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Abstract

Let E — X be an oriented surface bundle over a closed surface. Then the signaturg)sign
is determined by the first Chern class of the flat vector burddliassociated to the monodromy
homomorphisny : 71 (X) — Spy,(Z) of E, itis equal to—4{c1(I"), [X]). The aim of this paper is
to give an algebro-topological proof of this formula, i.e., one that does not use the Atiyah—Singer
index theorem 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let E — X be a smooth oriented surface bundle over a surface, more precisely a
smooth fibre bundle with fibes;, an oriented closed surface of geriysand baseX an
oriented compact surface with boundar¥. Thus the structure group @ is the group
G := Diffeo™(S;,) of orientation preserving diffeomorphisms §f with the usualC>-to-
pology.

For h > 2 the connected components Gf are contractible, so the bundlg is
determined by its monodromy homomorphism

p:m1(X) = G/Go= M,

into the mapping class groupt;, of S, (Go the connected component of the identity).
Let Sp,, (Z) be the Siegel modular group, i.e., the subgroup of the automorphism group
Spy, (R) of the standard symplectic spa@?”, wo) consisting of the matrices with integer
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coefficients. Because every element/of, leaves the intersection form oH1(Sy; Z)
invariant and becaus@f1(Sy; R), -) = (R?, wp), there is a natural homomorphism

o Mp — Spy,(Z) C Spy, (R).

Composing these two we get a homomorphigm= o o p:71(X) — Spy,(Z). If
X has genug > 1, then it is an Eilenberg—MaclLane spak&mr1(X), 1), thus X is
a classifying space for its fundamental group. So the singular cohomology isf
canonically isomorphic to the Eilenberg—MacLane cohomology of the graf) and
x induces a homomorphism

x*: HEM(Sth(Z); Z) — H*(X; Z).

Now Meyer [5] showed, that the signature of the 4-manif6ldan be computed in terms
of the Leray spectral sequenceBf— X and equals sigiE) = sign(X, dX; H1(S,; R)).
By cutting the baseX into spheres with three boundary components each he also gave
an explicit method to compute such signatures Qg X; I') for flat symplectic vector
bundlesr” in terms of a special cocyclg of the symplectic group (cf. Section 2). For the
case of a surface bundle considered here, this gives the following formula.

Theorem 1 (Meyer [5,6]).Let E — X be a smooth oriented surface bundle over an
oriented, closed surfack with genusg > 1, and with fibreS;, an oriented closed surface
of genug: > 2. Then the signature of the total space is equal to

Sign(E) = —(x *[]. [X]),

wherey = o o p is the monodromy map @& followed by the homology representation of
My in Spyy, (Z).

It follows, for example, that every such bundiewith 2 < 2 has vanishing signature,
becauseMy is Q-acyclic by a result of Igusa [4] (that torus bundles have vanishing
signature can be seen in an elementary way).

By using the Atiyah—Singer index theorem for families Meyer derived another formula
expressing the signature of a smooth oriented fibre bundle over a closed mahifold
terms of characteristic classes of flat vector bundleX oin the special case of a surface
bundle over a closed surface this leads to the following formula.

Let I" be a flat vector bundle with structure group,(R). The standard symplectic
form wp onR?* induces a symplectic form ofi and any compatible complex structure
on I" turnsI" into a complex vector bundle. Let(I") € H2(X; Z) denote its first Chern
class.

Theorem 2 (Meyer [5]). Let E — X be a smooth oriented surface bundle over an
oriented, closed surfac& with fibre S,. Then the signature of the total space is equal
to

SigN(E) = —4{c1(I"), [X]),
wherel” = H1(S),; R).
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Combining these two theorems, respectively the more general forms of them dealing
with signatures sigiX, I"), identifies the pull back of the signature cldsg] with a
characteristic class of a flat vector bundle oXer

Theorem 3. For any oriented, closed surfacg with genusg > 1, any homomorphism
x:m1(X) = Spy,(Z) and I' the associated flat symplectic vector bundle there is the
equality

X “[tn] = 4ea(I)
in H3(X; 7).

The aim of this paper is to give an algebro-topological proof of this last theorem,
which does not use the Atiyah—Singer index theorem hidden in Theorem 2. From this
and Theorem 1 of course we get a new proof for Meyer's Theorem 2. In fact a universal
version of Theorem 3 will be proved.

2. The signature cocycle

For any topological groug let G? be the underlying discrete group and BG' — BG
the continuous map of classifying spaces induced by the ide@fity> G. Let X be a
compact oriented surface with boundary. Let I" be a flat vector bundle oveY with
structure group Sp(R). Thus the classifying map af factors overD: BSth(IRi)‘S —
BSp,,(R).

