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Algebraic Local Invariants of Topological Spaces

by

Sze-Tsen Hu

1. Introduction’)
Local homology groups were first introduced by E. R. van

Kampen into singular homology theory in his Leyden thesis
[14]2 ); see also [21, p. 120 and p. 319]. In other homology théories,
the local Betti numbers were studied by Cech [5], Alexandroff [1 ],
Vaughan [24], Wilder [27] and others. In recent years, local

homology groups were also defined and studied by H. B. Griffiths
[8] and T. R. Brahana [4] both by limiting processes.
Local fundamental groups of locally triangulable spaces werc

defined by Seifert and Threlfall in [21, p. 177], and analogous
definition of higher dimensional local homotopy groups is obvious.
In this case, since both the local homology groups, [21, p. 120], and
the local homotopy groups are defined as their global counter-
parts of the boundary of an open star, it follows that every result
in the global theory automatically gives rise to a local version of
the result.

For more general topological spaces, a method to define thé local
fundamental groups and, therefore, the higher dimensional local
homotopy groups was implicitly suggested by O. G. Harrold,
[9, p. 122]. Later, an explicit definition of the local homotopy
groups was introduced by H. B. Griffiths, [8, p. 357]. However,
under his definition, local homotopy groups may fail to exist.
Besides, it is by no means obvious that all results in the global
theory hold in the local theory; in fact, Griffiths proved elaborately
the local Hurewicz theorem, [8, pp. 360-366].

In the present paper, we propose to define the local homology
groups and the local homotopy groups of a topological space X at a
point xo E X to be the (global) homology groups and the (global)
homotopy groups of the tangent space T(X, x0) which is construct-
ed in § 2. If X is locally triangulable at xo,. or more generally,

1) This research w as supported by the United States Air Force through the
Air Force Office of Scientific Research of the Air Research &#x26; Development Command,
under contract No. AF49 (638-179).

2) Numbers in square brackets refer to the bibliography at the end of the paper.
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if xo is a conie point of X, then these groups are isomorphic to
those of Griffiths [8] and hence to those of Seifert-Threlfall

[21, p. 120 and p. 177].
As applications of these local invariants, we shall first study the

homotopy classification of local maps, and a local version of the
Hopf theorem will be proved. One can also apply these local
invariants to study the fibre spaces with singularities in the sense of
Montgomery and Samelson [18] or in the original sense of H.
Seifert [20]. In the final section, we shall give an application to
topological semi-groups.

2. The tangent space.

Let X be a given topological space. By a path in X, we mean a
continuous map a : I ~ X of the closed unit interval I = [0,1]
into X. The set W(X) of all paths in X forms a topological space
with the usual compact-open topology, [15, p. 221].
By the total tangent space T(X) of X, we mean the subspace of

W(X) which consists of the totality of paths a in X such that
03C3(t) = 03C3(0) if and only if t = 0, in other words, a path 03C3 ~ W(X) is
in T(X) if and only if it does not recross the initial point a(0).
This space T(X) was introduced by John Nash [19] in his proof of
the topological invariance of the Stiefel-Whitney classes for a
differentiable manifold.

Now, let xo be any given point in X. The subspace T(X, xo ) of
T (X ) which consists of the set of all paths a E T(X) with 03C3(0) = xo
will be called the tangent space of X at the point xo. Therefore,
T(X, xo) is the subspace of the path space W(X) defined by the
formula:

Let C denote the arc-component of X which contains xo. Then,
obviously we have

The arc-component C is said to be degenerate if xo is the only
point in C; otherwise, C is said to be non-degenerate. Then it
follows immediately that the tangent space T(X, x0) is empty if
and only ii the arc-component C is degenerate.
Let A be any given subspace of X which contains xo. Then

T(A, xo ) is a subspace of T(X, x0). As in [10, p. 491], we shall call
(X, A, x0) a triplet ; then the pair (X*, A*), where X* = T(X, xo )
and A * = T(A, x0), will be called the tangent pair of the given
triplet (X, A, xo ).
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3. Local homology and cohomology groups.
In this section, we shall define the local homology and coho-

mology groups by means of the tangent spaces constructed in the
previous section. For this purpose, one may chôose any (global)
homology and cohomology theory defined on a suitable category
of spaces and satisfying the axioms of Eilenberg and Steenrod,
[6, pp. 10-15]. However, since we have already used paths in the
construction of the tangent spaces and since we also plan to study
the relations between local homology groups and local homotopy
groups in the present paper, we have to use the singular theory,
[6, pp. 1852013211].
Let (X, A, xo) be any given triplet. For each integer n and any

abelian group G, the singular homology group Hn(X*, A*; G) of
the tangent pair (X*, A*) will be denoted by the symbol
Ln(X, A, xo; G) and called the n-dimensional local (singular)
homology group of X modulo A at the point x0 over the coefficient
group G; in symbols, we have

Ln(X, A, x; G) = Hn(X*, A *; G), X* = T(X, xo), A* = 1’(A, x0).
If the subspace A contains only a single point xo, then this group
will be denoted simply by Ln(X, x0; G) and called the n-dimensional
local homology group o f X at xo over G. On the other hand, if the
coefficient group is the group Z of integers, we shall use, as usual,
the simpler notation:

Similarly, we may define the n-dimensional local cohomology
group

and its special cases Ln(X, xo ; G), Ln(X, A, xo) and Ln(X, xo).
As an immediate consequence of this definition, every operation

which is available in the global homology or cohomology groups is
also available in the local groups. We shall give two examples as
follows.

Firstly, for each triplet (X, A, x0), the following boundary
homomorphism a and coboundary homomorphism ô

are defined for every integer n and every coefficient group G.
Secondly, if the coefficient group is a ring R, then the cup
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products are defined in the local cohomology groups and the
direct sum

forms an algebra over R which will be called the local cohomology
algebra of X at xo over R.
A direct description, without explicitly using the tangent spaces,

of the local groups defined above can be given as follows.
By a local singular n-simplex in X at xo, w-e mean a continuous

map

of the unit (n + l)-simplex 0394n+1 in euclidean (n + 2)-space,
[6, p. 55], into X such that the inverse image 03C4-1(x0) is the last
vertex dn+1 of L1n+l. If n &#x3E; 0 and 1 is an integer with 0 ~ i ~ n,
then the composed map

were ein+1 : 0394n ~ 0394n+1 denotes the simplicial map defined in

[6, p. 185], is a local singular (n - 1 )-simplex in X at x0 which will
be called the i-th face of r. Thus, the local singular simplexes in
X at x. form a semi-simplicial complex S(X, xo ) called the local
singular complex of X at xo. Since A C X, S (A, x0) is a subcomplex
of S(X, xo ). Then Ln(X, A, xo; G ) and Ln(X, A, xo; G ) are re-

spectively the n-dimensional homology and cohomology group of
the complex S(X, x0) modulo S (A, x0) over G. In fact, one can
easily see that S(X, xo) is essentially the singular complex of the
tangent space T(X, xo ).

4. Admissible maps.

By an admissible map of a triplet (X, A, x0) into a triplet
(Y, B, y0), we mean a continuous function

such that f-1(y0) = xo or, equivalently, f(X/x0) C Y/y0. For

example, if (X, A, xo ) C (Y, B, yo ), i.e. if X C Y, A C B, xo = yo,
then the inclusion map of (X, A, xo ) into (Y, B, yo ) is admissible.
Two admissible maps f, g : (X, A, x0) ~ (Y, B, yo ) are said to

be admissibly homotopic if there exists a homotopy

such that ho = f, hl = g, and that, for each t, ht is an admissible
map. Such a homotopy will be called an admissible homotopy.
Every admissible map f : (X , A , x0) ~ (Y, B, y0) indu ces a
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(continuions) map

of the corrcspondimg tangent pairs defined by f(03C3) = f a for each
a e X*. If two admissible maps f, g are admissibly homotopie, then
their induced maps f, g are homotopic.

Therefore, we may define induced honiomorphisins

by taking f* = f * and f* = f * for each integer n and each coeffi-
cient group G.
The following properties of the induced homomorphisms are

obvious.

(4.1) Il f is the identity ntap of (X, A, xo), then f* and f* are
the identity automorphisms of Ln(X, A, x,,; G) and Ln(X, A, xo; G)
respectively.

(4.2) For any two admissible 1naps

the composed map g f : (X, A, x0) ~ (Z, C, z0) is also admissible and
we have

(4.3) Il f : (X, A, xo) - (Y, B, yo) is an admissible map, then the
map g : (A, xo) ~ ( B, yo ) defined by f is also admissible and the
following rectangles are commutative:

(4.4) For any triplet (X, A, x0), the inclusion maps i : (A, x0) C
(X, x0) and j : (X, x0) C (X, A, x0) are admissible, and the following
two sequences

are exact. These will be called the local homology sequence and the
local cohoniology sequence respectively.

(4.5) Il two admissible maps f, g : (X, A, xo) ~ (Y, B, y0) are
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ad1nissibly homotopic, then f * = g* and f* = g* f or every integer n
and every coefficient group G.

(4.6 ) Il the coefficient group is a ring R, then the induced hoino-
moi-phisms f* of an admissible map f : (X, x0) ~ (Y, y0) preserve
cup products and hence define an algebra homontorpltism
f* : L* (Y, yo, R) ~ L* (X, xo; R).

5. The local characterization.

To justify the definition of local homology and cohomology
groups given in § 3, we have to show that the groups Ln(X, A, xo; G)
and Ln (X, A, xo; G) are really local invariants of the pair (X, A ) at
the point xo; in other words, we must prove that these groups will
remain unchanged after deleting a part of the space X or the
subspace A outside of an open neighborhood of the point xo. This
will be proved for completely regular spaces in the present section.

Let X be a given topological space, xo a given point in X, and U
a given open neighborhood of xo in X. Then the tangent space
U* = T(U, xo) is a subspace of X* = T(X, x0).
LEMMA 5.1. Il X is completely regular at xo, then there exisis a

homotopy

such that do is the identity 1nap and dl send X* into U*.
PROOF. Since X is completely regular at xo, there exists a

continuous real function ~ : X ~ I such that X(XBU) = 0 and
x(x0) = 1. Next, define a continuous real function ~ : X* X I ~ I
bv setting

for every a E X* and every t ~ I. For a fixed a in X*, cp(a, t ) is
a non-increasing function of t with ~(03C3, 0 ) = 1. Hence the equation
~(03C3, t ) = t has a unique solution 03C8(03C3) in the variable t which

depends continuously on a. Thus, we obtain a continuous real
function 03C8 : X* ~ I. Since ~(03C3, 0) = 1, it follows that y (a) &#x3E; 0

for every 03C3 ~ X*.

