraic Detection Theorem by establishing the following.

Proposition 11.3. For j > 2, there is a map
(11.4) H?(Cg; mpi+1Q0) — Q/Z

making the diagram

(11.5) Ext?% 0 (MU., MU,) —> H?(Cs;mp541Q0)

|

j+1
12]+

Ext}” (2/2,2)2) ——— Q/Z
commute.

In (IT3), the bottom row is the Kervaire invariant homomorphism sending h?
to 1/2. Since the vector space
ExtZ? " (2,/2,2/2)
has dimension 1, with basis 25 (Adams [2, Theorem 2.5.1]), the Kervaire invariant
homomorphism is completely specified by this property, and is a monomorphism. In
plain language, Proposition[IT.3lasserts that the Kervaire invariant homomorphism,
thought of as a map

Bt} o (MU, MU.) = Q/2,
factors through H?(Cs, m9i+1€0). This directly implies Theorem

Remark 11.6. All three of these results (Theorems [T.0] and [T.2] and Proposi-
tion [[T3)) remain true without the restriction j > 2. The other cases j < 2 require
separate arguments, and are not needed for the proof of Theorem [T}, so we do not
include them.

We now describe the proof of Proposition [[1.3] deferring the details to later
subsections. In order to construct the map (IT.4) we use of the theory of formal
A-modules to construct a Cg-equivariant ring homomorphism from 7¥{g to much
smaller ring. Let A = Z3[(] be the 2-adic completion of the ring obtained by
adjoining an 8" root of unity to the ring of integers, and F the Lubin-Tate formal
A-module over A associated to any choice of power series f(z) € Afz] satisfying

(sce L)
f(z) =7z mod (z?)

f(z)=2® mod (m),
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with m = { — 1. By construction, there is an isomorphism

A Zs End(Fy)

a — [a](x)
satisfying [a]’(0) = a. Using the map ~ ~ ¢ to identify the group of 8*" roots of
unity with Cy gives an action of Cs on Fy extending the canonical action of Cy by

formal multiplication by —1. As described in §I1.3.4] below, this data is classify by
a Cg-equivariant map of graded rings

(11.7) meMU(©s) 5 A,

in which A, = A[u™!], |u| = 2, and in which the action of the chosen generator
~v € Cy is the A-algebra map sending u to (u. The first thing to check about this
map is

Proposition 11.8. The image of D € ngpMU((CS)) under

T10, MUCS) 5 7 MU(CS) 5 Ay
is a unit, hence (ILT) factors uniquely through a Cs-equivariant map
(11.9) Qo — A..

Let
X : H2(Cg; Tyi+1Q0) = H2(Cs; Agj+r)
be the map of cohomology groups induced by ([[T.9). Using x form the rightmost
arrow in the diagram below

(11.10) Ext?2) o (MU., MU,) — H?(Cs;mi4190)

|

Bxt’? " (Fy, Fp) = H*(Cs; Agir)

3

X

For the bottom arrow, note that both Extiiw+1 (Z/2,7./2) and H'(Cs; Agi+1 /(7))
are cyclic of order 2, and hence isomorphic by a unique isomorphism. The bot-
tom arrow in ([IT.I0) is defined to be the map corresponding to the connecting
homomorphism

H1(08; A2j+1/(ﬂ')) — HQ(Cg; A2j+1)

under this isomorphism. For j7 > 2, the action of v on w* is trivial, and so
H?(Cs, Agi+1) ~ Agi+1/(8), and one easily checks that this map is a monomor-
phism.

The main point is the commutativity of the diagram. Once that is established,
the map ([II4) can be taken to be the composition of the right vertical arrow
in (ITI0) with any map (dashed arrow)

2J

HQ(CS; A2j+1)

!

H'(Cs; Ay /(7)) —ns Q/Z.
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factoring the inclusion through the connecting homomorphism.
Checking the commutativity of (IT.I0) involves some technical details about the

groups Ext?\f;r]lWU(M U., MU,). The following lemma can be read off from [71]
Theorem 1.5] (see §I1.0)).

Lemma 11.11. For j > 1, the map

Extb?" o (MU., MU./(2)) — Ext22 ., (MU., MU,)
is surjective after localizing at 2. O

Lemma [[T.1T] enables us to replace the upper left corner of (II.I0) with the
j+1
group Ext}\fIZMU (MU,,MU.,/(2)), and verify the commutativity of

(11.12) Exty2 o (MU., MU, /(2)) — H?(Cy; 73541 Q0)

| |

Bxt’? " (2/2,2,/2) ——— H?(Cy; Agis).

3o

X

The key technical point in doing this is
Proposition 11.13. The maps
Ext}2 0 (MU, MU, /(2)) = Ext3? " (2/2,2/2)
Exth? " (MU., MU, /(2)) — H'(Cs; Ayr /(1))
are surjective and have the same kernel.

Proposition gives the commutativity of the left square in
Exthiy o (MU, MU./(2)) = H*(Coim3s000/(2) — H?(Csi 3 00)

| |

Bxt}? " (2/2,2)2) ——= H'(Cs; Agir1 /(1)) > H*(Cs; Agyir)

The commutativity of the right hand square follows from the naturality of the con-
necting homomorphism. The outer square is (ITI2). This completes our summary
of the proof of the Proposition [T.3 and the Detection Theorem.

Remark 11.14. The argument of this section can be easily adapted to prove a
detection theorem for MU(C2m) a5 long as n > 3. The result does not hold in the
cases n < 3. What fails is the assertion in Proposition[[T.13 that the two maps have
the same kernel. This assertion makes essential use of the fact that the reduction
of the Lubin-Tate group over A/(m) has height greater than 2.

The remainder of this section is devoted to filling in the details of this outline.
We begin in §JIT.2 by recalling the Lubin-Tate formal A-module [45] and some sim-
ple but useful results relating the power series [a](z) to the m-adic valuation of a.
We turn in §IT.3] to the ideas connecting the Adams-Novikov Es-term to group
cohomology. In §IT.3.4] we describe the “conjugation action” and prove Proposi-
tion [T.28 which describes the functor co-represented by 7*MU(E) on the category
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of G-equivariant graded commutative rings. Setting all of this up brings us as far
as the statement of Proposition [[1.8 which is proved in §I1.4l Proposition I1.13is
proved in §IT.5 The proof relies heavily on the computations in [56] and [71], in
the form of Proposition I1.34 An addendum to this section discusses how these
computations are made, and how they lead to Lemmas[IT.11land Proposition ITT.34l

The reader may also wish to consult [57] for another presentation of these ideas.

11.2. Formal A-modules and the Lubin-Tate group. Let A and R be com-
mutative rings, and e : A — R a ring homomorphism. A (1-dimensional) formal
A-module over R is a formal group law F' over R, equipped with a ring homomor-
phism

A — End(F)
a — [a](x)

with the property that [a)’(0) = e(a). In the case of interest to us, e is a monomor-
phism (in fact the identity map), and we will not distinguish in notation between
a and e(a).

Formal A-modules were introduced by Lubin and Tate in their work [45] on local
class field theory. For A the ring of integers in a local field with finite residue field,
they constructed a formal A-module over A itself, unique up to isomorphism. Their
construction starts with a choice of uniformizer m € A and a power series

f(z) € Allz]

intended to be the endomorphism [r](z). Writing ¢ for the order of the residue
field, the power series f is required to satisfy

f(z) =7z mod (2?)
f(z) =27 mod (7).
For example, f(x) could be taken to be mz + 9. Lubin and Tate showed that such
an f determines a formal A-module in which the formal sum is the unique power
series Fy(x,y) € Afz] satisfying
Fr(z,y)=o+y mod (z,y)°

Fy(f(2), f(y)) = f(Fy(x,9)),

and for a € A the power series [a](x) is the unique power series satisfying
[a] () mod ()?
[a](f () ([ ().

In particular, one does indeed have [7](x) = f(z).
Continuing with the Lubin-Tate formal A-module, for a € A write

[a)(x) = agz® 4+ -~ mod (7)

with 0 # a4 € A/(7). One easily checks that the function v(a) = log,(d) defines
a valuation on A. The the fact that [r](z) = f(z) implies that v is the unique
valuation for which v(7) = 1.

We are interested in the case

A = Zs][(],
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with 7 = ¢ — 1, and any fixed choice of f(z). Since v(¢ —1) =1, ¥(¢? —1) =2 and
v(¢* —1) = 4, and since any unit in A is congruent to 1 modulo 7, this means that
modulo ()

[¢C—1)(z)=2%+---
2 —1)(z)=a" +---
[<4—1]($)Ex16+ -
and so
@)= g o+
=g4+z2+---
(11.15) [CQ](I)Ex;;x‘w...
| =g+zt+--.
[<4]($)EI;;:E16+...
=g +g0 4.,

These congruences play an important role in the proof of Proposition 1.8

Remark 11.16. The formulae (IT.I3) are independent of the choice of f(z). In
particular they hold for a choice of f leading to a 2-typical formal group law.

11.3. Group actions and homogeneous formal group laws. We now turn to
the relationship between group actions on formal group laws and group cohomology.
Our eventual goal involves some explicit formulas, so we begin with a relatively
detailed summary.

11.3.1. Homogeneous formal group laws. Suppose that R, = @ R, is a graded
commutative ring. By Quillen’s work [60} [3] the set of graded ring homomorphisms

MU, — R,

is in one to one correspondence with the set of formal group laws F over R which
are homogeneous of degree —2 in the sense that the formal sum

F(z,y)
is homogeneous of degree —2, when x and y are given degree —2. In terms of the
power series
Flz,y)=x+y+ Z aijz'y’
this means that a;; has degree 2(i + j — 1).

The graded ring MU, MU = 71, MU A MU co-represents the functor associating
to a graded ring R, the set of pairs (Fy, F») of homogeneous formal group laws
and an isomorphism g : F; — F5 between them which is strict in the sense that it
is given by a power series of the form

l9](2) = = + O(2?).

More generally, the ring 7, MU (n-fold smash product) co-represents functor
associating to a graded ring R, the set of chains

Fr—---—> F,
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of homogeneous formal group laws and strict isomorphisms over R. The standard
convention is that the homogeneous formal group law F; is the one classified by the
map

T MU = 7, MU N --- N MU

induced from the inclusion of the i*® factor
SON- AMUAN---NS = MUAN---ANMU.

Taken together, the pair (MU,, MU.MU) forms the Hopf algebroid (see, for
example, [64] Definition A1.1.1]), which co-represents the functor associating to a
graded commutative ring R, the groupoid of homogeneous formal group laws over
R, and strict isomorphisms.

11.3.2. Group actions. Let M pq be the category of pairs (R, F'), with F' a formal
group law over a commutative ring R, and in which a morphism

(fudj) : (RluFl) - (R27F2)
consists of a ring homomorphism f : Ry — R», and an isomorphism of formal group
laws ¢ : Fy =, f*Fi. Morphisms can also be described as ring homomorphisms

h: Ry[[z] = Re[x]
h(r) = f(r)
h(z) = ¥(z)
which are compatible with the formal sum in the sense that the diagram

R[] —— Ry[x]

Fll lF

Ry [[:E,y]] —h> Ry [[Ia y]]

commutes. Let M}}G be the analogous category of homogeneous formal group laws
over graded rings, and strict isomorphisms.
The categories M p¢g and M}}G are related by the strictification functor

MFG — M%G
(R, F) = (R., F").

The ring R. = RJu] is obtained from R by adjoining a polynomial variable u with
|u| = 2, and F" is the unique formal power series satisfying

(11.17) uF"(z,y) = F(uz,uzx).
The strictification of a map (f,v) : (R, F) — (R, F’) is the pair
(F",0") (R F) = (R (F)")

with f(u) = ¢’(0)u and ¥" (x) the unique power series satisfying u " (x) = ¥ (uz).
A (left) action of a group G on a pair (R, F) € Mpg is a map of monoids

G — MFG((Ra F)a (Rv F))v
and a strict (left) action of a group on (R., F) € M is a map
G = Mbg((Ra, F), (R., F)).
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The strictification functor converts a group action into a strict one.
A left action of G on (R, F') corresponds to a left action of G on R[z]. We will
use the notation

r—gr reR
z = [g](x)

for this action.

Ezxample 11.18. Suppose that E is a complex oriented, homotopy commutative ring
spectrum, and that a finite group G acts on E by homotopy multiplicative maps.
Let F' denote the corresponding homogeneous formal group law over m,E. Then
the action of G on E*(CP) gives a strict action of G on (7. E, F).

Ezample 11.19. The group Cs acts on any (R, F') € Mpg as the identity map on
R and formal multiplication by (—1) on F.

11.3.3. Group cohomology and the Adams-Novikov spectral sequence. When (R, F')
is a homogeneous formal group law equipped with a strict action of a group G, there
is a map

Ext}y o (MU, MU,) — H*(G; Ry).
Conceptually, it arises from the inclusion functor of the subcategory of M’};G whose
only object is (Rx«, F') and whose monoid of self maps is given by the action of G.

For the purposes of explicit computation, it is conveniently described as derived
from a map of Hopf algebroids

(11.20) (MU,, MU,MU) — (R.,C(G; R.)),

in which C(G; R,) is the ring of (set-theoretic) functions from G to R.. For the
definition of Hopf algebroid, the reader is referred to [64, Definition A1.1.1].
The Hopf algebroid (R, C(G; R,)) is the one expressing the group action of G
on R,. The “source” map
1L : R« = C(G; Ry)

sends r € R, to the constant function with value r, and the “target” map ng :
R. — C(G; R,) is the transpose of the action mapping. It associates to r € R, the
function sending g € G to g - r. The coproduct

A : C(G;R.) = C(G;R.) ® C(G; Ry)
R,

is the composition of the map
C(G;R.) — C(G x G,Ry)
dual to multiplication in G, and the isomorphism

C(G;R,) ® C(G;R,) = C(G x G, R,)
R,

given by setting

(f1 ® f2)(91,92) = fi(g1) - g1 f2(g2)-
The map (IIL20) consists of the map MU, — R, classifying the homogeneous
formal group law F, and the map MU, MU — C(G, R.), defined by declaring the

composition
evygy

MUMU — C(G, R.) —> R.
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to be the map classifying the strict isomorphism
[9](x) : F — g*F.

When the G-action on (R, F) arises, as in Example [[T.18] from an action of G
on a complex oriented homotopy commutative ring spectrum F, the map ([L.20)
is the Fs-term of a map of spectral sequences abutting to the homomorphism
7.8 — m.E". We couldn’t quite find this result in the literature (though [14]
Proposition 6.7] is close). To see it, let

C*(G; E) = Map®(EG,, E)

be the cosimplicial spectrum of G-maps from the bar construction model for EG,
into . Thus

c(GE)=]]E
Gn

and Tot C*(G; E) is the homotopy fixed point spectrum E"“. The cosimplical ring

[n] = 7.C(G™, E) is the the nerve of the Hopf-algebroid (m.E,C(G,m.FE)) and

forms the cobar complex for calculating H*(G, . E). The homotopy fixed point

spectral sequence is the homotopy spectral sequence of this cosimplicial spectrum.
Choose a complex orientation for E, and for every n > 0 let

(11.21) MU®™) & C™(G; E) € ho$

be a representative of the unique homotopy class of homotopy multiplicative maps
whose restriction to the i*" smash factor of MUtV is the composition of the
complex orientation

MU — E =C°(G;E)

with the cosimplicial structure map C°(G; E) — C™(G; E) corresponding to the in-
clusion of the it-vertex of A[n]. The maps (TT.Z])) fit into a homotopy commutative
map of cosimplicial resolutions

11.22 S0 - MU —= MUAMU—=—=ZMUAMUAMU---
—

o] |

E'¢ — - CYGE) —= CY(G; E) —/—=C?*(G; E)--- .

If this were an actually commutative diagram, the desired spectral sequence would
be the one derived from the induced map of “Tot towers.” Even though it is only
homotopy commutative, the fact that the top row is an MU Adams resolution and
the spectra in the bottom row are complex oriented means that it can be still be
refined to a map of towers.

This result doesn’t quite seem to appear in the literature, though an assertion
along these lines is made in [54], pp 289-90], and the case in which MU is replaced by
E, is [T4, Proposition 6.2]. To spell out the details, we begin with some generalities
about the Tot tower of a cosimplical spectrum X°®. Let NX" be the iterated
mapping cone of the coface maps

d: X"t X" i=1,...,n.

The spectrum NX™ is a retract of X™ (it is split by the inclusion of the iterated
homotopy fiber of the co-degeneracy maps). By construction it depends, as a retract
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of X, functorially on X°®. The spectra VX" fit into a sequence
0 0
NX° 4 x4

which is a “complex” in the sense that the composition of any two maps is null
homotopic.

The homotopy spectral sequence of the cosimplicial spectrum X*® is derived from
the tower {Tot, X*}. For our purposes it is easier to work with the fibers of the
map from Tot X*. Write FX? = Tot X*, and define FX™ to be the homotopy fiber
of the map Tot X* — Tot,,_1 X°®. Then there is a functorial fibration sequence

(11.23) FX" 5 FX" ! 5 20Uy x 1),

Of course the homotopy spectral sequence can also be derived from the tower
{FX"}, for example by using it to reconstruct the Tot-tower.

To simplify the notation, write X® = MU®**! and Y* = C*(G; E) for the cosim-
plicial spectra occurring in the top and bottom rows of (I1.22). The complex
NX* is the standard MU-Adams resolution for S°, and in this case the fibration
sequence ([II.23) is equivalent to

FX" 5 FX" 1 5 MUAFX™ L

The consequence we need of this is the characterizing property of an Adams tower:
if R is any M U-module, then the connecting homomorphism

(11.24) [FX" R] — [ " 'NX", R]

is a monomorphism.
Our aim is to construct a map of towers

(11.25) {FX"} = {FY"}.

Suppose by induction we have produced a homotopy commutative diagram
FXxn-1 5 E_(n_l)NXn_l
Fyn—1 Ef(nfl)]\]}/nfl7

and choose any map F X" — FY™ making

yrNXnL FxX” FXn1
LNyl Fym Fyn—t

commute up to homotopy. We claim that the diagram
FX" ——=¥""NX"
FY" ——=»""NY™

also commutes up to homotopy. The claim completes the induction step, and

gives ([1.25).
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To verify the claim, consider

(11.26) yrNXnL FxX” YTPNX"
LNyl Fy™ NMINY” .

The outermost square commutes since it is a retract of a suspension of one of
the squares in (IL2Z). The spectrum X~ +DNY”™+1 admits the structure of an
MU-module since it is a retract of a suspension of C"*1(G; E) which is complex
orientable. Taking it for R in the monomorphism ([T24]) shows that the commu-
tativity of the outer square in (I1.20) implies the commutativity of the right hand
square. This verifies the claim.

11.3.4. The conjugation action. Applying the strictification functor to ExampleIT.19
one is led to the “conjugation action” of C5 on homogeneous formal group laws over
graded rings.

Let F' be a homogeneous formal group law over a graded commutative ring R,
and ¢ : R, — R, any ring homomorphism with the property that ¢ : Ry, — Raj,
the map given by multiplication by (—1)". The homogeneous formal group law
F¢:=c*F is given by

FC(Iay) = _F(_Ia _y)'
The power series
o(z) = —[-1]r(z)
has the property that c o ¢(x) = z and provides both a strict isomorphism F — F,
and its inverse F'© — F. These combine to give an action of C3 on (R., F') which
we call the conjugation action associated to ¢ : R, — R..

The map c is completely specified on the even degree elements in R, and in
general there are as many conjugation actions as there are ways of extending ¢ to
all of R,. In the examples of interest to us, R, will be evenly graded, and so there
is exactly one conjugation action.

Ezxample 11.27. If E is a real-oriented spectrum, then the underlying C5 action
on (iE)*[CP*] is the conjugation action. The case E = MUy is universal in
the sense that the map MU, — R, classifying a homogeneous formal group law is
equivariant for any choice of conjugation action.

We now generalize Example IT.271 Let G = Csn, and give i{MU() the real
orientation coming from the unit
MUy — it MU(@)

of the norm-restriction adjunction on equivariant commutative algebras (Exam-
ple £.6). Examples [T.I8 and [1.27 then equip (7*MU(S), F) with a G-action
extending the conjugation action of Co.

Proposition 11.28. The pair (w}jMU((G),F) equipped with its G-action is uni-
versal in the sense that map associating to a G-equivariant

(11.29) fomtMU@) 4 R,

the pair (Rx, f*F) with its induced G-action, is a bijection between the set of equi-
variant maps (L129) and the set of (R«, F') equipped with a G-action extending the
one on R, and the conjugation action of Cy C G.



112 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

Proof: Suppose that (R, F') is a homogeneous formal group law over a graded
ring, equipped with a G-action extending the conjugation action of C3. Choose a
generator v € G. This data is equivalent to an isomorphism

T = F

having the property that the composite of the chain of isomorphisms

Tg/2-1

Fyp 255 By o B R B
n= ()T
is the conjugation isomorphism c. The claim then follows from the decomposi-

tion (B.2)) and the description of m, MU A---A MU in terms of chains of composable
strict isomorphisms. O

11.4. The fundamental representation. As described in §IT.1] these ideas can
be used to construct a Cg-equivariant ring homomorphism from 7¥Qg to much
smaller ring. Let A = Z3[¢] be as in §I1] and Fy the Lubin-Tate formal A-module
over A associated to a power series series f(z) leading to a 2-typical formal group
law. Using ¢ to identify the group of 8*"-roots of unity with Cy, we get a Cy action
on (A, Fy). From this apply the strictification functor to get a strict action of Cs
on (A, F J’}) With an eye toward Proposition [[T.8] we invert the class u and re-
define A, to be Afu,u~!]. The underlying Cs-action is the conjugation action, so
Proposition provides a Cg-equivariant map

(11.30) MU 5 4,
classifying (A, F;‘) with its Cs-action.
Proposition 11.31. The image of D under
D € mo,MU(C) 5 7 MU(Ce) 5 Ay,
is a unit, hence (IL30Q) factors through a Cs-equivariant map
Qo — As.

Proof: We must show that the classes rlcs, TSC 4 and rlc52 all map to units in A,.

It suffices to show that they do so in A, /(7). By definition (§5.2.2) the image of r<
in Ay /(m) is the coefficient of 22 in the isomorphism of *y*FJ’} with the 2-typification
of F]? Since F' J’} is already 2-typical, this is just the coefficient of x2 in the power
series [(] P (2) in the homogeneous formal group law. By ([I.13)) this coefficient is

congruent to u modulo 7, hence a unit. Equation (IT.I5) similarly shows that 5%
maps to u3, and rlcg to u'® modulo (7). This completes the proof. (Il

11.5. Technical results. In this section we describe explicitly the maps
1,2i+1 9.07+1

Exth? 0 (MU, MU./(2)) — Ext¥?" (2/2,2,/2)

J+1
Extyjy (MU, MU, /(2)) — H'(Cs; Agje1 /(1))
occurring in the statement of Proposition [[T.I13] The results are Propositions [[1.30]
and [T.38 below. Combined with Lemma[IT.1T]and Proposition IT.34 they directly
imply Proposition [T.13l

(11.32)
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11.5.1. Preliminaries. We remind the reader that everything has been localized at

the prime p = 2. The 2-typification Fémv of the universal formal group law Fyniv

is classified by a map BP, — MU,. This map extends to an equivalence of Hopf
algebroids
(BP,, BP,BP) = (MU,, MU, MU),

giving an isomorphism
(11.33) Ext}p pp(BP., BP.) = Extyfy y o (MU., MU,).
Our proofs depend heavily on the computations in [56] and [71], which are stated

for BP. Because of the above isomorphism they apply equally well to MU.
In order to describe explicit computations, we fix the identification

BP*BP = Z(g)[vl,’UQ, cee ,tl,tz, .o ]
in which the v; are the Hazewinkel generators, and the elements ¢; € BP,BP are

the coefficients of the universal isomorphism

neF) L pQ @)

univ niv univ
3

;C>—>Z vy 2?2t

We will not distinguish in notation between the v; and ¢; in BP,BP, and their
images in MU, MU.

An important role in the proof of [1.3 is played by the element ¢;. Since any
coordinate z is 2-typical modulo 23, the class ¢; is also given by the coefficient of
the universal isomorphism of 7% Funiv With 7 Funiv

x»—>x+t1:172—|—~-~.

With the standard conventions this is the inverse of the universal strict isomorphism
over m, MU N MU, which goes from 1} Funiv t0 75 Funiv-

11.5.2. The Adams-Novikov 2-line. Let

1,2i+1 9.97+1

82 - Extyry s (MU, MU, /(2)) = Ext3fy v (MU, MU,) and
0y BxtSl (MU, MUL/(2,05%)) — Extyfy (MU, MU, /(2)

be the connecting homomorphisms associated to the short exact sequences of MU, MU
co-modules

0 — MU, 2 MU, — MU, /(2) — 0
0— MU,/2 = v MU, — MU, /(2,v5°) — 0.

Our description of the maps (I1.32]) relies on the following computation, whose
proof is discussed in JIT.61 We employ the standard “cobar construction” notation
for elements (see, for example, [64, Definition A1.2.11]).

Proposition 11.34 ([56[71]). Forj > 1, the Z/2-vector space Ext}\’fg;wU(MU*, MU./(2))
has a basis consisting of the elements,
v ), v} 28
and the image under d1 of the elements of the form
s2F ok 0.29+1 00
vy~ Jvi € Extyry pp (MU, MU/ (2,077)),
with s odd. (I
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We will also need

Lemma 11.35. For k > 2 the connecting homomorphisms d1 and 62 satisfy the
following congruences modulo the ideal (2,v3):

6 (v fuf) = o T B
521}%k [t1] =
521)%’c [t2] =

5o01 (v52" 02"y = ol TV 2" 2],

Proof: This is a straightforward (and long-known) computation using the struc-
ture formulae

nr(vi) = v1 + 2t
nr(ve) = v + vltf + v%tl mod 2.
The assertion about &; is easy to check. The structure formulae imply that ng(v?) =

v2 modulo 4, so one may work modulo (4, v?) when computing 5. The terms v2" [t1]

and U%k [t?] are already in this ideal, giving the first two assertions about d2. The
last makes use of the congruences

5 [t?k“] = [£2"1£2"] mod 2
nrvs = va' mod (4,v?).

Since s is odd and k > 1, (s — 1)2* is divisible by 4. This means that

s—1 k+1 s—1)2* k+1 s—1)2
oa(ey ) =08 T () = of TV B Y] mod (2,03).
This completes the proof. ([

11.5.3. The proof of Proposition[I1.13. Given Lemma[IT.11land Proposition[I1.34]
Proposition [1.13]is an immediate consequence of the two results below.

Proposition 11.36. For j > 1, the map
Exty? o (MU., MU,) — Ext3? " (2/2,2,/2).
is given by
2 71[ 1]
2 72[ ]
o(vs? /o) (s>1)
01 (v3 2 QJ 1)'—>h2

Proof: This follows directly from Lemma and the fact that the map from
MU,.MU to the dual Steenrod algebra given by

v; — 0
ti = x(&)*.
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Remark 11.37. The map from the Adams-Novikov Fs-term to the classical Adams
FEs>-term has been completely determined for s < 2 and all ¢t. For a comprehensive
discussion, the reader is referred to [64, Chapter 5].

We next turn to the second map in Proposition [T.I3 When j > 2 the action
of Cg on Ayj+1 is trivial, and the group H'(Cg; Agi+1 /(7)) is cyclic of order two,
generated by the cohomology class of the cocycle whose value on 7 is u?’. Let us
denote this class v.

Proposition 11.38. For j > 2, the map

J+1
Extyf v (MU, MU, /(2)) = H'(Cs; Agisr /(7).
is given by
2J 1[t1
2J 2[t

=
J =

o (w5 fu}) (s>1)
)=

5(2J1 2i—1

Proof: Let v be the valuation on A normalized so that v(7) = 1. Since v(2) = 4,
[2]F;z, () = 22+ mod T,

and v; and vy both map to zero in A, /(w). This gives the first line, and makes the
second a consequence of Lemma [[1.351 Lemma [I1.35 also gives the identity

ou(v3 [ot') = [#7'],

s0 to determine the image of &1 (v2 /v?’) we need to work out the image of ¢; under
the map of Hopf-algebroids

(11.39) (MU,, MU,MU) — (A, /(r),C(Cs, A, /(r))).

As explained at the end of [I.5.1] the element ¢; occurs as the coefficient of 22 the
isomorphism nRFéizv — Féizv, inverse to the universal strict isomorphism. Since
we have chosen a 2-typical coordinate on F' }l, the element ¢; is therefore sent, under
the map of Hopf algebroids (T1.39), to the 1-cocycle on Cs whose value on 7 is the
coefficient of 2 in the inverse of the power series [¢](). By (ITIG) and the formula

for strictification (ITI7) this is —u? = u? modulo (). O

11.6. Addendum. Lemma [I1.11] and Proposition [I1.34] do not quite appear liter-
ature in a readily accessible form, and the purpose of this addendum is to outline
their proofs, explaining how the key points can be read off from the results of [56]
and [71]. To conform with the notation of these references, we will use BP rather
that MU in this section.

