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Abstract

We show that hermitianK-theory and Witt groups are representable both in the unstable and in the stableA1-
homotopy category of Morel andVoevodsky. In particular, BalmerWitt groups can be nicely expressed as homotopy
groups of a topological space. The proof includes a motivic version of real Bott periodicity. Consequences include
other new results related to projective spaces, blow ups and homotopy purity. The results became part of the proof
of Morel’s conjecture on certainA1-homotopy groups of spheres.
� 2004 Elsevier Ltd. All rights reserved.

Introduction

HermitianK-theory is the algebraic counterpart of real topologicalK-theory and more generally of
Atiyah’s [2] Real K-theoryof topologicalK-theory ofZ/2-bundles on spaces with involution. Thanks to
the work of Voevodsky and Morel (cf.[36,48]), it is now possible to state precisely how the conjectural
algebraic analogue of real Bott periodicity[8] looks like: there should be a motivic(8,4)-periodic�P1-
spectrum representing hermitianK-theory. This is true, as we prove in this paper. Our proof relies among
others on recent progress in hermitianK-theory [19], Balmer’s triangular Witt groups and Karoubi’s
famousFundamental Theorem[28].
The hermitianK-groupsKhn (A) of a ringA (with involution, and with 2 invertibe) are isomorphic to

�n(BO(A)
+) for n�1, whereBO(A)+ denotes the group completion of the classifying space of the

∗ Tel.: +499419432783; fax: +499419431736.
E-mail address:jens.hornbostel@mathematik.uni-regensburg.de(J. Hornbostel).

0040-9383/$ - see front matter� 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.top.2004.10.004

http://www.elsevier.com/locate/top
mailto:jens.hornbostel@mathematik.uni-regensburg.de


662 J. Hornbostel /Topology 44 (2005) 661 – 687

infinite orthogonal group. The groupKh0 (A) = GW(A) is theGrothendieck–Witt groupof symmetric
spaces overA: take the Grothendieck group of the monoid of isomorphism classes of finitely generated
projectiveA-modules equipped with a symmetric bilinear non-degenerate form.
In the theory of quadratic or symmetric bilinear forms, an even more classical object of study is the

Witt groupW(A). It is the quotient ofGW(A) that identifies the hyperbolic objects with 0. Recently,
Balmer introduced a graded 4-periodic generalizationW ∗

B of Witt groups. It is defined for triangulated
categories with duality in general. When applied to the bounded derived categoryDb(P (A)) of finitely
generated projective modules over a given ring, he rediscovers the classical Witt group in degree 0[4].
His theory allows him to prove powerful theorems, see e.g.,[3,5].We will show in this paper that there is
a space (and in fact a spectrum) whose homotopy groups coincide with the purely algebraically defined
groupsW ∗

B.
Besides the study of quadratic forms, orthogonal and symplectic groups andL-theory, another reason

to study hermitianK-theory stems fromA1-homotopy as introduced by Morel and Voevodsky. In this
framework, hermitianK-theory plays the role of real topologicalK-theory. In particular, it is not an
oriented theory (in the sense of Levine and Morel), therefore it should detect many interesting maps, and
we will see that it is in fact closely related to the endomorphism ring of the motivic sphere spectrum.
Recall that both real and complex topologicalK-theory are representable in the classical stable ho-

motopy category (i.e., the homotopy category of spectra) as are cohomology theories in general. Morel
and Voevodsky proved that algebraicK-theory is representable in the unstable[36] and stable[48] A1-
homotopy category. In this article, we prove a similar result for hermitianK-theory and Balmer Witt
groups: they are representable in the unstable and in the stableA1-homotopy category as well. Our moti-
vation is at least twofold: on the onehand side, this implies thatwehave longexact sequences for hermitian
K-theory and BalmerWitt groups not only for elementary distinguished (i.e., Nisnevich) squares, but also
for blow-ups andGysinmorphisms (cf. Corollaries 6.3 and 6.4) resulting from the corresponding triangles
in theA1-homotopy category[36, 3.2.23, 3.2.29], [48, 4.11, 4.12, 4.13]. On the other hand, we believed
that this result should be useful in proving the following beautiful conjecture of Fabien Morel[33,34]
(which he now has proved ifk is perfect, and the proof uses indeed some of our results, see[35]) which
relates the theory of quadratic forms to stableA1-homotopy groups of spheres:

0.1. Conjecture. Let k be a field,SH(k) be the stableA1-homotopy category as defined in[48] andS0

the sphere spectrum overSpec(k). Then there are isomorphisms

HomSH(k)(S
0, S0) ∼= Kh0 (k)

and forn>0

HomSH(k)(G∧n
m , S

0) ∼= W(k).
Recall that the sphere spectrum is given by(S0)n = (P1k)∧n andP1k is homotopy equivalent to the

smash product of the simplicial circle and the multiplicative group[36, pp. 110–112]. Lannes and Morel
[34] establish a morphismKh0 (k) = GW(k) → HomSH(k)(S

0, S0) which should be the isomorphism
in Conjecture 0.1 above. The main evidence for the part of the conjecture aboutKh0 (k) is the fact that
the topological Adams spectral sequences has a motivic counterpart converging to a certain completion
of Kh0 (k), see[33] for the details.
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The proof of unstableA1-representability of hermitianK-theory and Witt groups relies on homotopy
invariance and theMayer–Vietoris property for Nisnevich squares which we prove in the first two sections
of this paper.
To conclude that ordinary algebraicK-theory is representable not only in the unstableA1-homotopy

categoryH(k) but also inSH(k), Voevodsky proves a periodicity theorem[48, Theorem 6.8]which
is essentially Quillen’s projective bundle theorem[39, 8.2]. This is the algebraic counterpart of Bott
periodicity in complex topologicalK-theory.
The strategy we apply to prove stable representability for hermitianK-theory and Witt groups in

Section 5 relies on the study ofKh∗ (R[t, t−1]) instead ofKh∗ (P1R). Our results also give a variant of
Voevodsky’s proof[48] for the representability of algebraicK-theory (see Remark 5.9). We obtain a
periodicity theorem for hermitianK-theory corresponding to the one in real topologicalK-theory and
more generally to topologicalK-theory of spaces with involution (see Corollary 5.4). Thus, we can
construct an�P1-spectrumKO which follows the same periodicity pattern as real topologicalK-theory.
For instance, the motivic bidegree(4,2) is given by antisymmetric forms, see Section 5 for more details.
The unit mapS0 → KO of the ring spectrumKO together with the representability of hermitianK-theory
yields a morphismHomSH(k)(S

0, S0) → HomSH(k)(S
0,KO) ∼= Kh0 (k) which should be the inverse

of the morphism constructed above. As hermitianK-theory is a non-orientable theory, it is expected to
detect other elements of higherA1-homotopy groups of spheres which are not detected by orientable
theories like motivic cohomology and algebraicK-theory. See Section 6 (in particular 6.8 and 6.9 for
more details.
Another application due to S.Yagunov of ourA1-representability theorem is the possibility to construct

certain transfer maps and to deduce rigidity theorems forKOandWover algerbraically closed fields[55].
There is work in progress byYagunov and the author[20] about general base fields.
We now present a more detailed overview of this article.
We prove homotopy invariance and Nisnevich–Mayer–Vietoris for hermitianK-theory of regular affine

schemes in Section 1, using some techniques of my joint work with Marco Schlichting[19] and the
corresponding results forK-theory and BalmerWitt groups. HermitianK-theoryKh as defined in[18] is
not sufficiently well developed yet to prove such results for non-affine schemes.
In Section 2, we extend the definition of hermitianK-theory from affine schemes to non-affine schemes

using techniques of[24,47,54]in a way that this new theoryKOautomatically fulfills Nisnevich–Mayer–
Vietoris and homotopy invariance. We do not prove thatKh(X) 
 KO(X) for non-affineX, although
we conjecture that this is true ifX is regular. By the techniques of[10], we can also deduce the exactness
of the Cousin complex for a regular local ring containing an infinite field (Corollary 2.9).
After some discussions with Paul Balmer and Fabien Morel, it became clear that one can deduce

unstable representability of algebraicK-theory from two geometric facts: Nisnevich–Mayer–Vietoris
[36, “Brown–Gersten property” 3.1.13]and homotopy invariance. Then one can work with any fibrant
replacement of theK-theory presheaf instead of using the explicit construction of Thomason[46] as
done in[36, Proposition 4.3.9]. The situation is similar to topology where the behavior of a cohomology
theory (fulfilling homotopy invariance and Mayer–Vietoris) for cofibrant spaces (e.g., CW-complexes)
is determined by its values on a point. The proof of the representability of hermitianK-theory we give
in Section 3 also follows from these two properties of hermitianK-theory. It works in a much more
general setting, see Theorem 3.1 for this generalA1-representability theorem. In general, once we have a
fibrant presheaf on affine schemes fulfilling Nisnevich–Mayer–Vietoris and homotopy invariance, we can
always extend it to non-affine schemes as done in Section 2 and prove representability by some fibrant
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replacement of its sheafification as in Theorem 3.1. See Remark 3.8 for a discussion concerning the role
of orthogonal Grassmannians.
Balmer Witt groups are defined purely algebraically. In order to prove unstable representability of

BalmerWitt groupsW ∗
B, we first show that they are isomorphic to the homotopy groups of the homotopy

colimit of theKaroubi tower (Lemma4.6). The proof that the simplicial sheaf obtained thisway represents
W ∗

B is then similar to the proof of the analogous result for hermitianK-theory. That is, we need the
Nisnevich–Mayer–Vietoris property forW ∗