By means of the continuous real function y, we may define a
homotopy dt : X* ~ X*, (0  t  1), as follows. For each path
03C3 ~ X* and each t E I, let dt(03C3) denote the path in X defined by

Intuitively speaking, d,(a) is obtained from a by omitting the
part of 03C3 beyond the point a [1 - t + t03C8(03C3)]. Since 03C8(03C3) &#x3E; 0, it
follows that d t(a) E X*. This completes the construction.
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By the construction of the homotopy dt, it is obvious that do
is the identity map on X* and that dt(U*) C U*. It remains to
verify that dl sends X* into U*. For this purpose, let a E X*
and t ~ I be arbitrarily given. Let r = t03C8(03C3). Then we have

ldi(J)1 (1) = a(r).
Since r ~ 03C8(03C3), it follows from the definition of the number

03C8(03C3) that ~(03C3, r ) &#x3E; r. Since y(J ) &#x3E; 0, this implies that X[G(r)J &#x3E; 0.

Hence [d1(03C3)](t) ~ U. Since 03C3 ~ X * and t E I are arbitrary, this

proves d1(X*) C U* and completes the proof of the lemma.
By a completely regular triplet, we mean a triplet (X, A, xo) in

which X is a completely regular at xo.
THEOREM 5.2. Il (X, A, x0) is a completely i-egular triplet and

( U, D, u0) is a triplet such that U is an open neighborhood of xo in x,
D = un A, and uo = xo, then the inclusion map f : (U, D, u0) C
(X, A, x0) induces the isomorphisms

for every integer n and every coefficient group G.
PROOF. Let g : (U, u0) ~ (X, xo ) and h : (D, uo ) C (A, x0) denote

the inclusion maps. Then g induces the inclusion map g : U* C X*
of the tangent spaces. By the homotopy axiom of the (global)
singular homology theory, Lemma 5.1 implies that

for ever.y ,integer n and evcry coefficient group G. Then it follows
from the exactness axiom that the inclusion map g induces
isomorphisms

Hence the inclusion map g induces isomorphisms

As a subspace of X, A is completely regular at xo. Since D is an
open neighborhood of xo in A, the inclusion map h induces iso-
morphisms

Then our theorem follows from (4.2) - (4.4) and the famous "f ive"
lemma, [6, p. 16].
COROLLARY 5.3. Let (Y, B, y0) be completely regular and

(X, A, x0) C (Y, B, y0). Il there exists an open neighborhood
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U of x0 = y0 in Y such that U C X and U ~ B ~ A, then the
inclusion map f : (X, A, xo) C (Y, B, yo) induces the isomorphisin s

f or each integer n and each coefficient group G.
PROOF. Let D = U ~ B and uo = xo. Consider the inclusion

maps g : (U, D, uo ) C (X, A, x0) and h : (U, D, uo ) C (Y, B, Yo).
Then we have f g = h. By (4.2), we obtain f * g* = h* and g* f * = h*.
According to (5.2), g*, h*, g*, h* are isomorphisms. Hence,
f* = h* g-1* and f* = g*-1 h* are also isomorphisms. Q. E.D.
The complete regularity assumed in this section is used only in

the proof of (5.1) which implies (5.2) and (5.3) no matter what
global homology theory might have been chosen in § 3 provided
that the axioms used in the proof of (5.2) and (5.3) are satisfied.
However, for the singular homology theory which has been
chosen in § 3, this condition is inessential; in fact, one can prove
(5.2) and (5.3) without assuming the complete regularity by the
methods used in § 14 below. See also (14.9). Hence, hereafter, we
shall drop all conditions about complete regularity.

6. Local maps.

By a local map of a triplet (X, A, xo ) into a triplet (Y, B, yo ), 1%.e
mean an admissible map

where U is an open neighborhood of xo in X. Let

be another local map of (X A, xo ) into (Y, B, yo ). The local maps
f, g are said to be congruent, f = g, if there exists an open neighbor-
hood W of xo in X such that W C U ~ V and f | W = g | IV. The
local maps f, g are said to be locally homotopic, f n--, g, if there

exists an open neighborhood W of xo in X and an admissible
homotopy

such that ho - f and h1 ~ g. Thus, the totality of local maps of
(X, A, xo) into (Y, B, yo) are divided into disjoint congruence
classes and into disjoint homotopy classes.
To define the induced homomorphisms of a local map, let us

consider the following diagram:
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where f is a given local map of (X, A, xo ) into (Y, B, y0) and i
denotes the inclusion map. By (5.2), the induced homomorphisms
i* and i* are isomorphisms. Hence we may define homomorphisms

for each integer n and each coefficient group G. These homo-
morphisms will be called the induced homomorphisms of the local
map f ..
The admissible maps of (X, A, xo) into (Y, B, yo) are special

cases of local maps. By (4.1), we have the following property:
(6.1) Il f : (X, A, xo ) - ( Y, B, yo ) is an admissible map, then we

have f4 = f* and f4 = f*.
Next, let f : (U, U ~ A, x0) - (Y, B, y0) be a local map of

(X, A, x0) into (Y, B, yo ) and g : (V, V ~ B, y0) ~ (Z, C, zo) be a
local map of (Y, B, yo ) into (Z, C, z0). Let W = f-1(V) C U.
Then W is an open neighborhood of x. in X. Define a continuous
map h : (W, W ~ A, xo) - (Z, C, zo) by taking h(x) = gf (x) for
every x E W. Since h is clearly admissible, it is a local map of

(X, A, x0) into (Z, C, zo). This local map h will be called the
composition of f and g; in symbols, h = gf. Then, we have the
following property:

(6.2) (gf)4 = g4f4 and (gf)l, = il gl-
The following assertions about induced homomorphisms of

local maps are obvious.

(6.3) I f f : (U, D, aeo) --+ (Y, B, yo) is a local map of (X, A, xo)
into (Y, B, y0) with D = Un A, then the map g : (D, x0) ~ ( B, y0)
defined by f is a local map o f (A, x0) into ( B, y0) and the following
rectangles are commutative:

(6.4) If two local maps f, g of (X, A, xo) into (Y, B, yo) are
locally homotopic, then f4 = gs and f = g for every integer n
and cvery coefficient group G.

(6.5) Il the coefficient group is a ring R, then the induced homo-
morphisms f of a local map f : (X, x0) - (Y, y0) preserve cup
products and hence define an algebra homomorphism



182

7. Conic points.

Let F be any non-vacuous topological space. If, in the topo-
logical product F X I, we identify the subset F X 1 to a single
point v, we obtain a quotient space Con F called the cone over F.
The point v is called the vertex of Con F. Let

denote the natural projection. Then p maps F X 1 onto v and
t F X I)B(F X 1) homeomorphically onto (Con F)Bv. The space F
will be considered as a subspace of Con F by identifying x E F with
p(x, 0 ) E Con F. If K is any non-vacuous subspace of F, then
Con K is the subspace p (K  I) of Con F; if K is the empty
subspace of F, then we define Con K = v.

Let (X, A, xo) be a given triplet. The point xo is said to be a
conic point of the pair (X, A ) if there exists an open neighborhood
U of xo in X such that the part of (X, A ) within the closure U is the
join of xo and the part of (X, A ) within the frontier F = UBU, that
is to say, there exists a homeomorphism

of U onto Con F satisfying the following three conditions:

This neighborhood U will be called a conic neighborhood of xo in
(X, A ). The pair (X, A ) is said to be locally triangulable at the
point xo if there exists a conic neighborhood U of xo in (X, A ) such
that the pair (F, F ~ A), where F = UBU, is finitely triangulable.
Assume that xo is a conic point of (X, A ) and that U is a conic

neighborhood of xo in (X, A ). Let F = UBU and choose a homeo-
morphism h : U ~ Con F satisfying the conditions (CP1-3).
We are going to establish the following
LEMMA 7.1. The pair ( F, F ~ A) is of the same homotopy type as

the tangent pair (X*, A*).
PROOF. Define a map i : (F, F ~ A) ~ (X*, A*) as follows.

For each x e F, let t(x) denote the path in X given by
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It is clear that i(x) E X* and that i(x) ~ A * if x ~ F ~ A. One can
also easily see that i is a homeomorphism of (F, F rl A ) into
(X*, A*). By means of this embedding i, we may consider
(F, F ~ A) as a sub-pair of (X*, A*).
Next, let us define a continuous real function z : X - I as

follows. Let q : F X I - I denote the natural projection. Then
y is given by

Hence we have ~-1(1) = xo and ~-1(0) = XBU.
As in thé proof of (5.1), define a continuous real function

~ : X* X I ~ I by setting

~(03C3,t) = Infs~t~[03C3(s)]
for every a E X* and every t E I. Then, define a continuous real

function 03C8 : X* - I by taking 03C8(03C3) to be the unique solution of
the equation ~(03C3, t ) = t for each given a E X*. Since ~(03C3, t ) = 1 if
and only if t = 0, it follows that 0  03C8(03C3)  1 for every or E X*.

Define a homotopy dt : (X*, A*) ~ (X*, A*), 0 ~ t  1, by
taking

for each t E I and each 03C3 ~ X*. As in the proof of (5.1), one can
verify that do is the identity map on (X*, A*) and [d1(03C3)](I) C U
for every ar E X*.

Let r : F  I - F denote the natural projection. There is

natural contraction et : U --+ U, 0 ~ t ~ 1, of U to the point xo
defined by

for every t E I.

Now, let us construct a family of continuous maps
f t : (X*, A*) ~ (X*, A*), (0 ~ t ~ 1), as follows. For t = 0, we
define f o = dl. We are going to define f for the case 0  t ~ 1.
Let a E X*. Then d1(03C3) is a path in U. Using the natural contrac-
tion et, we define the path ft(03C3) ~ X* by taking

Since et{[d1(03C3)](0)} = xo for every tEl, it can be verified that

f t, (0  t  1), form a homotopy. Intuitively speaking, f t(Q) is
obtained by replacing the part of the path dl(Q) up to the para-
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metric value t by the segment joining xo to [d1(03C3)](t). In particular,
f1(03C3) is the line segment joining xo to [d1(03C3)](1).

Next, define a hon10topy gt : (X*, A*) - (X*, .4*), (0 ~ t ~ 1),
as follows. Let a e X*. Then thé point 2c = [f1(03C3)](1) is in UBr0.
Let

We define the path gt(03C3) ~ X by taking

Intuitively speaking, gt(03C3) is obtained by extending the line

segment f1(03C3) to a position where the value of the function X is
k - kt. One can easily verify that go = f 1 and that gl is a retraction
of (X*, A*) onto i(F, F ~ A).