The paper [56] introduced the chromatic approach to studying the groups

Ext}%p pp(BPs, BP:).
The computation begins with the fact that for s > 0 one has
Ext}p gp(BP.,BP.) @ Q = 0.
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This means that the connecting homomorphism

1.29+1

Exty2 ,p(BP., BP,/2%) — Ext3% , o(BP., BP,)
is an isomorphism. The assertion of Proposition [[1.34]is that the map
Exty2 | p(BP,, BP./2) — Exty | ,(BP,, BP./2%)
induced by the inclusion

BP.j2 2 BP, /2

is surjective, and that the left had group is spanned by the elements listed. Con-
tinuing with the chromatic approach, one is led to the following diagram (in which,
to manage the size, we have abbreviated Extg;*BP(BP*, M) to Ext®!(M))
(11.40)

J 5 J /
Ext®?" (BP,/(2,v7)) —= Ext'"?" (BP./(2)) —= Ext"*" (v;'BP./(2))

| | |

Ext®”" (BP./(2%,0%)) = Ext"*" (BP./(2%)) = Ext"*" (v 'BP./(2%)) .

The rightmost column is analyzed using the Miller-Ravenel change of rings theorem
(see [55] or [64, Chapter 6, §1]) which identifies it with the map

H' (L35 Zo) [0/ (2)) = H' (L5 Ly [0y]/(2%))
in which A € ZJ acts on v, with eigenvalue A\. This is easily calculated, and
one finds that the map is indeed surjective, and that Ext}éizp (BP,,v;'BP./(2))
has dimension 2, with basis the image of v¥ [t;] and vZ ~[t3]. This reduces

Proposition [T.34] to the assertion that the left vertical arrow is surjective (hence
an isomorphism), and that the upper left group has a basis consisting of the elements

of the form v§2k / v%k. For this one first appeals to the invariant prime ideal theorem
(59l 40], or see [64, Theorem 4.3.2]) for the fact that

Ext}} pp(BP, BP./(2,01)) = Z/2[va)].
It follows that any invariant element in BP,BP/(2°,v$°) has the form

k
v§2 +r

with r € (2,v1) C BP,. We now come to the key point. It turns out that a
necessary (but not sufficient) condition that such an element to be invariant is that
the indices satisfy the inequality

(11.42) 0 < 2k—i 4 gk—inl
This can be extracted from the stronger conditions of |71, Theorem 3.3], in which

the symbol z,, is an explicitly defined element, congruent to v3" modulo (2,v1)

and y; is an explicitly defined element congruent to v7 modulo 2. From (IT.42)
it follows that for an element of the form (II4I]) to be invariant and have degree
2711 the numbers i, j, k, and ¢ must satisfy

652% — 2(2F 1 4 2kim1) < 29+ < gs2",



KERVAIRE INVARIANT ONE 117

Expanding, and dividing both sides by 2¢+1 gives
3s—27" — 27"t < 2i7h < 35,
Since s > 1 and i > 0, one has
35 —27"—27""1 >35-3/2>1,

and so k < j. This implies 277% is even, and so must equal 3s — 1. This in turn
means that 2% 4+ 27*"1 > 1, and so ¢ must be 0.

It thus follows from the inequality (IT.42) that the invariant elements of degree
271 in BP,/(2%,0v§°) have the form

k
U§2 +r

v%k2
Thus the left vertical map in (IT40) is surjective. Since

52k
U

2k
vy 2

is already invariant, a simple induction shows that the elements stated form a basis.

APPENDIX A. THE CATEGORY OF EQUIVARIANT ORTHOGONAL SPECTRA

In this appendix we recall the definition and some basic properties of the theory
of equivariant orthogonal spectra. For further details and references the reader is
referred to Mandell-May [48] and to Mandell-May-Schwede-Shipley [49].

One of the reasons we have chosen to use equivariant orthogonal spectra is that
it has many convenient category theoretic properties. These are independent of
the homotopy theory of equivariant orthogonal spectra, and so we make two passes
through the theory, one focused on the category theory, and the other on the
homotopy theory.

Our main new innovation is the theory of the norm (§A.4)). Most of the category
theoretic aspects apply to any symmetric monoidal category, and things work out
much cleaner at that level of generality.

A.1. Category theory preliminaries.

A.1.1. Symmetric monoidal categories.

Definition A.1. A symmetric monoidal category is a category V equipped with a
functor

R:V XV =YV,
a unit object 1 € V, a natural associativity isomorphism
aapc: (A®B)@C~A®(B®C)
a natural commutativity isomorphism
sasB: AR B~B®A
and a unit isomorphism
a1 A~ A

This data is required to satisfy the associative and commutative coherence axioms,
as well as the strict symmetry axiom.
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The two coherence axioms express that all of the ways one might get from one
iterated tensor product to another using the associativity and commutativity trans-
formations coincide. The strict symmetry axiom is that the square of the commu-
tativity transformation is the identity map. See [47], or Borceux [10] §6.1].

Even though it requires six pieces of data to specify a symmetric monoidal cat-
egory we will usually indicate one with a triple V = (Vp, ®, 1).

A symmetric monoidal category is closed if for each A, the functor A ® ( —) has
a right adjoint (— )4, which one can think of as an “internal hom.” Note that

V(1,X4) ~V(4,X)

so that one can recover the usual hom from the internal hom.

A.1.2. Sifted colimits, commutative and associative algebras. In a closed symmetric
monoidal category, the monoidal product commutes with colimits in each variable.
It follows easily that the iterated monoidal product

X — X®n

commutes with all colimits over indexing categories I for which the diagonal I — I"™
is final in the sense of [47, §1X.3]. If I — I x [ is final, then for alln > 2, I — I"
is also final.

Definition A.2. A category I is sifted the diagonal embedding I — I x I is final.

Equivalently (see [23]), a small category I is sifted if and only if the formation
of colimits over I in sets commutes with finite products.

Definition A.3. A sifted colimit is a colimit over a sifted category.

Examples of sifted colimits include reflexive coequalizers and directed colimits.
In fact the class of sifted colimits is essentially the smallest class of colimits con-
taining reflexive coequalizers and directed colimits. See, for example [T, 23].

Let V = Vo, ®, 1) be a closed symmetric monoidal category.

Definition A.4. An associative algebra in V is an object A equipped with a mul-
tiplication map A ® A — A which is unital and associative. A commutative algebra
is an associative algebra for which the multiplication map is commutative.

The categories of associative and commutative algebras (and algebra maps) in
V are denoted ass)V and comm V), respectively.

The following straightforward result holds more generally for algebras over any
operad. The existence of colimits in the algebra categories is proved by expressing
any algebra as a reflexive coequalizer of a diagram of free algebras. There is an
even more general result for algebras over a triple [10, Proposition 4.3.1]

Proposition A.5. Suppose that V is a closed symmetric monoidal category. The
forgetful functors

ass)V — V
comm) — V
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create limits. If V is cocomplete these functors have left adjoints
X T(X) =[] x®"
n>0

X = Sym(X) = [[ X®"/%.,
n>0

the categories assV and comm are cocomplete, and the “free” functors above
commute with all sifted colimits. (I

A left module over an associative algebra A is an object M equipped with a
unital and associative left multiplication

AQM — M.

Similarly a right module is an object N equipped with a unital, associative right
multiplication N ® A — N. Given a left A-module M and a right A-module N one
defines N ® M by the (reflexive) coequalizer

A

N®A®M:§N®M—>N(§JM.

When A is commutative, a left A-module can be regarded as a right A-module by
the action

Mo A2 Ae M — M.
Using this, the formation M ® N makes the category of left A-modules into a
A

symmetric monoidal category.

A.1.3. Enriched categories. In this section we briefly describe the basic notions of
enriched categories.. The reader is referred to [36] or [I0, Ch. 6] for further details.
Suppose that V = (V, ®,1) is a symmetric monoidal category.

Definition A.6. A V-category C consists of a collection obC called the objects
of C, for each pair X,Y € obC a morphism object C(X,Y) € ob), for each X
an identity morphism 1 — C(X, X) and for each triple X,Y,Z of objects of C a
composition law

C(Y,Z)®C(X,Y) = C(X, Z).

This data is required to satisfy the evident unit and associativity properties.

As is customary, we write X € C rather than X € obC. Most of the notions
of ordinary category theory carry through in the context of enriched categories,
once formulated without reference to “elements” of mapping objects. For example
a functor F': C — D of V-categories consists of a function

F:0bC— obD
and for each pair of objects X,Y € C a V-morphism
F:C(X,)Y)—> D(FX,FY)

compatible with the unit and composition. A natural transformation between two
functors F and G is a function assigning toeach X € CamapTx : 1 — D(FX,GX)
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which for every X, Y makes the diagram

(A7) X, Y)— " D(FY,GY)® D(FX,FY)

lmx l

D(GX,GY) @ D(FX,GX) D(FX,GY)

commute.
There is an ordinary category Cy underlying the enriched category C. The objects
of Cy are the objects of C, and one defines

Co(X,Y) = Vo(1,C(X,Y)).

If V itself underlies a W-enriched category, then any V-category C has an underlying
W-category, whose underlying ordinary category is Co.

When V is a closed symmetric monoidal category, the internal hom defines an
enrichment of V over itself, with underlying category V.

When V is closed, a natural transformation F' — G can be described as a map

1 [] p(FX,GX)
XeC
which equalizes the two arrows

(A8) [[ pPx.Gx)= ] DEFEX,GY)CEY.
Xec X, yec
describing the two ways of going around (A.7).

We will write €aty for the 2-category of V-categories, and denote the category
of enriched functors C — D as Caty(C, D). When V is closed and contains enough
products, the category Caty(C, D)o underlies an enriched category Caty(C,D) in
which the object of natural transformations from F to G is given by the equalizer

of (A.g).
A.2. Equivariant orthogonal spectra.

A.2.1. Equivariant spaces. Let T be the category of pointed, compactly generated
weak Hausdorff spaces (in the sense of [53]). The category T is symmetric monoidal
under the smash product, with unit S°. A topological category is a category enriched

over (T, A, S°).

Remark A.9. Working with compactly generated weak Hausdorff spaces has many
benefits, but it does create some technical issue. Colimits are computed by forming
the colimit in topological spaces, replacing the topology by the compactly generated
topology, and then forming the universal quotient which is weak Hausdorff. This
last step can alter the underlying point set. It does not, however, in the case of
pushouts along closed inclusion. More precisely, given a pushout diagram

A——X

|

B——=Y

of topological spaces in which A — X is a closed inclusion, if A, X, and B are
compactly generated and weak Hausdorff then so is Y. This follows from [53]
Proposition 2.5] and the remark about adjunction spaces immediately preceding
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its statement. Among other things this means that the smash product of two
compactly generated weak Hausdorff spaces can be computed as the smash product
of the underlying compactly generated spaces.

Now suppose that G is a group. Let (TG, A, S%) be the topological symmetric
monoidal category of pointed spaces with a left G-action and spaces of equivariant
maps. With this structure TC is a closed symmetric monoidal category, with
internal mapping spaces T¢(X,Y) = YX given by the space of non-equivariant
maps, with the conjugation action of G.

A word about notation. The expression “category of G-spaces” can reasonably
refer to three objects, depending on what is meant by a map. It can be an ordinary
category, a category enriched over topological spaces, or a category in which the
hom objects are the G-spaces of non-equivariant maps. As indicated above we will
use T¢ to denote the category enriched over G-spaces, with T¢(X,Y") denoting the
G-space of non-equivariant maps, and 7€ for the topological category of G-spaces,
and spaces of equivariant maps.

We will be making use of categories enriched over 7. As in [48], we will refer to
them as topological G-categories (or just G-categories for short). Let Catg denote
the collection of topological G-categories, and write Catgs(C,D) for the enriched
category of functors and left G-spaces of natural transformations. The symbol
Cate(C, D)% will denote the topological category of functors and spaces of equi-
variant natural transformations.

A.2.2. Change of group. Suppose that H C G is a subgroup. The restriction func-
tor
T¢ > T1H
has continuous left and a right adjoints given by
Y — G+ ANY
H

Y = TH(GL,Y).

These two constructions are basic examples of indexed monoidal products (see
§A3). Because T is pointed there is a canonical equivariant map

GiAY = TH(G4,Y).

A.2.3. The basic indexing categories. For a real orthogonal representation V' of G
let O(V') be the orthogonal group of non-equivariant linear isometric maps V. — V.
The group G acts on O(V) by conjugation, and the group of fixed points is the
orthogonal group of equivariant maps. Given orthogonal representations V' and
W, we define O(V, W) to be the Stiefel manifold of linear isometric embeddings
of V into W, with the conjugation action of G. The G fixed points in O(V, W)
are the equivariant orthogonal embeddings. The group O(W) acts transitively on
O(V,W) on the left. A choice of embedding V' — W identifies O(V, W) with the
homogeneous space O(W)/O(W — V).

Definition A.10. The category Z¢ is the topological G-category whose objects
are finite dimensional real orthogonal representations of G, and with morphism
G-space Z¢(V,W) the Thom complex

Ja(V,W) = Thom(O(V,W); W — V)
of the “complementary bundle” W —V over O(V, W).
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We will denote the topological category underlying £ with the symbol #¢.
Thus Z9(V,W) = Za(V,W)C.

The G-space Zq(V, W) can be thought of as the topologically indexed wedge

\/ SW_V.
VW

When dim W < dim V' it reduces to the one point space *. When dimW > dim V'
one can get a convenient description by choosing an orthogonal G-representation U
with dimU + dim V' = dim W (for example the trivial representation). With this
choice one has

VIW)=O0WVaeUW), A SY.
jG(v ) ( S ) )+O(U)

The fixed point space Zg(V,W)? is given by
(A.11) (V.Y = g(VE W AoV WHY,

in which V& denotes space of invariant vectors in V', and V= its orthogonal com-
plement. The space O(V+, W) in turn decomposes into the product

[[oWVa, Wa)

in which « is running through the set of non-trivial irreducible representations of
G, and V, C V and W, C W indicate the a-isotypical parts.

When G is the trivial group we will denote the category #¢ simply by _#. For
any G there is an inclusion ¢ C _fZ¢ identifying ¢ with the full subcategory of
objects with trivial G-action. There is also a forgetful functor #¢ — _# which
refines in the evident manner to a functor from #g to the G-category of objects
in ¢ equipped with a G-action. One can easily check that this is an equivalence.
For later reference, we single this statement out.

Proposition A.12. The forgetful functor described above gives an equivalence of
Fa with the topological G-category of objects in _# equipped with o G-action.
Passage to fized points gives an equivalence of ¢ & with the topological category of
objects in Z equipped with a G-action. O

Proposition [A.12] plays an important role in establishing one of the basic prop-
erties of the norm (Proposition [A.59)).

A.2.4. Orthogonal spectra.

Definition A.13. An orthogonal G-spectrum is a functor
Ha—Ta

of topological G-categories.

Informally, an orthogonal spectrum X consists of a collection of spaces {Xy },
and for each V— W a
SW=V A Xv — Xw.
These maps are required to be compatible with composition in _#¢, the action of
G, and to vary continuously in V' — W. More formally, one has equivariant maps

Thom(O(V,W); SW=V) A Xy — Xw

compatible with composition.
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Definition A.14. The topological G-category of orthogonal G-spectra is the cate-
gory

8¢ =Cata( Ao, 1a).
The (topological) category of G-spectra is

8¢ = @afg(jg,Ig)G.

We will use the notation
8§ =Cate( 7, T)

to denote the category 8¢ for the case of the trivial group.

The (G-)category of orthogonal G-spectra is complete and cocomplete (in the
sense of enriched categories). Both limits and colimits in 8¢ are computed object-
wise:

(lig X*)y = limg Xy
(lim X%)y = lim Xy
Certain orthogonal G-spectra play a fundamental role. For V € Zg let
SV Ja—Ta
be the functor co-represented by V. By the Yoneda lemma
8¢(S7V,X) = Xy.
For a pointed G-space A let S~V A A be the orthogonal G-spectrum with
-V -V
(SVAA), =(5Y), A A
Again, by Yoneda,
8a(S™V ANA,X) = Ta(A Xv).
It also follows from the Yoneda lemma that every X is functorially expressed as a
reflexive coequalizer
(A.15) \V SN JaVW) AXy = \/STVAXy = X
V,W v

We call this the tautological presentation of X and for ease of typesetting, sometimes
indicate it as

(A.16) X =limS™" A Xy
14

A.2.5. Smash product. The symmetric monoidal structures on ¢z and T combine
to give 8¢ a symmetric monoidal structure (the Day convolution), denoted A. The
smash product of two orthogonal G-spectra X and Y is defined to be the left Kan
extension of

(‘/',W))—}Xv/\YW : /G X /G_>IG
along the map
Jax Jo— Ja

sending (V,W) to V @& W. The smash product is thus characterized by the fact
that it commutes with enriched colimits in both variables, and satisfies

STVASW = g-(Vew),
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In terms of the tautological presentations

X =1lmSV AXy
>

Y:@S*WAYW
w

one has
XAY:@S—VAXVAY
1%
=lim S~V A Xy Alim ST A Yiy
1% w
= lim STVOW A Xy A Y.

V,W

The above expression is, of course, an abbreviation for the reflexive coequalizer
diagram

\  Aa(Vo, Vi) A Fa(Wo, Wi) A S™VEWTA Xy, A Y,

Vo, Vi,
Wo, W1

= \/ STVEW A Xv AYw.
A%
Proposition A.17. The category 8€ is a closed symmetric monoidal category with

respect to . (I

Smashing the tautological presentation of a general spectrum X with S~V gives
a presentation of SV A X as a (reflexive) coequalizer

\/ SiV@lewmwl AN Xw, = VS7V®W ANXw — SV AX.
Wy, W1 w

This is not the tautological presentation of S™Y A X, but from it, one can read off
the the formula of the following lemma

Lemma A.18. If dimW < dimV, then (S™V A X)w = *. If dimW > dimV,
then there is a natural isomorphism of G-spaces

STVAX\w~O0OWVaoUW). AN X
( Jw Ve, )+O(U) U

where U is any orthogonal G-representation with
dimU 4+ dimV = dim W.
O
A.2.6. Variations on the indexing category. There is a lot of flexibility in defining
8C. In this section we describe a variation which is especially convenient for certain
category theoretical properties, and will be used in our construction of the norm.

We learned of the result below from Lars Hesselholt and Mark Hovey. It is due to
Mandell-May ([48, Lemma V.1.5]).

Proposition A.19. Leti: Z — _Zg be the inclusion of the full subcategory of
trivial G-representations. The functors

i*: Catq( Lo, Ta) — Cata( 2 Ta)
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and
i @a’tg(/7l—g) — @afc(fG,IG)

given by restriction and left Kan extension along i are inverse equivalences of en-
riched symmetric monoidal categories.

In other words the symmetric monoidal (topological) category 8¢ can simply be
regarded as the symmetric monoidal (topological) category of objects in 8 equipped
with a G-action.

The proof of Proposition[A.T9requires a simple technical lemma ([48, Lemma V.1.1]).

Lemma A.20. Suppose that V and W are orthogonal G-representations with
dimV =dim W. Then for any U

O(V,U) x O(V) x O(W,V) = O(V,U) x O(W, V) = O(W,U)

is a (reflexive) coequalizer in TC.

Proof: Since the forgetful functor 7¢ — 7T preserves colimits and reflects isomor-
phisms, it suffices to prove the result in 7, where it is obvious, since the coequalizer

diagram can be split by choosing an orthogonal (non-equivariant) isomorphism of
V with W. O

Proof of Proposition [A.19: Since i : ¢ — f¢ is fully faithful, the left Kan
extension ¢ is fully faithful (see for example, [47, Corollary X.3]). To show that it
is essentially surjective, let W € #¢ be any object, and let V € _# be a vector
space of the same dimension as W. Define X by the coequalizer

OW, V) xO(V)1 ASTY mOoW, V). AS™Y — X.
Since Zq(W,V)=0O(W,V), i,X is given by the coequalizer of
(JcW,V)x Zo(V, V)4 ASTV = oW, V)L ASTY — i X.
There is thus a natural map
(A.21) i X =SV,

Evaluating at U € _#¢ and using Lemma[A.20lshows that (A.21]) is an isomorphism.
Thus S~% is in the image of i.. It then follows easily that i, is essentially surjective.

Finally, the fact that ¢, is symmetric monoidal is immediate from the fact that
left Kan extensions commute. It follows that ¢* is as well, since it is the inverse
equivalence. ([l

A.2.7. Equivariant commutative and associate algebras. Using the notions described
in §A.1.2 one can transport many algebraic structures to 8¢ using the symmetric
monoidal smash product.

Definition A.22. A G-equivariant commutative (associative) algebra is a commu-
tative (associative) algebra with unit in 8§¢.

The conventions of JAT.2lwould dictate that we refer to the topological categories
of G-equivariant commutative and associative algebras as comm 8% and ass 8. To
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ease some of the typesetting it will be convenient to employ the slightly abbreviated
notation

Comm® = comm 8¢
AlgG =ass 8,

and to write Commg and Alg. for the corresponding G-equivariant topological
categories of not necessarily equivariant algebra maps.

Since 8% is a closed symmetric monoidal category under A, Proposition [AH]
implies that both Comm® and AlgG are complete and cocomplete, and that the
forgetful functors

Comm? — 8¢
Alg® — 8¢

create enriched limits, sifted colimits, and have left adjoints

Sym : 8¢ — Comm?

T:8% = Alg®.
Similarly, there are categories of left and right modules over an associative alge-
bra A. We will use the symbol M 4 for the category of left A-modules. As described

in §A 1.7l when A is commutative, the category M 4 inherits a symmetric monoidal
product M Q N defined by the reflexive coequalizer diagram

M/\A/\NIKM/\N—>MQN.

A.3. Indexed monoidal products.

A.3.1. Covering categories and fiberwise constructions. We begin with an example.
Suppose that (C,®,1) is a symmetric monoidal category and that I is a finite
set. Write C! for the I-fold product of copies of C. For notational purposes, and
subsequent generalization it will be useful to think of an object of C! as a functor
X : I — C, with I regarded as a category with no non-identity morphisms. The
iterated monoidal product

®'X =) Xi

jel
defines a functor
¢ —ec.
The functor ®! is natural in isomorphisms in I (this is just the symmetry of the
symmetric monoidal structure). In this section we make use of the notion of a
covering category to exploit this naturality in a systematic way.

Let Getsiso be the groupoid of sets and isomorphisms. Suppose that J is a
category, and that P : J — Getsiy, is a functor with the property that each Pj is
finite. Then P defines a J-diagram of finite sets, and the iterated monoidal product
defines for each j a functor

(A.23) ofi.chi 5 ¢.

These vary functorially in j. This functoriality is expressed most cleanly using the
Grothendieck construction [26, §VI.8] (see also [46, p. 44] where the special case in
which Cat is replaced by Gets is attributed to Yoneda).
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Suppose that J is a category, and that P : J — €atis a functor. The Grothendieck
construction associates to P the category

I:/P
J

of pairs (j,s) with j € J and s € P(j). The set of maps from (3, s) to (j/, s’) is the
subset of J(j,j’) consisting of the f : j — j’ having the property that Pf(s) = s'.
By regarding a finite set as a category with no non-identity morphisms we get an
embedding

Setsigo — Cat.

In this way the Grothendieck construction also applies to functors P : J — Getsig,.
A functor p : I — J arises from the Grothendieck construction of P : J — Getsig,
if and only if it is satisfies the following two conditions
i) for every morphism f:i — j in J, and every a € I with pa = i, there is a
unique morphism g with domain a, and with pg = f;
ii) for every morphism f:7¢ — j in J, and every b € I with pb = j, there is a
unique morphism ¢ with range b, and with pg = f.
If p: I — J satisfies the above conditions, then T'j = p~!(j) defines a functor from
J to Getsiso. This structure is analogous to the notion of a covering space, and we
name it accordingly.

Definition A.24. A functor I — J satisfying properties i) and ii) above is called
a covering category.

A covering category p : I — J in which each of the fibers p~1J is finite will be
called a finite covering category.
The aggregate of the functors (A23)) is a functor

p2.ct = ¢’
given in terms of p by
X)) = @ X().
p(i)=j
We will have much more to say about this in the next few sections. For now we
focus on the general process that led to its construction.

Suppose we are given a formation of a category depending functorially on a set
I, or in other words a functor

C : Getsigo — Cat.

Given a covering category p : I — J let C'(p) be the category obtained by applying
the Grothendieck construction to the composite

J — Getsiso — Cat

in which the first functor is the one classifying I — J. We will say that C(p) is
constructed from C' by working fiberwise. For example the category constructed
from C(S) = C° by working fiberwise is C!. The category constructed from the
constant functor C’(S) = C is C’.

A natural transformation C' — C’ leads, via the same process, to a functor
C(p) — C'(p) which we will also describe as being constructed by working fiberwise.
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A.3.2. Indexed monoidal products.

Definition A.25. Let p: I — J be a finite covering category and (C,®,1) a sym-
metric monoidal category. The indexed monoidal product (along p) is the functor
p%.ct = ¢’

constructed fiberwise from the iterated monoidal product.

For some purposes the notation X®U/7) is preferable to p®X. When J is the
one point G-set this can be further abbreviated to X®”/. We use this alternate
notation systematically when ® is the smash product A.

The properties of iterated monoidal products listed in the following proposition
are straightforward.

Proposition A.26. The functor @' : C! — C is symmetric monoidal. If
®:C*=C

commutes with colimits in each variable then so does @T. In this situation ®'

commutes with sifted colimits. ([l

Applying Proposition[A.26] fiberwise to a finite covering category p : I — J gives

Proposition A.27. The indexed monoidal product p& : C* — C7 is symmetric
monoidal. If

®:C?*—=C
commautes with colimits in each variable then p® commutes with sifted colimits. [

Remark A.28. Though it plays no role in this paper, it can be useful to observe
that the class of colimits preserved by p® is slightly larger than the class of sifted
colimits. For example p® will commute with objectwise reflexive coequalizers, which
are diagrams of the form

X=2Y =27

with the property that for each j € J there is a map Yj — Xj completing
Xj=2Y;

to a reflexive coequalizer diagram. The maps Yj — Xj are not required to be

natural in j.

The following is also straightforward

Proposition A.29. Suppose thatp: I — J and q : J — K are covering categories.
Then q o p is a covering category, which is finite if p and q are. In that case there
is a natural tsomorphism

7 op? =(qop)?.
arising from the symmetric monoidal structure. O

The following results are also proved by working fiberwise.

Proposition A.30. Suppose that (C,®,1¢) and (D, A, 1p) are symmetric monoidal
categories, and that
F:C—>D
T:FXANFY - F(X®Y)
¢:1p — Flp
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form a lax monoidal functor. If p: I — J is a finite covering category then T gives
a natural transformation
py Pt o Fl— Flopl

between the two ways of going around

ol _F_pr

p?l lpf

CJ . DJ .
F

If T is a natural isomorphism, then so is p’. (|

Suppose that p : I — J is a covering category, and f : J — J is a functor. Let
I be the “rigid pullback” category of pairs (j/,i) € J x I with f(i') = p(j), and in
which a morphism is a pair (g,¢’) with f(g) = p(¢’). Then the functor p: I — J
defined by (j',4) — j’ is a covering category.

Proposition A.31. In the situation described above, if p : I — J is finite then the
following commutes up to a natural isomorphism given by the symmetric monoidal
structure

cl —scf

p?l lﬁi@’

¢/ — ¢’
I

O

The categories I and J used in this paper arise from a left action of a group G
on a finite set A. Given such an A, let B4oG be the category whose set of objects is
A and in which a map a — a’ is an element g € G with the property that ga = o’.
When A = pt we will abbreviate B4G to just BG. For any finite map A — B of
G-sets, the corresponding functor

BaG — BgG

is a covering category.

In the following series of examples we suppose H C G is a subgroup, take
A = G/H to be the set of right H-cosets, and write p : A — pt for the unique
equivariant map. In this case the inclusion of the identity coset gives an equivalence

BH — BAG
and hence an equivalence of functor categories
CBAG N CBH

An inverse is provided by the left Kan extension.

