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PREFACE

This book consists of notes on lectures given at the Uni-

versity of Chicago in the academic year 1966-67. My aim in
these lectures was to develop PL theory from basic principles
and cover most of that part of the theory which does not
require the use of bundles. Thus the book is complete in
itself, apart from a very little algebraic topology. It covers
subdivision, regular neighbourhoods, general position, en-
gulfing, embeddings, isotopies and handle-body theory,
including a complete proof éf the s-cobordism theorem,

Fortunately there have been considerable simplifications
in the basic theory, in particular in the proof of Newman's
theorem that the closed complement of an n-ball in an n-sphere
is an n-ball. The original proof required a considerable study
of 'stellar theory'. This was first rendered unnecessary by
Zeeman's proof, using a large induction including regular
neighbourhood theory. M, Cohen's short proof simplified
things further. I heard of Cohen's proof just in time to put a
version of it into the lectures.

A certain amount of new material is included, notably the

proof that concordance implies isotopy for embeddings in co-

dimension <3. I have drawn heavily on E, C., Zeeman's
seminar notes on Combinatorial Topology (IHES, Paris, 1963),
for much of the basic theory, though my treatment of general

position and engulfing is somewhat different. The section on

vii
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Whitehead torsion is lifted direct from J. Milnor' s paper in
the Bulletin of the A, M. S., 1966.

I am very grateful to the Mathematics Department at the
University of Chicago for inviting me there to give these lec-
tures. I also wish to thank J. Lees and J. L. Shaneson for the
considerable amount of time and effort they spent helping me
with the preparation of these notes.

My thanks also to R, Lashof and M, A. Armstrong for
many discussions during the course, and to E, C., Zeeman for
introducing me to PL topology and for all his help and en-

couragement since,

November, 1968 JOHN F. P. HUDSON
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This characterization of faces follows from the definition. The details
appear in the appendex at the end of this chapter. Note that this characteri-
zation implies that the dimension of a proper face of a cell is strictly lower
than the dimension of the cell itself,

The proofs of the following elementary results are left to the reader:

(1) A cell is convex. Moreover, it is the convex hull of its vertices.

(2) The intersection and product of cells are cells. (We identify’

EPx E= gPT9))

(3) The convex hull of a finite set is a cell,

(4) Let AC EP be acell. Let f: EP — E? pe (affine) linear. Then
f(A) is a cell,

(Note that by (4), it suffices to prove (3) for the subset

{(1,0,...,0),...,(0,...,0,1)} of En, each n, a triviality.)

A Euclidean Polyhedron in Eh is any finite union of cells. We have the

following elementary properties:
(1) The intersection, union, and product of Euclidean polyhedra are

Euclidean polyhedra.

(2) The linear image of a polyhedron is a polyhedron.

If f: P—> Q is a map, Pand Q polyhedr‘a, then we say that f' is

piecewise linear provided that

(1) f is continuous; and

(2) l"f = {(x,f(x))]x ¢ P} is a polyhedron.
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Lemma 1,1 a) If P1 and PZ. are polyhedwa, and {3 P41 R A
Q another polydron, then f is piecewise linear if and only if f[P1 and fl'}‘-‘d
are piecewise linear,
b) i3 P-—3 P is p.l, (= piecewisc linear), P any polyhedron,

¢) The composite of p. 1. maps is » p,l. map.

Pyoof, a) <= Since Pl and PZ arc closed, { is continuous 1f flpi,

WAL
1

12 € " . v
i= 1,2, are Ifnlflp f'PZ

we I = {{x, {x)) xe P, } =T

1
b) If A is a cell then I

n (P, X Q).

£|P 1 £

[

;= mm] xe ab = {(xy) ¢ AX Al x=vy) =

A
{ze AX Ai forall i, 1€1<m, gi(z) = 0}, where if z = (x,v), gi(z) = XY

Here m is the dim, of the Euclidean space containing A and

X=(x"“0lxm)0 Y‘(Yiy..fpym)a

c) Let P& Ep, Q& Eq, R CE be polyhedra, and let f2 P - Q and

p+q+rm Then

g Q—> R be p.l. maps. Let I = {(x,f(x), gi(x))] x« P} ¢ E

I'= {(x,8(x),2)] x¢ P, 7e R} © {(x,y,0v)| x¢ P,ye Q) = (D XR) r(PX1 )
5 I ] . P —q T P T . .
Hence I is a polyhedron, The map w: EY X ETXE" —» E¥ X E, projection

on the first and third factors, is linear. Hence (1) = Tg ¢ is a polyhedron.

We now make a definition which will not be used for at least the rest of the
chapter, but will be referred to eventually, Let X be a topological space,

A co-ordinate map of X is a map f3 P—> X, P a polyhedron, which is an




embedding [i.e., a homeomorphism onto its image]. We usually write (£, P)
to denote such a map. Two co-ordinate maps (f,P) and (g; Q) are said to be
compatible if either f(P)N g(Q) = § or there exists a co-ordinate map (h; R
such that the following hold:
(1) h(R) = {(P) n g(Q)

(2) f_ih and 1y are piecewise linear.
g p

A P,L, structure on X is a family 3" of co-ordinate maps satisfying

the followings
(1) Any two elements of } are compatible,
(2) If x e X, there exists (f,P) e 3 such that f(P) is a neighborhood
of x in X. |
(3) P is maximal; i.e., if (f,P) is compatible with every map in F ,

then (£,P)e P .

If 3 satisfies (1) and (2), it is called a basis for a P. L. structure on X,

Examples: 1) If P is a polyhedron, ]_ +: P—> P forms a basis for a P. L.
P poly P
structure.
2) If UC jons . 3‘ = {(i,P)] P a polyhedron, PC U, i: P—>1U

the inclusion map} is a basis for a P. L. structure.



Cell Complexes, Simplicial Complexes, and Subdivision

n
A convex linear cell complex in E = is a finite set of cells in En,K

uch that
1) If A e K, every faceof A is in K.

2) If AandBe K, then ANB=¢ or AN B =common face of A and B.

N
An n-simplex in E'° is the convex hull of (n+1) linearly independent points,
alled its vertices. Each face of an n- sim‘Elex is the convex span of some of the
ertices and therefore is an m-simplex, m<n. We write o <7 for"ois a

face of T",

A simplicial complex is a cell complex whose cells are all simplices.

If K is any complex, by |K| we denote the union of all the cells in K. We call

IKI the underlying polyhedron of K.

If K and L are cell complexes, K is called a subdivision of L if the
following hold,

1) |x| =izl

2) Every cell of K is a subset of some cell of L,

Lemma 1.2. If K is a subdivision of L, then every cell of L is the

union of cells of K.

Proof. Since |K| = |L|, it suffices to show that if A is a cell of L and

x ¢ A, then there is a cell B of K, xe B, with B C A, There is a cell B! of

K such that x ¢ B' and there is a cell A' of L suchthat B'C A', But




A NA'" is a common face Ai’ say. B'€© A' are convex linear cells, so

B'n A1 is a face, B say, of B', and xe BC A,

A subdivision K of L is said to be simplicial if it is a simplicial complex

One of the most important types of subdivision of a simplicial complex is

stellar subdivision. In order to define stellar subdivision, we must first int-ro-,

duce the notions of joins, stars, and links; however these notions (let the

reader be forewarned!!) also are important in themselves.

Let A and B be two simplices in E". If the set consisting of all the vert
of A and of B form a linearly independent set, then we say that A and B are
joinable, By A.B we denote the simplex whose vertices are those of A and
The simplex A.B is called the join of A and B.*

If Kand L are two simplicial complexes in En, we say that K-and L
are joinable if the following hold:

(1) If A¢ K and Be L, A and B are joinable.
(2) If A'¢ K and B'e L, also, then either A.Bn A'.B' = g or A.B f\A"{
is a face of A.B and of A'.B!,

If Kand L are joinable simplicial complexes, we define

K.L=Ku L u {AB‘ Ae K, Be L}, called the join of Kand L., KL is clear

a siraplicial complex.

&
By convention, we allow A or B =@ and write A.f = f.A = A,
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gample: Let A and B be joinable simplices. By A we denote the complex

ase\ elements are A and all its faces. Then A and B are joinable complexes,

d A.B = (A.B) .

Now let K be a simplicial complex. If A ¢ K, then we make the following
efinitions:

star (A; K) = {B¢ K| B > A}.

star (A;K) = {B ¢ K| B is a face of an element of star(A;K)}.

link(A; K) = {B ¢ K| B and A are joinable and A.B ¢ K},

The reader can easily verify that star(A;K) and link(A; K) are complexes,
that A and link(A;K) are joinable, and that the following equality holds:

star (A;K) = A, link(A; K),

Remark. In general, if L is a convex linear cell complex and K is a subset
of L, then if K is the set of all cells of K and their faces, K is a subcomplex

of Ly i.e,, K is a subset of L which is a complex. Clearly, this notation is

b

consistent with the definitlons of star and star.

o]
Notation. If A is a simplex, A = points of A not contained in any face.

A = subcomplex of A consisting of the proper faces, (If A = point, we put
A=4g.)

Definition of SteNar Subdivision, Let K be a simplicial complex, A¢ K a

simplex, Let ae A . Then define:

T = {K - star (A; K)} U (a. A.link(A; K))

1]

[K - A.1link(A;K)] U [a.A. link(A;K)L.




(The reader will note that in general if K, L, and M are three complexes
each joinable to the join of the othet two, then the following equality is both

meaningful and true: (K.L). M= K.(L, M)

L is called the complex obtained from K by starring A at a. The reader

can easily verify that L is indeed a complex and that it is a subdivision of K,
The complex L may also be obtained from K as follows., Write

K=K UAP, with A{ K. Thenset L=K_ U a.A.P,
We say that the complex L is a stellar subdivision of K if there exists a

series K= K ,K by starring

o’ 4"

., K = L such that K is obtained from K
T r r-1

a simplex at some interior point.

Picture:

Example of a non-stellar subdivision:




complex K' is called a first derived of the simplicial complex

¢ is obtained as a stellar subdivision from K as follows: For each

A
%« Ae K, choose Ace gs Star each simplex A at A in order of

asing dimension. This construction makes sense because if we star A

and if B ¢ K, and dim B < dim A, then B will be a simpleX of the

ng subdivision,

Jote that if A' denotes the first derived subdivision of A obtained by

for A, the same starring points, and A' denotes the subdivision of A

ed similarly, then

A= ALA.

From this formula it follows by induction on dimension that the general

A

' A N
8i K' i A A ...A, < Soeos
implex of is of the form 8 Ar where A“tAZ_'_,; iAr are

homeomorphic.

If A i . . .
f is a simplex with vertices {ao’“"an}’ T 2, —+1 °n
called the barycenter of A. K' is called a barxcentric first derived of K if

N
all the starring points A are barycenters.,

An rth derived subdivision K(r) of K is defined inductively to be a first

(r-1)

derived of an (r-1)th derived, K
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3., Basic Lemmas on Subdivision

Lemma 1.3. Let K Dbe a subcomplex of the simplicial complex
o

Then 1) If K' is a subdivision of K, it contains a subdivision of Ko; an
2) If K(') is a subdivision of KO, there exists a subdivision of K
containing K(').

Proof. 1) Put Ké) = {simplices of K' contained in IKOI}. If Ae K(‘),
then A is contained in a simplex of KO., For A C B, some Be K., Hence
AS BN |K0| , a union of faces of B. Since A is a simplex, it lies in one of
these faces; in a simplex of KO. So K;) is a subcomplex of K' and
|Ké| - |K0| . By Proposition 1. 2, every simplex of KO is a union of simplic
which are in K' and so also in K('); therefore IKO[ c |K'O| .

2) By induction on the number of simplices in K — Ko. If none, there is

nothing to prove. So suppose A An e K— KO, with 1< j=>dim i< dim

1,o.o,

Let K'1 = Ko (V) {A'l’ cooy An 1}, a subcomplex. By induction, we may sup

pose that K'! is a subdivision of K, such that K(') is a subcomplex of K1

1 1
. . o
By 1), K'1 contains a subdivision (An)' of An° Let ace€ An . Define

K'= K} u a.(A)".

Notation. If we write K' or o(K) to denote a subdivision of K and if L is
a subcomplex of K, by o(L) or L' we mean the subdivision of & as in 1);

it is called the induced subdivision of L and is the unique subdivizion ~f i

which is a subcomplex of K!'.
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Figure for Lemma 1.3, Part 2.

mark. Lemma 1.3 holds equally well for cell-complexes.

Lemma 1.4. If K is a cell complex, then K has a simplicial sub-

jvision with no extra vertices.
Proof, Order the vertices of K. If Ace K, write A = |aB|, a the first
vertex of A, B = all faces of A not containing a. Define subdivision of cells
order of increasing dimension by the rule:

A'= a, B,
where B! is- the subdivision of B determined by the (simplicial) subdivision
of cells of lower dimension. (If A= a, set A'=a). The construction is self-
consistent because if C is a face of A containing a, then a is the first ver-

,/ tex of C.
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Lemma 1.5. Let Ai’ ee s ,An be convex linear cells. Let K be a

simplicial complex in EN with Aiu co o \UJ An c |K », Then K has an

th . .. e e .
T derived K(r) containing subdivisicns of A1, ceos A

n

Proof. Let ¢ Sy be A ,... ,An and their faces, in order of

13-ao, 19

increasing dimension. Then 4 is a point, and there is obviously a first

1
derived K( ) of K in which c, is a vertex. Suppose there exists an (r-1)-st

1
(r-1)

derived K of K containing subdivisions of C'l’ ceos cr L

. -1 . co s .
For each simplex o ¢ K(r ), let e on . provided that this interesectior

is non-empty. Otherwise, choose any point 5 e & Let K(r) be the rth derived .

(r-1) (r-1)

(r)

obtained from K by starring each simplex of K o, at %, in order

of decreasing dimension. We are going to show that K contains a subdivision

of onN c. for all oe¢ K(r-i) such that o N cr;{ ¢ This clearly implies that

(r)

K contains a subdivision of c_

3

Comnsider c.neo 7 ¢. We may assume that crﬂ o £ ¢, since otherwise the
there is nothing to prove, by the inductive hypothesis. Let H = hyperplane of
lowest dimension containing ci i.e., H is the unique hyperplane, containing

c with respect to which c. has interior points. Then crﬂ c=HNo. For

(r-1)

ér = proper faces of . is subdivided as a subcomplex of K , and so its

. . . . . 0 .
intersection with ¢ is a union of faces of o. So E:r meets ¢ only if

o*g_c':r, and so c.n o= HnNo.

fe-4)
. . . . . IRy
Now we prove by induction on the dimension of o that for zny e K

. r . N - : .
with o n c. # ¢, K( ) contains a subdivision of o N €. T = {g., £l
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clear. By induction, K(r) contains a subdivision L of crﬂ o, if

N 7 §. We may assume that grr\ o #¢. If onc_c &, it is alweady

.

subcomplex, so suppose that ¢ n c. 4 ¢ . Hence we haves

O

snc =enH=blEnH =% ne | =8 (L

)

A r . o s s
ence &.L, a subcomplex of K( , is a subdivision of o n S

y B. |L| , for example, we mean the join of {6} ard |L| . Clearly,

cel

Corollary 1.6. If |K| C |L], K and L simplicial complexes, then there

ts an rth derived subdivision L(r) of L which contains a subdivision of K.

