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In order to apply surgery theory we need methods for 

determining whether a given surgery obstruction 

(f : N ÷ M,f) ~ Ln(~G,e) is trivial. Notice. that it is 

more important to have invariants which detect L-groups than 

to be able to compute the L-group themselves. 

One approach is to use numerical invariants such as 

Arf invariant3, multisignatures, or the new "semi-invariants" 

[M1], [Da], [H-Mad], [P]. Another approach is to use transfer 

maps. For example, 

(i) Dress [D] has shown that when G is a finite 

group, Ln(~G) is detected under the transfer 

by using all subgroups of G which are hyper- 

elementary. 

(ii) Wall [W9] has shown that when M is closed and 

G is finite, then image (~ : [M,G/TOP] + Ln(~G,e)) 

is detected by Ln(~G2,~), where G 2 is the 

2-Sylow subgroup of G. 
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(iii) If G is a finite 2-group, then L~(~G) is 

detected under transfer and projection by using 

subquotients of G which are dihedral, quater- 

nionc, seml-dihedral, and cyclic (see [T-W]). 

The goal of this paper is to give a systematic procedure 

(when G is a finite 2-group) for computing transfer maps 

and the "twisted" transfer maps arising from codimension 1 

surgery theory. Recall that if H is any subgroup of a 

finite 2-group G, then there exists a sequence of subgroups 

H = H 0 c H 1 c H 2 c ... c H e = G such that H i is an index 

2 subgroup of Hi+ 1 foz i = 0, ... ,e - 1. Thus we might 

as well assume that H is an index 2 subgroup. 

Suppose H is an index 2 subgroup of an arbitrary group 

G. Then we get the "push forward" exact sequence 

Ln(mH,m) fl ... ÷ Ln(~G,~ ) ÷ Ln(f !) ~ ... 

(see JR1],§2), and the transfer exact sequence 

! 

... ÷ Ln(~G,m) f~ nn(~H,~ ) + Ln(f! ) + ... 

(see JR1], §7.6). 

One can view S = ~G as a twisted quadratic extension 

of R = ~H. More precisely, suppose we choose t e G - H. 

We let a = t 2 e H, and we let p : R ÷ R be conjugation by 

t. Then, 

where t 

tx = p(x)t 

S = R [ v ' ~ ]  = R [ t ] / ( t  2 - a ) ,  
P P 

is viewed as an indeterminate over R such that 

for all x E R. 
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Let y denote the Galois automorphism of 

given by 

y : S ÷ S; x + yt ÷ x - yt 

S over R 

(x,y c R). 

We want to extend the classical results in [L] chap. 7 

and [M-H] appendix 2 where f : R + S is a quadratic extension 

of fields. 

Recall that Wall [W2] defined groups Ln(R,~,u) for any 

ring with anti-structure, i.e. ~ is an anti-automorphism, 

u is a unit, 

For example, 

Z ng~(glg -I. 

a2(r) = uru -I for all r e R, and ~(u) = u -I 

Ln(ZZG,m) = Ln(~G,a~,l) , where ~(Z ngg) : 

Suppose we have a map of rings with anti-structure 

f : (R,~0,u) ~ (S,~,u) 

where S is a twisted quatratic extension Rp[~] with 

Galois automorphism y. Then we also have the following 

y-conjugate map 

Yf : (R,~0,u) + (S,y~,u). 

Moreover, we can "twist" (~,u) to get (~,u) = (~,~), 

where ~(s) ~ ~ Y~(s)/a -! for all s c S 

This yields a map 

: (R,~n,~) ÷ (S,~,~), 

where ~0 is the restriction of ~. 

If we twist (ya,u) we get that 

and we get a map 

and ~ = ¢-a y~(/~-l)u. 

(y~,u) = (y~, - ~), 
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N 

¥f : (R,a 0, - ~) + (S,¥a, - ~). 

Then we get the following amazing isomorphisms. 

P! : Ln_l(f !) T Ln(f !) 

' f! ~! r" : Ln( ) ± Ln+l( ) 

F., : Ln-i (Yr.') ~÷ Ln(Yfx ) 

' Ln(Y f' n+l(Yf ' r "  : )_+L ") 

! 

The maps F! and F" are defined using an algebraic 

version of integration along the fibre for line bundles. In 

the case of group rings the isomorphism F! is implicit in 

[WI] chap. 12.C, [C-SI] and explicit in [H]. The general case 

is due to Ranicki (after some prodding by us). (See [RI], §7.6 

and the appendix by Ranicki in [H-T-W]). 

! 

By combining F! for f, F" for ~f, and scaling 

isomorphisms 

: Ln(S,~,u) ~ Ln(S,y~ ~ - ~] = Ln(S,y~,,u) (see 2.5.5) 

Ranicki constructed the following comuutative braid of exact sequences 
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(0.i) Twisting Diagram for f : (R,~o,U) + (S,m,u) 

Yf! f! ~f! 

Ln(S,a,a) L (S,~,u) (R,ao,a) 
= Ln(R,a0,u) n = Ln-2 = 

Ln(S,y~,u) Ln(S,Y~,-~) Ln(R,~0,-u) 

/\ /\ / 
Ln+l(f ! ) Ln+l (Yf") Ln(f ! ) 

/ - - , ,  / \ / 
Ln+l(S,a,u) Ln_l(R,50,u) L n I(S,~, ~) 

= = - = Ln_I(R,~o,U) 
Ln+l(S,Y~,-~) Ln+l(R,50,-~) Ln_l(S,y~,u) 

Thus the problem of computing f! and Yf! is intimately 

related to the problem of computing the "twisted" maps f! 

and ~f!. 

Examples: 

= L p n is even, plus R and S are I. Suppose L n n' 

semi-simple rings. Recall that L p is trivial for semi- 
odd 

simple rings (see [R2]). Thus, all of the groups along the 

bottom of (0.I) are trivial and the groups along the top form 

the following exact octagon (see also [War] and [Le]). 
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(0.2) Semi-simple 8-Fold Way 

Yf! q J-a/Ln(R,~0,u) 

Ln(S,~,~) 

Ln(R,~0,u) 

y f !"-'-" W'a~ f, 
Ln(S,~,-u) ~i 

f, 

~ Ln(S,~,u) ~f.1 q ~ 

Ln(R,aO,-~) 

Ln(S,a,-~) 

yf!o/~ 
Ln(R,~0,-u) 

(a) Suppose we have 

f : (F,id,l) + (K,id,l) 

where F ÷ K is a quadratic extension of fields. If n = 0, 

then Ln(F,id,-l) ~ Ln(K,id,-l) m (0); and we get the 

following exact sequence 

(0.3) 0 + L0(K,y ) + L0(F ) ÷ L0(K ) + L0(F ) ÷ L0(K,y ) + 0 

which extends the exact sequences of Lam [L], chap. 7 and 

Milnor-Husemoller [M-H], appendix 2. 

(b) Suppose we have 

f : (K,id,l) ÷ (D,~,l) 

where D is a quaternionic division algebra and K is a 

maximal subfield of D. Since ~IK = id, ~ must be an 

involution of type O. If we let L0(D;O) = L0(D,~,I) , 

L0(D;S p) = L0(D,~,-I) , and L0(K,p) = L0(K,~00~I) , then we 

get the following exact sequence 
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(0.4) 0 ÷ L0(D;S p) ÷ L0(K,p) ÷ L0(D;O) ÷ L0(K ) ÷ L0(D;O ) 
+ 

L0(K,P) 
+ 

L0(D;S p) 

+ 

0 

(c) Suppose D is a division ring with center F. Let 

K be a quadratic extension of F such that D@FK is still 

a division ring. Then for any (anti) involution ~0 on D, 

we get another example 

(D,~0,1) ÷ (D®FK,~0@Id,1) 

(d) (trivial quadratic extension) Suppose we have 

(d : (R,~0,u) ÷ (R x R, a 0 x ~0,u x u) 

where d is the diagonal map. Then Ln(S,~,+u) is trivial 

and (0.2) breaks into the short exact sequences of the form 

d v 

1 ÷ Ln(R,~0,u ) ; Ln(R,e0,u) x Ln(R,a0,u) ÷ Ln(R,a0,u) + 1 

2. Codimension 1 Sursery (see [B-L], [Me], [Wl] Chap. 

12C, [C-S1], [C-$2], [H], and [RI] Chap. 7) 

Suppose we have 

f : (~H,am,l) + (~G,am,I) 

where H is an index 2 subgroup of G. Also, suppose X n 

is a closed manifold with (~iX,el X) = (G,e). Let yn-i be 

a connected submanifo!d such that ~I(~(Y + X)) induces the 

map ~ : G + G/H = {+i}. Then by combining results of Wall 
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[wi], chap. 12C, Cappell-Shaneson [C-SI], and Hambleton [H], 

we get the following commutative diagram with exact rows 

... ÷ S(X) 

Ln_l( ?Z'H, ~oj, 1 ) 

Ln(?ZH,~) 

a, [ fI 

, [X,G/TOP] '+ Ln(?ZG,~) 

!a  t 
[Y,G/TOP] 

p.* 

Ln_I(ZZG,~) Ln(f ! ) Ln(ZZH,a~,-I) 

' Ln_I(Z~G,~ ,1) > Ln_l(f !) ~ Ln_2(?Z.H,~m,~) 

where t E G - H and L = L s 
n n 

Assume ~i Y ~ Wl X and n ~ 5. If f : M + X represents 

an element in S(X), then 8,(f) is trivial if and only if 

f is homotopic to a map fl such that f~l(y) + y and 

f[l(x - Y) ÷ X - Y are simple homotopy equivalences. 

Cappell-Shaneson [C-SI], [C-$2] and Hambleton [H] have 

observed that since 

image(a, : [M,G/TOP] ÷ Ln(~G,~)) c ker(Yf!a t) 

Y f ! a t ( x )  can  b e  v i e w e d  as  t h e  p r i m a r y  o b s t r u c t i o n  t o  an 

element x ~ Ln(~G,m) arising from surgery on closed 

manifolds. 

I n  t h i s  p a p e r  we compute  t h e  t w i s t i n g  d i a g r a m  ( O . 1 )  whe re  

f : (?Z.H,a~,I) ÷ (ZZG,a~,I), 
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G is a finite 2-group, and L n = L p . Our motivation is 
n 

that we have used these results to compute ~ : [M,G/TOP] + 

L~(~G,m) (see [H], IT-W], and [H-T-W]). 

Roughly speaking, we proceed as follows 

(i) We show that the Twisting Diagram (0.1) for f 

decomposes into a sum of diagrams indexed by the 

irreducible @-representations of G. 

(ii) We use quadratic Morita theory to construct an 

isomorphism between each component diagram and 

the twisting diagrams associated to integral 

versions of Examples 1. (a),(b),(c),(d) i.e. 

maximal orders in division rings. 

(iii) By using classical results on quadratic forms 

over division rings and localization sequences 

we are able to finish the calculation. 

In Part I we carry out this program for the groups along 

the top and bottom of the twisting diagram (0.1). In Part II 

we compute the actual diagrams. 

This paper is a preliminary version of [H-T-W] where we 

give details, compute the twisting diagrams for other L-groups 

addition to L~, and give geometric applications. in 

We thank Tony Bak, Bill Dwyer, Chuck Giffen, Karl Kronstein, 

Ib Madsen, Bob Oliver, Andrew Ranicki, Carl Riehm, and Richard 

Swan for conversations which helped to clarify our thinking. 
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PART !: Computation of the LP-grouDs 

Let G be a finite 2-group and H an index 2 subgroup. 

In the oriented case, the groups LP(Z~G) have been 

computed by Bak-Kolster [KI], [K2], [B-K], Pardon [P], and 

Carlson-Milgram [C-M]. These results are nicely summarized 

by Theorem A in [H-M] where they give a decomposition of 

LP(zzG) indexed by the irreducible ~-representation of G. 

Besides extending their computations to the unoriented L-groups, 

LnP(Z~G,m) and the codimension i surgery groups LP(~G,~,I), 

we also have to overcome the following problem. All of the 

above computations were based upon choosing a maximal involution 

invariant order, M G which contains Z~G. Unfortunately, it 

is not always true that M G n ~H is a maximal involution 

invariant order in ~H. (Bruce Magurn has observed that this 

can happen even when G is the dihedral group of order 8). 

Thus it is not clear that the above computations and decom- 

positions are functorial and we have had to modify their 

method somewhat. We have attempted to keep Part I fairly 

self-contained, but we would like to emphasize that Part I 

is based upon the work of the above authors and Wall's fun- 

damental sequence of papers [WI] - [W8]. In Section (2.5) 

we try to clarify certain questions involving quadratic 

Morita theory. 

§I. Basic Definitions and Overview 

(i.i) Intermediate L-sroup 

The use of arithmetic squares forces us to use L-groups 
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other than L p . Thus we shall start by recalling the 
n 

relationships between the various L-groups. 

