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Abstract

We show that hermitiaf-theory and Witt groups are representable both in the unstable and in theAtable
homotopy category of Morel and Voevodsky. In particular, Balmer Witt groups can be nicely expressed as homotopy
groups of a topological space. The proof includes a motivic version of real Bott periodicity. Consequences include
other new results related to projective spaces, blow ups and homotopy purity. The results became part of the proof
of Morel’s conjecture on certaiA’-homotopy groups of spheres.
© 2004 Elsevier Ltd. All rights reserved.

Introduction

HermitianK-theory is the algebraic counterpart of real topologi€etheory and more generally of
Atiyah's [2] Real K-theoryof topologicalK-theory ofZ /2-bundles on spaces with involution. Thanks to
the work of Voevodsky and Morel (cf36,48)), it is now possible to state precisely how the conjectural
algebraic analogue of real Bott periodic[8] looks like: there should be a motivi8, 4)-periodicQp:-
spectrum representing hermiti&krtheory. This is true, as we prove in this paper. Our proof relies among
others on recent progress in hermitigrtheory [19], Balmer’s triangular Witt groups and Karoubi’s
famousFundamental Theorefi28].

The hermitianK-groupsK*(A) of a ring A (with involution, and with 2 invertibe) are isomorphic to
1,(BO(A)™) for n>1, whereBO(A)™ denotes the group completion of the classifying space of the
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infinite orthogonal group. The groupg(A) = GW(A) is the Grothendieck—Witt groupf symmetric
spaces oveA: take the Grothendieck group of the monoid of isomorphism classes of finitely generated
projectiveA-modules equipped with a symmetric bilinear non-degenerate form.

In the theory of quadratic or symmetric bilinear forms, an even more classical object of study is the
Witt group W (A). It is the quotient ofGW (A) that identifies the hyperbolic objects with 0. Recently,
Balmer introduced a graded 4-periodic generalizatighof Witt groups. It is defined for triangulated
categories with duality in general. When applied to the bounded derived catbjoPy( A)) of finitely
generated projective modules over a given ring, he rediscovers the classical Witt group in dgjree 0
His theory allows him to prove powerful theorems, see §gb]. We will show in this paper that there is
a space (and in fact a spectrum) whose homotopy groups coincide with the purely algebraically defined
groupswg.

Besides the study of quadratic forms, orthogonal and symplectic groufds-tuedry, another reason
to study hermitiark-theory stems fromAl-homotopy as introduced by Morel and Voevodsky. In this
framework, hermitiarkK-theory plays the role of real topologicKttheory. In particular, it is not an
oriented theory (in the sense of Levine and Morel), therefore it should detect many interesting maps, and
we will see that it is in fact closely related to the endomorphism ring of the motivic sphere spectrum.

Recall that both real and complex topologitatheory are representable in the classical stable ho-
motopy category (i.e., the homotopy category of spectra) as are cohomology theories in general. Morel
and Voevodsky proved that algebradetheory is representable in the unstafdé] and stablg48] Al-
homotopy category. In this article, we prove a similar result for hermitigheory and Balmer Witt
groups: they are representable in the unstable and in the sthflemotopy category as well. Our moti-
vation is at least twofold: on the one hand side, this implies that we have long exact sequences for hermitian
K-theory and Balmer Witt groups not only for elementary distinguished (i.e., Nisnevich) squares, but also
for blow-ups and Gysin morphisms (cf. Corollaries 6.3 and 6.4) resulting from the corresponding triangles
in the Al-homotopy categor{86, 3.2.23, 3.2.29]48, 4.11, 4.12, 4.13]0n the other hand, we believed
that this result should be useful in proving the following beautiful conjecture of Fabien §BE&4]

(which he now has proved Kis perfect, and the proof uses indeed some of our result$35evhich
relates the theory of quadratic forms to stalfehomotopy groups of spheres:

0.1. Conjecture. Letk be a field,# # (k) be the stablé'-homotopy category as defined[#8] ands°
the sphere spectrum ovEpec (k). Then there are isomorphisms

Homg (S0, 89 = KL (k)
and forn >0

Homg ¢ (G)", $%) = W (k).
Recall that the sphere spectrum is given(Y), = (Pkl)/\” and P,% is homotopy equivalent to the
smash product of the simplicial circle and the multiplicative grf86 pp. 110-112]Lannes and Morel
[34] establish a morphisk 2 (k) = GW (k) — Hom.y ) (S°, S°) which should be the isomorphism
in Conjecture 0.1 above. The main evidence for the part of the conjecture Ia’é()kll is the fact that
the topological Adams spectral sequences has a motivic counterpart converging to a certain completion
of K (k), see[33] for the details.
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The proof of unstablé!-representability of hermitiaK-theory and Witt groups relies on homotopy
invariance and the Mayer—Vietoris property for Nisnevich squares which we prove in the first two sections
of this paper.

To conclude that ordinary algebraictheory is representable not only in the unstabfehomotopy
category# (k) but also ins# (k), Voevodsky proves a periodicity theorgdB, Theorem 6.8jvhich
is essentially Quillen’s projective bundle theor¢®®, 8.2] This is the algebraic counterpart of Bott
periodicity in complex topologicd-theory.

The strategy we apply to prove stable representability for hermiidheory and Witt groups in
Section 5 relies on the study dxff(R[t, r~1)) instead oij}(P}e). Our results also give a variant of
Voevodsky’s proof{48] for the representability of algebralk-theory (see Remark 5.9). We obtain a
periodicity theorem for hermitiaK-theory corresponding to the one in real topologikaheory and
more generally to topologicaf-theory of spaces with involution (see Corollary 5.4). Thus, we can
construct amp1-spectrumKO which follows the same periodicity pattern as real topologkcdheory.

For instance, the motivic bidegré4, 2) is given by antisymmetric forms, see Section 5 for more details.
The unit maps® — KO of the ring spectrurikO together with the representability of hermitirtheory
yields a morphisnH om g 1) (S, S°) — Hom g 4 (S°, KO) = K{ (k) which should be the inverse

of the morphism constructed above. As hermitiatheory is a non-orientable theory, it is expected to
detect other elements of highat-homotopy groups of spheres which are not detected by orientable
theories like motivic cohomology and algebrddetheory. See Section 6 (in particular 6.8 and 6.9 for
more details.

Another application due to S. Yagunov of cAit-representability theorem is the possibility to construct
certain transfer maps and to deduce rigidity theoremK@andW over algerbraically closed fieldS5].

There is work in progress by Yagunov and the auf@6t about general base fields.

We now present a more detailed overview of this article.

We prove homotopy invariance and Nisnevich—Mayer—Vietoris for hermititimeory of regular affine
schemes in Section 1, using some techniques of my joint work with Marco Schliqdi®j@nd the
corresponding results fa¢-theory and Balmer Witt groups. Hermiti&theory K" as defined irj18] is
not sufficiently well developed yet to prove such results for non-affine schemes.

In Section 2, we extend the definition of hermitigrtheory from affine schemes to non-affine schemes
using techniques 424,47,54]in a way that this new theogO automatically fulfills Nisnevich—Mayer—
Vietoris and homotopy invariance. We do not prove tkdiX) ~ K O(X) for non-affineX, although
we conjecture that this is trueXfis regular. By the techniques [if0], we can also deduce the exactness
of the Cousin complex for a regular local ring containing an infinite field (Corollary 2.9).

After some discussions with Paul Balmer and Fabien Morel, it became clear that one can deduce
unstable representability of algebrdfctheory from two geometric facts: Nisnevich—Mayer—Vietoris
[36, “Brown—Gersten property” 3.1.13Ind homotopy invariance. Then one can work with any fibrant
replacement of th&-theory presheaf instead of using the explicit construction of Thomg&gjnas
done in[36, Proposition 4.3.9]The situation is similar to topology where the behavior of a cohomology
theory (fulfilling homotopy invariance and Mayer—Vietoris) for cofibrant spaces (e.g., CW-complexes)
is determined by its values on a point. The proof of the representability of herrKittheory we give
in Section 3 also follows from these two properties of hermitiatheory. It works in a much more
general setting, see Theorem 3.1 for this genitalepresentability theorem. In general, once we have a
fibrant presheaf on affine schemes fulfilling Nisnevich—-Mayer—Vietoris and homotopy invariance, we can
always extend it to non-affine schemes as done in Section 2 and prove representability by some fibrant
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replacement of its sheafification as in Theorem 3.1. See Remark 3.8 for a discussion concerning the role
of orthogonal Grassmannians.

Balmer Witt groups are defined purely algebraically. In order to prove unstable representability of
Balmer Witt groups¥g, we first show that they are isomorphic to the homotopy groups of the homotopy
colimit of the Karoubi tower (Lemma 4.6). The proof that the simplicial sheaf obtained this way represents
Wg is then similar to the proof of the analogous result for hermiatheory. That is, we need the
Nisnevich—Mayer-Vietoris property fav; to show representability in the simplicial homotopy category
of Joyal and Jardin22] and homotopy invariance to show representability in the unstableomotopy
category of Morel and VoevodsK@6]. All this is carried out in Section 4.