B to show representability in the simplicial homotopy category
of Joyal and Jardine[22] and homotopy invariance to show representability in the unstableA1-homotopy
category of Morel and Voevodsky[36]. All this is carried out in Section 4.
In Section 5, we show that computations of the hermitianK-theory ofR[t, t−1] when combined with

Karoubi’s Fundamental Theorem can be reinterpreted as periodicity theorems in theA1-setting. We then
construct�P1-spectra representing hermitianK-theory and (Balmer) Witt groups in the stable homotopy
categorySH(k).
In Section 6, we compute the hermitianK-theory and Witt groups of the projective line and state a

result on projective spaces. We also prove the Thom isomorphism (also calledhomotopy purity) and the
blow up isomorphism both for Witt groups and hermitianK-theory. We then discuss the relation of our
representability theorems and Morel’s conjecture on stableA1-homotopy groups of spheres. Comparing
this to a topological version of such a periodicity theorem forK-theory of spaces with involution (cf. the
work ofAtiyah[2] onReal K-theory), we conjecture a link with the Hopf map also in the algebraic setting
(Conjecture 6.6).
The appendix (Section 7) contains a dictionary betweenL-theory, Balmer Witt groups and hermitian

K-theory.
Throughout the whole article, we assume that 2 is invertible in all our ringsR if not stated explicitly

otherwise. Moreover,schememeans a separated scheme of finite type (thus quasi-compact, hence noethe-
rian) over a fixed base fieldk in which 2 is invertible. Working with a noetherian regular ring in which 2
is invertible as a base would not change anything.
I would like to thank Paul Balmer, Christian Häsemeyer, Max Karoubi, Fabien Morel, Marco Schlicht-

ing and BruceWilliams for some comments and discussions.

1. Nisnevich–Mayer–Vietoris and homotopy invariance for hermitianK-theory of regular rings

Throughout this article, we will always assume thatA is a unitary ring and that 2 is invertible inA.
Recall that an additive category is called idempotent complete if any idempotent mapp = p2 has an
image.

1.1. Definition. A category with dualityis a triple(C, ∗, �) consisting of a categoryC, a functor∗ : C →
Cop and� : idC ⇒ ∗∗ a natural equivalence such that for all objectsA of C we have 1A∗ = �∗A ◦ �A∗ .

1.2. Definition. Given a category with duality(C, ∗, �), its associated hermitian categoryCh is defined as

follows:An object(M,�) is an isomorphism� : M ∼=→M∗ such that�=�∗�. A morphism� : (M,�)→
(N,�) is a morphism� : M → N in C such that�∗�� = �.
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1.3. Examples.(1) LetA be a ring with unit, and let¯ : A→ Aop be an involution, i.e.,a + b = ā + b̄,
ba= āb̄ and ¯̄a= a. LetP(A) be the category of finitely generated projective rightA-modules.We define
a duality onP(A) by settingM∗ = {f ∈ HomZ(M,A)|f (ma)= āf (m)} which is a rightA-module via
f a(m) = f (m)a. For example, on the group ringA = RG, we have the involutionrg �→ rg−1. Then
(P (A),HomA( ,A), �) is an additive category with duality, where�(m)(f )= f (m) for allm ∈ M and
f inM∗.
(2) Let X be a scheme. Then the categoryV ect(X) of locally freeOX-sheaves of finite rank is an

exact category withHomOX
( ,OX) as duality functor. This generalizes Example 1 for commutative

rings considered as affine schemes.

1.4. For any categoryCwewriteBC := |NC| for the topological space given by the geometric realization
of the nerve ofC.We writeiC for the category which has the same objects asC and whosemorphisms are
the isomorphisms ofC. If C is a symmetric monoidal category in which anymorphism is an isomorphism
(i.e.,C= iC), Quillen [15] constructs a new categoryC−1C, which we abbreviate byC+, and a functor
C → C−1C such thatBC → BC−1C is a group completion under very mild hypotheses[15, p. 222]
which are always satisfied for all categories constructed in this article. For an additive category with
duality (A, ∗), we observe that the orthogonal sum(A, �) ⊥ (B, �) := (A⊕ B, � ⊕ �) makes(Ah,⊕)
into a symmetric monoidal category. Hence we can use Quillen’sS−1S-construction[15] to define its
K-theory:

1.5. Definition. Let (A, ∗, �) be an additive category with duality. Then its hermitianK-theory space is
defined by

Kh(A) := B(iAh)
+

and its hermitianK-groups are defined by

Khn (A) := �nK
h(A), n�0.

Using explicit deloopings, we can also define negative hermitianK-groups[19, Section 2]just as one
defines ordinary negativeK-groups (cf. for example[38]).

1.6. Definition. An object(M,�) of Ah is calledhyperbolicif there is an objectL in A together with
an isomorphism(M,�) ∼= (L⊕ L∗, (01 10)) =: (H(L), �L).

1.7. If 2 is invertible, there is an isometry(M,�) ⊕ (M,−�)
1∼= → (H(M), �M) given by

(
1
1
2�

−1
1
2�

)

for any (M,�) in Ch. This implies that the full subcategory of hyperbolic objects is cofinal inAh.
Moreover, ifA=P(A) as in Example 1.3.1, the free hyperbolic modules are cofinal inP(A)h and hence
the connected component of 0 ofKh(P (A)) is homotopy equivalent to the plus construction applied to
BO(A) = Bcolimn AutH(Rn) [25, Théorème 1.6]. We will often writeKh(A) andKhn (A) instead of
Kh(P (A)) andKhn (P (A)).

1.8. Recall the following definition of Witt groups suggested by Balmer[4] for a triangulated category
T with translation functorT and with an exact duality functor∗ (i.e., which preserves the distinguished
triangles). Foranysuch triangulatedcategorywithduality(T, T , ∗, �),wedefine itsnth derivedWitt group
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Wn
B(T) to be the monoid of isomorphism classes of objects ofTh relative to the duality functorT n ◦ ∗,

modulo the equivalence relation given by identifying themetabolic objects(seeDefinition 1.9 below)with
zero.As any object is a direct summand of a metabolic object,Wn

B(T) is actually a group. Balmer proves

[4, Theorem 4.3]that there is a natural isomorphism with the classicalWitt groupW(A)
∼=→W0

B(D
b(A))

if A is an idempotent complete additive category with duality in which 2 is invertible andDb(A) is
the homotopy category of bounded chain complexes with its standard triangulation. These groups are of
period four, i.e.,Wn

B =Wn+4
B . If A is idempotent complete, we writeWn

B(A) forW
n
B(D

b(A)).

1.9. Definition. Given a triangulated category with duality(T, T , ∗, �), a symmetric bilinear nondegen-
erate object(M,�) is calledmetabolicif it posseses a Lagrangian(L, �, z). This means by definition

that we have an exact triangleT −1(L∗) z→L
�→M

�∗�→ L∗ and thatT −1(z∗)= � ◦ z (in other words,z is
symmetric with respect toT −1 ◦ ∗).
Keep in mind that our main example isT = Db(V ect(X)) with T the shift of chain complexes and

duality ∗ induced byHomOX
( ,OX). This generalizes the classical Witt group as we assume 2 to be

invertible (see[4]).
The following results are known only for additive categories, but not for general exact categories

(having possibly not split short exact sequences). In[18], we gave a definition of hermitianK-theoryKh

of an exact categoryE with duality which generalizes Definition 1.5 if all short exact sequences inE

split. But we cannot prove Corollaries 1.12 and 1.14 below for hermitianK-theory of schemes defined
this way. Hence we will give another variant of hermitianK-theory for schemes (cf. Definitions 2.2 and
2.4), calledKO, which will allow us to generalize these Corollaries to non-affine schemes.

1.10. Theorem.LetF : A → B be an additive functor between idempotent complete categories with

duality. Assume thatK−n(A) ∼= 0 ∼= K−n(B) for n = 1,2.Assume furthermore thatKn(A)
∼=→Kn(B)

for all n�0 andWn
B(A)

∼=→Wn
B(B) for all n ∈ Z. Then we also have isomorphismsKhn (A)

∼=→Khn (B)

for all n� − 2.

Proof. This is a special case of Karoubi’s induction principle[19, Lemma 5.13]. �

1.11. Corollary. Consider a commutative square

A
f−−−−−−→ B�

�
C

g−−−−−−→ D

of additive idempotent complete categories with dualities which becomes homotopy cartesian after
applying K, and all negative K-groups of the four categories above vanish. Assume moreover that
Db(f ) andDb(g) are localizations of triangulated categories with dualities and the mapA → C

induces an equivalence of their kernel categoriesT. Then the square becomes homotopy cartesian after
applyingKh.
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Proof. Let C(f ) andC(g) be the push-out of additive categories ofCA ← A → B andCC ←
C → D, resp. as defined in[19, Section 3.5]. By Theorem 1.10, it suffices to show that the natural map
C(f )→ C(g) induces an isomorphism on Balmer Witt groupsW ∗ to deduce a homotopy equivalence
Kh(C(f )) → Kh(C(g)) and thus the desired homotopy cartesian square. We know that the maps
Db(A) → Db(CA) andDb(B) → Db(C(f )) are full inclusions with equivalent cokernels. This
follows as by[19, Lemma 2.8]B → C(f ) is also filtering, hence the quotientsCA/A andC(f )/B
are equivalent additive categories and we can apply[44, Theorem 10.1]to get two short exact sequences
of triangulated categories. The same argument applies tog : C → D. We will prove that the natural
mapsDb(CA)/T → Db(C(f )) andDb(CC)/T → Db(C(g)) induce isomorphisms onW ∗

B which
suffices by the five lemma asW ∗(CA) ∼= 0 ∼= W ∗(CC) by the usual Eilenberg swindle. But the
mapW ∗(Db(CA)/T) → W ∗(Db(C(f ))) fits into a commutative (check this!) ladder of long exact
sequences of Witt groups[3] associated to the two short exact sequences of triangulated categories
Db(B) → Db(C(f )) → Db(SA) andT → Db(A) → Db(B). Hence the claim follows by the five
lemma and the identical argument forW ∗(Db(CC)/T)→ W ∗(Db(C(g))). �

Remark. The category of finitely generated projective modules over a given ringP(A) is idempotent
complete, and it fulfills the above hypothesisKn(P (A))= 0 for all n<0 if A is regular[6, p. 685].

