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Algebraic Local Invariants of Topological Spaces

by
Sze-Tsen Hu

1. Introduction )

Local homology groups were first introduced by E. R. van
Kampen into singular homology theory in his Leyden thesis
[14]2%); see also [21, p. 120 and p. 819]. In other homology theories,
the local Betti numbers were studied by Cech [5], Alexandroff [1],
Vaughan [24], Wilder [27] and others. In recent years, local
homology groups were also defined and studied by H. B. Griffiths
[8] and T. R. Brahana [4] both by limiting processes.

Local fundamental groups of locally triangulable spaces were
defined by Seifert and Threlfall in [21, p. 177], and analogous
definition of higher dimensional local homotopy groups is obvious.
In this case, since both the local homology groups, [21, p. 120], and
the local homotopy groups are defined as their global counter-
parts of the boundary of an open star, it follows that every result
in the global theory automatically gives rise to a local version of
the result.

For more general topological spaces, a method to define the local
fundamental groups and, therefore, the higher dimensional local
homotepy groups was implicitly suggested by O. G. Harrold,
[9, p. 122]. Later, an explicit definition of the local homotopy
groups was introduced by H. B. Griffiths, [8, p. 357]. However,
under his definition, local homotopy groups may fail to exist.
Besides, it is by no means obvious that all results in the global
theory hold in the local theory; in fact, Griffiths proved elaborately
the local Hurewicz theorem, [8, pp. 860—866].

In the present paper, we propose to define the local homology
groups and the local homotopy groups of a topological space X at a
point 2, € X to be the (global) homology groups and the (global)
homotopy groups of the tangent space T(X, z,) whichisconstruct-
ed in § 2. If X is locally triangulable at , or more generally,
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Air Force Office of Scientific Research of the Air Research & Development Command,
under contract No. AF49 (638—179).

2) Numbers in square brackets refer to the bibliography at the end of the paper.
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if x, is a conic point of X, then these groups are isomorphic to
those of Griffiths [8] and hence to those of Seifert-Threlfall
(21, p. 120 and p. 177].

As applications of these local invariants, we shall first study the
homotopy classification of local maps, and a local version of the
Hopf theorem will be proved. One can also apply these local
invariants to study the fibre spaces with singularities in the sense of
Montgomery and Samelson [18] or in the original sense of H.
Seifert [20]. In the final section, we shall give an application to
topological semi-groups.

2. The tangent space.

Let X be a given topological space. By a path in X, we mean a
continuous map o : I — X of the closed unit interval I = [0,1]
into X. The set W(X) of all paths in X forms a topological space
with the usual compact-open topology, [15, p. 221].

By the total tangent space T(X) of X, we mean the subspace of
W(X) which consists of the totality of paths ¢ in X such that
o(t) = ¢(0) if and only if £ = 0, in other words, a path 0 e W(X) is
in T(X) if and only if it does not recross the initial point ¢(0).
This space T(X) was introduced by John Nash [19] in his proof of
the topological invariance of the Stiefel-Whitney classes for a
differentiable manifold.

Now, let 2, be any given point in X. The subspace T(X, z,) of
T (X) which consists of the set of all paths ¢ ¢ T(X) with ¢(0) = ,
will be called the tangent space of X at the point z,. Therefore,
T (X, m,) is the subspace of the path space W(X) defined by the
formula:

T(X, 2y) = {0 e W(X) : 6(t) = @, if and only if ¢ = 0}.

Let C denote the arc-component of X which contains z,. Then,
obviously we have

T(C, zy) = T(X, x).

The arc-component C is said to be degenerate if x, is the only
point in C; otherwise, C is said to be non-degenerate. Then it
follows immediately that the tangent space T (X, z,) is empty if
and only if the arc-component C is degenerate.

Let A be any given subspace of X which contains x,. Then
T(A, m,) is a subspace of T(X, x,). As in [10, p. 491], we shall call
(X, 4, ,) a triplet; then the pair (X*, A*), where X* = T(X, x,)
and A* = T (4, x,), will be called the tangent pair of the given
triplet (X, 4, z,).
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3. Local homology and cohomology groups.

In this section, we shall define the local homology and coho-
mology groups by means of the tangent spaces constructed in the
previous section. For this purpose, one may choose any (global)
homology and cohomology theory defined on a suitable category
of spaces and satisfying the axioms of Eilenberg and Steenrod,
[6, pp. 10—15]. However, since we have already used paths in the
construction of the tangent spaces and since we also plan to study
the relations between local homology groups and local homotopy
groups in the present paper, we have to use the singular theory,
[6, pp. 185—211].

Let (X, 4, z,) be any given triplet. For each integer n and any
abelian group G, the singular homology group H,(X*, 4%*; G) of
the tangent pair (X*, 4*) will be denoted by the symbol
L, (X, A, zy; G) and called the n-dimensional local (singular)
homology group of X modulo A at the point x, over the coefficient
group G; in symbols, we have
L(X,4,z;G) = H,(X* A%; G), X* = T(X, ay), A* = 1(4, a,).
If the subspace A4 contains only a single point 2,, then this group
will be denoted simply by L, (X, 24; G) and called the n-dimensional
local homology group of X at x, over G. On the other hand, if the

coefficient group is the group Z of integers, we shall use, as usual,
the simpler notation:

L(X,A4,2y) = L,(X, 4,255 Z), L,(X, 25) =L, (X, %y Z).

Similarly, we may define the n-dimensional local cohomology
group
LMX, A, 2y; G) = H(X*, A*; G), X* =T (X, &), A* = T(4, x,),

and its special cases L*(X, 2y; G), L™"(X, A4, ;) and L™(X, ).
As an immediate consequence of this definition, every operation
which is available in the global homology or cohomology groups is
also available in the local groups. We shall give two examples as
follows.
Firstly, for each triplet (X, 4, x,), the following boundary
homomorphism 0 and coboundary homomorphism &

0:L,(X, 4,2y G) = L, 1(4, x5 G),
0 L™ YA, zy; G) > L™(X, A, xy; G)

are defined for every integer » and every coefficient group G.
Secondly, if the coefficient group is a ring R, then the cup
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products are defined in the local cohomology groups and the

direct sum
L*¥(X, zy; R) = 3 L™(X, @y; R)

forms an algebra over R which will be called the local cohomology
algebra of X at xz, over R.
A direct description, without explicitly using the tangent spaces,
of the local groups defined above can be given as follows.
By a local singular n-simplez in X at x,, we mean a continuous
map
1:4,,—~>X, (n =0)

of the unit (n + 1)-simplex 4,,, in euclidean (n 4 2)-space,
[6, p. 55], into X such that the inverse image t71(z,) is the last
vertex d"+! of 4, ;. If n > 0 and 7 is an integer with 0 =7 < n,
then the composed map

el : 4, > X,

where ¢},,:4, > 4,,, denotes the simplicial map defined in
[6, p. 185], is a local singular (n — 1)-simplex in X at z, which will
be called the i-th face of v. Thus, the local singular simplexes in
X at z, form a semi-simplicial complex S(X, ;) called the local
singular complex of X at x,. Since A C X, S(A, z,) is a subcomplex
of S(X, zy). Then L, (X, 4, zy; G) and L™(X, 4, zy; G) are re-
spectively the n-dimensional homology and cohomology group of
the complex S(X, 2,) modulo S(4, x,) over G. In fact, one can
easily see that S(X, z,) is essentially the singular complex of the
tangent space T(X, z,).

4. Admissible maps.

By an admissible map of a triplet (X, A4, z,) into a triplet
(Y, B,y,), we mean a continuous function

f:(Xs 4, %) = (Y, B, 4)
such that f(y,) = @, or, equivalently, f(X/z,)CY/y, For
example, if (X, 4, z,) C (Y, B, y,), i.e. if X CY, A C B, 2y = ¥y,
then the inclusion map of (X, 4, #,) into (Y, B, y,) is admissible.
Two admissible maps f, g : (X, 4, #,) > (Y, B, y,) are said to
be admissibly homotopic if there exists a homotopy
hy: (X,4,2)) > (Y,B,y,), 0=t<1,

such that hy = f, h; = g, and that, for each ¢, h, is an admissible
map. Such a homotopy will be called an admissible homotopy.
Every admissible map f: (X, 4, z,) > (Y, B, y,) tnduces a
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(continuous) map

fi(X*, 4%) - (Y*, B*)
of the corresponding tangent pairs defined by f(a) = fo for each
o € X*. If two admissible maps f, g are admissibly homotopic, then

their induced maps f, § are homotopic.
Therefore, we may define induced homomorphisms

fx : Lo(X, 4, 2y; G) - L (Y, B, yp; G),

¥ : LMY, B, yy; G) > L"(X, A4, zy; G)
by taking f, = f. and f* = f* for each integer n and each coeffi-
cient group G.

The following properties of the induced homomorphisms are
obvious.

(4.1) If f is the vdentity map of (X, A, x,), then fy and f* are
the identity automorphisms of L, (X, A, zy; G) and L"(X, A, xy; G)
respectively.

(4.2) For any two admissible maps

f:(X,4,2) > (Y, B,yo), &:(Y, B, y,) > (Z,C, z),
the composed map gf : (X, 4, xy) — (Z, C, 2,) is also admissible and
we have
(8f)x = 8« far (8f)* = f*g*.

(4.8)Iff: (X, 4, zy) = (Y, B, y,) is an admissible map, then the
map g: (4, zy) = (B, y,) defined by f is also admissible and the
following rectangles are commutative:

t ]

/ /
L"(X,A,wo; G)—I)L"(Y, B,yo; G) L"(X9A9w0;G)(_—Ln(Y’ B’yo; G)

T
? d 8 Ia
&x \ g
Ly a(4, 203 G)—>L,1(B,yo; G) L™ (4, @3 G)<—L" (B, yp; G)-
(4.4) For any triplet (X, A, x,), the inclusion maps i : (4, z,) C
(X, zy) andj : (X, ;) C (X, 4, xy) are admissible, and the following
two sequences

. '*i‘—Ln—q(A’ 29; G) <—a~—Ln(X, A, xy; G)éj—'—L,,(X, Zos G)J'LLn(A! Zp; G)‘i—' .
co B Lh (4, 203G )— o> LM(X, 4,203 G )—> L7(X, 2393 G ) LA, 93 G )2 - -
are exact. These will be called the local homology sequence and the

local cohomology sequence respectively.
(4.5) If two admissible maps f, g: (X, 4, x)) - (Y, B, y,) are
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admissibly homotopic, then f, = g, and f* = g* for every integer n
and every coefficient group G.

(4.6) If the coefficient group is a ring R, then the induced homo-
morphisms f* of an admissible map f: (X, zy) - (Y, y,) preserve
cup products and hence define an algebra homomorphism
¥ : L*(Y, yp R) = L*¥(X, y; R).

5. The local characterization.

To justify the definition of local homology and cohomology
groups given in § 3, we have to show that the groups L (X, 4, z,; G)
and L"(X, 4, ay; G) are really local invariants of the pair (X, 4) at
the point z,; in other words, we must prove that these groups will
remain unchanged after deleting a part of the space X or the
subspace 4 outside of an open neighborhood of the point z,. This
will be proved for completely regular spaces in the present section.

Let X be a given topological space, z, a given point in X, and U
a given open neighborhood of z, in X. Then the tangent space
U* = T(U, a,) is a subspace of X* = T'(X, ).

Lemma 5.1. If X is completely regular at z,, then there exists a

homotopy
d,: (X*, U*) - (X*, U*), 0=st<1,

such that d, is the identity map and d, send X* into U*.

Proor. Since X is completely regular at z, there exists a
continuous real function y : X — I such that y(X\U) = 0 and
2(zy) = 1. Next, define a continuous real function ¢ : X* X I —1T
by setting

$(o, ) = Inf,o,  x[o(s)]

for every o € X* and every tel. For a fixed ¢ in X*, ¢(o, t) is
a non-increasing function of ¢ with ¢(¢, 0) = 1. Hence the equation
#(0,t) =t has a unique solution y(cs) in the variable ¢ which
depends continuously on ¢. Thus, we obtain a continuous real
function y : X* — I. Since ¢(o, 0) = 1, it follows that (o) > 0
for every o e X*.