Example A.32. Suppose C is the category of abelian groups, with @ as the symmet-
ric monoidal structure. Then CB4€ is equivalent to the category of left H-modules,
and the functor p?® is left additive induction. If symmetric monoidal structure is
taken to be the tensor product, then p® is “norm induction.”
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Example A.33. Now take (C,®,1) to be the category (8, A, S?) of orthogonal spec-
tra. From the above and Proposition [A.19] the category 854¢ is equivalent to the
category of orthogonal H-spectra, and 88¢ is equivalent to the category of orthog-
onal G-spectra. In this case p, defines a multiplicative transfer from orthogonal
H-spectra to orthogonal G-spectra. This is the norm. It is discussed more fully in

A4 and §B.5

Remark A.34. When C has all colimits and the tensor unit 1 is the initial object
one may form infinite “weak” monoidal products, and the condition that p: I — J
be finite may be dropped. If I is an infinite set and {Xi} a collection of objects
indexed by i € I set
o Xi= lm @ Xi
I’ Cﬁnitc
in which the transition maps associated to I’ C I" are given by tensoring with the
unit
@ Xi~ (@I'Xi) ® (®1~_,/1) - o Xi.
The functor p® is constructed by working fiberwise.

Remark A.35. The results of this section apply, with the obvious modifications, in
the setting of enriched categories.

A.3.3. Distributive laws. Continuing with the same notation, we now assume that
the category C comes equipped with two symmetric monoidal structures, ® and @,
and that ® distributes over @ in the sense that there is a natural isomorphism

A (BeC)~(A®B)® (A ()

compatible with all of the symmetries. For a precise definition see [41], or the
definition of bipermutative category in [52, Chapter VI]. In all of our examples, ®
will be the categorical coproduct, and A ® (—) will commute with all colimits.
Given p: I — J and ¢ : J — K we can form

g7 op?.
Our goal is to express this in the form

i op? =rPon?.

We start with the case in which K is the trivial category, and p : [ — J is a
map of finite sets. Let I' = T'(I/J) be the set of sections s : J — I of p. Write
ev: J xI' — I for the evaluation map, 7 : J x I' — T" for the projection, and
with an eye toward generalization, r : I' — {pt} for the unique map. The following
lemma expresses the usual distributivity expansion

Q| P xi| =P | R Xs0)
jed \p(i)=j sel \jeJ

in functorial terms.
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Lemma A.36. The following diagram of functors commutes, up to a canonical
natural isomorphism given by the symmetries of the symmetric monoidal structures

ol ev” cIxT

—_—
piel

|
c’ cr
q& A;
C .
O

Working fiberwise, it is now a simple matter to deal with the more general case
in which p: I — J and ¢ : J — K are covering categories. Let I" be the category
of pairs (k,s), with k € K and s a section of (go p)~'k — ¢~ 'k. A morphism
(k,s) = (k,s') in T is a map f: k — k' making the following diagram commute

I
(gop) 'k ——= (gop) 'K’

p~ Lk — pE.
Jy

Write I' x J for the fiber product,
K
ev:I'xJ—=1T
K

for the “evaluation,” and 7 : I x J — J for the projection. By naturality in I and
K
J in Lemma [A.36]l we have

Proposition A.37. The following diagram of functors commutes, up to a canonical
natural isomorphism given by the symmetries of the symmetric monoidal structures

c’ cr
qi@\x A
CK

O

This formula is used in showing that the norm of a wedge of regular slice cells
is a wedge of regular slice cells (Proposition 7)), in the construction of monomial
ideals (§A3.6]), and in describing the structure of equivariant twisted monoid rings
and their monomial ideals (§2.4)).
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A.3.4. Indexed monoidal products and pushouts. The homotopy theoretic proper-
ties of the norm depend on a formula for the indexed monoidal product of a pushout.
We describe here the absolute case. The fiberwise analogue is spelled out in §B.8.2

Suppose that (C, ®) is a closed symmetric monoidal category with finite colimits,
and let I be a finite set. For X € C! write X®/ for the iterated monoidal product.
Suppose we are given a pushout diagram

(A.38) A——-B

|

X ——Y

in C!. We wish to express Y®! as an iterated pushout. Since the coequalizer
diagram
XITAIB=XUIB—-Y

can be completed to a reflexive coequalizer, the sequence
(XTAUB)® = (XU B)® —y®!
is a coequalizer (Proposition [A26]). Using the distributivity law of §A.3.3] this can
be re-written as
[I x®rea®hep® = [] x®PeB® —vo.
I=Io11L 11T, I=I,111,

The horizontal arrows do not preserve the coproduct decompositions, but the se-
quence can be filtered by the cardinality of the exponent of B. Define fil,, Y by the
coequalizer diagram

H X®h g A®h g BOl — H X®l o B® 5 £, V.

I=Io11L 111, I=Io11L,
[I1]+|I2|<n |I;|<n

Thus filg Y = X®! and filj;; Y = Y®/. There is an evident coequalizer diagram

[T x®*ea®teB®:=fil, vy [ x®°gB® -A1l,Y,

I=Ig11I1 1115 I=Iy1114
[I1]|+|I2|=n [Ii]=n

which can be re-written as a pushout square

H X®lo g A®N g BOI2 5 H X ®l ¢ poL

I=I1111111, I=I1111
| o|=1]—-n I1]=n

i i

fil, ;Y fil, Y .

The upper left term may be replaced by its effective quotient
[T x®*°®o0aB%"
[ |=n
in which 94B®% is defined by the coequalizer diagram

(A.39) [T A4%%°ea®eB®:= J[ A®%®B®S - 04B%S,

S=S801151115, S=80115;
So#0 So#0
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leading to a pushout square

(A.40) [T x®°®oaB®" — J] X®PcB®"
I:I()Hfl I:I()Hll
[I1]=n [I1]=n
fil,_, Y®I fil, Y®I .

The object 94 B®° can also be computed as the coequalizer of

(A41) H A®50 ® A®51 ® B®52 = H A®50 ® B®S1 N aAB®S,
S=SpoIS111S2 S=Spl1S1
[Sol=[S1|=1 [Sol=1

We call the map
d2B®S — B®S

the indexed corner map, since in the absolute case with |I| = 2 it reduces to the
“corner map” in

A9B][Bo®A—>B®A

| |

A B———> BQ®B
from the pushout of the top and left arrows to the bottom right term.

Remark A.42. The category of arrows in C becomes a closed symmetric monoidal
category with
(Al — Bl) ® (A2 — Bg)

taken to be the corner map in

A1®A2—>A1®BQ

L

Bl ®A2 —>B1 ®B2
If A— B is amap in C¥ then (A — B)®° works out to be 94 B®% — B®¥.

By working fiberwise, one obtains a similar iterated pushout describing p®Y’,
involving the evident analogue dap®B — p® B of 9, B®% — B®S,

Taking A = X and B =Y in (A38) gives a filtration of the indexed monoidal
product of any map. In the case of a pushout square (A38) the two filtrations in
fact coincide. We describe the absolute case. The relative case follows easily by
working fiberwise.

Proposition A.43. Let
(A.44)

S
<~

be a pushout square in C.
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i) The square

3AB®I N B®I
aXy®I S y®1
s a pushout square.

ii) The filtrations of Y®! arising from (A44) and

(A.45) X —sX
Y —=Y
coincide.

Proof: The proof is by induction on n = |I], the case in which n = 1 being
trivial. Let fil,, Y®! be the filtration computed from the pushout square (AZ4),
and fil,, Y®! be the one computed from (A.45). The evident map of squares gives
a natural map fil,, Y®! — fil,, Y®!. Consider the diagram

I[I x®*®oaB®" — [] Xx®"eB"

I:IQHIl I:IOHII
[I1|=m [I1|=m

l |

I x®ewoxyveh — [ x®Peveh

I=IgIlI{ I=IgIlI{
|I1[=m |I1|=m

! !

fil,,, _, Y®! fil,, Y®1 .

If m < n then the induction hypothesis and part i) imply that the upper square is
a pushout square. This shows that the map fil,,, Y®/ — il Y®! is an isomorphism
m < n. The case m = n — 1 then gives an identification

fil,,_1 Yo = 95 Y ®!
which, when combined with the pushout square

aAB®I — - RB®I

|

fil,  Y® — -~ y®!
gives part i) for I. O

By working in the category of arrows (as in Remark [A.42]) one can see that the
formation of d4(p@B) is compatible with the isomorphism coming from the dis-

tributive law. More explicitly, let T 2 J 4 K be a sequence of covering categories,
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and recall the basic diagram

CI ev* CJ;EF

p?l lﬁ?
c’ cr
CK

Suppose that A — B is a map in C!. The distributivity isomorphism in the arrow
category is given by

Oy ) (PEB)®! wFB)®’

ey 1L (ev* B) ——rPal(ev* B) .

The fact that the left vertical arrow is an isomorphism is what expresses the com-
patibility of 94¢® B with the distributive law.

A.3.5. Commutative algebras and indexed monoidal products. By Proposition [A.5]
if C is a co-complete closed symmetric monoidal category, then comm C is cocom-
plete. The restriction functor p* : commC” — commC’ then has a left adjoint p
given by left Kan extension.

Proposition A.46. If p : I — J is a covering category, the following diagram
commutes
comm(C! —— (!

b

commC’/ ——=(C7 .

Proof: For a commutative algebra A € commC’, and j € J the value of pA
at j is calculated as the colimit over the category I/j of the restriction of p. Since
p: I — J is a covering category, the category I/j is equivalent to the discrete
category p~'j, and so

(pA)j =@ TA,
and the result follows. O

A.3.6. Monomial ideals. Let I be a set and consider the polynomial algebra
A=7Z[x;], i€l

As an abelian group, it has a basis consisting of the monomials 2/, with
f:1—-10,1,2,...}

a function taking the value zero on all but finitely many elements, and

of =[] 19,

jeJ
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The collection of such f is a monoid under addition, and we denote it N§. If D C NJ
is a monoid ideal then the subgroup Mp C A with basis {x/ | f € D} is an ideal.
These are the monomial ideals and they can be formed in any monoidal product of
free associative algebras in any closed symmetric monoidal category.

Let (C,®,1) be a closed symmetric monoidal category. Fix a set I which we
temporarily assume to be finite. Given X € C’ let

TX =[] x®"
n>0
be the free associative algebra generated by X. Write A = p®TX € C, where
p : I — pt is the unique map. Then A is an associative algebra in C. The
motivating example above occurs when C is the category of abelian groups and

X is the constant diagram Xi = Z.
Using Proposition [A.37, the object A can be expressed as an indexed coproduct

A= J] x®/

f:I—No

where Ng = {0,1,2,...} and
X =) X (6.

il

The set
Ny ={f:1—No}

is a commutative monoid under addition of functions. The multiplication map in
A is the sum of the isomorphisms

(A.47) X® @ X®9 ~ x®U+9)
given by the symmetry of the monoidal product ®, and the isomorphism
X®f(0) g x®9() ~ xO(F(D)+g(1))
For a monoid ideal D C N{, set
Mp = ] x®/.
fep

The formula (AZ7) for the multiplication in A gives Mp the structure of an ideal
in A. If D C D’ then the evident inclusion Mp C Mp: is an inclusion of ideals.
When C is pointed (in the sense that the initial object is isomorphic to the
terminal object), the map
A— A/MD

is a map of associative algebras, where A/Mp is defined by the pushout diagram

Mp A

|

x ——> A/Mp ,

with * denoting the terminal (and initial) object.

Definition A.48. The ideal Mp C A is the monomial ideal associated to the
monoid ideal D.
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Ezample A.49. Suppose that dim : NJ — Ny is any homomorphism. Given d € Ny
the set
{f | dim f >d}

is a monoid ideal. We denote the corresponding monomial ideal My. The My form
a decreasing filtration

v CMgyp1 CMgC---C M C My=A.
When C is pointed, the quotient
Ma/Matr
is isomorphic as an A bi-module to
AMye [T X/,
dim f=d
in which A act through its action on the left factor.

Remark A.50. The quotient module is defined by the pushout square

My —— My

.

* —— Md/Md+1 .

The pushout can be calculated in the category of left A-modules, A bimodules, or
just in C.

Remark A.51. All of this discussion can be made to be covariant with respect to
inclusion in I. Suppose that Iy C I; is an inclusion of finite sets and X; : [y — C
is an [;-diagram. Define Xy : I; — C by

X (Z)* Xl(l) iEIO
0T « otherwise.

There is a natural map Xg — X;. Let Ay and A; be the associative algebras
constructed from the X; as described above. The algebra A coincides with the
one constructed directly from the restriction of Xy to Iy. A monoid ideal D C Nél
defines ideals Mp, C Ap and Mp, C A;. The a monoid ideal Dy is the same as
the one constructed from the intersection of Dy with N{°, where N is regarded as
a subset of Nél by extension by 0. There is a commutative diagram

]\41)0 —>MD1

L

AO —>A1 .

Using this, the construction of monomial ideals can be extended to the case of
infinite sets I, by passing to the colimit over the finite subsets. As in the motivating
example, when the set [ is infinite, the indexing monoid N} is the set of finitely
supported functions.
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By working fiberwise, this entire discussion applies to the situation of a (possibly
infinite) covering category p : I — J. Associated to X : I — C is
A=p®TX c assC’ = (assC)’.

In case I/J is infinite, the algebra A is formed fiberwise by passing to the colimit
from the finite monoidal products using the unit map, as described in Remark[A.34
As an object of C7, the algebra A decomposes into

A= H xef
fer
where T is the set of sections of
N g

with Né/ 7 formed from the Grothendieck construction applied to
im Ny (L =p0)
The category Né/ 7 is a commutative monoid over .J , and associated to any monoid
ideal D C Né/J over J, is a monomial ideal Mp C A.
The situation of interest in this paper (see §2.4)) is when I — J is of the form
BxG — BG

associated to a G-set K, and the unique map K — pt. In this case Né/’] is the
G-set N of finitely supported functions K — Ny. The relative monoid ideals are
just the G-stable monoid ideals. A simple algebraic example arises in the case of
a polynomial algebra Z[x;] in which a group G is acting on the set indexing the
variables.

A.4. The norm. We now specialize the discussion of §A.3 to the case (C,®,1) =
(8, A, 8Y) and define the norm functor.

Because of Proposition we may identify the category of G-equivariant or-
thogonal spectra as the functor category 88¢. If H C G, then the functor

i:BH — Bg/HG

sending the unique object to the coset H/H is an equivalence of categories. This

leads to an equivalence
i*: §Ba/nG _y gBH

with inverse
I §BH _y g§Ba/uG

given by the left Kan extension. Write p : Bg,gG — BG for the functor corre-
sponding to the G-map G/H — pt.

Definition A.52. The norm functor NG : 8% — 8% is the composite
SBH i SBG/HG
NS J{pf
SBG
By Proposition [A.27] we have

Proposition A.53. The functor N§ is symmetric monoidal and commutes with
sifted colimits. O
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Remark A.54. By Remark [A28 the norm also commutes with the formation of
coequalizer diagrams in 87 whose underlying non-equivariant diagram in 8 extends
to a reflexive coequalizer.

Remark A.55. We have defined the norm on the topological categories of equivariant
spectra. Since it is symmetric monoidal it naturally extends to a functor of enriched
categories

N§ 8y — 8¢
compatible with the norm on spaces (and, in fact, spectra) in the sense that it gives
for every X,Y € 8y a G-equivariant map
N (Su(X,Y)) = 8a(NfX,NFY).
By Proposition [A46] on equivariant commutative algebras the norm is the left
adjoint of the restriction functor.

Corollary A.56. The following diagram commutes up to a natural isomorphism
giwen by the symmetry of the smash product:

Comm’ — = §H

"

Comm® —= 8¢ .

The left vertical arrow is the left adjoint to the restriction functor.

Remark A.57. Because of Corollary [A.56] we will refer to the left adjoint to the

restriction functor

G H

Comm"~ — Comm

as the commutative algebra norm, and denote it
NG : Comm” — Comm®.
The Yoneda embedding gives a functor
B A ]
Vs STV,

By definition of A this is a symmetric monoidal functor, and we are in the situation
described in Proposition[A.30l Thus if p: I — J is a covering category, there is a
natural isomorphism between the two ways of going around

(A.58) (o) ——=s!

pi‘al LPQ
(sr) —s".

Take I = Bg/pG and J = BG. Then the functor category ( B "p)l is equivalent
to the category ( JH )Op (Proposition [A12)), and 87 is equivalent to 87 (Proposi-
tion [A.T9). By naturality, the functor

/HOP N SH

J

corresponding to

() =
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is just the Yoneda embedding, and so sends an orthogonal H-representation V' to
S~V. Similarly ( B "p)J is equivalent to ¢ G 87 is equivalent to the category
of orthogonal G-spectra, and the functor between them sends an orthogonal G-
representation W to W~". One easily checks (as in Example [A32) that the
functor p® corresponds to additive induction. We therefore have a commutative
diagram

() 5

. G G
1ndHl [/NH

(79" —=s¢
This proves

Proposition A.59. Let V' be a finite dimensional H-representation, and set W =
indg V. There is a natural isomorphism

NGS™V sV
0

A.5. h-cofibrations. Suppose that C is a complete topological category (and in
particular tensored and cotensored over T).

Definition A.60. A mapi: A — X in C is an h-cofibration if it has the homotopy
extension property: given f : X — Y and a homotopy h : A ® [0,1] — Y with
h|aggoy = f o there is an extension of h to H : X ® [0,1] — Y.

Ezample A.61. The mapping cylinder A — X LX A®1(0,1] of any map A — X is an

h-cofibration.

As is well-known, a map i : A — X is an h-cofibration if and only if

li=X 0 U A 0,1 X 0,1
cyli ®{}A®{O} ®1[0,1] - X ®[0,1]

is the inclusion of a retract.

Proposition A.62. The class of h-cofibrations is stable under composition, and
the formation of coproducts and cobase change. Given a sequence

le_1> "'—>Xif—i)Xi+1—>"'
in which each f; is an h-cofibration, the map

X1 — hﬂXl

is an h-cofibration. O

Proposition A.63. Any topological functor L which is a continuous left adjoint
preserves the class of h-cofibrations. O

Now suppose that C has a symmetric monoidal structure @ which is compatible
with the cartesian product of spaces, in the sense that for spaces S and T, and
objects X,Y € C there is a natural isomorphism

(X9 eT)=~(XY)®(SxT)
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compatible with the enrichment and the symmetric monoidal structures. Then
given i : A — X we may form

L N

and regard it as a map in the category CB*» of objects in C equipped with a X,,-
action.

Proposition A.64. If A — X is an h-cofibration in C, then for any Z, AQ Z —
X ® Z is an h-cofibration. O

Proposition A.65. Ifi: A — X is an h-cofibration then i®™ is an h-cofibration
in CB%n.

Remark A.66. In the category of equivariant orthogonal spectra a version of this
result appears in [49, Lemma 15.8] (where the reader is referred to |20, Lemma
XI1.2.3)).

Proof: The main point is to show that the diagonal inclusion
(A.67) eyl(A®™ — XO™) — cyl(A — X)®™

is the inclusion of a ¥, -equivariant retract. Granting this for the moment, one
constructs a X,-equivariant retraction of

cyl(A®" — X)) 5 X®" ® [0,1]
as the composition
X" @ [0,1] 22428, x®n g [0,1]" ~ (X ® [0,1])%"
= cyl(A — X)®" — cyl(A®" — X®™).
For the retraction of (A.67) start with the pushout square
A@{0}—— A®][0,1]

| |

X eyl(A = X)
and consider the last stage of the filtration of cyl(A — X)®" constructed in §A3.4]
(A.68) Oa(A®1[0,1))®" —— (A®[0,1])®"

l l

fil,,_1(cyl(A — X)®") ——cyl(A — X)®" .
Form the ¥,-equivariant map
fil,, 1 (cyl(A — X)®™) — X" = cyl(A®" — XOm)
using the map cyl(A — X) — X. To extend it to fil,(cyl(A — X)®") = cyl(A —
X)®™ note that the top row of (A.6]) can be identified with the tensor product of
the identity map of A®™ with
8{0}1" — I".
This identification is compatible with the action of the symmetric group. The

desired extension is then constructed using any 3,-equivariant retraction of I"™ to
the diagonal which takes dgo1 1" to {0} O
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Working fiberwise one concludes

Proposition A.69. Suppose that C is as above, and p : I — J is a covering
category. The indexed monoidal product

p®:cl ¢’
preserves the class of h-cofibrations. O

We end with the following technical result which is useful for establishing some
of the basic homotopy theoretic properties of equivariant orthogonal spectra, espe-
cially in connection with the monoidal geometric fixed point functor (§B.10).

Lemma A.70. An h-cofibration in 8 is an objectwise closed inclusion.

Proof: This follows from the fact that h-cofibrations in the category of compactly
generated weak Hausdorff spaces are closed inclusions. (Il

APPENDIX B. HOMOTOPY THEORY OF EQUIVARIANT ORTHOGONAL SPECTRA

We now turn to the stable homotopy theory of equivariant orthogonal spectra,
the basis of which is the notion of stable weak equivalence defined in §2.2.4l Our goal
is to set up the infrastructure needed for the proofs of properties Sp$-Sp§, and for
working with the formation of indexed wedges, smash products, symmetric powers
and their compositions. These latter are explicit constructions, and to work with
them in homotopy theory means determining, in each case, a full subcategory of 8¢
on which the construction preserves weak equivalences, and which is homotopically
wide in the sense that it contains at least one object of each weak equivalence class,

The standard way of doing this is to complete the set of weak equivalences to a
Quillen model category structure, in such a way that each of the constructions takes
weak equivalences between cofibrant objects to weak equivalences. This can be done
in this case, but a problem arises when composing these operations. For example,
in all of the standard model structures on 8¢, the symmetric powers of a cofibrant
object are not cofibrant (or at least not known to be). The situation is reminiscent
of the theory of unbounded operators, in which a domain of definition needs to be
specified, and in which one can run into trouble trying to compose operators. It
might be possible to find a model structure whose collection of cofibrant objects is
preserved by all of these constructions. But this is more than is really required.

This is a situation where the language of model categories tends to obscure the
basic task at hand. What is needed is to determine, for a given functor, a homo-
topically wide full subcategory on which the functor preserves weak equivalences.
This problem depends only on the weak equivalences, and is most naturally con-
sidered in the context of homotopical categories. With this in mind we begin our
work using homotopical categories, where the entire focus is on weak equivalences
and derived functors, and put off introducing a model category structure until it is
really needed.

Here is a summary of the contents of this appendix. In §B.1] we review the the-
ory of homotopical categories. Section [B.2]introduces various notions of “flatness,”
which depend only on the class of weak equivalences, and play an important role in
determining the homotopical properties of various functors. In §B.3 we develop a
considerable amount of the stable homotopy theory of 8¢ using only the language
of homotopical categories. This includes most of the results used in §2.2.5 to verify
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Sp$-Sp§. Our analysis is facilitated by an approximation 758% to ho 8% which
we study as a homotopical category in its own right. To go further it is helpful to
have a model structure around and in §B.4] we define the positive complete model
structure on 8. This is a variation on the positive stable model structure of [48]
having the convenient property that indexed wedges and smash products of cofi-
brant objects are cofibrant. Sections and describe the homotopy properties
of indexed smash and symmetric powers. Section contains a proof that the
forgetful functor comm 8% — 8% creates a model structure. The proofs of this
that appear in the literature are incomplete, and it does not seem possible to give
a complete proof without first analyzing the homotopy properties of indexed smash
products. Section [B.8 contains the important result that the formation of indexed
smash products is homotopical on a subcategory of 8¢ containing both the cofi-
brant objects and the spectra underlying cofibrant commutative rings. This result
is crucial for making use of the norm functor and is part of the reason that we work
outside of the framework of model categories. Sections [B.1(] and [B.11] contain re-
sults on the geometric fixed point functor and its interaction with the constructions
described above. Finally, Section contains a construction of the real bordism
spectrum M Ug on which all of the results of this paper are based.

B.1. Homotopical categories and model categories. We begin by reviewing
some notions from [19].

Definition B.1. A homotopical category is a category C equipped with a class of
morphisms called weak equivalences which contains all identity maps, and satisfies
the two out of siz property described below.

The two out of six proper asserts that in the situation
u v w
o — 06— 06— 0
if vu and wv are in W then so are u, v, w, and vwu. It implies the “two out of

three” property (that two of three maps in composition being weak equivalences
implies the third is), and that isomorphisms are weak equivalences.

Remark B.2. If the weak equivalences have the property that a map is a weak
equivalence if and only if some functor applied to the map becomes an isomorphism,
then identity maps are weak equivalences, the two out of six property automatically
holds, and retracts of weak equivalences are weak equivalences.

Suppose that C is a homotopical category.

Definition B.3. A homotopy functor is a functor F' : C — D with the property
that F'(w) is an isomorphism whenever w € W.

There is a universal homotopy functor L : C — hoC called the the localization of
C with respect to VWW. It is characterized uniquely up to unique isomorphism by the
following universal property: for every category D, and every homotopy functor
F : C — D there is a unique functor hoC — D making the diagram

¢ —tshoc

BN

D
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commute. While this characterization may seem stronger than is natural for char-
acterizing an arrow in a 2-category, it simplifies the presentation. The difference
between this and the 2-categorical formulation amounts to the convention that the
map C — hoC be the identity map on objects. The category hoC is the homotopy
category of C. Since the localization functor L is the identity map on objects, it
tends not to appear in notation.

Two issues emerge when working with homotopical categories. One is to find
a description of hoC(X,Y) and the other is to describe conditions under which a
functor F' : C — D between homotopical categories induces a functor ho F' : hoC —
hoD. For the first question the following can be helpful.

Proposition B.4. The transformation C(X, —) — hoC(X, —) is the universal
natural transformation from C(X, —) to a homotopy functor.

Proof: This is one situation where it is clearer to actually make use of the
notation L : C — hoC. Spelled out, the assertion is that if F' : C — Sets is a
homotopy functor and C(X, —) — F a natural transformation, then there is a
unique dotted arrow making the diagram

(B.5) C(X, —)—;F

-
-
L ~
~
-

hoC(LX, L(—))

commute. Before describing the proof we make an observation about the property
characterizing the functor L : C — hoC. For homotopy functors F' and G on C, this
property supplies unique factorizations F = F o L and G = G o L. It also implies
that composition with L gives a bijection between the set of natural transformations
G— Fand G — F.

With this in mind we now turn to the proof of the proposition. By the Yoneda
Lemma, the horizontal arrow in (BA) is given by an element of F(X). By the
remark above, the set of natural transformations

hoC(LX,L(—)) > F
is in bijection with the set of natural transformations
hoC(LX, —) = F

which, again by Yoneda, is in one to one correspondence with the elements of

F(LX) = F(X). The map between these sets corresponding to the two ways of
going around (B.3)) is the identity. O

Corollary B.6. Suppose that C is a homotopical category, and that X € C has
the property that C(X, —) is a homotopy functor. Then the natural transformation
C(X, —) = hoC(X, —) is a bijection.

Proof: Immediate from Proposition [B.4] O

For the second question, there is an apparatus of definitions to organize the
situation.
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Definition B.7. A functor between homotopical categories is homotopical if it
sends weak equivalences to weak equivalences.

By the universal property, a homotopical functor F' : C — D induces a functor
hoF : hoC — hoD. Furthermore, adjoint homotopical functors induce adjoint
functors on the homotopy categories. But there are more general situations under
which such a functor is induced. Suppose that F' : C — D is a functor between
homotopical categories and that one can find a subcategory C' C C on which F is
homotopical (where the weak equivalences in C’ are taken to be those morphisms
which are weak equivalences in C). Then F' induces a functor

hoC’ — hoD.

If, in addition, hoC' — hoC is an equivalence of categories, then one gets an induced
functor hoC — hoD by composing with an inverse to this equivalence.

The situation becomes more manageable when there is a pair (r,s) consisting
of a functor r : C — C with the property that F o r is homotopical, and a natural
weak equivalence s : r — Id. In that case C’ can be taken to be the full subcategory
generated by the image of r, the induced functor LF' : hoC — hoD can be computed
as

LFX = For(X),
and because of s, comes equipped with a natural transformation between the two
ways of going around the diagram

c—2 .p

/l

|

hoC ——=hoD .
LF

Together with this transformation, LF is characterized by a universal property. It
is most easily stated if we overload some of the notation by using the symbol F' to
denote the composite functor

LD hoD

and identify functors hoC — ho D with homotopy functors C — hoD. With these
conventions we may regard the transformation 7" as going from LF to F

T:LF — F.

The universal property is that if G : C — hoD is a homotopy functor and S : G — F
is a natural transformation, then there is a unique natural transformation G — LF
making

G ——=LF

E
F
commute. Put differently, LF is the closest homotopy functor to the left of F'.
The functor characterized by the above properties is the left derived functor of
F. Tt is guaranteed to exist when F' is left deformable in the sense that there is a
pair (r,s) as above, and F o r is homotopical.

A common situation arises when the weak equivalences on C refine to a model
category structure, and F' takes weak equivalences between cofibrant objects to
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weak equivalences. In that case F' is left deformable, and one may take (r, s) to be
a functorial cofibrant replacement.