A ring with antistructure (R,a,u) is an associative ring 

R, an anti-automorphism ~ : R ÷ R and a unit u E R such 

that a2(a) --uau -I for all a E R, and such that ~(u) -- u-1 

For any right R-module M, D~(M) = HomR(M,R) is the right 

R-module where 

(f • r)(m) -- a(r) • f(m) where f ~ DaM, m c M, and r E R. 

Since inner automorphisms act trivially on K-theory, D ~ 

induces involutions on Ki(R) and Ki(R) -- coker(Ki(Tz, )  ÷ 

Ki(R)) which we also denote by ~. 

If Y is an ~-invariant subgroup of Ki(R), i=0 or i, 

then L~(R,~,u) denotes the standard L-group defined in [Ca], 

[R3] §9, and [RI] p. 688. 

If R = ~G and ~ : Z n g + Z ng~(g)g -I, then we get 
g 

the following geometric L-~roups, 

{w ab } cK 1 
Ls(?ZG,~) -- L n (Z~G,a~,I) (see [Wl]) 

L~(~G,~) = L n (~G,a~,l) 

LP(~G'~)n = L~0(~G'~ 'I) 

(see [Sh]) 

(see [Ma], [P-R]) 

If Y2 c YI c Ki(R), i = 0 or i are both ~-invariant 

subgroups, then we get the following Rothenberg exact 

sequence (see [R3] 9.1) 



Y2 Y1 
(i.i.I) ... ÷ L n (R,~,u) ÷ L n (R,~,u) ÷ H~(YI/Y 2) ÷ ... 

where H~(YI/Y 2) is the Tate cohomology group Hn(~/2,YI/Y 2) 

associated to the action of ~/2 on YI/Y2 via m. 

Also, 

KI(R) Oc~0(R) 
(1.1.2) L n (R,~,u) = L n (R,~,u) 

If Y = K0' then 

(1.1.3) 

L~(~ 1 × R~,~ 1 x ~2,Ul × u 2) : L~(al,~l,Ul> × L~(R2,~2,u2), ' 

and 

(1.1.4) L~(RI,al,Ul) : L~(R2,a2,U 2) whenever (Rl,~l,Ul) 

and (R2,a2,u2) are quadratic Morita equivalent 

(see Section 2 for definition) 

Since KI(RI × R2) # Ki(RI) × Ki(R2) and since Ki is 

not a Morita invarlant, (1.3) and (1.4) are false for most 

Y : e.g. Y = 0 c K0 This problem is overcome by intro- 

ducing the following variant L-groups. 

If X is an ~-invariant subgroup of Ki(R) , then we 

L~(R,a,u). (See [W3] for i = 1 and [B-W] get L-groups, 

for any i ~ 0). 

If ImageK0(ZZ) c X c K0(R), 

(1.1.5) 

then 

ff~(R,~,u) = L~(R,~,u), 
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where X = image of X in K0 (R)" 

If imageKl(?Z ) c X ~ KI(R) , then we get an exact 

sequence 

(1.1.6) ... ÷ LXn(R,~,u) ÷ LnX(R ~,u) + Hn(imageK0(2Z)) + . 

where X = image of X in KI(R). 

Again we get Rothenberg sequences as in (I.i.i), and 

Ki(R ) O=Ki_I(R) 
(1.1.7) L n (R,~,u) = L n (R,a,u). 

Furthermore, 

(1.1.8) 

YI×Y2 ~ Y2 
L n (R I x R2,a I x ~2,Ul x u 2) m L I(R!,~I,U I) x L n (R2,~2,u 2) 

and 

(1.1.9) 

(I.i. I0) Convention: Henceforth Ln(R,m,u) 

OcK0 
L l(R,a,u) ~ L (R,~,u). 

Our first goal is to compute L~(~G,~,u) 

finite 2-group and (~,u) any anti-structure. 

L~(RI'aI'Ul) ~ L¢(Y)(R2'm2'U2)n whenever (R l,al,ul) 

and (R2,~2,u 2) are quadratic Morita equivalent. 

(@ : Ki(R I) ~ Ki(R 2) is the isomorphism induced by 

the Morita equivalence) 

will denote 

for G any 

First consider the following long exact sequence 
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(i.l.ll) 

. . . .  ~,~(~,~,~,)  ~ ~(~2~,~ , ,u )  ~ ~(~ .~  ~. ~ 2 ~ , : , , : , ) . . . .  

(1.2) Computation of LnP(~2G, m,U) 

(1.2.1) Theorem: For any finite 2-group and any anti- 

structure (a,u) on ~2 G, we get 

p 
Ln(ZZ2G,e,u) ~+ LnP(ZZ/2,id,l) = 

~/2 if n e 0(2) 

0 if n e 1(2) 

Theorem 1.2.1 follows from the following two results. 

(1.2.2) Reduction Theorem: If R is a complete local ring 

then for any 2-sided ideal I, 

(i) K0(R) ~ K0(R/I) , and 

(ii) LP(R'~'U)n +- L~(R/I,~,u), (assuming ~(I) = I) 

Proof: See [W5], [B]. 

(1.2.3) Lemma: If G is a finite p-group, then 

ker (~/p)G + ~/p is nilpotent. 

Proof: See [SE], p. 57. 

Notice (1.2.3) implies that kernel (~pG + (~/p)G ÷ ~/p) 

is complete. 

(1.3) Computation..of LP(ZZGn . + ~2G~a~u). 

It is well known that 

QG = ~A¢, (see [Sl] or [Y]) 

where the product is taken over the set of isomorphism classes 

of irreducible Q-representatlons. Each A¢ is a simple ring, 
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and A¢ = a¢~G for some central idempotent a¢ which can not 

be expresses as a sum of nontrivial central idempotents. 

2 
Since ~ is an inner automorphism a(m¢) is either a S 

or a (¢) where ~(¢) is another irreducible ~-representation. 

In fact a¢ ~ ~[½]G (.see [Y], p. 4) and A¢ = a¢(~[½]G) is 

a ~[½]-maximal order in A@ (.see [Re], p. 379). Resi~Ic -- 

tion gives a decomposition of rings with antl-structure. 

(1.3.1) (~[%]G,a,u) = 

¢=~(¢)~ (A¢,~¢,u¢) x ¢=~C¢)~ (~¢ xA (¢),~¢x~C¢),u ~ x u (¢)) . 

The A¢ x Ae(¢) are called type GL factors and make no 

contribution to any Wall group. 

We prove the following result in Section 2. 

(.1.3.2) Decomoosition Theorem: For any finite 2-group G 

and any anti-structure on ~G , we get the following 

canonical isomorphlsms. 

L~(~G ÷ ~2G,m,u) T Ln(~[½]G ÷ ~2G,m,u) 

-9" 

^ 

Ln(A ~ + A¢(2),m~,u¢) 
¢ ¢=~(¢) 

K 1 OcK0) 
(Recall that L n denotes L n t L n 

Consider the following ~[½]-algebras, where ~j is 

a primitive 2J-th root of 1 and - denates complex conjugation. 
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i) 
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r N = ~[½][~N+I ] 

2) RN = ~[}][~N+2 + ~N+2 ] 

3) F N = ~[½][~N+2 - ~N+2 ] 

4) H N = ( ~ )  ® RN_2, where 

( ~ )  = {~ + ~i + ~j + ~k I ij = -ji = k, i 2= j2 = -I} 

i a Remark: Each of these ~[~]-algebr s 

of rank 2 N . 

is a free ~[½]-module 

Now, consider the following anti-structures. 

(1.3.4) 

l) 

2) 

3) 

4) 

On rN, (!d,l), (-,I), (T,I), (F,I) 

Id is the identity; - is complex conjugation; 

T(~N+I) = - ~N+I or, equivalently, FN_ 1 is the fixed 

field of T; ~ has fixed field FN_ 1 . 

On R N, (id,l), (T,I) 

On F N, (Id,l), (-,I) 

On HN, (~i,I), (4,1) where ~l(i) = ~(i) = i 

~l(j) = ~(j) = j 

In Section 2 we also prove the following result. 

^ 

and alIRN_2 -- !d, ~IRN_ 2 = T. 
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(1.3.5) Identification Theorem: If G is a finite 2-group, 

and (~,u) is any anti-structure on ZZG ; then for any 

irreducible ~-representation ~ with m(¢) = ¢, we get that 

^ ^ 

Ln(A ~ + A¢(2),~¢,u ¢) ~ Ln(A ¢ + A¢(2),B¢,v ¢) 

where A¢ = a¢2Z[I]G and (A¢,B¢,+_v#) is one of the rings 

with anti-structure in list (1.3.4). Recall that 

Ln(A¢,B~,v ¢) ~ Ln+2(A¢,~,-v¢). 

In Section 3 we compute Ln(A ÷ A(2),~,v) for all of the 

rings with anti-structure in List (1.3.4) and tabulate the 

results in Table I. 

Theoretically we could then calculate LP(~G,a,u) but we 
n 

restrict the antl-structure slightly at the start of Appendix I 

in order to easily identify (A¢,S¢,v¢) on List (1.3.4) (see 

Appendix I, part I). In part 2 we settle the remaining questions 

involved in using l.l.ll. 

§2. Proofs of the Decomposition Theorem (1.3.2) 

and of the Identification Theorem (1.3.5) 

(2.1) Excision in Arithmetlc Squares 

Suppose S is a multiplicative subset of a ring A. 

Then S-IA is the localization of R away from S, 

= lim A/sA is the S-adic completion of A, and 
s~S 

A- ~ 

1 l 
S-IA ÷ S-I~ 

is the arithmetic square associated to (A,S). 
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(2.1.2) K-theory Excision Theorem: For any integer i, 

Ki(A + A) ~ Ki(S-IA + S-I~) 

(2.1.3) Corollary: For any finite 2-group G and any 

integer i, 

Ki(~G ÷ ~2 G) ~ Ki(~[½]G+~2 G) 

~ Ei(A ¢ ~ A¢(2)) 
¢ 

irred. Q-rep. 

(same notation as in (1.3)) 

(2.1.4) L-theory Excision Theorgm: (See [RI]. Also [B], 

[B-W], [C-M], [p], and [W7].) 

We assume that A in (2.1.1) is equipped with an anti- 

structure (a,u) such that SIS is the identity. Localization 

and completion then induce anti-structures on the other rings 

c Ki(S-IA) and Y c K.(A) be ~-invariant in (2.1.1). Let X 
1 

subgroups. Let C = kernel of Ki(A) ÷ Ki(S-IA)/X @ Ki(~)/y ' 

and let I = image of X @ Y ÷ Ki(S-IA) @ Ki(~ ) + Ki(S-I~). 

Then, 

LC+Y(A + A) ÷ LX+I(s-IA ÷ S-I~) 
n n " 

(2.1.5) Corollary: For any finite 2-group G and any anti- 

structure (a,u) on ~G~ letting X and Y be trivial we get 

CI(G) Ki+l 1 
L n (~G + ~2G,~,u) ~ L n (~[~]G ÷ ~2G,~,u) 

LKi+I(A + ^ 
¢ n ¢ A¢(2)'~¢'u¢) 

a(¢)=¢ 
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where CI(G) = ker KI(~G) ÷ Ki(m[½]G) @ Ki($2G ) and the 

rest of the notation is the same as in (1.3). 

c.(G) 
If i = l, then the Lnl regroups 

! 

are the Ln-groups 

which were computed by Wall [W8]. 

Notice that if we can show that 
LC0 (G) ^ 
n (~G + ~2 G) 

LPn(ZZG ÷ ~2G), then (2.1.5) would imply the Decomposition 

Theorem (1.3.2). 

(2.2) Representation Theory for Finite 2-~roups 

Definition: A finite 2-group w is special if it has no 

noncyclic, normal abelian subgroups. 

(2.2.1) Proposition: A group n is special if and only if 

it is one of the following groups 

(5) cyclic, C N = <x I x2N=I> 

(ii) dihedral, D N = <x,y J x 2N-I = y2 = i, yxy = x-I>, N > 3 

2 N-I 2 -i 
(iii) semi-dihedral, SD N = <x,y I x = y = I, yxy = 

2 N-2 1 
x - >, N> 3 

2 N-I 2 2 N-2 
(iv) quaternionic, QN = <x,y J x = i, y = x 

-I x-l>, yxy = N > 3. 

Each special group w has a unique faithful, irreducible, ~- 

representation ¢(~).  

For any irreducible @-representation of a group G 

p : G ÷ GL(Vp), we let 
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Dp = End@G(Vp). 

Schur's lemma implies that D is a division ring. 
P 

(2.2.2) Theorem: For any irreducible @-representation ¢ on 

a finite 2-group G, there exists a subgroup H with normal 

subgroup N such that 

(i) H/N is special 

(ii) If we pull @(H/N) back to H and then induce 

up to G, we get ¢. 

