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Abstract

Let E → X be an oriented surface bundle over a closed surface. Then the signature sign(E)

is determined by the first Chern class of the flat vector bundleΓ associated to the monodromy
homomorphismχ :π1(X)→ Sp2h(Z) of E, it is equal to−4〈c1(Γ ), [X]〉. The aim of this paper is
to give an algebro-topological proof of this formula, i.e., one that does not use the Atiyah–Singer
index theorem. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let E → X be a smooth oriented surface bundle over a surface, more precisely a
smooth fibre bundle with fiberSh, an oriented closed surface of genush, and baseX an
oriented compact surface with boundary∂X. Thus the structure group ofE is the group
G := Diffeo+(Sh) of orientation preserving diffeomorphisms ofSh with the usualC∞-to-
pology.

For h � 2 the connected components ofG are contractible, so the bundleE is
determined by its monodromy homomorphism

ρ :π1(X)→G/G0 =Mh

into the mapping class groupMh of Sh (G0 the connected component of the identity).
Let Sp2h(Z) be the Siegel modular group, i.e., the subgroup of the automorphism group
Sp2h(R) of the standard symplectic space(R2h,ω0) consisting of the matrices with integer
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coefficients. Because every element ofMh leaves the intersection form onH1(Sh;Z)

invariant and because(H1(Sh;R), ·)∼= (R2h,ω0), there is a natural homomorphism

σ :Mh → Sp2h(Z)⊂ Sp2h(R).

Composing these two we get a homomorphismχ := σ ◦ ρ :π1(X) → Sp2h(Z). If
X has genusg � 1, then it is an Eilenberg–MacLane spaceK(π1(X),1), thusX is
a classifying space for its fundamental group. So the singular cohomology ofX is
canonically isomorphic to the Eilenberg–MacLane cohomology of the groupπ1(X) and
χ induces a homomorphism

χ∗ :H ∗
EM

(
Sp2h(Z);Z

) →H ∗(X;Z).

Now Meyer [5] showed, that the signature of the 4-manifoldE can be computed in terms
of the Leray spectral sequence ofE →X and equals sign(E)= sign(X, ∂X;H1(Sh;R)).
By cutting the baseX into spheres with three boundary components each he also gave
an explicit method to compute such signatures sign(X, ∂X;Γ ) for flat symplectic vector
bundlesΓ in terms of a special cocycleτh of the symplectic group (cf. Section 2). For the
case of a surface bundle considered here, this gives the following formula.

Theorem 1 (Meyer [5,6]). Let E → X be a smooth oriented surface bundle over an
oriented, closed surfaceX with genusg � 1, and with fibreSh an oriented closed surface
of genush� 2. Then the signature of the total space is equal to

sign(E)= −〈
χ∗[τh], [X]〉,

whereχ = σ ◦ ρ is the monodromy map ofE followed by the homology representation of
Mh in Sp2h(Z).

It follows, for example, that every such bundleE with h � 2 has vanishing signature,
becauseM2 is Q-acyclic by a result of Igusa [4] (that torus bundles have vanishing
signature can be seen in an elementary way).

By using the Atiyah–Singer index theorem for families Meyer derived another formula
expressing the signature of a smooth oriented fibre bundle over a closed manifoldX in
terms of characteristic classes of flat vector bundles onX. In the special case of a surface
bundle over a closed surface this leads to the following formula.

Let Γ be a flat vector bundle with structure group Sp2h(R). The standard symplectic
formω0 on R2h induces a symplectic form onΓ and any compatible complex structureJ
onΓ turnsΓ into a complex vector bundle. Letc1(Γ ) ∈H 2(X;Z) denote its first Chern
class.

Theorem 2 (Meyer [5]). Let E → X be a smooth oriented surface bundle over an
oriented, closed surfaceX with fibre Sh. Then the signature of the total space is equal
to

sign(E)= −4
〈
c1(Γ ), [X]〉,

whereΓ =H1(Sh;R).
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Combining these two theorems, respectively the more general forms of them dealing
with signatures sign(X,Γ ), identifies the pull back of the signature class[τh] with a
characteristic class of a flat vector bundle overX.

Theorem 3. For any oriented, closed surfaceX with genusg � 1, any homomorphism
χ :π1(X) → Sp2h(Z) and Γ the associated flat symplectic vector bundle there is the
equality

χ∗[τh] = 4c1(Γ )

in H 2(X;Z).