By means of the continuous real function y, we may define a
homotopy d, : X* — X*, (0 <¢ < 1), as follows. For each path
o € X* and each t €I, let d,(c) denote the path in X defined by

[dy(0)l(s) = o[s — st + sty(a)], (sel).
Intuitively speaking, d,(¢) is obtained from ¢ by omitting the

part of ¢ beyond the point o[1 — ¢ + ty(o)]. Since (o) > 0, it
follows that d,(¢) e X*. This completes the construction.
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By the construction of the homotopy d,, it is obvious that d,
is the identity map on X* and that d,(U*) C U*. It remains to
verify that d, sends X* into U*. For this purpose, let ¢ ¢ X*
and tel be arbitrarily given. Let r = typ(s). Then we have

[dy(0)](2) = a(r).
Since r < y(0), it follows from the definition of the number
(o) that ¢(o, r) = r. Since p(o) > 0, this implies that y[a(r)] > 0.
Hence [d,(6)](t) e U. Since o € X* and tel are arbitrary, this
proves d,(X*) C U* and completes the proof of the lemma.
By a completely regular triplet, we mean a triplet (X, 4, z,) in
which X is a completely regular at x,.

THEOREM 5.2. If (X, A, zy) is a completely regular triplet and
(U, D, uy) is a triplet such that U is an open neighborhood of z, in a,
D =UnN A, and uy = z,, then the inclusion map f : (U, D, u,) C
(X, A, ay) induces the isomorphisms

fx : L,(U, D,uy; G) ~ L, (X, A4, zy; G),
¥ LM(X, A, g; G) ~ L™(U, D, uy; G)
for every integer n and every coefficient group G.

ProorF. Let g : (U, uy) C (X, ay) and h : (D, u,) C (4, 2,) denote
the inclusion maps. Then g induces the inclusion map g : U* C X*
of the tangent spaces. By the homotopy axiom of the (global)
singular homology theory, Lemma 5.1 implies that

H, (X* U*; G) =0, HY(X*, U*;G) =0

for every integer n and every coefficient group G. Then it follows
from the exactness axiom that the inclusion map £ induces
isomorphisms

8x : H(U*; G) ~ H,(X*; G), g*:H"(X*;G)~ H"(U*; G).
Hence the inclusion map ¢ induces isomorphisms
8« L (U,up;G) ~ L (X, x93 G), g*:L"(X,xp; G) ~ LU, uy; G).

As a subspace of X, 4 is completely regular at x,. Since D is an
open neighborhood of z, in A4, the inclusion map % induces iso-
morphisms

hy :L,(D,uy; G) ~ L,(A, 2g; G), h*:L"(A, xy; G) ~ L"(D, uy; G).

Then our theorem follows from (4.2)— (4.4) and the famous ,,five”
lemma, [6, p. 16].

~
[a

CoroLrLarRY 5.8. Let (Y, B,y,) be completely regular and
(X, 4, 2) C(Y, B,y,). If there exists an open mneighborhood
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U of vg=1y, in Y such that UCX and UN B C A, then the
inclusion map f : (X, 4, zy) C (Y, B, y,) induces the isomorphisms

f* : Ln(X’ A’ wo ;G) Ln(Y’ B, yo; G):
fx : LMY, B, yy; G) ~ L*(X, A4, zg; G)

for each integer n and each coefficient group G.

Proor. Let D =UN B and u, = 2, Consider the inclusion
maps g: (U, D, u,) C(X, 4, 2,) and k: (U, D, u,) C(Y, B, y,).
Then we have fg = h. By (4.2), we obtain f, g4 = hy and g*f* = h*.
According to (5.2), g4, hy, g% h* are isomorphisms. Hence,
f« = he g5* and f* = g*~1h* are also isomorphisms. Q.E.D.

The complete regularity assumed in this section is used only in
the proof of (5.1) which implies (5.2) and (5.3) no matter what
global homology theory might have been chosen in § 8 provided
that the axioms used in the proof of (5.2) and (5.8) are satisfied.
However, for the singular homology theory which has been
chosen in § 8, this condition is inessential; in fact, one can prove
(5.2) and (5.8) without assuming the complete regularity by the
methods used in § 14 below. See also (14.9). Hence, hereafter, we
shall drop all conditions about complete regularity.

[
~

6. Local maps.

By a local map of a triplet (X, 4, z,) into a triplet (Y, B, y,), we
mean an admissible map

f:(U,UN 4,2) > (Y, B, yo),

where U is an open neighborhood of z, in X. Let
g:(V,VnA,z) — (Y, B, y,)

be another local map of (X, 4, z,) into (Y, B, y,). The local maps
1, g are said to be congruent, f = g, if there exists an open neighbor-
hood W of #,in X such that W CUN V and f| W = g| W. The
local maps f, g are said to be locally homotopic, f ~ g, if there
exists an open neighborhood W of 2, in X and an admissible
homotopy

hy: (W, WN A,2y) > (Y, B,yy), 0=St=1,

such that ky = f and h, = g. Thus, the totality of local maps of
(X, 4, zy) into (Y, B, y,) are divided into disjoint congruence
classes and into disjoint homotopy classes.

To define the induced homomorphisms of a local map, let us
consider the following diagram:

(X, 4, 1) < (U, U 4, 5) > (Y, B, yy)
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where f is a given local map of (X, 4, z,) into (Y, B, y,) and %

denotes the inclusion map. By (5.2), the induced homomorphisms

ix and ¢* are isomorphisms. Hence we may define homomorphisms
fy = fais’ : Lo(X, 4, 2 G) — L,(Y, B, y; G),
fr=1a¥1f%: L"(Y, B, yy; G) — L"(X, 4, xy; G)

for each integer n and each coefficient group G. These homo-

morphisms will be called the induced homomorphisms of the local

map f.

The admissible maps of (X, 4, x,) into (Y, B, y,) are special
cases of local maps. By (4.1), we have the following property:

(6.1)Iff: (X, 4, zy) - (Y, B, y,) ts an admissible map, then we
have f, = f, and f* = f*.

Next, let f: (U, UN A4, zy) > (Y, B,y,) be a local map of
(X, 4, xy) into (Y, B,y,)and g: (V,V N B, y,) > (Z,C, zy) be a
local map of (Y, B, y,) into (Z, C,2,). Let W =fY(V)CU.
Then W is an open neighborhood of z, in X. Define a continuous
map k: (W, WnN A4, z,) - (Z, C, 3,) by taking h(z) = gf(x) for
every x € W. Since h is clearly admissible, it is a local map of
(X, 4, zy) into (Z, C, z,). This local map k will be called the
composition of f and g; in symbols, o = gf. Then, we have the
following property:

(6.2) (&), = &1, and (gf)" = f*&".

The following assertions about induced homomorphisms of
local maps are obvious.

(6.8) If f: (U, D, zy) - (Y, B, y,) ts a local map of (X, A, &)
into (Y, B, y,) with D = U N A, then the map g : (D, z,) — (B, ¥o)
defined by f is a local map of (A, xz,) into (B, y,) and the following
rectangles are commutative:

1, f
Ln(X_’ A, 2y G)———>L,(Y, B,yo; G) L"(X, 4, 2p; G)«——L"(Y, B, yo; G)

0 )
0 0 0 0
v 8, g’
Lnea(A, g3 G) ——— L, (B, yp; G) L™ (4, 3 G) < L"1(B, yo; G)

(6.4) If two local maps f, g of (X, 4, xy) into (Y, B, y,) are
locally homotopic, then f, = g, and [ = g' for every integer n
and cvery coefficient group G.

(6.5) If the coefficient group is a ring R, then the induced homo-
morphisms f' of a local map f: (X, z,) = (Y, y,) preserve cup
products and hence define an algebra homomorphism
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17 L¥(Y, yos R) > L*(X, z; R).

7. Conic points.

Let F be any non-vacuous topological space. If, in the topo-
logical product F X I, we identify the subset F X 1 to a single
point v, we obtain a quotient space Con F called the cone over F.
The point v is called the vertex of Con F. Let

p:F xXI—-ConF

denote the natural projection. Then p maps F X 1 onto v and
(F X IN(F X 1) homeomorphically onto (Con F)\v. The space F
will be considered as a subspace of Con F by identifying « € FF with
p(z, 0) e Con F. If K is any non-vacuous subspace of F, then
Con K is the subspace p(K X I) of Con F; if K is the empty
subspace of F, then we define Con K = v.

Let (X, A4, z,) be a given triplet. The point z, is said to be a
conic point of the pair (X, A) if there exists an open neighborhood
U of z,in X such that the part of (X, 4 ) within the closure U is the
join of zy and the part of (X, A4 ) within the frontier F = U\U, that
is to say, there exists a homeomorphism

h:U—>Con F

of U onto Con F satisfying the following three conditions:

(CP1) h(z,) = v,
(CP2) A(UN A)=Con(FN A4),
(CP8) h(z) = p(a, 0) for every z € F.

This neighborhood U will be called a conic neighborhood of z, in
(X, 4). The pair (X, 4) is said to be locally triangulable at the
point z, if there exists a conic neighborhood U of z, in (X, 4) such
that the pair (F, F N 4), where F = U\U, is finitely triangulable.

Assume that z, is a conic point of (X, 4) and that U is a conic
neighborhood of z, in (X, 4). Let F = U\U and choose a homeo-
morphism h:U — Con F satisfying the conditions (CP1—38).
We are going to establish the following

LeEmMA 7.1. The pair (F, F O A) is of the same homotopy type as
the tangent pair (X*, A*).

Proor. Define a map ¢: (F, FN 4) — (X*, A*) as follows.
For each z ¢ F, let ¢(z) denote the path in X given by

[(2)]() = h'p(x, 1 — ), tel.
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It is clear that «(x) ¢ X* and that «(2) e A* if 2 ¢ FN A. One can
also easily see that ¢ is a homeomorphism of (F, FN 4) into
(X*, A*). By means of this embedding ¢, we may consider
(F, FN A) as a sub-pair of (X*, 4*).

Next, let us define a continuous real function y: X — 1 as
follows. Let ¢ : F X I — I denote the natural projection. Then
y is given by

gp~th(2), if zeU,
x(@) = {o, if zeX\U.
Hence we have y7(1) = z, and x71(0) = X\U.

As in the proof of (5.1), define a continuous real function

¢ : X* X I -1 by setting

$(o, t) = Infsgt x[a(s)]

for every o € X* and every ¢ e I. Then, define a continuous real
function p : X* — I by taking »(c) to be the unique solution of
the equation ¢(a, t) = t for each given o € X*. Since ¢(o, 1) = 1 if
and only if £ = 0, it follows that 0 << y(0) < 1 for every o e X*.

Define a homotopy d,: (X*, 4A*) - (X*, 4*),0 <t <1, by
taking

[d,(0)](s) = ofs — st + stp(a)],  (seI),

for each t eI and each o € X*. As in the proof of (5.1), one can
verify that d, is the identity map on (X*, 4*) and [d,(s)](I) CU
for every o e X*.

Let r: F X I — F denote the natural projection. There is
natural-contraction e, : U - U, 0 =t < 1, of U to the point =z,
defined by

Zos if 2=,

edw) = { hiplrp~th(z), t + (1 — t)gp~th(2)],  if e U\z,
for every tel.

Now, let us construct a family of continuous maps
fo i (X*, A*%) > (X*, A*), (0 =<t < 1), as follows. For ¢ = 0, we
define f, = d,. We are going to define f, for the case 0 < ¢ < 1.
Let 0 € X*. Then d,(o) is a path in U. Using the natural contrac-
tion e,, we define the path f,(c) e X* by taking

_ | ec—ared[ds(0)]1(2)5, f0=s=14
do)ts) = { [:ll(:r/)]{(S), } ift<s<1.

Since et{[dl(a)](o)} =z, for every fel, it can be verified that
fo (0 =t < 1), form a homotopy. Intuitively speaking, f,(s) is
obtained by replacing the part of the path d;(¢) up to the para-
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metric value ¢ by the segment joining z, to [d,(c)](t). In particuiar,
f1(o) is the line segment joining xy to [d,(o)](1).