Let 03BA : (X*, A*) ~ (F, F ~ A) denote the map defined by
03BA(03C3) = i-1[g1(03C3)] for cach 03C3 ~ X *. Then it follows that 03BAi is the

identity map on (F, F ~ A) and that LK = gl is homotopic to the
identity map on (X*, A*). This completes the proof.
COROLLARY 7.2. The f rontier F = UBU of any conic ’neighborhood

U o f xo in X is homeomorphic with a f ree de f orniation retract of the
tangent space X* = T(X, xo).
The following theorem is an immediate conséquence of (7.1).
THEOREM 7.3. Il U is a conic neighborhood of xo in (X, A) and

F = UBU, then for each integer n and each coefficient group G we have
isomorphisms

COROLLARY 7.4. Il X is a simplicial complex, xo E X, and F
denotes the frontier of the star of xo in X, then

f or each integer n and each coefficient group G.
Hence, for triangulable spaces, our local homology groups

reduce to those defined by Seifert-Threlfall, [21, p. 121]. On the
other hand, the relation between our local homology groups and
those of van Kampen [14] is given by the following
THEOREM 7.5. Il xo is a conic point in X, then we have

for each n :1= 0 and each coefficient group G.
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PROOF. Let U be a conic ncighborhood of xo in ¿y and F = UBU.
By the excision axiom, we hai-e

for eacli ii. Since F is a deformation retract of UBx0, we have

for each n. Since U is contractible, it follows from the exactness
axiom that

for each n ~ 0. By (7.4) and these isomorphisms, we obtain

for each n ~ 0. Similarly, one can prove the isomorphisms for
cohomology. Q.E.D.
For the missing case n = 0, we may define the reduced local

homology and cohomology groups

Then we havre

As a special case of (7.4), we state the following proposition
which corresponds to the dimension axiom in the global homology
theory.

PROPOSITION- 7.6. The local hoinology a.nd cohomology groups of
the unit interval I = [0,1] at the point 0 are as follows:

8. Remarks on excision.

In the previous sections, we established properties of our local
homology theory which, are analogous to the Eilenberg-Steenrod
axioms for global homology theory except the excision axiom,
[6, p. 11].
Naturally, we would expect a notion of local excision defined as

follows. Let (X, A, xo ) be a given triplet and U be a subset of X
satisfying the conditions:

(LE1) xo E U C A,
(LE2) UBx0 is open in XBxo,
(LE3) UBxo is contained in the interior of A.
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Denote X’ - XB(UBx0) and A’ = AB(UBx0). Then the inclusion

map e : (X’, A’, xo ) C (X, A, xo ) may be called the local excision of
Uixo.
In this case, the tangent space U* = T(U, x0) is a subspace of

X* contained in A * but, in general, U* is not necessarily open
in X*. Hence we cannot deduce from the excision axiom for global
homology theory that the induced homomorphisms of a local
excision on local homology groups are isomorphisms. On the
other hand, if one intends to prove this by using the direct
definition of the local homology group at the end of § 3 and the
method given in [6, pp. 197-200], he will find that he cannot get
through because the unit simplex with one of its vertices deleted is
non-compact. The author does not know if the induced homo-

morphisms of a local excision are always isomorphisms.
If we are willing to lose the compact-open topology of X*, we

can certainly get the local excision property by enlarging the
topology of X* so that U* is open for every subset U of X such
that xo e U and UBxo is open in XBx0. But, it seems to the author
that the local excision property is not so important as to compen-
sate the loss of the nice compact-open topology of X*.

Finally, the following weaker result is an immediate consequence
of (7.1).

(8.1) The induced homomorphisms e* and e* of the local excision
e : (X’, A’, xo ) C (X, A, xo ) on the local homology and cohomology
groups are isomorphisms if there exist an open neighborhood V of xo
in X and a homeomorphism

h : V ~ Con F

of V onto Con F, where F = JIBV, such that

9. The degree of a local map.
Let us consider a given local map f of (X, x0) into (Y, y0)

defined on an open neighborhood U of xo in X, where Y is locally
homeomorphic to the n-dimensional euclidean space Rn at the
point yo with n &#x3E; 1.

According to (7.3), the local cohomology group Ln-1(Y, yo ) is an
infinite cyclic group. By a local orientation of Y at yo, we mean a
choice of a generator of the group Ln-1(Y, y0). There are two
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orientations of Y at yo. Assume that a generator e of Ln-1(Y, yo)
has been chosen; thus, Y is locally oriented at yo.
By § 6, the local map f induces a homomorphism

which depends only the local homotopy class of f.
The element f(e) in the local cohomology group Ln-1(X, xo)

will be called the degree of the local map f and denoted by deg (f).
Since Y is locally homeomorphic to Rn at yo, it makes sense to

talk about the line-segment j oining two points in a sufficiently
small neighborhood of y0 in Y. Then we have the following generali-
zation of the Poincaré-Bohl theorem [2, p. 459].

(9.1) If f : (U, x0) ~ (Y, y0) and g : (V, x0) ~ (Y, y0) are two
local maps of (X, x0) into (Y, y0) and i f there exists an open neighbor-
hood W of xo in X such that W C U ~ V and that, for each x E WBx0,
the line-segment which joins f(x) to g(x) in Y does not contain the
point Yo, then we have

PROOF. Define a homotopy ht : ( W, x0) -+ (Y, y0), (0  t  1),
by taking ht (x ) to be the point which divides the line-segment
joining f(x) to g(x) in the ratio t : (1 - t ) for eaeh x E il’ and each
t E I. Then ho = f, hl = g, and ht(WBxo) C YByo for each t E I. This
implies that f and g are locally homotopic and hence deg ( f ) =
deg (g).
For example, let us consider a system of n continuous real

functions {f1, ..., fn} defined on a neighborhood V of xo in X such
that the .point xo is an isolated zero of the system. Thus there
exists an open neighborhood U C V of xo in X such that, for each
x E U, fi(x) = 0 for all i = 1, ..., n if and only if x = xo. Let
Y = Rn and yo = (0, ..., 0). Then we obtain a local map

f : (U, xo) - (Y, y0) defined by

for each x E U. The degree deg ( f ) of this local map f will be
called the characteristic of the system {f1,..., fn} at its isolated
zero xo.

If the space X is also locally homeomorphic to Rn at x. and is
locally oriented at xo by the choice of a generator d of the infinite
cyclic group Ln-1(X, x0), then the degree deg ( f ) of a local map f
of (X, xo ) into (Y, yo ) determines an integer k such that deg ( f ) =
kd. This integer k will be called the arithmetic degree of the local
map f or the index of f and will be denoted by ind ( f ). In particular,
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if we have (X, aeo) = (Y, y0) and d = e, then ind ( f ) does not
depend on the orientation d = e of X at xo; in this case, the
integer ind ( f ) is the Poincaré-Brouwer index of the isolated

fixed point xo of f.
In the preceding example of a system of n continuous real

functions {f1, ..., fn}, if X is locally homeomorphic to Rn and
locally oriented at xo, then the index ind ( f ) of the local map f
will be calléd the arithmetic characteristic of the system {f1, ..., fn}
at its isolated zero xo or the multiplicity of this zero xo.
As an illustrating example, let Z denote the space of all complex

numbers and z0 = 0. Let us consider the local maps of (Z, zo)
into itself. First, let f be an analytic function with zo as an isolated
zero. Then there exists an open neighborhood U of zo in Z such
that

where, a is a non-zero complex number, p is a positive integer, and
03BB : U ~ Z is an analytic function satisfying |03BB(z)| 1  1 for each

z E U. Define a local homotopy f, : (U, z0) - (Z, zo), 0  t  1,

by taking

for each z e U, where r = 1 a 1 and 0 = am(a). Then we have
fo = f and fl(z) = zp for each Z ~ U. This implies that ind (f ) =
ind (il) = p. Next, let us define

by g(z) = |z| 1 and h(z) = 2. Then we obtain ind (g) = 0 and
ind (h) = - 1. Finally, let k = hf. Then we get

ind (k) = ind (h) - ind ( f ) = - p.

10. Local classification theorems.

Let us consider the set l’of all local maps of (X, xo) into (Y, yo).
According to § 6, F is divided into disjoint (local) homotopy
classes. The local classification problem is to enumerate these ho-
motopy classes.

In the present section, we shall study the local classification
problem for the case where X is locally triangulable at xo and Y is
locally euclidean at yo. Let m and n denote the dimensions of the
spaces X and Y at the points xo and yo respectively. Let Y be
locally oriented at yo by a generator e of infinite cyclic group
L"-1(Y, yo). Then, by § 9, every local map f ~ 0393 determines an
element deg ( f ) of the local cohomology group Ln-1(X, xo).
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THEOREM 10.1. (The local Hopf theorem). I f n &#x3E; 1 and m ~ n,
then the assignment f ~ deg (f) establishes a one-to-one corresponden-
ce between the homotopy classes of the local 1naps of (X, x0) into
(Y, yo) and the elements of the local cohontology group Ln-1(X, xo).
PROOF. Since fh depends only on the homotopy class of the

local map f, it follows that the assignment f ~ deg ( f ) defines a
function

were C denotes the set of homotopy classes of the local maps 0393.

We are going to prove that K sends C onto Ln-I(X, x0) in a

one-to-one fashion.

Let U be a conic neighborhood of xo in X and V be a conic
neighborhood of yo in Y. Denote M = UBU and N = 17BV. Then
there are homeomorphisms

satisfying the three condition (CP1-3) with obvious modifica-
tions. According to our assumptions, M is a finitely triangulable
space of dimensions not exceeding n - 1 and N is an (n - 1)-
sphere.
As in the first paragraph of the proof of (7.1), we have natural

imbeddings

of M and lV into the tangent spaces. According to (7.1), the
induced homomorphisms

are isomorphisms. Hence d = ~*(e) is a generator of the infinite
cyclic group Hn-1(N).
Now, let us prove that K sends C onto Ln-l (X, x0). Let ex be any

element in Lnw (X, xo). By the (global) Hopf theorem, there
exists a map ~ : M ~ N such that the induced homomorphism

carries the generator d into the element t* (oc). The map ~ defines a
map ~’ : Con M ~ Con N in the obvious way. Then the composed
map

is a local map of (X, xo) into (Y, yo). This local map f will be deno-
ted by Con (~). It can be verified that the following rectangle
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is commutative. Hence

deg (f ) = P(e) = i*-1~* ~*(e) = i*-1~*(d) = Oc.
This proves that K send C onto Ln-1(X, x0).

It remains to prove that K is one-to-one. In order to do this,
we have to prepare some preliminary considerations.

First, let f be an arbitrary local map of (X, x0) into (Y, y0)
defined on an open neighborhood W of xo in X. For each positive
real number r  1, let K,. denote the set of points h-1p(x, t) with
x ~ M and r  t  1, where p : M  I ~ Con M denotes the

natural projection. Then it follows from the continuity of f that
there exists a Kr such that Kr C W and f(Kr) C V.