There are evident dual notions of a right deformable functors F and a right
derived functor RF. For more on the definition of derived functors the reader is
referred to [61] for the case of model categories, and to [I9, Chapter VII] for the
more general case of homotopical categories.

When

F:CsSD:G
are adjoint functors between homotopical categories, and F' is left deformable and
G is right deformable, then the derived functors

LF:hoC S hoD: RG

are adjoint. See [19, Chapter VII, §44].

It is common, when there is no confusion likely, to drop the L from LF and
not distinguish in notation between a functor and its derived functors. We follow
this convention in the main body of the paper, where the emphasis is on homotopy
theory.

B.2. Flat maps. The notion of a flat map and a flat functor was introduced in the
unpublished manuscript [29] in order to isolate useful classes of maps and objects on
which left derived functors can be computed. Though the original context involved
model categories, the definitions involve only the weak equivalences and belong most
naturally to the theory of homotopical categories. The dual notion was coined a
“sharp map” by Charles Rezk, and used for a different purpose in [65].

Definition B.8. A functor F': C — D between categories with weak equivalences
is flat if it is homotopical and preserves colimits.

Typically the functor F' will be a left adjoint, and so will automatically preserve
colimits.

Definition B.9. Suppose that C is a homotopical category possessing small colim-
its. Amap f: A — X in C is flat if for every A — B and every weak equivalence
B — B’, the map
XUB—XUB
A A

is a weak equivalence.

In other words a morphism f is flat if and only if “cobase change along f”
preserves weak equivalences. Since cobase change is a left adjoint this is equivalent
to the flatness of the cobase change functor.

Ezample B.10. A model category is left proper if and only if every cofibration is
flat.

Proposition B.11. i) Finite coproducts of flat maps are flat.
ii) Composites of flat maps are flat
iii) Any cobase change of a flat map is flat.

iv) If a retract of a weak equivalence is a weak equivalence then a retract of a flat
map s flat.
O
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Proposition B.12. Suppose that

X1<b—A1—b>Y1

Xo=—— Ay —1 5,

is a diagram in which Ay — Ys and both maps in the top row are flat. If the vertical
maps are weak equivalences, then so is the map

X Y; X Y5
1}1{ 11— 21522

of pushouts.

Proof: First suppose that A; = As = A. Then
XUy - X1 UY,
1T R
is a weak equivalence since A — X is flat. The map X; — X, LAJ Y5 is flat, since it
is a cobase change of A AN Y5 along A — X;. But this implies that

XiYYe— X U (Xlgyz) = XYY,

is a weak equivalence. Putting these together gives the result in this case.
For the general case, consider the following diagram

X1 A1 }/1

]

X1UAy=—A——= AU

X As Y, .

The flatness of the maps A; — X; and A; — Y7 implies that the upper vertical
maps (hence all the vertical maps) are weak equivalences, and that the maps in the
middle row are flat. It also implies that

Ai—-XiUY;
Ay
is flat. Since A; — As is a weak equivalence, this means that
XU =AU (X; UY,
Ly 2A1<1A11)
is a weak equivalence. But this is the map from the pushout of the top row to
the pushout of the middle row. By the case in which A; = As, the map from

the pushout of the middle row to the pushout of the bottom row is a also a weak
equivalence. This completes the proof. (|
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Remark B.13. If C has the property that every map can be factored into a flat map
followed by a weak equivalence, then the above result holds with the assumption
that only one of the maps in the top row is a weak equivalence. Suppose for instance
that it is the map A; — X, and factor A; — Y7 into a flat map A; — Y] followed
by a weak equivalence Y{ — ¥; Now consider the diagram

X1<—A1—>Y1

|1

Xl%Al ﬁyl

Lok

XQ%AQ?YYQ.

By Proposition [B.12] the map from the pushout of the top row to the pushout of
the middle row is a weak equivalence, as is the map from the pushout of the top
row to the pushout of the bottom row. The map from the pushout of the middle
row to the pushout of the bottom row is then a weak equivalence by the two out
of three property of weak equivalences.

Remark B.14. In the category 8¢ equipped with the stable weak equivalences
(B3, the h-cofibrations will turn out to be flat. The mapping cylinder con-
struction then factors every map into a flat map followed by a weak equivalence,
so Remark [B.13] applies.

Now suppose that (C,®,1) is a closed symmetric monoidal category, equipped
with a class W of weak equivalences, making C into a homotopical category.

Definition B.15. An object X € C is flat if the functor X ® (—) is flat.

Showing that a symmetric monoidal structure on C induces one on hoC essen-
tially comes down to exhibiting enough flat objects in C. In §B.3.7 we will show
that the cellular objects of 8¢ are flat.

Remark B.16. Suppose that every object Z € C admits a weak equivalence equiva-
lence Z — Z from a flat object Z. If X — Y is a weak equivalence of flat objects,
sois X NZ — Y A Z for any Z. This follows from the diagram

XANZ—"sXNANZ

4

YANZ—=YNZ.

B.3. Equivariant stable homotopy theory. The weak equivalences were defined
in §2.2.4 as the maps inducing isomorphisms of stable homotopy groups. Equipped
with them 8¢ becomes a homotopical category, and the functor 8¢ — ho 8% is de-
fined. In this section we establish many of the basic properties of ho 8¢, including
most of the results used in §Z.2.5 to verify SpF-Sp§ of §2.2.11

B.3.1. Stable weak equivalences and basic homotopical functors. We begin with
some basic homotopical functors.
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Proposition B.17. The formation of filtered colimits along objectwise closed in-
clusions is homotopical.

Proof: This is immediate from the fact that formation of homotopy groups
commutes with filtered colimits of closed inclusions. (Il

Since h-cofibrations are objectwise closed inclusions (Lemma [A70), Proposi-
tion [B.17 applies to the formation of filtered colimits along h-cofibrations.

The following three results, which are part of [48, Theorem II1.3.5] (see also [49,
Theorem 7.4 iv)]), imply that many basic functors are homotopical.

Proposition B.18. Suppose f : X — Y is a map and let ' — X be the homotopy
fiber, defined by the pullback square

F——PY

|

X —

!
in which PY is the path spectrum of Y. There is a long exact sequence

i w51l X 5 nflY -7l [ F— ...

Sketch of proof: This sequence is gotten by passing to the colimit from the exact
sequence

H H H H
"'—>7Tk+vFV—>7Tk+VXV—>7Tk+vyv—>ﬂ'k_1+vFV—>"' .

O

Proposition B.19. For any X, any H C G, and any k € Z the suspension map
X - W,?_HSl NX

is an isomorphism.

Sketch of proof: Choose an exhausting sequence {V;,} with the property that
Vo ®R C Vpp1. Then the map ﬂ',ﬂVnXVn — 7T1?+Vn+1XVn+l factors through the

suspension map wf+1+vn51 A Xv,,, and so the sequence for computing wfﬂSl ANX
threads through the sequence for computing wf X. (I

Proposition B.20. Let X — Y be an h-cofibration.
i) The map Y UCX — Y/X is a weak equivalence.
il) There is a natural long exact sequence of stable homotopy groups
sl X sy s (VX)) s al X —

in which the map 7Y — 7Y/ X is induced by the evident quotient map, and the
connecting homomorphism wa/X — wf_lX is induced by the maps

Y/X « YUCX - SX.

and the suspension isomorphism of Proposition [B.19.
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Sketch of proof: For the first part, since A — X is an h-cofibration, the map
XUCA — X/A is a homotopy equivalence, hence induces an isomorphism of stable
homotopy groups. The result can then be deduced from Proposition [B.I9 as in [44]
II1.2.1]. O

Corollary B.21. The h-cofibrations in 8¢ are flat. O

Proposition implies that the formation of mapping cones is homotopical
as is the formation of quotients of h-cofibrations. It also gives parts i) and iii) of
the Proposition below. Part ii) follows from the fact that the formation of unsta-
ble homotopy groups commutes with products and the fact that filtered colimits
commute with finite products.

Proposition B.22. i) For any any set of spectra {X,} the map

@ ﬂ'f Xo — wf \/ X
is an isomorphism, hence the formation of wedges is homotopical.

il) For any any finite set of spectra {X,} the map

Wf H Xy — H wf X
is an isomorphism, hence the formation of finite products is homotopical.

iii) For any finite set of spectra { X} the map

V Xo = [[ Xa

is a weak equivalence.
O

Corollary B.23. The category ho 8 is additive, and admits finite products and
arbitrary coproducts. The coproducts are given by wedges and the finite products by
finite products.

Proof: Let’s begin with the case of coproducts. Let J be a set. The adjoint
functors

\/ : (SG)J = 8% : diag
are homotopical by Proposition [B.22] They therefore induce adjoint functors
\/ : (hoSG)J = ho8Y : diag

on the homotopy categories. This shows that arbitrary coproducts exist in ho 8¢
and that they may be computed as wedges. A similar argument shows that finite
products exist, are computed as products in 8¢, and that the map from a finite

coproduct to a finite product is an isomorphism. This latter fact implies additivity.
O

The “indexed” analogue of Proposition [B.22]is also true, and appears as Propo-
sition [B.56 It expresses a kind of “equivariant additivity” on ho8¢.
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B.3.2. Suspension and zero space. The suspension and zero space functors were
defined in Definition 2.7l Formation of the suspension spectrum is nearly homo-
topical.

Proposition B.24. The suspension spectrum functor is homotopical on the subcat-
egory of non-degenerately based G-spaces. The right derived functor RQ>*°X may
be computed as

RQ*X = holim Q" Xy,
where {V,,} is any choice of exhausting sequence, and Q¥»(—) is the G-space of
non-equivariant maps.

Proof: The assertion about suspension spectra follows from the fact that if
K — L is an equivariant weak equivalence of non-degenerately based G-spaces,
then so is

SVYANK —SYAL
for any representation V. This reduces to the statement that for every H C G, the
map

H H

SVUANKHE 5 SV ALY

is a weak equivalence, assuming K — LH is. But this is a standard fact. The
functor RQ>*X = holig OV Xy, is clearly homotopical, so what is needed for the
second assertion is to construct a functorial weak equivalence X — X', in which
X’ has the property that the map

RO®X' — Q*X’
is a weak equivalence. One way to do this is to define X — X' by Xy —

holim Q" Xyev, = X{,. (One can also take X’ to be the functorial fibrant

replacement coming from the small object construction in the positive complete
model structure of §B.4.1]) O

Adding a “whisker” provides a left deformation to ¥°°, and the natural trans-
formation X — X' appearing in the proof above gives a right deformation of Q°°.
The derived suspension spectrum and zero space functors therefore induce adjoint
functors on the homotopy categories

LY® :hoT% = ho8¢ : RQ™.

B.3.3. An approzimation to the homotopy category. Our further analysis of ho 8¢

is facilitated by an approximation, 75t8¢.
Let
(B.25) ey STV ASY = 80

be the map adjoint to the identity map of SV. Associated to a linear isometric
embedding ¢t : V — W is a map

(B.26) STWASY 5 S8V ASY
One way to describe it is to note that the space of such maps is the space of
equivariant maps
S = (S7V AS)w,
and that
(S7V ASY)Yw &~ Thom(O(V,W); (W = V)@ V) =~ OV, W)+ A SV.
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The map (B.26) corresponds to smashing the identity map of S with the map
5% — O(V,W)$ sending the non-base point to t. The map (B:26) can also be
expressed as Id Aey after rewriting the domain as

STVASYASTYASY,
with U = W —#(V). When V' < W the fixed point space O(V,W)% is connected,

and so the homotopy class (B.26)) is independent of the choice of t.
For X,Y € 8% let

18X, Y) = limmo8“ (S~ A SV A X,Y),
v
in which the limit is taken over the partially ordered set of representations of G
(§ZZ4). We wish to make 758%(X,Y’) into the morphisms in a category. For this
we need to define the composition law. An element f € 7%8% is represented by

amap fyr : STVASYAX = Y. Given f € m8%(X,Y) and g € 7'8%(Y, 2)
represented by

fv:STVASYAX Y
gw :STVASYAY -5 Z
the composition g o f is defined to be the equivalence class of the map
(go PHlway : STVEV ASVEV A X - 7
constructed from the isomorphism
STWEVANSWOV W ASV NSV ASY
and the composite

STWASWASVASY AX MV, g-W AW Ay 27, 7

Associativity of the composition follows from the associativity of the smash product.

Definition B.27. The category 75'8% is the category whose objects are those of
8%, with morphisms 75'8%(X,Y), and the composition law described above.

One thing that makes m5'8% so useful is that the hom sets are easy to describe,
and yet the functors Wf factor through it and are corepresentable.

Proposition B.28. For all k € Z, there is a natural isomorphism

(B.29) 7189 (G/Hy A SHY) ~ 7l (V).

Proof: Suppose k > 0. Then
w8 (G/Hy N S*Y) = limmo8P(S™Y A SV AG/Hy ASEY)
= limm8" (S~ A SV A S*Y)
= limmo 77 (SY A S*, Yy)
= HEWI?JFVYV =Y.
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Similarly,
T8 (G/Hy NSTFY) = limmo8Y (S~ ASY AG/H ASTRY)
= lim m8" (S~ A SV ASTHY)
= limmo T (S A S*, Yv14)

o H o H _ _H
= hﬂ”v Yvik = h_rr>1 Ty _pYw = 72, Y.
% Wk

]

Proposition [B.28] implies that a map X — Y € 8% which becomes an isomor-
phism in 75'8 is a weak equivalence. An important example is

Proposition B.30. Suppose that V is a representation of G. For every X, the
map

(B.31) STVASYAX - X

is an isomorphism in w°'8Y, hence a weak equivalence.

Proof: We will show that for all Y, the map
89X, Y) = 8% (ST A SV A X,Y)
is an isomorphism. By definition,

(B.32) 89X, Y) =lim(S™" ASY AX,Y),
w

while
88TV ASY AXY) =1limmo 89(STV ASY A STV ASY AXY).
U

Writing W = U@V and using the identification S~ ASW ~ S"UASUASTVASY,
this last colimit may be replaced by

limy 108 (S W ASY AXY),

w>V
since the set {U | U @ V > V} is cofinal in the poset of all representations. But
this clearly coincides with (B:32)), since {W | W > V'} is also cofinal in the poset
of representations. O

Remark B.33. The weak equivalence (B.31)) is often written in the form

STVEWANSYAX -5 STV AKX,

This is gotten from (B.31)) by writing S=VeW as S=V A S~W and writing the map
as
STWASYA(STVAX) = (ST AX).

Corollary B.34. Suppose that V is a representation of G. Smashing with SV and
S~V are inverse equivalences of T5'8C. O

Remark B.35. Corollary [B:34] does not directly imply the analogous statement for
ho8%. For that one needs to know that smashing with SV and S~V are homotopi-
cal. This will be proved in §B.3.5
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One consequence of Corollary[B.34]is that 758 is tensored over the equivariant
Spanier-Whitehead category SWC defined in §22.11 The main point is to show that
amap K — L in SWY gives a natural map X A K — X A L in 75¢8%. For this,
suppose that the map K — L is represented by a map of spaces S¥ AK — SV A L.
This latter map gives us an element of

T8 X ANSY ANK, X ASY AL)

and hence an element of m'8%(X A K,Y A L) under the isomorphism of Corol-
lary [B:341
This fact leads to a form of Spanier-Whitehead duality in 75t8%. Suppose that

K is a finite G-CW complex, and that L is a “V-dual” in the sense that there is a
representation V' of G and maps in sSW¢

KAL—SY
SV - LAK
with the property that the composites
SYANL—-LANKAL—LASY

KASY 5 KANLASY - SYAK

are the symmetry isomorphism. Then for X,Y € 758 the composite

(B.36) 789 (X, Y AK) = 8% (X AL,YAK AL)
S8 (X ALY ASY)~m8Y(S™V AX ALY)

is an isomorphism, by the standard duality manipulation.
Given X — Y € 8%, and any Z there is a long exact sequence

(B.37) - = 78%(Z,SF A X) = 78Y9(Z, S NY) = 7589 (Z, 8 AY UCX)
— 89 (Z, SFHIAX) o

As in the proof of B220] this is proved with the argument of [44] 111.2.1], using the
analogue of Proposition given as the special case of Corollary [B.34] in which
V is trivial.
There is also an easier long exact sequence in the other variable. Let A — X be
amap in 8¢ and Y any spectrum. Then there is a long exact sequence
(B.38)
o m8G(SFAX UCAY) = m8C(SFAX)Y) = m8Y(SFAAY) — -

Under the isomorphism given by Proposition [B.28 this is the long exact sequence
of Proposition [B.18 associated to the fibration sequence of function spectra
yXueA L yX oy,

B.3.4. 78 as a homotopical category. We now study 7%*8¢ as a homotopical
category, and in doing so establish the fact that the functor SWY = ho 8% is fully
faithful.

By Proposition [B28 the functors 7 factor through 75'8“. We make 7**'8¢ into
a homotopical category by defining a map to be a weak equivalence if it induces
an isomorphism in 7} for all H C G and all k € Z. Since a map in 8¢ is a weak
equivalence if and only if it is so in 7%¢8%, the canonical functor

(B.39) ho8Y — ho '8¢
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is an isomorphism. Corollary [B.6] asserts that if X € 8 happens to have the prop-
erty that 75t8% (X, — ) is a homotopy functor, then 758%(X, —) — hom*t8%(X, —)
is an isomorphism. Combining this with the isomorphism (B.39)) gives

Lemma B.40. If X € 8% has the property that 7%'8%(X, —) is a homotopy func-
tor, then for all Y, the maps

(B.41) m8%(X,Y) = hom*'8%(X,Y) < ho8%(X,Y)

are isomorphisms, and so ho 8% (X,Y) may be computed as w8 (X,Y).

Proposition B.42. For k € Z the maps (B29) and (B4 give isomorphisms
TH X ~ m%'8Y(G/Hy A S*, X) ~ho8%(G/H, A S*, X).

Proof: The first isomorphism is given by Proposition [B.28, and it implies that
7t8E(G/H, A S*, X) is a homotopy functor of X. Lemma [B.40] then gives the
second isomorphism. ([

Corollary B.43. A map X — Y in 8% is a weak equivalence if and only if it
becomes an isomorphism in ho 8. O

Proposition B.44. When X is of the form X = S* A K with K a finite G-CW
complex, and { € Z, the functor n%'8%(X, —) is a homotopy functor, and so for all
Y ho8%(X,Y) may be computed as 758 (X,Y).

Proof: Working through the skeletal filtration of K and using the exact se-
quence (B38) reduces the claim to the case in which K = G/H; A S™. But that

case is Corollary [B.2§] ([l
Note that

m'89(SO N K, SO N L) =limm TE(SY A K, SV A L).

When L is a finite G-CW complex, this is the definition of SWG(K, L). Thus
Proposition [B.44] contains as a special case

Proposition B.45. The functor ¥°° induces a fully faithful embedding SWE —
ho 8¢. O

B.3.5. Equivariant additivity. Our next goal is to show that the formation of in-
dexed wedges in 8¢ is homotopical. We will do this, as in [4], via a Spanier-
Whitehead duality argument. To make this work we need to show that smashing
with SV and S~ are homotopical. As mentioned in Remark [B.35] this implies
that they induce inverse functors on ho8%. It also lays the groundwork for our
investigation of the homotopical properties of the smash product in §B.3.7

Lemma B.46. For a map X — Y in w58%, the following are equivalent
i) The map X =Y is a weak equivalence.
ii) For all H C G and all k € Z the map
NG /Hy AS*, X)) — n°H(G/Hy AS®)Y)

is an isomorphism.
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iii) For a fized representation V of G, all H C G and all k € Z the map
7 G/Hy NSF NSV, X) = nY(G/H A SPASY,Y)

is an isomorphism.

Proof: The equivalence of the first two statements in Proposition[B.42] and they
imply the third by Proposition [B.44l That the third statement implies the other
two is proved by induction on |G/, the assertion being trivial when G is trivial. We
may therefore assume that part iii) holds, and that part ii) holds for all proper
H C G. Let Vj C V be the subspace of invariant vectors. Using the long exact
sequence (B.38), and working by downward induction through an equivariant cell
decomposition of SV, one sees that for all k € Z and all H C G, our assumptions
imply that the map

Y G/Hy ANSFASY, X)) — 7 (G/Hy ASFASYY)

is an isomorphism. But in 758¢ there is an isomorphism S* A SY0 ~ S*+¢ with
¢ = dim Vj, so this implies part ii). O

We next show that both smashing with SY and smashing with S~V are ho-
motopical functors. Combined with Corollary [B.34] this implies that they induce
inverse equivalences of ho 8¢.

Proposition B.47. Let V' be a representation of G. The following conditions on
amap X =Y € 7°t8Y are equivalent

i) The map X =Y is a weak equivalence
ii) The map SV A X — SV AY is a weak equivalence

iii) The map STV AX — S~V AY is a weak equivalence.

Proof: Since smashing with SV is the inverse equivalence of smashing with S~V
it suffices to establish the equivalence of the first two assertions. Now for any X,
smashing with SV gives an isomorphism

WG /Hy ANSF, STV AX) = 7N (G/H NS ASY,X),
so the equivalence of the first two assertions is a consequence of Lemma [B.46l O
Corollary B.48. Suppose that V is a representation of G. Smashing with SV and
SV are inverse equivalences of ho 8. O

With Proposition [B.47 in place, we have the following generalization of Propo-
sition [B.44

Proposition B.49. When X is of the form X = S~V AK, with K a finite G-CW
complex, the functor n5'8% (X, —) is a homotopy functor, hence

8% (X, —) = ho8Y(X, —)

is an isomorphism.
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Proof: By Corollary [B.34] there is an isomorphism.
8C(STVAK, (=)~ 78% (K, 5V A (—)).
But SV A (—) is a homotopy functor by Proposition B.4T and 7'8% (K, (—)) is a
homotopy functor by Proposition [B.44l O
Expanded out, Proposition [B.49] gives the formula
ho8%(S™V AK,Y) = 1i_n>1[SW AN K, Yvaw]©
w

advertised in §2.2.4 as [I7). Taking SV A K to be S™V ASKANG/H, k € Z,
this specializes to the isomorphism
(B.50) ho8¥(S™V ASPANG/HL, X) = lim 7y Xvew.

W>—k
In particular, the expression ligw>_ k
This fact is used in the proof of Proposition [B.69] which plays a fundamental role
in establishing the positive complete stable model category structure on 8.

The fact that 75¢8C is tensored over SW® also gives control over homotopical
properties of the smash product and of indexed wedges.

Corollary B.51. If X is of the form S™W A K, with K a G-CW complex and W

a representation of G, then the functor

(=)AX:8Y 8¢

W%+kXV@W is a homotopy functor of X.

is homotopical.

Proof: By Proposition[B.17we may assume K to be finite. In addition, it suffices
to show that smashing with S™" A K is homotopical as a functor from 7%8% to
itself. Suppose that Y — Y’ is a weak equivalence. Let L € SW be a V-dual of
K. By the isomorphism of Proposition [B:28 it suffices to show that for all H C G
and all k € Z, the map

T8 (G/H N SF Y ANX) — n%8%(G/H,y A SF Y A X)

is an isomorphism. Using the first part of the duality isomorphism (B.36]), we can
identify this map with

' 8(G/HL NSEANSY AL SV AY) = 7589 (G/Hy ANSEASY AL, SV AY),
and finally by Proposition [B.44] with

ho8Y(G/Hy NS* ANSW AL, SV AY) = ho8Y(G/H NS* NSV AL, SV AY').
But this latter map is an isomorphism since SYAY — SV AY” is a weak equivalence

(Proposition [B:47). O

Proposition B.52. Let J be a finite G-set. For any X € 8, the canonical map
\/jeJ X = HjeJ X is an isomorphism in 7'8%, hence a weak equivalence.

Proof: The finite G-sets are self-dual in SWE. Since

\V X~ JnX,
jeJ
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the result follows from the duality isomorphism
m89(Z, Ty AX) m 89 (T A Z2,X) ~ 7892, [ X)
jeJ
once one checks that the composite map is the same as the one coming from the

canonical map from the (constant) finite indexed wedge to the finite indexed prod-
uct. We leave this to the reader. g

Corollary B.53. Let J be a finite G-set and X an equivariant J-diagram. The

map
\/ Xj — HXJ

jeJ jed
is an isomorphism in w°'8Y, hence a weak equivalence.

Proof: Let U : 8¢ — 8B7C be the pullback map associated to the unique
equivariant map J — pt. The indexed wedge is the left adjoint to U and the indexed
product is the right adjoint. The natural transformation from the indexed wedge
to the indexed product is easily checked to satisfy the condition of Lemma [B.54]
below. This reduces us to checking the case in which the J-diagram is constant at
a G-spectrum X. But that case is covered by Proposition [B.52 (I

‘We have used

Lemma B.54. Suppose that U : D — C is a functor with a left adjoint L and right
adjoint R, and that L — R is a natural transformation. If the composition

(B.55) Id - UR —1d

of the adjoint to L — R with the counit of the adjunction is the identity, then
L — R is a retract of LUR — RUR.

Proof: Just apply L — R on the left to the composition (B.55) to get

L LUR L
R—— RUR——R.

O

Corollary [B.53] implies the only non-trivial part of the following “indexed” ana-
logue of Proposition [B.22)

Proposition B.56. i) The formation of finite indexed products is homotopical.
i) Suppose that J is a finite G-set, and X : ByG — 8 is a functor. The map
VR | B¢
jed JjeJ
is a stable weak equivalence in 8. Hence the formation of finite indeved wedges is

homotopical.

iii) The formation of all indexed wedges is homotopical.
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B.3.6. Change of group. Let H C G be a subgroup. Specializing Proposition [B.56]
to the case J = G/H gives the homotopical properties of the “change of group”
functors. The functor i%; : 8¢ — 8 is homotopical by definition, and so induces a
functor on the homotopy categories

it :ho8Y% — ho8™,

Taking J = G/H in Proposition we see that the left and right adjoints to
i}, are also homotopical, and that the canonical natural transformation between
them is a weak equivalence. They therefore induce left and right adjoints to the
restriction map on the homotopy categories, and the canonical map between them
is an isomorphism. This is the Wirthmdiiller isomorphism [77, [].

B.3.7. Weak equivalences and the smash product. The smash product is not known
to preserve weak equivalences, but it does so in good cases.

Definition B.57. An equivariant orthogonal spectrum is cellular if it is in the
smallest subcategory of 8¢ containing the spectra of the form G, I/L\I S=V A Sk with

V' a representation of H and £ > 0 and which is closed under the formation of
arbitrary coproducts, the formation of mapping cones, and the formation of filtered
colimits along h-cofibrations.

The small object argument shows that every X receives, functorially, a weak
equivalence X — X from a cellular X.

Proposition B.58. If K is cellular then K s flat: the functor X — X AN K
preserves weak equivalences.

Proof: By Corollary [B.51] and the fact that the formation of indexed wedges is
homotopical (Proposition [B.56G) the result is true when K = G4 A S=V A S*. The

functor X A K is built from

X NGy SV A Sk
by forming wedges, mapping cones, and filtered colimits along h-cofibrations, all of
which are homotopical by Proposition [B.56 O

Since every object is weakly equivalent to a cellular object, and cellular objects
are flat, Remark [B.16] implies

Proposition B.59. Suppose that X — Y is a weak equivalence of flat spectra.
Then for any Z, the map X NZ — Y AN Z is a weak equivalence. O

Let 8§ C 8% be the full subcategory of flat objects, considered as a homotopical
category using the stable weak equivalences. Since every object of 8¢ is weakly
equivalent to an object of Sg , the functor

(B.60) ho 8§ — ho8Y
is an equivalence of categories. The above results show
Proposition B.61. The smash product functor

8G x 89 — 8¢

is homotopical. ([
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The equivalence (B.60) and Proposition [B.58 are enough to show that the smash
product descends to give ho 8¢ a symmetric monoidal structure, and that the map
SWY — ho 8% is symmetric monoidal. For a more refined statement, see §B.4.2]

B.4. Spectra as a model category.

B.4.1. The positive complete model structure. Let Acor be the set of maps
(B.62) Acot = {G4 A STVASTT 5 Gy A S~V ADY}

with n > 0, H a subgroup of G and V a representation of H containing a non-zero
invariant vector. We define the class
8 C 8¢

cof

of positive complete cofibrations to be the smallest collection of maps in 8 con-
taining the maps in (B:62) and which is closed under coproducts, cobase change
along arbitrary maps, and filtered colimits. A positive complete fibration (or just
fibration) is a map having the right lifting property with respect to the class of
maps in Sfof which are stable weak equivalences.

Proposition B.63. The category 8¢ equipped with the stable weak equivalences,
the positive complete cofibrations and the positive complete fibrations forms a (cofi-
brantly generated) Quillen model category.