Proof. By Lemma 1.5, subdivide L to getan rth derived L(r) which

tains a subdivision of each of the simplices of K. Let K' be the union of
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these subcomplexes . Then K' is a subcomplex of L(r) and a subdivision

of K.

Corollary 1.7,

Every Euclidean Polyhedron is the underlying set of a

simplicial complex.

N
Proof. Let A be an N-simplex containing the compact subset P of

N
% , where P = Aiu cee U Ar’ each Ai a convex linear cell. Apply

Lemma 1.5 to find a subdivision of AN which contains a subdivision of

each Ai’ and take the union of these subcomplexes to get a complex whose unde

lying set is P.

Definition. If P is a Euclidean Polyhedron and K is a simplicial com-

plex with |K| = P, K is called a triangulation of P,

Unsolved Problem:

Suppose K and L are simplicial complexes, and

K| = |L|. Then is there a complex M which is a stellar subdivision of

both K and L7?
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Piecewise Linear Maps, Simplicial Maps, and Subdivisions.

In this section we study the relation between piecewise linear maps and

mplicial maps. I¥f K and L are simplicial complexes, 2 simplicial map
K—> L isa continuous map f: ‘K| —> ‘Ll which maps vertices of K to..

ertices of L and simplicies of K linearly into (and hence onto) simplices of L.

K—> L, f is not really a function from

emarks: 1) Although we write f£:

the set K to the set L; but it may be though of as 2 collection of linear maps

,f simplices of K onto simplices of L.

2) Any simplicial map is piecewise linear. (Use Lemma 1. 1.)

3) A simplicial map f is determined by its values on vertices.

Conversely, given a function g which as signs to each vertex of K avertex

of K' in such a way that if Vysees Vo are in a simplex of K,

g(vi), cees g(vn) are in a simplex of L, there exists a unique simplicial

map f: K—> L which extends g. Namely, if

n n n
E: A\ =1, N\, >0 all i, set £( '2': \v,) = Ej £.glv.)
-1 1 1 =1 i1 — 1 1

i=

Lemma 1.8. Let {3 K —> L be simplicial. Given any subdivision !

of L, there exists a subdivision K' of K such that f3 K'—> L' is

simplicial.

f(A) is a simplex of L. We also write

Proof. If A isa simplex of K,

f(A) for the subcomplex consisting of f(A) and its faces, and f(A)' for the

jnduced subdivision.
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Let Ki = {A r\f-1(o’)| Ae K and o€ L'}, Then K1 is a convex linear
cell complex (together with the empty set). For AN £~1(s) is a convex lineay
cell (or empty). A typical face is of the form BN f_i( v ), where B and 1
are (not necessarily proper) faces of A and 0, respectively. (The reader
may verify the last statement by consideration of the appropriate linear
inequalities.) Hence faces of cells of K1 and in Ki' Moreover,

(an o)A cnrtn) = (anc) alele)n =4(n) = (AnC)n (o),
which is a common face if AN f—1(0') and Cn f_'l( n ).

Obviously, |K1| = |K|. Also, f is linear on each cell of K1 and maps

vertices of K1 to vertices of L'. Let K'=a simplicial subdivision of K'1

with no extra vertices, by Lemma 1.4.

N

Lemma 1.9. Let Kand L. be simplicial complexes, with |L| € E
Let f: |K| —> |L| be a map whose restriction to each cell of K is linear.
Then there exists subdivisions K' and L' of K and L respectively, such that

fs K!'—> L' is simplicial. Moreover, we may insist that L' be stellar.

Proof. 1If Ae K, f(A) is a convex linear cell; hence there exists an b

derived L(r) of L in which all the cells f(A), A eK, are subdivided as sub-

complexes. Consider K:l = {An£_1(B)| Ae K, Be L(r)}. Then as in

Lemma 1.8, K1 is a cellular subdivision of K, f is linear.on cells of A, ané’

maps vertices onto vertices. Subdivide K1 with no extra vertices.
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ma 1.10. Let f£: |K| —> |L| be a piecewise linear map of

ial complexes. Then there exist subdivisions K'and L' of K and L

vely, so that f: K'—> L' is simplicial. We may insist that L' be

oof. Say |K| cEP, |L| € Y. T ng+q’ the graph of f, is a poly-

f

n. Let M be a simplicial subdivision of I'_, by Corollary 1.7. If

fs

subdivisions M1 and K1 of M and K respectively, such that

M, — K, is simplicial.

1 1 lM'll is a bijection; hence it is a homeo-

N
Moreover, if 11'2 is projection on the second factor,
|Ml )-1: K1 —> L. But s is a linear map, and so we may apply

-1
: —> L,
°(1ri|M) K, L

o

2° (™|

mma 1.9 to the map = ™,

Now consider the following diagram:

K —>1L

In general we cannot find subdivisions of K, L, and M with respect to which

and g are simultaneously simplicial, as the following example shows.

et
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Here f and g map vertices 1,2, and 3 as shown and are linear. To mak
g simplicial (3 in M is not a given vertex), we must introduce vertec 4 in K,
Then keeping f simplicial requires the introduction of vertices 4 and 5 in L an
K respectively, Then keeping g simplicial requires 5 in M and 6 in K; ar
then we must add 6 in L and 7 in K. Continuing in this way we find it necessa:
to add infinitely many vertices between 1 and 2 in K, for example. This ca
not be done by subdivision.

However, there are some types of diagrams in which it is always possibl

to subdivide all the complexes so that all the maps are simultaneously simplic

Definition. A finite diagram of cell complexes and piecewise linear map

is called a one-way tree if

1) The corresponding complex is one-connected; i.e., the diagra

has no loops; and
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2) Each complex is the domain of at most one map.

A subdivision of a diagram T is a diagram obtained by subdividing each com-

plex appearing in T. A simplicial subdivision of T is one in which all the

maps are simplicial with respect to the subdivided complexes.

Theorem 1.11. if T is a one-way tree, it has a simplicial subdivision.

Proof. After a subdivision, we may assume that all the complexes of T

e simplicial. If T has only two complexes, this theorem is then just

emma 1.10.

Suppose T has at least three complexes. There is a map f3 K—> L

T such that K is not the range of any map in T. Let K' and L' be sub-
e

visions of K and L suchthat f: K!' —> L' is simplicial. Let T be the

ee obtained from T by deleting f: K—> L and replacing L by L'. By

Jeo al,
sieale

duction there is a subdivision T of T which is simplicial. Let L" be
corresponding subdivision of L'. Apply Lemma 1.8 to find K", a sub-

sion of K', such that f: K" —> L" is simplicial.
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5. Piecewise Linear Manifolds

Definition. A piecewise linear m-ball is a polyhedron which is piece-

wise homeomorphic to an m-simplex. A piecewise linear m-sphere is a
polyhedron which is p.1. homeomorphic to the boundary on an (m+1)-simplex,

A p.l. manifold of dimension m, Mm, is a Euclidean polyhedron in which

every point has a (closed) neighborhood which is a p. 1. m-ball.

Remark, One can show by topological arguments that given an m-manifold M
m is uniquely determined by M, However, this result will also follow from

the results of this section.

Lemma 1.12. If A is a convex linear cell of dimension m, then A is

p.l. m-ball,
Proof. Let A be an m-simplex containing A; i.e., let A be a simplex
containing A and contained in the unique hyperplane containing A with respec¢
to which A has an interior. Choose a e A c A, Then let P A—>A be
radial projection from a. It is easy to verify that p is a homeomorphism.
Unfortunately, p is not piecewise linear.
We are going to alter p to get a p.l. map. Consider o« A,
Then a is joinable to o. A N a.¢ is a union of cells, and p(Af’\a.O') = 0.
Let A' be a subdivision of A which contains subdivisions of the polyhedra
pﬁi(tr) = A na, o, o<A,

Let T be a simplex of A'. Then p( T) is a simplex contained in a face

of A. Define p't A' —> A, by letting p'(£) = p(¢) if £ is a vertex of A', an
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extending linearly., Then p' is a well-defined p.l, map, and p'T = pr7.
So p' is p.l. homeomorphism A— A
Finally, to define a p.l. homeomorphism f: A—> A, we just set f = p'

on A , f(a) = a, and then extend f linearly to A, Then f is a p.l. homeo-

morphism; in fact f: |a.A'| — |aA| maps simplices linearly onto simplices.

Remark. The map p' constructed in the proof of Lemma 1.12 is called a
pseudo-radial projection. It is obtained from an ordinary radial projection
by an adjustment which insures piecewise linearity. In the sequel, we shall

construct pseudo-radial projections with impunity and without the detailed

discussion of the last proof.

I
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Lemma 1.13. 1) Let B™ and BY? be joinable simplicial complexes

whose underlying polyhedra are an m-ball and a gq-ball, respectively. Then
le. Bq| is an m+q+1 ball,
m q . s . . . .
2) Let B and S be joinable simplicial complexes, with
|B™| and m-ball, |S?| a q-sphere. Then |B™.S%| is an m+q+ ball,
3) Let S™ and S% be joinable simplicial complexes, |Sm| an B

m-sphere and |Sq| a q-sphere. Then |Sm.Sq! is an m+q+1 sphere.

Proof. 1) Let A™ and A be an m-simplex and a gq-simplex which
are non-intersecting faces of another simplex (of suitably high dimension),
Let h: B — A™ be a p.l. homeomorphism, and let k: BT — A% bea

P.l. homeomorphism. Let B m’ Biq, Aim, and Aiq be subdivisions such that

h and k are simplicial. The reader may verify that if two complexes are join

able, so are any subdivisions of these two complexes. Moreover, the vertic

m

of ’BIn.BCIn are just the vertices of B1

and B(;no Hence h and k determi

by their values on vertices, a unique simplicial isomorphism

m

hki BPBl— A™ A% But A,

1 1 1 1
2) As in 1), it suffices to show that if A™ and AqH are joinable, then

Aiql = |Am. Aql , an mtq+1 simplex.

+1 -
4 | is an m+q+1 ball. Let AT = v AT 1, v avertex of A". Then

consider the map Am,z.\q+1 _f___> Amn‘i.Aq!P1 defined as follows. Let f(v) be

-

|a™. A

the barycenter of Aq+1. Let f(x)=x if x is a vertex of Aq+1 or a vertex

|

.

—1 -
of AT, Extend f linearly over simplices of A™, Aq+1, It is not hard to

check that f defines a p.l. homeomorphism. Now apply 1).
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3) In 2), replace m by m+i. Then f: At fatt a™, A%,

m+q+2 _

L) + °
Moreover, (| a™ 1°Aq+1l) = where A = IAm.A

Am +1 ] Aq +4

is an m+q+1 sphere. As in 1), this suffices to prove 3).

Lemma 1.14. If K' is a subdivision of K, K and K' simplicial, then

(a; K) = link(a; K').
ote: = means p.l. homeomorphic,

Proof. If B'e link(a; K'), then aB'e K'. Hence there exists B e K such
that aB ¢ K, and aB'< aB, since a is also a vertex of K. Hence we may
define a radial projection p: link(a;K') —> link(a; K). The map p is a topo-
ogical homeomorphism. In addition, p(B) is a simplex which lies in B and
s spanned by the images of the vertices of B'. Hence, using the technique of

.emma 1.12, we may find a pseudo-radial projection p's link|a; K| 2 link(a;K').

ote: In this case it is unnecessary to subdivide link(a;K') in order to define

he pseudo-radial projection. ]

Corollary 1.45. If h: |K| — |L| is a p.l. homeomorphism, K and L

simplicial complexes, then link(aj;K) 2 link(ha; L), provided ha is a vertex of L.

Proof. Let K' and L' be subdivisions so that h: K'—> L' is simplicial.

‘hen h: link(a; K') > link(ha; L') is a p.l. homeomorphism. Apply Lemma 1.14.

Bl

SRS

S
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Picture for 1.14:

Corollary 1. 16, If |K| is a p.l. n-manifold, K a simplicial comple

then if A e K, link(A,K) is an (n-r—1) sphere or ball, where r = dimension A,

Proof. First consider the case A = a is a vertex. Let Bge~ |K| bea
neighborhood of A which is p.1l. homeomorphic to An, an n- simplex. Then
let K' be a subdivision of K which contains a triangulation of B, Ko’ as a
subcomplex. Let h: IKOI —; An be a p.1l. homeomorphism.

By 1. 14, it suffices, in this case, to show that link(a;K') is an (n-1) sph

or ball, But link(a; K') = link(a; KO), since lKOI is a neighborhood of a in |

| K

. Let A' = stellar subdivision of A" obtained by starring at ha, Thenb
1.15, link(a;Ko) = link(ha; A'). So it suffices to prove that link(ha;A') is an
(n-1) sphere or ball.

Case1: ha=be A, Then A'= ha.A. So link(ha; A') = A, an (n-1) sphere.

Case 2;: be A, A a proper face of A. Say A= As; i.e., A is an s—simp1
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s -s5=-1
en An = A .Bn , where B is the convex hull of the vertices not in A,

tar at b to get A'= bAB; hence link(b;A')= A,B, an (s-1) + (n-s-1) +1 =

Now we consider the general simplex A ¢ K and proceed by induction on
p dimension of A; i.e., we assume that if B has lower dimension,
(B; K) is a ball or sphere of dimensionn - dim B - 1,

Write A= a, A where a is a vertexof A and A, a face. Let

1’ 1
= Link(A1‘,’K), an n-r sphere or ball, r=dim A. Then a is a vertex of L,

ince a,A1 ¢ K. Moreover, B e link(ajL) <> a.B.A, ¢ K <> B.(a.Ai) e K

1
> B e link(A; K). That is,

link (a; L) = link(A; K).

hus to complete the proof, it suffices to show only that L = link(Aig K) is an
n-r) manifold. This will be the case if, for any r, AT is an r-manifold and
| . . T r+i ) ) ]

is also an r-manifold, A" and A being r- and (r+1)-31mp11ces,

espectively.