Let q : N X I - Con N, n : N X I - N and 03C3 : N  I ~ I
denote the natural projections. Define a homotopy Es : Kr ~ V,
(0 ~ t ~ 1 ), as follows. For s = 0, we set eo = f 1 Kr. Assume
0  s :::;: 1 and define Es by taking

where

Intuitively speaking, 03BEs is obtained by replacing f | Krs-s+1 with
a linear map. In particular, el is a linear map given by 

with

03BE1h-1p(x, t) = k-1q[~(x), 0(z, t)], (x E M, r  t  1),

where ~(x) = 03C1(x, 1) and 03B8(x, t) = 03B8(x, 1, t). One can verify that
e.(xo) = yo and 03BEs(KrBx0) C VBy0. Thus we get an admissible

homotopy 03BEs : (Kr, x0) ~ (Y, y0), (0 ~ s ~ 1), in the sense of § 4.
Define a homotopy ~s : Kr ~ V, (0  s ~ 1), by taking

~sh-1p(x, t) = k-1q[~(x), 03C4(x, s, t)], (x E M, r  t  1),
where z(x, s, t) = [(1 - s)(1 - t)03B8(x, t) + t - r + rs - rst]/(1-r).
Then 2îo = 03BE1, ~s(x0) = yo and ~s(KrBx0) C VBy0. Thus we get an
admissible homotopy iî., : (KI" x0) ~ (Y, y0), (0 ~ s ~ 1). The
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map n, is given by

Hence we obtain a map ~ : M ~ N and ~1 is the restriction on K,
of the map Con (~). This proves that, for any given local map
f e r, there exists a map ~ : M ~ N such that f is locally homotopic to
the local map Con (~).
Now, let us prove that the function K is one-to-one. For this

purpose, it suffices to show that any two local maps f, q ~ 7’ are
locally homotopic if deg ( f ) = deg (g). By the assertion proved
in the last paragraph, we may assume that f = Con (~) and
g = Con (03C8), where ~ and y are maps of M into N. By the commu-
tativity of the rectangle in the first part of this proof, we liave

Similarly, we have

Hence deg (f) = deg (g) implies ~*(d) = y*(d). By the (global)
Hopf theorem, the latter implies that ~, 03C8 are homotopic and,
therefore, f, g are locally homotopic. This completes the proof of
(10.1).
The preceding proof suggests that the relation ~ ~ Con (~)

may reduce the local classification problem to the corresponding
global problem for more general cases. In fact, we have the

following
THEOREM 10.2. 1 f xo, yo are conic points of X, Y zvith conic

neighborhobds U, V respectively M = UBU, N = 17BV, then the

assignment of the local map Con (~) to each map ~ : M ~ N induces
a one-to-one correspondence between the homotopy classes of the maps
o f M into N and those of the local maps of (X, x0) into (Y, yo).
PROOF. It suffices to prove two assertions: (1) for each local

map f of (X, xo) into (Y, yo), there exists a. map ~ : M - N
such that f is locally homotopic to Con (~); and (2) if ~, 03C8 : M ~ N
are maps such that Con (~), Con (y) are locally homotopic, then
~, 03C8 are homotopic. The assertion (1) has been proved in the proof
of (10.1) and the assertion (2) can be proved by the same technique
applied on a local homotopy. Q.E.D.
The local Hopf theorem (10.1) is an immediate consequence of

(10.2) and the (global) Hopf theorem. Furthermore, one can
easily deduce local versions of the more refined (global) classifi-
cation theorems of Steenrod, [22, p. 318], and others.
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11. Stability of local maps

A local map f of (X, xo ) into ( Y, yo ) defined on an open neighbor-
hood U of xo in X is said to be unstable if, for every open neiglibor-
hood V of xo in U, there exists a homotopy f t : U ~ Y, (0  t  1 )
such that f0 = f, f 1 ( U ) C YByo, and ft(x) - f(x) for every x E UBV
and every t E I ; otherwise, f is said to be stable. By the stability of a
local map f, we mean the answer to the question whether f is

stable or unstable. For related notions of this terminology, see
[2, p. 523], [13, p. 74], and [3].
Naturally, one would ask whether or not the stability of a local

map f depends only on its (local) homotopy class. This is answered
affirmatively by the following theorem for the case where X is a
normal Hausdorff space.

THEOREM 11.1. Let f and g be two local maps of (X, xo ) into (Y,y)
which are locally homotopic. Il X is a normal Hausdorff space and g
is unstable, then so is f.
PROOF. Let f and g be defined on the open neighborhood U and

V of X0 in X respectively. Then there exists an open neighborhood
W of xo in U ~ V together with a local homotopy

such that ho = f 1 W and hl = g j 1 w.
To prove that f is unstable, let M be any open neighborhood of

xo in U. As a normal Hausdorff space, X is regular. Hence there
exist open neighborhoods N and Q of xo in X such that N C Q and
Q C Mrl W. By Urysohn’s lemma [16, p. 27], there exists a

continuous real function ~ : X ~ I such that ~(XBQ ) = 0 and
~(N) = 1. On the other hand, since g is unstable and N is an open
neighborhood of xo in V, there exists a homotopy g, : V ~ Y,
(0  t ~ 1), such that go = g, g1(V) C YByo, and gt(x ) = g(x ) for
every x E VBN and every t E I.

Define a local homotopy et : (U, x0) ~ (Y, yo ), (0 ~ t ~ 1), by
setting

Then eo = f, el(x) = g(x) for each x e N, and 03BEt(x) = f(x) for
each x e !7BÇ and each t ~ I. Therefore, we may define a homotopy
’1Jt : U - Y, (0 ~ t ~ 1), by taking
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Then 170 = 03BE1, 171(U) C Ylyo and ~t(x) = f(x) for each ,z E UBQ and
each t E I.

Let f t : U ~ Y, (0  t  1 ), be the homotopy defined by

Then f o = f, f1(U) C YByo, and ft(x) = f(x) for every x ~ UBQ and
every tEl. Since Q C M, this proves the theorem.

THEOREM 11.2. Let xo and yo be conic points of the spaces X
and Y respectively,. If a local map f of (X, xo) into (Y, yo) is unstable,
then the induced hom01norphis’ms

are zero homomorphisms f or every coefficient group G.

PROOF. By (5.2), we may assume without loss of generality that
the local map f is defined throughout X. Then, by (7.5), it suffices
to prove that the induced homomorphisms

of the admissible map f : (X, xo) - (Y, yo) are zero homo-

morphisms for every coefficient group G and every integer n.
Let U be a conic neighborhood of xo in X. Since f is unstable,

there exists a homotopy f t : X ~ Y, (0  t ~ 1 ), such that f o = f,
fl(X) C YWo, and ft(x) = f(x) for every x e XBU and every t eI.

Since XBU is a deformation retract of XBx0, the inclusion map
i : (X, XBU) C (X, XBxo) induces isomorphisms

Since 1,(x) = f(x) e YBy0 for every x e XBU and every t e l, the
homotopy f t : X - Y, (0  t  1 ), defines a homotopy

gt : (X, XBU) -+ (Y, YByo), (0 ~ t ~ 1).
Then we have go = fi and gl(X) C YBy0. It follows that

Since i* and i* are isomorphisms, these imply f* = 0 and f * = 0.
This completes the proof.
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THEOREM 11.3. Let X be locally triangulable at xo and Y be

locally euclidean at yo. Let m and n denote the dimensions;o f X and Y
at the points xo and yo respectively. If n &#x3E; 1 and m  n, then a local

map f of (X, x0) into (Y, y0) is unstable i f and only i f deg (f) = 0.
PROOF. Necessity. Let Y bc locally oriented at yo by the generator

e E Ln-1(Y, yo). Then deg (f) = f(e). Hence, by (11.2), we have
deg ( f ) = 0 if f is unstable.

Sufficiency. Let us use the notations in the proof of (10.1).
Since U is a normal Hausdorff space, we may apply (11.1). Hence,
by (10.1 ) and (11.1 ), it suffices to construct an unstable local map 1
of (X, xo) into (Y, yo) with deg (f) = 0. For this purpose, let us
pick an arbitrary point y e N and define a map f : (X, xo) ~ (Y, yo)
by taking

where 03C9 : M X I ~ I denotes the natural projection. Thus f is an
admissible map which sends X onto the line-segment joining
yo to y. Now it is obvious that deg ( f ) = 0 and that f is unstable.
This completes the proof.

12. Pathwise connectedness around a point.
A space X is said to be pathwise connected around a point

xo E X if its tangent space X* = T(X, xo ) at xo is pathwise connec-
ted. A direct description of this notion without using the tangent
space can be given as follows. Let J denote the subspace of the
unit 2-simplex d 2 in euclidean 3-space consisting of those points
(to, t1, t2) of L12 satisfying tlt2 = 0. Let vo denote the leading vertex
(1, 0, 0) of’j2. Then J is the union of the two sides of’03942 containing
vo as a vertex. Now, one can easily see that a space X is pathwise
connected around a point x0 ~ X if and only if every admissible
map f : (J, v0) - (X, x0) in the sense of § 4 has a continuous
extension F : (L12, v0) ~ (X, xo ) which is also an admissible map.
The following theorem is an immediate consequence of the

definition giveii above.

THEOREM 12.1. A space X is pathwise connected around a point
xo E X i f and Only il L0(X, xo ) = 0 or, equivalently, L0(X, xo) -- Z.

If X is completely regular at xo, then it follows from (12.1) that
the pathwise connectedness around x,, is a local property of X
at xo. One can also prove directly that this is true without assuming
the complete regularity.

Ne;t, let us give a sufficient condition for the pathwise connec-
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tedness around a point in terms of the notion of a local homotopy
non-r-cut point analogous to a homology version introduced by
Wilder [27, p. 223]. For related notions, see also [8, p. 353].
A space X is said to have xo E X as a local homotopy non-r-cut

point if, for every open neighborhood U of xo in X, there exists an
open neighborhood V of xo in U such that every map f : S’’ ~ VBx0
of the r-sphere S’’ is homotopic to a constant in UBxo.
THEOREM 12.2. If a space X has a countable basis at a point

xo E X and if xo is a local homotopy non-r-cut point of X for r = 0,1,
then X is pathwise connected around xo.

PROOF. Since X has a countable basis at xo, there exists a

sequence of open neighborhoods

such that Ui+1 C u for each i and that their intersection contains
only the point XO. Since xo is a local homotopy non-r-cut point of
X for r = 1 and 0, there exist two sequences of open neighborhoods

{Vi} = V19 V2, ..., Vi, ..., {Wi} = W1, W2, ..., W i, ...
of x0 in X satisfying the following conditions for every i = 1, 2,... ;

(1) Vi+1 C V C Ui and Wi+1 C W C V i.
(2 ) Every loop in ViBx0 is homotopic to a constant in UiBx0.
(3 ) Every pair of points in WiBx0 can be connected by a path

in ViBx0.
To prove that X is pathwise connected around X0, let

f : (J, v0) - (X, x0) be any admissible map. We are going to
construct an admissible extension F : (L12, v0) - (X, x0) of f.