We will call this model structure the positive complete model structure, and when
we need to recruit a model structure for some task, this will be the one we use.
Henceforth the terms “cofibration,” “fibration” and “weak equivalence” will refer
to “positive complete cofibration,” “positive complete fibration,” and “stable weak
equivalence.”

Remark B.64. Since the maps in Acof are mapping cylinders they are h-cofibrations.
This implies that the cofibrations in 8¢ are h-cofibrations (cf. [48, Lemma II1.2.5])
and hence flat. The cofibrant objects in 8 are cellular hence flat.

The “positive” condition is needed for the study of commutative algebras. On
the other hand, it creates some peculiarities in the model structure. For example,
the zero sphere S° is not cofibrant, nor is S A K when K is a G-CW complex. The
cofibrant replacements are given by

STIAS'AK — SYAK.
This means that the adjunction
no L TY 5 8¢ 0,

is not a Quillen adjunction, even though the left adjoint preserves all weak equiva-
lences between non-degenerately based G-spaces, and so barely needs to be derived.
The positive complete model structure does not quite appear in the literature.
It is closely related to the positive stable model structure of [48].
The positive complete model structure is cofibrantly generated. The set Acof is
the set of generating cofibrations. The set B,cyclic of generating acyclic cofibrations
consists of the analogous maps

(B.65) Gy A STVAITTY = Gy A STV AL
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together with the corner maps formed by smashing

(B.66) Gy A (STVEWASY) - Gy A sV

with the maps Sﬁ_l — D%. The H-representation V' is assumed to have a non-
zero invariant vector, while W need not. The map (B.66) is extracted from the
factorization

(B.67) STVEW AW 4 57V 4 57V

formed by applying the small object construction in 8, using the maps in Acos.

A map X — Y has the right lifting property with respect to the class of maps
Acor if and only for each H C G and each representation V of H containing a
non-zero invariant vector, the map Xy — Yy is an acyclic fibration in 7. Among
other things this implies that X — Y is a weak equivalence and that the map
SV 5 8 Visa homotopy equivalence. From this one concludes that a map
X — Y has the right lifting property with respect to Bacyclic if and only if for each
subgroup H C G and each representation V of H containing a non-zero invariant
vector, the map Xy — Yy is a fibration in 8, and for each representation W of
H the square

(B.68) Xy — Q" Xyew

.

Yy —— Q" Yyew
is homotopy cartesian in 7.

Proposition B.69. If a map X — Y is a weak equivalence and has the right lifting
property with respect to Bocyclic then it has the right lifting property with respect to
Acof'

Proof: We must show that the conditions imply that for each H C G and each
representation V of H containing a non-zero invariant vector, the map Xy — Yy
is an acyclic fibration in 7. Part of our assumption is that it is a fibration, so it
remains to show that it is a weak equivalence. Choose an exhausting sequence {V,, }.
Letting W range through this sequence in (B.68) leads to a homotopy cartesian
square

XV — > ho hﬂ QV"XV@Vn
YV ——=ho hﬂ QV" YVG}Vn .

Since X — Y is a weak equivalence, the rightmost vertical map is a weak equiva-
lence (by (B.50)), hence so is Xy — Y. O

Proposition B.70. Any cobase change along a map in Bacyelic 15 o weak equiva-
lence.
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Proof: Since the maps in Bacyclic are flat, it suffices to check that the maps in
Bacyclic are weak equivalence. The only ones for which this is not obvious are the
corner maps. Since they are flat, it suffices to check that the quotients

G p (STW/(STVEW ASY)) A D™ /S™
are weakly contractible. Since D™/S™ is flat, and G4 1/1\1 (—) is homotopical, it

suffices to show that }

S—W/(s—VEBW A SV)
is weakly contractible in 87, or, equivalently that the leftmost map in (B.67) is a
weak equivalence in 8¥. But that is a consequence of Proposition [B.30and the two
out of three property. O

Proposition B.71. A map X — Y is a fibration if and only if it has the right
lifting property with respect to Bacyciic

Proof: Suppose that A — B is an acyclic cofibration. Using the small object
construction with the maps in Bacyeiic factor it as A — B — B where A — B is a
filtered colimit of maps constructed by iterated cobase change along maps in Bacyclic
and B — B has the right lifting property with respect to Bacyciic. The map A — B
is a weak equivalence by Propositions and It follows that B — B is a
weak equivalence, and so by Proposition [B.69, has the right lifting property with
respect to Acor. This means that A — B is a retract of A — B. Since X — Y has
the right lifting property for A — B it also has this property for A — B. (|

The verification of the model category axioms is now completely straightforward
and left to the reader.
Let H C G be a subgroup. In the positive complete model category structures,
the restriction functor
it 0 89 — 8H
preserves weak equivalences, fibrations and cofibrations. This implies

Proposition B.72. Let H C G be a subgroup. The restriction functor and its left
adjoint form a Quillen pair

G+§(—):SH‘:>SG:2'§I,
as do the restriction functor and its right adjoint
it 8¢ = 8H . H (=);-
jeG/H
O

Corollary B.73. An indexed wedge of cofibrations is a coftbration. ]

Corollary [B.73lis one of our reasons for introducing the positive complete model
structure. The positive stable model structure of [48] does not have this property.

Associated to any map i : G’ — G of finite groups is a functor i* : 8¢ — 8¢,
This functor has both a left and right adjoint. The functor i* sends the generat-
ing cofibrations to indexed wedges of generating cofibrations, hence cofibrations by
Corollary Since it is a left adjoint it therefore sends cofibrations to cofibra-
tions. It also sends the generating acyclic cofibrations to weak equivalences. To see
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this note that the generators of the form X A (I_’f__1 — I7) are homotopy equiv-
alences hence go to homotopy equivalences. To check that the corner maps go to
weak equivalences, it suffices to show that the maps (B.66) go to weak equivalences.
Since SV — S Visa homotopy equivalence, this is equivalent to showing that
maps of the form

G+§(S*WNVASW)—+G+§S*V

go to weak equivalences. But these maps go to an indexed wedge of maps of the
form

(B.74) (S~V'EW AWy 5 57V

which are weak equivalences. Thus i* also sends acyclic cofibrations to acyclic
cofibrations. This gives

Proposition B.75. If i : G' — G is any map of finite groups, then the pullback
functor
8% 5 8¢
is a left Quillen functor.
For more along these lines see [48, Remark V.3.13]

B.4.2. Smash product. Equipped with the smash product and the positive complete
model category structure, 8¢ is a symmetric monoidal model category in the sense
of Hovey [32, Definition 4.2.6] and Schwede-Shipley [68]. This means that the
analogue of Quillen’s axiom SM7 holds (the pushout product aziom), and for any
cofibrant X, the map
SOANX — X

is a weak equivalence, where S° — S is a cofibrant approximation. As will be
apparent to the reader the proof applies equally well if “cofibration” is replaced by
“cellular.”

Proposition B.76. FEquipped with the smash product, the positive complete model
structure is a symmetric monoidal model category.

The positive complete model structure also satisfies the monoid axiom [69, Def-
inition 3.3].

Proposition B.77. If X — Y is an acyclic cofibration in 8%, and Z is arbitrary
then X NZ =Y N Z is a flat weak equivalence.

We have stated these together to slightly streamline the proof. When cofibrations
are flat, the monoid axiom implies the “weak equivalence” part of the pushout
product axiom once one knows the “cofibration” part. Indeed suppose A; — Bj is
an acyclic cofibration and Ay — By is a cofibration. Then the vertical arrows in
the diagram

A1 N Ay —— A1 N By
Bi NAy —— B1 A\ By

are weak equivalences by the monoid axiom, and all of the arrows are cofibrations
by the “cofibration” part (Remark [B.79). Since cofibrations are flat, the map from
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Aj A Bs to the pushout is a weak equivalence, and the desired weak equivalence
assertion then follows from two out of three.

Proofs of Propositions and [B.77: The unit axiom follows from Propo-
sition [B.59 since cofibrant objects are cellular, hence flat (Remark [B.64). The
pushout product axiom asserts that if fi; : Ay — B and fy : A5 — By are cofibra-
tions, then the corner map from the pushout of the left and top arrows in

(B?S) A1 A AQ —— A1 A BQ

L

Bl/\A2—>Bl/\B2

to the bottom right term is a cofibration, and is acyclic if one of f; or fy is. It
suffices to check the cofibration condition when f1, and f; are in Acof and so of the
form

G A SN (S = DF)
H,

G AST2A(ST = DY.
H>

But in that case the corner map is the smash product of G IQ\ S~V with G IQ\ S—V2
1 2

with the pushout product of ¥~ — D* and S*~' — D*. This is an indexed wedge
of cofibrations hence a cofibration. As remarked above, once Proposition [B.77 is
proved, we are done. Since X — Y is a cofibration it is an h-cofibration, so it
suffices to show that (Y/X) A Z is weakly contractible if Y/X is. But Y/X is
cofibrant, hence flat, so the claim follows from Proposition [B:59 O

Remark B.79. The special case of the pushout product axiom for * — A and *x — B
asserts that if A and B are cofibrant, then so is A A B.
Hovey [32, Theorem 4.3.2] now implies

Corollary B.80. The left derived smash product makes ho8® into a complete
symmetric monoidal category.

B.4.3. The canonical homotopy presentation. Let
e CVp C Vg C .

be an exhausting sequence of orthogonal G-representations, and consider the tran-
sition diagram

(B.81) SVt A Za(Viy Vag1) A Xy ——= S7Vn41 A X4

|

S~V A X, .
Write
W, = n+1l — Vo
for the orthogonal complement of V,, in V,,41. The inclusion V,, C V41 gives an
embedding

SW” — /G(Vn; Vn+1);
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and so from (B.8])) a diagram

S (Va®Wn) A §Wn A Xy, ——= S Vi A X,

|

S=Ve A X, .
Putting these together as n varies results in a system
(B82) A0<~—Bo—>A1g319A22329A3<N—Bg—>....

The system (B.82)) maps to X and a simple check of equivariant stable homotopy
groups shows that the map from its homotopy colimit to X is a weak equivalence.
Now for each n let C), be the homotopy colimit of the portion

(B83) A0<N—B0—>...—>An,1 <N—Bn,1 —>An

of (B:82). Then C,, is naturally weakly equivalent to 4, = S~V A Xy, , and the
C, fit into a sequence

(B84) Oo—)01—>02—>...

whose homotopy colimit coincides with that of (B:82). This gives the canonical

homotopy presentation of X. One can functorially replace the sequence (B.84)) with

a weakly equivalent sequence of cofibrations between cofibrant-fibrant objects. The

colimit of this sequence is naturally weakly equivalent to X. It will be cofibrant

automatically, and fibrant since the model category 8¢ is compactly generated.
We write the canonical homotopy presentation of X as

X ~ holim (S™V" A Xv,, et
VVl

or when more precision is needed, as a diagram

X + holim (™Y A Xv,)e — holim (™Y A X, et
Va Vn

with the subscript indicating cofibrant and cofibrant-fibrant replacement.

B.5. Homotopy properties of the norm. The purpose of this section is to
establish Proposition [B.108 which asserts that indexed smash products have a left
derived functor which may be computed on cofibrant objects. As will be apparent
to the reader, they can also be computed on cellular objects. Many of the technical
results in this section are also required for our analysis of symmetric powers and of
commutative algebras.

Before formulating our main results, we generalize the situation slightly.

B.5.1. Equivariant J-diagrams. Given a non-empty G-set J, consider the category
8BsG of functors ByG — 8. A choice of point ¢ in each G-orbit of J gives an
equivalence

SBJG ~ H SGt,
t

where Gy is the stabilizer of t. We give 887¢ the model structure corresponding
to the product of the positive complete model structures under this equivalence.
The model structure is independent of the chosen points in each orbit. We will
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refer to the model category 8587 as the model category of equivariant J-diagrams
of spectra.

To be more explicit, a map of J-diagrams X — Y is a weak equivalence if and
only for each j € J the map Xj — Y is a weak equivalence in §i. The generating

cofibrations are the maps whose j" component has the form

—V; m;—1 —V; m;
Gj"'l{l\js 7/\S+] _>Gj+l{l\js J/\DJrJ

with V; a representation of H; having a non-zero invariant vector. They can be
expressed without reference to points and stabilizers as an indexed wedge

(B.85) pl (87 A(SYT = DY)

with p: J' — J a finite surjective map of G-sets, and V' a G-equivariant orthogonal
vector bundle over J’ having a nowhere-zero invariant section. The generating
acyclic cofibrations are the maps of the form

plSTV AT 1Y)
and those constructed as the corner map formed by smashing
(B.86) P (STVEWASY = STV

with the maps S7~!' — D7. As in (B.66), the map (B.80) is extracted from the
factorization

(B.87) STVEW AW 5 57V 4 57V

by applying the small object construction in the category of equivariant .J ’_diagrams
using the generating cofibrations. The map S~ — SV is a homotopy equivalence.
If J — K is a map of finite G-sets, the restriction functor

SBKG N SB,]G

has both a left and right adjoint, given by the two Kan extensions. All three
functors are homotopical, and the both the restriction functor and its left adjoint
send cofibrations to cofibrations. This means that the restriction functor is both a
left and right Quillen functor.

Let p : J — K be an equivariant map of finite G-sets. The indexed smash
product gives a functor

pi\ — (_)/\J/K . SBJG N SBKG.

When J — K is the map G/H — pt this is the norm. The various homotopical
properties of indexed and symmetric smash products we require are most naturally
expressed as properties of (— )"/ /K Working fiberwise, establishing these reduces
to the case K = pt. To keep the discussion uncluttered we focus on that case in
this section, leaving the extension to the case of more general K to the reader.

B.5.2. Indexed smash products and cofibrations. Let p : J — pt be the unique
equivariant map and write the indexed smash product as (—)"’. Note that if V is
an equivariant orthogonal vector bundle over J then

(SfV)/\J _ Sf\/’,

where V' is the orthogonal G-space of global sections of V.
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Lemma B.88. Suppose that A — B is a generating cofibration in 88/C. The
indexed corner map s B — B is an indeved wedge

\/ SV A(SW)y — DW)y)
T

in which T is a G-set, V and W are equivariant vector bundles over I' and V has
a non-zero invariant section. In particular, 94B"’ — B’ is a cofibration.

Proof: This is a straightforward consequence of the distributive law (Theo-
rem [A.37) applied to (B.85), and the compatibility of the formation of 94B"/
with indexed wedges, as described at the end of A3l O

Proposition B.89. Suppose that J is a non-empty finite G-set. If X — Y is a
cofibration of equivariant J-diagrams, the indexed smash product

X/\J N Y/\J

is an h-cofibration. It is a cofibration between cofibrant objects in 8¢ if X is cofi-
brant.

Proof: The assertion that X"/ — Y/ is an h-cofibration is contained in Propo-
sition For the cofibration assertion we work by induction on |J|, and may
therefore assume the result to be known for any non-empty Jo C J and any H C G
stabilizing Jy as a subset. In particular, we may assume that if X is cofibrant, then
X0 is a cofibrant H-spectrum for any non-empty proper Jo C J and any H C G
stabilizing Jy as a subset.

We will establish the theorem in the case in which X — Y arises from a pushout
square of J-diagrams
|

X ——Y
in which A — B is a generating cofibration. We will show in this case that
XN — Y/ is an h-cofibration, and is a cofibration if X is cofibrant. Since the
formation of indexed smash products commutes with directed colimits and retracts,
the proposition then follows from the small object argument.

Give Y/ the filtration described in §A.3.4l The successive terms are related by
the pushout square

(B.90) \/ X" AoaBM —— \/ XMoaBh
J:J()HJl J:JOHJl
[J1]=n [J1]=n
fil, , Y fil, Y .

By Lemma [B.88, each of the maps
aAB/\Jl N B/\J1

is a cofibration. If X is cofibrant, then X "0 is either S° or cofibrant by induction,
hence
X/\J() /\aAB/\Jl — X/\J() /\B/\Jl
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is a cofibration by the pushout product axiom. Since indexed wedges preserve
cofibrations, the top row of (B.90) is then a cofibration and hence so is the bottom
TOW. (]

To show that the indexed smash product has a left derived functor we need
to augment Proposition and show that what when X — Y is an acyclic
cofibration, then X"/ — Y/ is a weak equivalence. This can be proved with the
the above argument once we know that the indexed corner maps d4B"/ — B/
associated to the generating acyclic cofibrations are weak equivalences. But the
generating acyclic cofibrations contain the maps of the form (B.8€]) so dealing with
them requires understanding something about indexed corner maps of fairly general
cofibrations. These can be studied as the indexed smash products of maps in a
different symmetric monoidal category.

B.5.3. The category of arrows. Let 8§ denote the category of maps X = (X — X;)
in 8¢, with morphisms the commutative diagrams. As mentioned in Remark [A.42]
8% can be made into a closed symmetric monoidal category by defining

(Xl — XQ) A (Y1 — }/2)
to be the corner map, from the pushout of the top and left arrows in

XiNYT—=Xo A

N

XiANYo—=XoAY,

to the bottom right corner. The tensor unit is * — S°.
We give 8 the projective model structure in which a map

(B.91) (X1 = X2) = (Y1 = Y2)
is a weak equivalence or fibration if each of X; — Y; is, and is a cofibration if both
X1 — Y7 and the corner map
(B.92) X5 )%J Yi =Y,
1

are cofibrations. An object X; — X5 is therefore cofibrant if X; is cofibrant and
X1 — X5 is a cofibration.

The model structure on 8¢ is compactly generated. The generating (acyclic)
cofibrations in 8§ are of two types. Type I are the maps

(K—-K)— (L—>1L)
and type II are the maps
(x> K)—= (x— L)
were K — L is running through the set Acor defined in (B.62)) (respectively Bacyelic)-

Proposition B.93. Equipped with the structure just described, 8§ is a symmetric
monoidal model category satisfying the monoid axiom.

Proof: The proof follows the proof Propositions [B.76] and [B.77, and, because of
the special nature of the generators, essentially reduces to it. It suffices to check
the “cofibration” assertion on generators. In each of the three cases (type I and
type I, type II and type II, and mixed type) the result reduces to the case of 8.
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Since the cofibrations are h-cofibration, the monoid axiom reduces showing that if
(* = %) = (X1 — X32) is an acyclic cofibration and (Z; — Z3) is arbitrary, then
both the domain and range in the corner map of

XiNZL——= X1 N2y

|

XQ/\Zl—>X2/\Z2

are weakly contractible. But by the monoid axiom for 8¢, every term in the diagram
is weakly contractible. The claim then follows since the left vertical arrow is an
h-cofibration, hence flat. As pointed out before the statement of Proposition [B.76]
this implies the “weak equivalence” part of the pushout product axiom. The unit
axiom is also straightforward and left to the reader. O

The proof of Proposition [B.93] is more or less completely formal, and can be
rewritten to apply to the arrow category of any symmetric monoidal model category.
This is done in the recent paper [31] of Hovey.

B.5.4. Indexed corner maps and cofibrations. Proposition[B.93]addresses the homo-
topy properties of ordinary smash products in 8. For the indexed smash products
we work in the arrow category Sf" ¢ of maps of equivariant J-diagrams, in the
projective model structure. Our aim is to establish Proposition [B.96] which gives
control over the indexed corner maps in 8¢ (Proposition [B.97). It is the analogue
in 857¢ of Proposition In preparation, we need to identify the generating
(acyclic) cofibrations. As mentioned in the previous section, those in 8§ are of two
types. Type I are the maps

(K—>K)— (L= L)
and type II are the maps

(* > K)—=(x— L)
were K — L is running through the set Acor defined in (B.62) (respectively Bacyelic)-
The generating (acyclic) cofibrations in Sf 7¢ can be taken to be the equivariant
J-diagrams consisting entirely of type I or type II generators.

Remark B.94. A map (B.9I) is an h-cofibration if both X; — Y; and the corner
map (B.92)) are. Since the cofibrations in 8¢ are h-cofibrations the same is true of
the cofibrations in 8.

Lemma B.95. If X — Y is a generating cofibration in the category of equivariant
J-diagrams in 8§, then the indexed corner map

axyl\J N Y/\J

is a cofibration between cofibrant objects in 8F.

Proof: First note that for generating cofibrations of type I, the corner map is
(Ox L™ — 0 L) — (LM — L)
and in type II it is
(x = Og L") — (x — L"),
The assertion therefore reduces to Lemma O
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Proposition B.96. Suppose that J is a finite G-set. If
X =Y
is a cofibration in 8 and X is cofibrant, then the indeved smash product
X/\J N Y/\J

is a coftbration between cofibrant objects.

Proof: The proof proceeds exactly as in the case of Proposition [B.89 The
filtration of §A-3.4] and induction on |J| reduce the problem to showing that the
indexed corner map (in 857%)

aAy/\J N B/\J

is a cofibration between cofibrant objects, when A — B is a cofibrant generator.
This is the content of Lemma [B.95 O

Specializing, we now have

Proposition B.97. If X — Y is a cofibration of equivariant J-diagrams and X
is cofibrant, then the indeved corner map OxY "' — Y is a cofibration between
cofibrant objects.

Proof: If X — Y is a cofibration of cofibrant J-diagrams, then (X — Y) is
cofibrant J-diagram in 8§, and so

(X =) = (0xYN = Y")
is cofibrant by Proposition [B.96 O

The result below is not used elsewhere in this paper, but is useful in other
contexts. Having come this far, we record it here.

Proposition B.98. Suppose that X — Y — Z is a sequence of cofibrations of
equivariant J-diagrams in 8%, and that X is cofibrant. Then the map

8XZAJ — ayZ/\J

is a cofibration between cofibrant objects.

Proof: Define Y — Z' by the pushout square
X—Y
7
v
Ve
»
7 ——=7".

As the dashed arrow indicates, the map (X — Z) — (Y — Z) is a retract of
(X = Z) — (Y — Z'). By Proposition [B.96] the map

Ox2ZN = ZN) = Oy 2N — Z'N)
is a cofibration, hence so is the map
Ox 2N — By 2™
and therefore so is its retract

8XZM — 8yZ/\J.
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B.5.5. Indexed smash products and acyclic cofibrations. With the indexed corner
maps of cofibrations under control we can now turn to the acyclic cofibrations.

Lemma B.99. If X — Y is a generating acyclic cofibration in 887C, then the
indexed corner map
8XY/\J N Y/\J

is an acyclic cofibration of cofibrant objects in 8.

Proof: We know from Proposition[B.97that the indexed corner maps are cofibra-
tions between cofibrant objects, so what remains is the assertion that they are weak
equivalences. This can be reduced further. Suppose that X — Y is an acyclic cofi-
bration in 887¢ and we wish to show that the indexed corner map dx Y/ — Y/
is a weak equivalence. Give Y’ the filtration described in §A.34 in which the
successive terms are related by the pushout square

\/ X/\J() A aXY/\Jl - . \/ X/\J() A Y/\J1

J:J()HJl J:JOHJl
[J1|=n [J1l=n

! !

fil,,_ Y/ fil, Y .

By Proposition [B.97 and the pushout product axiom, the upper arrow is a cofibra-
tion, which, by induction on |J|, we may assume to be acyclic when n < |J|. Since
the cofibrations are flat, this means that the bottom arrow is an acyclic cofibra-
tion when n < |J|. It follows that in this case, the indexed corner map is a weak
equivalence if and only if the absolute map X"’ — Y/ is.

We now turn to the generating acyclic cofibrations. The generators of the form
XA (Iﬁfl — Iﬁ) are homotopy equivalences, hence so are the absolute maps. The
other generators are of the form

(B.100) (STt = D™ ) A (pYSTVEV ASY = pySTY),

where p : J' — J is a map of finite G-sets and V and W are equivariant vector
bundles over J’. The fact that the norm is multiplicative, together with the monoid
axiom for 8, reduces us to considering only the right hand factor in (BI0Q). The
distributive law further reduces us to the case J' = .J. Finally, since the map
5=V — SV is a homotopy equivalence, we may replace SV with SV. Evaluating
both sides using Proposition [A.59 we see that the assertion amounts to checking
that
g-V'ew’ A gW' _, g-V’

is a weak equivalence, where V’ and W' are the G-spaces of global sections. But
this is Proposition [B:30 (see Remark [B.33)). O

As with Lemma [B.95] the separate cases of type I and type II generators reduce
the result below to Lemma [B.99]

Lemma B.101. If X — Y is a generating acyclic cofibration in the category of
equivariant J-diagrams in 8§, then the indexed corner map

8)(YAJ — Y/\J



172 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

is an acyclic cofibration of cofibrant objects in 8. O
Proposition B.102. Suppose that J is a finite G-set. The functor

(=) 877 — 8¢
sends acyclic cofibrations between coftbrant objects to acyclic cofibration between

cofibrant objects, and hence weak equivalences between cofibrant objects to weak
equivalences between cofibrant objects.

Proof: The proof proceeds exactly as in the case of Proposition [B.89 That the
second assertion follows from the first is Ken Brown’s Lemma (see, for example [32]
Lemma 1.1.12]). O

Specializing Proposition [B.102 we have

Proposition B.103. If X — Y is an acyclic cofibration in 857 and X is cofi-
brant, then both the indexed corner map OxY" — Y and the absolute map
XN 5 YN are acyclic cofibrations between cofibrant objects. (Il

B.5.6. Homotopy properties of the norm. With all this in hand we can now show
that indexed smash products have left derived functors. From Proposition [B.89
Proposition [B.103], and Ken Brown’s Lemma we have
Proposition B.104. The indexed smash product
(_ )/\J . SBJG N SG
takes weak equivalences between cofibrant objects to weak equivalences between cofi-
brant objects. ([l
This gives

Proposition B.105. The indexed smash product has a left derived functor

L

(=) :887% - ho8“
which may be computed as
L

X/\J _ (Xc)/\J

where X, — X is a cofibrant approzimation.

B.6. Symmetric powers. We now turn to the homotopical properties of symmet-
ric smash powers, or just “symmetric powers” for short.

B.6.1. Indexed symmetric powers. The n'" symmetric (smash) power of a G-spectrum
is the orbit spectrum

Sym"™(X) = X"\"/%,.
The homotopy properties of this functor are fundamental to understanding the
homotopy theory of equivariant commutative algebras. For indexed smash products
of commutative algebras the distributive law leads one to consider indexed smash
products of symmetric powers

(Sym™ X)".

These can be written as

(B106) (Symn X)/\J — (X/\n/zn)/\J ~ X/\(HXJ)/EZ



KERVAIRE INVARIANT ONE 173

with n = {1,...,n}. This last expression is an indexed symmetric power. The
definition and homotopy properties of indexed symmetric powers are the subject of
this section.

Before turning to the definition, we consider a more basic situation. Suppose
that i : G — G is a surjective map of groups with kernel N. Then the functor
i* : 8¢ — 8% has both a left and a right adjoint. This is most readily understood
by thinking of G-spectra as objects of 8 equipped with a G-action. The left adjoint
iy : 8¢ — 8% sends a spectrum Y to the orbit spectrum Y/N equipped with its
residual G-action. The expression on the right of (B:I08]) is a special case of this.
As in any diagram category, the orbit spectrum Y/N is computed objectwise: if U is
an orthogonal vector space then (Y/N)y is the G-space Yy /N. For the homotopical
properties we need information about the W-space, for a representation W of G.
It is given by the formula

(Y/N)w = OW. W) & (V/N)u,

where U is any vector space of the same dimension as W but with trivial G-action.
Interchanging the colimits, this space can be written as

OWW)s p ¥o)/N.

which, in turn is isomorphic to
YW /N7
where now W is regarded as a G representation through the map G — G.

We can now define indexed symmetric powers. Let I be a finite G-set, and
Y1 the group of (not necessarily equivariant) automorphisms of I, with G acting
by conjugation. Fix a G-stable subgroup ¥ C X; and regard I as a ¥ x G-set
through the projection map to G. For a ¥ x G-equivariant I-diagram X the indexed
symmetric power is the orbit G-spectrum

Sym& X = XM /%,

When the indexing set I has a trivial G-action, ¥ is the full symmetry group of
I, and the equivariant I-diagram the constant diagram with value X € 8%, then
this construction is the usual symmetric power Symll | X discussed above. We will
usually not distinguish in notation between a ¥ x G-spectrum X and the constant
equivariant I-diagram with value X.

If X - Y is a map of ¥ x G-equivariant I-diagrams, the indered symmetric
corner map is the map of orbit G-spectra

dx SymL Y — Symi Yy
obtained by passing to ¥ orbits from
OxYM —yH

It can also be regarded as the symmetric power SymIZ(X = Y)of (X = Y)

regarded as an object of the arrow category Sfmcl.

