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ORIENTABILITY OF MANIFOLDS FOR
GENERALISED HOMOLOGY THEORIES

BY
W. C. HSTANG(!) AND C. T. C. WALL

Recently, generalised homology theories have received much attention ([5],
[6], [19] etc.). An interesting question which arises in these theories is the orien-
tability of manifolds [20]; as Whitehead remarks, this is a delicate question.
In this paper we shall show that if there exists a microbundle £ over a closed
manifold M such that & is A-orientable in the sense of Dold [6], and such that
the top homology class of the Thom space M® is spherical, then M is A-orien-
table in the sense of Whitehead [19]. Hence M satisfies Poincaré duality with
coefficient spectrum 4.

Let N be a compact smooth manifold whose boundary 0N = X is a homotopy
sphere which bounds a n-manifold: form a manifold M by adjoining to N a cone
on its boundary . We shall call such manifolds- M almost-smooth: the mani-
folds of Kervaire [11], Smale [16], Eells and Kuiper [8] (see also [18]), which
do not have the same homotopy type as any closed smooth manifold, are all almost
smooth. We shall show that, over any such M, there is a vector bundle & such
that the top homology class of its Thom complex M?* is spherical. It follows that
(provided M is orientable in the usual sense), M is orientable for K-theory and
KO-theory [2] and for bordism theory [1]. It also follows from the existence
of such bundles that the hypothesis on the signature in the theorem of Browder
[4], which gives necessary and sufficient conditions for a finite, simply-connected
CW-complex to have the homotopy type of a closed smooth manifold (of di-
mension # 3,4), cannot be dispensed with.

Microbundles and Thom spaces. We consider pairs (i,j) of maps, with ji
the identity map of some fixed space B. Two pairs (i;,j,) and (i,j,) are equiv-
alent if there is a third pair (i3,j3) and a commutative diagram,
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where n, imbeds E; as a neighborhood of i;(B) in E, (similarly for n,). A k-trivial
pair has the form

BLBxR L B,

where i(b) = (b,0) and j(b,x)=b. A pair (i,j) is locally k-trivial if B has a
numerable covering [7] by sets U,, with, say, V,=j-'(U,), such that each
(i| u,, j| V,) is equivalent to a k-trivial pair. A microbundle (withfibre dimension
k) is an equivalence class of locally k-trivial pairs; we shall also use the word
“microbundle’’ to refer to a representative pair. We call B the base of the micro-
bundle. Microbundles were invented by J. Milnor [13], [14].

Now let (i,j) be locally k-trivial.

B—sE—LsB.

We write E, = E — i(B), and define the Thom space T of (i,j) as obtained from
E by attaching a cone on E,. Equivalently, T is obtained from E x I by deleting
i(B) x (0,1] and identifying E, x 1 to a point, *.

Lemma 1. The homotopy type of T depends only on the microbundle &
which is the equivalence class of (i,j). )

Proof. It will be enough to show that for the pairs (i;,j,) and (is,j;) in (1),
the map (n,) induced by n,; of the corresponding T in T, is a homotopy equiv-
alence. Let A:E; —>1 be a map such that 1i;(B) =0 and ME; — n,(E;)) =1;
such a map exists since n,(E;) contains a neighborhood of i(B) in E,—we can
define maps over the U,, using triviality, and piece together using the partition
of unity.

Define a homotopy of the cone CE; by

h(y,u) = (,u +t(1 —wAy)), yeE,0susl.

It is immediate that this respects theidentification, also the subspace T;: we also
use h, for the induced homotopy of T; . If y ¢ n,(E;), A(y) = 1, and hy(y,u) = (y,1)
= %, Thus the image of h; lies in n,(E;): since n, is an imbedding, there is a
map r: Ty » T3 with n;r = h;. We assert that r is a homotopy inverse to n,;
indeed, we have just defined a homotopy of n;r to the identity, hence there is
one of nyrn,y to ny. Since, by inspection, the image of this (i.e., of h,n,) is con-
tained in the image of n;, and n, is an imbedding, this gives a homotopy of rn,
to the identity. Q.E.D.

The lemma permits us to define (up to homotopy) the Thom space of a micro-
bundle. Of course, this could also be done using the result of Kister [12] and
Mazur that a microbundle has a canonical representative which is a bundle,
but it seems more satisfactory to find a definition which does not invoke their
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constructions. If the microbundle ¢ has base B, we denote its Thom space
by B°.