In Section 5, we show that computations of the hermikatieory of R[¢, t 1] when combined with
Karoubi’'s Fundamental Theorem can be reinterpreted as periodicity theorems\ih $edting. We then
construct2p:-spectra representing hermiti&rtheory and (Balmer) Witt groups in the stable homotopy
categorys’ # (k).

In Section 6, we compute the hermiti&itheory and Witt groups of the projective line and state a
result on projective spaces. We also prove the Thom isomorphism (also leafteztopy purityand the
blow up isomorphism both for Witt groups and hermitigstheory. We then discuss the relation of our
representability theorems and Morel’s conjecture on stablaomotopy groups of spheres. Comparing
this to a topological version of such a periodicity theorenmeheory of spaces with involution (cf. the
work of Atiyah[2] onReal K-theory, we conjecture a link with the Hopf map also in the algebraic setting
(Conjecture 6.6).

The appendix (Section 7) contains a dictionary betwedimeory, Balmer Witt groups and hermitian
K-theory.

Throughout the whole article, we assume that 2 is invertible in all our fihisiot stated explicitly
otherwise. Moreovegchemeneans a separated scheme of finite type (thus quasi-compact, hence noethe-
rian) over a fixed base fieklin which 2 is invertible. Working with a noetherian regular ring in which 2
is invertible as a base would not change anything.

I would like to thank Paul Balmer, Christian Hasemeyer, Max Karoubi, Fabien Morel, Marco Schlicht-
ing and Bruce Williams for some comments and discussions.

1. Nisnevich—Mayer—Vietoris and homotopy invariance for hermitianK-theory of regular rings

Throughout this article, we will always assume that a unitary ring and that 2 is invertible i
Recall that an additive category is called idempotent complete if any idempotenp map? has an
image.

1.1. Definition. A category with dualitys a triple(%, =, ) consisting of a category, a functorx : € —
%°P andy : id¢ = *+ a natural equivalence such that for all obje&tsf ¢ we have L« = i’ o 1 4+.

1.2. Definition. Given a category with dualit¢®, *, ), its associated hermitian categafyis defined as

follows: An object(M, ¢) is an isomorphisng : M = M* such thatp = ¢*;. A morphismyx : (M, ¢) —
(N, ) is a morphismyx : M — N in € such that* o = ¢.
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1.3. Examples. (1) LetA be a ring with unit, and Iét A — A° be an involution, i.eq +b =a + b,
ba =ab anda = a. Let P(A) be the category of finitely generated projective rightodules. We define
aduality onP(A) by settingM* ={f € Homz (M, A)| f (ma) =a f (m)} which is a rightA-module via
fa(m) = f(m)a. For example, on the group ring = RG, we have the involutiomg — rg~1. Then
(P(A), Homa( ,A),n)is an additive category with duality, wheién)(f) = f (m) for allm € M and
fin M*.

(2) Let X be a scheme. Then the categdfyct(X) of locally free ¢ x-sheaves of finite rank is an
exact category withHom, ( , Ux) as duality functor. This generalizes Example 1 for commutative
rings considered as affine schemes.

1.4. Forany category we write B¢ := |N%| for the topological space given by the geometric realization

of the nerve ofs. We writei % for the category which has the same objectg asd whose morphisms are

the isomorphisms of. If ¥ is a symmetric monoidal category in which any morphism is an isomorphism
(i.e., % = i%), Quillen[15] constructs a new categoty 1%, which we abbreviate by ™, and a functor

% — %1% such thatB¥ — B%~% is a group completion under very mild hypothe§#s, p. 222]

which are always satisfied for all categories constructed in this article. For an additive category with
duality (<7, %), we observe that the orthogonal sum, «) L (B, f) := (A ® B, a ® B) makes(.<7;, ®)

into a symmetric monoidal category. Hence we can use Quill&n'ss-construction15] to define its
K-theory:

1.5. Definition. Let (.«Z, *, ) be an additive category with duality. Then its hermitiétheory space is
defined by

K"(ot) =BGt
and its hermitiarK-groups are defined by
K"(ot) :=m,K"(/), n>0.

Using explicit deloopings, we can also define negative hermKiagmoups[19, Section 2]Jjust as one
defines ordinary negatiu€-groups (cf. for examplgs8]).

1.6. Definition. An object(M, ¢) of .} is calledhyperbolicif there is an objecL in .o together with
an isomorphismiM, ¢) = (L ® L*, (93)) = (H(L), pp).

1
1.7. If 2 is invertible, there is an isomet§M, ¢) & (M, —p) = — (H(M), u,s) given by(%l¢ ii)

for any (M, ¢) in €. This implies that the full subcategory of hyperbolic objects is cofinef&/m
Moreover, if</ = P(A) as in Example 1.3.1, the free hyperbolic modules are cofinAl i), and hence
the connected component of 0 &f'(P(A)) is homotopy equivalent to the plus construction applied to
BO(A) = Bcolim, Aut H(R") [25, Théoréme 1.6We will often write K" (A) and K (A) instead of
K"(P(A)) andK!(P(A)).

1.8. Recall the following definition of Witt groups suggested by Balij@rfor a triangulated category
7 with translation functoil and with an exact duality functer (i.e., which preserves the distinguished
triangles). For any such triangulated category with dughity T, =, i), we define itsith derived Witt group
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Wg () to be the monoid of isomorphism classes of objectg gfrelative to the duality functof” o x,
modulo the equivalence relation given by identifyingthetabolic objectésee Definition 1.9 below) with
zero. As any object is a direct summand of a metabolic objggt,7") is actually a group. Balmer proves

[4, Theorem 4.3that there is a natural isomorphism with the classical Witt gréi(p/) = Wg(D”(&i))

if o is an idempotent complete additive category with duality in which 2 is invertible2ihdz) is

the homotopy category of bounded chain complexes with its standard triangulation. These groups are of
period four, i.e. W§ = Wg+4. If </ is idempotent complete, we writ€ (/) for W (D? (7).

1.9. Definition. Given a triangulated category with duality, T, =, ), a symmetric bilinear nondegen-
erate object(M, ¢) is calledmetabolicif it posseses a Lagrangidil, «, z). This means by definition
that we have an exact triangle (%) <> L % M ¥ L* and thatT ~(z*) = 1 o 7 (in other wordszis
symmetric with respect td 1 o ).

Keep in mind that our main example 8 = D?(Vect (X)) with T the shift of chain complexes and
duality + induced byHom,, ( , Ox). This generalizes the classical Witt group as we assume 2 to be
invertible (sed4]).

The following results are known only for additive categories, but not for general exact categories
(having possibly not split short exact sequences)18), we gave a definition of hermitiat-theory K
of an exact category with duality which generalizes Definition 1.5 if all short exact sequences in
split. But we cannot prove Corollaries 1.12 and 1.14 below for hermKidineory of schemes defined
this way. Hence we will give another variant of hermitiértheory for schemes (cf. Definitions 2.2 and
2.4), calledKO, which will allow us to generalize these Corollaries to non-affine schemes.

1.10. Theorem.Let F : o/ — 2% be an additive functor between idempotent complete categories with
duality. Assume thak_, (=/) = 0 = K_, (%) for n = 1, 2. Assume furthermore tha, (=/) > K, (%)

for all n >0 and Wi («7) > Wi (%) for all n € Z. Then we also have isomorphisikg (/) 3 Kh(#)
foralln> — 2.

Proof. This is a special case of Karoubi’s induction principl®, Lemma 5.13] O

1.11. Corollary. Consider a commutative square

5

¢ — 5 9

7

—_—

¢ S

of additive idempotent complete categories with dualities which becomes homotopy cartesian after
applying K and all negative K-groups of the four categories above vanish. Assume moreover that
DP(f) and D”(g) are localizations of triangulated categories with dualities and the map—> &
induces an equivalence of their kernel categodgesThen the square becomes homotopy cartesian after

applyingk”.
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Proof. Let C(f) and C(g) be the push-out of additive categories@f/ < A — % andC% <«

% — 9, resp. as defined i[19, Section 3.5]By Theorem 1.10, it suffices to show that the natural map
C(f) — C(g) induces an isomorphism on Balmer Witt groujg$ to deduce a homotopy equivalence
K"(C(f)) — K"(C(g)) and thus the desired homotopy cartesian square. We know that the maps
DP(s7/) — D’(C) and D*(#) — D’(C(f)) are full inclusions with equivalent cokernels. This
follows as by[19, Lemma 2.8} — C(f) is also filtering, hence the quotients«/ /.« andC(f)/%

are equivalent additive categories and we can apilyTheorem 10.1fo get two short exact sequences

of triangulated categories. The same argument appligs:t& — 2. We will prove that the natural
mapsD?(C.«/)/7 — Db(C(f)) andD*(C%)/7 — D’(C(g)) induce isomorphisms oW which
suffices by the five lemma a#*(C.#) = 0 = W*(C%) by the usual Eilenberg swindle. But the
map W*(D?(C<7))T) — W*(D?(C(f))) fits into a commutative (check this!) ladder of long exact
sequences of Witt group8] associated to the two short exact sequences of triangulated categories
D(#) — D*(C(f)) — D’(S<7) and7 — DY(<7) — D?(#). Hence the claim follows by the five
lemma and the identical argument fér*(D?(C%)/7) — W*(D*(C(g))). O

Remark. The category of finitely generated projective modules over a givenRifx) is idempotent
complete, and it fulfills the above hypothe&is(P(A)) =0 for alln < 0 if Alis regular[6, p. 685]

Theorem 1.10 allows us to prove homotopy invariance:

1.12. Corollary. Let A be a regular ring. Then we have a homotopy equivalence

K"(A) S K" (ALn)).
Proof. Use[39, p. 122] [5, Theorem 3.1and Theorem 1.10.