It is clear that AT is an r-manifold. Consider Ar+1. Let £ e Ar+1 be

+H

given point. Let ¢ be an r-simplex of AT with gel o. Let x be the ver-

. s r
bex not in o. Now, cl{at - o) = T 1is a neighborhood of £ in

+<artl
T+0‘
e 1+

(cl = topological closure.). But cl(A . This is an r-ball.

o) = |x. &

¥amely, map ¢ —> o by the identity, let x be mapped to a point in &, and
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Definition. The complex K is called a combinatorial n-manifold if
for all A € K, 1link(A;K) is a sphere or ball of dimensionn - dim A - 1,

.)

(Note: We have been writing link(A; K) = |link(A; K)

Remark. Corollary 1.16 asserts that if |K| is a p.l. n-manifold, then K
is a combinatorial n-manifold. Conversely, if K is a combinatorial

[~}
. Say xe¢ A, Ae K, Let K' be obtained from K t

n-manifold, let x ¢ |K

starring A at x. Then |star (a; K| = Ia.A,link(A;KH, an n-ball contai

x in its interior (w.r.t. |K|). Hence K a combinatorial n-manifold implie:

]KI is a p.l. n-manifold.

Definition. Let P be an n-manifold. Let xe P, We say x e P if give
any triangulation of P having x as a vertex, K, link(x;K) is a sphere. W
say X € P (or xe 8P) if for |K| = P a triangulation of P, with x a verte
link (x; K) is a ball. P is called the interior of P, and P= 08P is calledt

boundary of P. ¥ P= @ , we say that P is a manifold without boundary.

Remarks: 1) To determine whether or not x ¢ P is in the boundary or inte
it suffices to consider only one triangulation of P having x as a vertex. Fc

iP is a p.1l. homeomorphism and so if K and K, are two such triangulations

1
then there is a p.l. homeomorphism link(x;K) & |k(x;K'), by Corollary 1.15.

In particular, P = P U P.
2) P noP = @, since a ball is not homeomorphic to a sphere. This is tr
for purely topological reasons, However, the non-existence of a p.l. homeo-

_morphism of a ball with a sphere also follows from the facts that a simplex /
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a p.l. manifold with boundary |A| ;, a p.l. homeomorphism preserves
lboundar'y, and the following lemmas:

Lemma 1.17.

An n-sphere is an n-manifold without boundary.

Proof. Let A be an (nt1) simplex. Assume a € A, A a proper face.

Star A at a to get A'=a.A,B, where A= A.B, A = A,}°3 UA.B, so

= a.A,B U A.B. Hence link(a;A') = A.B, an (n-1) sphere.

The next lemma tells us how to find the boundary of a m-manifold M using

ly one triangulation.

Lemma 1.48. If |K| = M is a triangulation of the m-manifold M, define
en

{A e K| link(A;K) is aball} . Then K is a subcomplex of K,
Ve

M, and |K| is an (m-1) manifold without boundary.

Proof., Let A e K Let B be a face of A of one less dimension. Then

x. B, x the remaining vertex. Then link(A;K) = link{x;link(B; K)), so by

link (a; K') = A, link(A; K).

refore, Ace K implies a € M i Ad K => link(A, K) is a sphere => a ,{ M
To show that IK] is an (m-1) manifold without boundary, let A ¢ K.

. n Be link(A:K)<=> A.Be¢ K<> AB ¢ K and link(A.B;K) is a ball. But
-

(AB; K) = 1ink(B; link(A; K)), so link(AB;K) is a ball <> B is contained in
0~

‘boundary of |link(A;K)

. So link(A,K) = the boundary of |link(A;K)|, which
n(n - dim A - 2)-sphere; thus K is a combinatorial (n-1) manifold and by

t we already proved, IKI has no boundary.
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Note: In view of 1.18, if K is a combinatorial manifold, we refer to

K= {Ac K| link(A;K) is.a ball} as the boundary of K,
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Dual Cells

The main aim of the next three sections is to prove that if S is a p.L.
here and B C S is a p.l. ball of the same dimension, then S-B isa

1. ball of the same dimension. In this section we define and study dual cells,
. the next we prove some lemmas, and in Section 8 we prove this assertion

d derive some corollaries.

Let K be a simplicial complex and K' its barycentric first derived.

A e K, we define A*, the dual cell of A, to be the following subcomplex:

A" ﬂ star (v; K').

v a vertex of A

A¥

Al

B*\ '\ B

he reader will observe that in general the underlying polyhedron of A is not

convex linear cell.
i eaum—
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Suppose o ¢ K'. Then U=£1°..AS say, where A1<... <Ase K,

and Ai is the barycenter of 21' Now o¢e¢ A  if and only if ¢ e star(v;K!')

for each vertex v of A. But ¢ e star(v; K') if and only if v< Ai' So

ce A" if and only if ASA1 . So

ot
<

% A A
A = {A ...Asl A<A

) <A_<...<A }.

1 2 s

Definition. If B is a p.1l. ball of dim n, a combinatorial face of B is

p.l. ball of dimension (n-1) lying in B,

W hen there is no danger of confusion, a combinatorial face of B will be

referred to simply as a face of B.

Lemma 141.19. Let K be a combinatorial m-manifold. Let A e K,

o

| A
dim A = r, Then |A | is an (m-r) ball. Furthermore, if Ae¢ K and if A

is the dual cell of A in K then A# and cl {lB(Aat)l - |A# |} are faces of

Proof. To prove the first assertion, let A ¢ K, Then

% A A A %
A ={A.,.2\|A5A <,..<A }. If o= A ,,.A € A, then for each j
1 S 1 s 1 S
Vo PO N\
with A<Aj’ write AjzABj . Then o = A"@Z“"ABS or 0'=AB1,..ABS

Every o e A  is of this form, where Bi <... < BS » i=41o0or 2, and
Bj ¢ link(A;K), i<j<s.
Let link(A;K)' be the first barycentric subdivision of link( A; K), which
: s ~
also the induced subdivision from K!, Define h: A —— Alink(A;K)' by m
A A A~ A
ping A to A and AB to B, B e link(A;K), and extending linearly over
simplices. Then by the last paragraph, h is a simplicial isomorphism. Rat

[A‘link(A;K)'l is an (n-r) ball, since link(A; K) is an (n-r-1i) sphere or ba’"
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Suppose A ¢ K. Then the restriction of h to A# is a simplicial iso-
A L4
rphism of A# onto A.link(A;K)'. But |k(A;K) isa p.1l. ball with
£ L A °
A#, and 9A" - A" are p.l, homeomorphic to A, A, AA and A,

espectively, where A is a simplex, (via the same homeomorphism). So

ats
N

and 9A™ _ A# are faces of A .

Lemma 1.20. Let K be a combinatorial manifold, Let {Bil i=41,...,r}

» the dual cells in K and K. Then the following hold:
' T

R
h 1
i=1

2)B.NB =g, if i#].

3) éi is a union of dual cells of lower dimension than the dimension of Bi.

te: In 2), ]%i denotes the set IBiI——-IaBi'g

Proof. 1) Let K'= barycentric first derived of K, If x ¢ |K|, X € o,

A A B
me oce¢ K', Let 6=A,...,A , A <,,.,<A ., Then oce A .
1" s 1 s 1
2) Every point of [K'| is contained in the interior of a (unique) simplex

K'. Hence it suffices to show that if o ¢ K', then ¢ is contained in at most

o
B, .
1

als
5>

A
So let cr=A,..,,:&, A, <...<A , bein K', Then ce A .
. 1 s 1 s 1

If A%A then ¢ C IBA*I. For let

Suppose

= :::
A, < .
€ Then A< A1 1

E
1 A — A, link(A; K) be the p.l, homeomorphism defined in the proof of

mma 1.19. Then h(s) C |link(A;K)|. Similarly, if oe K, then

A# == AS'A:I; and if A#Ai, then ¢ C IBA#



-32~

Hence we have only the possibilities & ¢ (A*)° and, if A, ¢ K, 1<i<s,

TC (Aﬁ ), Incase o¢ (f()', we thus have nothing more to prove. So assume

. sk

> #
that o ¢ (K)'; i.e., Ase K. Then a'g_lAi I, a face of Ai' So

Fc |8(AT)|, and thus A#

1 is the unique dual cell which contains g.

3) Consider again the map h: A —> A | k(A; K), defined as in Lemma 1

A

(proof). Using this homeomorphism, it is easy to see that if ¢ = Ai' . .As,

A <...<A_, then v 3(A™) if and only if A;{_Ai or ¢e A#. Since

AL A'1 implies A

e g -_lf
x b3 i

1 C A and has lower dimension by 1.19, and since IA |

a face of |AI , this shows that | 8A;'<| is the union of dual cells of lower dirr

sion.
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More Lemmas

Lemma 1.241. If B1m and B;_n are p.1l, balls, n>m, and if

F > BZ is a p.l. embedding (or homeomorphism), then there exists a

. embedding (homeomorphism) h': B1 —> B, extending h.

' Proof. AT = [x. A..m[ . A= [y. An| , x and y in the interior of A™

A", respectively. We may view h as a map h: A™ —> A", set h'(x) = y
join up linearly. This is a p.l. map, because it is simply the map obtained
subdividing A™ and A" to make h simplicial, defining h'(x) = y, and

tending linearly over simplices to get h': x. (Am)' —> v, (An)'. It is clearly

embedding.

Lemma 1.22. Let K be a simplicial complex and let V be a point which

'joina,ble to K. Let L be a subdivision of v.K. Then if |K[ N ]star(v;L)|=’—¢,

hen cl. (|v.K| - |star(v;L)|) is p.l. homeomorphic to KxI, I=[0,1].

! = induced subdivision of K.)

Proof, Let R = link(v;L). Let p:R—> K = link(v; rK) be radial projection.
ien p is not a p.l. map. However, p carries simplices of R onto simplices
ntained in |K|. Hence we may find a subdivision K' of K which contains a
iangulation of p(A) for each simplex A of K'.
For each Ae K', letT= cl.(|v,A| - IV.AI M |V.R|) = cl.(lv.A) - IV-P—i(A)')-
is a convex linear cell (in fact, a "truncated simplex"). The faces of A are
e simplex p-i(A) and its faces, A and its faces, and the cells '_E where
< A, Moreover, Tn'_li' = m a common face of 'X' and rB—‘ Let

- . o
= { A and its faces |A € K’}. Then K is a cell complex and

= cL.(|[v.K]| - [|star(v;L)|).
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Let K* be a simplicial subdivision of K' with no extra vertices. Then
each vertex of K* is either a vertex of K' or the image of a vertex of K!'
under p—i. Define h: K —> KX I by sending a vertex x in K' to
h(x) = (x,0), a vertex yin |R| to h(y) = (py,1), and extending linearly. Thj
definition makes sense because |R| N |K| = § and because h maps all the
vertices of any simplex in K* into the same convex subset of KX I, It is cle
that h is a homeomorphism; in fact, h maps A homeomorphically onto
AXI,

Lemma 1.22. If P and Q are n-balls, PN Q=F is a common face, ar

cl. (P-F) and cl.(é—F) are faces of P and Q respectively, then P U Q isa

n-ball,

Proof. Triangulate and let A ¢ cl.(P-F). Link(A;P-F) fails to be a
sphere if and only if link(A;F) is non-empty. Similarly, link(A;F) fails to
be a sphere if and only if link(A;P-F)# @, if Ae¢ F. So

9F = Fn P-F = 3(P-F).
Similarly, O8F = 8(Q-F). Now the identity F —> F extends (by Lemma 1. 21)’

to p.l. homeomorphisms:

h,: PF > a.F
by F——>b.F
h3: Q“F > CaF“.

(Here a,b,c, and F are assumed joinable in some Euclidean space.) Agais

we may extend h,,h_, and h 4 P —> abF and hL_’:Q-—-—> ch“, giving

1B to get h

3
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1, homeomorphism
P UQ = abF U beF = acF = a p.l. ball,

L.emma 1. 23, Let K be a combinatorial n-manifold. Let

. +
= (KX 0) U(KXI), Then K =K via a p.l. homeomorphism sending

to x if xef{.

Proof. Let {Ail i=1,...,N} be the simplices of K in order of decreasing

nsion. Let Bi = lAi |, F.= 'Ai# ; the p.l. balls are ordered in order

creasing dimension. Let Di = (Bi X 0) J (Fi X I). Let

N i
cl.(K-U B.). Let U =V X0, Let U, =U v U D.. Let
i=1 1 o [e] 1 (e] =4 ]
i J=
Vo (W) Bj . We define inductively a sequence of p.l. homeomorphisms

=1
U, —> V., such that
i i

hiIUo is given by hi(x,O) = x.
hi(x* 1) = x for all xe K

n the map h . proves the lemma.

N
defines h . Assume h, defined.
\ o i-1
D, = X

: (Bi 0) U (Fi X I).
0) N (Fi X I), a face of B, X0 by 1.19 and clearly a face of F, XL
.19, cl,(]:%i- Fi) is a face of éi . Also (Fi X 1)U (F1 X I) is a face of

I. For let A be a simplex and linearly embed A X I in vA with

0 S A, Pseudo-radial projection from a point in Axo0 gives a p.l. homeo-
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morphism (A X 1)y (A XI) —> vA . Hence Di is a ball.
. . - C . . ].) -F X -
Now, cl (Di Fi X 1) € Ui-i hi-i maps cl. i Fy 1) homeo
morphically to cl, (fél - Fi ). Define hilFi x) by hi(x, 1) = x. This togety
with hi-1 defines a p. 1. homeomorphism Di —_—> Bi » Which may be extey

to a p.l. homeomorphism D, —> B. . Combine this last map with h. to
P i i i-1

h o
get i

0

]

Corollary 1.24. There exists a neighborhood of K in K which is p, 1'
homeomorphic to KX I. In fact, there exists an imbedding c: KX I —>
with c(x,0) = x, whose image is a neighborhood of K. (The map ¢ is call

a boundary collar. )

Lemma 1.25, If S isa sphere and x and y are’points of S, then the

exists a p.l. homeomorphism S —> S sending x to vy.

Proof. Exercise. (Hint: Use pseudo-radial projection. )
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Removing Balls from Spheres.

Theorem 1.26, If B is an m-ball contained in the m-sphere S, then

.(S-B) is an m-ball.

Proof. By induction. For m = 0, this theorem is trivial. Assume the
eorem for (m-1).

1) S-B is a manifold with boundary B For there exist simplicial com-
exes K C K with [K[ =5, |[K | =B. Now |K-K_|=cl {|K]| - |KO|} .
ecall: 'R-—fi—o— = simplices of K-K_ = and their faces.)