(iii) De m D$, where @ = @(H/N). 

Proof: (See [F]) 

(2.2.3) Table 

IT 

C N 

D N 

SD N 

QN 

D@(~) 

FN_ I @ Q 

RN_ 3 ® Q 

FN_ 3 ® Q 

HN_ 1 ® Q 

Thus the rings from list (1.3.3) are ~[½]-maximal orders 

in the division rings D@(w) Notice that the centers of 

these division rings are precisely the fields which are sub- 

fields of ~(~j) for some j, namely fields of the form 

Q(~i )' ~(~i + ~i )' and ~(~i - ~i )" (Recall ~j is a 

primitive 2J-th root of 1.) 

(2.2.4) Weber's Theorem: Suppose K is a subfield of @(~j) 

for some j. Let 0 be the ring of algebraic integers in 
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K, and let R = 0[I]. Then 

(i) K/Q is unraraified over all odd primes. Over 2, 

it is totally ramified, and the unique dyadic 

prime d is principal. 

(ii) The ideal class group F(K) ~_ K0(0) = K0(R) has 

odd order 

(iii) The narrow ideal class group 

F (K) ~ (group of ideals) 
--/principal ideals (x)) 

~such that x > 0 
\for all real places 

also has odd order 

Proof: For (ii), see Theorem 10.4 in [Was]. Class field 

theory implies that if K = @(~i + [i )' and F*(K) does not 

have odd order; then K has a quadratic entension E/K which 

is unramified at all finite primes. But, then E®K@(~ i) 

would be an unramified, quadratic extension of Q(~i ). Thus 

(il) for K = ~(~i ) implies (iii) for K = ~(~i + ~i )" 

(2.2.5) Corollary: For any N, K0(FN)~ K0(~), K0(FN), and 

K0(H N) have odd order. 

Proof: Notice that if R = FN, RN, or F N , then R = 0[ 1 ] 

where 0 = ring of algebraic rings in a subfield of ~(~i) 

for some i. Since H N is a maximal order in the division 

algebra H N ® ~, (36.3) in [Re] implies that 

K0(HN) : r~(~(~ N + IN)). 
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(2.3) (Linear) - Morita Theory: (see [Bass I] and [Re] for 

details). 

Definition: A Morita equivalence between two rings A and 

B is a 4-tuple (M,N,u,r) where M and N are bimodules 

BMA and ANB; u : M@AN ÷ B and T : N®BM + A are 

bimodule isomorphisms such that 

T(n ® m) • n' = n • u(m @ n'), 

and 

u(m ~ n) • m' = m • r(n @ m') 

for all n, n' e N, and 

all m, m' e M. 

For any ring A, we let PA denote the category of 

finitely generated projective right R-modules. 

(2.3.1) Theorem: Assume (M,N,u,T) is a Morita equivalence 

between A and B. Then, we get an equivalence of categories 

@A N 
PA ~" ~ PB 

®B M 

and an isomorphism 

K.(A) ~ ~.(B). 
l 1 

Furthermore, center(A) = B - A - bimodule endomorphisms 

of M = center(B). 

Examples 

(2.3.2) Derived Morita equivalence 

Suppose M c 0b (F A) and A is a direct summand 

of M n for some n > 0, i.e. M is a pro~enerator. Then 
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A and B = EndA(M) are Morita equivalent via (M,N = 

HomA(M,A),u,~) where u(m @ n) • m' = m • n(m') and T is 

the evaluation map. 

If ¢ : G + GLn(Q) is a @-irreducible representation of 

a finite group G, then we let V¢ denote the simple module 

of the simple component A¢c @G. Thus A¢ and the division 

ring D# = EndA (V ¢) are Morita equivalent. Furthermore, 

Ki(~G) Z ;Ki(D¢)- 

(.2.3.3) If R is a commutative ring, then a R-algebra A 

is Azumaya if there is a R-algebra B and a progenerator 

M of PR such that A@RB ~ EndR(M) as R-algebras. (See [K-O].) 

If A is an Azumaya R-algebra, then A is central i.e. 

center A = R. Assume R is a Dedekind domain with field of 

fractions K. Then, whenever A is an Azumaya R-algebra, 

A is also a R-maximal order in A®RK. Conversely, if A is 

a R-maximal order in a simple K-algebra A with center R, 

then A is Azumaya if and only if Ap ~ Mn(K p) for all finite 

prime ideals in R. (See [Rog].) 

Suppose ¢ : G ÷ GL(V¢) is a irreducible ~-representation 

of a finite group of order m. Then A~ = a¢ • ~[~]G is an 

Azumaya Re-algebra where Re = center(A¢). (See [F], Corollaire 

i of Prop. 8.1.) 

Definition: For any commutative ring R, Br(R) is the set 

of Morita equivalence classes of Azumaya R-algebras. It 

becomes an abelian group under tensor product over R. 
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Suppose R is a Dedekind domain with quotient field K 

a finite extension of Q or ~p for some prime p. 

(.2.3.4) Theorem: Let Aj c Aj for j = 1,2 be R-maximal 

orders in simple K-algebras Aj, j = 1,2. Then A I and A 2 

are Morita equivalent if and only if A I and A 2 are Morita 

equivalent. 

Proof: 

(2.3.5) 

(2.3.6) 

Then, for any i, 

Ki( ~G ÷ ~2 G ) ÷ ~ Ki(A ¢ + ~¢(2) ) 
¢ 

where ¢ runs over the irreducible rational representations of 

G and A¢ is one of the rings on list (1.3.3). 

See [Re], Theorem (21.6). 

Corollary: The map Br(R) + Br(K) is a momomorphism. 

Theorem: Suppose that G is a finite 2-group. 

Proof: First apply corollary (2.1.3). The result follows from 

(2.3.4) after consulting paragraph two of (2.3.2); (2.2.2) (iil); 

and Table 2.2.3. 

(2.4) Proof of the Decomposition Theorem (1.3.2) 

(2.4.1) Theorem (Swan): If G is a finite group, then 

K0(~G) is a finite group. 

Then (2.3.6), (2.2.5), and (1.2.2 (i)) imply that C0(~G) ÷ 

K0(~G) becomes an isomorphism when we localize at 2. A 

Rothenberg sequence argument then implies that 
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c0(~G) 
L n (~G ~ ~2 G) ÷ L~(~G + ~2G) . 

Thus (1.3.2) is a special case of (2.1.5). 

(2.5) Quadratic Morita Theory (Compare with [F-Mc] and [F-W]) 

Definition: A quadratic. Morita equivalence between two rings 

with antl-structure (A,m,u) and (B,~,v) is given by a Morita 

equivalence (M,N,~,T) plus a B-A-bimodule isomorphism h : M ÷ N 

where we make N into a B-A bimodule using a and S. We 

also require that 

mT(h(mlU) ® m 2) = T(h(m 2) @ mlv) 

for all ml,m 2 ~ M 

(2.5.1) Theorem: A quadratic Morita equivalence between (A,e,u) 

and (B,B,v) induces isomorphisms 

and 

: Ki(A) Z Ki(B), (equivariant with respect 

to ~, and B,) 

H~(Ki(A)) @ H~(Ki(B)), 

L~(A,a,u) + L¢(X)(B,B,v) 
n 

where X is any 

~,-invariant 

subgroup of Ki(A). 

(2.5.2) Derive~ Quadratic Mor~ta Equivalence Theorem: Suppose 

(A,~,u) is a ring with anti-structure and (M,N,u,T) is a 

(,linear) Morita equivalence between A and B. Let R = center A = 

center B. Assume h : M ÷ N is a right A-module isomorphism, 

where we use e to make N into a right A-module. Then, 

(i) B admits a unique anti-automorphism B such that 

h becomes a B-A-bimodule isomorphism when we use 

B to make N a left S-module. (BIR = siR); and 
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(ii) there exists a unique unit v E B such that 

(M,N,~,~,h) is a quadratic Morita equivalence 

between (A,a,u) and (B,B,v). 

(2.5.3) Corollary: Suppose (A,~,u) is a ring with anti- 

structure where A is a simple algebra over a field K. Let 

V = simple right A-module and let D = the division algebra 

EndA(V). Then (A,a,u) is quadratic Morita equivalent to 

(D,B,v) for some anti-structure (B,v). 

Proof: Since V and V a = HomA(V,A) are both simple right 

A-modules, there exists a right A-module isomorphism h : V ÷ V ~. 

(.2.5.4) Corollary: Suppose (~,u) is an anti-structure on 

~G for some finite group G. Then, 

Ln(~G,~,u) ~ ~¢ Ln(D¢,~,v~). 

(2.5.5) Definition: If (R,a,u) is a ring with anti-structure 

and w is a unit in R, then the scaling of (a,u) by w 

is the new anti-structure 

(a,u) w = (~,v) 

where B(r) = wa(r)w -I for all r c R, and v = w~(w-l)u. 

For any R-module M, there exists an isomorphism 

DaM + DBM; f ÷ (fw : x ÷ wf(x)). 

Thus we get an isomorphism 

o w : Ln(R,m,u) ÷ Ln(R,(m,u)W ) 

Alternatively, ~w can be gotten by applying (2.5.2) with 
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M R = R and h : R + HomR(R,R) = R the map that sends r to rw -I. 

(2.5.6) Definition: Suppose R is a commutative ring with 

involution ~0" Then Br(R~0~ is the set of quadratic Morita 

equivalence classes of rings with anti-structure (A,e,u), where 

A is a Azumaya R-algebra and air = s 0 Br(R,~ 0) is an abelian 

group under tensor product. 

Warning: We shall see in (2.5.9) that the quadratic analogue 

of (.2.3.4) is not true in general. 

Let Br0(R,~ 0) be the kernel of the forgetful map 

Br(R,~ 0) ÷ Br(R). 

Ass~ne that R is a Dedekind domain with quotient field 

K. Let I = the group of R-fractional ideals in K, and let 

g : K* ÷ I be the map that sends x E K* to the ideal (x). 

By sending elements and fractional ideals to their images under 

the map ~0 : K ÷ K we get an action of ~/2 on K* and I. 

Warnins: The map I + Ko(R) which sends a fractional ideal 

to the underlying module [~] is not equivariant. Indeed, 

s 0 
[~0 (~-I)] m [~] = HomR(~,R) made into a right R-module via 

~0" 

(2.5.7) Theorem: There exists an isomorphism 

: Br0(R,a 0) + H0(ZZ/2,K* ÷ I) 

~f 

{(x,--) E K* ~ I i~0(x) -- x -l,(x)a = ~0(~)} 

{(Y~0(y-I), (Y)8~0(S) I (Y,8) ~ K* @ I} 
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The map Y is defined as follows. Suppose (A,~,u) 

represents an element in Br0(R,a0). Choose M so that 

A = EndR(i,1). Let V = M®RK and A = A@RK. as in (2.5.3) we 

can choose a right A-module isomorphism h : V + V ~ which 

yields an anti-structure (B,v) on EndA(V). Notice that 

K : EndA(V) and B = ~0 Let ad(h) : V x V + K be the 

adjoint of h : V + V ~ = HomK(V,K). Then Y(A,~,u) is 

represented by (v,a) where a is the fractional ideal 

generated by h(M x M). 

The map ~ has the following interpretation. Assume h 

is choosen so that a c R. Then the (linear) Morita equivalence 

derived from M and the pairing h : M x M ÷ a determines an 

equivalence of categories Sesq(A,~,u) ÷ Sesq(R,a0,v). But, 

nonsingular forms are sent to a-valued modular forms. 

The following result was suggested to us by Karoubl. 

(2.5.8) Proposition: Any ring with anti-structure (A,~,u) 

is quadratic Morlta equivalent to (M2(A),8,1) where 

I )r 
8 = ~u_la(c) 

Proof: Let {el,e 2} be the standard basis for M = A @ A 

{e~,e~} be the dual basis for N = M*. Then we let and 

h : M + N be given by h(e I) = ue~ and h(e 2) = e~ and we 

apply (2.5.2) to the derived Morlta equivalence. 

This implies that Br0(R,m0) is isomorphic to B0(R,~/2) 

in the sense of Frohllch-Wall IF-W]. Thus (2.5.7) is at least 
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implicit in [F-W]. 

(2.5.9) Samole Calculations: 

(i) R = K 

If charK + 2, then Br0(K,id) has two elements 

which are represented by (K,a0,1) and (K,a0,-l). 

Br0(K,~ 0) = (I) when s 0 # id or charK = 2. 

(ii) R = finite extension of 
P 

Br0(R, id) ~ Bro(K,id) ~ {+i} 

If s 0 # id, we let r be the fixed subring of a 0 . Then, 

Br0(R,a 0) = (1), when R is inert over r, and 

Br0(R,a 0) has order 2 when R is ramified over r. 