Now suppose & a microbundle with base B, let b, be a base point in B, and
use * as base point in B°. Consider the sequence of maps

A Lo
ESExE—J B'xB- B #B,

where A is the diagonal map, i the inclusion, and the last map collapses the axes.
The composite is null-homotopic on E,: we define a null-homotopy by

L) = (0,J)),

and this extends the composite to a map ¢:B°— B*#B. It is clear that the
homotopy class of ¢ depends only on &, and that ¢ is defined everywhere by
oy, 1) = ((y,0,J()) -

Attaching a cell. We shall now suppose that B is formed by attaching an
m-cell to a space K:B = K Ue,,. Let c: B— S™ be the collapsing map, defined
by shrinking K to a point. Let 0 be an interior point of e,,. Now let ¢ be a micro-
bundle,

B—sE—LsB..

Then i(0) has a neighborhood in E homeomorphic to an open set in euclidean
space R*x R™. Indeed, if we consider the induced microbundle over D™, it
must be trivial, so i(D™) has a neighborhood D* x D™ there. But we can suppose
D™ imbedded (e.g., as a cell of half the radius), and the induced microbundle
is just the restriction. Now shrink all outside D* x D™ to a point; this defines a
map y:E— S¥*™, and y(E,) does not contain yi(0). Thus there is an extension
of y over CE,, unique up to homotopy, in the contractible space Sk+m _ %i(0).
We write T': B®— S¥*™ for the map so defined.

REMARK. It is easy to see that B% is (up to homotopy) obtained from K°
by attaching a (k + m)-cell, and that I corresponds to shrinking K®to a
point. Thus if B is a finite CW-complex, so (up to homotopy) is B, with cell
dimensions increased by k.

The restriction of ¢ to 0 is trivial, so its Thom space has the homotopy type
of a sphere S¥. We write f: S*— B for the map induced by the inclusion of
0 in B. (Orientations in D¥,D™, and the constructed spaces D* x D™, S**™, S
are supposed consistent throughout.)

LemMMA 2. The following diagram is homotopy commutative:

B —% B 4B

I 1 #c
1
gk+m =s"#s"‘fﬁ93¢ #S™,
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Proof. Recall that ¢ is defined by ¢(y,t) =((3,1),j(3), so (1 #c)d(y,?)
= ((y,1),¢j(y)) is at the base point if j(y)e K. So (1 #c)¢ can be factored
through the space obtained from B® by shrinking K° to a point, i.e., through
I'. Now on the D*¥x D™ used in defining I our map becomes

(1 #¢)o(p,9),0) = {((p,9),0),c(q)}.

So, in the factorised map of S* # S™to B® # S™, the second component is mapped
by the identity, and we have the m-fold suspension of the induced map on the
first component—which is just the inclusion of the Thom space over 0, i.e., the
map f. Q.E.D.

Homology theories. A spectrum E is a sequence {E,:neZ} of spaces to-
gether with a sequence of maps ¢,:SE, - E, . Following Whitehead [19], we
define generalised homology and cohomology groups with coefficients in E as
follows:

h(X,A;E) = n(X|A#E) = lim; 7,,(X|A#E),

h(X,A;E) = n(F(X/4,E)) = lim; n_,.(F(X/A4,E)),

where F(X /A, E;) denotes the function space of maps of X /A4 into E;, so F is a
covariant functor of E;; F is the induced functor on spectra; and lim; means
the direct limit of groups. It follows from the definition that h,( ;E) and
h*( ;E) are functors defined on the category of s-homotopy classes of s-maps
to the category of graded abelian groups. These functors satisfy all the Eilenberg-
Steenrod axioms for homology theories except the dimension axiom [9], [10],
[19].

Now let S = {S",5,} be the sphere spectrum, where c,:SS" — S"*! is the iden-
tity map. Let 4 be another spectrum and 1:8— A4 a map of spectra (that is, a
sequence of maps 1,:S"— A4, with 1,40, =0,(S,)). Then, following Dold [6],
we call a microbundle ¢ with base B and fibre dimension k A-orientable if there
is a class Ueh*(B*;A4) such that f*Ueh¥*(S*;4) is the class determined by
1, S¥— 4,, or, equivalently, is the image under 1 of the k-fold suspension of the
unit class in h%(S°;S).

We call U a fundamental class for the microbundle. If we also write U for
a representative s-map B* — S¥4, the condition becomes Uf~ , S*i.

Now suppose (as above) that B= K U e,,. Then we call B A-orientable if thereis a
class z € h,(B ; A) whose Kronecker product with the class defined by cin A™(B ; S)
is 1. In the case when B is a triangulated homology manifold, and e,, is a simplex
of top dimension, this coincides with the definition given by Whitehead [19].