Theorem 1.10 allows us to prove homotopy invariance:

1.12. Corollary. Let A be a regular ring. Then we have a homotopy equivalence

Kh(A)

→Kh(A[t]).

Proof. Use[39, p. 122], [5, Theorem 3.1]and Theorem 1.10.�

More generally, any map of regular rings yielding an affine vector bundle torsor as discussed in the
next section induces aKh-equivalence by Theorem 1.10 and the corresponding result forK-theory[39,
p. 128]andWitt groups[13]. Homotopy invariance could probably have been proved in a more classical
way, but there seems to be no reference for this.
Next, we establish Nisnevich–Mayer–Vietoris by applying Corollary 1.11. First we recall the definition

of an elementary distinguished square[36, Definition 3.1.3]:

1.13. Definition. An elementary distinguished square(or aNisnevich squarefor short) is given by a
commutative diagram of schemes

U×XV −−−−−−→ V�
�p

U
j−−−−−−→ X

such thatp is étale,j is an open embedding andp−1(X − U) → X − U is an isomorphism of the
associated reduced schemes.



668 J. Hornbostel /Topology 44 (2005) 661 – 687

Recall that a presheafF is a Nisnevich sheaf if and only if for any elementary square applyingF yields
a cartesian square of sets[36, 3.1.4].
Wenowshow that thepresheafKO fulfills theNisnevich–Mayer–Vietoris property (also called “Brown–

Gersten property” or “Nisnevich excision”):

1.14. Corollary. For any elementary distinguished square as in Definition1.13consisting of regular
affine schemes, applyingKh yields a homotopy cartesian square.

Proof. WhenapplyingK to suchasquare,weget ahomotopycartesiansquarebyexcision[47,Proposition
3.19] and localization[47, Theorem 7.4]. Applying Db, the hypotheses of Corollary 1.11 are met by
excision and localization[5, 1.6, 2.3]as well. Now apply Corollary 1.11.�

2. The definition ofKO

Recall that throughout this paper,schememeans a separated scheme of finite type over a fixed base
field k in which 2 is invertible. We first extend the definition of the presheafKh on affine schemes to a
presheafKO on quasi-compact schemes using Jouanolou’s device (cf. Definition 2.2). Then we observe
that we can defineKO using affine covers as well (see Definition 2.4, Lemma 2.5) following essentially
Thomason[47,54]. All this works just as well for any other fibrant presheaf on affine schemes, provided
that it fulfills homotopy invariance and Nisnevich–Mayer–Vietoris.
First, we recall the following result of Jouanolou.

2.1. Lemma. Let X be a regular scheme. Then there exists an affine vector bundle torsor W over X.

Proof. See[24, Lemme 1.5]if X is quasiprojective or more generally[54, Proposition 4.3]if X has
an ample family of line bundles; recall that any regular noetherian scheme has an ample family of line
bundles ([7, II, 2.2.7.1]or [47, p. 284]). �

Moreover, taking the fiber product of two affine torsorsWandW ′ overXas in[24, Proposition 1.6], we
see that the homotopy type ofKh(W) is independent of the choice of the torsorW. AsKh is homotopy
invariant, this justifies the following definition:

2.2. Definition. Let X be a regular scheme. Then we defineKO(X) := Kh(W) whereW is an affine
torsor overX as in Lemma 2.1.

2.3. Remark. Observe that this is a definition onlyup to homotopy. See[54, Appendix]for techniques
to make it functorial by considering all torsors simultaneously, and observe that[54, Lemma A.2]car-
ries over asKh commutes with colimits. Hence we may assume from now on thatKO is a simplicial
presheaf onSm/k, as it will be necessary in the sequel. More generally, given any presheafP on affine
schemes (commuting with colimits) fulfilling Mayer–Vietoris and homotopy invariance for vector bundle
torsors, the techniques of[54] allow us to extend it to a presheaf onSm/k fulfilling these two prop-
erties for non-affine schemes as well. So in this section the reader might replaceKO by a presheafP
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fulfilling the properties mentioned above as this is all the proofs we will give in this section require
(except the Nisnevich–Mayer–Vietoris property which requires the corresponding statement for affine
Nisnevich–Mayer–Vietoris squares). Observe also that an affine vector bundle torsor over a scheme
smooth overk is itself smooth overk.

2.4. Definition. Let X be a scheme andU = (Ui)i∈I an affine open cover ofX. Then we define
KO(X,U) := holimKO(Ui1 ∩ · · · ∩ Uij ) where theholim is taken over the poset over all finite
intersections of open sets ofU .

In the notation of Thomason[46, Definition 1.9], one would writeȞ•(U,KO) instead ofKO(X,U).

2.5. Lemma. Let X be a regular scheme andU , V be two affine covers of X. Then we have a homo-
topy equivalenceKO(X,U) 
 KO(X,V ). In particular, there are natural homotopy equivalences

Kh(X)

→KO(X)


→KO(X, {X}) for X affine where{X} is the trivial cover ofX.

Proof. The arguments of Thomason–Weibel carry over toKO: We can first prove Mayer–Vietoris for
quasi-compact separated schemes as in[54, Theorem 5.1]using Corollary 1.14. Then we deduceČech
descentfrom [54, Theorem 6.3]. From this, the Lemma follows by arguments similar to those used in
[54, Proposition 6.6]. �

2.6.Remark. Onemight try todefineKOdirectly fromKh via thisholim-constructionwithout Jouanolou’s
device. But the problem (besides functoriality) is that we needČech descent and thus the Mayer–Vietoris
property ofKO for regular schemes too prove Lemma 2.5, and proving the general Mayer–Vietoris prop-
erty from the one for affine schemes requires Jouanolou’s device. Nevertheless, once Mayer–Vietoris is
established, we can deduce theorems onKO for non-affine schemes once we know they are true for affine
schemes. Compare[47, Section 9]and[24] for possible applications. We can also defineKO(X) for X
not quasi-compact this way.

2.7. Proposition. For any regular scheme X, the projectionA1k → Spec(k) induces a natural homotopy
equivalence

KO(X)

→KO(X × A1).

Proof. This follows from Definition 2.2. �

2.8. Theorem. For any Nisnevich square as in Definition1.13,the following square

KO (X)
KO(U)−−−−−−→ KO (U)�KO(p)

�
KO (V ) −−−−−−→ KO (U×XV )

is homotopy cartesian.

Proof. For ordinary Mayer–Vietoris (i.e., bothp and j are open inclusions), the proof is the same as
in [54, Theorem 5.1]. Considering Nisnevich squares in general, the idea is roughly to choose affine
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vector bundle torsors forX,U, V andU×XV and then proceed similarly to Corollary 1.11. Here are
the details: First, choose affine vector bundle torsorsSpec(A) andSpec(C) overX andV in a func-
torial way (look either at Remark 2.3 or replaceX by Spec(A) and thenV by an affine vector bundle
torsorSpec(C) over V×XSpec(A)). DefineTA andTC to be the kernel categories of the functors
Db(P (A))→ Db(V ect(Spec(A)×XU)) andDb(P (C))→ Db(V ect(Spec(C)×XU)). Then the map
A→ C inducesamapbetween the short exact sequencesof triangulated categoriesTA → Db(P (A))→
Db(V ect(Spec(A)×XU)) andTC → Db(P (C))→ Db(V ect(Spec(C)×XU)) which yields isomor-
phisms between the long exact localization sequences for Witt groups[3] by Jouanolou’s device for
Witt groups[13] and the five lemma. Now functorially replaceSpec(A)×XU andSpec(C)×XU by
affine vector bundle torsorsSpec(B) andSpec(D). Writing f andg for the mapsP(A) → P(B) and
P(C) → P(D) defined by composition, one can proceed similar to the proof of Corollary 1.11 in
order to prove that the mapsDb(CP (A)/TA) → Db(C(f )) andDb(CP (C)/TC) → Db(C(g)) in-
duced by universal properties induce isomorphisms onWitt groups. As in Corollary 1.11, it follows that
C(f )→ C(g) induces anisomorphism also onKh∗ by Karoubi induction (Theorem 1.10) which applies
asK-theory also fulfills strong homotopy invariance (that is, for affine vector bundle torsors, see[24])
and the Nisnevich–Mayer–Vietoris property[47, Proposition 3.9, Theorem 7.4]. �

2.9. Corollary. If k is infinite, the Cousin complex(see e.g.[10, Section 1]) in hermitian K-theory yields
a resolution of the Zariski sheaf associated toU �→ KOn(U). In particular, if R is local and smooth
over k, then the complex

0→ KOn(R)→ KOn,x(R)→
∐

x∈X(1)KOn−1,x(X)→ . . .

is exact whereKOn,x(X) := colimU�xKOn,x̄∩U(U), KOZ(X) is the homotopy fiber ofKO(X) →
KO(X − Z) andKn,Z(X)= �n(KOZ(X)).

Proof. This follows fromTheorem2.8 andProposition 2.7which imply thatKO is a cohomology theorem
fulfilling COH1 andCOH3 and thus isstrictly effaceable[10, Theorem 5.1.10], and the claim follows
[10, Corollary 5.1.11]. �

2.10. If one tries to identify the Cousin complex to the classical Gersten complex, the latter will start
with KO(R) → KO(Quot(R)) and then continue with the four theoriesU, −KO, −U andKO in a
four-periodic pattern. Panin’s trick[37] to generalize to the equicharacteristic case once the geometric
case is established will carry over to our situation, doing the induction step for all four types of Gersten
complexes simultaneously.