More generally, any map of regular rings yielding an affine vector bundle torsor as discussed in the
next section induces K"-equivalence by Theorem 1.10 and the corresponding resutt-fbeory[39,
p. 128]and Witt groupg13]. Homotopy invariance could probably have been proved in a more classical
way, but there seems to be no reference for this.

Next, we establish Nisnevich—Mayer—Vietoris by applying Corollary 1.11. First we recall the definition
of an elementary distinguished squ§é, Definition 3.1.3]

1.13. Definition. An elementary distinguished squafer a Nisnevich squardor short) is given by a
commutative diagram of schemes

UXXV _— %

.

v . x

such thatp is étale,; is an open embedding angd (X — U) — X — U is an isomorphism of the
associated reduced schemes.
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Recall that a presheé&fis a Nisnevich sheaf if and only if for any elementary square applyiniglds
a cartesian square of s¢86, 3.1.4]

We now show that the preshd&® fulfills the Nisnevich—Mayer—Vietoris property (also called “Brown—
Gersten property” or “Nisnevich excision”):

1.14. Corollary. For any elementary distinguished square as in Definitlob3 consisting of regular
affine schemesipplying K" yields a homotopy cartesian square

Proof. When applyind<to such asquare, we geta homotopy cartesian square by eXdigjéiroposition
3.19] and localizatior{47, Theorem 7.4]Applying D?, the hypotheses of Corollary 1.11 are met by
excision and localizatiofb, 1.6, 2.3]as well. Now apply Corollary 1.11.0J

2. The definition of KO

Recall that throughout this papeschemeaneans a separated scheme of finite type over a fixed base
field k in which 2 is invertible. We first extend the definition of the preshigéfon affine schemes to a
presheaKO on quasi-compact schemes using Jouanolou’s device (cf. Definition 2.2). Then we observe
that we can defin&O using affine covers as well (see Definition 2.4, Lemma 2.5) following essentially
Thomasorj47,54] All this works just as well for any other fibrant presheaf on affine schemes, provided
that it fulfills homotopy invariance and Nisnevich—Mayer—Vietoris.

First, we recall the following result of Jouanolou.

2.1. Lemma. Let X be a regular scheme. Then there exists an affine vector bundle torsor W.over X

Proof. See[24, Lemme 1.5]if X is quasiprojective or more generally4, Proposition 4.3]Jf X has
an ample family of line bundles; recall that any regular noetherian scheme has an ample family of line
bundles 7, I, 2.2.7.1]or [47, p. 284). O

Moreover, taking the fiber product of two affine tors@/andW’ overX as in[24, Proposition 1.6Jwe
see that the homotopy type & (W) is independent of the choice of the torsdrAs K" is homotopy
invariant, this justifies the following definition:

2.2. Definition. Let X be a regular scheme. Then we defii® (X) := K*(W) whereW is an affine
torsor overX as in Lemma 2.1.

2.3. Remark. Observe that this is a definition onlyp to homotopySeeg[54, Appendix]for techniques

to make it functorial by considering all torsors simultaneously, and observésthatemma A.2]car-

ries over ask” commutes with colimits. Hence we may assume from now onKi@ats a simplicial
presheaf orfm/k, as it will be necessary in the sequel. More generally, given any preBr@aaffine
schemes (commuting with colimits) fulfilling Mayer—Vietoris and homotopy invariance for vector bundle
torsors, the techniques {#4] allow us to extend it to a presheaf o/ k fulfilling these two prop-
erties for non-affine schemes as well. So in this section the reader might rég@ealog a presheaP
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fulfilling the properties mentioned above as this is all the proofs we will give in this section require
(except the Nisnevich—Mayer—Vietoris property which requires the corresponding statement for affine
Nisnevich—Mayer—Vietoris squares). Observe also that an affine vector bundle torsor over a scheme
smooth ovek is itself smooth ovek.

2.4. Definition. Let X be a scheme an@ = (U;),.; an affine open cover oK. Then we define
KO(X,U) := holimKOU;; N --- N Uj) where theholim is taken over the poset over all finite
intersections of open sets Of.

In the notation of Thomasdd6, Definition 1.9] one would writeH*(U, K 0) instead ofk O(X, U).

2.5. Lemma. Let X be a regular scheme arid, V be two affine covers of X. Then we have a homo-
topy equivalenc&k O (X, U) ~ KO(X, V). In particular, there are natural homotopy equivalences

K"X)S KO(X)S KO(X, {X)) for X affine wherg X} is the trivial cover ofX.

Proof. The arguments of Thomason—Weibel carry oveK@: We can first prove Mayer—Vietoris for
quasi-compact separated schemes d54nTheorem 5.1jising Corollary 1.14. Then we dedu€ech
descenfrom [54, Theorem 6.3]From this, the Lemma follows by arguments similar to those used in
[54, Proposition 6.6] O

2.6. Remark. One mighttry to defin&Odirectly fromK " via thisholim-construction without Jouanolou’s
device. But the problem (besides functoriality) is that we n@ech descent and thus the Mayer—Vietoris
property ofKO for regular schemes too prove Lemma 2.5, and proving the general Mayer—Vietoris prop-
erty from the one for affine schemes requires Jouanolou’s device. Nevertheless, once Mayer-Vietoris is
established, we can deduce theorem&Orfor non-affine schemes once we know they are true for affine
schemes. Compafé7, Section 9jand[24] for possible applications. We can also defki® (X) for X

not quasi-compact this way.

2.7. Proposition. For any regular scheme Xhe projectionA,} — Spec(k) induces a natural homotopy
equivalence

KO(X)S KO(X x Ab).
Proof. This follows from Definition 2.2. O

2.8. Theorem. For any Nisnevich square as in Definitidnl3,the following square

kKox) X9 kow)

JvKO(P) l

KOWV) —— KOUxxV)
is homotopy cartesian

Proof. For ordinary Mayer—Vietoris (i.e., both andj are open inclusions), the proof is the same as
in [54, Theorem 5.1]Considering Nisnevich squares in general, the idea is roughly to choose affine
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vector bundle torsors fok, U, V andU x xV and then proceed similarly to Corollary 1.11. Here are
the details: First, choose affine vector bundle torstyfac(A) and Spec(C) over X andV in a func-
torial way (look either at Remark 2.3 or replagey Spec(A) and thenV by an affine vector bundle
torsor Spec(C) over Vx xSpec(A)). Define7 4 and 7 ¢ to be the kernel categories of the functors
DP(P(A)) — DP(Vect(Spec(A)x xU)) andD?(P(C)) — DP(Vect(Spec(C)x xU)). Then the map

A — Cinduces amap between the short exact sequences of triangulated cateégoriesD” (P (4)) —

D (Vect(Spec(A)x xU)) and7 ¢ — DP(P(C)) — D?(Vect(Spec(C)x xU)) which yields isomor-
phisms between the long exact localization sequences for Witt gii@ligsy Jouanolou’s device for
Witt groups[13] and the five lemma. Now functorially replad@ec(A)x xU and Spec(C)xxU by
affine vector bundle torsorSpec(B) and Spec(D). Writing f andg for the mapsP(A) — P(B) and
P(C) — P(D) defined by composition, one can proceed similar to the proof of Corollary 1.11 in
order to prove that the maps®(CP(A)/7 1) — DP(C(f)) andD?(CP(C)/7¢) — D(C(g)) in-
duced by universal properties induce isomorphisms on Witt groups. As in Corollary 1.11, it follows that
C(f) — C(g) induces anisomorphism also dfjj by Karoubi induction (Theorem 1.10) which applies
asK-theory also fulfills strong homotopy invariance (that is, for affine vector bundle torsorf24ge
and the Nisnevich—Mayer-Vietoris propefty7, Proposition 3.9, Theorem 7.4]0

2.9. Corollary. If kis infinite the Cousin complefsee e.g[10, Section 1}in hermitian K-theory yields
a resolution of the Zariski sheaf associatedito— K O, (U). In particular, if R is local and smooth
over k then the complex

0— KO,(R) — KO, (R) — ]_L KOn_1.:(X) — ...

ex®

is exact whereK O, (X) := colimysxK O, snv(U), KO z(X) is the homotopy fiber ok O (X) —
KO(X — Z)andK, z(X) = n,(K 0 z(X)).