We show that R—:—I—{-; is a combinatorial manifold., If A ¢ K-KO, then
k(A;K):link(A;I—{_-_K;). For if Belink(A;K), then AB ¢ K. Since A ¢ K,
B¢ KO. Hence Belink(As _I_{—:R_O ). Hence link(A;_I_(—:R—o) is an (n-r-1) sphere,
= dim A.

Say Ae (K-Ko)f\ KO.. Let r=dim A,

laim: link(A; KK ) = {ink(A; K) - Hok(A; K )Y .
For Belink(A;K-K ) <=> AB« 'R'.'R: <=> AB < C, some

some AC, ¢ K-K <> B<C some C, in

- <
K-K <=> AB< AC,, . S . .

(A; K) - link(A; Ko)o
Now, link(A; K) is an (m-r-1) sphere, and link(A;Ko) is an (m-r-1) sphere

Since link(A;KO) ?CL__ link(A; K), it cannot be a sphere. Hence by

I

|1ink(A;K=KO ) | cl(|link(A; K)| - Ilink(A;Ko)l)

1]

| {Tink(A3X) - Tink(A; K_)} |

in m-r-41 ball. Hence K—KO is a combinatorial n-manifold with boundary

NEK_ (= 9K ).

.




-38-

2) Let L= K-KO Vv, Ko , Vv a joinable point. The identity map on

I K-KO| extends to a p.1l. homeomorphism |L| _ |K| For |Ko| is

a sphere, so the identity map on |f{o' extends to a p.l. homeomorphism

v.K | —> |K , by Lemma 1,24, So |L| is an m-sphere. By Lemma 1. 25
o o

'm+'1|

let k: |[L| —> |A be a p.l. homeomorphism such that v'= kfv) is a

*m+
vertex of Am 1.

Now take first derived subdivisions and follow by further subdivision to get

a(L) and B(A) so that k: (L) —> ﬁ(A) is simplicial. Then

star(v; o(L)) = star(v; a(v.Ko )) does not meet oz(Ko) and star(v'; (4A)) does

not meet 5(A1), where A = V'A'l"

By Lemma 1. 22, cl( |VI.<0| - |star(v; o(L))|) = f{o X1, and

cl. { |V'.A1| - | star(V';ﬁ(v',A1))| ] = A1 X 1. By Lemma 1. 23,

KK | = (KK )x{0g]u |1'<0 X I|. This last polyhedron is p.l. homeo-

morphic to

IR—:—K_O | U cl. {lv,I.(0| - | star (v;e(L)|}

= cl. {|aL)| - |star(v;e(L))| } = cl.{l'ﬁAI - | star(v';E

This last isomorphism being the restriction of k. Now,

star(v';pA ) = ns_E;f(v';B(v'.Ai)) and ﬁ(A) = ﬂ(A1) U ﬁ(v.z.&,l)., Hence the last
polyhedron above is p.1. homeomorphic to IA1| U |A,1 X1| = IA'l |, this last
homeomorphism being given by Lemma 1.23. So |I—{-‘-T<; | = IL\1] and so

cl.(S-B) is an m-ball.
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Corollary 1.27., If A is an n-ball and F is a face of A, then any p.1.

,, . -1 .
meomorphism h! F —> A" extends to a p.l. homeomorphism

An = v.An-i.

Proof, F is the boundary of the ball cl.(A-F); this was shown in 2) of the

oof of 1.26. So h|F extends to a p.1. homeomorphism

. . 1
>v. A" Now hyuhi A—>A"=v,A va™" isap.l,

i Cl. (A"‘F)

n
eomorphism, and so we may extend to a p.1l. homeomorphism h': A —> A",

Corollary 1.28. If A and B are n-balls and AN B is a common face,

A UB is an n-ball,

Proof. Immediate from 1.26 and 1. 22.

Corollary 1.29. If M is an n-manifold, B an n-ball, and B M=F is

ace of B which lies in OM, then M UB = M,

Proof. Let c: MXI—> M be a boundary collar. Let A = ¢(F X I),
is an n-ball. An B= {c(x,0)| xe F} = ¢(F X 0)=F, a common face of A

nd of B, Hence A U B is an n-ball.

. -1
Let F, = c(FXIUF X1), afaceof A. Let hi F, —> A" béeap.l.

meomorphism. By Corollary 1.27, let h,:A —> vA, extending h, be a

1

é;l. homeomorphism. F1 is also a face of Ay B, since F1 = cl.(A - F).

1 %2
rphism which is the identity on c((F X I) U (F X 1)). Define k: M UB —> M

-1
t hZ: AU B-—>vA extend h, Then h, "h,: AUB—> A is a p.l. homeo-

i

it

e




by letting it be an extension of h1 h2 which is the identity whene

is not already defined. Then k is a p.l. homeomorphism.




-44 -

APPENDIX TO CHAPTER I.

We want to show that if A is a convex linear cell, then a cell B is a

face of A if and only if

1) 1f P is the hyperplane spanned by B, PN A= B ;

and

2) No point of P lies between any two points of A - B.

Clearly any face satisfies these conditions. Conversely, let {fi' = 0, gj >0}

be a system of equations for A. Suppose {fi= 0, g% --- =g, = 0,

841 20,000, g >0} is the smallest face B of A containing B. Then

given j> s, there exists % e B with gj(xj) >0, Put

3 x1+...+x.
X = j_ -
t-s

Then gj(x) >0 forall j=sti. If ye ™' and £ is the line segment from

X to y, then from 1) there must exist ze L N B with x between y and z.

By 2), y and/or z isin B. So by 1), y and z are in B. So xe B, Thus

B.



Chapter II - Regular Neighborhood Theory

1. CollaEsing

Definition. Suppose POQ P are Euclidean polyhedra, and suppose

B = clP(P - PO) is a p.l. ball which has B A PO as a face., Then we say

e
that P collapses to Po by an elementary collapse, and we write P \ PO .

We say that P collapses to the subpolyhedron PO and write P\ Po if ther
e e e
exists a finite sequence P =P \P \ .o \P .
r r-1 o

Remark. If P \Po, then PO is a strong deformation retract of P. For
e

suppose P \ Po; then if B = cl(P - PO), B ﬁPO is a strong deformation

retract of B, being a face of B, If ;t is the deformation retraction, then

setting Q. = U ';t defines a strong deformation retraction of P to Po .

1
P
o

Definition. P 1is said to be collapsible if P collapses to a singular point‘ '

If this is the case, we write P\O.

By the preceding remark, every collapsible polyhedron is contractible.

The converse is false, however, as the following example shows.

Consider a two-simplex: Let D be the quotient ¢

-

space obtained by making the identifications shown. Thesecond derived of this
two-simplex is a triangulation consistent with the identifications, and so we mayj

consider D to be a simplicial complex., Moreover, by a theorem of Whitehead“

[\3)
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D is contractible; for 'rri(D) = 0, the obvious cell-decomposition shows

Hi(D) =0, 1i>0, and so 1ri(D) = 0, all i.

Now D is not collapsible. For suppose D\e*DO, D - Do = B, Let
xe 8B - BN Do. Then link(x;D) = link(x, B) = a p.1l. ball. But no point of D

has a p.l. ball as a link. It turns out that D X I\O, 1=1[0,1].

Definition. Let KOQ K be simplicial complexes. Suppose A and aA
are not in Ko but are simplices of K, where a isa vertex of Ko' and sup-

pose that K= Kou {A} U {aA}. (We also write this condition in the form

K= Ko + A +aA.) Then we say that K collapses by an elementary simplicial

es
11 K d ite - K. W K impliciall
collapse to . and we write K\ o e say that collapses simplicially

es es es
to K if there is a finite sequence K=K \ K \ cee \ K , and if
o r r-1 o

s
»this is the case, we write K \Ko .

! Definition. If K is a complex, Be K is called a principal simplex if

B is not a proper face of any simplex of K. 1If the face A of B is the proper

face of no other simplex of K, then A is called a free face of B in K.

Remarks: 1) An elementary simplicial collapse is an elementary collapse.
2) If K ii Ko and K= Ko + A + aA, then aA is a principal simplex of K
with free face A. On the other hand, if B is a principal simplex of K with
free face A, then B = aA; and if Ko =K - ({A} v {B}), Ko is a subcomplex

es
" and K\ K .
o]

3) It is false that | K| \ILI , L a subcomplex of K, implies that K \S\; L.



Lemma 2.1. a) A cone collapses simplicially to a subcone. Precise

s
if Kog_ K are simplicial complexes, then v.K \V.KO, v a joinable poin

b) Say K are subcomplexes of K, K, \S‘ K3 , and

1’K2

S
K NK CXK. U i
) , S K,. Then K, KZ\K3UK2 '

Proof. Let A _,... ’Ar be the simplices of K - Ko in order of decrega

1’

dimension. Then A, is a free face of the principal simplex v. A

1 Collaps

1

out A, and v.A,. Then A_ is a free face of the principal simplex v, A

1 1 2 2!

what remains, etc. ...

es ;
b) It suffices to consider K1 \ K3, with Kin K2§ K3. Suppose

= . . n -C_

Ki K3 +aA + A, Then aA and A are not in KZ’ .s1nce K,1 KZ K3.

Hence K1 v K2 = K3 U K2 + aA + A defines an elementary simplicial colla.ps
U es i

K1 KZ \1 K3 Y KZ'

Lemma 2,2. If K collapses to Ko simplicially, and if o(K) is a

S
stellar subdivision of K, then o(K) \U‘(Ko).

Unsolved Problem: Is this true for non-stellar subdivision ? It is true for

complexes of dimension < 3.

Proof. In this proof we do not distinguish in the notation between a simpll
and its associated simplicial complex. If A is a simplex, we write A for the
complex A,

It suffices to consider elementary simplicial collapses. It also suffices to

consider only subdivisions obtained by starring at one simplex. So suppose

K= Ko +aA + A, aA a principal simplex with free face A, and suppose that |
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o

«(K) = K - B.link(B;k) + bB link(B;K), be B, Be K,
Case 1: B not a face of aA; then (r(aA) = aA, and

o(K) = a(KO) +aA + A,

Case 22 B<A. Let A= DBA [Picture for Case 2]

1

(with A, = § a possibility). Then A,

1
c(aA) = b. B. a. Ai' We have:

° S . . .
a.A,.biB N\ a.A,.B+ah .b.B,

since A'l'B + Ai.b.B is a subcomplex . B

of A,.b.B, and by Lemma 2.1,

But aA = a..BA}l +aBA1, S0

o(ad) = a.B.A, +a.b.é»A1 )

S - .
So, w(ah) \ c(ah). Let K, ='o(ah), ¥, = o(ah), K,= o(K ). Then

K N K2'= o‘(a.A)_C_K , 80

1 3

K,u K, = o(as) uo(K) { K,UK, = o(K ) Vo ah) = oK ).

s
That is, o(K) \ cr(Ko), by Lemma 2.1. ~ by

Case 3: B ; aA but B¥A (9= "nota face of");

that is, B C aA. Put B=aB,, A= AB Then

1’ 1°

Ai.b.B=A1b(aB1+B1) A

. S . .
abAiBi +b.A \aob.AiBi +bA,

1

aA=aA,B, = A,B. So o(aA)

174 1

by Lemma 2.1.



Now,

abA B +bA=abA B, +b(A B, +A B)

. . S .« & . .
=abA1B1+bA1B1\a(bA1B1+A1B1)+bA1 >

by Lemma 2.1 (both parts). Hence we have

s .. . .
a(aA) \a(bA1B1 +A1B1) +bAB, .

Now,

o(ad) = <y(aLAiB1 +aA1B1)= O'(AiB +aA1B1)

= aA B, +b(aB1 +B1)A1 = a(bAiBi +A1B1) +bA,B, .

S .
That is, a(aA) \ o(aA). Now continue as in Case 2).

Case 4: B = aA. Then o(B)= o{ad) = b.B = b(ad +A), But

i

. ] . . » ° s . *
b(aA + A) \ baA and abA \aA = ¢(aA). Thus o(ad) \ o(aA). Now procee

as in Case 2).

e
Lemma 2.3. Let |K]| \ |L|, L a subcomplex of the simplicial com~- -
plex K. Then there exists a subdivision K' of K such that if L' is the indu

]
subdivision of 1L, K'\L', and L' is stellar.

Proof. Let B=cl(|K| - |L|)=|K-L| B N |L| = F, aface of the b
B. By Corollary 1. 27, there is a p.l. homeomorphism h:(B,F)—> (Aa; Ai)’ |
where A, isa free face of the simplex A (i.e., dim A, = dim A-1).

Write B for the triangulalion K - L of B, Let B' and A' be subdivisi
of B and A respectively, such that h: B' —> A' is simplicial and B' is

stellar; apply Lemma 1.10 to h-i. Note that as h(F) = A,, B' contains a tri;

1':
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angulation of F, say F'. Let K' be a3 stellar subdivision of K whose in-
duced subdivision on B is B',

Let p: A — .A1 be the linear map which is the identity on A and sendsg
the vertex v Oopposite Ai to an interior point of Ai' Then there is a sub-
e . . "o, . . .
division A" of A' gych that p: A" — A1 18 simplicial, and Ai‘ is a stellar
subdivision of Ai

Let B" be the subdivics ,n of B! making h: B" —s Anm simplicial, Since
“h: B'—> A' was already simplicial, Fn jg a stellar subdivision of F', and
extends to a stellar subdivision L" of I, v Put Ktz gn UL" Since pn

and
L 1]

meet in the common subcomplex FU oK' g 4 well defined Subdivision of K

f. Dot necessarily stellar.