Notice that Br(R,a 0) ÷ Br(K,~ 0) is not an injection. 

In cases (ill) and (iv) we let R = 0(Z ) where 0 is 

a ring of algebraic integers and Z is a set of prime ideals 

in 0, e.g. the center of the rings in List (1.3.3). 

(ill) Br0(R, id) = 2 R* @ F/F 2 

where F = coker(K* + 7), and 2 R* = [x E R* I x 2 = 1}. 

The isomorphism comes from the following braid 
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which is induced by the following exact sequence of ~ ~/2- 

modules 

i ÷ R* + K* ÷ [* + F + i 

Remark: The localization sequence (see JR1], §4.2) implies 

that 

L~(R,.id,1)-_ coker(LP(K,id,l)÷ @ L0P(R p + Kp,id,1)) 
P 

Similarly, if (A,~,u) represents an element 

a ~ F/F 2 c Br0(R,id ) and A = A@RK , then L~(A,~,u) 

coker(L~(A,id,l) + @ L~(Ap + A0,id,l)) , 
P 

where L~(A,id,l) 

L0P(K, id,1) and where LP(Ap + Ap,id,1) + LR(Rp + Kp,id,1). 

But it is not true in general that L~(R,id,1) = L~(A,~,U). 

1 For example if a is nontrivial and ~ e R, then 

order L~(R,id,l) : 2 × order L~(A,a,u). 

(iv) Assume s 0 ~ id. 

Case !: K is unramified over the fixed field of s 0 and 

Z = the set of all prime ideals in 0. Then Br0(R,~ 0) has 

order 2, but the map Bro(R,~ 0) + Br0(K,e 0) @ wBr0(Rp,~ 0) is 
O 

trivial. Furthermore, if (A,~,u) represents the nontrivial 

element in Br0(R,~0). Then 

LP(R,~0,1) # L~(A,~,u). 

Case 2: Otherwise, 
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Br0(R,a 0) T $ Br0(Rp,~0), 

where we can sum all finite primes p in Z which are 

ramified over the fixed field of ~0 " 

These results are proven by using the isomorphism 

H0(~/2; K* ÷ I) Z fi0(~/2; # R* x 
p~ P pES P v v 

arch 

where g(K) is the idele class group of K. 

Remark: If R = 0, then case (iv) is related to Connor's 

book [C]. In fact, 

~0 HO(~/2; K* ÷ I) ~ Gen(K/K ) 

(see chap. I in [C]), and if ~(A,a,u) = [(x,=)], then 

L~(A,a,u) z Hx(~), where Hx(=) is the Witt group of x- 

symmetric, =-modular forms studled in chap. IV of [C]. 

(2.6) Proof of the Id@ntif%cation Theorem (1.3:5) 

Theorem (1.3.5) will follow from (2.5.1) (or rather its 

relative version) if we can prove that (A¢,a¢,u¢) is quadratic 

Morita equivalent to (A¢,8¢,±I) where (A¢,8¢,I) is one of the 

rings with anti-structure in List (1.3.4) 

From the proof of Theorem (2.3.6), we know that A¢ is 

linearly Morita equivalent to F N, F N, R N, or H N for some N. Let 

R denote the center of A¢. Then (A¢,a¢,u¢) a Br(R,a 0) for 

some m0" 

The proof divides into three cases. 

I) De is commutative, m0 = Id. 

Then (A¢,a¢,u¢) e Bro(R,Id). From (2.5.9) (iii) and 

(2.2.4) (ll), Br0(R,Id) = ~/2~ and from (2.5.9) (i) we see 
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that (R,Id,l) and (R,Id,-l) are the two elements. 

2) De is non-commutative, a0 = Id. 

The calculation in I) shows that (HN,~I,I) and (HN,al,-I) 

are the two distinct elements in Br(R,Id) which map to [H N] e 

Br(R). From (2.3.6) we know that A¢ is linearly Morita equiv- 

alent to HN, so done. 

3) ~0 ~ Id. 

First notice that R with each non-trlvial involution 

occurs on List (1.3.4). From (2.2.4) (i) and (2.5.9) (iv) case 2, 

we see Br0(R,~ 0) = (i). Using (2.3.6) we are finished. 

Remark: Notice that if R = FN, FN, or RN, then, for any s0, 

Br(R,~ 0) + Br(K,~ 0) is one to one. 

§3. Localization Sequence 

The goal of this section is to compute Ln(A ÷ A2,~,I) 

where A is any of the rings from List (1.3.3) and B is 

OcK 0 
any (anti)-involution on A. Recall that L n denotes L n 

Henceforth, we shall suppress writing the i in (8,1). 

The results are summarized in Table I. 

(3.1) General Backsround ' 

Suppose K is an algebraic number field with ring of algebraic 

integers 0. Let R = 0[½]; D : central, simple, K-division 

algebra; A = R-maximal order in D; and B any (anti)- 

involution of A. We assume K0(A) has odd order. 

Consider the following arithmetic square 



Then, 

(3.1.1) 

Ln(A ÷ D,B) ~ Ln(A ÷ D,8) 

81 

A÷D 
+ ¢ 

~, ~. ~ . 

(by L-theory Excision Theorem (2.1.4)) 

^ 

= @ Ln(A ÷ D ,8) (by 4.1.2 and 4.1.5 in [RI]) 
P P 

where we sum over all maximal ideals p in R 

such that 8(p) = p. 

(3.1.2) Local Quadratic Morita Theorem: 

maximal ideal in R such that B(p) = P 

Then, 

Suppose p is a 

and such that 

for some k. 

If 81R = id, we assume that (A,8,1) ~ Br(R,id) 

maps to the trivial element in Br(K,id) - {+I}, 

where K is the algebraic closure of K. 

If 81R $ id, we assume that p is unramified 

over the fixed field for 81K. I 

-~ D ,B) ÷ Ln(R ÷ K ,B) Ln(Ap p ~ p P 

Proof: Apply (2.5.1) and (2.5.9) (ii). 

(3.1.3) Divissage Theorem: Suppose p is a maximal ideal in 

R such that B(p) = p. If 81R # id, we also assume that 

p is unramified over the fixed field for 81K . Then, since 

i Rp, we get 
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÷ K 8) ÷ LP(k^,B), Ln(Rp p' ~ n 

where k is the residue field R/O. 
P 

Proof: See 4.2.1 in [RI]. 

If (A,~) satisfies the assumptions in (3.1.2) and (3.1.3), 

then we get the following localization diagram with exact rows 

and columns 

(3.1.4) 
• • • 

LL+I(A÷A 2, ~ )-~Li ( D, B )÷ni( A2' ~ ) @@LP( kp, B )-~Li ( A÷A2, B ) .... 

Li(a,B) , Li(D,B) ~ @LP(kp,B)-~Li_l(A,B) +... 

0 -map 1 

L i IA2, B) Li_I(A2,S)--Li_I(A2,B) 

i ^ ^ 
Since ~ ~ A 2, we get that A2 ~ D2 " If 0 contains 

a unique dyadic prime, then D2 is a simple ring. Recall 

that in @ L~(kp,B) we are summing over the set of maximal 

ideals in R such that ~(p) = p. Notice that this is the 

same as summing over the ~-invarlant, N.D. maximal ideals in 

0 (where N.D. stands for nondyadic). 

We shall compute L,(A + A2,~) by computing the map @. 

Notice that the domain and range of $ is expressed in terms 

of L-groups of semi-simple rings. 
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(3.1.5) Semi-simole Theorem: If A is a semi-simple ring, 

then LPi+I(A,S)~ = 0 for any involution S. 

Proof: See [R2]. 

A 

(3.1.6) Reduction Theorem: Li(Rp, S) = Li(kp,8) , where kp = Rp/p. 

For any abelian group G, 2 G = {g ~ Glg 2 = i}. 

(3.2) Type O-Commutative Case: (FN,id) , (RN,id) , (FN,id), 

We assume 8 = id which we suppress writing. 

Then for any field K with charK ~ 2, L~(K) = W(K), 

the classical Witt ring of symmetric bilinear pairings over 

K (see ILl, [M-H], [O'M], and [W4], p. 135). Multiplication 

in W(K) comes from the tensor product of pairings. Let 

I(K) = kernel r : W(K) ÷ ~/2 where r is the rank map. 

The group L~(K) ~ (I) because any skew-symmetric non- 

singular pairing b has a symplectic basis, i.e. b is 

hyperbolic (see [M-H], 3.5). 

The Rothenberg sequence plus (3.1.5) then imply that 

Ln(K) ~ O,0,2K*,I(K) for n ~ 3,2,1,0(4) 

(3.2.1) Examples 

(i) If k is a finite field with chark ~ 2, then 

disc: l(k) T k*/k .2 has order 2. 

(ii) If Kp/Qp with [Kp,~p] = £, then 
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disc : Z(R)/12(Rp) ~ R~/ff~2; 

Hasse-Witt: I2(Kp) ~ 2Br(K2 ) ~ {+l}. If p is N.D., 

^ ^ 
then the map L0(K p) ÷ L0(.R p ÷ Kp) ~ L (kp), sends 

li(K ) onto li-l(k ) (.see [M-H], IV, 1.4). Thus 
P P 

Ii(Kp) ÷ k*p/k *2p can he identified wlth the Hasse-Witt 

invariant. We also get the following exact sequence 

1 + ~* 8,2 ^,  ^,2 v 
p/  P ÷ Kp/Kp ÷ ~ / 2  + 1 

/ t d i ' c  I t r  

I(Kp)/I2(Kp) + L0(kp)/I(kp) , 

where 0 is the integral closure of ~ in 
P P P 

For any p, 0*p : U(Kp) x ~Zp (see [$2], XIV, §4), 

where p(.Kp) = roots of unity, Thus 

~L2 if p is N.D. 
^, ^,2 0p/0p = 

~/2 ~+I if p is dyadic 

(lii) I(@) -__ (0) and sig : I(]R) ÷ 2~ . 

(iv) If K/@ with [K,Q] = r I + 2r 2 where r I is 

the number of embeddings of K into ~, then 

disc : I(K)/12(K) ~ K*/K .2, 

Hasse-Witt: I2(K)/13(K) Z 2Br(K), and 

i3(Rv) rl slg : I3(K) $ @ ± (8~) , where v 
v 

varies over the real embeddings of K. 
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Suppose K is a field on 2.2.3 , 0 is the ring of 

algebraic integers in K, and R : 0[½]. Since 0 has a 

^ 

unique prime over 2, K 2 is a field and the Localization 

sequence (3.1.4) implies that L3(R + R2 ) and L2(R ÷ R2 ) 

are trivial. We also get the following commutative diagram 

with exact rows and columns. 

(3.2.2) 

0 0 
+ + 

~2 
I2(K)--~ I2(K2 ) @ @ I(k ) 
+ + PND w 

0 + LI(R + fi2 ) + L0(K) +~ L0(K 21 @ @ LP(k 01 ÷ L0(R + fi2 ) ÷ 0 
P 

N.D. 

+ 

fl 

0 0 

The snake lemma then yields the following exact sequence 

(3.2.3) 

0 + ker~ 2 + LI(R + R2 ) ~ ker$ I ~ coker~2 ÷ L0(R ~ ~2) ÷ coker~l ÷ 0 

Computation of @I: 

If I : group of 0-fractional ideals in K and r : 

ideal class group, then we get the following exact sequence 

i + 0* ÷ K* ÷ I ÷ F ÷ I 

Since r has odd order by Weber's Theorem (2.2.4), 
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we get the following short exact sequence 

i 
1 + 0 " / 0  ~2 ÷ K~/K ~2 ÷ t / I  2 ÷ 1 

Since any 0-fractional ideal can be expressed uniquely 

as a product of prime ideals, we can identify I with the 

free abelian group generated by the maximal ideals in 0. 

Thus, 

2 ~/Z Z e ~ / 2 .  
p<O 

Consider the following commutative braid of exact sequences 

( 3 . 2 . 4 )  

/ 
ker 41 

~ ! / / /  ~2"~2 coker 41 

0 " / 0 " 2  / " ^ ~2 K~/K" @ @ ?2./2 

K*/K~2 ~v @ id 

~ ~ / ~  ~ - , , . ~  ?z./2 @ $ ZZ/2 
N.D. 

(.3.2.6) Lemma: Assume L/~p is a finite extension and p 

is odd. Then for any element x ~ L*, L(~)/L is unramified 

if and only if Vp(X) is even, where Vp : L* ÷ ~ is the 

valuation map. 

Proof: Recall that the extension L(/~)/L is determined by 

~, the image of x in L*/L .2. Since v (x) is even, 
P 

c A*/A*2; where A is the integral closure of ~ in L. 
P 
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Since p is odd, A,/A,2 ~ £,/£,2 ~/2 where £ = residue 

field. Thus we get that either x = I and L~ is a product 

of two fields i.e. split or £(/~)/£ is quadratic and L(/x)/L 

is inert. 