2.11. Remark. In the next section (Theorem 3.1), we will see how the Nisnevich–Mayer–Vietoris prop-
erty and homotopy invariance of a presheaf leads to a representability result inH(k). One easily checks
that the converse is also true: given a simplicially fibrant sheafF, the theory it represents fulfills the
Nisnevich–Mayer–Vietoris property and homotopy invariance, and thus the Gersten conjecture for the
Cousin complex holds for the theory represented byF and for rings as in Corollary 2.9, using[10] as
above.
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3. Unstable A1-representability of hermitian K-theory

We first prove a general representability theorem for a certain class of functors from smooth schemes
to graded abelian groups. For any presheaf of simplicial setsP on the big Nisnevich site(Sm/k)Nis, we
denote byaP ∈ 	opShv its sheafification (with respect to the Nisnevich topology). IfF is a sheaf, we
write Ff for a fibrant replacement with respect to the simplicial model structure of[22, Corollary 2.7].
Recall that in this model structure, a mapF → G is a weak equivalence if and only if it induces a weak
equivalence of simplicial sets for all stalks. In particular, the stalks ofF andFf are weakly equivalent
simplicial sets. ThemapF → G is a cofibration ifF(U)→ G(U) is amonomorphism for any schemeU,
hence any object is cofibrant. Recall further that this simplicial structure yields the (pointed) simplicial
homotopy categoryHs•(k) which then leads to the (pointed)A1-homotopy categoryH(k) of [36] by
inverting theA1-equivalences.
We denote byX+ the schemeX with an added disjoint base point. TheYoneda embedding sends any

(pointed) scheme to a (pointed) presheaf which is an étale sheaf[45, p. 347]. We will often consider it as
a simplicially constant sheaf and still denote it byX (resp.X+).
The model category of simplicial sheafs	opShv(Sm/k)Nis is actually a simplicial model category

[36, Remark 1.9]. In particular, we have a bifunctorHom	opShv(Sm/k)Nis : 	opShv(Sm/k)opNis× 	opShv
(Sm/k)Nis → 	opSets.
We can now establish our generalA1-representability result:

3.1. Theorem. For any presheafP : (Sm/k)Nis → 	opSets fulfilling the Nisnevish–Mayer–Vietoris
property and homotopy invariance and for any regular scheme X, we have a natural isomorphism

�n(P (X)) ∼= HomH(k)(S
n ∧X+, aP f ).

Proof. We have�n(P (X)) ∼= �n(aP f (X)) by applying [36, 3.1.18]to A= all regular noetherian
schemes. Furthermore, we have�n(aP f (X)) ∼= �n(Hom	opShv(Sm/k)Nis(X, aP f )) because byYoneda we
have Hom	opShv(Sm/k)Nis(X, F )k := Hom	opShv(Sm/k)Nis(X × 	k, F ) ∼= F(X)k and hence
Hom	opShv(Sm/k)Nis(X, F )

∼= F(X) for any simplicial sheafF. By [22, p. 73], �n(Hom	opShv(Sm/k)Nis
(X, aP f )) is isomorphic toHom	opShv(X,�

naP f )/∼ where∼ stands for the smallest equivalence rela-
tion generatedby simplicial equivalence.WewriteHom• for pointedmorphisms.Asaddingabasepoint is
left adjoint to forgetting thebasepoints,wegetHom	opShv(X,�

naP f )/∼ ∼= Hom	opShv •(X+,�naP f )/

∼. As aP f is fibrant, it follows [22, p. 73] that �naP f is also fibrant and hence[22, p. 72] that
Hom	opShv •(X+,�naP f )/∼ ∼= HomHs•(k)(S

n ∧X+, aP f ).To show that the latter one is isomorphic to
HomH(k)(S

n ∧ X+, aP f ), we have to check[36, 2.2.5]thataP f is A1-local. By [36, 2.3.19], a fibrant
simplicial sheaf isA1-local if and only if it is homotopy invariant.We also know[36, 3.1.18]that amap of
presheaves that is stalkwise a weak equivalence (hence a weak equivalence of the associated sheaves) is a
weak equivalence for any section provided both presheaves fulfill the Brown–Gersten property.Applying
this toP → aP f yields the desired result asP and henceaP f is homotopy invariant. �

3.2. Remark. Thepart of the proof showing that�n(P (X)) ∼= HomHs•(k)(S
n∧X+, aP f ) is not discussed

in the corresponding proof of Morel and Voevodsky for the representability of algebraicK-theory[36,
Proposition 3.9]because they consider it to be “formal”. The above details might allow somemore people
to understand this part of their proof. More precisely, our proof allows us to slightly simplify their original
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proof, replacing Thomason’s hypercohomology spectrumH•
Nis( ,KB) and his Nisnevich descent result

[47, Theorem 10.8]by an arbitrary fibrant replacementaK f and the Brown–Gersten property.

3.3. Remark. Theorem 3.1 also holds ifP = P0 whereP is a presheaf of (not-necessarily connective)
�-spectra fulfilling the Nisnevich–Mayer–Vietoris property. This follows as for simplicial sets using[23,
Corollary 1.4].

The above result strongly emphasizes the analogywith classical homology theories for CW-complexes:
The behavior of the homotopy groups of any presheafP satisfying Nisnevich–Mayer–Vietoris and ho-
motopy invariance (read: an Eilenberg–Steenrod cohomology theory) is determined by their behavior on
a point. This is not a full analogue of Brown’s representability theorem[9] as we already assumed our
cohomology theory to be given as homotopy groups of a simplicial presheaf instead of starting with just
a presheaf with values in graded abelian groups. This is why our proof for theA1-representability of
BalmerWitt groups and in particular the classicalWitt group (cf. Section 4) is slightly more complicated.

3.4. Corollary. For any regular scheme X, we have a natural isomorphism

KOn(X) ∼= HomH(k)(S
n ∧X+, aKO f ).

Proof. Apply Theorem 3.1, Remark 3.3, Theorem 2.8 and Proposition 2.7.�

This allows us to extend the definition ofKO from Sm/k to any simplicial sheaf:

3.5. Definition. For any objectF of 	opShv(Sm/k)Nis, we set

aKO f (F ) := Hom•(F+, aKO f ) ∼= Hom(F, aKO f )

and

KOn(F ) := HomH(S
n ∧ F+, aKO f ).

For any object with base pointF of 	opShv(Sm/k)Nis•, we set

aKO f (F ) := Hom(F, aKO f )

and

KOn(F ) := HomH(S
n ∧ F, aKO f ).

The objectaP f does not look very explicit, so one might look for other descriptions ofaKO f . Let� :
(Sm/k)et → (Sm/k)Nis be the obvious morphism from the big étale site to the big Nisnevich site (com-
pare[36, p. 130]). Then we have a pair of adjoint functors�∗ : 	opShv(Sm/k)Nis → 	opShv(Sm/k)et
and�∗ : 	opShv(Sm/k)et → 	opShv(Sm/k)Nis. In fact, �∗ is just the forgetful functor, having the
sheafification functor�∗ as a right adjoint. Define a model structure on	opShv(Sm/k)et as in[22], that
is the weak equivalences being the (étale) stalkwise weak equivalences of simplicial sets and every object
is cofibrant. WritingHs

et (k) for its homotopy category, following[36, Proposition 1.47]we obtain a pair
of (Quillen) adjoint functorsL�∗ andR�∗ betweenHs(k) andHs

et (k). The functorL�∗ is induced by
�∗ andR�∗ by first choosing a fibrant resolution and then applying�∗.
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One reason for considering the étale topology is the following.

3.6. Definition. LetA be a ring andAn be equipped with the diagonal form 1n := 〈1, . . . ,1〉. Then we
setOn(A)= AutP (A)h(An,1n).
3.7. Lemma. Let X be a scheme. Then in the étale topology, any object(E,�) of V ect(X)h is locally
isomorphic to(An,1n) for somen ∈ N.
Proof. In the Zariski topology, any vector bundleE is locally free, and there are elementsa1, . . . , an in
the local ringA such that locally(E,�) ∼= (An, 〈a1, . . . , an〉) wheren is the rank ofE (cf. [43, Theorem
1.6.4]). To construct an isomorphism(An, 〈a1, . . . , an〉) ∼= (An, 〈1, . . . ,1〉), we need to add the square
roots of theai toAwhich yields an étale neighbourhood as 2 is invertible[42, PropositionVI.1](remember
that we assume our forms to be non-degenerate).�

3.8. Remark. As in [36, p. 123], we denote byR� the total right derived functor of�, which is right
adjoint toS1∧ in Hs•. It is given by first taking a fibrant resolution and then taking loops, thus always
yields a fibrant object. Finally, we defineBetOn := R�∗�∗BOn, where� : (Sm/k)et → (Sm/k)Nis is
the obvious morphism of sites andBO(Spec(A))n is the classifying space (i.e., the nerve) of the group
On(A). The Lemma 3.7 above implies that�∗aKO f and�∗R�B

∐
n�0BOn are locally isomorphic in

the étale topology. To study the relationship betweenaKO f andR�B
∐
n�0BetOn in H(k) remains an

open problem. Observe that[36, p. 131]implies thatHomHs•(k)(X,
∐
n�0BetOn) is isomorphic to the

monoid of isomorphism classes of quadratic bundles onX.
The fact that we cannot use orthogonal Grassmannians to represent hermitianK-theory as we can use

ordinary Grassmannians to represent algebraicK-theory will require a slight modification ofVoevodsky’s
argument when constructing spectra representingKO∗ andW ∗

B as we will see in Section 5.
Nevertheless, when working with rational coefficients, there is a geometric model for the space that

represents hermitianK-theory. More precisely, onemay combine Lemma 3.7, Corollary 3.4,Voevodsky’s
result[49, Proposition 3.3.2]thatmotives andétalemotives coincidewith rational coefficients andMorel’s
unpublished (compare[35]) result that the category of Voevodsky motives with rational coefficients is
equivalent to the rational motivic stable homotopy category provided−1 is a sum of squares in the base
field k, and similarly for the étale topology. Then we see that a spectrum built fromaKO f is A1-stably
rational equivalent to one built fromR�B

∐
n�0BetOn. It is of course even integrallyA

1-equivalent by
Lemma 3.7 if the base fieldk contains all square roots. See[36, Section 4.2]for the techniques of how to
construct an orthogonal Grassmannian isomorphic (inH(k)) toR�B

∐
n�0BetOn.