Remark B.107. Since the orbit spectrum functor is a continuous left adjoint, it
sends h-cofibrations to h-cofibrations. For example, suppose that X — Y is a
cofibration of cofibrant ¥ x G-equivariant I-diagrams. By Proposition and
Proposition [B.97 both the indexed smash product

X/\I N Y/\I
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and the corner map

8)( Y/\I — Y/\I
are cofibrations, and hence h-cofibrations, of ¥ x GG-spectra. This means that all
four of the maps

SymL X — Symg Y
dx SymLY — Symiy
(BeZ)4 p X" = (EgR) Y

EqY)y NoxYMN = (EgS), AYM
b)) b))

are h-cofibrations of G-spectra.

Note that X with its ¥ x G-action is a special case of an indexed monoidal
product. This means that the distributive law applies to symmetric powers, and,

given a pushout square
A B

X——Y,

—

there is a filtration of Symé Y whose successive terms are related by passing to
Y-orbits from the filtration described in §A.3.4]

As described in [48], the homotopy theoretic analysis of indexed symmetric pow-
ers requires certain equivariant principal bundles. For the moment, let 3 be any
finite group with a G-action.

Definition B.108. An equivariant universal Yi-space is a 3. X G-space EgY. with
the property that for each finite ¥ x G-set S, the space of ¥ x G-equivariant maps

S — EgX

is empty if some element of S is fixed by a non-identity element of ¥, and con-
tractible otherwise.

The defining property characterizes an equivariant universal ¥-space up to X x G-
equivariant weak homotopy equivalence. The space EgY is the total space of the
universal G-equivariant principal 3-bundle. It can be constructed as a ¥ x G-CW
complex, with cells of the form S x D™ where S is a X-free ¥ x G-set. We will
always assume our equivariant universal Y-spaces are ¥ x G-CW complexes, in
which case the characterization is up to equivariant homotopy equivalence.

The symmetric powers of a cofibrant spectrum are rarely cofibrant. However
they still have very good homotopy theoretic properties. Our main result is the
following.

Proposition B.109. Suppose that X — Y is a cofibration between cofibrant ¥ x G-
equivariant I-diagrams. In the square of G-spectra

(B.110) (BGZ)4  Ox Y —— (BgE); pY

Nl lw

Ox SymLY ——— = Syml vy |
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every object is flat, the upper row is a cofibration between cofibrant objects, the
vertical maps are weak equivalences, and the bottom row is an h-cofibration. The
horizontal maps are weak equivalences if X —'Y 1is.

Remark B.111. By Proposition [B.:59 the maps in (BI10) asserted to be weak
equivalences remain so after smashing with any spectrum Z.

Remark B.112. The situation that comes up in studying the free commutative
algebra functor is that X — Y is a cofibration of cofibrant G-spectra, regarded as a
Y1 X G-spectrum through the map to GG, and then regarded as a constant equivariant
I-diagram. This map of equivariant I-diagrams is cofibrant by Proposition [B.75]
and so Proposition applies.

Along the way to proving Proposition [B.109] we will also show
Proposition B.113. The functors (EgX)+ g\ (=)™ and Sym&(—) take weak

equivalences between cofibrant objects to weak equivalences.
Remark B.114. Proposition [B.109 is part the reason for the positive condition in
the model structure we have chosen. The result is not true for general cellular

objects described in §B.3.7 though it is true for cellular object built from cells of
the form G4 I/} S=V A D+ with V non-zero. The condition that V is non-zero is

used in the proof of Proposition [B.117

We assertions about the top row in Proposition [B.109 are most easily analyzed
in the arrow category Sff ¢,

Lemma B.115. The functor
EgZy f (=) 1877 = 87

takes acyclic cofibrations between cofibrant objects to acyclic cofibrations between
cofibrant objects and hence weak equivalences between cofibrant objects to weak
equivalences between cofibrant objects.

Proof: Let X — Y be an acyclic cofibration. By working through an equivariant
cell decomposition of E¢3 and using SM7 for the topological enrichment we reduce
to showing that if S is a 3-free ¥ x G-set, then the map

X/\I N Y/\I

Sy /2\ Sy g\

is an acyclic cofibration between cofibrant objects. This is an indexed wedge of
maps, indexed by the ¥-orbits O C S. The summand corresponding to O is the

map of Gp-spectra
(9+/E\X“ — O*QYM’
where Go C G is the subgroup of G preserving O. Since O is a X-torsor, this is
just the map of indexed smash products
X/\I, N Y/\I/
with I’ = O x I, and is an acyclic cofibration between cofibrant objects by Proposi-
b3
tion[B.102l The second assertion follows from the first by Ken Brown’s Lemma. [
The vertical maps in (BI10) require a more detailed analysis.
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Definition B.116. Suppose that ¥ is a group with an action of G, and that X
is a ¥ x G-spectrum. We will say that X is ¥-free as a G-spectrum if for each
orthogonal G-representation W the X¥-action on Xy is free away from the base
point.

Proposition B.117. If X is a cofibrant ¥ x G-equivariant I-diagram, and Z is
any ¥ x G-spectrum then XN A Z is a B-free G-spectrum. The map

(B.118) (EGZ)+ ) (XMAZ) = (XM AZ)2.

is a weak equivalence in 8C.

Remark B.119. We will mostly be interested in the case in which the Y¥-action on
Z is trivial. In that case the equivalence (BI18) takes the form

(EeX)+ /Z\X“) NZ = SymL(X)AZ

Remark B.120. The proof of Proposition [B11 is nearly identical to that of [48]
Lemma I11.8.4]. We go through the details because the statement is slightly more
general, and in order to correct a minor error in [48]. The statements of [48]
Lemma I11.8.4], and the related [48, Lemma IV.4.5] both use EY;, whereas the
object that should really be used is EgY;. This makes the proofs of [48, Theorem
I11.8.1] and [50, Theorem 4] on equivariant commutative rings incomplete. The
actual homotopical analysis of commutative rings is more or less equivalent to the
homotopical analysis of the norm. So it would seem that any correct treatment
needs to be built on the theory of the norm.

Proof of Proposition [B.117: For the first assertion, it suffices to show that if
A — B is a generating cofibration,

A B
Xo— Xy,

is a pushout square, and X! A Z is Y-free, then X{M A Z is Y-free. We use the
filtration described in §A.3.4] and consider the pushout square below

(B.121) \/ x{noaBMAZ— \/ X{PABMAZ
I:IoHIl I:IOHII
| |=m [ I1|=m
fil,,_1 Xi ANZ fil,, X1 AN Z.

Since A — B is a cofibration, the map in the top row is an h-cofibration (Proposi-
tion [B.9T)) hence a closed inclusion. It therefore suffices to show that X acts freely
away from the base point on the upper right term (see Remark [A.9)). Induction on
|I| reduces this to m = |I|. In this way the first assertion of the proposition reduces
to checking the special case

X =p/S™V AD¥,
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with p : I—Ta surjective map of ¥ X G-sets and V' an equivariant vector bundle
over I having a nowhere vanishing invariant global section. Since the factor (Dﬁ)“
can be absorbed into Z, we might as well suppose

X =p's—V.
The distributive law gives
X/\I _ \/ S_V’Y
yel’

where T is the & x G-set of sections I — I, and
V, =PV,
el
For an orthogonal ¥ x G-representation W we have, by Lemma [A.T8]

* dim W < dim V
(XMAZ)y = \/ oWV, aU,, W), O(/{} )ZUv dim W > dim V,
~el’ 7

in which U = {U,} is any ¥ x G-equivariant vector bundle over I' with dim U, =
dim W — dimV,. We are interested in representations W which are pulled back
from the projection map ¥ x G — G. In the first case there is nothing to prove. In
the second case the complement of the base point is homeomorphic to

[[ovseUu,, W) x (Zy, —{x})
'YGF O(U’Y)

(see Remark[A.9). The Y-freeness then follows from the fact that this space has an
equivariant map to the disjoint union of Stiefel-manifolds

[Tow,w) =11 ow, ev,,w)/oW,),
yel’ ~el’

which is ¥-free since each V, ;) is non-zero, and ¥ acts faithfully on I but trivially
on W.

With one additional observation, a similar argument reduces the assertion about
weak equivalences to the same case

(B.122) X =p/s—V.
To spell it out, abbreviate (BI2]) as
K——1L

and form
(EeD)+ Y <— (EcD)s A K —— (EcT); L
Y/x K/S d L)s.
By Remark [B.107] the rightmost maps in both rows are h-cofibrations, hence flat.

This means that if the vertical maps are weak equivalences then the map of pushouts
is a weak equivalence (Remark [B13)). With this in hand, one now reduces the
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second claim to the cases X = pY S~ A Sk Pand X =pYS—V A Dk Absorbing
the factors (S¥~')* and (D%)M into Z completes the reduction to m

With this X, the map on W-spaces induced by (B.I1]) is the identity map of
the terminal object if dim W < dimV, and otherwise the map of X-orbit spaces
induced by

(EeS)y A\ OV, @ U, W)y A Zuy,— \ OV, @U,, W)y A Zuy,
o(Uy) o(Uy)
yer yerl
in which U = {U,} is any ¥ x G-equivariant vector bundle over I' with dim U, =
dim W — dim V,,. The proposition then follows from the fact that

Ecs x [[o(v, U, W)= [ oV, eU,,W)
yer yel

is an equivariant homotopy equivalence for the compact Lie group

=(JJow,) x%)xa.

yel

To see this, note that by [35] [34], both sides are ¥-CW complexes so it suffices to
check that the map is a weak equivalence of H-fixed point spaces for all H C 4. If
the image of H in ¥ x G is not a subgroup of ¥ then EX¥ is contractible and the
map of fixed points is a homotopy equivalence. If H is a subgroup of [[ O(Uy) then
it acts trivially on EgY, and once again EgX is contractible. Finally, suppose
that there is an element h € H whose image in ¥ x G is a non-identity of X. Since
W is pulled back from a G-representation, this element acts trivially on W. If y € '
is not fixed by h then no point of O(V, @ U,, W) can be fixed by h. If y € ' is
fixed by h, then h acts on V,. This action is non-trivial since ¥ acts faithfully on
I. This means that O(V, @ U,, W) has no points fixed by h since h acts trivially
on W. Both sides therefore have empty H-fixed points in this case. O

Proof of Proposition [B.109: The assertion that the upper arrow is a cofibration
between cofibrant objects and a weak equivalence if X — Y is, is contained in
Lemma [B.115l Indeed consider the map of arrows

(X—=Y)= (Y =>Y)
If X — Y is a cofibration between cofibrant objects then both the domain and
range of the above map of arrows are cofibrant. By Lemma [B. 115 the map
(BeX)+ QaXY“ — (EgX) 4 /E\Y“) - (BgY)+ /E\Y“ — (EgX) 4 /E\Y“)
is a map of cofibrant objects, which is a weak equivalence if X — Y is. This gives
the assertion about the upper row. The fact that the bottom row is an h-cofibration

is part of Remark [B.107
For the remaining assertions it will be helpful to reference the expanded diagram

(BcY)4 A OxYMANZ —— (Eg¥) . A YMAZ —— (Eg¥), A (Y/X)MAZ

| l |

dx SymL Y A Z SymL Y A Z Sym&(Y/X)A Z

in which Z is any G-spectrum. By Proposition [B.117 the two right vertical maps
are weak equivalences. Since the left horizontal maps are h-cofibrations, hence flat,
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this implies that the left vertical map is a weak equivalences. Taking Z = S° gives
the weak equivalence of the vertical arrows in the statement of Proposition
Letting Z vary through a weak equivalence and using the fact that cofibrant objects
are flat gives the flatness assertion. By what we have already proved, when X —
Y is a weak equivalence the vertical and top arrows in the left square are weak
equivalences, hence so is the bottom left map. This completes the proof. O

Proof of Proposition [B.113: Suppose that X — Y is a weak equivalence of
cofibrant objects, and consider the diagram

(EcX)+ /E\XM — (Ec¥)+ A Yy

| |

Symé X —— = Symliy .

The vertical maps are weak equivalences by Proposition [B.I17 The top horizontal
map is a weak equivalence by Lemma [B.IT5l (applied to, say, the map (x — X) —
(* = Y)). The bottom map is therefore a weak equivalence. O

B.6.2. Iterated indexed and symmetric powers. In our analysis of the norms of com-
mutative rings in §B.§ we will encounter iterated indexed smash products and sym-
metric powers. These work out just to be other indexed smash or symmetric powers.
The point of this section is to spell this out.
Suppose that I and J are G-sets and that X is an equivariant I x J-diagram.
The factorization
IxJ—J—pt

gives an isomorphism
(B123) (X/\I)/\J ~ X/\(IXJ),
in which X" is shorthand for p/ X with p : I x J — J the projection mapping.
Applying this to the arrow category we get an isomorphism of the corner map
axy/\(lx,]) N X/\(I><J)
with the iterated corner map
8WZ“ — Z/\J
in which W — Z is the map
OxYM —yH

There is also a version with symmetric powers. Suppose in addition that ¥ C X;
is a G-stable subgroup. Then the action of ¥ on I x J by

¢ - (i,4) = (¢(j) - i.4)
is G-stable, making J x I into a X7 x G-set, and the projection map I x J — J
equivariant, with 37 x G acting on J through G. When X is a 7 x G-equivariant

J x I-diagram, the isomorphism (B.I123) is ¥7 x G-equivariant. Passing to orbits
gives an isomorphism of G-spectra

(B.124) (Sym& X)™ ~ SymI¥’ X.

By working in the arrow category we get an isomorphism of the corner map

IxJ I><JY

Ox Symy;” Y — Symy.;



180 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

with the iterated indexed corner map
(B.125) owzN — 2N
in which W — Z is the map
Ox Symlz Y — Symé Y.

Our analysis of the homotopy properties of symmetric powers depended on a
convenient cofibrant approximation. Let Eg3 be a universal G-equivariant ¥ space.
The above discussion leads to an isomorphism

IS J IxJ
(EcSy p XM) ~E02+2AJXA< D,
and an identification of the corner map
8WZ“ — N
in which W — Z is the map
Ec¥y )\ (OxY N — vy M)
with
J IxJ IxJ
(EgZ )+ EA; (8XY/\( xJ) _y yAUIx )).

To reduce this expression to one we have already considered we need to know that
EgYY is a universal equivariant $7/-space.

Lemma B.126. Let J be a finite G-set. If EgX is an equivariant universal ¥-space
then, under the product action, (EgX)” is an equivariant universal 37 -space.

Proof: The functor T — T7 (from ¥ x G-spectra to 7/ x G-spectra) has a left
adjoint. To describe it, let M be the set ¥ x G x J and define a left action of ¥ x G
by the product of the translation action on ¥ x G and the action of G on J. There
is a commuting right X7 x G-action

(EXJGXJ)X(EJX]G)—)ENGXJ.

whose component in the second factor is just the projection, and in the first factor
is composed of the evaluation map

Ix2'xG@—-2xG
and the right action of ¥ x G on itself. The functor T — T can be identified with
homys (M, T)
and so its left adjoint is given by

S—M x 8.
ST NG

Breaking M into right ¥ x G-orbits gives the decomposition

M x S=][]s/z/-tt
YIxG E /

In this latter expression, the action of t € ¥ on s € S/%7~1} can be computed as
the orbit class of os, where o € X7 is any element with o(j) = t. For example, the
entire Y-action can be computed by restricting to the diagonal subgroup of $7.
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Observe that a 7 x G-set S is ©7/-free if and only if M xS is ¥-free. Clearly
DESTE

if S is X7-free then for each j € J, S/%7/~{7} is ¥-free. On the other hand if
o € ¥/ is a non-identity element fixing s € S, then there is a j € J, with o(j) not
the identity element. For this j we have o(j) - ¥/~ {its = £/ {ikg,
Now to the proof. Let S be a finite £/ x G-set. We need to show that the space
of 7 x G-maps
S — Eqx’

is empty or contractible depending on whether or not S has a point fixed by a non
identity element of ¥7/. By adjunction, this space can be identified with the space
of ¥ x G-maps from

M x S— EgY,
ST NG

and so the result follows from the observation above. O

We will be interested in the following case. Suppose that X — Y is a cofi-
bration of cofibrant ¥/ x G-equivariant I x .J-diagrams. By Lemma [B.126 and
Proposition [B.109, in the diagram

(EgE)i 2/\1 O YNIXI) o (EGE)J{ E/B yAUIXT)

Nl lN

dx SymLyY Symis” Y

every object is flat, the top row is a cofibration of cofibrant objects, the bottom
row is an h-cofibration, and the vertical maps are weak equivalences and remain
so after smashing with any spectrum. The same conclusion therefore holds for the
corresponding diagram of iterated indexed (symmetric) powers

aW(ZA(J)) —— O

|

aW(ZA(J)) — > 7znJ)

1474
W
B \OxYMN —— EgSy AV

l l

Ox Symé Y — Symé Y .

in which

—_—

N<——1N\

—_—

is the diagram

Working fiberwise leads to an analogous result about the indexed smash product
along a map ¢q : J — K of finite G-sets. It plays an important role in our analysis of
the homotopy properties of the norms of commutative rings. Aside from the map
J — K of finite G-sets, the situation is the same as what we have been discussing
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in this section. We have fixed a finite G-set I, a G-stable subgroup ¥ C ¥;, and a
universal G-equivariant Y-space EgX..

Proposition B.127. Let X — Y be a cofibration of cofibrant ¥/ x G-equivariant
I x J-diagrams and write

W

w

EGE+ /E\ aXY/\I —— EgE+ /E\ Y/\I

l l

dx SymL Y — = Syml Y.

—_—

N=<—N\r

—_—

for the diagram

In the G-equivariant K -diagram of corner maps

Dy (ZNI/E0) FAI/K)

| |

3W(Z/\(J/K)) Z/\(J/K)

every object is flat, the vertical maps are weak equivalences after smashing with any
object, the upper map is a cofibration of cofibrant objects and the lower map is an
h-cofibration. The horizontal maps are weak equivalences if X —Y is. ]

Remark B.128. The actual hypothesis on X — Y required for the fiberwise argu-
ment is that for each k € K, the map X — Y is a cofibration of ©/* x Gj-equivariant
I x Jp-diagram, where Jy, C J is the inverse image of k, and Gy, is the stabilizer of k.
For the sake of a cleaner statement we have made the slightly stronger assumption
that it is a cofibration of cofibrant ¥/ x G-equivariant I x J-diagrams. That this
implies the “fiberwise” hypothesis is a consequence of Proposition [B.75l

Remark B.129. As in Remark [B.112] Proposition applies to the situation
which X — Y is a cofibration of cofibrant G-equivariant J-diagrams, regarded as
a X X G-equivariant I x J diagram by pulling back along the projection mappings
YXG—->Gand I xJ — J.

B.7. Rings and modules. Aside from the alteration in model structure, the fol-
lowing is stated as [48, Theorem II1.8.1]. The proof depends on our analysis of
symmetric powers, which, as mentioned in Remark [B.120] makes essential use of
the norm.

Proposition B.130. The forgetful functor

Comm©% — 8¢

creates a topological model category structure on Comm© in which the fibrations

and weak equivalences in Comm are the maps that are fibrations and weak equiv-
alences in 8.
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Proof: Most of the proof is formal. One takes as generating cofibrations the
maps Sym A — Sym B where A — B € A.or and generating acyclic cofibrations
the maps Sym A — Sym B with A = B € Bicyclic. The only real point to check is
that if

(B.131) Sym A —— Sym B
X Y

is a pushout diagram in which A — B is a generating acyclic cofibration, then
X — Y is a weak equivalence. That is contained in Lemma [B.132] below. The rest
of the proof is left to the reader. O

Lemma B.132. Suppose that A — B is a map of G-spectra, and
Sym A ——= Sym B

N

X Y

is a pushout diagram of equivariant commutative rings. If A — B is an acyclic
cofibration of cofibrant objects, then X — Y is a weak equivalence.

The proof of Lemma [B.132] involves a filtration of ¥ by X-modules which we
will use again in §B.8 For a map A — B of G-spectra define

fil,, Sym B = \/ fil,,, Sym" B

where the fil,,, Sym”™ B is obtained from the filtration described in A3 by passing
to X,-orbits, and fits into a pushout square

Sym"™™ AANJ4Sym™ B —— Sym"" "™ A A Sym™ B

| |

fil,,—1 Sym"(B) ——— > fil,, Sym" B,
with
(9,4 Symm B = (BABAm) /Em.

Wedging over n one sees that the fil,,, B are Sym A-submodules, and that there is
a pushout square of A-modules

Sym A A 94 Sym™ B—— Sym A A Sym™ B

| |

fil,,—1 Sym B fil,, Sym B .

If a map X — Y of commutative rings fits into a pushout diagram

Sym A —— Sym B

y

X— >V,
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we can define a filtration of Y by X-modules by
fil,,, Y =X A fil,,SymB.
Sym A

Evidently these fil,, Y are related by the pushout square of X-modules

(B.133) X AN0aSym™ B——= X ASym™ B
fil,,1Y fil,, Y .

Proof of LemmalB.132: We use the filtration just described. In the diagram (B.133),
if A — B is an acyclic cofibration between cofibrant objects, then

04 Sym™ B — Sym™ B

is a weak equivalence and an h-cofibration of flat spectra by Proposition [B.109 It
follows that the bottom map is a weak equivalence. (I

Corollary B.134. For H C G, the adjoint functors

Comm’ <= Comm®

form a Quillen pair.

Proof: The restriction functor obviously preserves the classes of fibrations and
weak equivalences. (I

Corollary B.135. The norm functor on commutative algebras

N§ : Comm* — Comm®
is a left Quillen functor. It preserves the classes of cofibrations and acyclic cofibra-
tions, hence weak equivalences between cofibrant objects.

Proof: This is immediate from Corollary [B.134] and Proposition [A.561 The
assertion about weak equivalences is Ken Brown’s Lemma (see, for example [32]
Lemma 1.1.12]). O

There is a result similar to Proposition [B.130 for algebras over any operad in
8C. In the cases when the symmetric group does not play a role it is a formal
consequence of the axioms for a monoidal model category [69, Theorem 4.1]. The
following result is implied by Propositions [B.76} [B.77 and [69, Theorem 4.1].

Proposition B.136. The forgetful functor
Alg® — 8¢

creates a topological model category structure on AlgG in which the fibrations and
weak equivalences in AlgG are the maps that are fibrations and weak equivalences

in 8C. O
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The category Mp of left modules over an equivariant associative algebra R as
defined in §A2.771 As pointed out there, when R is commutative, a left R-module
can be regarded as a right R-module, and Mpg becomes a symmetric monoidal
category under the operation

(B.137) M AN.

The following result is a consequence of Propositions [B.76] [B.77] and [69], The-
orem 4.1]. Except for the slight change of model structure, it is [48, Theorem
I11.7.6).

Proposition B.138. The forgetful functor
MR — SG

creates a model structure on the category Mp in which the fibrations and weak
equivalences are the maps which become fibrations and weak equivalences in 8.
When R is commutative, the operation (BI37) satisfies the pushout product and
monoid axioms making Mp into a symmetric monoidal model category. ([

Though not explicitly stated, the following formal result was surely known to
the authors of [69] (see the proof of [69, Theorem 4.3].)

Corollary B.139. Let f : R — S be a map of equivariant associative algebras.
The functors

S/}%(—):MR:MstU

given by restriction and extension of scalars form a Quillen pair. If S is cofibrant
as a left R-module, then the restriction functor is also a left Quillen functor.

Proof: Proposition [B.138implies that the restriction functor preserves fibrations
and acyclic fibrations. This gives the first assertion. The second follows from
the fact that the restriction functor preserves colimits, and the consequence of
Proposition [B.138 that the generating (acyclic) cofibrations for Mg are formed as
the smash product of S with the generating (acyclic) cofibrations for 8. d

The following result is [48, Proposition I11.7.7]. Using the fact that h-cofibrations
are flat, the proof reduces to checking the case M = G4 I/L\I S~V A R, which is
Proposition [B.5§

Proposition B.140. Suppose that R is an associative algebra, and M is a cofibrant
right R-module. The functor M% (—) preserves weak equivalences. ([l

In other words, the functor M /}% (—) is flat if M is cofibrant, and so need not
be derived.

Corollary B.141. Suppose that R is an associative algebra, M a cofibrant right
R-module. If N — N' a map of left R-modules whose underlying map of spectra is
an h-cofibration, then the sequence

MAN—MAN' — MA(N'/N)
R R R

is weakly equivalent to a cofibration sequence.
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Note that the assumption is not that N — N’ is an h-cofibration in the category
of left R-modules. In that case the result would not require any hypothesis on M.

Proof: We must show that the map from the mapping cone of

(B.142) MAN = MAN

to M A (N'/N) is a weak equivalence. The mapping cone of (B.142) is isomorphic

to
MQ(N’UON),

and the spectrum underlying the R-module mapping cone N’ U N is the mapping
cone formed in spectra. Since N — N’ is an h-cofibration, the map N’ UCN —
N'/N is a weak equivalence (Proposition[B.20). The result now follows from Propo-
sition O

Corollary [B.141] can be used to show that many constructions derived from the
formation of monomial ideals have good homotopy theoretic properties. It is used
in 273 and in §6.I1 In those cases the map of spectra underlying N — N’ is the
inclusion of a wedge summand, and so obviously an A-cofibration.

B.8. Indexed smash products of commutative rings.

B.8.1. Description of the problem. Proposition[B.105 asserts that the indexed smash
product functor

(_ )/\J . SBJG N SG
has a left derived functor
L
(=) :ho887¢ — ho8Y
which can be computed by applying the norm to a cofibrant approximation. We
also know from Corollary [B:I34] (and the fact that coproducts of weak equivalences
are weak equivalences) that the restriction functor and its left adjoint form a Quillen
pair
p : comm 85'C = comm 8€ : p*.

Furthermore, the following diagram commutes in which the vertical functors are
the forgetful functors (Corollary [A.56])

D
comm 887¢ —— s comm 8¢

l l

8816 ————= 57

However, what we really want is the commutativity of the following diagram

Lp
ho comm 887¢ — ho comm 8¢

! l

ho §8/¢ EEEEE—— ho 8¢
(=)™
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in which the vertical maps are the forgetful functors (which are homotopical, so
don’t need to be derived), and the horizontal arrows are the left derived functors
indicated. The point of this section is to establish this.

To clarify the issue, suppose that R € comm 85/ is a cofibrant J-diagram of
commutative rings. Let R — R be a cofibrant approximation of the underlying
J-diagram of spectra. What needs to be checked is that the map

(B.143) (RN — (RN

is a weak equivalence. The proof involves an elaboration of the notion of flatness.
To motivate it we describe a bit of the argument.

The main point in the proof is to investigate the situation of a pushout diagram
of equivariant J-diagrams of commutative rings

Sym A —— Sym B

L

R1 —>R2

in which the top row is constructed by applying the symmetric algebra functor Sym
to a generating cofibration A — B, and in which one knows that the map (BI43)
is a weak equivalence for R = R;. One would like to conclude that (BI43) is a
weak equivalence for R = Rs.

To pass from R; to Ry we use the Rj-module filtration described after the
statement of Lemma [B.132] whose stages fit into a pushout square

(B.144) Ry AN0oASym™ B —— Ry ASym™ B

| |

ﬁlmfl R2 - ﬁlm R2 )

where
0 Sym™ B = (0AB"™) /.

The filtration of A3 4 mediates between (fil,,,_1 R2)"’ and (fil,, R2)"’ by another
sequence of pushout squares. The upper right hand corner of a typical stage is an
indexed wedge of terms of the form

(B.145) (filyy—1 R2)"" A (Ri A Sym™ B)™1,

indexed by the set-theoretic decompositions J = Jy II J;.

We need to know two things about this expression. One is that the left derived
functor of its formation (in all variables) is computed in terms of the expression
itself, and the other is that formation of each of the pushout squares we encounter
is homotopical. Motivated by this we are led to consider a technical condition
slightly stronger than the requirement that (B:I43) be a weak equivalence. That is
the subject of the next section.

B.8.2. Very flat diagrams. As in §B.6.2] to make the diagrams more readable we
will use the notation

X/\(K/L) — CI*AX
for the indexed smash product along a map g : K — L of finite G-sets.
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Definition B.146. An equivariant J-diagram X very flat if it has the following
property: for every cofibrant approximation X — X, every diagram of finite G-sets

JEK S L
and every weak equivalence of equivariant L-diagram Z — Z, the map
(B.147) (p* X)NEIL) N Z — (p* X)NETL) A 7
is a weak equivalence.
Our main goal is to establish the following result.

Proposition B.148. If R € 8879 is cofibrant commutative ring, then the equi-
variant J-diagram of spectra underlying R is very flat.