Let Ji = 1-’(Wi). Then Ji is an open neighborhood of vo in J.
Choose an increasing séquence

of positive real numbers ai  1 such that the line-segments
joining vo to the points

are contained in Ji. Since f is admissible, it follows that the

séquences of points {pi} and {qi} both converge to vo. Hcnce,
{ai} converges to 1.

Since f(pi) and f(qi) are points in WiBx0, it follows from (3)
that there exists a path 03C3i : I ~ ViBxo such that 03C3i(0) = f(Pi) and
03C3t(1) = f(qi).
Let Ti C L12 denote the trapezoid with pi, qi, Pi+l and qi+1 as
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vertices; in other words,

Then the boundary B, of Ti consists of the points (to, tl, t2 ) of T i
such that

Define a map CPi : Bi ~ ViBx0 by taking

It follows from (2) that CPi has a continuous extension

oi : Ti - UiBx0.
Finally, let To denote the trapezoid consisting of the points

(to, tl, t2 ) ~ 03942 such that 0 ~ to ~ al and C the subspace of T0
consisting of the points (to, t1, t2 ) E To such that tlt2(to - al ) = 0.
Then C is a retract of To. Let p : T0 ~ C be a retraction of To
onto C. Define a map ~0 : C ~ XBx0 by taking

Then ~0 has a continuous extension 00 : T0 ~ XBxo given by
00 = ~0 03C1.

Then, an admissible extension F : (L12, v0) ~ (X, x0) of f may
be constructed by setting F(p) = 03A6i(p) if p E T i, ( i = 0, 1, 2, ... ) .
The continuity of F at the point vo follows from the facts that
03A6i(Ti) C Ui for each i &#x3E; 0 and that {Ui} is a basis at xo. The

admissibility of F follows from the fact that 03A6i(Ti) C X(xo for
each i ~ 0. This completes the proof of (12.2).
The condition in (12.2) is obviously not necessary. For, if

X = Con S’ and xo = v, then xo is not a local homotopy non-1-cut
point of X while X is pathwise connected around xo by (7.1).
Because of this, (12.2) is rather unsatisfactory. To improve (12.2),
we have to introduce another notion.

A space X is said to be locally r-shrinkable at xo if, for every
open neighborhood U of xo in X, there exists an open neighborhood
V of xo in U such that, for every open neighborhood V’ of xo in V,
there exists an open neighborhood W of xo in V’ such that every
map

is homotopic to a constant in (UBx0, WBx0), where E’’ denotes the
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unit r-cell in the euclidean r-space and sr-l denotes the boundary
sphere of E’’. Applying the homotopy extension theorem twice,
one can prove the existence of a homotopy

such that f0 = f , f1(Er) ~ WBx0, and ft(p) = f(p) for every

p E Sr-l and every t E I.

If xo is a conic point of X, then it is clear that X is locally
r-shrinkable at xo for every r ~ 1.

TIIEOREM 12.3. I f a space X has a couniable basis at a point
x0 E X, i f xo is a local homotopy non-0-cut point o f X, and i f X is
locally 1-shrinkable at x., then X is pathwise connected around xo.

PROOF. Let {Ui} be a decreasing sequence of open neighborhoods
of xo in X such that their intersection contains only the point ,vo.
Since xo is a local homotopy non-0-eut point of X and X is locally
1-shrinkable at xo, there exist two sequences of open neighborhoods
{Vi} and {Wi} of xo in X sa.tisfying the following conditions for
every i = 1, 2, ...:

(1 ) Vi+1 C Vi C Ui and Wi+1 C Wi C Vi+1.
(2) Every path in ViBxo whose end points are in WiBx0 is

homotopic in UiBxo to a path in W iBxo with end points held fixed
during the homotopy.

(3) Every pair of points in W1Bx0 can be connected by a path
in III Bxo.
The remainder of the proof proceeds as in the proof of (12.2)

with obvious modifications and hence is omitted.

As a partial converse of (12.2) and (12.3), we have the following

THEOREM 12.4. I f a space X is locally arcwise connected at a point
xo,E X and pathwise connected around x., then xo is a local homotopy
non-o-cut point of X.

PROOF. Let U be any given open neighborhood of xo in X. Since
X is locally arcwise connected at xo, there exists an open neighbor-
hood V of xo in U such that every pair of points in V can be
connected by an arc in U.

Let a and b be any two points in VBx0. Then there exists a pair of
homeomorphisms 03BE, ~ : I ~ U of the unit interval I into U such
that 03BE(0) = a, 03BE(1) = x0, ~(0) = b, and ~(1) = xo. Hence we may
define an admissible map f : ( J, v0) - (X, x0) by taking
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Since X is pathwise connected around xo, the map f has an ad-
missible extension F : (L12, v0) ~ (X, xo).

Since F(v0) = xo, it follows from the continuity of F that there
exists a positive real number k  1 such that F(to, tl, t2) ~ U for
every point (to, tl, t2 ) of d 2 with k ~ t0 ~ 1. Now define a path
a : I ~ X by taking

Then one can easily verify that 03C3(0) = a, 03C3(1) = b, and

03C3(I) C UBxo. Hence x0 is a local homotopy non-o-cut point. Q.E.D.
Finally, let us establish the fact that the pathwise connectedness

around a point x0 of a space X is a local property at x0. In fact,
we hâve the following
THEOREM 12.5. Let U be any given open neighborhood o f x0 in x.

Then X is pathwise connected around x0 i f and only i f U is paihwisL
connected around xo.

PROOF. Sufficiency. Let f : (J, vo) ~ (X, xo) be any admissible
map. Then, there exists a non-négative real number A  1 such

that f(t0, ti, t2 ) E U for ev"ery (to, tl, t2) ~ J with k ~ to ~ 1. Let S
and T denote the subspaces of 03942 defined by

Since U is pathwise connected around x0, there exists an admissible
map G : (S, v0) ~ (U, x0) such that G(p) = f(p) whenever

p e J ~ S. Then G can be extended throughout J ~ S hy setting
G(p) = f(p) for every p ~ J. On the other hand, there exists a
retraction 03C1 : T ~ T ~ (J ~ S). Define an admissible map
F : (L12, t’o) ~ (X, x0) by taking

Then F is an extension of f and hence X is pathwise connected
around xo.

Necessity. Let ~ : (J, v0) - (Il, xo) be any gi,yen admissible map.
Since X is pathwise connected around x0, ~ has an admissible
extension P: (0394, v0) ~ (X, x0). Let us use the notation in the
sufficiency proof. There exists a non-negati;e real number k  1

such that 03A8(S)~U. Define an admissible map 03A6 :(L12,t’0) - (U,x0)
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by taking

Then 0 is an extension of ~ and hence U’ is pathwise connected
around x.. This completes the proof.

13. Local homotopy groups.
Let X be a given topological space and xo a given point in X.

Assume that the arc-component C of X ,vhich contains xo is non-

degenerate and that X is pathwise connected around xo. Then, by
définition, the tangent space X* = T(X, x0) is non-empty and
pathwise connected. Therefore, for each n ~ 1, the homotopy
group nn(X*) is «ell defined and does not depend on the choice of
the basic point in X*. This group will be called the n-dimensional
local homotopy group of X at x.; in symbols,

For a geometrical representation of the elements of ).,,(X, xo),
let us pick a path 03C3 E X* to serve as the basic point of 03C0n(X*).
Let Jn+i denote the subspace of the unit (n + 2)-simplex L1n+2
consisting of all faces of 0394n+2 exccpt the one opposite to leading
vertex vo. Thus, Jn+1 is given by the formula

Then each element of 03BBn(X, x0) is represented by an admissible map
f : (Jn+1, z’o ) ~ (X, x0) such that the leading edge VOVI is mapped
as the basic path cr, tliat is to say,

T".o of these admissible maps f and g represent the same element of
i"n(X, xo) if and only if therc exists an admissible homotopy ht such
that ho = f, hl = g, and h, maps the leading edge VOVI as the
basic path g for each t ~ I. In particular, f represents the neutral
element of 03BBn(X, xo ) if and only if it has an admissible extension
F: (L1n+2’ vo) ~ (X, XO)-

If the space X is not pathwise connected around the point xo,
then the homotopy group nn(X*, 03C3) depends on thc choicc of the
basic path a and, therefore, we have to indicate the path a in the
notation of the local homotopy group, namely

We may also dcfine the relative local homotopy groups as follows.
Let (X, A, xo) be a givcn triplet whcrc the arc-component of A
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which contains xo is non-degenerate. Then the tangent space
A* = T(A, x0) is non-empty. Choose a path 03C3 ~ A* as basic

point and define

One can also define the boundary homomorphis1n8

in the obvious way.
If the subspace A is pathwise connected around the point xo,

then the group 03C0n(X*, A *, a ) does not depend on the choice of the
basic point a and we may drop the symbol a from the notation.
Now, let f : (X, A, x0) - (Y, B, yo ) be an admissible map of

(X, A, xo ) into another triplet (Y, B, y0). By § 4, f induces a map

Therefore, we may define induced homomorphisms

as those induced by f on the relative and absolute (global) homo-
topy groups.
The following properties of the induced homomorphisms are

obvious.

(13.1) Il f is the identity map of (X, A, x0), then the induced
homomorphisms f* are the identity automorphisms.

(13.2) Il f : (X, A, xo) ~ (Y, B, yo), g : (Y, B, yo) ~ (Z, C, z0)
are admissible maps, then (gf)* = g* f*.

(13.3) The following rectangle is commutative:

Unlike their global counterparts, 03BBn(X, xo; 0’) cannot be con-
sidered as a special case of the relative group 03BBn(X, A, xo; 0’) by
taking A = xo because a is not a path in the subspace xo. However,
the inclusion map j : (X*, 03C3) C (X*, A *, 0’) induces a homo-

morphism
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for each n &#x3E; 2. On the other hand, the inclusion map i : :(A, xo ) C
(X, xo ) induces a homomorphism

for each n ~ 1. The following property is now obvious.

(13.4) For any triplet (X, A, x0), where the arc-component of A
containing xo is non-degenerate, the sequence

is exact. This will be called the local homotopy sequence of (X, A, xo;a).
Finally, an admissible map f : (X, A, xo ) - (Y, B, yo ) of

(X, A, xo ) into another triplet (Y, B, yo ) gives a commutative
ladder of induced homomorphisms of the local homotopy sequence
of (X, A, xo; 03C3) into that of (Y, B, yo; f a).