Proof. Thisfollowsfrom Theorem 2.8 and Proposition 2.7 which imply @ts a cohomology theorem
fulfilling CO H1 andC O H3 and thus istrictly effaceablg10, Theorem 5.1.10%nd the claim follows
[10, Corollary 5.1.11] O

2.10. If one tries to identify the Cousin complex to the classical Gersten complex, the latter will start
with KO(R) — KO(Quot(R)) and then continue with the four theorigls _K O, _U andKO in a
four-periodic pattern. Panin’s tricJd7] to generalize to the equicharacteristic case once the geometric
case is established will carry over to our situation, doing the induction step for all four types of Gersten
complexes simultaneously.

2.11. Remark. In the next section (Theorem 3.1), we will see how the Nisnevich—Mayer-Vietoris prop-
erty and homotopy invariance of a presheaf leads to a representability regtfkn One easily checks

that the converse is also true: given a simplicially fibrant slieahe theory it represents fulfills the
Nisnevich—Mayer—Vietoris property and homotopy invariance, and thus the Gersten conjecture for the
Cousin complex holds for the theory represented-tand for rings as in Corollary 2.9, usif@0] as

above.
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3. Unstable Al-representability of hermitian K -theory

We first prove a general representability theorem for a certain class of functors from smooth schemes
to graded abelian groups. For any presheaf of simplicialRets the big Nisnevich sitéSm / k)yis, we
denote bya P € A°P Shv its sheafification (with respect to the Nisnevich topology¥- I a sheaf, we
write F; for a fibrant replacement with respect to the simplicial model structuf2fCorollary 2.7]
Recall that in this model structure, a map— G is a weak equivalence if and only if it induces a weak
equivalence of simplicial sets for all stalks. In particular, the stalkE ahd Fs are weakly equivalent
simplicial sets. The map — G is a cofibration ifF (U) — G (U) is a monomorphism for any scherde
hence any object is cofibrant. Recall further that this simplicial structure yields the (pointed) simplicial
homotopy category#s (k) which then leads to the (pointed)!-homotopy category# (k) of [36] by
inverting theAl-equivalences.

We denote byX, the schemé& with an added disjoint base point. The Yoneda embedding sends any
(pointed) scheme to a (pointed) presheaf which is an étale ptgad. 347] We will often consider it as
a simplicially constant sheaf and still denote itX¥yresp.X.).

The model category of simplicial sheaf§” Shv(Sm/k)yjs is actually a simplicial model category
[36, Remark 1.9]In particular, we have a bifunct®fom or spy(sm /)y : 4°7 Shv(Sm/k)pig x A% Shv
(Sm/k)nis — A°P Sets.

We can now establish our genefsl-representability result:

3.1. Theorem. For any presheafP : (Sm/k)nis — 4°P Sets fulfilling the Nisnevish—Mayer—Vietoris
property and homotopy invariance and for any regular schemgexhave a natural isomorphism

1 (P(X)) = Hom y iy (S" A X4, aP ).

Proof. We havern,(P (X)) = m,(aP s(X)) by applying[36, 3.1.18]to .= all regular noetherian
schemes-urthermore, we have, (a P ¢ (X)) = m, (HOM gor spu(sm/ k)i (X @ Pt)) because by Yoneda we
have HomAapShv(Sm/k)Nis(X, Fy, = HomA””Shv(Sm/k)Nis(X X Ak, F)y = FX); and hence

HOM gor s1u(sm /16 (X F) = F(X) for any simplicial sheaF. By [22, p. 73] m, (HOM jor spy(Sm/k)is

(X, a P¢)) is isomorphic toH om 4or 55, (X, Q"a Pt) /~ wWhere~ stands for the smallest equivalence rela-
tion generated by simplicial equivalence. We wiitem, for pointed morphisms. As adding a base pointis
leftadjoint to forgetting the base points, we @&tm 4or g, (X, Q"aPt)/~ = Hom gor gy o ( X+, Q"aPt)/

~. As aPs is fibrant, it follows[22, p. 73] that Q"a P¢ is also fibrant and hencR2, p. 72] that

Hom gorspy o (X4, Q'aPs)/~ = Hom s 1) (S" A X4, aPt).To show that the latter one is isomorphic to
Hom 4 (S" A X+, aPs), we have to checf36, 2.2.5]thata P is Al-local. By[36, 2.3.19] a fibrant
simplicial sheaf i#\'-local if and only if it is homotopy invariant. We also knd@6, 3.1.18}that a map of
presheaves that is stalkwise a weak equivalence (hence a weak equivalence of the associated sheaves) is
weak equivalence for any section provided both presheaves fulfill the Brown—Gersten property. Applying
thisto P — a Ps yields the desired result &and hence Ps is homotopy invariant. O

3.2. Remark. The part of the proof showing that (P (X)) = Hom s ) (S" A X+, a Pt) is notdiscussed

in the corresponding proof of Morel and Voevodsky for the representability of algelkrtieory[36,
Proposition 3.9because they consider it to be “formal”. The above details might allow some more people
to understand this part of their proof. More precisely, our proof allows us to slightly simplify their original
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proof, replacing Thomason’s hypercohomology spectifja( K B) and his Nisnevich descent result
[47, Theorem 10.8by an arbitrary fibrant replacemenk’; and the Brown—Gersten property.

3.3. Remark. Theorem 3.1 also holds # = Pg whereP is a presheaf of (not-necessarily connective)
Q-spectra fulfilling the Nisnevich—Mayer—Vietoris property. This follows as for simplicial sets {&#g
Corollary 1.4]

The above result strongly emphasizes the analogy with classical homology theories for CW-complexes:
The behavior of the homotopy groups of any prestieatisfying Nisnevich—Mayer—Vietoris and ho-
motopy invariance (read: an Eilenberg—Steenrod cohomology theory) is determined by their behavior on
a point. This is not a full analogue of Brown'’s representability theofglnas we already assumed our
cohomology theory to be given as homotopy groups of a simplicial presheaf instead of starting with just
a presheaf with values in graded abelian groups. This is why our proof foktrepresentability of
Balmer Witt groups and in particular the classical Witt group (cf. Section 4) is slightly more complicated.

3.4. Corollary. For any regular scheme, Xve have a natural isomorphism

KO, (X) = Homy(S" A X4, aK Of).
Proof. Apply Theorem 3.1, Remark 3.3, Theorem 2.8 and Proposition 2(7.
This allows us to extend the definition KO from Sm/k to any simplicial sheaf:

3.5. Definition. For any object of A°? Shv(Sm/k)yis, We Set
aK O¢(F) := HOMy(F4,aK Of) = HoM(F, aK Oy)

and
KO, (F):= Hom4#(S" A Fi,aK Os).

For any object with base poiftof A°? Shv(Sm/k)jise, WE Set
aK O¢(F) := Hom(F, aK Ox)

and

KO, (F) := Homy(S" A F,akK Os).

The objectz P does not look very explicit, so one might look for other descriptionsioDs. Letr :
(Sm/k),; — (Sm/k)nis be the obvious morphism from the big étale site to the big Nisnevich site (com-
pare[36, p. 130). Then we have a pair of adjoint functat$ : 4°? Shv(Sm/k)nis — 4°P? Shv(Sm/ k),
andn, : A°?Shv(Sm/k),, — A°PShv(Sm/k)yis. In fact, o, is just the forgetful functor, having the
sheafification functor™ as a right adjoint. Define a model structure4¥iShv(Sm/k),,; as in[22], that
is the weak equivalences being the (étale) stalkwise weak equivalences of simplicial sets and every object
is cofibrant. Writing#, (k) for its homotopy category, followinf6, Proposition 1.47Ave obtain a pair
of (Quillen) adjoint functord n* andR=, between#* (k) and.#*, (k). The functorL z* is induced by
n* andRmr, by first choosing a fibrant resolution and then applyitg
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One reason for considering the étale topology is the following.

3.6. Definition. Let A be a ring andd” be equipped with the diagonal form 1= (1, ..., 1). Then we
setO0,(A) = AMIP(A)h (A", 1,).

3.7. Lemma. Let X be a scheme. Then in the étale topo)@gy object(E, ¢) of Vect(X),, is locally
isomorphic to(A", 1,) for somen € N.

Proof. In the Zariski topology, any vector bundeis locally free, and there are elemeats. . ., a, in
the local ringA such that locallE, ¢) = (A", (a1, ..., a,)) Wheren s the rank ofE (cf. [43, Theorem
1.6.4). To construct an isomorphist”, (a1, ..., a,)) = (A", (1,...,1)), we need to add the square
roots of ther; to Awhich yields an étale neighbourhood as 2 is invertip& Proposition VI.1Jremember
that we assume our forms to be non-degenerate).

3.8. Remark. As in [36, p. 123] we denote byRQ the total right derived functor a®, which is right
adjoint to STA in %, It is given by first taking a fibrant resolution and then taking loops, thus always
yields a fibrant object. Finally, we defi®, O, := Rr,.n*BO,, wherer : (Sm/k),, — (Sm/k)nis IS

the obvious morphism of sites amD (Spec(A)),, is the classifying space (i.e., the nerve) of the group
0,,(A). The Lemma 3.7 above implies thata K O andn*RQB]_[,120 BO,, are locally isomorphic in

the étale topology. To study the relationship betwe&Os and RQB]_[DOBe, 0,, in # (k) remains an
open problem. Observe thi@6, p. 131]implies thatH om s (X, [, > oBer Ox) is isomorphic to the
monoid of isomorphism classes of quadratic bundleX.on

The fact that we cannot use orthogonal Grassmannians to represent hekxthigory as we can use
ordinary Grassmannians to represent algeb€aiteory will require a slight modification of Voevodsky’s
argument when constructing spectra represerkiad, andWg as we will see in Section 5.