The condition that R be very flat certainly implies that (B.I143) is a weak equiv-
alence. Proposition [B.14§ therefore implies

Corollary B.149. The following diagram of left derived functors commutes up to
natural isomorphism

Lp:
ho comm 887G —— s ho comm 8¢

l l

ho §87¢ —L>h08G .
(7)/\‘]
O

Remark B.150. Since identity maps are weak equivalences, the condition of being
very flat implies that every arrow in the diagram

(p*X)/\(K/L) A Z (p*X)A(K/L) ANZ

| |

(p*X)/\(K/L) A Z (p*X)/\(K/L) A7
is a weak equivalence. In particular it implies that (p*X )A(K/ L) is flat.

Remark B.151. Since X(5/L) is cofibrant (Proposition[B.89), and cofibrant objects
are flat (Proposition [B58), the top arrow in the above diagram is always a weak
equivalence. It therefore suffices to check the very flat condition when Z — Z is
the identity map.

Remark B.152. If (BI47) is a weak equivalence for one cofibrant approximation it
is a weak equivalence for any cofibrant approximation. It therefore suffices to check
the “very flat” condition for a single cofibrant approximation X — X.

Lemma B.153. Arbitrary wedges of very flat spectra are very flat. Smash products
of very flat spectra are very flat. Filtered colimits of very flat G-diagrams along h-
cofibrations are very flat.

Proof: The first assertion follows easily from the distributive law, and the fact
that the formation of indexed wedges is homotopical The second follows from the
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fact that the formation of indexed smash products is symmetric monoidal. The
third makes use of Proposition[A.691 The details are left to the reader. (|

Ezxample B.154. Here is one motivation for the definition of “very flat.” Suppose
we are given a pushout square of equivariant J-diagrams

A——B

X —Y

and we are interested in the filtration of Y(5/L) described in §A.3.4] whose stages
are related by pushout squares

(B.155) \/  XMOnBM —  \[ XM ARG
(£, K1)€EGH (¢, K1)eGy
fil,,_1 Y/\K/L fil,, Y/\K/L ,

where G,, = G,,(K/L) is the G-set of pairs (¢, K;) with £ € L and K; C ¢~ 1(¢) a
subset of cardinality n, and the map G,, — L sends (¢, K1) to {. For (¢, K1) € G,
we have written Ky to denote the complement of K7 in ¢~1(¢).

The condition that B be very flat gives some control over the upper right term.
To see this let V,, = V,,(K/L) be the set of triples (¢, K1, k) with (¢, K1) € G,, and
k € K. We define maps

J—V, =G,
by

fl, Ky, k) = q(k)
g(t, K1, k) = (£, K1).

The spectra X" %0 form an equivariant G,,-diagram, which we denote Z. The B/
are the constituents of (f*B)"(V»/Gn) and so the indexed wedge occurring in the
pushout square is

\/ Z A (fB)NV/Gn),

Gn
Since the formation of indexed wedges is homotopical, its homotopy properties come
down to understanding the homotopy properties of the equivariant G,-diagram
Z A f*BMNVn/Gn) some of which are specified by the condition that B be very flat.

By replacing the category of equivariant J-diagrams with its arrow category,
we arrive at the notion of a wvery flat object of Slf" ¢ The formal properties of
being very flat persist in this context, and in particular the analogues of Re-
marks [B.150, B.151] [B.152] and Lemma [B.153] hold.

To get a feel for the more particular aspects of very flat arrows, suppose that
(A — B) is an object of 8%7¢ and (A — B) is a cofibrant approximation. Consider
a weak equivalence of the form

(X = %) = (X — *).
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In this case the very flat condition becomes that
(" (BJA NI N X — %) — (p*(BJA)NEE) A X — )

is a weak equivalence. This is so if and only if B/A is very flat.
Next consider a weak equivalence of the form

(*—>X)—>(*—>X).
The very flat condition in this case is that
(0, 10" B /D A X 5 p BN/ A )
— (Ope ap* BNEIL) A X — p* BNE/D) A X

is a weak equivalence. This holds if and only if B is very flat and (A — B) satisfies
the condition that

(B.156) ap*Ap*BA(K/L) AKX = 8y ap* BAE/D A X
is a weak equivalence. If we happen to know that the indexed corner maps

8p*Ap*BA(K/L) N B/\(K/L)

and
8p*Ap*B/\(K/L) N B/\(K/L)
are h-cofibrations then the leftmost horizontal maps in

0 ap BAIID) A X o BAK/L) A X oy (BJAYNEID) A X

o | |

By ap* BANE/D) A X — p* BNE/D) A X — o 1*(BJAYNE/D) A X

are h-cofibrations, hence flat. Thus the middle and left vertical arrows are weak
equivalences if and only if the middle and right vertical arrows are, or in other words
if and only if both B and B/A are very flat. So in the presence of the condition
above, a necessary condition that (A — B) be a very flat arrow is that B and B/A
are very flat. This turns out to be sufficient. We single out the condition.

Condition B.157. For every J & K4 L the corner map
8p»«A(p*B)A(K/L) N (p*B)/\(K/L)
is an h-cofibration.

Remark B.158. By Proposition [B.96] and the monoid axiom for $¥2¢, a cofibrant
object (A — B) of 8579 is very flat and satisfies Condition [BI57

Lemma B.159. If A1 — Ay satisfies Condition [B.157, and both Ay and Az/Aq
are very flat, then A = (A1 — A2) is very flat.

Proof: Fix a diagram of finite G-sets
J&E KDL
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let A= (A, — Ay) be a cofibrant approximation to A = (A; — Ay), and
XX
X =(X; = Xy)
X =(X1— Xo)
a weak equivalence in 852¢. By Remark A also satisfies the conditions of

the lemma. Let
X 5> X->X"

be the sequence
(* — Xg) — (Xl — Xz) — (Xl — *)

and X’ — X — X’ the analogous sequence for X. The maps X’ — X and X’ — X
are not h-cofibration, but they are so objectwise, and hence flat.
Consider the diagram

(B.160) Pt ANEIL) A K7 ANKID) A § o pr ANE/L) 7 X0

| | |

p*AA(K/L) A X/ p*A/\(K/L) AX p*A/\(K/L) AX" .

Our aim is to show that the middle vertical map is a weak equivalence.

The first step is to show that the left horizontal maps are flat. This reduces us
to checking that the left and right vertical maps are weak equivalences. For this,
let’s examine the bottom left horizontal map in more detail. It is given by
(B.161) (9 a, p* AL A Xy — pr AYETE) A X0) 5 (€ — prALTTE) A X))

in which C is defined by the pushout diagram

(B.162) O a,p AL A Xy s pr ADETE) Xy

SR NS P——c

When A; — A, satisfies Condition [B.I57 the top map in (BI62) is an h-cofibration,
hence so is the bottom map. This means that (B.I61]) is an objectwise h-cofibration,
and so flat. Since A; — Aj also satisfies Condition [B.157 the upper left horizontal
map in (BI60) is also flat. Thus we are reduced to checking that the maps

o ANEID) A K7y e ACK/D) 6 X

p*AA(K/L) /\X—// _>p*A(AK/L) A X"
are weak equivalences. As described above, this fact for the second map follows

from the assumption that A3/A; is very flat. The assertion in the case of the first
map is that the middle and left vertical arrows in

3p*A1P*A9(K/L) A X —>p*[1§(K/L) A X _>p*(A2/A1)/\(K/L) A Xy

-| lN lw

Oy 40" A5 T N Xy —— pr A5 Xy o p (A JAN)NEID) A X,
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are weak equivalences. Since A; and As/A; are very flat, the middle and right
vertical maps are weak equivalences. Condition[B.I57shows that the left horizontal
maps are h-cofibrations, hence flat. It follows that the left vertical map is a weak
equivalence. (Il

We can now establish an important technical fact used in the proof of Proposi-
tion [B.148
Lemma B.163. Suppose that A — B is a cofibrant object of Sf"G, I is a G-set
and ¥ C X1 a G-stable subgroup. Then
Symk (A — B) = (04 Symk B — Symi, B)
is very flat.

Proof: Proposition [B.127 implies that in this situation the map SymIE(A —
B) satisfies Condition and that for every cofibrant B, Sym&i B is very flat
(so both Sym% B and Sym&(B/A) are very flat). The result then follows from
Lemma [B.159 O

Ezample B.164. Continuing with Example [B154] the top map in (BI55) arises
naturally in the arrow category as
\V  ZA@ (A B,
Gn(K/L)
where Z is the identity arrow of the diagram X”\/°. Since the formation of indexed
wedges is homotopical, the information in the homotopy type of this expression is
contained in the G, (K/L)-diagram Z A (p*(A — B)"5/L)). The condition that
(A — B) be very flat thus specifies good homotopical properties of the top map

in (B.I55).
Lemma B.165. Consider a pushout square

(B.166) A— =B

|

X ——=Y

in which (A — B) is a very flat object of 857 satisfying Condition [B153. If X is
very flat, then so isY.

Proof: Using the fact that cofibrations are flat, we can arrange things so that
the cofibrant approximation Y — Y fits into a pushout square

(B.167) A——=B
|

X——>Y

of cofibrant approximations to (BI60), in which A — B is a cofibration. We give
YNE/L) and YAUE/L) the filtration described in §A.3.41 We will prove by induction
on n that for any weak equivalence Z — Z of equivariant J-diagrams, the map

(B.168) fil, V"K' N Z = fil, YA Z
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is a weak equivalence. The case n = 0 is the assertion that X is very flat, which
true by assumption. For the inductive step, consider the diagram

fil, YAE A7 < \/ X NEKo A&AB/\Kl AT —> \/ XKoo A BAEL A 7
Gn(K/L) Gn(L)

| |

fil, YK N Z < \/ sXKo A uBNY N Z > \/ XNKo A BAELA 7
G (K/L) Gn(K/L)

The map from the pushout of the top row to the pushout of the bottom row
is (BI68). The rightmost horizontal maps are h-cofibrations by Condition [B-I57
The left vertical map is a weak equivalence by induction, and the other two vertical
maps are weak equivalences since (A — B) is very flat (Example [B.164]). The map
of pushouts is therefore a weak equivalence since h-cofibrations are flat. O

B.8.3. Proof of Proposition[B.18 Since the class of very flat G-diagrams is closed
under the formation of filtered colimits along h-cofibrations (Lemma [BI53)), it
suffices to show that if A — B is a generating cofibration in §87¢,

Sym A ——= Sym B

I

X Y

is a pushout square of commutative J-algebras, and X is very flat, then Y is very
flat. Working fiberwise, the filtration described after the statement of Lemmal[B.132]
gives a filtration of Y by X-modules, whose stages are related by the pushout
squares

(B.169) X ANOaSym™ B——= X ASym™ B
fil,,_1 Y fil,, Y .

We show by induction on m that each fil,, Y is very flat. Since filjY = X, the
induction starts. The arrow (94 Sym™ B — Sym™ B) is very flat by Lemma [B.163l
This means that the top row of (B169) is a very flat arrow, since smash products
of very flat objects are very flat (Lemma [BI53). This places us in the situation of
Lemma [B.165] which completes the inductive step.

B.9. The slice tower, symmetric powers and the norm. The main goal of
this section is to show that if R is an equivariant commutative ring in Sgo, and
n > 0 is an integer, then the slice section P™R is also an equivariant commutative
ring in Sgo. The proof makes use of the technology used to show that cofibrant
commutative rings are very flat, and so has been deferred to this appendix. The
reader may wish to look through the first three subsections of §4] for the basic
definitions concerning the slice tower.

Our presentation the slice tower was made in a context where the emphasis was
on homotopy theory, and the slice sections P™, etc were characterized by homotopy
theoretic properties. Here we will be making use of some explicit constructions, and
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some care needs to be taken to ensure that the derived functors we are ultimately
interested in can be computed on the objects that arise. Using the fact that indexed
smash products of cofibrant objects are cofibrant, and that indexed symmetric
powers of cofibrant spectra are flat, one can check that this is indeed the case. We
will take as the definition of P™ the colimit of the inductive construction described
in &7 using the cofibrant approximations S~!' A S' A G, A Sker and S™1 A

SUAG, 1/1\r Sker=1 for the slice cells. This particular choice of P" is homotopical,

and the natural map X — P"X is a cofibration. Our task will be to show that
something functorially weakly equivalent to P" takes commutative rings in Sgo to

commutative rings in Sgo.

We begin with the interaction of the slice filtration with the formation of indexed
smash products. As in §B.5we fix a finite G-set and work with the homotopy theory
of equivariant J-diagrams. We define slice cells and the slice filtration in the evident
manner, so that the slice filtration on equivariant J-diagrams corresponds to the
product of slice filtrations on G-spectra under the equivalence

B;G . G
$579 ~ [[ s,
t

The proposition below follows easily from Proposition [£.13]

Proposition B.170. Suppose that J is a non-empty G-set, X is a cofibrant equi-
variant J-diagram, and n is an integer. If each X; is slice (n — 1) positive, then
the indezed wedge

V X

jeJ
is slice (n — 1) positive. O
The next two results make use of the implication

(B.171) X>0 and Y >k = XAY >k
proved in §4.3] (Proposition [4.26]).

Proposition B.172. Suppose that J is a non-empty G-set, X is a cofibrant equi-
variant J-diagram, and n > 0 is an integer. If each X; is slice (n — 1) positive,
then the indexed smash product

/\ X

jeJ

is slice (n — 1) positive.

Proof: By induction on |G| we may suppose that i3 X"/ is slice (n — 1)-positive
for any proper subgroup H C G. This implies that T A X"/ > n if T is any G-CW
complex built entirely from induced G-cells. Since the formation of indexed smash
products commutes with filtered colimits, it suffices by Proposition 415l to consider
a cofibration A — B of equivariant J-diagrams in which B/A is a wedge of slice
cells of dimension greater than n, and show that

(B.173) AN >n = B >n.
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Using the filtration of §A.3.4] for the identity pushout square
A——B

|

A——=DB,
gives a filtration of B/’ whose stages fit into cofibration sequences
(B.174) fily 1 BN = fil,, BN — \/ Ao A (B/A)M

in which the indexing G-set for the coproduct is the set of all set theoretic decompo-
sition J = Jo ][ J1 with |J1| = m. The implication (B.IZI]) and Proposition [B.I70
above reduce the claim to showing that if J; # 0, then (B/A)"’t (regarded as an
equivariant spectrum for the stabilizer of J;) is slice (n—1)-positive. In other words,
it suffices to prove the proposition when X is a wedge of slice cells of dimension
greater than or equal to n.

Making use of the distributive law, and once again (B.I71)) and Proposition[B.170,
one reduces to the case in which J = G/H is a single orbit, and X corresponds to
Ske with k|H| > n or S*#~1 with k|H| — 1 > n. In the first case

X/\J ~ Skpg
has dimension k|G| > k|H| > n. In the second case
X/\J ~ S(n—l)pc+v
where V = pg —ind$ 1. Write W = ind§ —1 so that S ASY ~ §7¢~1 and there
is a cofibration sequence
(B.175) SW)y A XN — XN 5 gn=Dreatlpe—1),

The G-space S(W) is homeomorphic to the boundary of the simplex with vertices
G/H, and has no G-fixed points. The barycentric subdivision gives S(W)y the
structure of a G-CW complex built entirely from induced G-cells. It therefore
follows from our induction hypothesis that

S(W), A XN

is slice (n — 1)-positive. The rightmost term in (B.I75) is a slice cell of dimension
kG| —1>klH|—1>n
It follows that X"/ is slice (n — 1)-positive. O
Remark B.176. We will later need to know that in the situation of Proposition[B.172}
one has
(B.177) »HEX)NM > 0.
To see this, rewrite the spectrum in (BIT7) as
(2‘1(51)“) A (X/\J).

The factor ¥=1(S1)" is weakly equivalent to the sphere SV with V = R’ — 1.
This gives

1SN >0
and the relation (BITT) then follows from Proposition [B.I72 and (BITI).
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We next turn to indexed symmetric powers. As in §B.6lwe consider a finite G-set
I, a G-stable subgroup ¥ C X7, and the indexed symmetric power

Sym§ X = XM /3.

Proposition B.178. Let n > 0 be an integer, I a non-empty G-set, and X a
cofibrant equivariant I-diagram. If X is slice (n — 1)-positive then both the indexed
symmetric power Syms X and £~ Sym&(XX) are slice (n — 1)-positive.

Proof: Using the equivalences
(EcX)+ ) XM ~ Symi X
Y Y EeY), A (EX)M ~ 271 Symi (2X)

of Proposition [B.117 and working through an equivariant cell decomposition of
FEg3 reduces the claim to showing that

B.179 S.AXM and R7LSL A (XM
b)) b

are slice (n — 1)-positive when S is a finite X-free ¥ x G-set. But the first spectrum
in (BI79) is an indexed wedge of indexed smash products of X (see the proof of
Lemma [B.ITH), hence slice (n — 1)-positive by Propositions [B.172] and The
second spectrum is an indexed wedge of desuspensions of indexed smash products
of XX, hence slice (n — 1)-positive by Remark [B176] and Proposition BI700 [

We can now investigate the slice sections of commutative rings. Let P, :

Comm® — Comm? be the multiplicative analogue of P", constructed as the

colimit of a sequence of functors
WER — WMER — - ...

The W2 R are defined inductively starting with W' R = R, and in which W'#R
is defined by the pushout square

Sym(v2t§) —>Sym(\/CEt§)
I I

| |

WiE R —— = WR

in which the indexing set I is the set of maps I W,?l_glR with S > n a
cofibrant slice cell and ¢ > 0. The functor Plig 1s homotopical and for any R,
the map R — PR is a cofibration of equivariant commutative rings. The arrow
R — ngR is characterized up to weak equivalence by the following universal
property: if S is an equivariant commutative ring whose underlying spectrum is

slice (n + 1)-null then the map

ho Comm® (P? R, S) — ho Comm® (R, S)

n
alg
is an isomorphism.

For clarity let’s temporarily denote by U, the forgetful functor

U : Comm% — 8€.
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By the small object argument, the spectrum U Py}, R is slice (n + 1)-null, so there
is a natural transformation

P"UR - UP],R

n
alg
of functors to S€.

Proposition B.180. If R is a slice (—1)-positive cofibrant equivariant commautative
ring, then for all n € Z, the map

P"UR—UP} R

n
alg

is a weak equivalence.

Proof: When n is negative, P"UR is contractible, and PJj, R is a commutative
ring whose unit is nullhomotopic, hence also contractible. We may therefore assume
n is non-negative.

It suffices to show that each of the maps

UWM R — UWMR

is a P™-equivalence. We do this by working through the filtration used in the proof
of Lemma [B.132] whose successive terms are related by the homotopy cocartesian
square

UWME R A4 Sym™ B —— UW 8 R A Sym™ B

| !

fil,,_ WER fil,, W'R |

in which A — B is the map

(B.181) \/ 25— \/Cx's.
I I

By induction we may assume that the maps
UR— UWM R — fil,,_1 W R

are P™ equivalences, and so among other things that the three spectra are all in Sgo.
The homotopy fiber of fil,,_; W'8R — fil,, W22R is UW8 RA ¥ ~1 Sym™(B/A).
Now B/A is the suspension of the left term in (BI81]) which is slice n-positive. It
follows (Proposition [BI78) that ¥ ~! Sym™(B/A) is also slice n-positive hence so
is UW"8 R A X' Sym™ (B/A) since UW{'8 R > 0. The fact that fil,,_1 W R —
fil,, W2eR is a P™-equivalence is now a consequence of Lemma ([l

B.10. Geometric and monoidal geometric fixed points. The geometric fixed
point functor was defined and its main properties summarized in §2.5.20 In this
section we gives proofs of some of these properties, and describe the variation
constructed in Mandell-May [48, §V.4]. We refer to the Mandell-May construction
as the monoidal geometric fized point functor and denote it ®¢;, in order not to
confuse it with the usual geometric fixed point functor.
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B.10.1. Geometric fized points. The geometric fixed point functor was defined in §2.5.2]
by

o4 (X) = (EP A X)p)°,

in which the G-CW complex EP is the one characterized up to equivariant homo-
topy equivalence by the property

- H S H=G
(EP) N{* H #G.

The characterizing property of EP implies that for any G-space Z and any G-CW
complex A, the restriction map

[A,EP A Z)¢ — [AC EP A 2)¢
is an isomorphism. Since G-acts trivially on A%, the right hand side is isomorphic
to
(A%, (EP A 2)“] = [A%, 29.
Combining these gives the isomorphism
(B.182) [A,EP A Z) ~ [A%, X7,

This isomorphism is the foundation for our investigation into ®¢.

Let + : 8 — 8% be the functor which regards a spectrum as a G-spectrum with
trivial action. As described in §2.5.11 the fixed point functor (— )¢ is right adjoint
to ¢

1:85=89: ()¢
and together they form a Quillen morphism in the positive complete model struc-
tures.

Since smashing with EP is homotopical, and the fixed point functor (—
right Quillen functor the functor ®¢ is homotopical.

)¢ is a
Proposition B.183. For a spectrum X € §, the map
(B.184) X — 9(LX)

adjoint to
1X = EP AuX — (EP A X))

is a weak equivalence.

Proof: We have
me®% (1. X) ~ ho 8(S*, (EP A X)F)
~ ho8(S*, (EP A X)%)
~ho8%(S* EP A X)
~ hg W1§+WEPAXW
W>—k

: e
~ lim m e Xwe
Wk
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with the last isomorphism coming from (BI82). Under the composite isomorphism,
the map on stable homotopy groups induced by (B84 is
lig Te+v Xy — hﬂ 7T]§+WcXWG,
V>=k W>=k
in which V is ranging through the poset of finite dimensional orthogonal vector
spaces and W through the poset of G-representations. This is clearly an isomor-
phism. (I

Since EP is H -equivariantly contractible when H is a proper subgroup of G,
the smash product EP A X is contractible if X is a cellular spectrum built entirely
from G-cells induced from a proper subgroup of G. More generally

Lemma B.185. Let A andY be G-spectra. If X is constructed from A by attaching
G-cells induced from proper subgroups, then the inclusion A — X induces a weak
equivalence

EPANAANY S EPAXAY

hence a weak equivalence

PY(ANY) 5 @Y (X AY).

O

Corollary B.186. Let V' be a G-representation and A a G-CW complex. The
maps

G

STVINAC 5 5VINA— SV AA
induce weak equivalences
STVENAG ~ 0G(SV N AG) 2 0957V A A) & B9 (STV A A),

gwing a zig-zag of weak equivalences

G (STVAA) S5V AC

Proof: We work our way from the left. The weak equivalence SV N ACG ~
OC(AC A S*VG) is Proposition The next map is a weak equivalence by
Lemma since A is constructed from A% by adding induced G-cells. The last
map can be constructed by applying ®“ to the composition

STVAASSVASVVIANAS SV NA,

The right arrow is a weak equivalence. Since SV-Visa G-CW complex with fixed
point space S, it is constructed from S° by adding induced G-cells. The left map
therefore induces an equivalence of geometric fixed points by Lemma [B.185| (I

B.10.2. Motivation and definition of the monoidal geometric fized point functor.
For an orthogonal representation V of G let V¢ C V be the space of invariant
vectors, and V+ the orthogonal complement of V. Note that

(B.187) (V. ~ g(VE W) AoV WHT,
so that there is a canonical map
fG(V, W)G - f(vcv WG)?
given in terms of (BI87) by smashing the identity map with the map O(V+, W+)¢ —
pt.
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We wish to define a functor @fd with the property that
(B.188) G (STVAA) =8V AAC

and which commutes with colimits as far as is possible. A value needs to be assigned
to the effect of ®§; on the map

S™WA Za(V,W) = SV,
The only obvious choice is to take
eF (S~ A Ja(V.W)) — @ (S7Y)
to be the composite
(B.189) SWIN Jo(V,W)E 5 SVIN g (vE W) - 5V

If @%} actually were to commute with colimits, it would be determined by the
specifications given by (BI88) and (BI89). Indeed, using the tautological presenta-
tion to write a general equivariant orthogonal spectrum X as a reflexive coequalizer

\/ SN Ja(VW)A Xy = \[ STV A Xy = X,
V,W 1%
the value of @%(X ) would be given by the reflexive coequalizer diagram
(B.190) \/ SN gevon)§ AXE =\ 5TV AXE - 0 X
V,W v
We take this as the definition of ®¢,(X).
Definition B.191. The monoidal geometric fized point functor
¢, 89 = 8
is the functor defined by the coequalizer diagram (B.190).

Remark B.192. In case X = S~V A A, the tautological presentation is a split
coequalizer, and one recovers both (B.I88)) and (B.I89).

A fundamental property of the usual geometric fixed point functor ®€ is that for
proper H C G, the spectrum ®% (G, 1/1\( X) is contractible. The monoidal geometric
fixed point functor has this property on the nose.

Proposition B.193. Suppose that J is a G-set and X an equivariant J-diagram.
If J has no G-fized points then the map

G ( \/ Xj) = *
jedJ
is an isomorphism. In particular, if H C G is a proper subgroup and X an orthog-

onal H-spectrum, then the
¢, (G AX) =

is an isomorphism.

Proof: Since indexed wedges are computed componentwise, the assumption that
J has no fixed points implies that that for all representations W of G,

( \/ Xj)sv = ( \/(Xj)W)G = x*.

jeJ jeJ
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The claim then follows from the definition of fIJ%i[. O

Working through an equivariant cell decomposition gives

Corollary B.194. Let A andY be G-spectra. If X is constructed from A by attach-
ing G-cells induced from proper subgroups, then the map ®§ (ANY) — @G (X AY)
is an isomorphism. O

There is a natural map
(B.195) X% 5 o§x

from the fixed point spectrum of X to the monoidal geometric fixed point spectrum.
To construct it note that the fixed point spectrum of X is computed termwise, and
so is given by the coequalizer diagram

(B.196) \V SA VW) AXE =\ STV AXT - XC
V.We 7 Ve #?

The map (B.195)) is given by the evident inclusion of (B.I96]) into (B.I190).

The functor @fd cannot commute with all colimits. However, since colimits
of orthogonal G-spectra are computed objectwise, the definition implies that @%i[
commutes with whatever enriched colimits are preserved by the fixed point functor
on G-spaces. This means that there is a functorial isomorphism

(B.197) PGH(X ANA) = G (X)AAY

for each pointed G-space A, and that ®§, commutes with the formation of wedges,
directed colimits and cobase change along a closed inclusion. Because h-cofibrations
and cofibrations are objectwise closed inclusion (Lemma and Remark [(.33),
the functor @% has good homotopy theoretic properties.

B.10.3. Homotopy properties of @%. Several variations on the following appear in
in [48, §V 4].

Proposition B.198. The functor ®§; sends cofibrations to cofibrations and acyclic
cofibrations to acyclic cofibrations. It therefore sends weak equivalences between
cofibrant objects to weak equivalences.

Proof: That ®¢; sends cofibrations to cofibrations follows from the fact that it
preserves cobase change along closed inclusions and sends generating cofibrations
to generating cofibrations. A similar argument applies to the acyclic cofibrations,
once one checks that ®§; sends both maps in the factorization (B.67)

STVEW AW G-V 5 57V

to weak equivalences. But the second map is a homotopy equivalence and the
composite map is sent to a weak equivalence by (B.I88). The last assertion is a
consequence of Ken Brown’s Lemma. O

Proposition implies that the monoidal geometric fixed point functor has
a left derived functor which can be computed on any cofibrant approximation. A
similar argument with a slightly different model structure could be used to show
that the left derived functor can be computed on a cellular approximation. We
will show in §B.10.5] that the left derived functor L®§; is the geometric fixed point
functor ®.
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B.10.4. Monoidal geometric fived points and smash product. The properties (BI8])
and (B.I89) give an identification
DG (STVANANSWAB) = @5 (ST AA) ABS (ST AB)

making the diagram

R (SN Fa(Wr, V) ARF (ST A _F6(Wa, Vo)) —— 5 (S™1) A @F;(S72)

| l

PG (SN _Fe(Wi, Vi) NSV N _Fa(Wa, Va)) OG, (S~ A §—W2)

commute. Applying @%} termwise to the smash product of the tautological presen-
tations of X and Y, and using the above identifications, gives a natural transfor-
mation

(B.199) G (X) A DG (V) = G (X AY),

making ®§, lax monoidal. From the formula (B.I8S)) this map is an isomorphism
if X=S5S"VANAand Y = S~W A B. This leads to

Proposition B.200 ([48], Proposition V.4.7). The functor ®%; is weakly monoidal:
the map (BI99) is a weak equivalence (in fact an isomorphism) if X and Y are
cellular.

Proof: The class of spectra X and Y for which (B.I99) is an isomorphism is stable
under smashing with a G-space, the formation of wedges, directed colimits, and
cobase change along an objectwise closed inclusion. Since (B.199) is an isomorphism
when X = G4 1/1\( SVAAandY =G,y 1/1\( S~W A B this implies it is an isomorphism

when X and Y are cellular. Since isomorphisms are weak equivalences, the result
follows. O

Remark B.201. Blumberg and Mandell [9 Appendix A] have shown that Proposi-
tion [B.200] remains true under the assumption that only one of X or Y is cellular.
This implies that Proposition [B.204] below remains true if only one of N or N’ is
cofibrant.