The aim of this paper is to give an algebro-topological proof of this last theorem,
which does not use the Atiyah–Singer index theorem hidden in Theorem 2. From this
and Theorem 1 of course we get a new proof for Meyer’s Theorem 2. In fact a universal
version of Theorem 3 will be proved.

2. The signature cocycle

For any topological groupG letGδ be the underlying discrete group andD : BGδ → BG
the continuous map of classifying spaces induced by the identityGδ → G. Let X be a
compact oriented surface with boundary∂X. Let Γ be a flat vector bundle overX with
structure group Sp2h(R). Thus the classifying map ofΓ factors overD :BSp2h(R)

δ →
BSp2h(R).

Then Γ is determined by the monodromy homomorphismχ :π1(X) → Sp2h(R),
namelyΓ = X̃ ×π1(X) R2h, whereπ1(X) acts on the universal cover̃X of X by deck
transformation and onR2h via χ . The standard symplectic formω0 = ( 0 1

−1 0

)
induces a

non-degenerate,antisymmetric form onΓ . Combining this form with the cup product gives
a symmetric bilinear map

H 1(X, ∂X;Γ )×H 1(X; ∂X;Γ )→H 2(X, ∂X;R)

and by evaluation on the orientation class ofX a symmetric bilinear form onH 1(X, ∂X;Γ ).
Let sign(X, ∂X;Γ ) be the signature of this bilinear form.

Now letX0 be a sphere with three open discs removed. The fundamental groupπ1(X0)

is a free group on two generators, so that any two elementsα,β ∈ Sp2h(R) define a
homomorphism

χα,β :π1(X0)→ Sp2h(R)

and by this a flat symplectic vector bundleΓα,β overX0. Using a triangulation of(X0, ∂X0)

Meyer [5] showed that there is an isomorphism ofH 1(X0, ∂X0;Γα,β) onto

Hα,β := {
x = (x1, x2) ∈ R2h ⊕ R2h | (α−1 − 1)x1 + (β − 1)x2 = 0

}
and that under this isomorphism the bilinear form onH 1(X0, ∂X0;Γα,β) becomes
−〈·, ·〉α,β , where forx, y ∈Hα,β

〈x, y〉α,β = ω0
(
x1 + x2, (1− β)y2

)
.
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Finally let τh be defined by

τh : Sp2h(R)× Sp2h(R)→ Z,

τh(α,β) := −sign(X0, ∂X0;Γα,β)= sign
(
Hα,β, 〈·, ·〉α,β

)
.

Then by cutting a sphere with four open discs removed into two copies ofX0 in two
different ways and using the Novikov additivity of the signature it is easy to see, that for
everyα,β, γ ∈ Sp2h(R) the equality

τh(α,β)+ τh(αβ,γ )= τh(α,βγ )+ τh(β, γ )
holds. Thusτh is a cocycle of the symplectic group and defines a class[τh] in the
Eilenberg–MacLane cohomologyH 2

EM(Sp2h(R);Z) of this group, which of course is
canonically isomorphic to the singular cohomologyH 2(BSp2h(R)

δ;Z) of the classifying
space of Sp2h(R)

δ .

3. Identification of the signature class

The maximal compact subgroup of Sp2h(R) is U(h). So we can consider the first
universal Chern class as an elementc1 ∈H 2(BSp2h(R);Z). LetX be as in Theorem 3,

χ :π1(X)→ Sp2h(R)

a homomorphism andΓ the associated flat vector bundle. Thenc1(Γ ) = χ∗D∗c1. Thus
to prove Theorem 3 it would be sufficient to prove[τh] = 4D∗c1 in H 2(BSp2h(R)

δ;Z)=
H 2

EM(Sp2h(R);Z). To do this we use the results of Milnor on the Friedlander conjecture.

Proposition 1 (Milnor [7]). Let G be a Lie group with finitely many components and
A a finite Abelian group. If the connected componentG0 of the identity is solvable or
G is a Chevalley group, thenD∗ :H 2(BG;A)→ H 2(BGδ;A) andD∗ :H2(BGδ;A)→
H2(BG;A) are isomorphisms.

We will use this result for the Abelian groupG = U(1) and the Chevalley group
G= Sp2h(R). This proposition will enable us in Section 4 to prove the following.