Nevertheless, when working with rational coefficients, there is a geometric model for the space that
represents hermitiag-theory. More precisely, one may combine Lemma 3.7, Corollary 3.4, Voevodsky's
resultf49, Proposition 3.3.2hat motives and étale motives coincide with rational coefficients and Morel's
unpublished (compar85]) result that the category of Voevodsky motives with rational coefficients is
equivalent to the rational motivic stable homotopy category providéds a sum of squares in the base
field k, and similarly for the étale topology. Then we see that a spectrum builtdd@; is Al-stably
rational equivalent to one built froRQB] [, . oB.: On. Itis of course even integrallx-equivalent by
Lemma 3.7 if the base fieklcontains all square roots. SE&86, Section 4.2for the techniques of how to
construct an orthogonal Grassmannian isomorphicAitk)) to RQB]_[DOBet 0,.

We conclude this discussion by recalling that any antisymmetric form is locally isomorphic (in the
Zariski topology) to a standard symplectic form (see B8, p. 7, Corollary 1.3.5] So_K O-theory as
introduced in the next section is representabl®®B] [, . o B.: Sp,,, and the argument is exactly as for
algebraiK-theory, replacingsi, by Sp,, everywhere.

4. The Karoubi tower and unstable Al-representability of Witt groups

In this section, we will show (Corollary 4.9) that Balmer Witt groups and in particular the classical
Witt group are representable in the unstaslehomotopy category? (k). In order to do so, we first need
to construct in a functorial way for each regular ring a topological space whose homotopy groups are
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the purely algebraically defined WigroupgLemma 4.6). This result seems to have some independent
interest.
We first defineU- andV-theory and Karoubi Witt group® X

4.1. Definition. For any ringA with involution ™, we define the hyperbolic functor by
H:iP(A) — iP(A),
M — (HM), py),
g o @ ot
and the forgetful functor by
F: P(A), — P(A),
(N, ¥) — N,
p = p.
We further set
U(A) := hofib(K(A) 5> K"(A)),

V(A) := hofib(K"(A) 5 K (A)),
Un(A) :=m,(U(A)),
Vi(A) :=m, (V(A)),

WK (A) := coker (K, (A) 2> K'(A)),

where the homotopy fiber and homotopy groups are always with respect to the basepoint given by the
zero object.

Observe thaW(S( is just the classical Witt group. We writek ” for the hermitiark-theory of antisym-
metric forms, i.e., when replacingby —», and similarly forU- andV-theory.

The following Theorem is due to Karoubi. He calls it “Fundamental Theorem”, and one should think
about it as a first generalization of Bott periodicity to algebkaitheory:

4.2. Theorem. For any ring with involution A in whicRis a unit we have a natural homotopy equivalence

Q_U(A) ~ V(A).
Proof. Seg[28]. O

4.3. Inthe proof of the Fundamental Theorem 4.2, the following construction of thetipgsmdV, [28,

1.4]is crucial: For any ringp\, one define€Ato be the ring of those infinite matrices with coefficients in

A having only a finite number of coefficients different from zero in each row and each column. Then one
definesSA := CA/A and shows that one gets a homotopy fibraitth(A) — K*(CA) — K"(SA). In
particular, aK andK" of CAvanish by the Eilenberg swindle, we see th& (SA) ~ K" (A) which
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allows us to consider hermitiaf-theory as a non-connectivgspectrum. Everything above, including
Karoubi’s Fundamental Theorem 4.2, carries over to these non-conngesipectra. In particular, we
have negativ& ”-, U- and WX -groups.

In fact, the above construction can be carried out on the level of additive categories with duality in
genera[19]. We have mapg : A — Ax A°P, givenby sendingto(a, a),and4 : Ax A°? — A. Strictly
speaking, the latter map is only defined on the level of additive categories. For rings, we have a mapping
(a,b) to diag(a,b) € Mat2(A) and Morita equivalence. Now we defiig, := lim(CA — SA <«

SA x SA°P) andV, :=lim(CA x CA”? — SA x SA’? < SA). We deduce thaRK" (U,) S U(A),
QUU4) > _K"(A)andQK"(V4) > V(A). See28] for more details. Observe that the inclusién—
CA andthe zeromap — SA x SA°? induceamap : A — Uj,. Iterating this construction and writing
U for U(U"1), we get the so-called Karoubi tower:

4.4. Definition. For any ringA with involution, its Karoubi tower is by definition the sequence of maps
h * ph U whr2y Yo oh i3
K"(A) — K" (Upy) — K" (Uy) — K" (Uy) — ...
We also seK T'(A) := hocolim(K"(A) — K"(Ua) — K"(U3) — ..)).

The idea of considering this tower is due to B. Williams. Some properties of this tower have been
studied by KobaJ29]. An easy observation is the following:

4.5. Lemma. The homotopy groups & T (A) are 4-periodic
T (KT (A)) = mpa(KT(A)) = mp2(_ KT (A)).

Proof. We first observe tha@*K"(U%) ~ Q3UU3) ~ Q2 K"(U%) ~ Q_UU,) ~ K"(A) by the
above homotopy equivalences. Hence we ha\& T (A)) = r, (hocolim K" (UY)) = m, (hocolim Q*

K" U%)) = ny(colim Q*K"(U%)) where the lastisomorphism follows from the mapping telescope (i.e.,
the hocolimis by definition thecolim of the diagram replacing every map by a cofibration). Replacing
every simplicial set by a fibrant one, and using the explicit descriptiaty, dbr fibrant simplicial sets,

we getr, (KT (A)) = colim n,(Q*K"(UY)) = colim nypa(K"(UF)) = 1,44(K T (A)). The second
equivalence is similar. O

For regular rings, we actually recover the 4-periodic Balmer Witt groups (see 1.8 for the definition):
4.6. Lemma. If A is a regular ring we have natural isomorphisms
(KT (A)) = m (K"(UKT) = wik(a).

Proof. As the negativeK-theory of regular rings vanish¢g, p. 685] the mapKh(UZ) — Kh(UX“)

is an isomorphism fott, k <n (look at its homotopy fibeRK" (U™ (SA x SA??)) ~ K (S"(A)). Thus,
(KT (A)) = nk(Kh(Ug)) Vn > k. Use Proposition 7.4 to identify these homotopy groups with Balmer
Witt groups. O

See 7.6, 7.7 for a statement about non-regular rings.
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4.7. As all the above constructions can be done in the category of simplicial sets rather tfgm in

we can consideKT as a simplicial presheaf on regular affine schemes. Using the functorial version of
Jouanolou’s devicgdZ4, Lemme 1.5r [54, Proposition 4.3and Remark 2.3), we can exteKd to a
presheaf on regular schemes which we still denot&Bgimilarly to the way we extendeki” to KO in

Section 2. As Gilld13] has recently shown that Balmer Witt groups fulfill strong homotopy invariance
(i.e., for bundles having affine spaces as fibers), we know that this extension still coincides with the groups
Balmer originally defineds, (KT (X)) = Wg" (X).

Next, we show that the Nisnevich—Mayer—Vietoris property holdsfbr

4.8. Proposition. Applying KT to a Nisnevich square as in Definitibri3yields a homotopy cartesian
square

Proof. Again, for affine Nisnevish squares we could use Corollay 1.11, and for general Zariski-Mayer—
Vietoris squares we could proceed similarly agsd, Theorem 5.1pnce the result for affine Zariski—
Mayer—Vietoris squares is established. For a general Nisnevich square as in Definition 1.13 we choose a
functorial replacement of this square by affine vector bundle torsors. A&KaindKT fulfill Jouanolou’s

device by definition, the claim follows by Theorem 2.8 and the following more general argument. As-

sume that we have a sequermef; B Cof rings (or more generally of idempotent complete additive
categories) inducing a homotopy fibration for non-conneativ&pectra when applying or K”. Then
we also have homotopy fibrations of non-connectivepectra when applying” to SA — SB — SC
andtoSA x SA? — SB x SB? — SC x SC°P. Looking at the homotopy fibers, we get a homotopy
fibration of non-connective@-spectra

K"(Us) - K"(Up) — K" (Uc)

and inductively for all the higheK” (U™ ). It remains to show thak T(A) ~ F whereF := hofib
(KT(B) — KT(C)). Defining Fj := hofib (K"(Uy) — KT(B)), F := hofib(K"(U}) —
KT(C)) and X, := hofib(Fg — F(), this yieldsn;(Fg) = =n;(F¢) for n>i. Hencer; (X,) =0
and consequentlyi(Kh(Uﬁ)) = n;(F) for n>1i, and the proposition follows. The argument for a
commutative square is exactly the same, setpg= holim(Fj — Fj, < Fg). (Alternatively, on may
proceed by studying the homotopy fibers givenyf) andC(g) as it was done in Theorem 2.8.)0]

Denote byaKT the sheafification oKT with respect to the Nisnevich topology. Next we choose a
fibrant replacementK Tt with respect to the model structure[@2, Corollary 2.7]

We will now prove that the simplicial sheaK T+ on (Sm/ k)yis represents Balmer Witt groups in the
unstableAl-homotopy category# (k). As usual, we denote by . the schem& with an added disjoint
base point. Then the main result of this section is the following:

4.9. Corollary. For any regular scheme Xve have a natural isomorphism

Wg"(X) = Hom i (S" A X4,aKTs).