-1 to prove that Bn \S‘F", as
s
To prove that B" \ P

. . s
it suffices to Prove that A \ A'i s
1 where p: A" — Ai’ is simplicial, Now let {Ai} be the simplices of Ai’

in order of decreasing dimension, p-iAi \s‘ p-1A. Y A, by collapsing the
. i i

from their top faces in order, Doing this in turn
| Bives the required simplicial collapse of A" onto an




Theorem 2.4. If L and K are simplicial complexes, L] ¢ |K|, and’

if | K| \ |L|, then there exists subdivisions K'and L' with L' C K' and
s
K! \ L,
Proof. By induction, assume the theorem for all collapses consisting of
e e
most (n-1) elementary collapses. Suppose |K| = Pn \ \Po = | L]
There is a triangulation Kn of K ccntaining as subcomplexes triangulations

of Pi’ say Ki . By induction, there is a subdivision K1"1 1 of Kn

s
K! K", Now, K! extends to a subdivision K' of K
n-1 o n-1 n n
there exist subdivisions K'I'1 and K;

of KI'_1 and K;1 respectively, with

1 1

s
K" stellar, such that K" K" .
n-1 n n-1

By Lemma 2.2, K!' i«K" = induced subdivision of K' . Hence
- o

S
Kn K",
n \ [o)
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2. Full Subcomplexes and Derived Neighborhoods

Definition. If Ko is a subcomplex of the simplicial complex K, Ko is
- gaid to be full if any simplex in K all of whose vertices lie in Ko is a

simplex of K ; i.e., no simplex in K - K has all its vertices in K .
o o o

Lemma 2.5. 1) If K isa subcomplex of K and K; C K' are first
deriveds, then K(') is a full subcomplex of Ko .
2) If K isa full subcomplex of K and K(') € K' is any subdivision
then K(') is full in K'.
3) If K isfullin K and Ac K-K_, then A N |K,| is either

empty or a single face of A. (And conversely.)

+
4) K is full in K €=> there exists a linear map f: K—> R

- +
such that f 1(0) = Ko' (Linear means linear on simplices R =[0,®).)

A

A
Proof. 1) If ce K', let o= A,...A, A <...<A e¢K If fAieK; ,

FEEREL

1<ig s, then AS has an interior point in K0 and hence As € KO. So Ai € Ko’

i<s, and o ¢ Ké .
3) If AeK-K_ meets |Ko|, let (ai,...,ai) be the vertices of A inK .
Let A, = < i N i
et A, = span {a1,...,ai}. Then A, ¢ K and A, <A, Since A |Ko| is
always a union of faces of A, each of which is spanned by its vertices,

Aj=Aan K|,

2) Suppose Kog-. K is full. Let o e K'. Choose A e K such that the

barycenter of ¢ is in A. Then o< A. Moreover, ¢ N [Ko‘l C An |K0[ = Ai’

A1 a face of A. Therefore o N [KO| =0 N Ai , which is either empty or a



face of o¢. Thus, every simplex of K' which meets KO' meets it in exj

one face. This means that K,i-, is full in K'. (Converse of 3).)
+
4) If K, C K is a full subcomplex, let f: K—> R be defined by

setting f(v) = 0 if v is a vertex of KO and f(v)=1 if v is a vertex in .

L(0).

K-KO, and extending linearly over simplices. Clearly, |Kol =f
Conversely, if f: K—> R+ is given and we set Ko = f-i(O), then Ko‘ ;

a full subcomplex. It is a subcomplex because if x ¢ o, o€ K, then

f(x) = 0 => f(¢) = 0. It is full because if o ¢ K and f is zero on the verti

of o, then f(c)= 0.

Definition. Suppose that Lo is a subcompiex of L. Then we define

N(Lo; L)= U star (v; L) (union over vertices), called the closed simplici
rel
o

neighborhood of LO in L.

Definition. Suppose that X is a polyhedron, M an m-manifold, X c M3
Let Ko§ K be a triangulation of X & M; i.e., IKOI =X, |K| = M; with
Ko a full subcomplex of K. Then N = IN(K('); K')| is called a derived

neighborhood of X in M, where Ké C K!' is the first derived subdivision of §

i

4

K & K.
o

Definition., If Kog_ K is any triangulation of X €@ M and if K(Er)g K

is the rtP subdivision, then |N(K(§r);K(r))| is called an rth derived neighborh

of X in M, For r2>2, an et derived neighborhood is a derived neighborh '



108

10¥

Remark.
Remal=.
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The reason for taking full subcomplexes or at least 2nd deriveds

erived neighborhoods is that we want to be able to prove that a derived

neighborhood of X collapses to X. If M= AZ, X = AZ, then the first

as d

derived neighborhood of X in M is M, which does not collapse to X. The

2nd derived neighborhood does collapse to X, however.

+
Let KO be a full subcomplex of K. Suppose f; K—-— fR

Lemma 2,6.

and Ko' f—i(O), f linear. Suppose 0< &< f(v) , v any vertex in K—Ko.

-1
Then £ ([0, ¢€]) is a derived neighborhood of IKOI in |K|.

Proof. Let K' be obtained from K by starring each simplex A at

Ley it An £ ie) ¥ 8

" 3
. . . - I3 - . " -
"Ae¢ A in order of increasing dimensi on, choosing Acef

Claim: IN(Kg ;K| = f-i([O, €]). Let o be a principal simplex of N(K(‘),K').

AN A
A A, A <...<A_, A c¢K. Then A eKl, so A eK, somei.
1 T i i o] i o



Take i as large as possible with Ai € Ko' Then f(gj) =0, j<i.

A Ar have vertices whose values under f are greater than € .

i+'1’ s 00 )
Hence f-i( E)n Ai+k # @, 1<k<r-i, by linearity of f. Therefore,

A = = A = 1 1 -1
f(AiH) f(Ar) € , so N(KO,K)C £ [0, € 1.
Conversely, suppose Ai"'gr'c‘ f_i([O,e]), A1 <,..< Ar' Then

f(:&i) =0 or€& . If f(Ai) = 0, then A1 is a vertex of K(‘) . If f(A1) =&

then A1 has a vertex in Ko’ say v, with {vi# Ai’ and so
V.Ai. . 'Ar ¢ K' and lies in f-1([0, £ 1. But v.?\1. . 'Ar € N(Ké;K').

so £ '[0, ¢ ] c |N(K, K.
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Ambient Isotopy

m—

1. homeomorphism

Definition. An ambient isotopy of a polyhedron X is a p.
Delinitio.

(i.e., is level preserving)

. XX1I—>X A1l which commutes with projection on I

3 4 2

a has the property that h(x, 0) = (x,0), all xe X,

if h is an ambient isotopy, we write h’c for the p.1l. homeomorphism of X

If X and X, are polyhedra

onto itself defined by setting h(x,t) = (b (x), ). 1 2

Lrontained in X, we say that h throws X1 onto XZ if h'l(Xi)= XZ . Two

olyhedra contained in X are said to be ambient isotopic if there exists an

mbient isotopy throwing one onto the other. The relation "X:t is ambient

sotopic to X2" is clearly an equivalence relation.

¥ —> X is said tobe ambient isotopic to the identity

A homeomorphism ki

y h of X with h = k.

there exists an ambient isotop 1

If XOG, X, we say that the ambient isotopy h of X keeps X0 fixed if
Xo X I = identity map of Xo XL
Lemma 2.7. Let KOE K be simplicial complexes, and let
K| — |Ko| be a p.l. homeomorphism such that
1) n| lKol = identity.
2) hic)=0¢ , all ce K,
hen h is ambient isotopic to the identity via an ambient isotopy keeping |Ko|

fixed,

Proof. Let. LITERRE o be the simplices of K—KO, in order of increasing

imensjon. Define H on Ko X 1 by setting it equal tothe identity. Define H



on KX 1 by setting H(x,1) = (h(x),1) all x ¢ K. Assume that H has bee

defined on o'j X1, all j<i, Then H is defined on the faces of crj X 1.

1

Extend H to v, X I by defining H(G-,,% ) = (G'i, =) and joining linearly, ¥,
i

i
a point in B'i . This defines a p.1l. homeomorphism H: KXI—> KXI, [It:
easy to check that it is level preserving and is therefore the desired ambient

isotopy.

Corollary 2.8, If h: B—> B, B a p.l. ball, is a p.1l. homeomorphis

and if h] B = identity of B » then h is ambient isotopic to the identity, keepi
B fixed. ;

Proof. Let K= A, Ko = A and apply Lemma 2.7,

Lemma 2.9, Let N1 and N2 be two derived neighborhoods of the polyhe

X in the polyhedron M, Then there is an ambient isotopy throwing N1 onto “
which is fixed on X,

Proof, Let K, € J, and K_CSJ

. . - h K ]
1 1 > > be triangulations of X & M, with i1

full in J'i . Let primes denote first derived subdivisions,and suppose

N, = IN(K};7))| and N, = [N(K};JL)|. Let K G J_ bea common subdivisia

1 2
c c ... ) . — |7 ]
of Ki_ Ji and K2 G .]'2 . (Choose subdivisions making 1 : |J0| l 1| |
simplicial. They obviously are the same,) Then KO is a full subcomplex
of Jo and, so (primes denote first deriveds) NO = INO(J'('J; K('))| is a derived |
neighborhood.
1

It clearly suffices to find an isotopy throwing N, onto NO and an isotopy |

throwing N_ onto NO. We will construct an ambient isotopy throwing N1 ontd

2
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with

+
J1| —> R be a map which is linear on simplices,

Let £:

f’f"i(o) = IKil . Then f is also linear on simplices of Jo. Let £ be such

’,lthat 0 < €< f(v) for all vertices v in JO-KO. Then there exist first derived

F sk F s

3 ivisi - C c - i

,\ysubd1v151ons Ko c J'o and K1 - Ji of Ko C Jo and K1 - Ji’ respectively,
S OB -1 % sk ES % %

| such that f ([0,&]) = lN(Ki;Ji)l = |N(KO;JO)| =

N, by the proof of

{.“Lemma 2.6.

Let {Ai} = simplices of Ji' Let J'.l' be obtained by starring at points

. " a
E R e Ai . Say J1 is obtained by starring Ai € Ai . From the proof of

i
A A
3 Lemma 2.6, it is clear that we may suppose Ai = Ai if Ai € K1° Define a

- h %* '
simplicial homeomorphism J'1 —_— J1 by sending Ai to f&i and extending

| inearly over simplices. By the Lemma 2.7, h is ambient isotopic to the

identity, keeping |K1| fixed, for if o€ J'l’ h(s) = &, and h| |K1| = identity.

;;,{_Hence there is an ambient isotopy keeping |K1| fixed and throwing N,1 onto

“’N* = |N(K*; .T*)I . Similarly, there is an ambient isotopy keeping IKOI fixed
throwing No onto N* = |N(K:;J:)|, and so N,1 is ambient isotopic to No’
keeping |K0| fixed.

n M, and

Lemma 2.10. If X is a polyhedron contained in the polyhedro

if N is a derived neighborhood of X in M, then N\X.

Proof. In view of Lemma 2.9, it suffices to prove that N (X for one

So let K_ C K be a triangulation of X & M, and

derived neighborhood N.
: + -
assume K is full in K. Then let f: K—>R Dbe linear, with £ 1(0) = Ko

Let £€>0 be such that &< f(v), all vertices Vv of K- KO. We have seen that



N = f-1([0, £]) is a derived neighborhood of KO. So it suffices to show th

0, e D\JK, |-

~Let {Ail i=1,000, r} be the simplices of K-Ko in order of increas

dimension. Then Ci = Air\ f-1([0,€ 1) is a convex linear cell and so a p.1,/8 ’

Let Fi= Aiﬁ f-i(&:), a face. Now set U_ = (KO), and set

= iz 4,0.0.,1)). N =C.H
U, UOU(U{CjIJ 1,...,i}). Then C, U 4 :

> L
1]
[¢]
—
PSS
O
e
]
Hy
[
[
z-

face of C.. So c{U,-U, ,} = cli{c, - ¢, N U, _,} =C,; isaball meeting

e 1
in a face. Hence U, \ U .. But U_=f ([0,¢ 1.
i i-1 r
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4. Existence and Uniqueness of Regular Neighborhoods

Definition. Let X be a polyhedron contained in the p.l. m-manifold M.
N € M is called a regular neighborhood of X in M if
1) N is a closed neighborhood of X in M,
2) N is an m-manifold, and

3) N\X.
This section is devoted to the proof of the following theorem.

Theorem 2.14. Let X C M, M and m-manifold, X a polyhedron. Then

1) Any derived neighborhood of X is a regular neighborhood;

2) If N1 and NZ are regular neighborhoods of X in M, then there

bexists a p.l. homeomorphism h: N1 — N2 such that h(x) = x if xe X; and

3) If X is collapsible (XN 0), then any regular neighborhood of X

i8 a p.1. m-ball.

Theorem 2.11 is proven by induction. We consider the following three
lements, for each integer n > O:

E_(nl- If X is a polyhedron contained in the m-manifold M, and if m < n,

2 every derived neighborhood of X is a regular neighborhood.

If N1 and N2 are derived neighborhoods of X in M™, an m-mani-
and if m < n, then there exists a p.1l. homeomorphism h: N1 — N2 which
e identity on X.

): In a manifold of dimension at most n, every regular neighborhood of a

ible polyhedron is a p.1. m-ball.



Lemma 2.12. U(n) implies B(n).

Proof. Let dim M<n. If X \{Xo} and N is a regular neighborhoo
of X in M, then X is a regular neighborhood of {xo}. Let M= |K| be
triangulation of M with X a vertex of K. Then
|_§ar—(xo;K)| = |xo.1ink(xo;K)| is a p.l. m-ball, and a closed neighborhoo

of X - Moreover, Istar(xO;K)l \{xo}. So U{n) implies that N is homeo

to the p.1. m-ball | star (xO,K)

Lemma 2.13. E(n-1) and B(n-1) implies E(n).

Proof. Let X € M be a polyhedron contained in the m-manifold M, mk
Let KO‘_:—_ K be a triangulation of X €M, with KO full in K., Let
N = |N(K(');K')|. N is clearly a closed (topological) neighborhood of X, andi
know that N\X. So it remains only to show that N is a p.l. m-manifold.
do this, it suffices to prove that N(Kc‘); K'), for which we also write N, by ab‘
of notation, is a combinatiorial m-manifold. Using induction and the formula:"
link(AB; N) = link(A;link(B; N)) with a single vertex, it is easy to see that N
be a combinatorial m-manifold if (and only if) for every vertex v of N,
link(v; N) is an (m-1)-sphere or ball,

So let v be a vertexof N. If ve K!, then star (viK") < N, and so
link(v; N) = link(v; K!) = a sphere or ball of dimension (m-1).

Suppose on the other hand that v e N-Kf‘) . Then v= {A\ for some simplex§
AeK, Let B=A N :KO[ , a single (siinplicia.; face of A by fullness of K_

(B is clearly non-empty).
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Let o€ K', and write ¢ = Ai...ﬁs, A <... <A K Then
i s K') <Ss=> <AL ] < < A i
o € link(v; K') Aj Aj+1 some j, or A A‘1 or As . Soif
. . R
_(4 ... B|AgB,<...<B K}, k(v K') <=> 0 = 0,0,
{B'1 Jl $ B, Je }, then o e link(v ) c=0,0,

" : S, (A)‘ being the induced subdivision of K' on A.

ﬁwhere o, ¢ (A)' and v, ¢

j (We allow the possibility o, = ‘¢, i=1,2, and write Ui'¢ =0y g. o, =

Thus, link(v; K') = A.S.