Again we call z a fundamental class, write z for a representative s-map
S™S — B # A, and note that the condition may be rewritten as (¢ # 1)z~ S™.
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THEOREM 3. Suppose B= K Ue,,, ¢ is a microbundle with base B, and (with
the notations above) (i) I has an (s-homotopy) right inverse a, (ii) £ is A-orientable.
Then B is A-orientable.

Proof. Define S*z as the composite of
ktm O e @ e U#1 k
S*"" >B* 5B*#B ——> SA#B—>S'B#A.
Then the Kronecker product of z with ¢ is represented by

(A #)U # 1) ¢a= (U#1) (1 #6) o

~ (U#D)(f# DT by Lemma 2,
SUf#1 by (@),
sSfi#1 by (ii),

and the result follows by putting the factors in the right order. If the reader is ill
at ease about signs, he may observe that we could (if necessary) change the sign
in the definition of z to put things right. Q.E.D.

For any spectrum 4, there are natural pairings A: S#A—>Aand 1’ : A #8— A
defined by the composite maps

R

SP1y _ N -
Sp#Aq —5° I#Aqn — 2 Aprq (Ap,q)s

A #S — s SPpA a4 :
q# # q ptq (/1 p,q)s

where 7 interchanges the factors. The spectrum 4 is called a ring spectrum if
there is a pairing p: A # A —» A and a map 1: S — 4 such that the diagram

4y # 4,

t,,#l/' l y\l#tq

S?# A, Pra N A, #S

Ap,ll\ L/APNI
. Ap+q
is homotopy commutative.

Let M be a (compact, unbounded) topological manifold or triangulated homol-
ogy manifold. We can always write M = N U D™ by imbedding a disc or simplex
and (for N) deleting its interior. The shrinking map c¢: M — S™ determines the
top cohomology class of M. If £ satisfies the two conditions of Theorem 1, then
M is A-orientable. Using Theorem 7.4 of [19], we now have

THEOREM 4. Let M be a (compact, unbounded) triangulated homology mani-
fold, A a ring spectrum, and & an A-orientable microbundle with base M. If
the top homology class of M® is spherical, then M satisfies Poincaré duality
with coefficient spectrum A.
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Observe that our hypothesis requires, in particular, that a top homology class
exist, i.e. (if M is nonorientable), that on traversing a loop in M, the orientation
of the fibre of £ changes if and only if that of M does.

Now let G be a subgroup of the infinite orthogonal group O. For G,=GnN O,,
there is an associated vector bundle v, over the classifying space BG,. Consider
the sequence of the Thom complexes {MG, = (BG,)"":ne Z"*}. The classifying
map of the Whitney sum of v, and a trivial line bundle induces a map
€,:SMG,—> MG,,,. The sequence {MG,,¢,} is the classical Thom spectrum
MG [17]. Following Atiyah [1], the homology theory with coefficients in MG
is called the bordism theory with the structure group G. In the most familiar
cases (e.g., G=0, SO, U, SU, Sp, 1), G,, x G, < G,,.,,s0 the Whitney sum of
v, and v, is a G,,,-bundle, and we obtain maps MG,, # MG, - MG,,,. The
inclusion 1 < G also induces a map S = M1 — MG; with respect to these maps,
MG is a ring spectrum.

LeEMMA 5. If &is a vector bundle with structure group G, it is MG-orientable.

Proof. The classifying map f:&—v, induces a map of Thom complexes
f:B*—> MG,. This represents a cohomology class Ueh*(B*;MG). The re-
striction to a fibre gives the composition S* = B* - MG, i.e., the map M1, - MG,
induced by the inclusion 1, = G,. So U is indeed a fundamental class. Q.E.D.

Orientability of almost-smooth manifolds. If M™ is a closed, smooth manifold,
there is a smooth imbedding f: M™— S*"*1. Let v be the normal bundle of the
imbedding. Then by shrinking the complement of a tubular neighbourhood of
f(M) to a point, we obtain a map a:S*"*!— M" (this is the Pontrjagin-Thom
construction [15], [17]). With ¢, I as above, it is clear that I', has degree 1, so
is homotopic to the identity. Theorem 3 now shows that if v is orientable for any
homology theory, then so is M. This simplifies the problem, as it is easier to
study A-orientability of vector bundles than of manifolds. We now show that
a similar reduction can sometimes be effected even if M is not smooth.

Recall that we call M almost smooth if M =N UCX where N is smooth
and ON =X is a homotopy sphere which bounds a zn-manifold.