(.3.2.7) Corollary: Kernel(~ I) = Kernel(@ I) = (I) 

Proof: Suppose x ~ 0* represents a nontrivial element 

in the kernel of ~i " Since ~l(X) = i, K/x/K is split 

over the unique dyadic prime in K. Since x E 0*, Vp(X) = 0 

for all prime ideals in 0, and (3.2.6) implies that K/~/K 

is split at all N.D. primes. Global class field theory implies 

that GaI(K/~/K) ~ ~/2 is a quotient group of F*(K) the 

narrow class group. But this is impossible by Weber's Theorem 

(2.2.4). 

Let [K,@] = r I + 2r2, where r I is the number of 

embeddings of K into JR. Then, 

rl+r2-1 
0* = ~(K) ¢ 

and 

^ rl+2r 2 
'̂02 = P(K2 ) ¢ ~2 

(DirichletUnit Theorem) 

(.see [Se], XIV, §4, Prop. i0) 

r2+l 
Thus coker ~I m coker ~i = (~/2) 

Computation of ~2 

Recall the reciprocity sequence (see [C-F]). 

^ 

1 ÷ Br(K) ÷ @ Br(Kp) S ¢ Br(K ) ÷ ~/~ + 1 
all real v 
p v 
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where 

p and 

2 ~ / ~ .  

R restricted to Br(K ) is an isomorphism for any 
P 

R restricted to Br(K v) maps isomorphically onto 

Thus we get the following commutative diagram. 

1 + I2(K)/I3(K) ~ I2(K2 ) ¢ ¢ I(kp) ¢ ¢ Br(K v) ÷ ~/2 + 1 

1 + 2Br(K) , , 2Br(Kp) e ~ Br(K v) , ~/2 ÷ i 
all v 
P 

Case I: r 2 = 0 i.e. R = R N with N = r I . 

Then, 

coker @2 = 0, Lo(R ÷ R2 ) T ~/2, 

and we get the following commutative diagram with exact rows 

and columns 
i i 

+ + 

i ~ !3(K) -' ~ ker ~2 ÷ ker @2/13(K) ÷ I 

i ÷ ¢ 13(K v) + * I2(K ) + e I2(Kv)/I3(K v) a e Br(K v) ÷ I 
V V [ V[ V 

ZZ/2 : ZZ/2 

+ + 

i i 

r I 
Thus ker @2 ~ LI(R + R2 ) ~ ~ " 

Case 2: r I = 0 i.e. R = £N or FN, 

Then, ker ~2 T LI(R ÷ R2 ) T 0, 

diagram 

wlth N : 2r 2 . 

and we get the following 
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m/2 

^ ^ ^ 2 

i--+ I2(K2 )---+ L0(K 2) , K2/K 2. * + 1 

t 1 
1 + coker 0 2 + L0(R * R2 ) ÷ coker ¢1--~ 1 

Case 2(a): R = F2r 2 1 1 

Then Theorem 2.29 in [L] implies the top sequence splits. 

Since w*/~.2 -2""2 ÷ coker 0 1 splits, we can conclude the bottom 

sequence also splits. Thus, 

+ ^ r2+2 
L0(F2r 2 r2r2(2)) ~ 2/2 

Case 2(b): R ~ F2r 2 

Then Theorem 2.29 in [L] implies the top sequence does 

not split. Thus, 

^ r 2 
+ ) ~ ~/2 @ ~14. L0(F2r2 F2r2c2) 

(.3.3) Type U-Commutative Case: (rN,-) , (FN,T) , (rN,~) , (RN,T) , 

(FN,-). 

If 8 is nontrivial, BrG(K,B) ~ (i). Thus (K,~,I) 

and (K,8,-I) are quadratic Morita equivalent and Li(K,8) 

Li+2(K,8) for any i. For any field K, L~(K,B) = Ws(K) the 

classical Witt ring of hermitian pairings over K (see [C] and 

[W], p. 135). Again, let Is(K) = kernel r : WB(K) + ~/2, 

where r is the rank map. 
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The Rothenberg sequence plus (.3.1.5) imply that Ln(K,B) 

O,IB(K) for n = 1,0(2). 

(3.3.1) Examples 

(i) If k is a finite field, then iB(k) = (I). 

(ii) If Kp is a finite extension of ~p, then 

disc: I (Kp) ÷ 9* /No ,~ K*, where F is the 
~ PO ap/~po p Do 

fixed field for 6. Local class field theory ([$2]) 

implies that F*po/N~ap/~p0 "~ K* p : GaI(Kp/Fp0) _~ ~/2. 

If Kp/FDo is unramified, then the Divlssage Theorem (3.1.3) 

implies that 

L2i(Kp,6) t L2i(0 p + Kp,B) t L~i(kp,8) t ~/2, 

where ~ is the integral closure of ~ in 
P P P 

(iii) The signature map yields an isomorphism 

sig : I (~) + 2Z~ 

(.iv) If K/Q with [K,@] = r I + 2r2, where r I is the 

number of embeddings of K into JR; then 

disc: I8(K)/I~(K) + F*/NK/F K*, 

where F is the fixed field for B. If [F,~] = 

s I + s 2 where s I is the number of embeddings 

of K into JR, then 

r 1 
g - -  

2(K) -; ~ 2(Kv) Z~ (4Z~) 1- 2 sig : I B I B 
V 
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where we sum over conjugate pairs of embeddings 

v : K ÷ ~ such that v(F) c ~, but v(K) ~ JR, 

i.e. the ramified archimedian places 

for K/F. 

Suppose K ~ ~(~j) for some j~ 0 is the ring of integers 

in K, and R = 0[}]. Then we get the following commutative 

diagram with exact rows and columna. (.Recall that K/F is 

unramified over N.D. primes.) 

(3.3.2) 1 1 
+ + 

¢ 
I+L2i+I(R÷R 2 , 8 )+L2i(K, B )+L2i(K 2 , B ) @ 

i + ker 41 

t 

@ LPi(kp, 6 )÷L2i (R÷R2,6)+l 

' F*/NK* 41÷ F2/NK 2 ^* ^* @ @ F*p0/NK*p ~ coker ~l --+ I 

1 1 

Global Class Field Theory (see [C-F]) yields the following 

short exact sequence 

(3.3.3) 

R 

6(p)=p V 

where v varies over the ramified archimedian places for K/F. 

Furthermore, R becomes an isomorphism when restricted to 

F*p0./NK*p for any p (N.D. or dyadic) or 9~01NK ~ for any v. 

Type UI: r I = 0 and s 2 = 0, i.e. K is totally nonreal 

and F is totally real. (~([£2r2,-) or (F2r2,-)) 



Then @i is onto, and 

L2i(R + R2,B) = coker @i = (0). 

We also get the following commutative diagram with exact 

rows and columns, i I 
+ + 

2 R2,B) ker ~l 1 i ~ l~(K) ~ L2i+I(.R ÷ ...... ~ ÷ 

t t 
i ---* ~ i8 2 L2i( (Kv) --+ @ KV,~) ÷ ¢ F* /NK* ÷ 1 

arch. v 0 v arch. 
unram, unrsm. ~ [ 

~ / 2  > Z~/2 

r 2 ^ 

Thus L2i+I(R ÷ R2,B) = 
1 1 

Type Ull: Otherwise 3 ((FN,~) , (FN,~) , or (RN,T)). 

L2i+I(R ÷ R2,8) = 0 and L2i(R ÷ R2,B) T ~/2. 

(3.4) Type 0 - Noncommutative: (HN,~I,I) 

Then 

Let D = H N ® @. Then D is a quaternionic division 

ring over K = Q(~N + ~N )" If p is a N.D. prime, then 

Dp = M2(Kp). Furthermore, for any real embedding v of K, 

Dv is a division ring. If N = 2, then D2 is a division 

ring; but if N > 2, then D2 = M2(K2)" 

The (anti) involution ml is such that mlIK = id and 

(D,~l,1) ~ Br(K,id) maps to the trivial element in 

Br(~,id) ~ {+l}. 
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Then LP(D,a I) is the classical Witt group of Hermitian 

pairings over (D,ml) , i.e. what Wall calls Type OD; and 

LP(D,~ l) is the classical Witt group of skew-Hermitlan pairings 

over (D,ml) , i.e. what Wall calls type SPD. For background 

see [W43, p. 135 and [K]. 

Examples: 

(i) 

(ii) 

Ln(Dv,~ I) = 0 

(iii) 

^ ^, ^,2 
If N =2, then Ln(D2,~ I) ~ 0,0,0, ~2/~2 

n ~ 3,2,1,0(4). 

For any real embedding v of K, 

, 2~,0,0 for n e 3,2,1,0(4). 

for 

For any i, L2i+I(D,~ I) = 0 (apply the Semi- 

simple Theorem (3.1.5) and the Rothenberg sequence). 

We also get L2(D,~ I) + @ L2(Dv,a I) ~_ (2ZZ) 2N-2 . 
v 

The discriminate yields an onto map 

disc: L0(D,a l) ~ K+/K .2, where 

= ]R + K + {x ~ K'iv(x) ~ for all real embeddings v}. 

Let 12(D) = ker disc, and let 13(D) 

I2(D) + @ I2(Kp) -_ @ ZZ/2 

the onto map 

where we sum over all finite primes 

Dp = M2(Kp). Then 

~/22N-2-2 

I3(D) = 
0 

be the kernel of 

p (.dyadic or N.D.) such 

if N > 2 

if N = 2. 



From (3.1.4) we get the following exact sequence 

(3.4.1) 

• ..÷ Li+I(H N ÷ HN(2) ~I ) ÷ Li(D,~ I) ~ Li(D2,e I) @ @ 
N.D. 

L~(kp) ÷... 

When 

and 

i : 2 we get, 

^ 2N-2 
L3(H N ÷ HN(2),~ I) ~ L2(D,~ I) ~ (2~) 

^ 

L2(H N ÷ HN(2),a i) = (0). 

Case I: (N = 2) Then, when I = 0, (3.4.1) yields the following 

commutative diagram with exact rows and columns 

(.3.4.2) i 1 
+ + 

12(D)- , O @ ® 12(~p) 
N.D. 

I t 
I÷LI(H2÷H2(2),~ !) L0(D,~I)÷L0(D2,~!)@ * LP(]Fp)÷L0(H2+H(2),al)+I 

i -----+ ker ~-i ~+/Q.~2 ~ ^, ^,2 ~2/~2 @ @ ?Z./2 ' coker ~I' , i 
N.D. 

Case 2: (N > 2) Then D2 : M2(K2)' and Li(D2,~l) : Li(K2). 

When i = 0, (3.4.1) yields the following commutative diagram 

with exact rows and columns 
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(3.4.3) 

2 K* 

1 I 
+ + 

12(D) , 12(K2)@ @ 12(K 0) 
N.D. 

, t 

K+ IK,2 ~i , ,2 K2/K 2 @ @ 2Z/2 ' coker ~-I " ~ 0 
N.D. 

L i 
1 1 

Consider the following commutative braid of exact 

sequences (compare with (3.2.4)). 

(,3.4.4) 

/ v 

coker ~l  

K+/K,2 ^ ,  ^ ,2  @ @ ~ / 2  ~ / 2  K2/K2 ~ ~ - ~  (r 2 --0) 

Since (3.2.7) implies that @l is injective, we get that 

~i is also inJective. Also, in both Case 1 and Case 2, we get 

^ ~/22N-2+I 
L0(H 2 ÷ H(2),a) ~ coker [im . In Case i, we get that 

LI(H 2 + H2(2),m) ~ 0. In Case 2, we get the following short 

exact sequence 

(3.4.6) 1 ÷ 2 K* + Ll(H N ÷ HH(2),~) ÷ I3(K) ÷ 1 (N > 2). 

IN2 
~/22 - -2 
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In Part !I, (4.5.6) we show that a twisting braid argument 

implies that this sequence splits. 

(3.5) Type U - Noncommutatiye Case (HN,~) , N ~ 2 

Again, let D : H N ® Q with center K. Since ~IK ~ id, 

Br0(K,~) m (i) (see (2.5.9) (i)) and Li(D,~) : Li+2(D,~). 

Furthermore, L~i(D~) 

pairings over (D,~), 

background see [W4], p. 135. 

For any i, L2i+I(D,~) = 0 (apply the Semi-slmple 

Theorem (3.1.1) and the Rothenberg sequence). The discriminate 

map yields an isomorphism 

disc: L2i(D,~) ~ F+/F+nNK/F K*, 

where F = fixed field for ~IK and 

F + = {x ~ F*lw(x) > 0 for all real embeddings w of F}. 