Let L= A.S. Now A<B=> B ¢ K . Hence SA K| = §. Therefore

nK' = A' A K' = B!, Therefore,
o o

L AN consists of the simplices of L

jmeeting B' and their faces. The fact that B is convex insures that it and its

iiaces form a full subcomplex of any simplicial complex containing it. We have
L AN= N(B';L) = N(B'; A‘S) = N(B"; A ). S,
e last equality being a consequence of the fact that B'E& A',
in the

N(B'; A') is a derived neighborhood.of the collapsible complex B!

anifold |A'| of dimension at most (n-1). Hence by B(n-1) and E(n-1),

(B';A')l is a p.1l. ball whose dimension is (dim A - 1), However, S is

Z

.1. homeomorphic to link(A; K). In fact, if A<B and C is the complementary

N A
B to C determines a simplicial homeo-

|s| is ap.l ball of dimension equal

0 m - dim A - 1. Hence |A'.S| is a p.l. ball fo dimension m-1.

Thus to complete the proof, it remains only to show that

lnk(v N) = link(v; K') N N. Certainly, link(v;N)C link(vyK') N N, Conversely,

where o, € A'1 y 0y

lf. ¢ ¢ link(v; K') n N = N(B', A").S, then ¢ = T, 1

F1<“T1 s Ty meets B'. So VO'AVTio'Z which meets B',

So voe N, oelink(v, N).



Lemma 2.14. If M is an m-manifold, if X C M is a polyhedron, j

B'C M is an m~ball such that F = B N M is a faceof B, andif BN X
then there exists a p.l. homcomorphism h:cl(m-B) —> M with h|X = jdeid

of X.

/'x

Proof. By induction on m. So assume 2.14 for manifolds of dim {(
and say dim M = m.
1) cl(M-B) is an m-manifold.
Namely, triangulate M so that B and F are triangulated as sul
complexes, and consider link(x;i\_/f:-ﬁ-), x a vertex of M-B., If xe M-B, th"i

link(X; M-B) = link(X; M), an (m-1) ball or sphere. If xe¢ M-B N B, supposek‘

first :‘:X#Mi}. =, xd F. Then link(x;M-B) = link(x; M) - link(x; B) is an (
sphere with the interior of an (m-1)-ball deleted, and so an (m-1) ball, Ifxe “
then x ¢ F, [FAM-B= F]. So link(%,F) is an (m-2) ball, Moreover,

(Tiak(x; M)) = link(x; M), and so (Link(x; M)) n link(x; B) = link(x; MN B) = link{
a face of the (m-1) ball link(x;B). Hence by induction,

cl( | link(x; M)| - [link(x; B)|) is p.l. homeomorphic to | Link(x; M)| , an (m-1)t



o
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perefore, | 1ink(x; M-B) is p.l. (m-1) ball. This proves that cl(M-B) is

manifold of dim m.

1 2) Let F, = 3B-F. Let c:d(ci(M-B) XI—> ci(M-B) be 2

1
£€> 0 such that c(F,1 x [0, £]) does not meet X.

oundary collar. Choose

:et D= c(F x [0, &]). There is a p.1. homeomorphism B VD —> D which

‘g,
;s the identity on D - F. Extendto allof M by the identity, getting a p.l.

-:homeomorphlsm M —> cl{M-B).

To start the induction, we leave it to the reader to verify that in case m =1,

(M-B) is a manifold, and then to proceed as in 2).

Lemma 2.15. E(n-1) and B(n-1) implies U(n).

Proof. Let N bea regular neighborhood of X in M. Then we will show

fthat N is p.l. homeomorphic to a derived neighborhood of X in M. (M an

via a homeomorphism which is the identity

-manifold, X a polyhedron in M.),

on X. This together with Lemma 2. 9 will imply U(n).
Let K_ C K C J be triangulations of X € NC M. We can choose KOQ K

: es
sothat K \ K_. Solet K=K, \ K, \ - \ K_ be the collapse. Let

¢ K" = barycentric second derived of K. Let Ui = N(K;;K"). Then Ur = K",
is a second derived neighborhood of ‘Ko‘ in the n-manifold |K|. We

s h:U,, 6 —>U. which leave K
1" it i o
has been construc_ted if 1 # r-1,

pointwise fixed. We assume by induction that h. .,

"80 that we may assume in particular that Ui+1 is an m-manifold.



Now let us observe that Ui = U st (63 K"), Since & is a vertex o“f

ceK,
i

K'{ , the inclusion 2 is obvious. Suppose on the other hand, that Te U

—

A
" =
1 meets Ki' Suppose V] Bi"'és’ where

B, <.,,<B ¢ K'. Then for some i, é e K", Hence B,e K!, so B
1 s i i i i

then 7571, where T

1
If B, is a point, then B1 = 'S-, ¢ € K., ., Otherwise, let wve Ki be such t

1 i
A
£ is a vertex of Bi' Then G'é1., ..BS e K", So in either case
T € U st (¢; K"), and hence so does T,

oge K,
i

Nowlet XK. =K +A+B, A=aB, acK;, A { K, . Then the only bary
1

1
centers of simplices of Ki+1 which are not barycenters of simplices of K,
A and é Therefore
U, =U+P+Q, P = Star (A;K"), Q= st(B;K").

We now claim that the following two statements are true:

a) Uiﬂ P is a face of P.

b) (UiuP)r\Q is afaée of Q. |
To prove a), let L = link(A;K') = A'.S, where S= {ﬁi...ﬁs| A$B< <
(See Lemma 2.13.) Let p: 1k(A; K") —> L' be simplicial homeomorphism ‘
which is defined on vertices by sending AC to e for any simplex C of L-
If e PN Ui' then o ¢ 1k(A;K"), as o e st (A;K") and A ¢ o. In addition, "
o€ link(]A);K") for some D e Ki as o€ E(I'\D,K") for some D e Ki but

A — .
D¢ st(A; K"), Therefore, ce¢ PN U, => g¢ 1?:1k(A;K") 8 lk(f);K"), some D
, i

Conversely, it is clear that any simplex of such an intersection lies in P N §
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However, 1k(R;K") A 1k(ﬁ;K") g <= AD ¢ K!, Forif o= %1’ ..gs,

<,,. < BS ¢ K', is a simplex of this intersection, then X and ﬁ must be

1

ertices of Bi’ and conversely. empty if and only if

So this intersection is non-

<D or D<A, But A was a principal simplex of Ki+‘1 and D Ki' So

in which case D e aB. So we have proven the

D < A is the only possibility,

PnU, = U (Link(A; K") A Link(D; K")).
De aB

we may consider its image under the p. 1.

Since P N U, C link(A; K"),

omeomorphism p: link(g;K")——> L', If oe link(A; K") and De aB , then

‘lk(ﬁ;K")<‘-=>p0'e-§(f);L'). Forif o= %1"':%5’ Bi<"'<Bs€ K,

rite B, = A = 4 A '
i A'ri. Then p(o) FpeeeTg e L'. But

i A —
‘;! Ik(D; K") <> D< ]_:»,‘1 <> ﬁi < A <> po € st(ﬁ; L'). So we have:
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pPNU) = DLejaé st(d;Lny = NiaB)n, L.

The last equality follows an argument similar to that used in deriving a similar
’ expression for Ui (page 62 ).

| However, (a].3)' is full in A' and so also in L = A',S, Therefore, (aé)"
is full in L'. |L'| is a p.l. manifold of dimension (n-1). Hence
E(n-i) = N((a,l::’a)", L') is a regular neighborhood of laél in |L|. But

'Iaél \0, so by B(n-1), this regular neighborhood is a p.1, (mji) ball. Hence
Ui is also a p.1, (m-1) ball., Since P N A C link(A; K"), which lies

‘ e boundary of P = H(A;K"), this proves that P N Ui is a face of P,
To prove b), let L, = link(B;K') = é'.s1, say. Define pi.lk(ﬁ; K") —> L}

E

A A
by defining it on vertices to send BC to C. As before we have that

e QN (Ui U P) if and only if o e link(B; K")n li_nk(ﬁ; K?") for some D Ki

rfor D= A, Once again, this intersection is non-empty if and only if B< D

e

D< B. Since B is a free face of the principal simplex A, the only
O8sibilities are D= A or D < B. So this time we find that
QAU UP) = () SEB;L,) = N(AB)n L),
A | i 1 1 :
De B j
or D= A
before, we see that AB! is full in L1 = E'Si and is collapsible. So E(n-1)
B(n-1) = N((Alé)";Li) is an (n-1) ball, and so QN (Ui N P) is a face of Q,
To complete the proof, we are going to apply Lemma 2.44. Recall that the

Einctive hypothesis implied that Ui+1 is a manifold. Moreover,

= c)(Q - FrQ), where the frontier of Q is taken with respect to Ui+1'




But FrQ= (UiLJ P) n Q, a face of Q. Hence Ui 0 Q is also a face of
Hence Ui+1 is p.1. homeomorphic to cl{U - Q} = U, UP, A similar arg
i i

ment gives a p.l. homeomorphism of U U P with U,1 , using Lemma 2.1
1 *

again,

Proof of Theorem 2.11. By the preceding lemma, it suffices to estab

B(0), E(0), and U(0). Let M be a zero-manifeld, X a polyhedron, X &
Then M is a finite set of points and X 1is a subset. Hence any derived ne
hood of X 1is also X, as if P4 X, X u{P} does not collapse to X. If

collapsible, it is a single point, so B(0) is also trivial.

Remark. In the course of proving Lemma 2.1, we also showed that given an

, m . .
1 of X in M, there exists a sequence of m-mani

1 r e Vo

regular neighborhood N

Z
]
<
1
W

with VO a derived neighborhood of X and cl(V1 - Vi 1) and m-ball, which

meets Vi in a face and also meets 9V . 1in a face.

-1 i
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'5, Uniqueness of Regular Neighborhoods which Meet the Boundary Regularly

In Section 3 we proved that derived neighborhoods of a polyhedron in a
; manifold are ambient isotopic. In this section we extend this result to a larger
“ 1as; of regular neighborhoods.
| Definition. A regular neighborhood N of the polyhedron X in the p. 1.
C'ma.nifold M is said to meet the boundary regularly if either NN 9M is a

iiregular neighborhood of XN dM in 9M or both of these intersections are empty.

ﬁ\lote: A derived neighborhood of X in M meets the boundary regularly.

+ -
For suppose f:K—> R s linear, f 1(0) = Ko’ and f(v) >& for all vertices

,;ve K- K- If Kom 9K = @ , 0K f-1[0, ¢ 1= ¢. Otherwise 9K N f'i[o,a] is a

erived neighborhood of Ko A 8K in O9K. The uniqueness of derived neighborhods

hows that the result holds for all derived neighborhoods.

Theorem 2.4 If N1 and N2 are two regular neighborhoods of the poly-

hedron X in the manifold M which meets 9M regularly, then there exists an

‘mbient isotopy throwing N1 onto NZ’ fixed on X.
Naturally to prove this theorem we will need some lemmas.

Lemma 2.17. Let Nc M be m-manifolds. Suppose N n oM is an (m-1)

anifold, Let X € N be a polyhedron, B < N and m-ball, BN X =@, Sup-
ose B N FrM(N) is a face of B and either

1) BC Int M or

2) Bn dM = Bi is a face of B and B, N FrM(N) is a face of B, .

en there exists an ambient isotopy of M, throwing N onto cl(N-B), which is

;stant outside an m-ball contained in M not meeting X.



Pictures:
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Proof. First of all, cl(M-N) and cl(N-B) are manifolds. Namely,
triangulate M with N as a subcomplex and let x be a vertex of M-N .

1) x € M-N, Then Ilk(x; M-N) = link(x; M) = sphere or ball of dim m-1.

2) xe (FrN) N (Int M), Then link(x; M-N) = link(x; M) - link(x; N).
Bput 1k(x; M) # link(x; N) and link(x; M) is an (m-1) sphere. Hence link(x; N)
is an (m-1) ball and the closure of the difference is an (m-1) ball.

3) x ¢ M N Fr(N).

FrM(N) =3N - NN OM , which is a p.1l. (m-1)-manifold,

since we assumed that N ndM was, and by 1) and 2).

Now link(x; M-N) = link(x; M) - link(x; N) and

hink(x; M-N N N) = Tink(x; M) - link(x; N) N link(x; N).  Let B, = link(x; M),

5= link(x; N), both (n-1) balls. Then Bi_BZ N B2 is a face of BZ' So

3B N : BB ; .
1 B2 is a face of B2 and B1 B2 is an n-ball,

This proves cl(M-N) is a manifold. cl(N-B) is a manifold by Lemma 2. 14,

Let F1 = BN Fr(N). Let FZ = BN cl(N-B). F2 is a face of B, for in

(l ase 1) of the statement of this lemma FZ = cl(B - Fi); and in case 2,

= cl(é -F

V) Bi)’ and we saw that F1 ) B1 is a face of B in the last para-

2 1

raph, Triangulate M with F B =BNM, F_, B, N, and X as subcomplexe

2!

in M-N, with respect to this tri-

R

fet C = second derived neighborhood of F',

[P

et T



Since F1 and FZ are collapsible, C and D are m-balls, by the

uniqueness part of Theorem 2.11. Cn B = Fi’ a common face, so Cy B
is an m-ball. DN B = FZ , a common face, so D UB 1is an m-ball,
E=C:.; B ) D is a second derived neighborhood of B in M and so is an
m-ball,

Now we consider the two cases of the statement of this lemma.
1) B € Int M.

We define f: E—> E as follows. Put hlE = identity.