14. Properties of local homotopy groups.
To justify the definition of local homotopy groups given in the

preceding section, we have to show that the local homotopy
groups are really local invariants. For this purpose, we are going to
establish the following
THEOREM 14.1. Il U is an open neighborhood of a point xo in a

space X, then the inclusion map f : ( U, xo ) C (X, xo ) induces an
isomorphism

f* : 03BBn(U, x0; 03C3) ~ 03BBn(X, x0; 03C3)

for every n &#x3E; 1 and every basic path a E T(U, x0).
PRQOF. First, let us prove that f * is an epimorphism. For this

purpose, let u E 03BBn(X, xo; a) be represented by an admissible map
~ : (Jn+1, vo ) ~ (X, xo ) such that ~ (t0, tl, 0, ..., 0) = 03C3(t1). By
continuity of ~, there exists a non-negative real number k  1

such that ~(t0, t1, ..., tn+2) ~ U for every point (to, tl, ..., tn+2) of
Jn+1 satisfying k  to ~ 1. Let S and T denote the subspaces of
Jn+1 defined by

and let C denote the subspace of T defined by

Then C is a deformation retract of T and hence there exists a

homotopy h, : T ~ T, (0 ~ T ~ 1), such that ho is the identity
map, h1(T) C C, and ht(p) = p for every p E C and t E I. Define an
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admissible homotopy ~t : (Jn+1, vo) - (X, xo), (0  t  1), by
takine

Then ~0 = ~, ~1(Jn+1) C U, a11d CPt(to, tl, 0, ..., 0 ) = 03C3(t1) for

every t ~ I. ~1 represents an element 03B2 of Ân(U, xo; a ) and the
homotopy ~t implies that f*(03B2) = a. Hence f * is an epimorphism.

Next, let us prove that f * is a monomorphism. For this purpose,
let y denote any element of 03BBn(U, xo; 03C3) such that f*(03B3) = 0.
Then y is represented by an admissible map y : (Jn+1; vo ) - ( U, xo )
satisfying 1p(to, tl, 0, ..., 0) = a(t1). Since f*(03B3) = 0, 03C8 has an

admissible extension 1p : (L1n+2’ VO) ~ (X, xo ). By continuity of P,
there exists a non-negative real number k  1 such that

P(to’ tl, ..., tn+2) E U for every point of 0394n+2 satisfying 03BA ~ t0 ~ 1.
Let S and T denote the subspaces of 0394n+2 defined by k ~ to ~ 1
and 0  to  k respectively. Let C denote the subspace of T
defined by

Then C is a retract of T and hence there exists a retraction

p : T ~ C of T onto C. Define an admissible map 0 : (0394n+2, vo) -
(U, x0) by taking

Then 0 is an extension of 03C8 and, therefore, y = 0. This completes
the proof.
COROLLARY 14.2. Il X is pathwise connected around xo, then the

local homotopy groups Ân(X, xo), n = 1, 2, ..., are local invariants
o f X at the point xo.

This is an immediate consequence of (12.5) and (14.1).
COROLLARY 14.3. Il (X, A, x0) and (U, D, uo) are triplets such

that U is an open neighborhood of xo in X, D = U n A, and uo = xo,
then the inclusion map f : ( U, D, u0) C (X, A, x0) induces an

isomorphism

for every n &#x3E; 2 and every basic path (J E T(D, uo).
This follows immediately from (14.1) and an application of the

,,five" lemma, [6, p. 16].
COROLLARY 14.4. If (X, A, xo) C (Y, B, yo) and if there exists an

open neighborhood U of xo = yo in Y such that U C X and Un B C A
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then the inclusion 1nap f : (X, A, x0) C (Y, B, Yo) induces the

isomorphis1ns

for every basic path a E T ( U n B, x0).
The proof of this is sir:zila,r to that of (5.3).
THEOREM 14.5. Il U is a conic neighborhood o f xo in (X, A),

F = UBU, and a is the path joining xo to a point xl E F ~ A along
the line segment xo xl, then we have

This is a direct consequence of (7.1). In fact, the homotopy equi-
valence i : (F, F ~ A) ~ (X*, A*) in the proof of (7.1) induces
isomorphisms

COROLLARY 14.6. If U is a conic neighborhood o f xo in X ailh
pathwise connected irontier F = UBU, then X is pathwise connected
around xo and 03BBn(X, x0) ~ ’Jln(F) for every n &#x3E; 1.

This is an immediate consequence of (7.2) and (14.5). Hence, in
this case, our local homotopy groups reduce to those of H. B.
Griffiths, [8, p. 357J." As an important special case of (14.6),
let X be a simplicial complex, xoc X, and F the frontier of the
star of xo in X. Then X is pathwise connected around x. if and only
if F’ is connected. In this case, we have 03BBn(X, x0) ~ ’Jln(F) for
every n ~ 1.
The properties stated in the remainder of this section are

obvious consequences of the definition of local homotopy and
homology groups.
THEOREM 14.7. Il X is pathwise connected around xo, then there

is a natural homomorphism

for each n ~ 1. The homomorphism hl is an epimorphism and its
kernel is the commutator subgroup o f the local fundamental group
03BB1(X, xo).1 f Â« (X, xo) = 0 for every q  n, then hn is an isomorphism.
THEOREM 14.8. Every path -c : I ~ T(X, x0) induces an iso-

morphism
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where ao = 03C4(0) and al = 03C4(1); 03C4* depends only on the homotopy
class of 03C4. In particular, the local fundamental group 03BB1(X, xo; 03C3)
operates on 03BBn(X, xo; 03C3) as a group of automorphisms; i f n = 1,
then 03B1(03B2) = ocpoc-’.
A space X is said to be locally n-simple at xo if, for every basic

path a E T(X, xo ), the local fundamental group 03BB1(X, xo; 03C3)
operates simply on 03BBn(X, xo; a ), that is to say, 03B1(03B2) = 03B2 for every
03B1 ~ 21(X, xo; 03C3) and every PE 03BBn(X, x0; 03C3). Thus, X is locally
n-simple at xo if 03BB1(X, xo; 03C3) = 0 or 03BBn(X, xo; 03C3) = 0 for every
basic path a E T(X, xo). Also, X is locally 1-simple at xo if and
only if 03BB1(X, xo; a) is abelian for every basic path 03C3 ~ T(X, xo).

If X is pathwise connected around xo and is locally n-simple at
X0, then the elements of the local homotopy group 03BBn(X, x0) may
be considered as the (admissible) homotopy classes of the admissi-
ble maps of (Jn+1, v0) into (X, x0). A better geometrical re-

presentation of 03BBn(X, xo) will be given in § 17.
Now let us consider a given admissible map

where X, Y are pathwise connected around xo, yo respectively.
Choose a basic path a E T(X, x0). Then f induces the homo-
morphisms

Then we have the following local version of the Whitehead
theorem.

THEOREM 14.9. For each positive integer n, we have the following
two assertions:

(1 ) If 03BEq is an isomorphism for every q  n, then so is ~q. If 03BEq is an
ison2orphism f or every q  n and is an epimorphism f or q = n,
then so is ~q.

(2) Assume that 03BB1(X, xo ) = 0 = 03BB1(Y, y0). Il ~q is an iso-

morphism for every q  n and is an epimorphism for q = n, then
so is ;q. Furthermore, i f 1Jn is also an isomorphism, then the kernel
of 03BEn is contained in the kernel of the natural homomorphism
hn : 03BBn(X, XO; a) ~ Ln(X, x.).

Hence, if X is pathwise connected around xo, then (5.2) and
(5.3) are consequences of (14.1) and (14.9) without assuming
complete regularity. By considering the path-components of

T(X, x0), one can also remove the condition that Y be pathwise
connected around xo.

It is quite clear that every operation introduced in the global
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theory and every result proved in the global theory have obvious
local versions. This is the advantage of our definition of the local
invariants, for we don’t have to toil at the developments parallel
to those done in the global theory.

15. The vanishing of local homotopy groups.
In the present section, we shall study the relation between the

vanishing of a certain local homotopy group and other local
properties such as being a homotopy non-r-cut point.
THEOREM 15.1. I f a space X has a countable basis at a POi11,t

x0 ~ X and il xo is a local homotopy non-r-cut point of X for r = n
and n + 1, then Ân(X, xo; 03C3) = 0 f or every basic path a E T(X, x0).

This can be proved as (12.2). We omit the proof, as the changes
required are obvious.
The condition that xo be a local homotopy non-(n + 1 )-eut

point is obviously not necessary for 03BBn(X, xo ; 03C3) = 0. For, if

X = Con Sn+1 and xo = v, then xo is not a local homotopy
non-(n + 1 )-cut point while 03BBn(X, XO) 03C0n(Sn+1) = 0. To im-
prove (15.1), we have the following
THEOREM 15.2. Il a space X has a countable basis at a point

xo E X, i f xo is a local homotopy non-n-cut point o f X, and i f X is
locally (n + 1)-shrinkable at xo, then 03BBn(X, XO; a) = 0 for every
basic path a E T(X, x0).
The proof of this theorem is similar to that of (12.3) with

obvious changes and hence omitted. This theorem is satisfactory
becau$e it implies that, at a conic point xo E X, 03BBn(X, xo; a ) = 0
for every Q E T(X, xa) if xo is a local homotopy non-n-cut point of X.
To establish some inverse of (15.1) and (15.2), we have to

introduce another local property.
A space X is said to be r-convergent at a point xo E X if, for

every open neighborhood U of xo in X, there exists an open neigh-
borhood V of xo in U such that, for every open neighborhood
W of xo in V, every map f : Sr - VBx0 is homotopic in UBx0 to a
map of S’’ into WBx0.