Next, define a hormotopy g, : (X*, 4¥) - (X*, 4*), (0 =t = 1),
as follows. Let o ¢ X*. Then the point u = [f,(0)](1) is in U\7,.
Let

x=1rpth(u)e F, k=gqph(u)el.
We define the path g,(¢) e X by taking

[g,(0)1(s) = h p(2, 1 — s + ks — kst), (sel).
Intuitively speaking, g,(c) is obtained by extending the line
segment f,(o) to a position where the value of the function y is
k — kt. One can easily verify that g, = f, and that g, is a retraction
of (X*, A*) onto «(F, FN A).

Let «: (X*, A*) > (F, FN A4) denote the map defined by
k(c) = "1[g,(0)] for cach o € X*. Then it follows that «¢ is the
identity map on (F, F N 4) and that «« = g; is homotopic to the
identity map on (X*, 4*). This completes the proof.

CoROLLARY 7.2. The frontier F = U\U of any conic neighborhood
U of , in X is homeomorphic with a free deformation retract of the
tangent space X* = T(X, z,).

The following theorem is an immediate consequence of (7.1).

THEOREM 7.8. If U 1s a conic neighborhood of z, in (X, A) and

F = O\U, then for each integer n and each coefficient group G we have
isomorphisms

L(X,A4,2yG)~H,(F, FN A4;G),
L"(X, A, z2y; G) ~ H*(F, FN 4; G).
CoroLLARY 7.4. If X 1is a simplicial complex, zye X, and F
denotes the frontier of the star of z, in X, then
L.(X,zy;G) ~H,(F;G), LYX, 2 G) ~ H"(F;G)

for each integer n and each coefficient group G.

Hence, for triangulable spaces, our local homology groups
reduce to those defined by Seifert-Threlfall, [21, p. 121]. On the
other hand, the relation between our local homology groups and
those of van Kampen [14] is given by the following

THEOREM 7.5. If x, is a conic point in X, then we have
L. (X, zy; G) ~ H, 1 (X, X\xy; G),
LY(X, wg; G) ~ H™HX, X\zg; G),

for each n £ 0 and each coefficient group G.
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Proor. Let U be a conic neighborhood of z,in X and F = U\U.
By the excision axiom, we have
H, (X, X\zy; G) ~ IIn-H(ﬁ’ ﬁ\wxﬁ G)
for each n. Since F is a deformation retract of U\wo, we have
H,(U, O\zy; G) ~ H,.,(U, F; G)

for each 7. Since U is contractible, it follows from the exactness
axiom that
0:H,.,U, F;G) ~ H,(F; G)
for each n # 0. By (7.4) and these isomorphisms, we obtain
L (X, 29 G) ~ H, 1(X, X\wy; G)
for each n # 0. Similarly, one can prove the isomorphisms for
cohomology. Q.E.D.

For the missing case n = 0, we may define the reduced local
homology and cohomology groups

Ly(X, zy; G) = Hy(X*; G), LO(X, a*; G) = Hy(X*; G).
Then we have

Ly(X, 2g; G) ~ Hy(X, X\ag; G),
L)X, zy; G) ~ H\(X, X\xy; G).

As a special case of (7.4), we state the following proposition
which corresponds to the dimension axiom in the global homology
theory.

Prorositiox 7.6. The local homology and cohomology groups of
the unit interval I = [0,1] at the point O are as follows:

Lo1,0;G) ~G, L,(,0;G)=0, n+#0;
II,0;G) ~ G, L"I,0;G)=0, n 0.

~
Y

8. Remarks on excision.

In the previous sections, we established properties of our local
homology theory which are analogous to the Eilenberg-Steenrod
axioms for global homology theory except the excision axiom,
[6, p. 11].

Naturally, we would expect a notion of local excision defined as
follows. Let (X, 4, x,) be a given triplet and U be a subset of X
satisfying the conditions:

(LE1) 2y e U C A4,
(LE2) U\z, is open in X\z,
(LE8) U\x, is contained in the interior of A.



186 Sze-Tsen Hu [14]

Denote X’ = X\(U\z,) and A’ = A\(U\z,). Then the inclusion
mape: (X', A’, z,) C (X, 4, x,) may be called the local excision of
U\z,.

In this case, the tangent space U* = T(U, «,) is a subspace of
X* contained in 4A* but, in general, U* is not necessarily open
in X*. Hence we cannot deduce from the excision axiom for global
homology theory that the induced homomorphisms of a local
excision on local homology groups are isomorphisms. On the
other hand, if one intends to prove this by using the direct
definition of the local homology group at the end of § 3 and the
method given in [6, pp. 197—200], he will find that he cannot get
through because the unit simplex with one of its vertices deleted is
non-compact. The author does not know if the induced homo-
morphisms of a local excision are always isomorphisms.

If we are willing to lose the compact-open topology of X*, we
can certainly get the local excision property by enlarging the
topology of X* so that U* is open for every subset U of X such
that o, e U and U\g, is open in X\z,. But, it seems to the author
that the local excision property is not so important as to compen-
sate the loss of the nice compact-open topology of X*.

Finally, the following weaker result is an immediate consequence
of (7.1).

(8.1) The induced homomorphisms e, and e* of the local excision
e: (X', A", zy) C(X, A, &) on the local homology and cohomology
groups are isomorphisms if there exist an open neighborhood V of x,
wn X and a homeomorphism

h:V —Con F
of V onto Con F, where F = V\V, such that
1)  h(zy) = o,
(il) A(PN A) =Con (FN 4),
(iii) (VN U) = Con (F N U),
(iv) h(z) = p(a, 0) for every x e F.

9. The degree of a local map.

Let us consider a given local map f of (X, z,) into (Y, y,)
defined on an open neighborhood U of z, in X, where Y is locally
homeomorphic to the n-dimensional euclidean space R™ at the
point y, with n > 1.

According to (7.8), the local cohomology group L 1(Y, y,) is an
infinite cyclic group. By a local orientation of Y at y,, we mean a
choice of a generator of the group L"(Y, y,). There are two
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orientations of Y at y,. Assume that a generator ¢ of L"" (Y, y,)
has been chosen; thus, Y is locally oriented at y,.
By § 6, the local map f induces a homomorphism

fre LYY, yo) > LK, &)

which depends only the local homotopy class of f.

The element f°(¢) in the local cohomology group L 1(X, z,)
will be called the degree of the local map f and denoted by deg (f).

Since Y is locally homeomorphic to R at y,, it makes sense to
talk about the line-segment joining two points in a sufficiently
small neighborhood of y,in Y. Then we have the following generali-
zation of the Poincaré-Bohl theorem [2, p. 459].

(9.1) If f: (U, z9) > (Y, y,) and g : (V, ay) = (Y, y,) are two
local maps of (X, zy) into (Y, y,) and if there exists an open neighbor-
hood W of z, in X such that W C U N V and that, for each x € W\x,
the line-segment which joins f(z) to g(z) in Y does not contain the
point y,, then we have

deg (f) = deg (g)-

Proor. Define a homotopy h, : (W, xy) = (Y, y,), (0 =t = 1),
by taking h,(z) to be the point which divides the line-segment
joining f(z) to g(z) in the ratio ¢t : (1 — ¢) for each 2 ¢ W and each
tel. Then hy = f, by = g, and h,(W\z,) C Y\y, for each ¢ € I. This
implies that f and g are locally homotopic and hence deg (f) =
deg (g).

For example, let us consider a system of n continuous real
functions {fl, « + +» In} defined on a neighborhood ¥V of #, in X such
that the .point z, is an isolated zero of the system. Thus there
exists an open neighborhood U CV of #, in X such that, for each
zeU, f(x) =0 for all ¢ =1,...,n if and only if 2 = x,. Let
Y =R" and y, = (0,...,0). Then we obtain a local map
f: (U, zy) > (Y, y,) defined by

Hz) = (fi(@), . . . fal@))
for each @ € U. The degree deg (f) of this local map f will be
called the characteristic of the system {f,, ..., f,} at its isolated
Zero .

If the space X is also locally homeomorphic to R™ at z, and is
locally oriented at z, by the choice of a generator d of the infinite
cyclic group L"1(X, x,), then the degree deg (f) of a local map f
of (X, #,) into (Y, y,) determines an integer k such that deg (f) =
kd. This integer k will be called the arithmetic degree of the local
map f or the index of f and will be denoted by ind (f). In particular,
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if we have (X, zy) = (Y, y,) and d = e, then ind (f) does not
depend on the orientation d = e of X at z,; in this case, the
integer ind (f) is the Poincaré-Brouwer index of the isolated
fixed point z, of f.

In the preceding example of a system of n continuous real
functions {f,, ..., f,}, if X is locally homeomorphic to R" and
locally oriented at z,, then the index ind (f) of the local map f
will be called the arithmetic characteristic of the system {f,, . . ., f.}
at its isolated zero z, or the multiplicity of this zero z,.

As an illustrating example, let Z denote the space of all complex
numbers and z, = 0. Let us consider the local maps of (Z, z,)
into itself. First, let f be an analytic function with z; as an isolated
zero. Then there exists an open neighborhood U of z; in Z such
that

1(z) = az’[1 + A(z)], z€U,

where, a is a non-zero complex number, p is a positive integer, and
A :U — Z is an analytic function satisfying | A(z) | < 1 for each
2 € U. Define a local homotopy f,: (U, ) = (Z,2), 0 =t <1,
by taking

folz) = [t + (1= t)rlef =0 27[1 + (1 — 1) A(3)]
for each ze U, where r = |a| and 0 = am(a). Then we have

fo = [ and f,(z) = 2? for each z e U. This implies that ind (f) =
ind (f;) = p. Next, let us define

g h:(Z,z) > (Z, %)
by g(z) = |z | and h(z) = 2. Then we obtain ind (g) = 0 and
ind (k) = — 1. Finally, let k¥ = hf. Then we get
ind (k) =ind (k) - ind (f) = — p.

10. Local classification theorems.

Let us consider the set I" of all local maps of (X, z,) into (Y, y,).
According to § 6, I' is divided into disjoint (local) homotopy
classes. The local classification problem is to enumerate these ho-
motopy classes.

In the present section, we shall study the local classification
problem for the case where X is locally triangulable at 2, and Y is
locally euclidean at y,. Let m and n denote the dimensions of the
spaces X and Y at the points z, and y, respectively. Let Y be
locally oriented at y, by a generator e of infinite cyclic group
LYY, y,). Then, by § 9, every local map f e I" determines an
element deg (f) of the local cohomology group L"(X, x,).
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TuEOREM 10.1. (The local Hopf theorem). If n > 1 and m < n,
then the assignment f — deg (f) establishes a one-to-one corresponden-
ce between the homotopy classes of the local maps of (X, x,) into
(Y, y,) and the elements of the local cohomology- group L" (X, x,).

Proor. Since f* depends only on the homotopy class of the
local map f, it follows that the assignment f — deg (f) defines a
function

k:C— L"Y(X, a,)

where C denotes the set of homotopy classes of the local maps I
We are going to prove that « sends C onto L" (X, x,) in a
one-to-one fashion.

Let U be a conic neighborhood of 2, in X and V be a conic
neighborhood of y, in Y. Denote M = U\U and N = V\V. Then
there are homeomorphisms

h:U—->ConM, k:V —-ConN

satisfying the three condition (CP1—38) with obvious modifica-
tions. According to our assumptions, M is a finitely triangulable
space of dimensions not exceeding n — 1 and N is an (n — 1)-
sphere.
As in the first paragraph of the proof of (7.1), we have natural
imbeddings
t: M — X*, 2N —>Y*

of M and N into the tangent spaces. According to (7.1), the
induced homomorphisms

* L LXK, @) > H M), LY, go) > HP()

are isomorphisms. Hence d = y*(e) is a generator of the infinite
cyclic group H" }(N).