Proof. As Balmer Witt groups fulfill the Nisnevich—Mayer—Vietoris property (Proposition 4.8) and ho-
motopy invariancg5], we can apply Theorem 3.1 and Remark 3.81
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As for KO, this allows us to extend the definition Bf5 from Sm/k to any simplicial sheaf:
4.10. Definition. For any object of 4°? Shv(Sm/ k)nis, We Set
Wg" (F) := Hom 3y (S" A Fy,aKTt).
For any object with base poiftof A°? Shv(Sm/k)jise, We Set

W[;’i(F) = Homyq(S" AN F,aKTy).

5. Stable representability ofKO and W

Recall[48] that the stabl&'-homotopy category’.# (k) is the homotopy category &-spectra. The
structure map#, A Pt — E, 1 have adjoint maps, : E, — Qp1E,,1, and as in topology a spectrum
is called am2p1-spectrum if all the,, are weak equivalences (i.e., isomorphismgitk)). Recall that we
have an isomorphisi! = S AG,, in # (k) (sed36, Lemma 2.15 and Corollary 2.1)8More details on
stableAl-homotopy can also be found jB3] (resp.[21]) where theAl-analogues of symmetric spectra
(resp.Smodules) are considered.

In this section, we will constru@2p:-spectraKO andKT with KOg=aK Ot andKT g=a K Tt which
represent hermitiak-theoryK O, and Balmer Witt group®/3 of regular schemes itf »# (k). In order to
do so, we need to stud§ O..(R[z, 1~ 1]) andWg(R[t, t~1) for a regular ringR (in which 2 is invertible).
We are interested only in the trivial involution d(R[z, t~1]). Using the involution that sendgo r—1
yields different results, of course. The following is essentially a special case of the main rg&alt of

5.1. Proposition. For any regular ring Rwe have a split homotopy fibration
KO(R) — KO(R[t, 1Y) - K"(Ug).

Proof. The first mapf : KO(R) — KO(R[t,t1]) is induced by the compositioR — R[f] —

R[t, t~1], and by homotopy invariance (Corollary 1.12), the niap (R) S KO(R[t]) is a homotopy
equivalence. Observe that we have natural splittings@tR) ™ — BO(R[t, t~1])* induced by sending

t to 1. Now applying the localization theorem [d®] to R[t] — R[r, t~] we get a homotopy fibration
K"(R) — K"(R[t,t™1]) — w'(7) wherew () is a delooping of th&J-theory of the exact category
of R[t]-modules of projective dimension 1 which are annihilated’bfor n large enough. Finally, the
dévissage theorem fif9] implies that/ (R) — U (") isahomotopy equivalence, so the theorem follows
usingQK O(Ug) ~ U(R). O

5.2. Remark. Observe that the proof of the general dévissage theordt®ptan be simplified in our

case thanks to the above splitting and the fact that we do not need to start the Karoubi induction in negative
degrees as ifil9] but we can start in degree 0 and 1: The fact HigtR) — Up(.7) is an isomorphism
follows from comparing the cokernel in the (split) localization sequend¢&9hwith the one from25,
Corollaries 3.12, 3.13]The isomorphisnWy(R) — Wo(7) can be deduced from well-known (e[g6,

p. 139] [12, Theorem 5.6]isomorphismWo(R[z, 1 ~1]) = Wo(R) & Wo(R).
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5.3. Corollary. For any regular ring Rthere are natural isomorphisms
KO, (RI[1,171]) = K04(R) @ Up-1(R)
and
Un(RIE, 17 Z Up(R) @ —K Op-1(R).
Proof. Recall thatRK (Ug) ~ K (R) andQK"(Ug) ~ U(R). By Quillen[39, p. 122] we also have a

homotopy fibrationk (R) — K (R[t,t1]) — K (Ug). Now use Karoubi’s Fundamental Theorem 4.2
and recall the above splitting & O(R) — K O(R[t,t~1]). O

We will now combine Proposition 5.1 with Karoubi’'s Fundamental Theorem and deduce the desired
Periodicity Theorem which then will yield to the definition of the spectikion.

For an unpointed scheme (or simplicial sheéfand the pointed schem®,,, consider the cofiber
sequence in°? Shv(Sm/ k)nis

X+VGm—)X+XGm—>X+/\Gm.

We definel (X) := hofibK (X) LS K O(X) also for non-affine regula¢t. Writing _ K O for the hermitian
K-theory of antisymmetric forms as before, we get the following.

5.4. Corollary. For any regular scheme,Xhere are homotopy equivalences
QaK Ot(X4+ A Gp) ~ aUs(X)
and

QaUs(X+ A Gp) ~ a_K 0t(X).

Proof. AsaK Oy is fibrant, we obtain a homotopy fibrati¢t4, Proposition 11.3.2]
aKOi( X+ ANGy) — aKOi(X4 x Gy) = aKOi(X4 Vv Gy)

and similarfo K¢,aUs anda K Ts. Using the factthak ;. x G,,=X x G,, IG,, andX . vG,,=XLG,,,
we obtain the homotopy fibration

aKOi( X+ ANGy) — aKOi(X x G,) = aK O (X).

Comparing this homotopy fibration with the split one we just constructed in Proposition 5.1 (and reducing
to X affine by Jouanolou’s device), we obtain the first homotopy equivalence usingkh@tUp) ~

U (R). For the second homotopy equivalence, look at the corresponding homotopy fibratiharidr

use thatQU (Ug)~_KO(R). O

Now we will construct the spectrutdO. For all k € N, we setKOg = aKOf, KOgy1 =
a_Us, KOgy2 := a_K Of andKO 43 := aUs. To define the adjoints of the structure m&i3, —
Qp1KO, 41, we first recall (sedg1l, Proposition 2.8Jor [36, Lemma 1.1.16]that any object~ in
A°P Shv(Sm/k)nis can be written as a homotopy colimit of objects (6fz/k). More precisely, one
can construct a simplicial she@f which is the realization of a diagram of coproducts of schemes, that
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is QF = hocolim;X; with X; an object ofSm/k for all i € I, together witha ma@ F — F whichis a
weak equivalence of simplicial sets for each section. In partiéuleslim; X; ~ QF ~ F with respect
to the model structurd22,36]we care about.

Next, we define the adjoints of the structure maps and show that they are weak equivalences. For
F =~ hocolim;X; as above, we have

Hom,(Fy,aUs) >~ Homg(hocolimX;+,aUs) = holimHom,(X;+,aUs) by [36, Lemma 1.1.19]
and the fact that all objects are cofibrant. By Corollary 5.4 and the simplicial Yoneda Lemma we already
used in the proof of Theorem 3.1, we hadem,(X;+, aUs) = aUs(X;+) =~ QaK Ot (Xi+ A Gp) =
Home(Xi4 A Gy, QaK Of) = Home(Xi+ A Gy A SE aK Of) = Home (X4, Qg As1aK Of) and thus
Hom, (Fy, aUs) > holimHome(Xi+, Qg rs1aK Of) = HOMe(F4, Qg .s1aK Of).

Applying =g, the homotopy class of the identity @f/; then corresponds to a homotopy class of a map
t4i+3 from aUs 10 Qpia K Of via the natural isomorphism& om k) (aUs, aUs) = Hom y ) (aUt,
Qg rs1aK Of1). Thistar 13 : KOgy3 — Qp1KOy+1) is one of our four structure maps. The above
computation forF = X being already a scheme shows th& stalkwise a weak equivalence. The three
other structure maps are defined in a similar way.

5.5. Theorem. The spectruniKO constructed above is a@p1-spectrum. For any regular schemewe
have a natural isomorphism

KO,(X)= Homyyf(k)(S" A Xy, KO).
Proof. Follows from the above construction and discussioK©Ofand Corollary 3.4. O
Now let us look at Balmer Witt groups.

5.6. Proposition. For any regular ring Rthere are natural homotopy equivalences
KT(R) ~ Q°KT(R) ~ Q*KT(R)

and
KT(R[t,t %) ~ KT(R) x KT(R).

Proof. The first claim follows from Lemma 4.5. The second claim follows by applyiogolim to
Corollary 5.3. O

Applying homotopy groups to the second statement, we recover the well-known computations of
W (R[z, t—1]) and more generallWg (R[z, ) = WE(R) @ WE(R) as computed ifil2].