If ao is a conic point of X, then it is clear that X is r-convergent
at xo for every r &#x3E; 0. A space X is 0-convergent at xo if and only if
X is locally arcwise connected at xo.
THEOREM 15.3. I f a space X has a countable basis at a point

xo E X, il X is n-convergent at xo, and i f 03BBn(X, xo; a ) = 0 for
every basic path 03C3 ~ T(X, x0), then xo is a local homotopy non-n-cut
point. of X.
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PROOF. Let U be any open neighborhood of xo in X. Since X has
a countable basis at xo, there exists a sequence {Ui} of open
neighborhoods of xo in X such that

Since X is n-convergent at xo, there exists a sequence {Vi} with

such that every map of Sn into ViBx0 is homotopic in UiBx0 to a
map into Vi+1Bx0.
Now let V = Vi and ~ : sn -+ VBx0 be a given map. It remains to

show that ~ is homotopic in UBxo to a constant.
Consider S" as the subspace of Jn+1 defined by to = 0. We shall

first prove that ~ has an admissible extension f : (Jn+1, v0) ~ (U,xo).
For each i = 1, 2, ..., let

We shall construct inductively two sequences of maps

such that f1 |S1 = ~1 = ~ and fi-1 Si = CPi = fi | Si for each
i &#x3E; 1. Assume i &#x3E; 1 and that we have already constructed the
maps CPi for each i ~ j and f for each i  j. Since Si is also an
n-sphere and ~j is a map of Si into VjBx0, it follows that ~j is homo-
topic in U;Bxo to a map into Vj+IBXO. This implies the existence of a
map fj : Tj ~ U;Bxo such that fj | Si = ~j and fj(Sk+1) C Vj+1Bx0.
Define ~j+1 by taking ~j+1 by taking ~j+1 = fj | Sj+1. This completes
the inductive construction of {Oi} and {fi}. Then we may define an
admissible extension f : (J n+l’ v0) ~ (U, xo ) by taking

By (14.1), 03BBn(U, xo; 03C3) ~ 03BBn(X, xo; 03C3) = 0 for every basic path
a E T(U, x0). Hence f has an admissible extension F : (Lln+2’ vo ) ~
(U, x0). Let En+’ denote the subspace of 0394n+2 defined by to = 0.
Then F|En+1 is an extension of ~. Since F(En+1) is contained in
UBx0, it follows that ~ is homotopic in UBx0 to a constant. This
completes the proof.
COROLLARY 15.4. Let xo be a conic point of a space X. Then x0
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is a local homotopy non-n-cut point i f and only i f 03BBn(X, xo; (1) = 0
f or every basic path a E T(X, xo).

This is an immediate consequence of (15.2) and (15.3).
COROLLARY 15.5. Il a space X has a countable basis at a point

xo E X and if X is n-convergent at xo, then X is n-LC at xo.
We recall that X is said to be n-LC at xo if, for every open

neighborhood U of xo in X, there exists an open neighborhood
V of xo in U such that every map ~ : Sn ~ V is homotopic in U to a
constant, [17, p. 79]. This corollary is proved by the existence of
the extension f of ~ in the proof of (15.3).

Let n be a positive integer. A space X is said to be n-connected
around a point xo E X if X is pathwise connected around xo and
03BBq(X, xo) = 0 for every q  n. In case n = 1, it is also said to be

simply connected around x.. The following theorem is an immediate
consequence of (12.2), (15.1) and (15.2).
THEOREM 15.6. A space X is n-connected around a point Xo E X

if the following conditions are satisfied :
(1) X has a countable basis at xo;
(2) xo is a local homotopy non-r-cut point of X for every l’  n;

(3) X is locally (n + 1 )-shrinlcable at xo.
COROLLARY 15.7. Let xo be a conic point of a space X. Then X

is n-connected around xo if and only i f xo is a local homotopy non-r-cut
point of X for every r  n.

16. Induced homomorphisms of local maps.
To def ine the induced homomorphisms on local homotopy

groups of a local map, let us consider the following diagram:

where f is a given local map of (X, xo) into (Y, yo) defined on an
open neighborhood U of xo in X and i denotes the inclusion map.
Pick a basic path a E T(U, xo ) C T(X, xo ). By (14.1), the induced
homomorphism i* in the following diagram

is an isomorphism for each n ~ 1. Hence we may define a homo-
morphism

for each integer n ~ 1. This homomorphism will be called the
induced homomorphism of the local map f on the n-dimensional local
homotopy group.
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The admissible maps of (X, xo ) into (Y, y0) are special cases of
local maps. By (13.1), we have the following property:

(16.1) If f : (X, xo ) ~ (Y, y0) is an admissible map, then f = f*.
Let f : ( U, x0) ~ (Y, y0) be a local map of (X, x0) into (Y, y0)

and g : (V, yo ) - (Z, zo ) be a local map of (Y, y0) into (Z, zo).
Let W = f-1(V) C U. Then g f : ( W, xo ) ~ (Z, zo) is a local map of
(X, aeo) into (Z, zo). The following property is obvious.

(16.2) For every basic path a E T(W, x0), we have (gf) = gf.
Now, let us study the effect of a local homotopy on the induced

homomorphisms. For this purpose, let f : (U, xo ) ~ (Y, yo ) and
g : (V, xo ) - (Y, yo ) be two local maps of (X, xo ) into (Y, y0), and
pick a basic path a E T(U m V, xo ). Assume that f and g are local
homotopic with a local homotopy

defined on an open neighborhood of xo in U ~ Tl such that
ho = f W and h1 = g | W . By continuity of the path a, there
exists a positive real number k  1 such that 03C3(t) ~ W whenever
0 ~ t ~ k. Define a path 03C4 : I ~ T(U n V, x0) by taking r(s),
8 E I, to be the path in Y defined by

Then 03C4(0) = la and 03C4(1) = ga. Therefore, r induces an iso-

morphism z* of Ân(Y, yo; ga ) onto Ân(Y, yo ; f03C3). One can verify
that 1’* does not depend on the choice of the real number k.
According to the global homotopy theory, we have the following
property:

(16.3) For each n &#x3E; 1, the following triangle is commutative

The following theorem covers an important special case of what
has been established above.

THEOREM 16.4. Il X, Y are pathwise connected around xo, yo
respectively and i f Y is locally n-simple at yo, then every local map
l of (X, x0) into (Y, yo ) induces a homomorphism
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satisfying (16.1), (16.2) and that f = g for any pair of local

1naps f, g which are locally hoiiiotopic.
So far, we have established all properties of local homotopy

groups corresponding to the seven axioms of the global homotopy
theory [10, p. 493] except the most important "Fiberillg Axiom,"
a detailed study of whieh is to be given in a fortlicoming paper of
the author [12].
THEOREM 16.5. Il X, Y are pathwise connected around x. E X,

yo E Y respectively then, f or the induced h01no1norphisms

of a local map f : ( U, x0) ~ (Y, y0) with a E T(U, x0), then assertions
(1) and (2) o f (14.9) still hold.
This follows immediately from (14.9) and the defiiiition of the

induced homomorphisms of a local map. Hereafter, (16.5) will be
called the local Whitehead theorem.

THEOREM 16.6. Let xo and yo be conic points of the spaces X
and Y respectively. Il a local map f : (U, xo) ~ (Y, yo) of (X, x0)
into (Y, y0) is unstable, then the induced homomorphism

is a zero hoinomorphism for every n &#x3E; 1 and every basic path
6 e T(U, xo).

This ca.n be proved as in (11.2) by using (14.5), (10.2) and the
fact that

for a conic neighborhood U of xo with F = UBU and xl E F.

17. Local homotopy groups as classes of local maps.
Now, we are in a position to give a better geometrical represen-

tation of the elements of the local homotopy group 03BBn(X, xo; a ) as
homotopy classes of the local maps of (Rn+1, 0 ) into (X, x.),
where Rn+1 denotes euclidean (n + 1 )-space and 0 denotes the
origin of Rn+1, n ~ 1.

Since the local homotopy group 03BBn(Rn+1, 0) is infinite cyclic,
we have two different choices of a generator of 03BBn(Rn+1, 0 ). Each
choice of a generator of 03BBn(Rn+1, 0) is called an orientation of
Rn+1 at 0. When a generator t of 03BBn(Rn+1, 0) has been chosen,
we say that Rn+1 is oriented at 0. Hereafter, we assume that R"+’
is oriented at 0 by the choice of a generator t of 03BBn(Rn+1, 0).
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Consider any given space X, a given point xo E X, and a basic
path a E T(X, xo ). Then a is a path a : I ~ X such that 03C3(t) = xo
if and only if t = 0. Imbed the unit interval I as a subspace of

1 
Rn+1 by identifying the point t E I with the point (t, 0, ..., 0) ~ Rn+1.
Consider the totality 03A9 of local maps

defined on an open neighborhood U of 0 in Rn+1, which depends
on f, and satisfying f(t) = 03C3(t) for every tEl ~ U. Two local maps
f, g E Q are said to be locally homotopic relative to 03C3 if there exist an
open neighborhood W of 0 in Rn+1 and a homotopy

such that ho ~ f, hl ~ g, and h, E D for every t E I. For the
meaning of the congruence, see § 6. Thus, the local maps 03A9 are
divided into disjoint (local) homotopy classes relative to ar. Through-
out the present section, we shall simply call them classes. We are
going to identify these classes with the elements of 03BBn(X, xo; 03C3).

Let f : (U, 0 ) ~ (X, x0) be any local map in S2. There exists a
positive real number k ~ 1 such that t E U whenever 0 ~ t S k.
Let ak denote the path defined by O’k(t) = 03C3(kt) for each t E I.
Then f induces a homomorphism

Define a path T : I ~ T(X, x0) by taking

Then r(0) = o and 03C4(1) = 6k. Therefore, by (14.8), r induces an
isomorphism

One can verify that the composed homomorphism z* f’7 does not
depend on the real number k chosen in the construction. Hence the
local map f determines uniquely an element deg (f) = 03C4*f() of
the local homotopy group Ân(X, x0; 03C3) which will be called the
degree of the local map f.

If two local maps f, g e S2 are locally homotopic relative to 03C3,
then it follows easily from (16.3) that deg ( f ) = deg (g). Hence
the assignment f - deg ( f ) induces a function

of the set K of all classes of the local maps 03A9 into Ân(X, xo ; 03C3).
We shall prove that y carries K onto 03BBn(X, xo; a ) in a one-to-one
fashion.
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Since t is a generator of 03BBn(Rn+1, 0 ), it can be represented by an
admissible map 0 : (Jn+1, v0) - (Rn+1, 0) which maps Jn+l homeo-
morphically onto the unit (n + 1 )-cell En+’ defined by

in such a way that 0(to, t1, 0, ..., 0) = (ti, 0, ..., 0).
Now, let us prove that x is onto. For this purpose, let oc be an

arbitrary element of the local homotopy group 03BBn(X, x0; 03C3). Then
oc is represented by an admissible map ~ : (Jn+1, v0) ~ (X, xo).
Let U denote the interior of En+1. Then

is a local map in S2. By the definition given above, we have
deg ( f ) = 03B1. Hence y is onto.

Next, let us prove that X is one-to-one. For this purpose,
let f : (U, 0) ~ (X, xa) and g : (V, 0) - (X, xa) be any two local
maps in 03A9 with deg ( f ) = deg (g). We have to prove that f and g
are locally homotopic relative to J. Choose a positive real number
k  1 such that the (n + 1 )-cell

is contained in U ~ V. The generator t of 03BBn(Rn+1, 0) can be re-
presented by an admissible 0, : (Jn+1, v0) - (Rn+1, 0 ) which sends
Jn+1 homeomorphically onto En+1k in such a way that

03B8k(t0, t1, 0, ..., 0) = (kt1, 0, ..., 0). Since deg (/) = deg (g), it

follows that f03B8k and 90k are admissibly homotopic relative to ak;
precisely, there exists an admissible homotopy

such that ~0 = /0,, ~1 = gO,, and ~t(t0, tl, 0, ..., 0) = 03C3(kt1) for
each t E I. Denote the interior of En+1k by W. Then W C U ~ V and
we obtain a local homotopy

satisfying ho ~ f, h1 ~ g, and ht E 03A9 for every t E I. Hence f and g
are locally homotopic relative to J. This proves that X carries K
onto 03BBn(X, xo; a) in a one-to-one fashion.