Now, let us prove that « sends C onto L1 (X, ;). Let o be any
element in L" (X, z,). By the (global) Hopf theorem, there
exists a map ¢ : M — N such that the induced homomorphism

¢* : H""Y(N) - H* (M)

carries the generator d into the element *(a). The map ¢ defines a
map ¢’ : Con M — Con N in the obvious way. Then the composed
map

f=k7¢"h: (U, ) > (Y, yo)

is a local map of (X, z,) into (Y, y,). This local map f will be deno-
ted by Con (¢). It can be verified that the following rectangle
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f’r
LY X, @) <~ L"(Y, y,)

¥ Z*
‘L ¢* ‘l’
H"Y(H) ~—————— H"}(N)

is commutative. Hence
deg (f) = fi(e) = 1*71 ¢* y*(e) = *71¢*(d) = w.
This proves that « send C onto L" (X, ;).

It remains to prove that « is one-to-one. In order to do this,
we have to prepare some preliminary considerations.

First, let f be an arbitrary local map of (X, z,) into (Y, y,)
defined on an open neighborhood W of z, in X. For each positive
real number r < 1, let K, denote the set of points A~1p(z, t) with
zeM and r =t =1, where p: M X I - Con M denotes the
natural projection. Then it follows from the continuity of f that
there exists a K, such that K, CW and f(K,)CV.

Let ¢g:N XI—->ConN, a:NXI—>N and ¢:N XI—>1I
denote the natural projections. Define a homotopy &, : K, -V,
(0 <t <1), as follows. For s = 0, we set & = f | K,. Assume
0 << s =1 and define &, by taking

-1 <t<rs—
E,h‘lp(w,t)={fh_ p(z, t), (eM,r =t=rs—s—+1),
kEq[d(z,s),0(z, 5,t)], (e M, rs —s +1=t<1),
where
d(x, 8) = ngrkfhp(x,rs — s + 1) eN,
0(z, s,t) = [(1 — t)oqg  kfhlp(x,rs —s + 1)+t + s — rs—1]
[(s — 7s).
Intuitively speaking, &, is obtained by replacing f | K,,_,,, with
a linear map. In particular, &; is a linear map given by
&Lbhlp(r, t) =k qlé(x), O(x, t)], (xeM,r =t =< 1),

where ¢(z) = p(z, 1) and 6(2, t) = 6(x, 1, t). One can verify that

Exo) = yo and & (K\ro) CV\y,. Thus we get an admissible

homotopy &, : (K,, z5) = (Y, ¥,), (0 = s =< 1), in the sense of § 4.
Define a homotopy 7,: K, -V, (0 <s < 1), by taking

k7 p(x, 1) = k1 q[d(z), (@, 5, 8)], (@eM,r =t <1),
where 7(2, s,t) = [(1 — s)(1 — t)0(x, t) + ¢ — r + rs — rst]/(1—r).
Then 7y = &, 5,(@) = yo and 7,(K\z,) C V\y,- Thus we get an
admissible homotopy 7, : (K,, 2,) = (Y, y,), (0 <s =<1). The
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map 7, is given by
mhp(x, t) = kq[¢(x), t], (@eM,r 1 <1).

Hence we obtain a map ¢ : M — N and 7, is the restriction on K,
of the map Con (¢). This proves that, for any given local map
f € I, there exists amap ¢ : M — N such that f is locally homotopic to
the local map Con (¢).

Now, let us prove that the function « is one-to-one. For this
purpose, it suffices to show that any two local maps f, ¢ € I" are
locally homotopic if deg (f) = deg (g). By the assertion proved
in the last paragraph, we may assume that f = Con (¢) and
g = Con (y), where ¢ and p are maps of M into N. By the commu-
tativity of the rectangle in the first part of this proof, we have

$*(d) = ¢*1*(e) = i*["(e) = i* deg (f).
Similarly, we have
p*(d) =y* y*(e) = i*g'(e) = i* deg (g).

Hence deg (f) = deg (g) implies ¢*(d) = yp*(d). By the (global)
Hopf theorem, the latter implies that ¢, ¥ are homotopic and,
therefore, f, g are locally homotopic. This completes the proof of
(10.1).

The preceding proof suggests that the relation ¢ — Con (¢)
may reduce the local classification problem to the corresponding
global problem for more general cases. In fact, we have the
following

TrEOREM 10.2. If x4, y, are conic points of X, Y with conic
neighborhoods U, V respectively M = U\U, N = V\V, then the
assignment of the local map Con (¢) to each map ¢ : M — N induces
a one-to-one correspondence between the homotopy classes of the maps
of M into N and those of the local maps of (X, x,) into (Y, y,).

Proor. It suffices to prove two assertions: (1) for each local
map f of (X, @) into (Y, y,), there exists a map ¢: M - N
such that f is locally homotopic to Con (¢); and (2)if, 9 : M — N
are maps such that Con (¢), Con (y) are locally homotopic, then
¢, v are homotopic. The assertion (1) has been proved in the proof
of (10.1) and the assertion (2) can be proved by the same technique
applied on a local homotopy. Q.E.D.

The local Hopf theorem (10.1) is an immediate consequence of
(10.2) and the (global) Hopf theorem. Furthermore, one can
easily deduce local versions of the more refined (global) classifi-
cation theorems of Steenrod, [22, p. 818], and others.
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11. Stability of local maps

A local map f of (X, z,) into (Y, y,) defined on an open neighbor-
hood U of 2, in X is said to be unstable if, for every open neighbor-
hood V of z,in U, there exists a homotopy f, : U - Y, (0 =<t = 1)
such that fy = f, f,(U) C Y\y,, and f,(z) = f(z) for every @ ¢ U\V
and every t € I; otherwise, f is said to be stable. By the stability of a
local map f, we mean the answer to the question whether f is
stable or unstable. For related notions of this terminology, see
[2, p. 523], [13, p. 74], and [3].

Naturally, one would ask whether or not the stability of a local
map f depends only on its (local) homotopy class. This is answered
affirmatively by the following theorem for the case where X is a
normal Hausdorff space.

THEOREM 11.1. Let f and g be two local maps of (X, z,) into (Y,y)
which are locally homotopic. If X is a normal Hausdorff space and g
is unstable, then so is f.

Proor. Let f and g be defined on the open neighborhood U and
V of 2, in X respectively. Then there exists an open neighborhood
W of z, in U N V together with a local homotopy

he: (W, 29) = (Y, 4o), (0=t=<1),

such that hy=f| W and h, =g | W.

To prove that f is unstable, let M be any open neighborhood of
%o in U. As a normal Hausdorff space, X is regular. Hence there
exist open neighborhoods N and Q of z, in X such that ¥ C Q and
@ CMN W. By Urysohn’s lemma [16, p. 27], there exists a
continuous real function ¢ : X — I such that ¢(X\Q) = 0 and
#(N) = 1. On the other hand, since gis unstable and N is an open
neighborhood of z, in V, there exists a homotopy g,: V — Y,
(0 =t =1), such that g, = g, g,(V) C Y\y,, and g,(z) = g(z) for
every x € V\N and every tel.

Define a local homotopy &, : (U, z,) = (Y, y,), (0 =t < 1), by
setting

£t(x) — {ht¢(x) (x)’ (ZGQ, tGI),
1@), (we D\, te).
Then & =f, &(z) = g(z) for each z ¢ N, and &,(x) = f(x) for
each z ¢ U\Q and each t € I. Therefore, we may define a homotopy
7,:U—=>Y,(0=<t=<1), by taking

_ [ 8&(=), (xeN,tel),
mi(@) = {51(“’), (xe U\N, tel).
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Then 7y = &, 1,(U) C Y[y, and 7,(z) = f(z) for each 2 ¢« U\Q and
each tel.
Let f,: U —>Y, (0 <t=1), be the homotopy defined by
f (.’E) _ {fzg(x)a (x € U, 0 é t é %)’
‘ g (®), (xeU, %‘ =t=s1).
Then f, = f, /(U) C Y\y,, and f,(z) = f(x) for every z ¢ U\Q and
every tel. Since Q C M, this proves the theorem.
THEOREM 11.2. Let x, and y, be conic points of the spaces X

and Y respectively. If a local map f of (X, z,) into (Y, y,) is unstable,
then the induced homomorphisms

fo : Lo(X, 23 G) = L, (Y, yo; G), n # 0,
f‘, :‘zo(X’ Zos G) g ZO(Y: Yos G)’
71 LYY, yo; G) - LM(X, zo; G), n # 0,

f DY, yo; G) — LO(X, 25 G)
are zero homomorphisms for every coefficient group G.

Proor. By (5.2), we may assume without loss of generality that
the local map f is defined throughout X. Then, by (7.5), it suffices
to prove that the induced homomorphisms

fu + Ho(X, X\tgs G) — H,(Y, Y\gos G),

f* : HM(Y, Y\yy; G) - HY(X, X\zy; G)
of the admissible map f: (X, zy) - (Y,y,) are zero homo-
morphisms for every coefficient group G and every integer n.

Let U be a conic neighborhood of z, in X. Since f is unstable,
there exists a homotopy f, : X — Y, (0 = ¢t < 1), such that f, = {,
f1(X) C Y\y,, and f,(x) = f(z) for every # e X\U and every tel.

Since X\U is a deformation retract of X\z,, the inclusion map
1: (X, X\U) C (X, X\z,) induces isomorphisms

iy : H (X, X\U; G) ~ H (X, X\zy; G),
* : HY(X, X\zy; G) ~ HY(X, X\U; G).
Since f,(z) = f(z) € Y\y, for every # e X\U and every t eI, the
homotopy f,: X - Y, (0 <t <1), defines a homotopy
g (X, X\U) = (Y, Y\y,), o=s=t=1).
Then we have g, = fi and g,(X) C Y\y,. It follows that
Frix = (fi)x = Gox = &1x = 0,
#= (i)t =g =g = 0.
Since ¢4 and ¢* are isomorphisms, these imply f, = 0 and f* = 0.
This completes the proof.
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TucoreM 11.8. Let X be locally triangulable at z, and Y be
locally euclidean at y,. Let m and n denote the dimensions,of X and Y
at the points xy and y, respectively. [f n > 1 and m = n, then a local
map f of (X, x,) into (Y, y,) is unstable if and only if deg (f) = 0.

Proor. Necessity. Let Y be locally oriented at y, by the generator
e € L"Y(Y, y,). Then deg (f) = f’(e). Hence, by (11.2), we have
deg (f) = 0 if f is unstable.

Sufficiency. Let us use the notations in the proof of (10.1).
Since U is a normal Hausdorff space, we may apply (11.1). Hence,
by (10.1) and (11.1), it suffices to construct an unstable local map f
of (X, x,) into (Y, y,) with deg (f) = 0. For this purpose, let us
pick an arbitrary point y ¢ N and defineamap f : (X, zy) — (Y, y,)
by taking

Ha) = {k“lq[y, wp~th(z)], (zeU),
Y, (z €« X\U),

where w : M X I — I denotes the natural projection. Thus f is an
admissible map which sends X onto the line-segment joining
Yo to y. Now it is obvious that deg (f) = 0 and that f is unstable.
This completes the proof.

12. Pathwise connectedness around a point.

A space X is said to be pathwise connected around a point
z, € X if its tangent space X* = T'(X, z,) at z, is pathwise connec-
ted. A direct description of this notion without using the tangent
space can be given as follows. Let J denote the subspace of the
unit 2-simplex 4, in euclidean 8-space consisting of those points
(20> 1y, o) Of A, satisfying ¢,t, = 0. Let v, denote the leading vertex
(1, 0, 0) of 4,. Then J is the union of the two sides of 4, containing
vy as a vertex. Now, one can easily see that a space X is pathwise
connected around a point z, € X if and only if every admissible
map f: (], vy) > (X, 2,) in the sense of § 4 has a continuous
extension F : (d,, vy) = (X, 2,) which is also an admissible map.

The following theorem is an immediate consequence of the
definition given above.

THEOREM 12.1. A space X is pathwise connected around a point
xy € X if and only if Ly(X, x,) = O or, equivalently, L(X, z,) ~ Z.

If X is completely regular at z,, then it follows from (12.1) that
the pathwise connectedness around z, is a local property of X
at z,. One can also prove directly that this is true without assuming
the complete regularity.

Next, let us give a sufficient condition for the pathwise connec-
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tedness around a point in terms of the notion of a local homotopy
non-r-cut point analogous to a homology version introduced by
Wilder [27, p. 228]. For related notions, see also [8, p. 853].