(3.5.1) Lemma: ¢ : F+/F + n NK/F K* + F*/NKfF K* is an 

isomorphism. 

Proof: Clearly ¢ is injective and the cokernel of @ is 

isomorphic to the cokernel of 

is the classical Witt group of Hermitian 

i.e. what Wall calls Type U D . For 

+ F JF +. 

Consider the following commutative diagram 
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K*" NK/F ' F* 

K*/K + F*/F + 

ISK N lSF 

V W 

real real 

The Weak Approximation Theorem (see [C-F]) implies that s K 

and s F are isomorphisms. Since K and F are both totally 

real, N is onto. 

We then get the following localization sequence 

^ ^ ¢ ^ ^ P ^ A+  ̂  ,a)+0 0÷L2i+I(A+A2,~)÷L21(D)÷L2i(K2,~)~^ @ L2i(k ,~)÷L2i( h 2 , ~ ( p ) : p  P IL 
¢I ^, , 

o ~ ker ~i "~ F*/N~* -~9~/~K~¢9~0/N~ ~ , eoker ¢I ~0 

Since both F and K are totally real, (3.3.3) implies that 

L2i+I(A ÷ A2,~) = 0, and L2i(A + g2 ,~) c ~/2. 

(3.6) Summary: Let A = FN' FN' RN" or HN, R = center of A, 

K = the quotient field for R, and [ = the algebraic closure 

of K. Suppose (a,u) is an anti-structure on A. Let F 

be the quotient field for r, where r is the fixed ring 

for aiR. 

Definition: Assume aiR : id. Then 

(~,u) has type 

! 

0 | if (a,u) maps to the trivial element in 

Br(K, id), 

Sp [ otherwise 
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Assume air ~ id. Then 

(a,u) has type 

UI " lif K is fake i.e. has no real places and F 

is totally real, 

UII [otherwise 

By combining (2.6) with the computations in this chapter 

we get the following result. 

(3.6.1) Theorem: Assume (a,u) is any anti-structure on 

A = FN, FN, RN, or H N . 

If aiR = id, then Li(A + ~2,a,u) is determined by A 

and the type of (a,u). Furthermore, if (a,u) has type 0 and 

(a',u') has type Sp, then Li(A ÷ A2,e,u) T Li+2(A ÷ A2,s',u'). 

If aiR @ id, then Li(A + ~2,e,u) is determined by just 

the type of (a,u). Thus, there exist the following isomorphisms. 

UI: Li(FN,-,I) T Li(FN,-, I) 

UIi: Li(FN,T,I ) + Li(FN,?,I ) + Li(RN,T,I ) + Li(HN,a,I). 

Furthermore, Li(A,a,u) ~ Li+2(A,a,u ). 

PART II: 

(4.1) 

Suppose f : R + S 

get the "push forward"map 

Maps Between L-$roups 

§4. Basic definitions for transfers 

and twisted quadratic extensions 

Transfer maps in Alsebraic K-Theory 

is any ring homomorphism. Then we 
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f! : Kn(R) + Kn(.S) ; M + M®RS. 

If the map f makes S into a finitely generated, projective 

right R-module map, then restriction of scalers induces a 

transfer map 

! 

f" : Kn(S) + Kn(R). 

! 

If S is a progenerator as a right R-module, then f" also 

has the following alternative description. Let 

T(f ) : S ÷ EndR(S) 

be the map given by left-multiplication. Then the Morita 

equivalence derived from S viewed as a right R-module yields 

an isomorphism ¢ : KnR ÷ KnEndR(S) such that the following 

diagram commutes 

f! 
Kn(S ) .... Kn(R ) 

T(f) ~ ,  ~ $ ¢ (4.1.1) 
• Kn (EndR(S)) 

If RSs is isomorphic to RHom(S,R)s, 

that the following diagram commutes 

(4.1.2) 

f! 

Kn(R) ~ Kn( ~ ) 

T(f)! 

Kn(EndR(S)) 

then we also get 

(4.1.3) Examples: 

(i) If A : R + R × R is the diagonal map, then T(A) 

can be identified with the map R × R + M2(R) which 

sends (rl,r 2) to 
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(i!) Suppose f : K ÷ D is the inclusion map of a 

maximal subfield in a division ring where 

F-- center(D) and m 2 = [D,F]. Then T(f) 

can be identified with the map D + D@FK -_ Mm(K). 

(4.2) Relative (linear) Morita Theory 

Suppose M is a progenerator for 2R " Let R I = EndR(M) 

and S I = Ends(M®RS). Then we get the following commutative 

diagrams 

(4.2.1) 

where 

maps 

f! f! 
K (R) ~ Kn(S) Kn(S) ' Kn(R) 

fl! fl" 
Kn(R I) ~ Kn(S l) Kn(S l) ~ Kn(R l) 

fl : RI ~ SI is given by tensoring with IS, and the 

CM and CM®RS come from derived Morita equivalences. 

(4.2.2) Examples: 

Suppose H is an index 2 subgroup of a finite 2-group 

G. Then t, the nontrivial element in G/H acts on {ap} = 

the set of primitive central idempotents in H. Furthermore, 

the map ~H + QG decomposes as a product of maps 

Case l: a0{H + apQG (for t(o) = p), and 

Case 2: ap{H x at(p)~H + (ap + at(p)) • {G (for t(0) ~ p) 
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For any p we let Vp be the simple module for ap~H. 

In Case 1 we let M be V and in Case 2 we let M be p, 

Vp × Vt(p) . In both cases we get that fl : R1 ÷ S1 is 

either one of the following maps or T applied to one of the 

following maps 

(a) F = K, 

for some N; and 

(b) K ÷ D N = ( 

where F and K are subfields of ~(~N ) 

K is a quadratic extension of F. 

-!~-i ), where K is either ~(~N ) 
~(~N + ~N ) 

or ~({N+! - VN+I )" 

(c) D N ÷ DN+ 1 

or 

(d) A : A + A x A, 

~(~N ) or ( -I,-I ) 

~([N + ~N ) 

(Compare with Example 1 in the Introduction.) 

where A is either a subfield of 

for some N. 

Thus the problem of computing 

r 

f! : Kn(QH) ÷ Kn(~G) and f" : Kn(~G) + Kn(QH) 

can be reduced to the problem of computing the push forward 

and transfer maps associated to the maps in (a), (b), (c), 

and (d). 

(4.3) Transfer maps in L-Theory 

Suppose f : (R,~0,u) + (S,~,u) is a map of rings with 

antl-structure. Then we get the "push forward" map 

f! : Ln(.R,~o,u) ÷ Ln(S,~,u) 
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(4.3.1) Definition: A trace for f is a map X : S + R 

such that 

(i) X is a right R-linear map where we use f to 

make S a right R-module. 

(ii) X(~(s)) = ~0X(s) for all s ~ S. 

(iii) if X X : S x S + R sends (Sl,S 2) to X(~(Sl)S2) , 

then ad(X X) : S + HomR(S,R) is onto. 

and 

(iv) S is a finitely-generated projective right 

R-module. 

Notice that a choice of trace X for f (assuming one 

exists) determines a functor 

Sesq(S,e,u) ÷ Sesq(R,~o,u) ; (b : N × N + S) + (X • b : N x N ÷ R), 

and a transfer map 

fX : Ln(S,~,u ) ÷ Ln(R,~0,u) 

(4.3.2) Example: Suppose f : (Z~H,~ ,I) ÷ (ZZG,~ ,i) is 

induced by an inclusion of groups H ~ G. The ZZ-linear map 

X : ~0 + Z~H such that 

g If g ~ H 
X(g) = 

O if g c G- H 

is a trace. Furthermore, the induced transfer map is the same 

as the geometric transfer defined using covering spaces. 

Consider the map T(f) : S + EndR(S). By the Derived 

Quadratic Morita Equivalence Theorem (.2.5.2) we get that 

ad(l X) determines an anti-structure (~,v) on EndR(S), 
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such that (R,~o,U) and (.EndR(IS),B ,v) are quadratic Morita 

equivalent. 

(4.3.3) Proposition: We get a map of rings with anti-structure 

T( f ) : (S,a,U) ÷ (EndR(S),~,v), 

and the following diagram commutes 

fX 
Ln(S,a,u)--------~ Ln(R, a0,u) 

• Ln(EndR(S),S,v) 

(4.4) Twisted quadratic extensions 

Recall that in the Introduction we considered the notion 

of a twisted quadratic extension• 

f: R ÷ R [/a] = S, with Galois automorphlsm y. 
P 

Notice that the examples in (4.2.2) can all be viewed as 

twisted quadratic extensions• We are particularly interested 

in the following examples where we pass to ~[½]-maximal orders. 
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(4.4.1) List: (see (1.3.5) for notation) 

f : R + R [/-a] 
P 

RN- i ÷ RN 

FN_ I + F N 

FN_ 1 + F N 

RN_ 1 ÷ r N 

RN_ 1 + F N 

f+ : FN_ 1 + HN, where 

f+(i) = i and f_(i) = k 

f : FN_ 1 + HN, where 

m 

f(~N+l - ~N+I ) = k(l - ~N ) 

HN_ 1 + H N 

d : A ÷ A × A, diagonal 

map, where A = FN, RN, FN, or H N 

p t = /~ 

[d ~N+2 + IN+2 

[d ~N+I 

[d i 

[d i 

Id ~N+2 - ~N+2 

- j 

- j 

Id ~N + ~N 

Id (i,-I) 

(4.4.2) i Proposition: Assume ~ c R, a is a unit in R, and 

f : R + R [~] = S 
P 

is a twisted quadratic extension with Galois automorphism y. 

Then 

(i) T(f) : S + EndR(S) 

is also a twisted quadratic extension. More 

precisely, there exists a ring isomorphism 

G : Sy[~] ÷ EndR(S) such that the following 
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diagram co~mut e s 

S , S [TT] 
7 

EndR( S ). 

(/T) G(s + s2~--) is the endo- For any s I + s2~ E Sy , i 

morphlsm of S (as a right R-module) which sends z ~ S to 

Sl z + s2Y(z) , and 

(ii) RSs is isomorphic to RHom(S,R)S . 

(4.4.3) Theorem: if H is an index 2 subgroup of a finite 

2-group, then ~[½]H ÷ ~[½]G can be expressed as a product 

of maps such that each component map is either in List (4.4.1) 

or it is T of a map in List (4.4.1) (up to Morita equivalence). 

Thus the problem of computing the K-theory push fo~ard 

and transfer maps for ~[½]H ~ ~[½]G is reduced to the 

analogous problem for the maps in (4.4.1). 

(4.5) L-Theory for twisted quadratic extensions 

Suppose we have a map of rings with anti-structure 

f : (R,~0,u) ÷ (S,~,u) 

where f : R ÷ R [~] = S is a twisted quadratic extension 
P 

with Galois automorphism y. 

Then a trace for f is given by 

X : Rp[~] ÷ R; X(x + yt) = x, for all x,y E R. 

Since our X is fixed, we also denote fX by f°. 
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As in the Introduction we get a twisting diagram for 

f : (R,~0,u) ÷ (S,~,u). Notice that the twisting diagram for 

: (R,~0,~) ÷ (S,~,~) is the same as the twisting diagram 

for f (up to reindexing). 

I If ~ c R and a is a unit, then (4.3.3) and (4.4.2) 

imply that 

T(f) : (S,~,u) ÷ (EndR(S),B,v) 

is a map of rings with anti-structure where EndR(S) ~ Sy[~] 

and T(f) is a twisted quadratic extension. 

(4.5.1) Proposition: The twisting diagram for T(f) is 

isomorphic to the twisting diagram for Yf (up to reindexing). 

Suppose we equip one of the twisted quadratic extensions 

in (4.4.1) with anti-structure f: (i~0,u) ÷ (~,u). Then as 

in (3.6.1) one can show that the twisting diagram for f is 

determined hy the rings, type (~0,u), and type (~,u). 



(4.5.2) Lis___ tt : 

(I) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(:o) 

(11) 

(:2) 
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Twisted quadratic extensions with anti-structure 

:R-~KO[V'a] Type (f) Type (3) 

FN_ 1 "" P N 

R N _ I  -* R-N 

I~-I + PN 

RN_ 1 -~ F N 

FN_ 1 + F N 

I FN_ -" H N 

Type (Yf) Type ('~f) 

FN_ 1 "+ H N 

N 

d 
A÷~xA 

0-~0 

Ul + uI 

0-*0 

O-~0 

Ull -~ Ull 

0-~0 

0+0 

Ul -+ Ul 

0-~0 

Ull -+ Ull 

0+0 

0+0 

' (C~o, l)-+(aO, l ) x  (CZo, 1) 

S -~ UII 
P 

UI -~ UII 

S -~ UII 
P 

S "~ UI 
P 

IUll -~ UII 

S "~ UI 
P 

S + UII 
P 

UI -~ UII 

UI+0 

UII -~ UII 

UI~O 

S + UII 
P 

',s0, -D+GI 

0 "* UII 

UI -+ UII 

0 -~ UII' 

0÷UI 

UII + UII 

0 ÷UI 

0 -~ UII 

UI + UII 

0÷0 

UII -~ UII 

0÷0 

0 -~ UII 

(13) (a ,I)-~GL 

0 + 0  

UI + UI 

0+0 

0÷0 

UII -~ UII 

0-~0 

0÷0 

UI + UI 

UI ÷0 

UII -~ UII 

UI ÷0 

0+0 

(aO,-  i)-~(o~0 , -  i )  x (aO , - l )  

In fact we get isomorphlsms of twisting diagrams between Cases 

(2) and (8), and also between Cases (5) and T of (10). 