We conclude this discussion by recalling that any antisymmetric form is locally isomorphic (in the
Zariski topology) to a standard symplectic form (see e.g.[32, p. 7, Corollary I.3.5]). So−KO-theory as
introduced in the next section is representable byR�B

∐
n�0BetSp2n, and the argument is exactly as for

algebraicK-theory, replacingGln by Sp2n everywhere.

4. The Karoubi tower and unstable A1-representability of Witt groups

In this section, we will show (Corollary 4.9) that Balmer Witt groups and in particular the classical
Witt group are representable in the unstableA1-homotopy categoryH(k). In order to do so, we first need
to construct in a functorial way for each regular ring a topological space whose homotopy groups are
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the purely algebraically defined Wittgroups(Lemma 4.6). This result seems to have some independent
interest.
We first defineU- andV-theory and Karoubi Witt groupsWK.

4.1. Definition. For any ringAwith involution ¯, we define the hyperbolic functor by
H : iP (A)→ iP (A)h,

M �→ (H(M), �M),

� �→ � ⊕ �∗ −1

and the forgetful functor by

F : P(A)h → P(A),

(N,�) �→ N,

� �→ �.

We further set

U(A) := hof ib(K(A) H→Kh(A)),

V (A) := hof ib(Kh(A) F→K(A)),

Un(A) := �n(U(A)),

Vn(A) := �n(V (A)),

WK
n (A) := coker(Kn(A) H→Khn (A)),

where the homotopy fiber and homotopy groups are always with respect to the basepoint given by the
zero object.

Observe thatWK
0 is just the classicalWitt group.We write−Kh for the hermitianK-theory of antisym-

metric forms, i.e., when replacing� by−�, and similarly forU- andV-theory.
The following Theorem is due to Karoubi. He calls it “Fundamental Theorem”, and one should think

about it as a first generalization of Bott periodicity to algebraicK-theory:

4.2.Theorem. For any ring with involution A in which2 is a unit,we have a natural homotopy equivalence

�−U(A) 
 V (A).
Proof. See[28]. �

4.3. In the proof of the Fundamental Theorem 4.2, the following construction of the ringsUA andVA [28,
1.4] is crucial: For any ringA, one definesCA to be the ring of those infinite matrices with coefficients in
A having only a finite number of coefficients different from zero in each row and each column. Then one
definesSA := CA/A and shows that one gets a homotopy fibrationKh(A)→ Kh(CA)→ Kh(SA). In
particular, asK andKh of CA vanish by the Eilenberg swindle, we see that�Kh(SA) 
 Kh(A) which
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allows us to consider hermitianK-theory as a non-connective�-spectrum. Everything above, including
Karoubi’s Fundamental Theorem 4.2, carries over to these non-connective�-spectra. In particular, we
have negativeKh-, U- andWK -groups.
In fact, the above construction can be carried out on the level of additive categories with duality in

general[19].Wehavemaps	 : A→ A×Aop, givenby sendinga to(a, ā), and+ : A×Aop → A. Strictly
speaking, the latter map is only defined on the level of additive categories. For rings, we have a mapping
(a, b) to diag(a, b̄) ∈ Mat2(A) and Morita equivalence. Now we defineUA := lim(CA → SA ←
SA× SAop) andVA := lim(CA× CAop → SA× SAop ← SA). We deduce that�Kh(UA)


→U(A),
�U(UA)


→ −Kh(A) and�Kh(VA)

→V (A). See[28] for more details. Observe that the inclusionA→

CA and the zeromapA→ SA×SAop induce amap� : A→ UA. Iterating this construction and writing
UnA for U(Un−1A ), we get the so-called Karoubi tower:

4.4. Definition. For any ringAwith involution, its Karoubi tower is by definition the sequence of maps

Kh(A)
�−→Kh(UA)

U�−→Kh(U2
A)

U2
�−→Kh(U3

A)→ . . .

We also setKT (A) := hocolim(Kh(A)→ Kh(UA)→ Kh(U2
A)→ . . .).

The idea of considering this tower is due to B. Williams. Some properties of this tower have been
studied by Kobal[29]. An easy observation is the following:

4.5. Lemma. The homotopy groups ofKT (A) are4-periodic:

�n(KT (A)) ∼= �n+4(KT (A)) ∼= �n+2(−KT (A)).

Proof. We first observe that�4Kh(U4
A) 
 �3U(U3

A) 
 �2−Kh(U2
A) 
 �−U(UA) 
 Kh(A) by the

above homotopy equivalences. Hence we have�n(KT (A)) ∼= �n(hocolimKh(U
4i
A ))

∼= �n(hocolim�4

Kh(U4i
A ))

∼= �n(colim�4Kh(U4i
A ))where the last isomorphism follows from themapping telescope (i.e.,

thehocolim is by definition thecolim of the diagram replacing every map by a cofibration). Replacing
every simplicial set by a fibrant one, and using the explicit description of�n for fibrant simplicial sets,
we get�n(KT (A)) ∼= colim �n(�4Kh(U4i

A ))
∼= colim �n+4(Kh(U4i

A ))
∼= �n+4(KT (A)). The second

equivalence is similar. �

For regular rings, we actually recover the 4-periodic Balmer Witt groups (see 1.8 for the definition):

4.6. Lemma. If A is a regular ring, we have natural isomorphisms

�k(KT (A)) ∼= �k(K
h(Uk+1A )) ∼= W−k

B (A).

Proof. As the negativeK-theory of regular rings vanishes[6, p. 685], the mapKh(UnA) → Kh(Un+1A )

is an isomorphism for�k, k <n (look at its homotopy fiber�Kh(Un(SA× SAop)) 
 K(Sn(A)). Thus,
�k(KT (A)) ∼= �k(Kh(U

n
A))∀n>k. Use Proposition 7.4 to identify these homotopy groups with Balmer

Witt groups. �

See 7.6, 7.7 for a statement about non-regular rings.
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4.7. As all the above constructions can be done in the category of simplicial sets rather than inTop,
we can considerKT as a simplicial presheaf on regular affine schemes. Using the functorial version of
Jouanolou’s device ([24, Lemme 1.5]or [54, Proposition 4.3]and Remark 2.3), we can extendKT to a
presheaf on regular schemes which we still denote byKT similarly to the way we extendedKh toKO in
Section 2. As Gille[13] has recently shown that Balmer Witt groups fulfill strong homotopy invariance
(i.e., for bundles having affine spaces as fibers), we know that this extension still coincideswith the groups
Balmer originally defined:�n(KT (X)) ∼= W−n

B (X).

Next, we show that the Nisnevich–Mayer–Vietoris property holds forKT.

4.8. Proposition. Applying KT to a Nisnevich square as in Definition1.13yields a homotopy cartesian
square.

Proof. Again, for affine Nisnevish squares we could use Corollay 1.11, and for general Zariski–Mayer–
Vietoris squares we could proceed similarly as in[54, Theorem 5.1]once the result for affine Zariski–
Mayer–Vietoris squares is established. For a general Nisnevich square as in Definition 1.13 we choose a
functorial replacement of this square byaffine vector bundle torsors.AsbothKOandKT fulfill Jouanolou’s
device by definition, the claim follows by Theorem 2.8 and the following more general argument. As-

sume that we have a sequenceA
f→B

g→C of rings (or more generally of idempotent complete additive
categories) inducing a homotopy fibration for non-connective�-spectra when applyingK orKh. Then
we also have homotopy fibrations of non-connective�-spectra when applyingKh to SA→ SB → SC

and toSA× SAop → SB × SBop → SC × SCop. Looking at the homotopy fibers, we get a homotopy
fibration of non-connective�-spectra

Kh(UA)→ Kh(UB)→ Kh(UC)

and inductively for all the higherKh(Un ). It remains to show thatKT (A) 
 F whereF := hof ib

(KT (B) → KT (C)). Defining FnB := hof ib (Kh(UnB) → KT (B)), FnC := hof ib (Kh(UnC) →
KT (C)) andXn := hof ib (FnB → FnC), this yields�i(F

n
B)

∼= �i(F
n
C) for n> i. Hence�i(Xn) = 0

and consequently�i(Kh(UnA))
∼= �i(F ) for n> i, and the proposition follows. The argument for a

commutative square is exactly the same, settingXn = holim(FnC → FnD ← FnB). (Alternatively, on may
proceed by studying the homotopy fibers given byC(f ) andC(g) as it was done in Theorem 2.8.).�

Denote byaKT the sheafification ofKT with respect to the Nisnevich topology. Next we choose a
fibrant replacementaKT f with respect to the model structure of[22, Corollary 2.7].
We will now prove that the simplicial sheafaKT f on (Sm/k)Nis represents BalmerWitt groups in the

unstableA1-homotopy categoryH(k). As usual, we denote byX+ the schemeX with an added disjoint
base point. Then the main result of this section is the following:

4.9. Corollary. For any regular scheme X, we have a natural isomorphism

W−n
B (X) ∼= HomH(k)(S

n ∧X+, aKT f ).