A space X is said to have z, ¢ X as a local homotopy non-r-cut
point if, for every open neighborhood U of z, in X, there exists an
open neighborhood V of z, in U such that every map f : S* — V\z,
of the r-sphere S” is homotopic to a constant in U\g,.

THEOREM 12.2. If a space X has a countable basis at a point
zy € X and if zy is a local homotopy non-r-cut point of X for r = 0,1,
then X is pathwise connected around w,.

Proor. Since X has a countable basis at z,, there exists a
sequence of open neighborhoods

{U}=U,U,...,U,...

such that U,,, C U, for each ¢ and that their intersection contains
only the point z,. Since , is a local homotopy non-r-cut point of
X forr = 1 and 0, there exist two sequences of open neighborhoods

Vy=VyVap..,V W =Wy,Wy.., W
of &y in X satisfying the following conditions forevery i = 1, 2, . . .;

(1) V,;u CV,CU, and W,,CW,CV,

(2) Every loop in V \z, is homotopic to a constant in U \x,.

(3) Every pair of points in W \z, can be connected by a path
in V\a,.

PRI PRI

To prove that X is pathwise connected around z, let
f:(J,v)— (X, 25) be any admissible map. We are going to
construct an admissible extension F : (4,, v,) = (X, @) of f.

Let J; = f~Y(W,). Then J, is an open neighborhood of v, in J.
Choose an increasing sequence

{a’i} - al, a2, oo ooy ai, PR
of positive real numbers a, <1 such that the line-segments
joining v, to the points
p; = (a5 1 — a,; 0), q; = (a, 0,1 — a;)
are contained in J,. Since f is admissible, it follows that the
sequences of points {p,} and {g,} both converge to v, Hence,
{a;} converges to 1.

Since f(p;) and f(¢;) are points in W \z,, it follows from (3)

that there exists a path o, : I — V \z, such that ¢,(0) = f(p,) and

0, (1) = f(g:)-
Let T, C 4, denote the trapezoid with p,, ¢;, p;,, and ¢, as
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vertices; in other words,
T, = {(to, lyt)edsia;, Sty = a,.+1}.

Then the boundary B; of T, consists of the points (¢, ;, t,) of T,
such that
tity(ty — a;)(to — a;14) = 0.

Define a map ¢, : B; > V \z, by taking

f (to, Ly tz) if Lt, = o,
di(ty, 1y, 1) = { 0;[ta/ (1 — a;)], ?f Iy =a,;
0,1t/ (1 — a;44)], if ty=a;,.

It follows from (2) that ¢, has a continuous extension
D,: T, — Uz,

Finally, let T, denote the trapezoid consisting of the points
(2> 15 t5) € 4, such that 0 < ¢, < a, and C the subspace of T,
consisting of the points (y, t,, t;) € T, such that #,¢,(¢, — a;) = 0.
Then C is a retract of T,. Let p : Ty — C be a retraction of T
onto C. Define a map ¢,: C — X\z, by taking

(o, 1y, 15) if t,t, = 0,
tg t1y B3) = .
Poll f1: 1) {01{t2/(1 — a,)], if t, = a,.

Then ¢, has a continuous extension @, : T, - X\z, given by
Dy = ¢y p-

Then, an admissible extension F : (4,, vy) = (X, 2,) of f may
be constructed by setting F(p) = @,(p)ifpeT, (:=0,1,2,...).
The continuity of F at the point v, follows from the facts that
®,(T,)CU, for each < > 0 and that {U ,-} is a basis at x,. The
admissibility of F follows from the fact that @,(7T,) C X\z, for
each 4 = 0. This completes the proof of (12.2).

The condition in (12.2) is obviously not necessary. For, if
X = Con S!and &, = v, then z, is not a local homotopy non-1-cut
point of X while X is pathwise connected around z, by (7.1).
Because of this, (12.2) is rather unsatisfactory. To improve (12.2),
we have to introduce another notion.

A space X is said to be locally r-shrinkable at z, if, for every
open neighborhood U of z, in X, there exists an open neighborhood
V of 2y in U such that, for every open neighborhood V' of z, in V,
there exists an open neighborhood W of z, in V' such that every
map

f (B, S71) > (May, Whay)

is homotopic to a constant in (U\z,, W\z,), where E" denotes the
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unit r-cell in the euclidean r-space and S™~! denotes the boundary
sphere of E'. Applying the homotopy extension theorem twice,
one can prove the existence of a homotopy

fo: (E7, S771) — (U, W), (0=t=1),

such that f, =1/ f(E")C W\z, and f,(p) = f(p) for every
peS™1 and every tel.

If z, is a conic point of X, then it is clear that X is locally
r-shrinkable at z, for every r = 1.

THEOREM 12.8. If a space X has a countable basis at a point
@y € X, if xy 15 a local homotopy non-0-cut point of X, and if X is
locally 1-shrinkable at x,, then X is pathwise connected around x,.

Proor. Let {U,} be a decreasing sequence of open neighborhoods
of z, in X such that their intersection contains only the point .
Since z, is a local homotopy non-0-cut point of X and X is locally
1-shrinkable at z,, there exist two sequences of open neighborhoods
{V.} and {W} of 2, in X satisfying the following conditions for
every ¢t =1,2,...:

1)y v,,CV,CU;, and W, ,CW,CV, ;.

(2) Every path in V\z, whose end points are in Wz, is
homotopic in U \z, to a path in W \z, with end points held fixed
during the homotopy.

(3) Every pair of points in W,\z, can be connected by a path
in V\z,.

The remainder of the proof proceeds as in the proof of (12.2)
with obvious modifications and hence is omitted.

As a partial converse of (12.2) and (12.8), we have the following

THEOREM 12.4. If a space X is locally arcwise connected at a point
z, € X and pathwise connected around z,, then x, is a local homotopy
non-0-cut point of X.

Proor. Let U be any given open neighborhood of 2 in X. Since
X is locally arcwise connected at x,, there exists an open neighbor-
hood V of 2, in U such that every pair of points in V' can be
connected by an arc in U.

Let a and b be any two points in V\z,. Then there exists a pair of
homeomorphisms &, 5 : I — U of the unit interval I into U such
that £(0) = a, §(1) = zy, n(0) = b, and 7(1) = z,. Hence we may
define an admissible map f: (J, vy) > (X, 2,) by taking

(&), (if ¢, = 0),
(tos 215 t2) = :’7(;:))’ (if t, = 0).
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Since X is pathwise connected around z,, the map f has an ad-
missible extension F : (4,, vy) = (X, 24).

Since F(v,) = a,, it follows from the continuity of F that there
exists a positive real number & < 1 such that F(¢y, t;, ¢,) € U for
every point (i, t;, ¢,) of 4, with k < {; < 1. Now define a path
g :I - X by taking

£(8kt), 0=t=1),
o(t) ={ F[k, 8(1—k)t—(1—k), 2(1—k)—8(1—k)t}, (} =t < §),
n(8k—38Lt), (3 =t=<1).

Then one can easily verifv that ¢(0) =a, ¢(1) =b, and
o(I') C U\z,. Hence z, is a local homotopy non-0-cut point. Q.E.D.

Finally, let us establish the fact that the pathwise connectedness
around a point x, of a space X is a local propertyv at 2, In fact,
we have the following

THEOREM 12.5. Let U be any given open neighborhood of x, in X.
Then X is pathwise connected around z, if and only if U is pathwise
connected around x,.

Proor. Sufficiency. Let f : (], vy) — (X, x,) be any admissible
map. Then, there exists a non-negative real number £ < 1 such
that f(t, t;, t,) € U for every (¢, ¢, £,) e J with bk =< ¢, < 1. Let S
and T denote the subspaces of 4, defined by

S={(tptuty) ey 1k <, <1},
T={(tp tr, t;) €4, : 0 < t, < k}.

Since U is pathwise connected around z,, there exists an admissible
map G :(S,v,) — (U, z,) such that G(p)= f(p) whenever
peJNS. Then G can be extended throughout J US by setting
G(p) = f(p) for every p e J. On the other hand, there exists a
retraction p:T — TN (J US). Define an admissible map
F : (4, vy) - (X, z,) by taking

_ [G(p), (if peS),

P =lepp), (if peT).

Then F is an extension of f and hence X is pathwise connected
around .

Necessity. Let ¢ : (], vo) = (U, ,) be any given admissible map.
Since X is pathwise connected around z,, ¢ has an admissible
extension ¥ : (4,, vy) - (X, 2,). Let us use the notation in the
sufficiency proof. There exists a non-negative real numher £ < 1
such that ¥(S)CU. Define an admissible map @ :(4,,c,) — (U,a,)
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by taking

#(p), (if peS),
Zp(p), (it peT).
Then @ is an extension of ¢ and hence U is pathwise connected
around z,. This completes the proof.

P(p) =

13. Local homotopy groups.

Let X be a given topological space and z, a given point in X.
Assume that the arc-component C of X which contains z, is non-
degenerate and that X is pathwise connected around z,. Then, by
definition, the tangent space X* = T(X, ,) is non-empty and
pathwise connected. Therefore, for each » = 1, the homotopy
group #,(X*) is well defined and does not depend on the choice of
the basic point in X*. This group will be called the n-dimensional
local homotopy group of X at x,; in symbols,

72X o) = [T (X, @)

For a geometrical representation of the elements of 4,(X, z,),
let us pick a path ¢ € X* to serve as the basic point of z,(X*).
Let J,,, denote the subspace of the unit (n 4 2)-simplex 4,,,
consisting of all faces of 4,,, except the one opposite to leading
vertex tvy. Thus, J,.,is given by the formula

Jan1 = {(tm by oo tpin) €dnpg ityly o i lyyg = 0}-
Then each element of 4, (X, z,) is represented by an admissible map
f: (Juz1 o) = (X, 2y) such that the leading edge vyv, is mapped
as the basic path o, that is to say,
ftes 81, 0, . . ., 0) = a(ty).

Two of these admissible maps f and g represent the same element of
7..(X, x,) if and only if there exists an admissible homotopy &, such
that hy = f, h; = g, and h, maps the lecading edge vy, as the
basic path ¢ for each ¢ € I. In particular, f represents the neutral
element of 7,(X, x,) if and only if it has an admissible extension
F: (4,49 v0) — (X, 20).

If the space X is not pathwise connected around the point a,
then the homotopy group =,(X*, ¢) depends on the choice of the
basic path ¢ and, therefore, we have to indicate the path ¢ in the
notation of the local homotopy group, namely

2(X, xy; 0) = 7, (X*, o).

We may also define the relative local homotopy groups as follows.
Let (X, 4, x,) be a given triplet where the arc-component of 4
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which contains z, is non-degenerate. Then the tangent space
A¥ = T(4, z,) is non-empty. Choose a path oeA* as basic
point and define

A (X, A, &y; 0) = 7, (X*, 4%, o).
One can also define the boundary homomorphisms

d :}'n(X, A: o5 0’) - Z'n—l(A’ Zo5 6)
in the obvious way.

If the subspace 4 is pathwise connected around the point z,,
then the group =,(X*, 4*, o) does not depend on the choice of the
basic point ¢ and we may drop the symbol ¢ from the notation.

Now, let f: (X, 4, z,) = (Y, B, y,) be an admissible map of
(X, 4, x,) into another triplet (Y, B, y,). By § 4, f induces a map

f:(X*, A*, o) — (Y*, B*, fo).

Therefore, we may define induced homomorphisms

2 A(X, A, 23 0) = 2,(Y, B, yo; fo),
f* : }'n(Xs o5 0) - ln(Y’ Yos fO'),
f* : }‘n(A9 o3 0') —> ln(B’ Yos fO'),

as those induced by f on the relative and absolute (global) homo-
topy groups.

The following properties of the induced homomorphisms are
obvious.

(18.1) If f is the identity map of (X, A, z,), then the induced
homomorphisms f, are the identity automorphisms.

(18.2) If f : (X, 4, ) - (Y, B, yo), & : (Y, B, o) = (Z, C, %)
are admissible maps, then (gf)yx = % [x-

(18.8) The following rectangle is commutative:

/

(X, A, 23 6) ——— 1,(Y, B, yq; fo)

0 0

v
huea(d, 2 0) —22 s (B, 34 o).