5.7. Corollary. For any regular scheme Xhere is a homotopy equivalence
aKTi(X+ ANGy) ~aKTi(X).
Proof. Using Proposition 5.6, the proof is similar to Corollary 5.4

We now define the spectruliT by settingKT 41 := aKT:, KT 4411 := Qa_KTi5,KT gpy2 :=
a_KT; andKT 4.3 := QaKTs. The structure maps are defined similar to the onek@f For ex-
ample, the natural weak equivalendésm,(F., aKTf) ~ holimHom4(Xiy A Gy, QQ3aKTf) ~
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holimHoMq (X, Qg As1Qa_KTf) =~ Hom,(F, Qg ,s1Qa_KTf) we have by Proposition 5.6 and
Corollary 5.7 yield the structure mayg. which is a weak equivalence.

5.8. Theorem. The spectrunKT we just constructed is afp1-spectrum. For any regular schemewe
have a natural isomorphism

WB_H(X) = Homy_y/(k)(sn A Xy, KT).
Proof. Follows from the construction d€T and Corollary 4.9. O

5.9. Remark. By the Fundamental Theorem for regular rif89, p. 122] we haveK (R[z, 1~ 1]) ~

K(R) x K(SR) whereQK (SR) ~ K (R) andSstands for the algebraic suspension of a {B@]. Hence

we can also use our method above to constru@, 4)-periodic spectrum which represents algebraic
K-theory in¥ # (k). This gives a variant of the proof of Voevodsjd8, Section 6.2vho uses Quillen’s
projective bundle theorerf89, Proposition 8.2]instead. Observe also that applying Theorem 5.1 to

(A x A°P) yields Quillen’s[39, p. 122]theorem ork (A[z, ~1]). The fact that one can use a colimit of
Grassmannians in order to represkrheory ino# (k) [36, Theorem 3.13&nd a colimit argumer#8,
Lemma 6.7]allows Voevodsky to construct thgs:-spectrunBGL that represents algebrafetheory in

S H# (k). As discussed at the end of Section 3, orthogonal Grassmanians do not behave as well with respect
to hermitianK-theory. Hence Voevodsky’s approach to construct the structure maps does not carry over
to KO andKT. Roughly speaking, we replace his particular colimit argument involving Grassmannians
by the more general one {f1]. Voevodsky[48, Section 6.2Hoes not explicitly say why the spectrum

BGL he constructs is af3p1-spectrum and hence represents algelifeticeory in.# # (k). The material

of this section provides the necessary techniques to fill in the missing detpii]in

6. Applications

We first compute the hermitiak-theory of the projective line:

6.1. Proposition. For any regular ring Rwe have a split homotopy fibration

U(R) - KO(PL) - KO(R).

Proof. We have a covering oIP}e by two copies ofR[r] with intersectionR[z, r~1]. The claim now
follows from Proposition 5.1, Corollary 1.12 and Theorem 2.8l

The computation of the Witt groups can be done in a similar way, but is already knojd2,yheorem
5.4]. UsingAl-representability, one can easily show the following:

6.2. Proposition. For any ring R smooth over,Rve have homotopy fibrations
Fu(R) - KO(Py) — KO(PR ),
Q"KT(R) — KT(P%) — KT(Py b,
whereFg1;(R) equalsK O (k) ifi =0,Uk)ifi=1,_KOk)ifi=2and_U k) ifi = 3.
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Proof. From[36, Corollary 3.2.18]we deduce a cofiber sequerl%{f{1 — P — PHM in # (k).
Applying KO to the split cofiber sequendgec(k) . — P}r — PYand using Proposition 6.1, we see that

K O(PY) >~ U(Spec(k).). Smashing the preceding cofiber sequence with powe?s,afsing Corollary

5.4 and proceeding inductively, the first claim follows. The second statement is deduced from the first
one by applying powers @ and passing to the usuabcolim O

Observe thatthe magsO (P}) — K O (P 1) andK T'(P%) — KT (P *) would not splitin general,
contrary to the corresponding mapKntheory. If the given ringR is such thatVg (R) = 0 unlessnis a
multiple of 4 (for instance iR s a field), we easily get some computations for Witt groups, for instance
Wg(P'}e) = WQ(R) for 0 <n < 4 as it was already known by Aras@l] for R a field. As Charles Walter
[53] recently proved a more general theorem on Witt groups of projective spaces and projective bundles
by completely different methods, we do not investigate our approach any further.

Next, we deduce the Thom isomorphism and the blow-up isomorphiskisifa vector bundle over
X, we define the Thom space to be the pointed siié&f) := E/(E — i(X)) (compardg36, Definition
3.2.16) wherei : X — E isthe zero section. Here and in the sequel, quotients are formed in the category
of simplicial Nisnevish sheaves.

6.3. Corollary. Let j : Z — X be a closed embedding of smooth schemes With; as normal
bundle. Then we have natural homotopy equivalenke®(X/(X — j(Z))) ~ KO(Th(Nx.z)),
KT(X/(X — j(Z))) ~ KT(Th(Nx, z)) and long exact sequences

. > KOy 1(X—j(2)) > KO, (Th(Nx.z)) > KO,(X) - KOu(X — j(Z)) — ...
and

cee > Wg*l(X — j(Z)) - Wg(Th(Nx,z)) - Wg(X) > Wg(X — j(2)) — ...
in ¥4 (k).

Proof. Apply Corollaries 3.4, 4.9, Theorems 5.5, 5.8 afb, Theorem 3.2.23][48, Prope
sition 4.12] O

6.4. Corollary. Letj : Z — X be a closed embedding of smooth schempes X; — X be the
blow-up ofj(Z) in X andU = X — j(Z) = Xz — p~1(j(Z)). Then we have natural homotopy equiva-
IencesKO((Xz/U)]_[p_l(Z)Z) ~ KO(X/U), KT((XZ/U)Hp—l(Z)Z) ~ KT (X/U) and long exact
sequences

o> KO0y(X) > KOW(2)® KO0y(Xz) — KOu(p~H(2)) > KOp_1(X) — ...
and

o WEX) — WE(Z) @ WE(XZ) — Wa(p™Y(Z)) — Wit (X) — ...
in . (k).

Proof. Apply Corollaries 3.4, 4.9, Theorems 5.5, 5.8 af@b, Theorem 3.2.29][48, Prope
sition 4.13] O
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6.5. Now consider the Hopf map} A G,, ~ A2—0 — P%. Itinduces a stable map: G,, — S°. Morel
conjectured (January 2001) tHai, is represented O [~ 1] := hocolim(KO -> KO AG,,t > KO A
G,?...) whereKO stands for amp:-spectrum representing hermiti&rtheory. In fact, his conjectural
description oKO looked more geometric than ours, involviBg O, B.; Sp etc., similar to real topological
K-theory (compare 3.8). We remark that there is also some work of Barge and Lannes (not yet published)
which allows them to prove some periodicity theorem with respectraiae notion of homotopy of
algebraic varieties. In particular, they seem to have a more geometric proof of Karoubi’'s Fundamental
Theorem (Theorem 4.2) for regular rings.

Morel also conjectured that there is an exact triafleA G,, L KO = BGL in S H# (k). This does
not only look similar to Karoubi’s Fundamental Theorem, but even more to Atiyah’s woiReah K-

theorywhere the Hopf map appears precisely in the analogous topological situati¢a, Begpositions
3.2,3.3]

Comparing this to the Karoubi tower and knowing thahikeolim KTrepresentsVg by Theorem 5.8,
this leads us to the following:

6.6. Question. The stabilization of the map in the Karoubi towe® ( )—“> KO (U ) does it coincide
with the Hopf magKO —> KO A G, 1in & (k) at least up to sigh

Next, recall the following recent theorem of Mof86E] about stableéd1-homotopy groups of spheres
whose proof uses Theorem 5.5 of this paper:

6.7. Theorem. For any perfect field k of characteristic different franand for all n > 0, there are
isomorphisms

Homg ) (GA", 8% = Wl(k),
Homg (8%, 8% = Kl k),

wheres # (k) denotes the stablel-homotopy category §48].

6.8. IntroducingMilnor—Witt K-theoryas a quotient of the tensor algebra generated by the uriitarat
n [34], this Theorem can be extendediﬁtpmg/,y/(k)(so, G,"). In order to better understand how these
different conjectures are related and what this has to doAvitrepresentability of Balmer Witt groups
and hermitiarK-theory, consider the following diagram:

Kg (k) i) Hom 4 (Spec'(k)+, aKOf) i) Hom g 4 (k) (Spec(k)+, KO) <« Hom 4 4 k) <S0, SO>

1

; | | |
Wg (k) i) Hom 4 ) (Spec(k)+, aKTf) i) Hom g 4 k) (Spec‘(k)+, KT) G Hom g k) <S0, G,/ﬁ_l>
Herep is the projectiony : K*( ) — K(U ) is the map from the Karoubi towed,are the induced

maps and is given by the fact that the sphere spectrum is a unit. More precisely, we choose the map
HOm_yf(k)(SO, aK Op) = Kg(k) represented by the forl). The left-hand side and the middle square
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commute. The conjecture is that there is a rpapch that the right-hand side square also commutes (up
to sign) and that all the horizontal maps are isomorphisms. If the answer to question 6.6 is yeis then

induced byG\ 1247 KO A G/A~1 — KO[y~1] ~ KT.