Lemma 1. Leth� 1 andn ∈ N. Then there is the equality[τh] = 4D∗c1 inH 2(BSp2h(R)
δ;

Zn).

Then in fact the same is true with integer coefficients. The following theorem is our main
result.

Theorem 4. In H 2
EM(Sp2h(R);Z)=H 2(BSp2h(R)

δ;Z) the equality[τh] = 4D∗c1 holds
for h� 1.

Proof. LetX be an oriented, closed surface with genusg � 1 andχ :π1(X)→ Sp2h(R)
δ

a homomorphism. Look at the long exact cohomology sequence induced by the coefficient
sequence 0→ Z

n→ Z → Zn → 0 for n ∈ N:
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H 2(BSp2h(R)
δ;Z)

χ∗

H 2(BSp2h(R)
δ;Z)

χ∗

H 2(BSp2h(R)
δ;Zn)

χ∗

H 2(X;Z)
n

H 2(X;Z) H 2(X;Zn)

Because of Lemma 1 and the exactness of the lower rowχ∗([τh] − 4D∗c1) is in⋂
n∈N

nH 2(X;Z). But becauseH 2(X;Z) is finitely generated, this intersection is trivial.
Soχ∗[τh] = 4c1(Γ ) in H 2(X;Z).

Suppose now that[τh] − 4D∗c1 �= 0 inH 2(BSp2h(R)
δ;Z). Sp2h(R) is perfect, i.e.,

H1
(
BSp2h(R)

δ;Z
) =HEM

1

(
Sp2h(R);Z

) = 0.

Thus

H 2(BSp2h(R)
δ;Z

) = Hom
(
H2

(
BSp2h(R)

δ;Z
)
,Z

)
.

So there is a classx ∈ H2(BSp2h(R)
δ;Z) with 〈[τh] − 4D∗c1, x〉 �= 0. But by Hopf’s

theorem [2] every class inHEM
2 (Sp2h(R);Z) can be represented by a surfaceX as

above. Sox = χ∗[X] and 〈[τh] − 4D∗c1, x〉 = 〈χ∗[τh] − 4χ∗D∗c1, [X]〉 = 0. That is a
contradiction. ✷

Hence to show Theorem 3 it remains to prove Lemma 1.

4. Proof of Lemma 1

Lemma 2. If [τ1] = 4D∗c1 in H 2(BU(1)δ;Zn) then Lemma1 is true for all h � 1 in
H 2(BSp2h(R)

δ;Zn).

Proof. The natural inclusionC ⊂ Ch : z �→ (z,0, . . . ,0)t induces an embeddingι : U(1) ↪→
U(h). Thenι∗ :H ∗(BU(h);Z)= Z[c1, . . . , ch] →H ∗(BU(1);Z)= Z[c1] is the projection
ι∗(c1)= c1, ι∗(ci)= 0 for i � 2. Soι induces an isomorphism

H 2(BSp2h(R);Z
) =H 2(BU(h);Z

) →H 2(BU(1);Z
)
.

Furthermoreι induces an isomorphismH 2(BSp2h(R);Zn)→ H 2(BU(1);Zn). Because
of Proposition 1 this descends to an isomorphismH 2(BSp2h(R)

δ;Zn)→H 2(BU(1)δ;Zn).
Now looking at the explicit presentation of the cocycleτh given by τh(α,β) =

sign(Hα,β, 〈·, ·〉α,β) shows thatτh(ι(z1), ι(z2)) = τ1(z1, z2) for z1, z2 ∈ U(1). Thus
ι∗[τh] = [ι∗τh] = [τ1] = 4D∗c1 = ι∗(4D∗c1). But ι∗ is an isomorphism, so Lemma 1
follows. ✷

Thus it is enough to show that[τ1] = 4D∗c1 in H 2
EM(U(1);Zn).

Forα,β ∈ U(1), sayα = eia , β = eib, the vector spaceHα,β becomes

Hα,β = {
x = (x1, x2) ∈ C ⊕ C | (e−ia − 1

)
x1 + (

eib − 1
)
x2 = 0

}
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and〈x, y〉α,β is computed to be

〈x, y〉α,β = sin(a + b)− sina − sinb

1− cosb
re(x̄1y1).