Now CN(BuwD)=C rn Fr(ci(M-N))=C n(8cl(M-N)), as C ﬂ oM = ¢ 14

But F1 ¢ FrN and C is a derived neighborhood in cl(M-N) and so meets

boundary regularly. Hence C M (B v+ D) is an (m-1) ball.
(Cw B)rn D=D n 3(cl(N-B)) is also an (m-1) ball. Moreover, these two bal
have identical boundaries, both contained in E, Hence the restriction of h

this common boundary extends to a p.l. homeomorphism

h,t Cn (BuUD)—> (Cw B) nD. Together with h, this defines a p.1. hom

morphism hz: C —> (C .:B)" and a p.l. homeomorphism h,:(Bw D) —> Dj

3!

which agree where they are both defined. Hence h2 extends to a p.1l. homeo ik

C—>CuB and h extends to h.: Bw D—> D, Let

morphism h4: 3 5

h= h4u h5 : E—> E. (The reader is advised to consult Picture 1 on page ‘2

Now, h(B uD)=B. Moreover, h is ambient isotopic to 1. keeping OF

E
fixed. Extend this ambient isotopy over M by letting it be the identity at eve

level for points outside E. The resulting ambient isotopy throws N onto cl(N

and leaves X f{ixed.
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2) BN aM# 0. Let Ci=Cm8M, D1=D08M, E1=Ez’\8M. By

| arguing as in 1) (one lower dimension), we may find a p. 1. homeomorphism
: he E'1 _— E1 such that h| BE1 = identity, h(ci) = ciu Bi’ h(Diu B‘l) = Di'

(Recall: dM = #.) Define h on FrE by setting h|FrE = 1. Then as before,
: h is defined on (C N (B U D)), which it maps homeomoprhically onto
((Cv B) n D)* . (These are not equal.) Once again, this definition extends
to a.p.l. homeomorphism of E which is the identity on Fr(E). Now h is
ambient itotopic to the identity via an isotopy fixed on Fr(E), bya corollary to

f 2.7 which we did not state. Extend this isotopy as in 1).

Notes: 1) The unstated corollary is: If A'l is a principal face of A= vA1,
any homeomorphism h: & —> A with hlvz.\1 = jdentity, is ambient isotopic to

the identity keeping vz.lJl fixed. This applies because Ex in.

2) The m-ball outside which the isotopy is constant is E.

Lemma 2.48. If X € Int M and Ni and N2 are two regular neighbor-

h oods of X which lie in Int M, then there exists an ambient isotopy throwing

Proof. In the proof of Theorem 2. 11 (see lemma 2. 14 and the remark on
page LLQ‘), we showed that there exists a sequence of m-manifolds,

r-'l—D ...'.DVO with Vo a derived neighborhood of X in M and

w ith Bi = cl(Vi - Vi-i) and m-ball which meets Vi-i and BVi in faces. Since
;,BiE Int M, Bin(BVi) = Bir\ FrVi. Hence Lemma 2.1 applies: there exists
n ambient isotopy of M, fixed on X, throwing Vi onto Vi-i' Hence Ni is

mbient isotopic to a derived neighborhood. So is NZ’ and derived neighborhoods

.re ambient isotopic.



Lemma 2.19, If X G Mm, and N, and N_ are regular nei hborhog:
1 2 g 8 oo,

of X "M in 8M, then there exists an ambient isotopy of M, fixed on X

throwing N, onto N2

1

Proof, Let M be triangulated with N'1 and X as subcomplexes wit

s
N1 \ XN M, Let Uo = 2nd derived neighborhood of X with respect to t

triangulation. Then Uof\ OM is a second derived neighborhood in M of

X N dM. We saw in the proof of Theorem 2.11 (see Lemma 2.15) that in 9

there exists a collection of (m-1) manifolds N1 =V.2...2 VO = UO such
Cl(Vi -V, 1) is a ball meeting V. , and B(Vi) in faces. As 8(0M) = ¢ ,

BVi = FraM Vi - Therefore, Lemma 2.1 applies to each pair Vi Vi-1 t

give an ambient isotopy throwing Vi onto Vi 1 constant outside of an (m-i)

ball in 8M which does not meet X, Call this ambient isotopy Hi’ and let E

be the ball outside of which it is constant (may take Ei = 2nd derived neighbog

hood of cl(V.-V

. m =
; i-i) in M), }*:i X=4.

Now triangulate M with X and E  as subcomplexes, Let Fi= 2nd deriy
i 1

E:

of E. in M, F.NX=f§. We extend H; to F. as follows: Put H, = identd

on FrM(Fi) and extend Ir-I1 and H over Fi and Fi X I in the usual way (see}

Section 3, Lemma 2.7 and Corollary 2.8.). Now put Hi = identity on the rest

M X 1,

This defines an ambient isotopy of M throwing Vi onto Vi-i' Com-

Posing these isotopies defines an isotopy throwing N1 onto UO M 8M, fixed on r
Similarly, NZ is ambient isotopic to UO‘ oM, UO' a derived neighborhood of}

X also. But U(’) is ambient isotopic to Uo’ and any ambient isotopy throwing ,
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~ onto Ué must throw Uof\ dM onto U;ﬂ 9M, as p.l. homeomorphisms of

manifolds preserve boundary.

B

oM

Lemma 2.20. If N is a regular neighborhood of X in M and if N meets

Proof. First suppose that N is a derived neighborhood of X, i.e.,

= ]N(K(‘) :K')| , where KOC K is a triangulation of X € M with K a full

bcomplex. Let Ai”"Ar be the simplices of K-KO which meet Ko, ordered

as to satisfy the following tow properties:
a) Simplices of K preceed those of K.
b) Ai preceeds its faces.

LN |K | = B, a single face of A_. A N N= |N(B!;Al)|, aball,
b o 1 1 1 1 1

I N N= N(Bi; Al), a face of this ball. Hence

U, = liE{ol\-){JL:)1 (NﬁAJ.)} \IKolu{ U (N A Aj)}= Uy o

§=iH
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r . r
as U (Nn A) k U (NA A) and by Lemma 2.1, (applied to a sub-
i=1 VOV =it .

division in which the collapses are simplicial), Lemma 2.1 applies because

T r r
X | n (U (Nna)) = |Ko|n(u Aj)g|Ko|m (E)' a), forifa
j=1 j=1 j=t1+1

point of Ko is contained in Aj’ some j, it is contained in a proper face of Aj
Now, Uo = N, Clearly, there exists an i such that Ui =X u(NNnoM), bya

U =X,
r

Now suppose that N is a regular neighborhood of X which meets the bou
regularly. Then NnOM is a regular neighborhood of X N 3dM in oM,
Claim: N N 3M C 8N is a regular neighborhood of X N dN in 0N,
N N M is a neighborhood of X N N in ON because
XAON=(XNFrN) U(XNn NAdM)=XN3M as XN FrN=¢ and NndM i
obviously a neighborhood of X M 8M in 9N. N MNOoM is an (m-1) manifold
which collapses to X MNaM= X N 9N,

Let N1 be a derived neighborhood of X in M. Then N1 meets 9M

regularly. Now, there exists a p.l. homeomorphism h: N —> N1 such that

Moreover, h(NNOM) and N, N\ M are both

h|X = identity and h(N) = N 1

1
regular neighborhoods of X N 8N1 in 8N1. Hence there exists an ambient

fixed on X, throwing h(NN3M) on N, N M, In particular,

isotopy of N 1

1’

there exists a p.l. homeomorphism h' of N onto N'1 with h'|X = identity,

such that h'(N N M) = N,1

A M. But Ni\‘X L (N, N 9M) \( X. Hence
N\ X u(Nn M) xX, since (h‘)_1 preserves collapses.
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Proof of Theorem 2.16. We are going to show that any regular neighbor-

o
g

‘ hood which meets the boundary regularly is ambient isotopic to a derived neigh-

porhood. Since derived neighborhoods are ambient isotopic, this will prove 2. 16.

So let N be a regular neighborhood of X in M meeting M regularly.
t X and

Then N \X v (M (\N)& X. Let K be a triangula:tion of M such tha

N are triangulated as subcomplexes, Ko and L, say. We may suppose that

S . s es
L\KU(LAK)\ K . Let L=K \
(o] (o] I

with Ks = KOU (L n K), some s&r. Let Ui = N(K‘i ‘;K“r), where K"

es
cee \ Ko be these two collapses,

= 2nd

derived of K. Let Ki = Ki 1 + A+ B, A=aB, Then we have seen (Lemma 2.15)

— A ———, A
that Ui = Ui-i UP UQ, where P=st (A;K"), Q= star (B; K"), and that there

= U We are going to use

exi 1. i = P .
xists a p.l. homeomorphism Ui Ui-'l ) 4

emma 2.16 to show that in fact Ui is ambient isotopic to Ui 1U P and

LU P is ambient isotopic to Ui , keeping X fixed. This will complete the

i-1
roof.

Either A and B are both in 8M or neither is in oM, In the latter case,

P and Q both do not meet M. In this case, P N Fr(Ui_1u P)=Pn 8(Ui_1\J P),
d we have seen (page ég ) that P n 8(Ui__1 U P) is a face of P. Similarly,

Q N Fr(Ui) =QnNn 8(Ui) is a face of Q. Hence by Lemma 2.16, there are ambient

isotopies throwing U, onto U, ,J P and U. J P onto U..
i i-1 i-1 i

Suppose on the other hand that A and B are bothin 0M. Then

A e .
tar(A; K") N K" = star(A;K“) and similarly for %, so P and Q each meets OM
a face., We still have that Pn Fr(Ui s P) is a face of P, and

NFr Ui is a face of Q. Hence in order to conclude the proof by applying



Lemma 2.16. we must show that (P n M) A Fr(Ui_1 VU P) and

(Q NnoM) N FrUi are faces of P n 8M and Q NdM, respectively.

Now, N N oM = |K‘I'_ N I.i"| is a regular neighborhood of IKO A K | =

o es

] es .
Moreover, Kr"\ K=.,.= Ks N K . \ KO(\ K. (We are assuming}

here that i< s.) Clearly, we have that Ui N oM = N(Ki‘ A K ;Ks" N I.{")
N((K, n K)";(K_n K)"). Also, we just noted that P N OM = star(A;K") ang
QNnIM= star(l,?‘); I.i" ). Hence, the arguments of Lemma 2.15 (see page 43
apply in 8M to show that (P N M) n E)[(Ui_1 Vv P) n 9M] and

(Qn aM) n B(Ui A OM) are faces of P M OM and Q n9M, respectively. B

8[(U,_, L P) n 8M] = [Fx(U,_, U P)] n M, and 8(U, N M) = (FrU,) N M

i-1

Thus P n M n Fr(U,

iV P) is a faceof PN 3dM and Q N 3M f\Fr(Ui) i

face of Q N 9M.,

Corollary 2.16.1 (Annulus Property): Say B1 C Int BZ’ B, and B2 P.

m-balls. Then C1(B2 - Bi) is p.1l. homeomorphic to B, X I

Corollary 2.16. 2. (Generalized Annulus Property): If N1 and N2 are

regular neighborhoods of X in M with Nlit’_-'-__IntMN2 and if N1 meets OM
regularly, then there exists a p.l. homeomorphism

h: cl(N, - N'l) —_— (FrMNi) X1I.

2
Proof. Clearly, 2.16. 2 implies 2.16.4, since a ball is a regular neighbo

hood of any interior point. To prove 2, 16. 2, let Ko be a full subcomplex of

|K[ = M, with lKol =X, Let ®; K—>[0,1] be a simplicial map (vertices

A ,

(

[0,4] are 0 and 1) with & (0) = Ko. Choose 0< &1 < £2< 1. Then by 2.115:
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;there exists a pl homeomorphism hi NZ—-> ¢-1[0,£2], hIKO = identity.

;‘Now ’ h(Ni) and ¢—1[0, 81] are regular neighborhoods of X in ¢-1[0, EZ]
‘which meet the boundary regularly (in fact, N, meets N, regularly and
-¢-1[0’ Ei] is a derived neighborhood). Hence these two neighborhoods are
,I;ambient isotopic; in particular, there exists a p. 1. homeomorphism

f ' @'1[0, ez] — @’f[o, ez] such that k(h(N1)) = ¢'1[o, 91]. So

3 -1 -1
LN -N,) =g (e ,e.] =8 (g, ) X1 =~ FrN, X I,
cHh 2T 1’ =2 1 n-d-d x4 1

A
Y

V ddendum 2.16.3. Let N be regular neighborhoods of X in M

N_,N
2!

1? 3

neeting 9M regularly. Suppose N1 and N2 are (topological) neighborhoods
N3. Let PE M - (N1 v NZ) be a polyhedron. Then there exists an ambient

topy of M, fixedon P U N3, throwing N1 onto NZ.

P o . .21 i - =] N_X1I). - —> F .
roof. 2.17.2 implies cl(N:l N3) (FrM 3 I). Hence cl(N'1 N3) rN3
nce Ni\i N3 (Lemma 2.1). Similarly, N2 is a regular neighborhood of N3.

t N, be a second derived neighborhood of P. Then N,V N, and N2 J N4

4
;‘egular neighborhoods of N3 U P meeting 8M regularly. (Nif'\ N4 = ¢ ’

Hence there exists an ambient isotopy throwing N'l U N4 onto

4 keeping N_ U P fixed. Since a p.l. homeomorphism is continuous and

3

naps connected components onto connected components, it follows that this

ent isotopy throws N',1 onto N2°
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Chapter III -- P.L. Spaces and Infinite Complexes

41, Introduction.

Chapters I and II have been confined to the study of compact polyhedra ang
p.l. manifolds contained in given Euclidean spaces. As in Differential T0p01§ "
where one can introduce abstract manifolds, one can define P.L. spaces and
manifolds without reference to an ambient Euclidean space and without the
hypotheses of compactness. In this chapter we propose to study abstract P.
spaces and manifolds and to indicate how to extend the preceding results to s
objects.

One can also define the notion of'a locally finite infinite complex contain
in a given Euclidean space (possibly E®). We will show that the notions of P
space and infinite complex are essentially equivalent. In particular, compac
P.L. spaces and manifolds are no more general than the finite polyhedra and.

. p.l. manifolds which we have been considering.

2. Triangulation of P. L. Spaces and Manifolds.

Definition. Let X be a topological space. A co-ordinate map (£, P) iS}:
a topological embedding f+ P —> X of a Euclidean polyhedron P. Two suchz-
maps (f,P) and (g, Q) are compatible provided that if (P)ngQFF therez
exists a coordinate map (h,R) such that n(R) = g(Q) N f(P) and f-1h “and ‘
are p.l. maps. Equivalently, we say that (f,P) and (g, Q) are compatible f
f-i(gQ) is a subpolyhedron of Q and g-if: f-i(gQ) —> Q is a p.l. map.

(Put h= glf_ng), assuming £{(P) N g(Q) = g.
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Definition. A P. L. structure 3« on X is a family of coordinate maps

such that
1) Any two elements of _9‘ are compatible.

2) For all x e X, there exists (£,P) € 3 such that f(P) is a topological

neighborhood of x in X.

v 3) :}'f is maximal, i.e., if (f, P) is compatible with every map of 9 ,
‘ then (f,P)e 9‘ .

If X is a 279 countable Hausdorff space, the pair (X, 9 ) is called a

i P, L. space.

Definition. A family of coordinate maps f} on X satisfying 1) and 2) is

alled a base for a P. L. structure on X,

Lemma 3.1. Every base B for a P.L. structure on the topological

pace X is contained in a unique P. L. structure 3"’ .