B.10.5. Relation with the geometric fized point functor. We now turn to identifying
the left derived functor L®§, with the geometric fixed point functor ®“. The
inclusion S° — EP and the fibrant replacement functor give maps

X 5 EPAX = (EPAX);.
Proposition B.202 ([48], Proposition V.4.17). If X is cofibrant, then the maps
DX = ((EP A X)) — 0§, (EP AX)g) + 05(X)

are weak equivalences.

Sketch of proof: For the arrow on the left, note that both functors are homo-
topical and, up to weak equivalence, preserve filtered colimits along h-cofibrations.
Using the canonical homotopy presentation, it suffices to check that the arrow on
the left is a weak equivalence when X = S~V A A, with A a G-CW complex. This
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follows from Corollary [BI86] the identity (B.I8]), and a little diagram chasing to
check compatibility.
The right arrow is the composition of

G (X) = G (EP A X)
which is an isomorphism by (BI97), and
DGHEPAX) — OF,(EPAX)),
which is an acyclic cofibration by Proposition [B.198] O

B.10.6. The relative monoidal geometric fized point functor. The functor ®¢; can
be formulated relative to an equivariant commutative or associative algebra R. As
described below, care must be taken in using the theory in this way.

Because it is lax monoidal, the functor ®¢; gives a functor

(I)f/[ : Mp — M@%R
which is lax monoidal in case R is commutative.
Proposition B.203. The functor

(I)% : MR — Mq)ng

commutes with cobase change along a cofibration and preserves the classes of cofi-
brations and acyclic cofibrations.

Proof: This follows easily from the fact that the maps of equivariant orthogonal
spectra underlying the generating cofibrations for Mg are h-cofibrations. ([l

Proposition B.204. When R is commutative, the functor
(I)%TV/[ : MR — M@%R

is weakly monoidal, and in fact

(B.205) ¢ (N) AN O (N)—= 5 (N'AN)
oG (R) R
is an isomorphism if N’ and N are cofibrant. O

Proof: The proof is the same as that of Proposition [B.200] once one knows that
the class of modules N’ and N for which (B:205)) is an isomorphism is stable under
cobase change along a generating cofibration. This, in turn, is a consequence of
the fact that both sides of (B.205]) preserve h-cofibrations in each variable, since
h-cofibrations are closed inclusions. The functor @% does so since it commutes
with the formation of mapping cylinders, and N’ /}% (—) does since Mg is a closed

symmetric monoidal category. O

As promising as it looks, it is not so easy to make use of Proposition [B.204l The
trouble is that unless X is cofibrant, @%} (X)) may not have the weak homotopy type
of ®(X). So in order to use Proposition [B:204 one needs a condition guaranteeing
that N’ é N is a cofibrant spectrum. The criterion of Proposition [B.206 below was

suggested to us by Mike Mandell.
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Proposition B.206. Suppose R is an associative algebra with the property that
STYAR is cofibrant. If N' is a cofibrant right R-module, and S~ AN is a cofibrant
left R-module, then

N’ AN

is cofibrant.

Proof: First note that the condition on R guarantees that for every representa-
tion U with dim U% > 0 and every cofibrant G-space T, the spectrum

(B.207) STUARAT
is cofibrant. Since the formation of N’ /I% N commutes with cobase change in both

variables, the result reduces to the case N = STV ARAX and N = S~ ARAY
with V' having a non-zero fixed point space, and X and Y cofibrant G-spaces. But

in that case
N’/R\)NQS_V@W/\R/\X/\Y

which is of the form (B.207), and hence cofibrant. O

Corollary B.208. Suppose R is an associative algebra with the property that S~ A
R is cofibrant. If N’ is a cofibrant right R-module, then the equivariant orthogonal
spectrum underlying N' is cofibrant.

Proof: Just take N = R in Proposition [B.200 0
The following result plays an important role in determining ®% R(o00) (§7.3)).

Proposition B.209. Suppose that R is an equivariant associative algebra whose
underlying G-spectrum is cellular, and that that R — S° is an equivariant associa-
tive algebra map. If N’ is a cofibrant right R-module, then N’ Q S0 is a cofibrant

spectrum, and the map

o5 (N') A

SO - &G (N A SY)
q>Z\/IR R

is an isomorphism.

Proof: One easily reduces to the case N' = S™V A X A R, in which V is a
representation with V& # 0, and X is a cofibrant G-space. In this case N’ /I% S0 is

isomorphic to S~V A X which is cofibrant. The assertion about monoidal geometric
fixed points follows easily from Proposition [B.200) (I

B.11. Geometric fixed points and the norm. Our original version of the fol-
lowing result merely concluded that the transformation in question was a weak
equivalence on cofibrant objects. Andrew Blumberg and Mike Mandell pointed out
that it is in fact an isomorphism. At their request we have included the stronger
statement.

Proposition B.210. Suppose H C G. There is a natural transformation
@ (=) = @F o Nj(—)

which is an isomorphism, hence a weak equivalence on cellular objects.
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Proof: To construct the natural transformation, first note that there is a natural
isomorphism
AP~ (N§A)C
for H-equivariant spaces A. Next note that for an orthogonal representation V' of
H, Proposition [A.59 and the property (B.I88) give isomorphisms

PG NGS™V ~ @f, 5 MV & gV & pHGV
The monoidal properties of @%} and the norm then combine to give an isomorphism
(B.211) PH(STVANA) =~ dONG(S™V A A)
which one easily checks to be compatible with the maps
STVN Zu(W, V) — SV,

To construct the transformation, write a general H-spectrum X in terms of its
tautological presentation

\V SWA ga(V,W)AXy =2\ STV AXY - X,
V,W 1%

and apply (B211) termwise to produce a diagram

\/ SN g AXE = \/ STV AXE - 9CNEX.
V.W \4

The coequalizer of the two arrows is, by definition, ®4 (X). This gives the natural
transformation.

The isomorphism assertion for cellular X reduces to the special case (B211)),
once one show that ®§; o NG(—) commute with the formation of wedges, cobase
change along cofibrations between cofibrant objects, and filtered colimits along
closed inclusions. The last property is clear since both of the functors being com-
posed commutes with filtered colimits along closed inclusions. For the other two
assertions it will be easier to work in terms of equivariant J-diagrams for J = G/H.

Suppose that T is an indexing set, and Xy, ¢t € T a set of equivariant J-diagrams.
We wish to show that the natural map

(B.212) \/ @5 X — of (\/ x)"
teT teT

is an isomorphism. For this use the distributive law to rewrite the argument of the
right hand side as
Vxm

yel
where + is the G-set of functions J — T and
XM = /\ X50)-
jeJ

The map asserted to be an isomorphism on monoidal geometric fixed points is the
inclusion of the summand indexed by the constant functions. But since G acts
trivially on 7', the other summands form an indexed wedge over a G-set with no
fixed points. The claim then follows from Proposition
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The cobase change property is similar. Suppose we are given a pushout square
of equivariant J-diagrams
A——B

|

X—Y
in which A — B is a cofibration and A is cofibrant. We consider the filtration of
Y given in §A.3.4 whose stages fit into a pushout square

\/ X/\J() A 8AB/\J1 - o \/ X/\J() A B/\J1

J:J()HJl J:JOHJl
[J1]=m [J1]=m
fil,—q Y fil,, Y7 .

By Proposition [B.97, the upper arrow is an h-cofibration, so the resulting diagram
of monoidal geometric fixed points is a pushout. But since J is a transitive G-set,
unless m = |J| the group G has no fixed points on the G-set indexing the wedges.
Applying Proposition [B.193] then shows that for m < |J| the map

o§, x"N — o5, fil,, Y
is an isomorphism, and that the pushout square when m = |J| becomes

©§,04B" —— 0§, B"’

| |

oG XN ——= G, Y

However the term 94B" is the term fil ;_; B"’ in the case in which X = A
and Y = B, and so ®§, A" — ®§,04B"7 is an isomorphism. This completes the
proof. O

Thinking in terms of left derived functors one can get a slightly better result. As
long as X has the property that the map (LN§)X — N5 X is a weak equivalence,
there will be a weak equivalence between ®7 X and @GN}C}X . Since it plays an
important role in our work, we spell it out. Start with X € 8# and let X, — X be
a cofibrant approximation. Now consider the diagram

B.213 X, <>l X, s ¢ NGX, <~ PEGNEX,
g zag M M*YH g zag H
X PENGX

The left vertical arrows are weak equivalences since the geometric fixed point functor
preserves weak equivalences. The weak equivalences in the top row are given by
Propositions [B:202] [B.89, and [B:210l Since ®¢ is homotopical we have

Proposition B.214. Suppose that X € 87 has the property that for some (hence
any) cofibrant approxzimation X. — X the map

N§X. - N§X
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is a weak equivalence. Then the functorial relationship between ®7 X and fI)GNgX
gwen by (B213) is a weak equivalence. g

Remark B.215. Proposition [B.214] can be proved without reference to ®§; by using
the canonical homotopy presentation.

Remark B.216. Proposition [B.214] applies in particular when X is very flat in the
sense of §B.8.2l By Proposition this means that if R € 87 is a cofibrant
commutative ring, then ®? R and ® NG R are related by a functorial zig-zag of
weak equivalences. The case of interest to us is when H = C3, G = Cs» and
R = MUg. In this case NgR = MU and we get an equivalence

S MUC) ~ ¢ MUR ~ MO.

Remark B.217. Proposition[B.214]also applies to the suspension spectra of cofibrant
H-spaces. Indeed, if X is a cofibrant H-space then S"'AS'AX — X is a cofibrant
approximation. Applying Ng leads to the map

STV ASY ANG(X) = N§(X)

with V = indg R, which is a weak equivalence (in fact a cofibrant approximation).
This case is used to show that ®¢ o N§ is a ring homomorphism on the RO(G)-
graded cohomology of G-spaces (Proposition [Z57).

B.12. Real bordism. In this section we give a construction of the real bordism
spectrtum MUg as a commutative algebra in §“2. As will be apparent to the
reader, this construction owes a great deal to the Stefan Schwede’s construction
of MU in [67, Chapter 2]. We are indebted to Schwede for some very helpful
correspondence concerning these matters.

Our goal is to construct a Cs-equivariant commutative ring MUy admitting the
canonical homotopy presentation

B.218 MUg ~ holim S~C" A MU (n),
lim

in which MU (n) is the Thom complex of the universal bundle over BU(n). The
group Cs is acting on everything by complex conjugation, so we could also write
this expression as

(B.219) MUg ~ holig S7m2 AN MU (n).
The map
S™P2 AMU(1) - MUg

defines a real orientation. These things form the basis for everything we proved
about MUg.

The most natural construction of MU realizes this structure in the category Sg
of real spectra, which is related to the category of Ce-equivariant orthogonal spectra
by a multiplicative Quillen equivalence

i Sp S 87 it

We will construct a commutative algebra MUr € comm Sk, whose underlying real
spectrum has a canonical homotopy presentation of the form

(B.220) Mg <= holimy S~ A MU (n) = holim S~ A MU (n)er.
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Applying 4, to (B:220) and making the identification 4,5~ = S772 leads to the
diagram

(B.221) i1 MU holim S A MU (n) — holim §~"#* A MU (n)er.

We define MUg to be the spectrum i MUy, where MU — MU is a cofibrant

commutative algebra approximation. The functor i, is strictly monoidal, so MUy is

a commutative ring in §2. The map on the right in (B221)) is a weak equivalence

since 1) is a left Quillen functor. The problem is to show that the one on the left is.
This involves two steps. The first is to show that the forgetful functor

commSg — Sg

creates a model category structure on comm 8g. This involves analyzing the sym-
metric powers of cofibrant real spectra, which, as pointed out in Remark [B.12(]
depends in an essential way on understanding the homotopy theoretic properties
of indexed symmetric powers. The second is to show that the functor 4 is ho-
motopical on a subcategory of Sg containing the real spectra underlying cofibrant
real commutative rings. As in our analysis of norms of commutative rings, this
involves a generalized notion of flatness. There is no real way to short circuit the
model structure on comm 8g. Its role is to identify the cofibrant real commutative
algebras. But the only real work in establishing the model structure is showing
that what one thinks is a cofibrant approximation is actually a weak equivalence,
and that is what is needed to show that every real commutative algebra is weakly
equivalent to a cofibrant one.

B.12.1. Real and complex spectra. In this section we describe the basics of real and
complez spectra. The additive results are more or less all a special case of the results
of [49], but the important multiplicative properties require a separate analysis.

For finite dimensional complex Hermitian vector spaces A and B let U(A, B) be
the Stiefel manifold of unitary embeddings A < B. There is a natural Hermitian
inner product on the complexification V¢ of a real orthogonal vector space V', so
there is a natural map

O(V, W) — U(Vc, Wc).
The group Cs acts on U(Vg, We) by complex conjugation, and the fixed point space
is O(V, W).

Definition B.222. The category ¢ is the topological category whose objects are
finite dimensional Hermitian vector spaces, and whose morphism space Zc(A, B)
is the Thom complex

_#¢(A, B) = Thom(U(A, B); B — A).

The category _#r is the Cy-equivariant topological category whose objects are finite
dimensional orthogonal real vector spaces V', and with

(VW) = Zc(Ve, We),

on which Cy acts by complex conjugation.

Definition B.223. The category Sc of complex spectra is the topological category
of (continuous) functors

/@—>T.
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The category 8 of real spectra is the topological category of Cs-enriched functors

fR _>ICQ7

and equivariant natural transformations.

We will write
Vi~ XVC

for a typical real spectrum X, and let S~"¢ € 8p be the functor co-represented by
V € #Zr. From the Yoneda lemma there is a natural isomorphism

Sr(S7VE, X) = Xy,..

As with equivariant orthogonal spectra, every real spectrum X has a tautological
presentation

(B.224) \V STeA VW) AXw. =\ STVEAXy — X
V.We _Zr Ve r

A similar apparatus exist for complex spectra.

Remark B.225. The category #r is equivalent to its full subcategory with objects
R™, and similarly _#¢ is equivalent to its full subcategory with objects C™. Thus
a real spectrum X is specified by the spaces Xy, with V' = R" together with the
structure maps between them, and an object Y € S¢ is specified by its spaces Y¢n,
together with the structure maps between them.

The group C» acts on 8¢ through its action on #c. We write this as X — X,
where
(X)v =Xy
A fixed point for this action is a complex spectrum X equipped with an isomor-
phism X — X having the property that X — X — X = X is the identity map.
Restricting to the spaces Xc» and using the standard basis to identify C" with C"
one sees that a fixed point for this Cs-action consists of a Cs-space Xcn, together
with an associative family Cs-equivariant maps

/{C(Cn,cm) /\U((Cn) X(Cn — )((Cm7

where C5 is acting by conjugation. But this is the same thing as giving a real
spectrum indexed on the spaces R™. This shows that the category of fixed points
for the Cs-action on 8¢ is Sg.

B.12.2. Smash product and indexed smash products. The orthogonal sum makes
Jc into a symmetric monoidal category and #Zr an T 2-enriched symmetric
monoidal category. Using this one can define the smash product X AY giving
both Sg and 8¢ the structure of symmetric monoidal categories. The smash prod-
uct in Sg is specified by the formula

S*Vc A S*Wc — S*(V@W)C

and the fact that it commutes with colimits in each variable. A similar characteri-
zation holds for Sc.

There are indexed monoidal products in this context. Let J be a finite set with
a Cy-action. The actions of C5 on J and on 8¢ combine to give an action on the
product category 8Z. The category of 83 of real J-diagrams is the category of fixed
points for this action. The category of real J-diagrams for J = {pt} is equivalent
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to Sg. When J = Cy, the category of real J-diagrams is equivalent to Sc. For
general J = nj + noCs, one has an equivalence

8 ~ SE! x 82,
There are indexed wedges and indexed smash products from 87 to Sg.

B.12.3. Homotopy theory of real and complex spectra. We now turn to the homo-
topy theory of real and complex spectra. We describe the case of Sg and leave the
analogous case of 8¢ to the reader.

Suppose that X is a real spectrum. For H C Cs and k € Z set

T‘—I?(X) = HgﬂerVCXVC'
14

The colimit is taken over the poset of finite dimensional orthogonal vector spaces
over R, ordered (in agreement with Definition 2.3)) by dimension. A stable weak
equivalence in 8y is a map X — Y inducing an isomorphism Wf X — wf Y for all
H C Cy and k € Z. For fixed k, the groups 7' form a Mackey functor which we
denote m,,.

Equipped with the stable weak equivalences, the category Sg becomes a homo-
topical category. We refine it to a model category by defining a map to be a fibration
if for each non-zero V, the map Xy, — Yy, is a fibration in 7°2. The cofibrations
are the maps having the left lifting property against the acyclic fibrations. This is
the positive stable model structure on Sg.

The positive stable model structure is cofibrantly generated. The generating
cofibrations can be taken to be the maps of the form

S=Ve A (S:&*l — D’Jﬁ)
and
(Co)y ANSTYEA (ST — DY)
with V' > 0. The generating acyclic cofibrations are the analogous maps
STVen Iyt = 1)
and
(Co)x ASTVEN (I = 1)
together with the corner maps formed by smashing
(B.226) §—VedWe A gWe _y §—Ve

with the maps ST~ — D7 and (C2)4 A (S7' — D7). We assume V > 0, while
W need not be. The map (B.226)) is extracted from the factorization

SVedWe g gWe _, §-Ve , g-Ve

formed by applying the small object construction with the generating cofibrations.
As in the case of the complete positive stable model structure on 8¢, the map
S—Ve 5 §=Ve is a homotopy equivalence. The verification of the model category
axioms is straightforward. See §B.4.1] or [49].
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B.12.4. Real spectra and Cy-spectra. Let

i fR — fcz
be the functor sending V' to

Vo, =V @ pa.
Then the restriction functor

i* 897 — Sgr
has both a left and right adjoint which we denote 4, and i, respectively. The left
adjoint sends S~V¢ to S~Vr2, and is described in general by applying the functor
termwise to the tautological presentation.

Since the functor ¢ is symmetric monoidal, the left adjoint 7, is strongly symmetric
monoidal.

Proposition B.227. The functors
iy 8p = 892 g
form a Quillen equivalence.

Remark B.228. A similar discussion leads to a Quillen equivalence

8¢ & 8.

Proof: Since 1 is a left adjoint and
W(STVEANA) =85V A A

it is immediate that i) sends the generating (acyclic) cofibrations to (acyclic) cofi-
brations, and hence is a left Quillen functor. Using the fact that the sequence
{R" ® po} is exhausting, one can easily check that a map X — Y in 82 is a weak
equivalence if and only if ¢* X — ¢*Y is. This means that to show that ¢, and *
form a Quillen equivalence it suffices to show that the unit map

(B.229) X —i*nX

is a weak equivalence for every cofibrant X € Sg. Since ¢* is also a left adjoint,
it preserves colimits, and therefore so does i*i;. Since both functors also commute
with smashing with a Ca-space, we are reduced checking that for each 0 # V € _#g,
the map

(B.230) SVe 5 x5 Ve

is a weak equivalence.
For W € _Zr, the We-space of S—Ve s

fR(V, W) = ThOIIl(U(V(c, W(c); WC — Vc)
and the W-space of i*S~Vr2 is
/02 (Vp2 ; sz) = Thom(o(vpz ; sz); sz - VP2)'

The unit of the adjunction is derived from the inclusion U(Vg, We) = O(V,,, W,,).
We must therefore show that for each k, the map
(B231) hﬂ T+ We fR(VC7 WC) - ]& T+ We /Cz (‘/;72 ) sz)

We _#r We _7r

is an isomorphism.



212 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

We may suppose that dimW > dimV. For a fixed W choose an orthogonal
embedding V C W, write W =V & U, and consider the diagram

SUec - /R(V, W)

| |

SYr2 —— /02(VP27WP2) .

The left vertical map is an equivariant isomorphism. A straightforward argument
using the connectivity of Stiefel manifolds shows that for dim W > 0 the horizontal
maps are isomorphisms in both 7y, and 7TkCJ2ch' It follows that the right vertical
map is as well, and hence so is (B.231)). O

For later reference, we record one fact that emerged in the proof of Proposi-
tion [B.227]

Lemma B.232. The functor i* reflects weak equivalences: a map X — Y € 8§°2
is a weak equivalence if and only if i* X — i*Y is. O

B.12.5. Multiplicative aspects of real spectra. The multiplicative homotopy theory
of real spectra is similar to that of 8. Though there does not seem to be a simple
way to directly deduce the results from the case of 82, the proofs are very similar.

Proposition B.233. If J is a set with a Cy-action and X — Y is a cofibration
of cofibrant real J-diagrams, then both the indeved corner map OxY " — Y and
the absolute map X"/ — Y are cofibrations between cofibrant objects. They are
weak equivalences if X —Y is.

Proof: This is an analogue of Propositions[B.96] and [B.103 and is proved in the
same way, using the arrow category and the filtration of §A.3.4 O

For the symmetric powers, we fix a Cs-set J and a Cs-stable subgroup ¥ C Xj.
The following is an analog of Proposition [B.117 and, making use of Proposi-
tion [B.233] is proved in the same manner

Proposition B.234. If X € Sy is cofibrant and Z is any real spectrum equipped
with an action of ¥ x Cy extending the G-action, then the map

(B, )+ ) (XM ANZ) = (XM AZ)/2.
is a weak equivalence. (I

Proposition B.235. If A — B is a cofibration of cofibrant real spectra and J is a
finite set with a Ca-action, then in the diagram

EC2E+ /E\ aAB/\J —— EC2E+ é\BAJ

| l

94Sym’ B—— ~Sym’ B

the upper row is a cofibration between cofibrant objects, the vertical maps are weak
equivalences and remain so after smashing with any object, and the bottom row is an
h-cofibration of flat spectra. The horizontal maps are weak equivalences if A — B
18.
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Proof: This is an analogue of Proposition [B.109 and is proved in the same way,
making use of Proposition [B.234 O
Proposition B.236. The forgetful functor

comm Sg — Sg

creates a model category structure on commutative algebras in Sg, in which a map of
commutative algebras is a fibration or weak equivalence if and only if the underlying
map of real spectra is.

Proof: This is proved in the same manner as Proposition [B.130] making use of
Proposition [B.235) O

B.12.6. Generalized flatness. Our next task is to show that the left derived functor
of 4y can be computed on a subcategory of real spectra containing those which
underlie real commutative rings.

Definition B.237. A real spectrum X € Sg is i1-flat if it satisfies the following
property: for every cofibrant approximation X — X and every weak equivalence
Z — 7 € 8°2 the map

(B.238) WXNZ > XNZ
is a weak equivalence.

Remark B.239. Since i is a left Quillen functor and cofibrant objects of 82 are
flat, cofibrant objects of Sg are )-flat.

Remark B.240. If (B:23]) is a weak equivalence for one cofibrant approximation it
is a weak equivalence for any cofibrant approximation.

Our main result is
Proposition B.241. If R € Sg is a cofibrant commutative algebra then R is i\-flat.

The proof of Proposition [B.241] follows the argument for the proof of Proposi-
tion [B.148l

Lemma B.242. [f A € 8g is cofibrant, and n > 1, then Sym™ A is i\-flat.

Proof: By Proposition [B.234] the map
(BesSa)y ) AN = Sym" A

is a cofibrant approximation. Since 7, is a continuous left adjoint, we may identify

(B.243) i(Bc,Sn)+ ) AMYANZ =i (Sym™ A) A Z
with
(B.244) (EcyZn)+ A (AN A Z — Sym"(iyA) A Z.

Since 4, is a left Quillen functor, 4(A) is cofibrant, and Proposition [B.I17 implies
that (B.244)), hence (B.243)) is a weak equivalence. O

We also require an analogue of Lemma [B.165] though the statement and proof
are much simpler in this case, since i, is a left adjoint.



214 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

Lemma B.245. If S — T is an h-cofibration in Sg, and two of S, T, T/S are
u1-flat, then so is the third.

Proof: We may choose a map S — T of cofibrant approximations which is a
cofibration, hence an h-cofibration. Our assumption is that two of the vertical
maps in

Zlg/\Z—>Z|T/\Z—>ZI(T/S') A\ Z

WSNZ ——iTNZ——i(T/S)NZ
are weak equivalences. This implies that the third is, since the two left horizontal
maps are h-cofibrations hence flat. O
Lemma B.246. Consider a pushout square in Sg,
(B.247) S——=T

X —Y

in which S — T is an h-cofibration. If T, T/S and X are i\-flat, then so is Y.

Proof: Since T and T/S are i-flat, so is S by Lemma [B.2451 We may choose
cofibrant approximations of everything fitting into a pushout diagram

jj—>

<R3

X—Y

in which the top row is an h-cofibration. Now consider

i!XAZ-<—i!S'AZ—>i!TAZ

N

WXNL<—0SANZ ——=iTNZ

The left horizontal maps are h-cofibrations, hence flat, and the vertical maps are
weak equivalences by assumption. It follows that the map of pushouts is a weak
equivalence. (Il

Proof of Proposition [B.241]: It suffices to show that if A — B is a generating
cofibration in 8g then

Sym A —— Sym B

L

X—Y
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is a pushout square of commutative algebras in Sg and X is #-flat, then Y is 4;-flat.
We induct over the filtration described in §A34l Since fily Y = X, the induction
starts. For the inductive step, consider the pushout square

(B.248) X ANJaSym™ B—— X ASym™ B

| |

fily, 1Y ————fil,, Y,
and assume that fil,,_; Y is 4)-flat. Both Sym™ B and
Sym™ B/04 Sym™ B = Sym™ (B/A)

are 7;-flat by Lemma [B.242] Since smash products of i-flat spectra are 4,-flat,
both X A Sym™ B and X A Sym™(B/A) are i1-flat. The top row of (B:24]) is an
h-cofibration, so Lemma implies that fil,, Y is 7;-flat. This completes the
inductive step, and the proof. (I

Though we don’t quite need the following result, having come this far we record
it for future reference.

Proposition B.249. The functors iy and i* restrict to a Quillen equivalence

-3

i1 : comm Sk S comm 82 : i*.

Proof: 1t is immediate from the definition of the model structures on comm Sk
and comm 82, and the fact that
i Sp = 8¢ 1
is a Quillen pair, that

i* : comm 8°? — comm Sg

preserves the classes of fibrations and acyclic fibrations. It remains to show that if
A € comm 8 is cofibrant, then the composition

A— i*i[A — i*(i!Af)

is a weak equivalence, where i1A — 41 Ay is a fibrant replacement. Since ¢* reflects
weak equivalences (Lemma [B:232) this is equivalent to showing that

A— i*i[A

is a weak equivalence. Let A’ — A be a cofibrant approximation in 8g, and consider
the following diagram in Sg

(B.250) A —Zs i A

A——i*pA .

By Proposition [B.241] the map 1A’ — 1A is a weak equivalence. The rightmost
arrow in (B.250) is therefore a weak equivalence. The top arrow is a weak equiva-
lence by Proposition[B.227] and the left arrow is a weak equivalence by assumption.
This implies that the bottom arrow is a weak equivalence. (I
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B.12.7. The real bordism spectrum. For V € Zg let

MU (V¢) = Thom(BU (V), Vi)
be the Thom complex of the bundle EU(Vg) x Vg over BU(V¢), equipped with
the Cs-action of complex conjugation. We wﬂ[l]gclie our model of BU(V¢) to be the
one given by Segal’s construction [70], so that

(B.251) V — Thom(BU (V¢), V)

is a lax symmetric monoidal functor #r — T¢,, and so defines a commutative ring
MUR € comm8g. Let MUy — MUg be a cofibrant approximation to MUg in
comm Sp.

Definition B.252. The real bordism spectrum is the spectrum MUg = inMU5.

To get at the homotopy type of MUg, we examine the canonical homotopy
presentation of MUy using the exhausting sequence V,, = R™. This gives a weak
equivalence

(B.253) holim S~ A MU (n) = MUy,
in which MU (n) = MU(C™). Applying ¢ and using Proposition [B.241] gives
holim 5™ A MU (n) = MUk.

In this presentation the universal real orientation of MUgr (Example () is given
by restricting to the term n =1

S7P2 A MU(1) — MUg.
The next result summarizes some further consequences of the presentation (B.253).

Proposition B.254. i) The non-equivariant spectrum underlying MUg is the
usual complex cobordism spectrum MU .

ii) The equivariant cohomology theory represented by MUg coincides with the one
studied in |39, 22, [5l [33).

iii) There is an equivalence
> MUg ~ MO.

iv) The Schubert cell decomposition of Grassmannians leads to a cofibrant approz-
imation of MU by a Co-CW complex with one 0-cell (S°) and the remaining cells
of the form e, with m > 0.
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