Then I' is determined by the monodromy homomorphigmrmi(X) — Spy,(R),
namely I' = X x,,x) R%, wherex1(X) acts on the universal covéf of X by deck
transformation and oi? via x. The standard symplectic formg = (f)l %,) induces a
non-degenerate, antisymmetric formBnCombining this form with the cup product gives
a symmetric bilinear map

HYX,0X;T) x HX(X;9X; ") > H?(X,0X; R)
and by evaluation on the orientation class{oé symmetric bilinear form oW (X, 8 X; I').
Let sign(X, dX; I') be the signature of this bilinear form.
Now let Xg be a sphere with three open discs removed. The fundamental gi¢kp)
is a free group on two generators, so that any two elemengse Sp,,(R) define a
homomorphism
Xa,p:71(X0) = Spyy,(R)

and by this a flat symplectic vector bundlg g overXg. Using a triangulation ofXo, 9 Xo)
Meyer [5] showed that there is an isomorphismb¥(Xo, 9 Xo; I'y,p) ONto

Hyp:={x = (x1,x2) e R @ R? | (a1 — Dx1 + (B — Dx2 =0}

and that under this isomorphism the bilinear form &H (X, dXo; I'y,p) becomes
= Ve, where forx, y € Hy g

(-x’ y)a,ﬂ = wO(xl+x2» (1 - ﬂ)yz)
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Finally let 7;, be defined by
75, Spy, (R) x Spy, (R) — Z,
th (e, B) := — SigN(Xo, dX0; Tw.p) = SIGN(Ha, . (-, )a.p)-
Then by cutting a sphere with four open discs removed into two copig§ydh two

different ways and using the Novikov additivity of the signature it is easy to see, that for
everya, B,y € Spy,(R) the equality

(e, B) + tn(ap, y) = (e, By) + (B, v)

holds. Thusz;, is a cocycle of the symplectic group and defines a clag$ in the
Eilenberg—MacLane cohomologHéM(Sth(R);Z) of this group, which of course is
canonically isomorphic to the singular cohomolady(BSp,, (R)®; Z) of the classifying
space of Sg,(R)°.

3. Identification of the signatureclass

The maximal compact subgroup of SR) is U(k). So we can consider the first
universal Chern class as an element HZ(BS%(R); 7). Let X be as in Theorem 3,

x :m1(X) = Spy, (R)
a homomorphism and’ the associated flat vector bundle. Thawt/") = x*D*c1. Thus

to prove Theorem 3 it would be sufficient to prowg] = 4D*c1 in H2(BSp,,(R)*; Z) =
HéM(szh (R); Z). To do this we use the results of Milnor on the Friedlander conjecture.

Proposition 1 (Milnor [7]). Let G be a Lie group with finitely many components and
A a finite Abelian group. If the connected componét of the identity is solvable or
G is a Chevalley group, the®* : H2(BG; A) — H2(BG’; A) and D,.: Ho(BG’; A) —
H>(BG; A) are isomorphisms.

We will use this result for the Abelian groug = U(1) and the Chevalley group
G = Spy;, (R). This proposition will enable us in Section 4 to prove the following.

Lemmal. Leth > 1andn € N. Thenthere is the equalify,] = 4D*c1 in H2(BSp,, (R)?;
Z).

Thenin fact the same is true with integer coefficients. The following theorem is our main
result.

Theorem 4. In HZ,(Sp,;,(R); Z) = H?(BSpy,(R)’; Z) the equality{z,] = 4D*c1 holds
forh > 1.

Proof. Let X be an oriented, closed surface with gegus 1 andy : 71(X) — Spy, (R)®
a homomorphism. Look at the long exact cohomology sequence induced by the coefficient
sequence 6> Z > Z — 7, — 0 forn e N:
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H?2(BSpy, (R)®; Z) — H?(BSpy,(R)’; Z) — H?(BSp,;,(R)’; Z,)

HX(X;Z)—————=H*(X; Z) ———= H*(X; Zy)
Because of Lemma 1 and the exactness of the lower g&Wt,] — 4D*c1) is in
(Mren nH?(X; 7). But becauséf?(X; Z) is finitely generated, this intersection is trivial.
So x*[ty] = 4c1(IN) in HA(X; Z).
Suppose now thdt;,] — 4D*c1 # 0 in H2(BSpy, (R)%; Z). Spy, (R) is perfect, i.e.,
Hi1(BSpy,(R)%; Z) = HEY(Spy, (R); Z) = 0.
Thus
H?(BSpy, (R)®; Z) = Hom( Hz(BSpy, (R)’; Z), Z).