THEOREM 6. Let M be a closed, almost-smooth manifold. Then there is a
vector bundle & over M such that the top homology class of M* is spherical.

We give two proofs of this result.

First proof. Let X = 0H, where H is a n-manifold. Define W by gluing H
to N along . Then W is smooth and W/H =~ N [T is homeomorphic to M. Let
n be the stable normal bundle of W. Then 5 | H is trivial, since H is a 7-manifold.
Hence # is induced from some bundle ¢ on W/H =~ M. Now W" maps to M
by the collapsing map, which has degree 1; since the top homology class of W"
is spherical, so is that of M°.
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Second proof. First forget that £ bounds a n-manifold. Now N is smooth;
if #* is a stable normal bundle, there is an element of 7, (N, Z") of degree 1—
for we may imbed (N,X) in (D™** 0D™*¥), and again use the Pontrjagin-Thom
construction. Now 11] Z is trivial: choose a framing, then # is induced by a map
of Z to a point. So the map N — N /X = M is covered by a bundle map of 7 to,
say, ¢. The above homotopy element maps to 7, (M°, S¥). Hence, by the
homotopy exact sequence, it lifts to an element of 7,,,,(M?*) if and only if the
image in 7,,,,_.(S*) vanishes. But according to Pontrjagin [15], the existence
of a framing of vl T such that the corresponding element of 7, ,—;(S¥) vanishes
is equivalent to X bounding a m-manifold. Q.E.D.

COROLLARY. Suppose M closed and almost smooth. If M is orientable, it
satisfies Poincaré duality in bordism theory (with coefficient spectrum MSO);
if also w,(M) =0, M satisfies Poincaré duality for K-theory and KO-theory.

Proof. Let & be the vector bundle given by Theorem 6. If M is orientable,
so is &, and by Lemma 5, ¢ is MSO-orientable. If also w,(M) =0, then we say
w,(€) =0, so the group of & can be lifted to the spinor group. Hence & is K-
and KO-orientable [3]. The corollary now follows immediately from Theorem 4.

It remains to check the relation between Stiefel elasses of M and those of &.
We work with (ordinary) mod 2 cohomology, and the Thom isomorphism @,
the composite of

T, ®U r+k & ¢* r+k &
HM) — H " (M*#M) —— H"" Y (M").
Let us suppose M (hence &) orientable, so Sq'U =0. Then Sq2U = Uw,(¢),
by definition; likewise, for ue H™ *(M), Sq*u= uw,(M). Hence

Sq*®(u) = $*Sq*(u® U)

= ¢*uw,(M)® U + 0 + u® Uw,(&)}
uU(wo(M) + wy(8)
= O{u(w,(M) + w,(&))}.

But this vanishes, since the top class of M?® is spherical. So for all
ue H" 2(M), u(w,(M) + wy(&)) = 0. Hence, by (mod2) duality, w,(M) = w,(&).
We could similarly check all the usual relations between Stiefel classes of M
and those of &. Q.E.D.

We now observe that, as noted in the introduction, several almost-smooth
manifolds are known which do not have the homotopy type of any smooth mani-
fold. But by Theorem 6, over any one exists a bundle, the top class of whose
Thom space is spherical. So the hypothesis of Browder [4] concerning the signa-
ture is esgential. Indeed, combining Browder’s arguments with our Theorem 6,
we obtaig" at once
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THEOREM 7. Suppose X a simply connected, finite CW-complex, which
satisfies Poincaré duality with a fundamental class ge H,(X),n #4. Then X
has the homotopy type of an almost-smooth manifold if and only if there is a
vector bundle & over X, with ®(g) spherical.

REFERENCES

1. M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200-208.

2. M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos.
Pure Math. Vol. 3, pp. 7-38, Amer. Math. Soc., Providence, R.I., 1961.

3. M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (suppl. 1) (1964),
3-38.

4. W. Browder, Homotopy type of differentiable manifolds, Notes, Aarhus Colloquium on
Algebraic Topology, Aarhus, 1962.

5. BE. H. Brown, Cohomology theories, Ann. of Math. (2) 75 (1962), 467-484.

6. A. Dold, Relations between ordinary and extraordinary cohomology, Notes, Aarhus
Colloquium on Algebraic Topology, Aarhus, 1962.

7. , Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255.

8. J. Eells and N. H. Kuiper, Manifolds which are like projective planes, Inst. Hautes Etudes
Sci. Publ. Math. No. 14, 1962.