(4.5.3) Theorem: Suppose we have a map of rings with anti- 

structure f : (~[½]H,a0,u)+ (~[½]G,~,u) where G is a 

finite 2-group and H is an index 2 subgroup. Then the 

LP-twist diagram for f decomposes into a direct sum of 

diagrams such that each component diagram is isomorphic (up 

to reindexing) to the LP-twist diagram for one of the twisted 

quadratic extensions with antl-structure in List (4.5.2). 
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(4.5.4) Definition: For any ring with anti-structure (S,a,u) 

we let 

(S,~,u) n = LOcKO(s _~ S2,a,u) 
n 

If f : (R,a0,u) ÷ (RpE/a],~,u) is a twisted quadratic 

extension of rings with anti-structure; then we get a "push 

forward" exact sequence 

fl 
... ÷ (R,~0,u) n ~ (S,~,U) n ÷ (f!)n 

a transfer exact sequence 

and a 

f! 
.... (S,~,u) n ÷ (R,~0,u) n ÷ (f!)n ÷ ..., 

(4.5.5) Relative Twist Diasram 

(S,y~,u) 3 

(s, ~,---~) 3 (R,~,u~ (s.~ ,u)~(R,.-- ,~) f ~  
\ / J ",~ ,P 

(f!)0 (Yf!)3 (f!)3 (Vf!)2 

(s,~,u) 0 (R,~%-~) 2 (S,~,~) 2 (R,~,u)~ 

(S,y~,u) 2 

(S,~,u) (R,~,u) 1 (S,c~,u) 1 

x..,(.ff~/ \ .A ~ / . / )2 ( f ! )2 ('Yf[)1 ( f ! )1  ('Yf!)0 
/~ / \ ?~ ? ", I 

(S,c~,u)  2 (R,~--~u) 0 ( S, o, , " -~ )  0 ( R , a , u )  0 

(S,~,u) 0 
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Furthermore, we get a relative version of (4.5.3). 

At the end of the paper there are tables giving the relative 

push forward and transfer exact sequences for all cases in (4.5.2) 

except cases (!0) and (13). The twist diagram for (13) is easy: 

the one for (i0) is T of the one for (5). In particular, the 

push forward map for rN_l+ HN, type UI! ÷ type UI! is read off 

Table 3 not Table 2 ! 

Each relative twist diagram from (4.5.2) is determined by 

the groups along the top and bottom rows of the diagram except 

in cases (5) and (I0). These are determined by using 

f!: (~_i,~)0 ÷ (FN,T) 0 is trivial, and 

y~: (HN,~) 0 ÷ (~N_I,~)0 is trivial. 

Both these facts can be derived from the other diagrams. 

Recall from (3.4.6) the short exact sequence 

1 ÷ 2 K* + LI(H N ÷ HN(2),a) ÷ ~/2 2N-2-2 ÷ I. 

We write out the twisting diagram below to show that this 

sequence splits. 

(4.5.6) (f+: FN_I + HN) , Type 0 ÷ O, L I = Ll(H N ÷ fiN(2),~) 

~=2 N-2 

(~ /2)  (~_/2 ~ z  ) 

? 



110 

APPENDIX I: Computing LP(ZgG~u) 

To compute LP(~G,~,u) we shall use the sequence 

. . .  r . . .  

Z~I22g r even 
Since LP(~ ~2G,~,u) = (1.2.1), most of the work 

0 r odd 

comes in computing L ( ZZG +Z~2G,~,u) . 

All of the antistructures encountered in surgery theoretic applica- 

tions have the following description. We are given a homomorphism 

e: G -> ±i ; an automorphism 8:G -> G ; and an element beG. We require 

~@ = ~ ; @o@(g) = bgb -I for all geG ; ~ (b) = I ; and @(b) = b . We 

define two associated antistructures (~,u) by 

~(g) = ~(g)8(g-l) for all geG: u = +b. 

We call such an antistructure a seometric antistructure. 

Given any anti-automorphism e: ZgG ÷ 2ZG which takes G to ±G, there 

are 8 and e so that =(g) = e(g)8(g -I) for all g c G. No integral group ring 

is known to have units of finite order other than iG, so it is conceivable 

that all anti-automorphisms have the above form. One can produce units which 

are not of the form ±b ( scale by some strange unit in the group ring ). 

Any geometric antistructure can arise in the eodimension i surgery 

diagram. The small group, H, is our G and the G is 

= G ~ 7z / tgt -I t 2 = @(g); = b 

where t generates 7z , There are two extensions of ~ to ~ and the correct 

choice yields ~ for ~ and u for 

In Part I we compute LP(z~G -~2G,~,u) for any geometric anti- 

structure. In Part 2 we compute ~2r and settle the extension 

questions which arise. 
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Part I: Compute ~$(~G +~2G~,u) 

The goal of this section is to explain how to use Table i to compute 

L~( ~G ÷ ~2G,~,u) for any geometric antistructure given the characters of 

the irreducible rational representations. Henceforth, X denotes such a 

character. 

The subtables of Table 1 are labeled by a type, U or O: we assign a 

type ( GL, U, O, or Sp) to each X. The columns of these subtables are 

labeled by a symbol rN, FN, ~, or ~ or by a symbol UI N or UII. 

In steps I and 2 below we show how to determine Type X. In steps 2 and 

3 we show how to assign a symbol E X = FN, FN, ~, or H N or a symbol 

UX = UI N or UII. 

Step i: Initial crucial remarks. 

The type of X really depends on X and (~,u) but as the antistructure 

is fixed during one of these calculations we suppress it. 

We first determine if X has type GL or not: 

Type X is GL iff X(g) ~ ~(g)x(@(g-l)) for some geG. 

Define a character X ~ by x~(g) = ~(g)x(8(g-l)) for all gEG. 

If X has type GL, it makes no contribution to any L theory. If X does 

not have type GL, we let Lr(X) denote the contribution of X to 

L~(~G ~2G,~,u). In the remaining steps we assume that the type of X is 

not GL. 

Step 2: Type and initial symbol calculations. 

Compute the two numbers 

i i 
TX = ~T g~ G~(g)X(ge(g)u) ; Sx TGT g~eG X(g2) 

From T and S we find the type of X; partial information about E X ; 
M X 

and define a number m for later use. Explicitly 
X 
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T X  Type 

positive 0 

zero U 

negative S 
P 

S X EX m X 

positive ~ i 

zero F N or F N I 

negative H N 2 

where N is defined as follows: 2 N = m 
XX 

I 2 
~X = ~ g EgG (x(g)) 

and we can always find 
X 

.oweve=, i f r X  # ° '  SX = [r×I ; i f S  x # o ,  ~X = ISxl 

from 

If T X # 0 and S X ~ 0, go directly to step 4. 

If T X = 0 and S X # 0, we have U X = UII : go to step 4. 

Step 3: Unresolved issues and a pairing. 

If S X = 0, we must determine a symbol. If the type of X is U, we use 

AI.I.I below to decide if U X = UI N or UII: if the type of X is 0 or Sp, 

we use AI.I.2 below to decide if E X = F N or F N. 

We will determine these symbols by using a pairing 

A : QG XQG ÷ 

where QG is the rational vector space based on the conjugacy classes of G, and 

A(CI,C 2) = E X(gh) 

g~C 1 

heC 2 

We shall need some related pairings whichwe proceed to define. 

For each N there is an operation, ~, on QG which sends a conjugacy 

2N-I 

class, C, to C -5 . Define TN(CI,C2) = A(CI,XN(C2) ) . 

There is an operation, ~, on QG which sends a conjugacy class, C, 

to ~(C)S(C -I) e~ . Define A(CI,C2) = A(CI,=(C2)) . 

These pairings are used in the following results. 
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(A~. 1.1) 

UX = UI N iff 

(AI. 1.2) Assume S 
X 

EX = r N iff 

Assume that S X T X 0 and let 2 N = = = ~X" Then UX = Ul N or UII: 

TI(C,C) = A(C,C) for every conjugacy class C of G. 

= 0 and let 2 N = ~X " Then EX = F N or FN: 

TI(C,C) = TN(C,C) for every conjugacy class C of G. 

Remark: Of course the symbol EX is just the name for a ~i]-maximal 

order in the division algebra associated to X (see section 2.2) and hence 

E X is independent of the antistructure. We could use SX, N, and AI.I.2 to 

find E X for any X we wanted. Working through the steps as outlined above 

only computes E X if it is needed to read Table I. 

Step 4: Find the contribution of X to LPr( ZgG ->~2G,~,u) 

If X has type U, we use subtable U: L (X) is found on column UX on 
r 

the row "odd" if r is odd or on the row "even" if r is even. 

If X has type 0 or S we use subtable O: p' 

E X on the row ~ = 3, 2, I, or 0: ~ E r (mod 4) 

E r+2 (mod 4) if Type X is S . 
P 

Lr(X) is found in column 

if Type X is O; 

Part 2: Compute LP( 7ZG, e,u) 

We have reduced this problem to understanding a pair of exact sequences 

0 L;r+l ( 7ZG ÷~2G,~,u) ~2r+~ L;r( <2r p ~ ̂  T2r ÷ - 7ZG,c~,u ) ----~L2r(2Z2G,(~,u) --- 

L;r ( 7ZG -> ~2C,~,u) ~2r ,L;r_l ( 2ZC,~,u)_> 0 

(for r = 0, I). Some terminology will be useful. 

A representation (or its character X) is called cyclic if it can be 

obtained by pulling back the faithful irreducible rational representation 

of C N along some epimorphism y: G + CN, N >_ 0. A representation (or its 

character) is called dihedral if it can be obtained by pulling back the 
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faithful irreducible rational representation of D N along some epimorphism 

Y: G ÷ D N, N > 3. 

The epimorphism y determines X but not vice versa. The kernel of 

~( determines the kernel of ~,~ but X only determines y up to an automorphism 

of the quoient. 

p 
Next we determine ~2r" Since L r (2Z2G,~,u) -~ 2Z /2 2Z , ~2r is either 

trivial or one to one. 

Theorem AI.2.1: ~2r is determined by: 

~0 is one to one iff there is a type 0 cyclic representation; 

~2 is one to one iff there is a type Sp cyclic representation. 

It is easy to describe the right-hand extension. 

Theorem AI.2.2: ~2r is a split epimorphism. 

The left-hand extension is more difficult to describe, since even if 

K2r is onto, two different things can happen. 

Associated to a dihedral representation y: G -~ D N there are two other 

maps; YI: G ÷ ±i = DN/CN_ I and Y2: ker Yl ÷ CN-I -~ ±I. A dihedral 

representation is twisted ( with respect to the geometric antistructure 

g,~,b) iff ¥i is 0 invariant and y2(y-10(y)) = -I for any (and hence 

every) y g G-ker YI" 

A cyclic representation is twisted iff the composite G Y-~ C N -~ ±I 

sends b to -i. 

We have 

Theorem AI.2.3: If K0 is onto, then it is split unless there is a type 

UI twisted cyclic or a type O twisted dihedral representation. Then ~0 is 

not split. 

If K2 is onto, then it is split unless there is a type UI twisted cyclic 

or a type S twisted dihedral representation. Then ~2 is not split. 
P 

If K2r is not split, then any x e L;r(2Z G,~,u) with K2r(X) = -I 

has infinite order. 
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To apply the above results it is desirable to be able to find cyclic 

and dihedral representations. A return to the theory behind the results in 

Part I yields the critera below. 

A character X is cyclic iff E X = r N or R 0 and X(e) = 2 N or i. A 

character X is dihedral iff EX = ~ and X(e) = 2 N+2. A cyclic character X 

is twisted iff (b 2N) = -X(e); a dihedral character X is twisted iff 

. ^N+I 

X((g-~O(g)) z ) = -X(e) for at least one g e G. 

Another way to give such representations is to give the epimorphism y 

directly. In this case there is a quicker way to find the type than by 

using step 2 of Part i. 

In the cyclic case, extend ¥: G + C N to 7: ±G + C N by defining 

~(-g) = -y(g). Recall that ~ induces a map from G to ±G. 