So there is a class € Ha(BSp,;,(R)®; Z) with ([z,] — 4D*c1, x) # 0. But by Hopf’s
theorem [2] every class iHHEM(Sp,,(R); Z) can be represented by a surfakeas
above. Sax = x.[X] and ([t;] — 4D*c1, x) = {x*[tn] — 4x*D*c1,[X]) = 0. That is a
contradiction. O

Hence to show Theorem 3 it remains to prove Lemma 1.

4. Proof of Lemma 1

Lemma 2. If [t1] = 4D*c1 in H3(BU(1)%; Z,) then Lemmal is true for all # > 1 in
H?(BSpy,(R)%; Zy,).

Proof. The naturalinclusio® c C":z+ (z,0, ..., 0)" induces an embeddingU(1) —
U(h). Then*: H*(BU(h); Z) = Z[c1, ..., cn] — H*(BU(L); Z) = Z[c1] is the projection
t*(c1) = c1, t*(¢;) =0 fori > 2. Sot induces an isomorphism

H?(BSpy,(R); Z) = H*(BU(h); Z) — H*(BU(1); Z).

Furthermore induces an isomorphierZ(BSth(R); Zn) — H?%(BU(1); Z,). Because
of Proposition 1 this descends to an isomorphi#fiBSp,, (R); Z,) — H?(BU(1)’; Zy,).

Now looking at the explicit presentation of the cocydg given by (o, 8) =
SIgN(Hy, 8, (-, *)q,p) ShOws thatz,(i(z1),(z2)) = t1(z1,22) for z1,z2 € U(1). Thus
*[th] = [t*tn] = [11] = 4D*c1 = *(4D*c1). But (* is an isomorphism, so Lemma 1
follows. O

Thus it is enough to show that;] = 4D*cy in HZ\y(U(1); Zy,).

Fora, 8 € U(1), saya = €9, B = €”, the vector spacé#l,, s becomes

Hyp= {x =(x1,x2)eCapC| (eﬁi“ — l)xl + (e'b — 1)xz = 0}
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and(x, y), g is computed to be
o) o = sin(a + b) — sina — sinb
Yo Ve p = 1— cosb

Thusty (9, €2) = 2 sgr(sin(a + b) — sina — sinb). Sot1(€?"", €' takes the following
values on0, 1] x [0, 1]:

re(xiy1).

1
+2

-2

1

And 1 = 0 on the lines.
The easiest way to compafe;] and D*c; would be to evaluate both classes on a
generator o 7FM(U(1); Z,) = Z,, for Hi(BU(1)%; Z,) = 0 implies that

HEW(U(); Z,) = Hom(HEM(U(D); Z,,), Z).

Let C4(G) be the Eilenberg—MacLane complex@f:= U(1) (cf. [1, I1.3]). So Cx(G)
is the free Abelian group generated by tuples| - --|gx], & € G, and the differential
d: Cy(G) — Cx_1(G) is defined ag"F_,(—1)'d;, where

[g2]- 18] i=0,
di[gal--Igx] =1 [g1l---Igigi+1l---1g] O<i <k,
(g1l lgk-1] i=k.

Lemma 3. Letw, := €/". Then the class of the-cycle Q,, := Z?:l[wﬂwi{] satisfies
([r1], [Qn]) =4 modn.

Proof. ItisdQ, = Zf/f:l([w,’;] — [w,i“] + [wy]) = n[w,] =0 modn. So Q,, is indeed a
Z,-2-cycle of U1). Furthermore
(L [0))= > n(wnwp) =@ —1)-(-2)+0+2=4modn. O
Jj=1

Considering the fact that

HEM(UQ): Z,) = Ho(BU(L): Z,) =

Ho(BU(L); Zy) = Ho(CP™; Z,) = Ha(CPY; Z,)
is an isomorphism an¢t1, [CP1]) = 1, it remains to show thab,[Q,] = [CP!]. This
will be done in two steps in Lemmas 4 and 5. Define the singular 2-d§iclef CP by
P, = f}:l(P,{ — P,), where
P} A% - CPY: (10, 11, 12) > [Vio + v1wn - iz ],
Py A2 — CPY:i(tg, 11, t2) > [1:0].
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Lemma 4. The image under the maf>(CPL; Z) — H(CP*; Z,) of the clasqP,] €
Ho(CPY; Z) is Dy[ Q).