Thus, we have established the following
THEOREM 17.1 The elements of the local homotopy group

03BBn(X, xo; cr) may be identified with the classes of the local maps of
(Rn+1, 0) into (X, x0) relative to 03C3.

This having been done, one can easily see that the group

operation, the neutral element, and the inverse of a given element
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of 03BBn(X, xo; 0") can be represented as follows. As in the global
theory, we shall use the additive notation although 03BB1(X, x0; a)
is usually non-abelian.
Let oc and 03B2 be arbitrary elements of 03BBn(X, xo; a ). Then they

can be represented by local maps f : (U, 0 ) ~ (X, xo ) and

g : (V, 0 ) ~ (X, xo ) respectively such that

Let w = U ~ V and define a local map h : (W, 0 ) ~ (X, xo ) by
taking

Then h is in il and represents the element 03B1 + 03B2 of 03BBn(X, xo; 03C3);
in other words, deg (h ) = oc + 03B2.
Now, let us consider the neutral element 0 of ).,,(X, xo; 03C3)’

A local map f : (U, 0 ) ~ (X, xo ) has deg ( f ) = 0 if and only if f is
locally homotopic (relative to a ) to the local map

defined by 03C9(y0, yi, ..., Yn) = 03C3(y20 + y21 + ... + y2n).
Finally, let us consider the inverse - oc of a given élément ex

of 03BBn(X, x0; a). Pick a local map f : ( U, 0 ) ~ (X, x0) in Q with
deg ( f ) = ex. Let

Then - ex is represented by the local map g : (V, 0) ~ (X, xo) in 03A9
defined by

If the space X is pathwise connected around xo and locally
n-simple at xo, then we may omit the relativity with respect to the
given path a throughout the previous study. Thus, the elements of
the local homotopy group Ân(X, xo) can be considered as the (local)
homotopy classes of all local maps of (Rn+1, 0) into (X, x0).

Since the local map m is obviously unstable, the following theo-
rem is an immediate conséquence of (11.1).
THEOREM 17.2. A local map f o f (Rn+1, 0) into (X, x0) is unstable

if deg (f) = 0.
. This and (16.6) imply the following
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THEOREM 17.3. Let xo be a conic point of X. Tlzen a local map f
of (Rn+1, 0) into (X, x0) is unstable i f and only i f deg (f) - 0.

18. Local maps of a euclidean space into another.

Let n, q be given positive integers and consider the local maps
of ( Rn+1, 0) into (Rq+1, 0). According to the previous section, the
homotopy classes of these local maps are the elements of the local
homotopy group,

Hence every information about the structure of the (global)
homotopy group 03C0n(Sq) gives a corresponding result on the local
maps. For example, we have the following assertions:

(18.1) I f n C q, then every 10cal1nap o f (Rn+1, 0) into ( Rq+1, 0) Ís
un.stable.

(18.2) If q = 1 and n &#x3E; q, then every local’lnap of (Rn+1, 0) into
(Rq+1, 0 ) is unstable.

(18.3) I f n = q, then 03BBn(Rn+1, 0) is infinite cyclic with the homo-
topy elass e o f the identity local map on (Rn+1, 0) as generator.
One can easily verify that the homotopy class of an arbitrary

local map f of (Rn+1, 0 ) into itself is ind (1) . e, where ind (f)
denotes the index of f defined in § 9.

Now let us give a local version of the celebrated notion of
suspension introduced by Freudenthal [7]. Let f be any given
local map of (Rn, 0) into ( Rq, 0) defined on an open neighborhood
U of 0 in R’2. Consider Rn+1 = Rn X R and Rq+1 = Rq X R. Then,
by the suspension of f, we mean the local map S f of (Rn+1, 0) into
(Rq+1; 0 ) defined on the open neighborhood V = U X R of 0 in
Rn-t-1 by

This local version of suspension appears simpler and more natural
than its global counter-part.

It is illustrated in § 9 that, for each integer m ~ 0, the local
map lm of ( R2, 0) into itself defined by fm(z) = zm for each point
z E R2 considered a complex number is of index ni and therefore
represents me of the group ÂI(R2, 0). One can also verify that, for
n &#x3E; 1, the (n - l)-fold iterated suspension of lm is of index m
and hence represents the element me of the group 03BBn(Rn+1, 0).

In general, the assignment f ~ S f induces a homomorphism

called the suspension. Then the local version of the suspension
theorem can be stated as follows:
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(18.4) The suspension S is an isomorphism i f q &#x3E; 2 and

n  2q - 2 and is an epimorphism i f q &#x3E; 2 and n = 2q - 2.
A generator of the infinité cyclic group 03BB2(R3, 0) is represented

by the local Hopf map f : ( R4, 0) ~ ( R3, 0) defined as follows.
Consider R4 = R2 X R2 as the space of all pairs (x, y ) of complex
numbers x and y. Let SI denote the unit circle in R2 consisting of
the complex numbers z with 1 z 1 = 1. Then S1 is a topological
transformation group of R4 by the operation z(x, y) = (zx, zy).
Then the orbit space may be identified with R3 and the natural

projection f : ( R4, 0) - ( R3, 0) will be called the local Hopf map.
One also define the local Hopf maps of ( Rg, 0) into ( R5, 0) and of
( R16, 0 ) into ( R9, 0) by using quaternions and Cayley number as in
[23, p. 108]. These local Hopf maps are all stable.

Since these local Hopf maps are fiberings with 0 as the only
singularity in the sense of Montgomery and Samelson [18], it

suggests the application of our local invariants to the study of
fiberings with isolated singularities. By pinching a singular fiber
into a point, one can also apply the local invariants to study the
fiber spaces with singular fibers as originally considered by
Seifert [20]. A detailed paper is under preparation [12].

19. An application.

To conclude the present paper, we shall give an application of
the tangent space which led the author to the study of our local
invariants.
A main problem on topological semi-groups is to answer the

following question formulated by A. D. Wallace, [26, p. 96] : What
compact connected Hausdorff spaces admit a continuous associati-
ve multiplication with two-sided unit? Since there have already
been numerous results on the structure of topological groups, we
may restrict our interest only to those continuous associative
multiplications with two-sided unit which fail to be topological
group operations. These multiplications are called essential

multiplications, [11].
Throughout this final section, let X be a pathwise connected

compact Hausdorff space in which there is given an essential
multiplication with a point u E X as its two-sided unit.

Let H denote the set of all points of X which have right inverses.
According to Wallace [26, p. 99], H is also the set of all points of X
which have left inverses. Furthermore, H is a compact topological
group under the given multiplication, namely, the maximal
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subgroup of X containing u, [25, p. 3331. The complement J = XBH
is the maximal two-sided proper ideal of X, [26, p. 103].
A point a of a space X is said to be pathwise accessible from

a subspace B of X if, for every point b E B, there exists a path
a : I ~ X such that 03C3(0) - a, 03C3(1) = b, and 03C3(t) E B for every
t &#x3E; 0 in I. A subspace A of X is said to be pathwise accessible
from B if every point of A is pathwise accessible from B. If X is a
Hausdorff space, then pathwise accessibility is equivalent to

arcwise accessibility, [27, p. 66].
LEMMA 19.1. The point u is pathwise accessible from the set J.
PROOF. Let v be any point in J. Since X is pathwise connected,

there exists a path e : I ~ X with 03BE(0) = u and 03BE(1) = v. The
inverse image 03BE-1(H) is a closed set of the unit interval I. Let k
denote the least upper bound of 03BE-1(H). Then 0 ~ k  1 since

03BE(1) = v E J. Also, 03BE(k) ~ H and 03BE(t) ~ J whenever  t  1.

Let a = e(k). Sinee a E H, there exists a point b E X such that
ab = u. Define a path q : I ~ X by setting

Then ~(0) = ab = u, ~(1) = vb, and q (t) e J for every t &#x3E; 0 in I.

Since X is pathwise connected, there exists a path p : I - X
with p(0) = u and 03C1(1) = b. Define a path 03C3 : I - X by taking

Then a(0) = u, 03C3(1) = vu = v, and Q(t) E J for each t &#x3E; 0 of I.

This cbmpletes the proof.
LEMMA 19.2. The tangent space T(X, u) is contractible.

PROOF. Using the path or : I ~ X constructed in the proof of
(19.1), we define a homotopy ht : T(X, u) ~ T(X, u), (0  t  1),
by taking

for each i E T(X, u). Then ho is the identity map on T(X, u ) and
h1[T(X, u)] = a. This completes the proof.

If u is a conic point of X, then (19.2) and (7.1) imply the main
theorem in [11] and hence the theorems of Wallace, [26, pp. 96,
97], as indicated in [11].
By the boundary ôX of a space X, we mean the set of all points

w of X with contractible tangent spaces T(X, w).
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THEOREM 19.3. The maximal subgroup H is contained in the
boundary aX of X and is pathwise accessible from the maximal
ideal J.
PROOF. Let w ~ H. The assignment x ~ xw defines a homco-

morphism of X which carries u into w, H onto H, and J onto J.
Hence, it follows that T(X, w) is contractible and that w is path-
wise accessible from J. This completes the proof.
COROLLARY 19.4. The space X is pathwise connected around each

W E H and 03BBn(X, w) = 0 for every n &#x3E; 1.

COROLLARY 19.5. For each W E H and each coefficient group G,
we have

and

for every n ~ 1.

COROLLARY 19.6. Tiae maximal ideal J is everyzvhere dense in X.

THEOREM 19.7. Any pair of points a, b of X can be conneeted by
a path 03C3 : I ~ X such that a (t) e J whenever 0  t  1.

PROOF. Since X is pathwise connected, there exists a path
r : I ~ X with i(0) = a and 03C4(1) = b. By (19.1), there exists
a path e : I ~ X such that 03BE(0) = u and 03BE(t) e J for each t &#x3E; 0 in I.
Define a path 03C3 : I ~ X by setting

Then 03C3(0) = a, cr(l) = b, and Q(t ) E J whenever 0  t  1. This

completes the proof.
COROLLARY 19.8. The maximal ideal J is pathwise connected.

COROLLARY 19.9. Every subset of the maximal subgroup H fails
Io separate the space X.

Wayne State University
Detroit 2, Mich., U.S.A.
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