Thusτ1(eia,eib)= 2 sgn(sin(a+ b)− sina− sinb). Soτ1(e2π i·,e2π i·) takes the following
values on[0,1] × [0,1]:

�

�

�
�
�
�

1

1

−2

+2

And τ1 ≡ 0 on the lines.
The easiest way to compare[τ1] andD∗c1 would be to evaluate both classes on a

generator ofHEM
2 (U(1);Zn)= Zn, forH1(BU(1)δ;Zn)= 0 implies that

H 2
EM

(
U(1);Zn

) = Hom
(
HEM

2 (U(1);Zn),Zn
)
.

Let C∗(G) be the Eilenberg–MacLane complex ofG := U(1) (cf. [1, II.3]). SoCk(G)
is the free Abelian group generated by tuples[g1| · · · |gk], gi ∈ G, and the differential
d :Ck(G)→Ck−1(G) is defined as

∑k
i=0(−1)idi , where

di
[
g1| · · · |gk

] =




[
g2| · · · |gk

]
i = 0,[

g1| · · · |gigi+1| · · · |gk
]

0< i < k,[
g1| · · · |gk−1

]
i = k.

Lemma 3. Let ωn := e2π i/n. Then the class of the2-cycleQn := ∑n
j=1[ωn|ωjn] satisfies

〈[τ1], [Qn]〉 ≡ 4 modn.

Proof. It is dQn = ∑n
j=1([ωjn] − [ωj+1

n ] + [ωn])= n[ωn] ≡ 0 modn. SoQn is indeed a
Zn-2-cycle of U(1). Furthermore

〈[τ1], [Qn]〉 = n∑
j=1

τ1
(
ωn,ω

j
n

) = (n− 1) · (−2)+ 0+ 2 ≡ 4 modn. ✷

Considering the fact that

HEM
2

(
U(1);Zn

) =H2
(
BU(1)δ;Zn

) D∗→
H2

(
BU(1);Zn

) =H2
(
CP∞;Zn

) =H2
(
CP 1;Zn

)
is an isomorphism and〈c1, [CP 1]〉 = 1, it remains to show thatD∗[Qn] = [CP 1]. This
will be done in two steps in Lemmas 4 and 5. Define the singular 2-cyclePn of CP 1 by
Pn := ∑n

j=1(P
j
n − P×), where

P
j
n :∆2 → CP 1 : (t0, t1, t2) �→

[√
t0 + √

t1ωn : √t2ωj+1
n

]
,

P× :∆2 → CP 1 : (t0, t1, t2) �→ [1 : 0].



M. Hoster / Topology and its Applications 112 (2001) 205–213 211

Lemma 4. The image under the mapH2(CP
1;Z)→ H2(CP

1;Zn) of the class[Pn] ∈
H2(CP

1;Z) isD∗[Qn].

Proof. LetF∗(G) be the standard resolution (cf. [1, I.5]) ofZ overZG,G := U(1). So the
tuples(g0, . . . , gk), gi ∈G, build aZ-basis ofFk(G) and theZG-module structure is given
by g · (g0, . . . , gk) = (gg0, . . . , ggk). The differentiald :Fk(G)→ Fk−1(G) is defined to
be

∑k
i=0(−1)idi , where

di(g0, . . . , gk)= (g0, . . . , gi−1, gi+1, . . . , gk).

Then the Eilenberg–MacLane complex isCk(G) = Fk(G)G. The Z-basis elements of
Ck(G) are given by theZG-basis elements ofFk(G) of the form [g1|g2| · · · |gk] = (1,
g1, g1g2, . . . , g1g2 · · ·gk).

Take the Milnor model of the universalGδ-bundleEGδ → BGδ (cf. [3, 4.11]),EGδ =
Gδ ∗Gδ ∗ · · · and write an elementy ∈ EGδ asy = (g0, t0;g1, t1; . . .), wheregi ∈G, only
finitely many ti �= 0 and

∑∞
i=1 ti = 1. Then defineZG-homomorphismsΦi :Fi(G) →

Si(EGδ), i = 0,1,2, into the singular chain complex ofEGδ by

Φ0(g0) := (g0, t0;1,0; . . .),
Φ1(g0, g1) := (g0, t0;g1, t1;1,0; . . .)− (g1, t0;g1, t1;1,0; . . .),
Φ2(g0, g1, g2) := (g0, t0;g1, t1;g2, t2;1,0; . . .)− (g0, t0;g2, t1;g2, t2;1,0; . . .)