Proof. Let F,(G) be the standard resolution (cf. [1, I.5]) BfoverZG, G := U(1). So the
tuples(go, - .., gk), g € G, build aZ-basis ofF; (G) and theZG-module structure is given
by g - (go,-..,8k) = (ggo, ---,ggr)- The differentiald : F;,(G) — Fx—1(G) is defined to
beY*_o(~1)'d;, where

dl(gO’ ey gk) = (gOa ey gifla gl+l9 ceey gk)'
Then the Eilenberg—MacLane complex @& (G) = Fy(G)g. The Z-basis elements of
Cy(G) are given by theZG-basis elements of (G) of the form[g1|g2|---1gx] = (1,

81,8182, ---.8182" " 8k)-
Take the Milnor model of the univers&l®-bundleEG’ — BG’ (cf. [3, 4.11]),EG’ =

G® % G% - .- and write an element € EG’ asy = (go, f0; g1, 11; . . .), whereg; € G, only
finitely many ¢ # 0 and Z;’iln = 1. Then definéZG-homomorphismsp; : F; (G) —
S;(EG’),i =0, 1, 2, into the singular chain complex &G’ by

®o(go) := (go, 0; 1,0; ... ),

®1(g0, g1) := (80, 10; 81,115 1, 0; .. ) — (g1, 70; 81,115 1, 0; .. ),

D2(80, 81, 82) = (8o, f0; g1, 115 82, 12; 1, 05 ...) — (go, f0; g2, 115 82, 12; 1,05 ....)

+ (81, 10; 82, 11; 82, 12; 1, 0) — (g1, f0; g1, 11; 82, 12; 1, 0; .. ).

Here the terms depending on therepresent singular simplices BG’. Thend®; =
®;_1d for i = 1,2. BecauseF,(G?) is free andS,(EG) is acyclic, there is a chain
map @, : F,(G) — S.(EG’), unique up to homotopy, extending the givan’s [1,
Lemma 1.7.4]. Because thig, is an augmentation-preserving chain map between free
resolutions ofZ overZG, it is a homotopy equivalence [1, Theorem 1.7.5]. Finghy)c
is an additive functor, s@,. induces a homotopy equivalence

D,.:C.(G) = S.(BG).

Computing®.(Q,) gives

n

.00 = ([1.10: 0n. tr: 0 12:1,0; ]

Jj=1
i+1 i+1
— Lo w12 1,0: ]
j+1 j+1
+[wn7t0;wl"]l 7tl;wl{l 7t2; 170;~]

— [@n, t0; @, 11; wi™ 11,0 .. 1)
n
= Z ([ t0; wn, 113 Wi 1:1,0; =10 Lt ol 12,1, 0; )
=1

Pulling it back toC P> via the homeomorphism

2 Z
CP® — BU):[z0:21: -]+ [—0, 2012 -2, 1212 ]
|zol |z1]
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we get a cycleP; in CP?, namely

n

b= Z ([Vio: v/iron : /izon ] = [Vio: Vix : /2o ]).

j=1
Because of

d[Vi10: i1+ Vipwn : iz ]
= [0: Vo + Vi1wn : Vizwh ] = [Vio : Vi1n : V2w ]
+[Vio: Vi1 : Vil T = [Vio: Vit + Vw1 0],

P, is homologous to

P, ~ Z([Oi/5+«/Hwn:ﬂw£+l]—[%:ﬁ+¢5wn:0])
j=1

= Z [0: Vo + i1wn - \/Ew,ﬁl] modn.
j=1

Using thatCP? — CP?:[z1: z2: z3] — [22 : z3: z1] induces the identity in homology and
adding—n P, to make the last cocycle become an integer cocycle completes the proof.

Lemmabs. [P,]=[CPY]in Ho(CPL; Z).

Proof. Look at the relative homeomorphist: (D2, 9D?) — (CPL[1:0]):z — [z :
1— |z|]. Let T, : D? — D?: z > w,z be the rotation with angle, ando : A2 — D? the
following simplex, homeomorphic onto its image:

wp
o (fo, 1, 12) := Vio+ Vion
0t = e T Jion| + V2 1

Then the cycleC .= Z;le T,{ (o) represents the fundamental clasgbf, 9D?). But

fC=i[wj Viotvien .y Vit Vi ]
: "o+ Vol + V2T Vot Vit + V2

j=1

= Xn:[\/%+\/ﬂwn«/5w;/]

j=1
Soin Ha(CPY; Z) = Ho(CPL, {[1:0]}; Z) we have[CPY) = £.[C]=[P,]. O

Combining Lemmas 4 and 5 we géL.[0,] = [CPY). So by Lemma 3 we have
([t1], [Qn]) = 4 = 4(c1, [CPY]) = 4{c1, Di[Qn]) = (4D*c1,[Qn]). Thus[t1] = 4D*c1
because[ Q] generatestEM(U(l);Zn). By Lemma 2 this proves Lemma 1. That
completes the proof of Theorem 4.
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