Proof. As Balmer Witt groups fulfill the Nisnevich–Mayer–Vietoris property (Proposition 4.8) and ho-
motopy invariance[5], we can apply Theorem 3.1 and Remark 3.3.�
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As forKO, this allows us to extend the definition ofW ∗
B from Sm/k to any simplicial sheaf:

4.10. Definition. For any objectF of 	opShv(Sm/k)Nis, we set

W−n
B (F ) := HomH(k)(S

n ∧ F+, aKT f ).

For any object with base pointF of 	opShv(Sm/k)Nis•, we set

W−n
B (F ) := HomH(k)(S

n ∧ F, aKT f ).

5. Stable representability ofKO andW

Recall[48] that the stableA1-homotopy categorySH(k) is the homotopy category ofP1-spectra. The
structure mapsEn ∧ P1 → En+1 have adjoint mapstn : En → �P1En+1, and as in topology a spectrum
is called an�P1-spectrum if all thetn are weak equivalences (i.e., isomorphisms inH(k)). Recall that we
have an isomorphismP1 ∼= S1∧Gm inH(k) (see[36, Lemma 2.15 and Corollary 2.18]). More details on
stableA1-homotopy can also be found in[23] (resp.[21]) where theA1-analogues of symmetric spectra
(resp.S-modules) are considered.
In this section, we will construct�P1-spectraKO andKT with KO0=aKO f andKT 0=aKT f which

represent hermitianK-theoryKO∗ and BalmerWitt groupsW ∗
B of regular schemes inSH(k). In order to

do so, we need to studyKO∗(R[t, t−1]) andW ∗
B(R[t, t−1]) for a regular ringR(in which 2 is invertible).

We are interested only in the trivial involution onP(R[t, t−1]). Using the involution that sendst to t−1
yields different results, of course. The following is essentially a special case of the main result of[19].

5.1. Proposition. For any regular ring R, we have a split homotopy fibration

KO(R)→ KO(R[t, t−1])→ Kh(UR).

Proof. The first mapf : KO(R) → KO(R[t, t−1]) is induced by the compositionR → R[t] →
R[t, t−1], and by homotopy invariance (Corollary 1.12), the mapKO(R)


→KO(R[t]) is a homotopy
equivalence. Observe that we have natural splittings ofBO(R)+ → BO(R[t, t−1])+ induced by sending
t to 1. Now applying the localization theorem of[19] to R[t] → R[t, t−1] we get a homotopy fibration
Kh(R)→ Kh(R[t, t−1])→ W(T) whereW(T) is a delooping of theU-theory of the exact category
of R[t]-modules of projective dimension 1 which are annihilated bytn for n large enough. Finally, the
dévissage theoremof[19] implies thatU(R)→ U(T) is a homotopy equivalence, so the theorem follows
using�KO(UR) 
 U(R). �

5.2. Remark. Observe that the proof of the general dévissage theorem of[19] can be simplified in our
case thanks to the above splitting and the fact that we do not need to start the Karoubi induction in negative
degrees as in[19] but we can start in degree 0 and 1: The fact thatU0(R)→ U0(T) is an isomorphism
follows from comparing the cokernel in the (split) localization sequence in[19] with the one from[25,
Corollaries 3.12, 3.13]. The isomorphismW0(R)→ W0(T) can be deduced from well-known (e.g.[26,
p. 139], [12, Theorem 5.6]) isomorphismW0(R[t, t−1]) ∼= W0(R)⊕W0(R).
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5.3. Corollary. For any regular ring R, there are natural isomorphisms

KOn(R[t, t−1]) ∼= KOn(R)⊕ Un−1(R)
and

Un(R[t, t−1]) ∼= Un(R)⊕ −KOn−1(R).

Proof. Recall that�K(UR) 
 K(R) and�Kh(UR) 
 U(R). By Quillen [39, p. 122], we also have a
homotopy fibrationK(R) → K(R[t, t−1]) → K(UR). Now use Karoubi’s Fundamental Theorem 4.2
and recall the above splitting ofKO(R)→ KO(R[t, t−1]). �

We will now combine Proposition 5.1 with Karoubi’s Fundamental Theorem and deduce the desired
Periodicity Theorem which then will yield to the definition of the spectrumKO .
For an unpointed scheme (or simplicial sheaf)X and the pointed schemeGm, consider the cofiber

sequence in	opShv(Sm/k)Nis

X+ ∨Gm → X+ ×Gm → X+ ∧Gm.
WedefineU(X) := hof ibK(X) H→KO(X)also for non-affine regularX.Writing−KO for the hermitian
K-theory of antisymmetric forms as before, we get the following.

5.4. Corollary. For any regular scheme X, there are homotopy equivalences

�aKO f (X+ ∧Gm) 
 aU f (X)

and

�aU f (X+ ∧Gm) 
 a−KO f (X).

Proof. As aKO f is fibrant, we obtain a homotopy fibration[14, Proposition II.3.2]

aKO f (X+ ∧Gm)→ aKO f (X+ ×Gm)→ aKO f (X+ ∨Gm)
and similar foraK f ,aU f andaKT f . Using the fact thatX+×Gm=X×Gm"Gm andX+∨Gm=X"Gm,
we obtain the homotopy fibration

aKO f (X+ ∧Gm)→ aKO f (X ×Gm)→ aKO f (X).

Comparing this homotopy fibration with the split onewe just constructed in Proposition 5.1 (and reducing
to X affine by Jouanolou’s device), we obtain the first homotopy equivalence using that�KO(UR) 

U(R). For the second homotopy equivalence, look at the corresponding homotopy fibrations forU and
use that�U(UR)
−KO(R). �

Now we will construct the spectrumKO . For all k ∈ N, we setKO4k := aKO f ,KO4k+1 :=
a−Uf , KO4k+2 := a−KO f andKO4k+3 := aU f . To define the adjoints of the structure mapsKOn →
�P1KOn+1, we first recall (see[11, Proposition 2.8]or [36, Lemma 1.1.16]) that any objectF in
	opShv(Sm/k)Nis can be written as a homotopy colimit of objects of(Sm/k). More precisely, one
can construct a simplicial sheafQF which is the realization of a diagram of coproducts of schemes, that
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isQF = hocolimIXi with Xi an object ofSm/k for all i ∈ I , together with a mapQF → F which is a
weak equivalence of simplicial sets for each section. In particularhocolimIXi 
 QF 
 F with respect
to the model structures[22,36]we care about.
Next, we define the adjoints of the structure maps and show that they are weak equivalences. For

F 
 hocolimIXi as above, we have
Hom•(F+, aU f ) 
 Hom•(hocolimXi+, aU f ) ∼= holimHom•(Xi+, aU f ) by [36, Lemma 1.1.19]

and the fact that all objects are cofibrant. By Corollary 5.4 and the simplicialYoneda Lemma we already
used in the proof of Theorem 3.1, we haveHom•(Xi+, aU f ) ∼= aU f (Xi+) 
 �aKO f (Xi+ ∧ Gm) ∼=
Hom•(Xi+ ∧Gm,�aKO f ) ∼= Hom•(Xi+ ∧Gm ∧ S1, aKO f ) ∼= Hom•(Xi+,�Gm∧S1aKO f ) and thus
Hom•(F+, aU f ) 
 holimHom•(Xi+,�Gm∧S1aKO f ) ∼= Hom•(F+,�Gm∧S1aKO f ).
Applying �0, the homotopy class of the identity ofaU f then corresponds to a homotopy class of a map

t4k+3 from aU f to �P1aKO f via the natural isomorphismsHomH(k)(aU f , aU f ) ∼= HomH(k)(aU f ,

�Gm∧S1aKO f ). This t4k+3 : KO4k+3 → �P1KO4(k+1) is one of our four structure maps. The above
computation forF =X being already a scheme shows that� is stalkwise a weak equivalence. The three
other structure maps are defined in a similar way.

5.5. Theorem.The spectrumKO constructed above is an�P1-spectrum. For any regular scheme X, we
have a natural isomorphism

KOn(X) ∼= HomSH(k)(S
n ∧X+,KO).

Proof. Follows from the above construction and discussion ofKO and Corollary 3.4. �

Now let us look at Balmer Witt groups.

5.6. Proposition. For any regular ring R, there are natural homotopy equivalences

KT (R) 
 �2−KT (R) 
 �4KT (R)

and

KT (R[t, t−1]) 
 KT (R)×KT (R).
Proof. The first claim follows from Lemma 4.5. The second claim follows by applyinghocolim to
Corollary 5.3. �

Applying homotopy groups to the second statement, we recover the well-known computations of
W(R[t, t−1]) and more generallyWn

B(R[t, t−1]) ∼= Wn
B(R)⊕Wn

B(R) as computed in[12].

5.7. Corollary. For any regular scheme X, there is a homotopy equivalence

aKT f (X+ ∧Gm) 
 aKT f (X).

Proof. Using Proposition 5.6, the proof is similar to Corollary 5.4.�

We now define the spectrumKT by settingKT 4k := aKT f ,KT 4k+1 := �a−KT f ,KT 4k+2 :=
a−KT f andKT 4k+3 := �aKT f . The structure maps are defined similar to the ones ofKO . For ex-
ample, the natural weak equivalencesHom•(F+, aKTf ) 
 holimHom•(Xi+ ∧ Gm,��3aKTf ) 
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holimHom•(Xi+,�Gm∧S1�a−KTf ) 
 Hom•(F,�Gm∧S1�a−KTf ) we have by Proposition 5.6 and
Corollary 5.7 yield the structure mapt4k which is a weak equivalence.