+ (g1, t0;g2, t1;g2, t2;1,0)− (g1, t0;g1, t1;g2, t2;1,0; . . .).
Here the terms depending on theti represent singular simplices inEGδ . Then dΦi =
Φi−1d for i = 1,2. BecauseF∗(Gδ) is free andS∗(EGδ) is acyclic, there is a chain
map Φ∗ :F∗(G) → S∗(EGδ), unique up to homotopy, extending the givenΦi ’s [1,
Lemma I.7.4]. Because thisΦ∗ is an augmentation-preserving chain map between free
resolutions ofZ overZG, it is a homotopy equivalence [1, Theorem I.7.5]. Finally(−)G
is an additive functor, soΦ∗ induces a homotopy equivalence

Φ∗ :C∗(G)→ S∗(BGδ).

ComputingΦ∗(Qn) gives

Φ∗(Qn)=
n∑
j=1

([
1, t0;ωn, t1;ωj+1

n , t2;1,0; . . .]
− [

1, t0;ωj+1
n , t1;ωj+1

n , t2;1,0; . . .]
+ [
ωn, t0;ωj+1

n , t1;ωj+1
n , t2;1,0; . . .]

− [
ωn, t0;ωn, t1;ωj+1

n , t2;1,0; . . .])
=

n∑
j=1

([
1, t0;ωn, t1;ωj+1

n , t2;1,0; . . .] − [
1, t0;1, t1;ωjn, t2;1,0; . . .]).

Pulling it back toCP∞ via the homeomorphism

CP∞ →BU(1) : [z0 : z1 : · · ·] �→
[
z0

|z0| , |z0|
2; z1|z1| , |z1|

2; . . .
]
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we get a cycleP ′
n in CP 2, namely

P ′
n =

n∑
j=1

([√
t0 : √t1ωn : √t2ωj+1

n

] − [√
t0 : √t1 : √t2ωj+1

n

])
.

Because of

d
[√
t0 : √t1 + √

t2ωn : √t3ωj+1
n

]
= [

0 : √t0 + √
t1ωn : √t2ωj+1

n

] − [√
t0 : √t1ωn : √t2ωj+1

n

]
+ [√

t0 : √t1 : √t2ωj+1
n

] − [√
t0 : √t1 + √

t2ωn : 0
]
,

P ′
n is homologous to

P ′
n ∼

n∑
j=1

([
0 : √t0 + √

t1ωn : √t2ωj+1
n

] − [√
t0 : √t1 + √

t2ωn : 0
])

=
n∑
j=1

[
0 : √t0 + √

t1ωn : √t2ωj+1
n

]
modn.

Using thatCP 2 → CP 2 : [z1 : z2 : z3] �→ [z2 : z3 : z1] induces the identity in homology and
adding−nP× to make the last cocycle become an integer cocycle completes the proof.✷
Lemma 5. [Pn] = [CP 1] in H2(CP

1;Z).

Proof. Look at the relative homeomorphismf : (D2, ∂D2) → (CP 1, [1 : 0]) : z �→ [z :
1 − |z|]. Let Tn :D2 → D2 : z �→ ωnz be the rotation with angleωn andσ :∆2 → D2 the
following simplex, homeomorphic onto its image:

σ(t0, t1, t2) :=
√
t0 + √

t1ωn

|√t0 + √
t1ωn| + √

t2 ��
��

1

ωn

�
�� ����

Then the cycleC := ∑n
j=1T

j
n (σ ) represents the fundamental class of(D2, ∂D2). But

f∗C =
n∑
j=1

[
ω
j
n

√
t0 + √

t1ωn

|√t0 + √
t1ωn| + √

t2
: 1− |√t0 + √

t1ωn|
|√t0 + √

t1ωn| + √
t2

]

=
n∑
j=1

[√
t0 + √

t1ωn : √t2ω−j
n

]
.

So inH2(CP
1;Z)=H2(CP

1, {[1 : 0]};Z) we have[CP 1] = f∗[C] = [Pn]. ✷
Combining Lemmas 4 and 5 we getD∗[Qn] = [CP 1]. So by Lemma 3 we have

〈[τ1], [Qn]〉 = 4 = 4〈c1, [CP 1]〉 = 4〈c1,D∗[Qn]〉 = 〈4D∗c1, [Qn]〉. Thus [τ1] = 4D∗c1
because[Qn] generatesHEM

2 (U(1);Zn). By Lemma 2 this proves Lemma 1. That
completes the proof of Theorem 4.
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