6.9. Let us give some more evidence that the unit ri&p> KO really induces the desired isomorphism
Homy ) (S°, SO = K& (k). The groupkl (k) = GW (k) is generated by the elements), u € k*
which are subject to the relatios) = («v?) and (u) + (v) = (u + v) + ((u + V)uv) Vu +v # 0
[43, p. 66] The identity in Hom ) (P, P}) stabilizes to the identity i om ) (S°, S and is
mapped to(1) in K(’,’(k) under the unit map defined above. Tkis is then mapped under the map of
Lannes—Morel (sengk) in Kg(k) to Zgiuu with x, being the endomorphism & mapping[x, y] to
[ux, y]) back tothe identity. Sl € Hom g (S°, SO) is mapped to itself unde om g 1 (S°, S°) —
Homg 4 x)(S°, KO) = Ki (k) — Homg (S, $9).Unfortunately, we cannot prove that the involved
maps are maps of ring spectra aﬂdmy]/(k)(so, 59)-modules which would imply that the above maps
are isomorphisms. Showing that the above composition is the identity seems in fact to be the harder part,
as Morel (November 2001 and before) claims that using his resul83inhe can prove the existence
of a quasi—splittingHomy,yf(k)(SO, 5% — GW (k)" which is a splitting ifk is of finite cohomological
dimensionGW (k)" being the completion off W (k) by the augmentation ideal.

6.10. In topology, the unit map between the sphere spectsnand the real topologicak -theory
spectrumBO induces a mag omsy (", S°) — Homgy (", BO) which is an isomorphism not only
forn=0, butalsofor=1and:=2. The Morel conjectures together with computationHofnSH(k)(SO/\
G’ , KO) predict isomorphism& om s (SO A G’ , SO — Homspu)(S° A Gy, KO) for j>0. So

it seems natural to ask whether the mapsm s ) (S, S%) — Homgsp (S, KO) = KO01(k) =
k*/(k*)? x Z/2 and Homsp ) (ST A Gy, SO — Homsupy (St A Gy, KO) = Up(k) = Z/2 and
HomSH(k)(SZ, $% — HomSH(k)(Sz, KO) = K 0»(k) are also isomorphisms or not. Topological real
K-theory together with Adams operations allow the construction of the spedtinich detects most
of the 2-torsion of the homotopy groups of spheres by a theorem of Mah¢8hld' heorem 1.5]So
one might try to perform similar constructions wi©, hoping to detect more elements of the higher
Al-homotopy groups of spheres.

Appendix A. On the relationship of hermitian K-theory, L-theory and Balmer Witt groups

People study symmetric bilinear forms (and quadratic forms) for different reasons. Depending on their
motivation and their background, they end up with different theories.

L-theory has been extensively studied by topologists because qudadabaps contairsurgery ob-
struction classesandhigher signaturebave values in symmetricgroups. Therings involved are integral
group rings of the fundamental group of some topological space. Hence they are often non-commutative,
and assuming 2 to be invertible is a too strong restriction.

People interested in the theory of quadratic forms for its own sake work in particular over fields and
commutative rings, and more and more also over non-affine schemes. Many of them think that Balmer
Witt groups are a convenient generalization of the classical Witt group, allowing strong theorems to be
proved which were not available before.
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Finally, from a purelyK-theoretical point of view, it seems most natural to study hermkigheory.

In fact, this is essentially the mother theory from which all other theories can be deduced, as we have
seen in Section 4. One important difference between herntiittreory and the other theories is that
hermitianK-groups are defined as being the homotopy groups of a space (or spectrum). This tends to
make concrete calculations more difficult, but is much more convenient to establiipresentability.

Many mathematicians are comfortable with only one of the three theories. We now give a couple of
results (and conjectures), some old and some new, comparing these three theories.

Historically, quadraticL-groups were defined first for group rings by Wall (depending on a fixed
subgroup of the Whitehead group) and then in general for fitng&h involution (depending on a fixed
subgroup oK1 (R)). Symmetrid_-groups were introduced by Mischenko. Later Ranicki gave a definition
of L-groups depending on a fixed subgroXipf Ko(R). There are always a quadratic and a symmetric
version ofL-groups, denoted by X and byL%. The caseX = Ko(R) is often denoted by.? (and also
by U, in some older articles, not to be confused with blugroups).

Quadratic-theory is always 4-periodic. Symmetiictheory coincides with quadratlctheory only
if 2 is invertible in the given ring. Otherwise, symmettie¢heory need not to be 4-periodic. It becomes
4-periodic after passing to a certain colimit, which is good enough for most geometric applications. It
also becomes 4-periodic if we neglect the 2-torsian, @fter applyingrzZ[1/2]) because quadratic and
symmetricL-theory coincide up to 2-torsion. When we say a certtatheory is 4-periodic, actually more
is true: we have.”=_L"+2 where_L denotes the theory of antisymmetric forms. The same periodicity
pattern holds for Balmer Witt groups. Neglecting the 2-torsion, it also holds for Karoubi Witt groups as
defined in 4.1 (seR7]). Hence it suffices in general to consider only degrees 0 and 1.

Ranicki first gave a definition of-theory in terms offorms and formationsand later in terms of
algebraic Poincaré complexeSee[41, Section 5For a proof that both definitions coincide.

We will now investigate symmetrie-theory of a ringR in which 2 is invertible with respect to
X = Ko(R), which we denote by.” (R) from now on.

A.1. Proposition. There is a natural isomorphism
WX (R)®22Z[1/2] = L"(R)®2Z[1/2].

Proof. This is already stated (without proof) [80, p. 321] Forn = 0, it is true by definition (use
forms instead of algebralc Poincaré complexes to desdriheForn = 1, first observg51, p. 286]

that WK (R) = l(R)(R) OCKO(R)(R) [40, p. 14]and hence alsd. S P (R) = 2°K0®)(R) as
they differ by the same Tate-cohomology grdd, p. 61] [16, p. 138] By the Rothenberg sequence
[41, Proposition 9.1]L2CK°(R)(R) andeO(R)(R) = Li’(R) are isomorphic after tensoring wit{1/2].
The proposition now follows from the periodicity aftheory and Karoubi’'s 12-term exact sequence
[27,28] O

Balmer Witt groups follow the same periodicity patternlatheory: W5=_ §+2 ~ wrt4 The
following comparison statement (conjectured by many people) has now been proved by Ch. Walter:

A.2. Theorem. There is a natural isomorphism

L"(R) = W5"(R).
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By periodicity, we havel.” (R) = colim L"**(R) if 2 is invertible, otherwise we may take this as
the definition of L"(R). As P(R) is split exact and idempotent complete, a map of complexes is a
quasi-isomorphism if and only if it is a homotopy equivalence. BothR) andWg ™" (R) are generated
by elements inD?(P(A)) equipped with a non-degenerate symmetric bilinear form with respect to the
duality Ext’z( , R). It remains to compare the cobordism relation fegroups with the metabolic
objects forWy. This is done by Walter ifp2]. O

Recall from Section 2 that for a scheiave can extend” from rings to schemes using Jouanolou’s
device orholimsof affine covers and get by definitidd O (X). We conjecture, but cannot prove, that the
theory KO obtained this way coincides witki’* as defined irf18] for regular non-affine schemes. We
also defineW 0,,(X) := coker(K,(X) - K O0,(X)).

One can also prove the following comparison result between Balmer and Karoubi Witt groups:

A.3. Proposition. (i) There is a natural isomorphism
W (R)®2Z[1/2] = Wg" (R)®2Z[1/2];
(i) for any regular scheme Xhere is a natural isomorphism

W0, (X)®zZ[1/2] = Wg" (X)®zZ[1/2].

Proof. (i) This is proved in19] using a cofinality result for Balmer Witt groups (and is true eveRig
not regular). To prove (ii), use strong homotopy invarianc& dfO andW3. O

Observe that Proposition A.3 is false even for fidddiswe do not tensor witlZ[1/2]. In this case, we
haverK k) =12/2, butWB‘1(k) = 0. On the other hand, we have the following comparison result for
regular rings including the 2-torsion if we look at negative hermikiatineory:

A.4. Proposition. For any regular ring Rthere are natural isomorphisms far> 0
WE(R) = WK (R) = K" (Ry=U_,_1(R).

—n
Proof. See[19, Lemma A.4Jand remember that the negatikeheory of a regular ring is trivial. O
A.5. Corollary. For any regular scheme, Xhere are natural isomorphisms far> 0

KO_,(X) ZEWO_,(X) = Wg(X).
Proof. Follows from Proposition A.4 and strong homotopy invariance.

Concerning the comparison KiT as defined in Section 4 amdtheory, Bruce Williams has outlined a
proof of the following statement to me. Being unable to cite a reference, | present it here as a conjecture,
anticipating his proof in due course.

A.6. Conjecture. (B. Williams) For any (not necessarily regular) ring R in which 2 is invertible, we have
a natural isomorphism

,(KT(R)) = L"(R).
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A.7. Corollary. If ConjectureA.6 is true, we have a natural isomorphism

L"(R) = colim K" (U%).

Proof. Observe that, (KT (R)) = colim n,(K"(U%)). O
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