Unlike their global counterparts, 4,(X, y; o) cannot be con-
sidered as a special case of the relative group 4,(X, 4, z,; o) by
taking A = z, because o is not a path in the subspace z,. However,
the inclusion map 7:(X*, o) C (X*, A%, ¢) induces a homo-
morphism

I 2 A(X, @g; 0) = 4,(X, A, y; 0)
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for each n = 2. On the other hand, the inclusion map ¢ :(4, 2,) C
(X, zy) induces a homomorphism

i* : ln(As Zo; 0’) g }“n(Xs Zos 0')

for each n = 1. The following property is now obvious.

(18.4) For any triplet (X, A, x,), where the arc-component of A
containing x, is non-degenerate, the sequence

A(X, @03 0) <2 A(A, T3 0) <= Ag(X, A, g3 0) L& Ap(X, @g; 0) <= ..
° il"(X’ A’ o5 U)(’_‘- }'n(X’ Zo; 0)(,'12'71(149 Zos o')j—j‘n-f-l(X’ A, Zos U)é:‘ oo

is exact. This will be called the local homotopy sequence of (X, A, xy;0).

Finally, an admissible map f: (X, 4, 2,) - (Y, B, y,) of
(X, 4, ) into another triplet (Y, B, y,) gives a commutative
ladder of induced homomorphisms of the local homotopy sequence
of (X, A, z,; o) into that of (Y, B, y,; fo).

14. Properties of local homotopy groups.

To justify the definition of local homotopy groups given in the
preceding section, we have to show that the local homotopy
groups are really local invariants. For this purpose, we are going to
establish the following

THEOREM 14.1. If U is an open neighborhood of a point x, in a
space X, then the inclusion map f: (U, z,) C (X, zy) induces an
isomorphism

fx AU, @o; 0) ~ 2,(X, @5 0)
for every n =1 and every basic path o € T (U, x,).

Proor. First, let us prove that f, is an epimorphism. For this
purpose, let « € 4,(X, 2,; o) be represented by an admissible map
& : (Jus1 Vo) = (X, 2p) such that ¢(fy, %, 0,...,0) = a(t;). By
continuity of ¢, there exists a non-negative real number k < 1
such that ¢(t, ¢y, - . ., t,.0) € U for every point (4, t;, . . ., £,,5) of
J o4 satisfying £ < t; < 1. Let S and T denote the subspaces of
Jny1 defined by

S = {(to’ b v tue) € Jan kSt = 1},
T ={(to b+ o> tuys) € Jny1:0 Sty < K}
and let C denote the subspace of T defined by
C={(tpty - tps)eT:(ty—k)&+...+8,,)=0}L
Then C is a deformation retract of T and hence there exists a

homotopy A,: T — T, (0 = T = 1), such that h; is the identity
map, hy(T) CC, and h,(p) = p for every p € C and ¢ € I. Define an
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admissible homotopy ¢, : (J,41 o) = (X, %), (0 =t = 1), by
taking

__[é(p), (peS, tel),

w00 = {5, (T, ted).

Then ¢y =6, ¢1(Jn1) CU, and é,(tp 4, 0, .. ., 0) = o(t;) for
every tel. ¢, represents an element 8 of 4,(U, 2y; ¢) and the
homotopy ¢, implies that f,(8) = «. Hence f, is an epimorphism.

Next, let us prove that f, is a monomorphism. For this purpose,
let y denote any element of A,(U, z,; o) such that f.(y) = 0.
Then y is represented by an admissible map y : (J,415 o) = (U, @)
satisfying (¢, £, O, ..., 0) = o(¢;). Since fo(y) =0, v has an
admissible extension ¥ : (4,5, vy) = (X, 2,). By continuity of ¥,
there exists a non-negative real number k£ <1 such that
Yty by - - o tayp) € U for every point of 4, ., satisfying k < ¢, < 1.
Let S and T denote the subspaces of 4,,,, defined by k < ¢, = 1
and 0 < ¢, < k respectively. Let C denote the subspace of T
defined by

C={(tpty . otus) €T :(tg— k)tyty...t,4p = O}

Then C is a retract of T and hence there exists a retraction
p: T — Cof T onto C. Define an admissible map @ : (4,5, vy) =
(U, ) by taking
¥(p), (if p e S),
D = .
® = {zytp), (if peT).

Then @ is an extension of y and, therefore, y = 0. This completes
the proof.

CoroLLARY 14.2. If X is pathwise connected around x,, then the
local homotopy groups 4,(X, zy), » = 1, 2, . . ., are local invariants
of X at the point x,.

This is an immediate consequence of (12.5) and (14.1).

CoroLLARY 14.8. If (X, A, x,) and (U, D, wu,) are triplets such
that U is an open neighborhood of zyin X, D = U N4, and uy = =,
then the inclusion map f: (U, D, uy) C (X, 4, z,) induces an
isomorphism

fx 2 2,(U, D, ug; 0) ~ 4,(X, 4, xy; 0)
for every n = 2 and every basic path o € T(D, u,).

This follows immediately from (14.1) and an application of the
»five’” lemma, [6, p. 16].

CorOLLARY 14.4. If (X, A, 2,) C (Y, B, y,) and if there exists an
open neighborhood U of xg = yoin Y suchthatU C X andUN BCA
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then the inclustion map f: (X, 4, x,) C (Y, B, y,) induces the
isomorphisms
fx: (X, 295 0) =~ 2,(Y, yo; 0), n
Tx 2 (X, A, 25 0) =~ 4,(Y, B, yy; 0), n
for every basic path o€ T(U N B, x,).

The proof of this is similar to that of (5.3).

THEOREM 14.5. If U is a conic neighborhood of z, in (X, A),
F = O\U, and o is the path joining x, to a point x, ¢ F O A along
the line segment xyx,, then we have

A(X, @3 0) ~ =, (F, 2y), n=1,

(X, 4, zy; 0) ~n,(F, F NA, a,), n = 2.
This is a direct consequence of (7.1). In fact, the homotopy equi-
valence ¢: (F, F NA) — (X*, A*) in the proof of (7.1) induces
isomorphisms

iy : 7, (F, 2,) ~ n,(X*, 0), n=1,
iy 7, (F, FN A, 2y) ~ 7, (X*, 4%, o), n = 2.

CoroLLARY 14.6. If U 1is a conic meighborhood of x, in X with
pathwise connected frontier F = U\U, then X is pathwise connected
around z, and 2,(X, zy) ~ n,(F) for every n = 1.

This is an immediate consequence of (7.2) and (14.5). Hence, in
this case, our local homotopy groups reduce to those of H. B.
Griffiths, [8, p. 857]. As an important special case of (14.6),
let X be a simplicial complex, z, € X, and F the frontier of the
star of z,in X. Then X is pathwise connected around z, if and only
if F is connected. In this case, we have 1,(X, z,) ~ =n,(F) for
every n = 1.

The properties stated in the remainder of this section are
obvious consequences of the definition of local homotopy and
homology groups.

1,

2

v IV

THEOREM 14.7. If X is pathwise connected around x4, then there
is a natural homomorphism

h’n : ln(X’ mo) g Ln(X’ wo)
for each n = 1. The homomorphism h, is an epimorphism and its
kernel is the commutator subgroup of the local fundamental group
M(X, zo).- If A(X, y) = O for every ¢ < m, then h, is an isomorphism.
THEOREM 14.8. Every path t:I — T(X, x,) induces an iso-
morphism
Ta * Aa(X, o5 01) &~ A,(X, @5 00)
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where o, = t(0) and o, = 7(1); T4 depends only on the homotopy
class of ©. In particular, the local fundamental group 2,(X, xy; o)
operates on A,(X, xy; 0) as a group of automorphisms; if n =1,
then «(f) = aflat.

A space X is said to be locally n-simple at xz, if, for every basic
path ¢eT(X, z,), the local fundamental group A4,(X, zy; o)
operates simply on 4,(X, z,; ¢), that is to say, «(f) = g for every
o€ 2(X, 2y; 0) and every fe A,(X, xy; o). Thus, X is locally
n-simple at x, if 1,(X, zy; 0) = 0 or A,(X, 2,; 0) = 0 for every
basic path o e T(X, x,). Also, X is locally 1-simple at z, if and
only if 4,(X, 2y; o) is abelian for every basic path o e T(X, z,).

If X is pathwise connected around z, and is locally n-simple at
&y, then the elements of the local homotopy group 1,(X, z,) may
be considered as the (admissible) homotopy classes of the admissi-
ble maps of (J,,1, vp) into (X, @,). A better geometrical re-
presentation of 4,(X, z,) will be given in § 17.

Now let us consider a given admissible map

(X, @) > (Y, o),

where X, Y are pathwise connected around =z, y, respectively.
Choose a basic path o€ T(X, ;). Then f induces the homo-
morphisms

§q: A(X, 03 0) = 24(Y, o3 10), Mg : Lo( X, @) = Lo(Y, go)-

Then we have the following local version of the Whitehead
theorem.

THEOREM 14.9. For each positive integer n, we have the following
two assertions:

(1) If &, is an isomorphism for every ¢ = n, then so is n,. If &, is an
isomorphism for every ¢ < n and is an epimorphism for q = n,
then so is 1,

(2) Assume that A,(X, xy) = 0 = (Y, yo).- If n, s an 1iso-
morphism for every ¢ < n and is an epimorphism for ¢ = n, then
so is &,. Furthermore, if n, is also an isomorphism, then the kernel
of &, is contained in the kernel of the matural homomorphism
h, : A,(X, xg; 6) > L (X, x).

Hence, if X is pathwise connected around z, then (5.2) and
(5.8) are consequences of (14.1) and (14.9) without assuming
complete regularity. By considering the path-components of
T(X, z,), one can also remove the condition that Y be pathwise
connected around .

It is quite clear that every operation introduced in the global
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theory and every result proved in the global theory have obvious
local versions. This is the advantage of our definition of the local
invariants, for we don’t have to toil at the developments parallel
to those done in the global theory.

15. The vanishing of local homotopy groups.

In the present section, we shall study the relation between the
vanishing of a certain local homotopy group and other local
properties such as being a homotopy non-r-cut point.

THEOREM 15.1. If a space X has a countable basis at a point
2y € X and if x, is a local homotopy non-r-cut point of X forr =n
and n + 1, then A,(X, zy; o) = O for every basic path ¢ € T(X, ).

This can be proved as (12.2). We omit the proof, as the changes
required are obvious.

The condition that z, be a local homotopy non-(n 4 1)-cut
point is obviously not necessary for 1,(X, zy; ) = 0. For, if
X = Con S™*! and a2, = v, then 2, is not a local homotopy
non-(n + 1)-cut point while 1,(X, z)) ~ =,(S"*!) = 0. To im-
prove (15.1), we have the following

THEOREM 15.2. If a space X has a countable basis at a point
xy € X, if 2y s a local homotopy non-n-cut point of X, and if X is
locally (n + 1)-shrinkable at x, then A,(X, xy; ) = 0 for every
basic path o e T(X, z,).

The proof of this theorem is similar to that of (12.8) with
obvious changes and hence omitted. This theorem is satisfactory
because it implies that, at a conic point z, € X, 1,(X, zy; 6) = 0
for every o € T(X, ,) if @, is a local homotopy non-n-cut point of X.

To establish some inverse of (15.1) and (15.2), we have to
introduce another local property.

A space X is said to be r-convergent at a point z, e X if, for
every open neighborhood U of z; in X, there exists an open neigh-
borhood V of 2, in U such that, for every open neighborhood
W of z, in V, every map f : S™ — V\z, is homotopic in U\z, to a
map of S” into W\g,.

If 2, is a conic point of X, then it is clear that X is r-convergent
at a, for every r = 0. A space X is 0-convergent at z, if and only if
X is locally arcwise connected at x,.