X has type UI iff ~(g-l) = ~(~(g)) for all g e G 

X has type 0 or S iff ~(g) = y(~(g)) for all g c G 
P 

the type is 0 if ~(u) = I; the type is Sp if ~(u) = -I. 

Any twisted dihedral representation has type 0 or S . For any g e G, 
P 

= define Tg ~(g)X(gO(g)u): T is either 0 X(e), or -X(e). We have type 
g 

0 if there exists a g ~ G with T = X(e): we have type S if there exists 
g P 

a g 6 G with T = -X(e). 
g 

Any cyclic character with x(e) = 1 is called linear: any cyclic 

character with x(e) = 2 is called Ruadratic. A linear cyclic character is 

either the trivial character or a cyclic character with y: G + C I. The 

quadratic characters are the cyclic characters with y: G + C 2. Notice that 

the linear characters are in one to one correspondence with HI(G; ~/2~). 

Ex@mples: 

i) (~G,~,e) ~(g) = g-I : any non-linear cyclic representation is type 

U; all the linear ones are type O. Therefore ~2 is trivial: P0 is one to 

one. There are no twisted cyclic or twisted dihedral representations, so 

<2 is split. 

2) (~G,~ ,e) ~(g) = ~(g)g-l, ~ non-trivial: any non-quadratic cyclic 
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representation has type GL or U. A quadratic representation y: G + C 2 has 

either type GL or O. The type is 0 iff the composite G Y+ ~/4~+ ±I ~s 

~. If we consider ~ E HI(G; ~/2~), there are type 0 quadratic representa- 

tions iff ~2 = 0 g H2(G; ~/2~ ). Therefore ~2 is always trivial: ~0 is 

trivial iff 2 ~ 0. There are no twisted cyclic or twisted dihedral 

representations, so ~2r is split whenever it is onto. 

3) (~CN,~,x) ~(g) = g-I ; xc C N a generator: the non-linear representa- 

tions have type U. The trivial representation has type O; the other linear 

representation has type S . Therefore both ~0 and ~2 are one to one. 
P 

4) (~G,~,u) : G = C N X ~/2~ generated by xg~ and t s ~/2~ ; ~(x) = 

tx 2N-I 
i = -~(t); 0(x) = x; 8(t) = ; u = x. There is a type UI twisted cyclic 

representation and no type 0 or S cyclic representations. Hence both K 0 
P 

and '~ ..~ are onto but neither is split. 

APPENDIX II: Computing push forward maps and transfers 

We wish to describe how to compute the push forward and transfer maps 

associated to an index 2 inclusion of groups, say H c G. We will assume 

that we have a map of rings with antistructure and that the antistructures 

are geometric, but we begin by describing the "simple pieces" of the 

map QH ÷ QG. 

To do this requires some notation. If ~0 is the character of an 

irreducible rational representation of H, define 

x~(h) = X0(tht -I) for all h g H; t g G-H is a fixed element. 

If X is the character of an irreducible rational representation of G, define 

x~(g) = ~(g)X(g) for all g e G; where ~: G ~ ±i has kernel H. 

Recall (1.3) that QH is a product of simple rings indexed by the 

characters, X0 , of the irreducible rational representations of H: QG has 

a similar description. The map QH + QG is a product of the following three 

sorts of maps. In the three descriptions below, X0 is a constituant of 

X restricted to H: 



t ~ X ~ 
Case I: X 0 = X 0 ; X ~ : 
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% " x '* 

t ~ XO ; X = X ~ : A x A t Case II: XO . ~ A X 

X 0 X 0 

t . X ~ Case III: X0 = X0 , X = 

When we add the antistructures to the picture, we need to refine this 

decomposition further into types. We proceed to describe the various cases 

which occur. Recall x~(g) = ~(g)X (8(g-l)) (Appendix I, step I). 

The easiest to describe is the GL type. Here, two pieces of the same 

sort ( I, II, III ) are interchanged by the antistructure. A GL type 

makes no contribution to the L theory and so can be ignored. 

In case I there are two types in addition to the GL type discussed 

above. These further types are denoted IXoGL and IXoA. In IXoGL, 

XO = X0 and X ~ = in IX04 , X0 = X0 and X = X. 

There are similar types in case II: denoted IIGLX and IIAX. We have 

type IIGLX if XO = X0 and X~ = X : we have type IIAX if XO = X 0 and X ~ = X. 

In case III the type is either GL or X0 = XO and X = X. This time 

we divide into type I112 and II13. To describe these two types compute 

d = 2 N and m = m X for X. ( This was probably done in computing the L 

group, but, if not, step 2 in Appendix I will do it.) Compute the 

corresponding numbers d and m 0 for X 0. Finally, decide if X and X 0 both 
0 

have type UII or not. 

Assume either that m 0 = m or that not both X and X0 have type UII: 

we have type II12 iff 2d 0 d 

we have type II13 iff d O = 2d 

Assume that m 0 = m and that both X and X0 have type UII: 

we have type II12 iff m 0 = 2 

we have type II13 iff m = 2 
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Some further definitions will be useful. To describe the maps which 

come up in cases I and II, define the following kinds of maps: 

a A-map is a map A ÷ B 0 × B 1 so that the two composites 

A + B 0 x B 1 + B i are isomorphisms; 

an A-map is a map A 0 x A I ÷ B so that the two composites 

A i + A 0 x A I + B are isomorphisms. 

In case III, we introduce the notion of subtype: 

if Type X0 

if Type XO 

if Type X0 

if Type X0 

There are four 

0 

S 
P 

= Type X is O, the subtype is O; 

= Type X is Sp, the subtype is Sp; 

= Type X is U, the subtype is U: 

Type X we have a mixed subtype. 

cases of mixed subtype denoted 

÷U U÷O 

+U U+S 
P 

Part I: Relative push forward maps 

Our goal is to describe 

(AII.I.I) ...÷ L~(EgH +£2H,~,u) - 
i t 
">LPr(EgG +~2G,~,u) -> LP(i !] .... 

This sequence decomposes into a product of exact sequences where the 

product is taken over the types in the decomposition of the map ~G ÷ QH. 

Since GL types make no contribution we need only describe what happens in 

the remaining cases. We begin with cases I and II: in the four cases 

below we list the contribution of the type to AII.I.I. 

IXoGL: ... + Lr(){ 0) + 0 + Lr(IXoGL~)÷ ... 

IX 0 : ,..~ Lr(XO) ~ nr(X) x Lr(X~ ) ÷ Lr(LXoA!) ÷ ... 

where i! is a A-map 

IIGLX: ... + 0 + Lr(X) + Lr(IIGLXI) + ... 

IIAX: ... + Lr(X0 ) x Lr(X~ ) + Lr(X) + Lr(ll~X!) + 

where i! is an A-map. 
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In case III we either use Table 2 or Table 3. We must decide which 

subtable to use; which row of that subtable; and which columns to use. 

An integer~ mod 4 (or mod 2 on the U + U subtable) determines a sequence 

of three groups on each row: this sequence will be isomorphic to the 

contribution of this factor of the map to sequence AII.I.I. 

If the type is III2 we use Table 2. If the subtype is mixed it is 

Type X 0 

(A. II.I.2) 

÷ Type X. 

subtype subtable row 

0 0 + 0 EX0 c E X ~ ~ r (mod 4) 

Sp 0 ÷ 0 EX0 c E X ~ ~ r+2 (mod 4) 

U U ÷ U UXD + U X ~ ~ r (mod 21 

0 + U 0 ~ UX EX0 c EX ~ 5 r (mod 4) 

Sp÷ U 0 + UX EX0 = E X ~ ~ r+2 (mod 4) 

U ÷ 0 UX + 0 -- ~E r (rood 4) 

U + S UX ~ 0 - ~ E r+2 (mod 4) 
P 

Remarks: The -- in the row column means that the subtable in question 

has only Irow. In the 0 + U (or S + U ) case we may need to go back to 
P 

steps 2 and 3 in Appendix I to compute E X. Note that we do not need EX 

if we are using subtable O ÷ UII, EXo suffices. 

If the type is 1113 we use Table 3. If the subtype is mixed, it is 

Type X -> Type X0. 

subtype subtable row 

0 0 -> 0 EX c EX0 ~ - r (rood 4) 

Sp O ÷ 0 E X c EX0 ~- r+2 (mod 4) 

U U ÷ U UX ÷ UX 0 ~- r (rood 2) 

(AII.I.3) 0 ÷ U 0 -> UX E X c EX0 ~- r (rood 4) 

S -~ U O + UX E X c EX0 ~--- r+2 (rood 4) 
P 

U ÷ 0 UX ÷ O -- ~- r (rood 4) 

U ÷ S UX + 0 -- ~-- r+2 (mod 4) 
P 
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Remark: The only visable difference between AII.I.2 and AII.I.3 is that 

in the row column we have interchanged the role of X 0 and X. A closer 

study shows that on the O ÷ UI N subtable we need EX to use Table 2 but that 

on Table 3, this subtable has only one row. 

Part 2: Relative transfer maps 

This time our goal is to describe 

! 

(AII.2.1) ... + L~(~G ÷~2G,~,u) --!~+ L~(=H ÷~2H,a,u) ÷ L~<i ~) + 

As in part i of Appendix II, we get that AII.2.1 is a sum of exact 

sequences. We describe the contribution from each of the non-GL types. 

IXoGL: ... + 0 + Lr(X0) ÷ Lr(IXoGL" ) + ... 

Lr(X~ ) IX~: ... + Lr(X) x ÷ Lr(X0) ÷ Lr(IZuA') ~ ... 

i ! where is an A-map 

IIGLX: ...+ Lr(X) ÷ 0 ÷ Lr(IIGLX!) ÷ 

II~X: ... ÷ Lr(X) ÷ Lr(X0) x Lr(X ) ÷ Lr(IIAX" ) ÷ ... 

i ! where is a A-map. 

If the type is III2, we use Table 3: if the subtype is mixed it is 

Type X0 + Type X- The subtable-row-.~ data is read off chart AII.I.2. 

If the type is III3, we use Table 2: if the subtype is mixed it is 

Type X ÷ Type X0. The subtable-row- ~ data is read off chart AII.I.3. 

Part 3: Push forward and transfer maps 

We want to describe 

i v 
(AII.3.1) ... + LrP(ZKH,~,u) ~ePr(TZG,~,u) ÷ ePr(i!) ÷ 

and 
i: 

(AII.3.2) ... + LrPC2zG,~,u) ~L;(ZZH,~,u) ÷ LrPCi !) ÷ ... 

The map LPr(~2H,~,u) ÷ L;(~2G,~,u) is an isomorphism, so LPr(i!) is 

isomorphic to the relative group computed in part 1 of Appendix II. The map 

L ÷ L.( is always the zero map so we have not yet 

computed LP(i!). We leave this for [H-T-W]. 
r 
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The maps in AII.3.1 and AII.3.2 are almost completely determined by the 

corresponding maps in the relative sequences, AII.I.I and AII.2.1. In some 

cases the fate of elements which map non-zero into the 2-adic terms is 

ambiguous. In one case we can give a complete description. 

Define the notion of a twisted quaternionic representation by 

replacing DN, N h 3 with QN' N ~ 4 everywhere. We say that (~G,~,u) 

satisfies condition ARF O iff there are no UI twisted cyclic; O twisted 

dihedral; 0 twisted quaternionic; or 0 cyclic representations: (~G,~,u) 

satisfies condition ARF2 iff there are no UI twisted cyclic; S twisted 
-- p 

dihedral; S twisted quaternionie; or S cyclic representations. 
P P 

If (~G,~,u) satisfies condition ARF2r , we can define an element 

L;r(~G,~,u) such that A2r has order 2; K2r(~r) = -i; and the A2r 

following theorem holds. 

Theorem AII.3.3: Let i:(2ZH,~,u) ÷ (2ZG,~,u) be the usual map. If 

(2ZH,~,u) satisfies condition ARF2r then so does (ZgG,~,u). Moreover 

! 

i!(~r ) = ~r ; i'(~r ) = 0. 

The a~tistructures which arise in ordinary surgery theory ( the ones 

with ~ = ~ and u = e ) never have any twisted representations. Hence 

they satisfy condition ARF2r iff ~2r is onto. 

Our proofs of these results must wait for [H-T-W], but perhaps a word 

is in order as to how they go. 

The first step is to use representation theory to show that all problems 

can be resolved by studying a short list of groups (e.g. Theorem 2.2.2). 

To do the necessary calculations for these groups involves the ~xplieit 

calculations in Section 3 and the work of C. T. C. Wall [W4-W8]. Finally, 

whenever the going gets tough, we resort to a twisting diagram (e.g. 4.5.6). 

Twisting diagrams seem to be a new tool of some power in the long history 

of these sorts of calculations. 
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