5.8. Theorem.The spectrumKT we just constructed is an�P1-spectrum. For any regular scheme X, we
have a natural isomorphism

W−n
B (X) ∼= HomSH(k)(S

n ∧X+,KT ).

Proof. Follows from the construction ofKT and Corollary 4.9. �

5.9. Remark. By the Fundamental Theorem for regular rings[39, p. 122], we haveK(R[t, t−1]) 

K(R)×K(SR) where�K(SR) 
 K(R) andSstands for the algebraic suspension of a ring[50]. Hence
we can also use our method above to construct a(2,1)-periodic spectrum which represents algebraic
K-theory inSH(k). This gives a variant of the proof of Voevodsky[48, Section 6.2]who uses Quillen’s
projective bundle theorem[39, Proposition 8.2], instead. Observe also that applying Theorem 5.1 to
(A× Aop) yields Quillen’s[39, p. 122]theorem onK(A[t, t−1]). The fact that one can use a colimit of
Grassmannians in order to representK-theory inH(k) [36, Theorem 3.13]and a colimit argument[48,
Lemma 6.7]allows Voevodsky to construct the�P1-spectrumBGL that represents algebraicK-theory in
SH(k).As discussed at the end of Section 3, orthogonal Grassmanians do not behave aswell with respect
to hermitianK-theory. Hence Voevodsky’s approach to construct the structure maps does not carry over
to KO andKT. Roughly speaking, we replace his particular colimit argument involving Grassmannians
by the more general one of[11]. Voevodsky[48, Section 6.2]does not explicitly say why the spectrum
BGL he constructs is an�P1-spectrum and hence represents algebraicK-theory inSH(k). The material
of this section provides the necessary techniques to fill in the missing details in[48].

6. Applications

We first compute the hermitianK-theory of the projective line:

6.1. Proposition. For any regular ring R, we have a split homotopy fibration

U(R)→ KO(P1R)→ KO(R).

Proof. We have a covering ofP1R by two copies ofR[t] with intersectionR[t, t−1]. The claim now
follows from Proposition 5.1, Corollary 1.12 and Theorem 2.8.�

The computation of theWitt groups can be done in a similar way, but is already known by[12, Theorem
5.4]. UsingA1-representability, one can easily show the following:

6.2. Proposition. For any ring R smooth over R, we have homotopy fibrations

Fn(R)→ KO(PnR)→ KO(Pn−1R ),

�nKT (R)→ KT (PnR)→ KT (Pn−1R ),

whereF4k+i(R) equalsKO(k) if i = 0,U(k) if i = 1,−KO(k) if i = 2 and−U(k) if i = 3.
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Proof. From [36, Corollary 3.2.18], we deduce a cofiber sequencePn−1+ → Pn+ → (P1)∧n in H(k).
ApplyingKO to the split cofiber sequenceSpec(k)+ → P1+ → P1 and using Proposition 6.1, we see that
KO(P1) 
 U(Spec(k)+). Smashing the preceding cofiber sequence with powers ofP1, using Corollary
5.4 and proceeding inductively, the first claim follows. The second statement is deduced from the first
one by applying powers ofU and passing to the usualhocolim. �

Observe that themapsKO(PnR)→ KO(Pn−1R ) andKT (PnR)→ KT (Pn−1R )would not split in general,
contrary to the corresponding map inK-theory. If the given ringR is such thatWn

B(R)= 0 unlessn is a
multiple of 4 (for instance ifR is a field), we easily get some computations for Witt groups, for instance
W0

B(P
n
R)

∼= W0
B(R) for 0<n<4 as it was already known by Arason[1] for Ra field. As Charles Walter

[53] recently proved a more general theorem onWitt groups of projective spaces and projective bundles
by completely different methods, we do not investigate our approach any further.
Next, we deduce the Thom isomorphism and the blow-up isomorphism. IfE is a vector bundle over

X, we define the Thom space to be the pointed sheafT h(E) := E/(E − i(X)) (compare[36, Definition
3.2.16]) wherei : X→ E is the zero section. Here and in the sequel, quotients are formed in the category
of simplicial Nisnevish sheaves.

6.3. Corollary. Let j : Z → X be a closed embedding of smooth schemes withNX,Z as normal
bundle. Then we have natural homotopy equivalencesKO(X/(X − j (Z))) 
 KO(T h(NX,Z)),
KT (X/(X − j (Z))) 
 KT (T h(NX,Z)) and long exact sequences

. . .→ KOn+1(X − j (Z))→ KOn(T h(NX,Z))→ KOn(X)→ KOn(X − j (Z))→ . . .

and

. . .→ Wn−1
B (X − j (Z))→ Wn

B(T h(NX,Z))→ Wn
B(X)→ Wn

B(X − j (Z))→ . . .

in SH(k).

Proof. Apply Corollaries 3.4, 4.9, Theorems 5.5, 5.8 and[36, Theorem 3.2.23], [48, Propo-
sition 4.12]. �

6.4. Corollary. Let j : Z → X be a closed embedding of smooth schemes, p : XZ → X be the
blow-up ofj (Z) in X andU =X − j (Z)=XZ − p−1(j (Z)). Then we have natural homotopy equiva-
lencesKO((XZ/U)

∐
p−1(Z)Z) 
 KO(X/U), KT ((XZ/U)

∐
p−1(Z)Z) 
 KT (X/U) and long exact

sequences

. . .→ KOn(X)→ KOn(Z)⊕KOn(XZ)→ KOn(p
−1(Z))→ KOn−1(X)→ . . .

and

. . .→ Wn
B(X)→ Wn

B(Z)⊕Wn
B(XZ)→ Wn

B(p
−1(Z))→ Wn+1

B (X)→ . . .

in SH(k).

Proof. Apply Corollaries 3.4, 4.9, Theorems 5.5, 5.8 and[36, Theorem 3.2.29], [48, Propo-
sition 4.13]. �
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6.5. Now consider the Hopf mapP1k ∧Gm 
 A2−0→ P1k . It induces a stable map� : Gm → S0. Morel

conjectured (January 2001) thatW ∗
B is represented byKO [�−1] := hocolim(KO

�→KO ∧G−1
m

�→KO ∧
G

−2
m . . .) whereKO stands for an�P1-spectrum representing hermitianK-theory. In fact, his conjectural

descriptionofKO lookedmoregeometric thanours, involvingBetO,BetSp etc., similar to real topological
K-theory (compare 3.8).We remark that there is also some work of Barge and Lannes (not yet published)
which allows them to prove some periodicity theorem with respect to anaivenotion of homotopy of
algebraic varieties. In particular, they seem to have a more geometric proof of Karoubi’s Fundamental
Theorem (Theorem 4.2) for regular rings.

Morel also conjectured that there is an exact triangleKO ∧Gm �→KO → BGL inSH(k). This does
not only look similar to Karoubi’s Fundamental Theorem, but even more to Atiyah’s work onReal K-
theorywhere the Hopf map appears precisely in the analogous topological situation, see[2, Propositions
3.2, 3.3].

Comparing this to the Karoubi tower and knowing that itshocolim KTrepresentsW ∗
B by Theorem 5.8,

this leads us to the following:

6.6. Question.The stabilization of the map in the Karoubi towerKO( )
�→KO(U ) does it coincide

with the Hopf mapKO
�→KO ∧G−1

m in SH(k) at least up to sign?

Next, recall the following recent theorem of Morel[35] about stableA1-homotopy groups of spheres
whose proof uses Theorem 5.5 of this paper:

6.7. Theorem. For any perfect field k of characteristic different from2 and for all n>0, there are
isomorphisms

HomSH(k)(G∧n
m , S

0) ∼= W0
B(k),

HomSH(k)(S
0, S0) ∼= Kh0 (k),

whereSH(k) denotes the stableA1-homotopy category of[48].

6.8. IntroducingMilnor–Witt K-theoryas a quotient of the tensor algebra generated by the units ofk and
� [34], this Theorem can be extended toHomSH(k)(S

0,G∧n
m ). In order to better understand how these

different conjectures are related and what this has to do withA1-representability of Balmer Witt groups
and hermitianK-theory, consider the following diagram:

Kh0 (k)
∼=−−→ HomH(k)

(
Spec(k)+, aKOf

) ∼=−−→ HomSH(k)

(
Spec(k)+,KO

) ←−−
i

HomSH(k)

(
S0, S0

)
�p

� �̃

� �̃

� �

W0
B (k)

∼=−−→ HomH(k)

(
Spec(k)+, aKT f

) ∼=−−→ HomSH(k)

(
Spec(k)+,KT

)
‹· · · · · ·
j

HomSH(k)

(
S0,G∧−1m

)

Herep is the projection,� : Kh( ) → Kh(U ) is the map from the Karoubi tower,�̃ are the induced
maps andi is given by the fact that the sphere spectrum is a unit. More precisely, we choose the map
HomH(k)(S

0, aKO f ) ∼= Kh0 (k) represented by the form〈1〉. The left-hand side and the middle square
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commute. The conjecture is that there is a mapj such that the right-hand side square also commutes (up
to sign) and that all the horizontal maps are isomorphisms. If the answer to question 6.6 is yes, thenj is

induced byG∧−1
m

i∧id→ KO ∧G∧−1
m → KO [�−1] 
 KT .