THEOREM 15.8. If a space X has a countable basis at a point
zo€ X, if X is m-convergent at xz,, and if A,(X, xy; 0) =0 for
every basic path o € T(X, x,), then x, is a local homotopy non-n-cut
point of X.
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Proor. Let U be any open neighborhood of 2, in X. Since X has
a countable basis at z,, there exists a sequence {U,} of open
neighborhoods of z, in X such that

U,CU, UinCU, AU, =2,
Since X is n-convergent at z,, there exists a sequence {V,} with
V.CU,, V,.CV,
such that every map of S" into V \z, is homotopic in U\z, to a
map into V, ,\z,.
NowletV = V,and ¢ : S* - V\z, be a given map. It remains to
show that ¢ is homotopic in U\z, to a constant.
Consider S* as the subspace of [,,, defined by ¢, = 0. We shall

first prove that ¢ has an admissible extension f : (J,11, v9) = (U,2,)-
For each 1 =1,2,...let

i —1
Siz{(to,tl,..., bhio) € Jup1 il = ; },

i—1 i
Tiz{[(to,tl,.--,tn+2)€]n+l:- i §t0§'i+ 1}°

We shall construct inductively two sequences of maps
$;: S —> Vo, fi:T; = U\,

such that f,|S;=¢,=¢ and f,_,|S,=¢,=f,| S, for each
¢ > 1. Assume § > 1 and that we have already constructed the
maps ¢, for each ¢ < j and f, for each ¢+ << j. Since S, is also an
n-sphere and ¢;is amap of S; into V' \z,, it follows that ¢, is homo-
topic in U, \z, to a map into V', ,\e,. This implies the existence of a
map f,; : T; - U,\z, such that f; | S; = ¢; and f;(Sk41) C V,a\T-
Define ¢,,, by taking ¢,,, by taking ¢,,; = f; | S,,;. This completes
the inductive construction of {¢,} and {f,}. Then we may define an
admissible extension f: (J,,1, v9) = (U, ;) by taking

_ [1p) (if peT,),

)= {3 (it p = vo).

By (14.1), 2,(U, @y; o) ~ 4,(X, zy; 0) = 0 for every basic path

o € T(U, y). Hence f has an admissible extension F : (4,,,,, v,) =

(U, x,). Let E™*+1 denote the subspace of 4, ., defined by £, = 0.

Then F|E"™! is an extension of ¢. Since F(E"t!) is contained in

U\z,, it follows that ¢ is homotopic in U\z, to a constant. This
completes the proof.

COROLLARY 15.4. Let 2, be a conic point of a space X. Then x,
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is a local homotopy non-n-cut point if and only if 1,(X, z; 6) = 0
for every basic path o e T (X, x,).
This is an immediate consequence of (15.2) and (15.3).

CoroLLARY 15.5. If a space X has a countable basis at a point
xzo € X and if X s n-convergent at x,, then X is n-LC at x,.

We recall that X is said to be n-LC at z, if, for every open
neighborhood U of z, in X, there exists an open neighborhood
V of &y in U such that every map ¢ : S* — V is homotopicin U to a
constant, [17, p. 79]. This corollary is proved by the existence of
the extension f of ¢ in the proof of (15.8).

Let n be a positive integer. A space X is said to be n-connected
around a point z, € X if X is pathwise connected around 2, and
Ao(X, 2,) = 0 for every ¢ =< m. In case n = 1, it is also said to be
simply connected around z,. The following theorem is an immediate
consequence of (12.2), (15.1) and (15.2).

THEOREM 15.6. A space X is n-connected around a point x5 e X
if the following conditions are satisfied:

(1) X has a countable basis at x,;

(2) zy s a local homotopy non-r-cut point of X for every r < n;

(8) X s locally (n + 1)-shrinkable at x,.

CoRrOLLARY 15.7. Let x, be a conic point of a space X. Then X
is n-connected around z, if and only if z, is a local homotopy non-r-cut
point of X for every r = n.

16. Induced homomorphisms of local maps.

Te .define the induced homomorphisms on local homotopy
groups of a local map, let us consider the following diagram:

(X, @) < (U, 2) > (Y, 3o)

where f is a given local map of (X, #,) into (Y, y,) defined on an
open neighborhood U of z, in X and ¢ denotes the inclusion map.
Pick a basic path o € T(U, oy) C T (X, ). By (14.1), the induced
homomorphism 2* in the following diagram

},n(X, HAY O‘) il ln(U, Y 0') z; An(Ys Yo fa)

is an isomorphism for each n = 1. Hence we may define a homo-
morphism

fo =t 2 A(X, @3 0) > Aa(Y, o3 0)

for each integer n = 1. This homomorphism will be called the

induced homomorphism of the local map f on the n-dimensional local
homotopy group.
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The admissible maps of (X, z,) into (Y, y,) are special cases of
local maps. By (18.1), we have the following property:

(16.1)Iff: (X, &) = (Y, yo) ts an admissible map, then f, = f,.

Let f: (U, z,) = (Y, y,) be a local map of (X, #,) into (Y, y,)
and g: (V, y,) = (Z, 2,) be a local map of (Y, y,) into (Z, 3).
Let W = f~4(V) CU. Then gf : (W, a,) — (Z, 2,) is a local map of
(X, ) into (Z, 2,). The following property is obvious.

(16.2) For every basic path o € T(W, x,), we have (gf), = &.f.-.

Now, let us study the effect of a local homotopy on the induced
homomorphisms. For this purpose, let f: (U, z,) - (Y, y,) and
g: (V,z) = (Y, yo) be two local maps of (X, z,) into (Y, y,), and
pick a basic path ¢ e T(UN V, 2,). Assume that f and g are local
homotopic with a local homotopy

ht : (Ws wo) - (Ys yo)’ (0 =t é 1)’

defined on an open neighborhood W of z, in U NV such that
hy=f|W and h, = g| W. By continuity of the path o, there
exists a positive real number & < 1 such that o(¢) ¢ W whenever
0 <t < k. Define a path 7:1 - T(U NV, z,) by taking z(s),
sel, to be the path in Y defined by

fo(t — 8st + 3kst), (if 0 <s <1,
[2(s)](t) = { has—r0(kt), (f §=s=3)
go(8st — 8kst + 8kt — 2t), (if $=<s=1).

Then ©(0) = fo and t(1) = go. Therefore, r induces an iso-
morphism 7, of 4,(Y, yy; go) onto 4,(Y, y,; fo). One can verify
that 7, does not depend on the choice of the real number k.
According to the global homotopy theory, we have the following

property:
(16.3) For each n = 1, the following triangle is commutative
A X, x5 0)
f y

(Y, yo; fo) <—— A,(Y, yo; go).

The following theorem covers an important special case of what
has been established above.

THEOREM 16.4. If X, Y are pathwise connected around xz,, y,
respectively and if Y s locally n-simple at y,, then every local map
f of (X, @) into (Y, y,) induces a homomorphism
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fﬁ : An(X7 mo) - }'n(Y9 yO)

satisfying (16.1), (16.2) and that f, = g, for any pair of local
maps f, g¢ which are locally homotopic.

So far, we have established all properties of local homotopy
groups corresponding to the seven axioms of the global homotopy
theory [10, p. 498] except the most important ,,Fibering Axiom,”
a detailed study of which is to be given in a forthcoming paper of
the author [12].

THEOREM 16.5. If X, Y are pathwise connected around x, € X,
Yo € Y respectively then, for the induced homomorphisms
Sq : lq(X’ o5 G) - za(Y’ Yos fa)’ Ng * Lq(X’ m0) - LII(Y’ yo)
of alocal map f : (U, xy) — (Y, yo) with o € T(U, x,), then assertions
(1) and (2) of (14.9) still hold.
This follows immediately from (14.9) and the definition of the

induced homomorphisms of a local map. Hereafter, (16.5) will be
called the local Whitehead theorem.

THEOREM 16.6. Let z, and y, be conic points of the spaces X
and Y respectively. If a local map f: (U, z5) — (Y, yo) of (X, x,)
into (Y, y,) is unstable, then the induced homomorphism

1o 3 2a(X, @3 0) = 2(Y, o5 fo)
is a zero homomorphism for every m =1 and every basic path
geT (U, zy).

This can be proved as in (11.2) by using (14.5), (10.2) and the
fact that

nn(F’ wl) ~ ”n+1([7, F’ .Z’l) N nn+1(U, U\%a 1111)

for a conic neighborhood U of x, with F = U\U and , ¢ F.

17. Local homotopy groups as classes of local maps.

Now, we are in a position to give a better geometrical represen-
tation of the elements of the local homotopy group 4,(X, z,; o) as
homotopy classes of the local maps of (R"1, 0) into (X, z,),
where R"*1 denotes euclidean (n + 1)-space and 0 denotes the
origin of R"1, n > 1.

Since the local homotopy group 4,(R"t., 0) is infinite cyeclic,
we have two different choices of a generator of 4,(R"t1, 0). Each
choice of a generator of 1,(R",0) is called an orientation of
R™+1 at 0. When a generator ¢ of 1,(R"*1, 0) has been chosen,
we say that R"+! is oriented at 0. Hereafter, we assume that R"+!
is oriented at 0 by the choice of a generator ¢ of ,(R"*1,0).



210 Sze-Tsen Hu [38]

Consider any given space X, a given point 2, ¢ X, and a basic
path o € T(X, ;). Then o is a path ¢ : I — X such that ¢(f) = z,
if and only if ¢ = 0. Imbed the unit interval I as a subspace of
R™+1 by identifying the point ¢ € I with the point (¢, 0, ..., 0) e R™+.
Consider the totality 2 of local maps

1:(U,0) > (X, z,)

defined on an open neighborhood U of 0 in R"*+!, which depends
on f, and satisfying f(t) = o(t) for every t ¢ I N U. Two local maps
1> 8 € 2 are said to be locally homotopic relative to o if there exist an
open neighborhood W of 0 in R*+! and a homotopy

ht:(W’O)Q(X,wO)s 0§t§1,

such that hy=/f, h, =g, and h,e Q2 for every tel. For the
meaning of the congruence, see § 6. Thus, the local maps 2 are
divided into disjoint (local) homotopy classes relative to o. Through-
out the present section, we shall simply call them classes. We are
going to identify these classes with the elements of 4,(X, z,; o).

Let f : (U, 0) - (X, 2,) be any local map in £2. There exists a
positive real number £ < 1 such that £ e U whenever 0 < ¢ < k.
Let o, denote the path defined by o,(¢) = o(kt) for each tel.
Then f induces a homomorphism

fo 1 A, (R, 0) — A,(X, 2o; 0%)-
Define a path v:I - T(X, z,) by taking
[x(s)]() = o(t — st + kst), (sel,tel).
Then 7(0) = o and 7(1) = o}. Therefore, by (14.8), T induces an

isomorphism
Tx  An(X, g3 01) ~ 4,(X, 25 0).

One can verify that the composed homomorphism 7, f, does not
depend on the real number k chosen in the construction. Hence the
local map f determines uniquely an element deg (f) = 74f,(¢) of
the local homotopy group 4,(X, zy; o) which will be called the
degree of the local map f.

If two local maps f, g € 2 are locally homotopic relative to o,
then it follows easily from (16.8) that deg (f) = deg (g). Hence
the assignment f — deg (f) induces a function

x: K = A,(X, 2y o)
of the set K of all classes of the local maps 2 into 1,(X, z,; o).

We shall prove that y carries K onto 4,(X, #,; ¢) in a one-to-one
fashion.
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Since ¢ is a generator of 4,(R"*1, 0), it can be represented by an
admissible map 6 : (/,41, o) = (R"*1, 0) which maps J,,, homeo-
morphically onto the unit (n 4 1)-cell E**! defined by

E" = {(Yo Y- - » Yu) e R g+ i+ +yn =13
in such a way that 0(f, £,,0,...,0) = (4,0, ...,0).

Now, let us prove that y is onto. For this purpose, let « be an
arbitrary element of the local homotopy group 4,(X, 2,; 0). Then
« is represented by an admissible map ¢ : (J,,1, v9) = (X, ).
Let U denote the interior of E"*+l. Then

f=4¢0"1:(U,0)— (X, )

is a local map in Q. By the definition given above, we have
deg (f) = «. Hence yx is onto.