9. S.Eilenberg and N. Steenrod, Axiomatic approach to homology theory, Proc. Nat. Acad.
Sci. U.S.A. 31 (1945), 117-120. B

10. , Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952.

11. M. Kervaire, A manifold which does not admit any differential structure, Comment.
Math. Helv. 34 (1960), 257-270.

12. J. M. Kister, Microbundles are fibre bundles, Bull. Amer. Math. Soc. 69 (1963), 854-857.

13. J. Milnot, Microbundles, Mimeographed, Princeton Univ., Princeton, N. J., 1961.

14. , Topological manifolds and smooth manifolds, Proc. Internat. Congr. Math.,
pp. 132-138, Stockholm, 1962.

15. L. Pontrjagin, Smooth manifolds and their applications in homotopy theory, Trudy Mat.
Inst. Steklov. 45 (1955), 139 pp.; Amer. Math. Soc. Transl. (2) 11 (1959), 1-114.

16. S. Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of
Math. (2) 74 (1961), 391-406.

17. R. Thom, Quelques propriétés globales des variétés differentiables, Comment. Math.
Helv. 28 (1954), 17-86.

18. C. T. C. Wall, Classification of (n— 1)-connected 2n-manifolds, Ann. of Math. (2) 75
(1962), 163-189.

19. G. W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962),
227-283.

20. , Some aspects of stable homotopy theory, Notes, Aarhus Colloquium on
algebraic Topology, Aarhus, 1962.

YALE UNIVERSITY,

NEw HAVEN, CONNECTICUT,
TrmNiTY COLLEGE,

CAMBRIDGE, ENGLAND



	Cover Page
	Article Contents
	p.352
	p.353
	p.354
	p.355
	p.356
	p.357
	p.358
	p.359

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 118, Jun., 1965
	Front Matter
	A Characterization of Locally Euclidean Spaces [pp.1-16]
	Classical Expansions and Their Relation to Conjugate Harmonic Functions [pp.17-92]
	Automorphisms of Free Metabelian Groups [pp.93-104]
	Green's Formula, Linear Continuity, and Hausdorff Measure [pp.105-112]
	On the Field Extension by Complex Multiplication [pp.113-122]
	On the Ergodic Mixing Theorem [pp.123-130]
	Tensor Products Over Banach Algebras [pp.131-149]
	Rings with Zero Right and Left Singular Ideals [pp.150-157]
	On Continuous Rings and Self Injective Rings [pp.158-173]
	On the Lefschetz Number and the Euler Class [pp.174-179]
	Path Fields on Manifolds [pp.180-191]
	Some Ways of Constructing a Propositional Calculus of Any Required Degree of Unsolvability [pp.192-210]
	On Spherical Bessel Functions [pp.211-220]
	Elementary Methods in the Theory of Primes [pp.221-242]
	On Cardinality, Cohomology and a Conjecture of Rosenberg and Zelinsky [pp.243-246]
	An Extension of Differential Galois Theory [pp.247-256]
	Multiple Kunneth Formulas for Abelian Groups [pp.257-275]
	Fourier Analysis of Nonstationary Stochastic Processes [pp.276-302]
	Reflective Functors in General Topology and Elsewhere [pp.303-315]
	On a Necessary and Sufficient Condition That an Infinitely Divisible Distribution be Absolutely Continuous [pp.316-330]
	On the Marx Conjecture for Starlike Functions [pp.331-337]
	Multi-Valued Monotone Nonlinear Mappings and Duality Mappings in Banach Spaces [pp.338-351]
	Orientability of Manifolds for Generalised Homology Theories [pp.352-359]
	Fourier Analysis of Sub-Stationary Processes with a Finite Moment [pp.360-375]
	Interval Topology in Subsets of Totally Orderable Spaces [pp.376-389]
	On the Polar Equations for Linear Systems and Related Nonlinear Matrix Differential Equations [pp.390-405]
	On the Central Decomposition for Positive Functionals on C*-Algebras [pp.406-419]
	Acyclic Semigroups and Multiplications on Two-Manifolds [pp.420-427]
	Transformation Groups on Compact Symmetric Spaces [pp.428-453]
	The Classification of Singular Points of Algebraic Curves [pp.454-471]
	Functions Satisfying a Weighted Average Property [pp.472-487]
	On Groups and Graphs [pp.488-497]
	Rings of Continuous Integer-Valued Functions and Nonstandard Arithmetic [pp.498-525]
	Lie Loops with Invariant Uniformities. II [pp.526-533]
	Some Results on Crumpled Cubes [pp.534-549]
	A Correction of Some Theorems on Partitions [p.550]
	Back Matter