6.9. Let us give somemore evidence that the unit mapS0 → KO really induces the desired isomorphism
HomSH(k)(S

0, S0) ∼= Kh0 (k). The groupKh0 (k) = GW(k) is generated by the elements〈u〉, u ∈ k∗
which are subject to the relations〈u〉 = 〈uv2〉 and 〈u〉 + 〈v〉 = 〈u + v〉 + 〈(u + v)uv〉 ∀u + v $= 0
[43, p. 66]. The identity inHomH(k)(P1k,P

1
k) stabilizes to the identity inHomSH(k)(S

0, S0) and is
mapped to〈1〉 in Kh0 (k) under the unit map defined above. This〈1〉 is then mapped under the map of
Lannes–Morel (send〈u〉 in Kh0 (k) to 
∞

P1�u with �u being the endomorphism ofP1 mapping[x, y] to
[ux, y]) back to the identity.Soid ∈ HomSH(k)(S

0, S0) ismapped to itself underHomSH(k)(S
0, S0)→

HomSH(k)(S
0,KO) ∼= Kh0 (k)→ HomSH(k)(S

0, S0).Unfortunately, we cannot prove that the involved
maps are maps of ring spectra andHomSH(k)(S

0, S0)-modules which would imply that the above maps
are isomorphisms. Showing that the above composition is the identity seems in fact to be the harder part,
as Morel (November 2001 and before) claims that using his results in[33], he can prove the existence
of a quasi-splittingHomSH(k)(S

0, S0) → GW(k)∧ which is a splitting ifk is of finite cohomological
dimension,GW(k)∧ being the completion ofGW(k) by the augmentation ideal.

6.10. In topology, the unit map between the sphere spectrumS0 and the real topologicalK-theory
spectrumBO induces a mapHomSH (Sn, S0) → HomSH (S

n,BO) which is an isomorphism not only
forn=0, but also forn=1andn=2.TheMorel conjectures togetherwith computationsofHomSH(k)(S

0∧
G∧j
m ,KO) predict isomorphismsHomSH(k)(S0∧G∧j

m , S
0)→ HomSH(k)(S

0∧G∧j
m ,KO) for j�0. So

it seems natural to ask whether the mapsHomSH(k)(S1, S0) → HomSH(k)(S
1,KO) ∼= KO1(k) ∼=

k∗/(k∗)2 × Z/2 andHomSH(k)(S1 ∧ Gm, S0) → HomSH(k)(S
1 ∧ Gm,KO) ∼= U0(k) ∼= Z/2 and

HomSH(k)(S
2, S0) → HomSH(k)(S

2,KO) ∼= KO2(k) are also isomorphisms or not. Topological real
K-theory together with Adams operations allow the construction of the spectrumJ which detects most
of the 2-torsion of the homotopy groups of spheres by a theorem of Mahowald[31, Theorem 1.5]. So
one might try to perform similar constructions withKO, hoping to detect more elements of the higher
A1-homotopy groups of spheres.

Appendix A. On the relationship of hermitian K-theory, L-theory and Balmer Witt groups

People study symmetric bilinear forms (and quadratic forms) for different reasons. Depending on their
motivation and their background, they end up with different theories.

L-theory has been extensively studied by topologists because quadraticL-groups containsurgery ob-
struction classes, andhigher signatureshavevalues in symmetricL-groups.The rings involvedare integral
group rings of the fundamental group of some topological space. Hence they are often non-commutative,
and assuming 2 to be invertible is a too strong restriction.
People interested in the theory of quadratic forms for its own sake work in particular over fields and

commutative rings, and more and more also over non-affine schemes. Many of them think that Balmer
Witt groups are a convenient generalization of the classical Witt group, allowing strong theorems to be
proved which were not available before.
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Finally, from a purelyK-theoretical point of view, it seems most natural to study hermitianK-theory.
In fact, this is essentially the mother theory from which all other theories can be deduced, as we have
seen in Section 4. One important difference between hermitianK-theory and the other theories is that
hermitianK-groups are defined as being the homotopy groups of a space (or spectrum). This tends to
make concrete calculations more difficult, but is much more convenient to establishA1-representability.
Many mathematicians are comfortable with only one of the three theories. We now give a couple of

results (and conjectures), some old and some new, comparing these three theories.
Historically, quadraticL-groups were defined first for group rings by Wall (depending on a fixed

subgroup of the Whitehead group) and then in general for ringsRwith involution (depending on a fixed
subgroup ofK1(R)). SymmetricL-groupswere introduced byMischenko. Later Ranicki gave a definition
of L-groups depending on a fixed subgroupX of K0(R). There are always a quadratic and a symmetric
version ofL-groups, denoted byLX∗ and byL∗X. The caseX =K0(R) is often denoted byL

p∗ (and also
byU∗ in some older articles, not to be confused with ourU-groups).
QuadraticL-theory is always 4-periodic. SymmetricL-theory coincides with quadraticL-theory only

if 2 is invertible in the given ring. Otherwise, symmetricL-theory need not to be 4-periodic. It becomes
4-periodic after passing to a certain colimit, which is good enough for most geometric applications. It
also becomes 4-periodic if we neglect the 2-torsion (i.e., after applying⊗ZZ[1/2]) because quadratic and
symmetricL-theory coincide up to 2-torsion.When we say a certainL-theory is 4-periodic, actually more
is true: we haveLn∼=−Ln+2 where−L denotes the theory of antisymmetric forms. The same periodicity
pattern holds for Balmer Witt groups. Neglecting the 2-torsion, it also holds for Karoubi Witt groups as
defined in 4.1 (see[27]). Hence it suffices in general to consider only degrees 0 and 1.
Ranicki first gave a definition ofL-theory in terms offormsand formationsand later in terms of

algebraic Poincaré complexes. See[41, Section 5]for a proof that both definitions coincide.
We will now investigate symmetricL-theory of a ringR in which 2 is invertible with respect to

X =K0(R), which we denote byLn(R) from now on.

A.1. Proposition. There is a natural isomorphism

WK
n (R)⊗ZZ[1/2] ∼= Ln(R)⊗ZZ[1/2].

Proof. This is already stated (without proof) in[30, p. 321]. For n = 0, it is true by definition (use
forms instead of algebraic Poincaré complexes to describeL0). For n = 1, first observe[51, p. 286]

thatWK
1 (R) = LK̃1(R)

1 (R) ∼= L
0⊂K̃0(R)
1 (R) [40, p. 14]and hence alsoLK1(R)

1 (R) ∼= L
0⊂K0(R)
1 (R) as

they differ by the same Tate-cohomology group[17, p. 61], [16, p. 138]. By the Rothenberg sequence
[41, Proposition 9.1],L0⊂K0(R)

1 (R) andLK0(R)
1 (R)=Lp1 (R) are isomorphic after tensoring withZ[1/2].

The proposition now follows from the periodicity ofL-theory and Karoubi’s 12-term exact sequence
[27,28]. �

Balmer Witt groups follow the same periodicity pattern asL-theory:Wn
B
∼=−Wn+2

B
∼= Wn+4. The

following comparison statement (conjectured by many people) has now been proved by Ch. Walter:

A.2. Theorem. There is a natural isomorphism

Ln(R) ∼= W−n
B (R).
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By periodicity, we haveLn(R)
∼=→ colimLn+4k(R) if 2 is invertible, otherwise we may take this as

the definition ofLn(R). As P(R) is split exact and idempotent complete, a map of complexes is a
quasi-isomorphism if and only if it is a homotopy equivalence. BothLn(R) andW−n

B (R) are generated
by elements inDb(P (A)) equipped with a non-degenerate symmetric bilinear form with respect to the
duality ExtnR( , R). It remains to compare the cobordism relation forL-groups with the metabolic
objects forW ∗

B . This is done byWalter in[52]. �
Recall from Section 2 that for a schemeXwe can extendKh from rings to schemes using Jouanolou’s

device orholimsof affine covers and get by definitionKO(X). We conjecture, but cannot prove, that the
theoryKO obtained this way coincides withKh as defined in[18] for regular non-affine schemes. We
also defineWOn(X) := coker(Kn(X)→ KOn(X)).

One can also prove the following comparison result between Balmer and Karoubi Witt groups:

A.3. Proposition. (i) There is a natural isomorphism

WK
n (R)⊗ZZ[1/2] ∼= W−n

B (R)⊗ZZ[1/2];
(ii) for any regular scheme X, there is a natural isomorphism

WOn(X)⊗ZZ[1/2] ∼= W−n
B (X)⊗ZZ[1/2].

Proof. (i) This is proved in[19] using a cofinality result for Balmer Witt groups (and is true even ifR is
not regular). To prove (ii), use strong homotopy invariance ofK, KO andW ∗

B. �

Observe that Proposition A.3 is false even for fieldsk if we do not tensor withZ[1/2]. In this case, we
haveWK

1 (k) = Z/2, butW−1
B (k) = 0. On the other hand, we have the following comparison result for

regular rings including the 2-torsion if we look at negative hermitianK-theory:

A.4. Proposition. For any regular ring R, there are natural isomorphisms forn>0

Wn
B(R)

∼= WK−n(R) ∼= Kh−n(R) ∼= U−n−1(R).
Proof. See[19, LemmaA.4]and remember that the negativeK-theory of a regular ring is trivial. �

A.5. Corollary. For any regular scheme X, there are natural isomorphisms forn>0

KO−n(X) ∼= WO−n(X) ∼= Wn
B(X).

Proof. Follows from Proposition A.4 and strong homotopy invariance.�

Concerning the comparison ofKT as defined in Section 4 andL-theory, BruceWilliams has outlined a
proof of the following statement to me. Being unable to cite a reference, I present it here as a conjecture,
anticipating his proof in due course.

A.6. Conjecture. (B.Williams) For any (not necessarily regular) ring R in which 2 is invertible, we have
a natural isomorphism

�n(KT (R)) ∼= Ln(R).
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A.7. Corollary. If ConjectureA.6 is true, we have a natural isomorphism

Ln(R) ∼= colimKhn (UiR).
Proof. Observe that�n(KT (R)) ∼= colim �n(Kh(U

i
R)). �
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