Next, let us prove that y is one-to-one. For this purpose,
let f: (U, 0) - (X, @) and g : (V, 0) - (X, z,) be any two local
maps in 2 with deg (f) = deg (g). We have to prove that f and g
‘are locally homotopic relative to ¢. Choose a positive real number
k <1 such that the (n + 1)-cell

Ep™t ={(o Yy - = Yu) e R gy + 41 + .o+ yn S K
is contained in U N V. The generator ¢ of 4,(R"*1, 0) can be re-
presented by an admissible 0, : (],,1, vo) = (R"*1, 0) which sends
Jns1 homeomorphically onto Ej*! in such a way that
O(tps 815 O, . . ., 0) = (kt;, 0,...,0). Since deg(f) = deg(g), it
follows that f0, and g0, are admissibly homotopic relative to oy;
precisely, there exists an admissible homotopy

b 2 (Jutr Vo) = (X, @), 0=t=1),
such that ¢, = f0;, #, = gb;, and ¢,(ty, ¢, 0, . . ., 0) = a(kt;) for
each ¢ € I. Denote the interior of Ef** by W.Then W CU N V and
we obtain a local homotopy

h,: 0. : (W, 0) > (X, ), 0=t

satisfying hy = f, h; = g, and h, € 2 for every t ¢ I. Hence f and g
are locally homotopic relative to ¢. This proves that y carries K
onto 4,(X, zy; 0) in a one-to-one fashion.

Thus, we have established the following

THEOREM 17.1 The elements of the local homotopy group
A (X, zy; 0) may be identified with the classes of the local maps of
(R™1, 0) into (X, x,) relative to o.

This having been done, one can easily see that the group
operation, the neutral element, and the inverse of a given element
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of 2,(X, xy; 6) can be represented as follows. As in the global
theory, we shall use the additive notation although 1,(X, 24; o)
is usually non-abelian.

Let « and B be arbitrary elements of 1,(X, zy; ). Then they
can be represented by local maps f:(U,0) — (X, z,) and
g:(V,0) > (X, x,) respectively such that

o Y1 - oY) =0 (VR + 92+ ... +42), ify, =0,
EWo Y- ) =0 (Vi + 3+ ... +42), ify, <0

Let W = UN V and define a local map & : (W, 0) — (X, z,) by
taking

{ f(yO’ yl’ L] yn)’ lf (’/1 é 0:
8Wos Y15 + - > Yn)s if y, = 0.

Then £ is in 2 and represents the element o + 8 of 1,(X, zy; 0);
in other words, deg (k) = « + B.

Now, let us consider the neutral element 0 of 1,(X, z; o).
A local map f : (U, 0) — (X, x,) has deg (f) = 0 if and only if f is
locally homotopic (relative to o) to the local map

o : (Int E**1, 0) - (X, z,)

h(Yos Y15 - + 5 Yn)

defined by o(Yo Y1 - - ¥u) = (VYo + 41 + - .. + y2)-

Finally, let us consider the inverse — « of a given element «
of 2,(X, zy; o). Pick a local map f: (U, 0) — (X, z,) in 2 with
deg (f) = «. Let

V= {(yo, Y Yzs « + s Yn) € R (Yoo — Y15 Y5+« o5 Yu) € U}-

Then — « is represented by the local map g : (V, 0) — (X, ;) in 2
defined by

€Yo Y1s Y2> - + - Yn) = [(Hos — Y15 Yos + + s Ya)-

If the space X is pathwise connected around z, and locally
n-simple at z,, then we may omit the relativity with respect to the
given path ¢ throughout the previous study. Thus, the elements of
the local homotopy group 4,(X, #,) can be considered as the (local)
homotopy classes of all local maps of (R"*1,0) into (X, ,).

Since the local map w is obviously unstable, the following theo-
rem is an immediate consequence of (11.1).

THEOREM 17.2. A local map f of (R"+1, 0) into (X, z,) is unstable

if deg (f) = o.
This and (16.6) imply the following
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THEOREM 17.8. Let z, be a conic point of X. Then a local map f
of (R™1,0) into (X, x,) is unstable if and only if deg (f) = 0.

18. Local maps of a euclidean space into another.

Let n, ¢ be given positive integers and consider the local maps
of (R™t1, 0) into (R%*1, 0). According to the previous section, the
homotopy classes of these local maps are the elements of the local
homotopy group

A (R, 0) ~ 7, (59).

Hence every information about the structure of the (global)
homotopy group =,(5%) gives a corresponding result on the local
maps. For example, we have the following assertions:

(18.1) If n < q, then every local map of (R™+1, 0) tnto (R**1, 0) is
unstable.

(18.2) If ¢ = 1 and n > g, then every local map of (R"*1, 0) into
(R, 0) is unstable.

(18.3) If n = q, then A,(R"+1, 0) is infinite cyclic with the homo-
topy class e of the identity local map on (R"1, 0) as generator.

One can easily verify that the homotopy class of an arbitrary
local map f of (R"+1, 0) into itself is ind (f).e, where ind (f)
denotes the index of f defined in § 9.

Now let us give a local version of the celebrated notion of
suspension introduced by Freudenthal [7]. Let f be any given
local map of (R", 0) into (R? 0) defined on an open neighborhood
U of 0in R". Consider R*"t1 = R"™ X Rand R*! = R? X R. Then,
by the suspension of f, we mean the local map Sf of (R"+1, 0) into
(R*+1; 0) defined on the open neighborhood ¥V =U X R of 0 in
Rn+1 by

(Sf)(x x t) = f(z) X ¢, (xeU,teR).

This local version of suspension appears simpler and more natural
than its global counter-part.

It is illustrated in § 9 that, for each integer m # 0, the local
map f,, of (R2 0) into itself defined by f,(z) = 2™ for each point
% € R? considered a complex number is of index m and therefore
represents me of the group 4,(R?2, 0). One can also verify that, for
n > 1, the (n — 1)-fold iterated suspension of f, is of index m
and hence represents the element me of the group 4,(R"1, 0).

In general, the assignment f — Sf induces a homomorphism

S : A,_4(R, 0) — A, (R, 0)

called the suspension. Then the local version of the suspension
theorem can be stated as follows:



214 Sze-Tsen Hu [42]

(18.4) The suspension S s an isomorphism if ¢ > 2 and
n < 2¢ — 2 and is an epimorphism if ¢ =2 and n = 2q — 2.

A generator of the infinite cyclic group 4,(R;, 0) is represented
by the local Hopf map f: (R%, 0) — (R3, 0) defined as follows.
Consider R* = R? X R2 as the space of all pairs (2, y) of complex
numbers x and y. Let S! denote the unit circle in R? consisting of
the complex numbers z with | 2| = 1. Then S! is a topological
transformation group of R* by the operation z(z, y) = (22, 2y).
Then the orbit space may be identified with R® and the natural
projection f : (R4, 0) - (R3, 0) will be called the local Hopf map.
One also define the local Hopf maps of (RS, 0) into (K%, 0) and of
(RS, 0) into (R?, 0) by using quaternions and Cayley number as in
[23, p. 108]. These local Hopf maps are all stable.

Since these local Hopf maps are fiberings with 0 as the only
singularity in the sense of Montgomery and Samelson [18], it
suggests the application of our local invariants to the study of
fiberings with isolated singularities. By pinching a singular fiber
into a point, one can also apply the local invariants to study the
fiber spaces with singular fibers as originally considered by
Seifert [20]. A detailed paper is under preparation [12].

19. An application.

To conclude the present paper, we shall give an application of
the tangent space which led the author to the study of our local
invariants.

A main problem on topological semi-groups is to answer the
following question formulated by A. D. Wallace, [26, p. 96]: What
compact connected Hausdorff spaces admit a continuous associati-
ve multiplication with two-sided unit? Since there have already
been numerous results on the structure of topological groups, we
may restrict our interest only to those continuous associative
multiplications with two-sided unit which fail to be topological
group operations. These multiplications are called essential
multiplications, [11].

Throughout this final section, let X be a pathwise connected
compact Hausdorff space in which there is given an essential
multiplication with a point u € X as its two-sided unit.

Let H denote the set of all points of X which have right inverses.
According to Wallace [26, p. 99], H is also the set of all points of X
which have left inverses. Furthermore, H is a compact topological
group under the given multiplication, namely, the maximal
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subgroup of X containingu, [25, p.338]. The complement | = X\H
is the mazximal two-sided proper ideal of X, [26, p. 103].

A point a of a space X is said to be pathwise accessible from
a subspace B of X if, for every point b ¢ B, there exists a path
o :I — X such that ¢(0) = a, o(1) = b, and o(t) € B for every
t > 0 in I. A subspace A of X is said to be pathwise accessible
from B if every point of 4 is pathwise accessible from B. If X is a
Hausdorff space, then pathwise accessibility is equivalent to
arcwise accessibility, [27, p. 66].

LemMA 19.1. The point w is pathwise accessible from the set J.

Proor. Let v be any point in J. Since X is pathwise connected,
there exists a path & :7 — X with £(0) = » and &(1) = v. The
inverse image £71(H) is a closed set of the unit interval I. Let &
denote the least upper bound of §71(H). Then 0 < k < 1 since
E(1)=wve]J. Also, &(k) e H and &(t) e ] whenever k <t = 1.

Let a = &(k). Since a € H, there exists a point b € X such that
ab = u. Define a path % :I — X by setting

n(t) = [E(t — kt + k)b,  (tel).

Then %(0) = ab = u, (1) = vb, and %(t) € J for every £ > 0 in I.
Since X is pathwise connected, there exists a path p:7 - X
with p(0) = » and p(1) = b. Define a path ¢ : I - X by taking

- 7](2t), (if 0(§t é l)’
a(t) = {v,,(z — 2t), (f }<t< f)-

Then ¢(0) = u, o(1) = vu = v, and ¢(¢) € J for each t > 0 of I.
This completes the proof.

LemmaA 19.2. The tangent space T(X, u) is contractible.

Proor. Using the path ¢ :I — X constructed in the proof of
(19.1), we define a homotopy , : T(X, u) > T(X,u), (0 =t < 1),
by taking

__|o(s), ifo=s=t),
[h(2))(s) = {a(t)t(s — 1), (f t <5 <1),

for each 7 € T(X, u). Then bk, is the identity map on T(X, u) and
h[T(X, u)] = o. This completes the proof.

If u is a conic point of X, then (19.2) and (7.1) imply the main
theorem in [11] and hence the theorems of Wallace, [26, pp. 96,
97], as indicated in [11].

By the boundary 0X of a space X, we mean the set of all points
w of X with contractible tangent spaces T(X, w).
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THEOREM 19.3. The maximal subgroup H is contained in the
boundary X of X and is pathwise accessible from the maximal
ideal ]J.

Proor. Let w e H. The assignment  — aw defines a homeco-
morphism of X which carries  into w, H onto H, and J onto J.
Hence, it follows that T(X, w) is contractible and that w is path-
wise accessible from J. This completes the proof.

CoROLLARY 19.4. The space X is pathwise connected around each
weH and 1,(X, w) =0 for every n = 1.

CoroLLARY 19.5. For each w ¢ H and each coefficient group G,
we have
LyX,w; G) =0, IX,w;G)=0,
and
L,(X,w;G)=0, L"X,w;G)=0.

for every n = 1.
CoRroLLARY 19.6. The maximal ideal | is everywhere dense in X.

THEOREM 19.7. Any pair of points a, b of X can be connected by
a path ¢ : I — X such that o(t) € | whenever 0 < t < 1.

Proor. Since X is pathwise connected, there exists a path
v:] - X with 7(0) =a and t(1) = b. By (19.1), there exists
apath{:7 — X suchthat £(0) = wand &(t) € J foreacht > 0in 1.
Define a path o:1 — X by setting

o(t) = {5(2t)t(t), ifost=<3),

&2 — 2t)r(t), (if At

Then 0(0) = a, o(1) = b, and o(t) € / whenever 0 < ¢t < 1. This
completes the proof.

CoroLLARY 19.8. The maximal ideal | is pathwise connected.

CoROLLARY 19.9. Every subset of the maximal subgroup H fails
to separate the space X.

Wayne State University
Detroit 2, Mich., U.S.A.
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