Proof. Let 3" = the set of all coordinate maps in X compatible with those

” 73 . The elements of :T" are compatible. For if (f,P) and (g, Q) are

' and f(P) N g(Q) # #, we may find a finite collection (hi’ Bi)’ ceos (hr’ Br)
r
aps in ¢4 such that £(P) N g(Q) C© U hi(Bi)' By definition f and g are
i=1

-1
= = h, gQ, R' and B
i i i

patible with each h,, so if we let R} = hi_ifP and R

/ ¢ sk
subpolyhedra of B,. Let Ry =R N R;'. Then UL.R. = £(P) N g(Q).

ii
b _1 b3 -
UhiRi ) = Uf hiRi is a polyhedron, and g 1f is

refore, P, = 4 g) = £

-1 £
on Pi because in each piece f£ hiRi it agrees with the p.1l. map
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-1 -1
g hihi £ which also is defined on this piece. It is clear that 5(' satisfiesg

2) and 3) in the definition of a P.L. space and is the unique structure conta
ing B .

Lemma 3.2. I f: P—>X and g: Q—> X are two compatible coordin

maps, X a topologiéal space, then there exists ht R—> X, a coordinate

with h(R) = £f(P) U g(Q) and with h_if and h-ig p.l. maps.

Proof. Let ‘K\ =P and |L| = Q be triangulations with Ko and Lo
subcomplexes, triangulating f_1gQ and g-ifP respectively. Let Ko' and
be subdivisions of KO and Lo such that g-ifz K;—-—> L:) is simplicial. L
K' and L' be extensions of these subdivisions. Let A c FN be a simplex
which has one vertex j(v) for each vertex v of L'- L'o and one vertex 1
for each vertex v of K, and no others. Consider the simplicial homeomo
i:K' —> A determined by the definition for i already given on vertices and |
homeomorphism j: L'—> A defined by putting j(v) = i(f-'lg(v)) if ve L(')
extending linearly to all of L'. (j is already defined on vertices of L' - L
Let R be the union of the images of these simplicial homeomorphisms,

a simplicial complex. Define h: R —> X by defining
hix) = fi'1(x) if x e Image 1i.
h(x) = goj-i(x) if x e Image j.
The definitions agree on the overlap, since if xe (Imi)n Im ()
goj-i(x) = gg-ifi_1(x) = fi-i(x). It is not hard to see that h: R—> X is a hOT

morphism with image £(P) u g(Q) , and that h_if and h-ig are p.l. maPS”;
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Corollary 3.3. If (X,_rj{‘ ) is a P.L. space and C C X is compact, then

there exists (h, R) € :7’ with C C Int h(R).

I3 - C
Proof. Let (h'l’ R’l)’ coes (hr’ Rr) be in } with C¢< Int(hi(R'l) U eoe U hr(Rr))'

(R)=h Ri)u cee Uhr(Rr), and

5

i There exists a coordinate map h:R—> X with h
1

with h compatible with each hi (i.e., h hiZ Ri-——> R is p.l. , all i), By

”L arguing as in Lemma 3.4, it is not hard to show that h is compatible with every
element of :7(' and so in } .
Definition. The P.L. space (X, SL ) is called a P. L. m-manifold if

for all x ¢ X there exists hi AT —> X with (h, A™) e 3" and x ¢ Inty h(Am).

Lemma 3.4. If (X, 5(‘ ) is a P. L. m-manifold and C C X is compact,

hen there exists (h,R) ¢ 5[ with

1) R is a p.l. m-manifold.

2) C Clnty h(R).

Proof., By Lemma 3.2, choose (f,P) and (g, Q) in } with C C Int £(P),

P) C Int g(Q). Let K Dbea full subcomplex of K, K| = Q, IKOI = g_ifP.

N be the second derived neighborhood of KO in K, Then N is an

manifold, for though K need not be a combinatorial manifold, every point

lKol has a neighborhood in | K| which is a p.1l. m-ball. So link(v,K) = an

1 sphere or ball for all ve K_, and link(A, K) is a sphere or ball for all

plices A meeting KO. So the proof that N is a manifold goes through (see

f of Lemma 2.13). gIN —> X is the required coordinate map of this lemma,



Note: Strictly speaking, the last two lemmas have been using the fact that

if in the P.L. space (X, K ), (h,P) isa coordinate map such that h(P)

be covered by the images of a finite number of maps in _Si with which h i .

compatible, then (h,P) € } . The proof is left to the reader (see Lemma 3

The next lemma may be viewed as affirming the possibility of "triangula

P.L. spaces and manifolds, as we shall see following the introduction of loc

finite (infinite) complexes.

Let (X, 7F) bea P.L. space. Then there exists a count

K. CJ.,L &J and embedd
i i i i

Lemma 3. 5.

set of simplicial complexes and subcomplexes,

£ |Ji| —> X such that
oo

1) x= ) (3D
i=1

) £ (13, g5 =8 li-kl 22

3) 5o fa (193010 = A fg (1B -

-1
- L > . . . s,
4) fi+1 fi : Ki-'r’l is a simplicial homeomorphism

f (X, 3‘ ) is a P.L. m-manifold, we can take Ji to be a combinatoria.
(m-1) manifolds in aJi’ 4

m-manifold and Ki and Li to be combinatorial

Proof. X is locally compact and an countable. Hence X is g-comp

oo
Let X = U Ci , Ci compact. Let (hi’Ri) € 3‘" . Define inductively

i=1

R i C Cc
(hi’ i) € 3( , i2 2, such that Ci -l hi-i(Ri-i) C Int hi(Ri)' Let

-1 -1
P.= - =
i cl(Ri hi hi-iRi)’ a polyhedron. Let Qi h.1 FrX (hi—iRi- 1),

-1
S =h. (FrhR). Let £ = h [P, . Let K,L, J  be triangulations of
i i i i i i’ i
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? Q.,S., P.. For each i, let L} and K! be subdivisions such that
E i i i i it1

-'1 . 1
,.i £ 1. Li

> K! , is simplicial. Since K N L. =@, this defi -
 fin B i4q 18 simplicial. Since i N L1 @, this defines a sub
division of Ki U Li which we extend to a subdivision Ji of J. Then
J!,Ki, Li and fi satisfy the first part of the lemma.
1

The proof of the second part of the lemma is similar, using LLemma 3.4

z} instead of Lemma 3. 2. The details are left to the reader,

To make the notion of a triangulation of a P.L. space more precise, we

+
jntroduce infinite complexes. First of all, we view En c E" 1 by identifying

1
convex hull of a subset S of D is the same 2s its convex hull viewed as a sub-
[0's)
setof E ., Let E® = U E" , with the weak topology. E® may be viewed
i=1

?E:s,a.ll (o0)-tuples (xi, TR NEE .) with all but a finite number of x, being zero,
and the topology of E® may be viewed as the topology of pointwise convergence.
;i'he convex hull of any subset of E® is defined in the obvious way. In particular,
by Aoo we denote the convex hull of the points (1,0,... ) (0,1,0,... ),

‘ {0,0.1,0,.. .), etc.

Definition. A locally finite simplicial complex K in E® is a collection of
finite) simplices, K, such that

1) o,t¢e K = ocnT=§ or a common face,

2) ce K, <o => Te K.

3) Forall x¢ |K|, there exists a neighborhood U of x in E® meeting

Puly finitely many simplices of K. (Exercise: Prove that every finite subcomple

K lies in some En.)



Let (X, 3) be a P.L. space. Using Lemma 3.5, and the technique of

Lemma 3.2 one can construct an infinite locally finite complex K whose
vertices are vertices of A% and a homeomorphism h! |K| —> X of |K|
onto X such that the restrictions of h to finite subcomplexes are elements
of 5 . Moreover, if (X, _5[ ) is a P.L. m-manifold, then we may insist thaf
|K| is also; that is, every point of | K| lies in the interior of a p.1. m-b
contained in |K|. In the case that there is a bound on the dimensions of
simplexes of Lemma 3.5, one can take KC EN for some finite N. In this
the complex K 1is constructed within a suitable Euclidean space by "bare hand

using the instructions provided by Lemma 3. 5. Details are left to the rea.derl

Definition. The pair (K,h) is called atriangulation of (X,g ) if K is ,

K| —> X is a homeomorphism such that the §

i
i

locally finite complex and h:

restrictions of h to finite subcomplexes are elements of 3’ .
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3, P.L., Maps and Subidivision Theorems

Definition. Let (X, _9[ ) and (Y, ;j ) be P.L. spaces. Then g X—>Y
o -l
is called a P.L, map if for all (f,P) e 3 and all (g, Q)¢ b, f g "gQ is

-: either empty or a subpolyhedron of P, and if the latter, then

> Q

e le got: g g0

is,a p.1l. map.
Notes: 1) It is easy to check that a P.L. map is continuous.
2) By an argument similar to that of Lemma 3.1, to show that a given map

¢ is a P.L. map, it suffices to check the condition in the definition for elements
(i, P) of a base of 3 and elements (g, Q) of a base of K.

. Definition. If # |K| —> |L| , Kand L locally finite simplicial complexes,
e say § is P.L, if it maps each finite subcomplex piecewise linearly into a

inite subcomplex of L.

emark. The two definitions of P. L, map are consistent. That is, if (X, 3 )
nd (X, )j) are P.L. spaces and if (K,h) and (L,j) are triangulations of

L and Y respectively, and if § and ¥ are maps such that the following diagram

n f is a P.L. map if and only if § is a P.L. map.



Definition. A map f: X—> Y of topological spaces is said to be a pro

map if the inverse images of compact sets in Y are compact.

Definition. A subdivision K' of a locally finite complex K is a locally
finite simplicial complex such that 5

1) |x| = k'],

2) Every simplex of K is contained in a simplex of K'. .

Using Lemma 1.2 and local finiteness, it is easy to see that every sim
of K is a union of finitely many simplices of K'. Moreover, if K' is a subd
division of K, then K' induces a subdivision (in the finite sense) of every f'

subcomplex of K.

Theorem 3.6. A. If S isa locally finite family of polyhedra in | K

then there exists a subdivision K' of K containing (finite) triangulations of 3
each element of S.

B, If f: K— L is a P.L. map of locally finite complexes, then there
exists a subdivision K' of K such that f: K'—> L maps simplices linearli
into simplices. |

C. 1If f: K—> L is proper P.L. map, then there exist.subdivisions K'

L' with f: K'—> L' simplicial.

oo | ‘
Proof. A) Write K= U Ki . Ki finite subcomplexes, Ki N Kj = ¢ if 3
i=4 '

li-j| = 2. For example, if K is connected, let R'1 be a finite subcomple?

and define Ri = closed simplicial neighborhoods of Ri—i’ for each i. Let
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K.= R, - R, i The Ri cover K because any vertex of K can be connected

;to a vertex of R1 by a finite edge path.

‘ Each Ki meets finitely only finitely many polyhedra in S. Proceed by
jnduction subdividing K. to contain subdivisions of its jntersections with mem-
: bers of S and with the preceding subdivision of K 1 Then since Ki is not

‘,cha.nged after the (it1)st step is over, it is clear that this defines the required

subd1v181on of K.

B). ={oen ('r)l ¢ ¢ K, Te L} is alocally finite set of polyhedra

“‘“ of K. Let K' be a subdivision of K containing subdivisions of the elements

~of S.

A

C)., We may assume by B that f is linea® 'n simplices of K. As f is

iproper, {fo | o ¢ K} is a locally finite family of polyhedra in |L| . Let L'
ve these polyhedra as subcomplexes. Then {on f-i'r |o' e K, T¢ L'} isa

n of K. As in the finite case this cell subdivision

as a locally finite simplicial subdivision with no extra vertices.

C) is false for non-proper maps. For example, triangulate

real line with vertices at the integers. There is a PL map f:R—> [o, 1}

apping R homeomorphically onto the open interval (0,1). It is impossible t~

nd locally finite subdivisions to make { simplicial.

(See Lemtaa 4.4).



4, P,L, Subspaces

Definition. Let (X, F) beaP.L. space. Let (Xo’ 3'0) be another
P.L. space with XOQ X. Then (Xo, _9-0) is called a P.L. subspace of

(X, 3 ) provided

1) Xo has the relative topology induced by X, and

2) i Xo > X, i(x)==x, is a P.L. map.

Remark, If (Xo’ }o) is a P. L, subspace, then 30 = {(f,P) e }[ £{(P) cl

Examples: 1) If XOC. X is open and if 3’0 = {(f,P) e 9 | £(P) QXO}, th
(Xo, 9’0) is a P.L. subspace of (X, 3’) |

2) E® has the natural P. L. structure generated by the inclusion maps)i
polyhedra in EY. A compact subspace Xo of E™ must be a polyhedron in"
(with its natural structure). For suppose Xo c E” isa compact P. L. sub
Then there is a coordinate map (f, P) inthe strucfure of Xo with £(P) = '
But Xo is a P. L. subépace, so the composition P -1-9 XOC E” isa P.L.
Therefore X _ = £(P) is a polyhedron in E",

3) In E", {x] alx, xo) < 41} is a P.L, subspace,

{x|a(x, xo) < 1} is not.

4) If POC P are polyhedra in E, P- Po is a P. L. subspace of "‘

Lemma 3.7. If (Xo’ 3‘0) is a P. L. subspace of (X, ) andif Xo in

K|

closed subset of X, then there exists a locally finite triangulation h:
and a subcomplex Ko of K such that hl IKol: |K0| —_> Xo is a triangul’

of X .
o
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Proof. Let h: |L| —> X be a locally finite triangulation of X. Then

et k: |M| _— Xo be a locally finite triangulation of XO. let = h_‘l ik,

i o Xo-——>X the inclusion map. Let M' and K be subdivisions of M and

respectively, making the proper P.L. map (Xo is closed) # simplicial.

‘T et Ko = Image §.




5, Collapsing and Regular Neighborhood Theory.

Definition. If Xo is a closed P.L, subspace of the compact P.L. sp
then we say X &Xo if there exists a finite sequence of P.L. subspaces o
X € X, C...CX_ = X suchthat X - X, , =clX, -%X. )
o 1 = r i i-1 i i-1
is a p.l. (P.L.) ball having cl(X.l-Xi 4.) a Xi-i as a face.

Definition. If M is a P.L. manifold, let h: |K| > M be a triang

of a neighborhood of x in M (h in the structure). We say X ¢ oM if

link(h—ix;‘K) is a ball. This does not depend upon the choice of (h, K).

Definition. Let X be a compact P. L. subspace of the P. L. manifoldﬁ;‘

Then a regular neighborhood N of X is a topological neighborhood N, co

such that N \ X and N is an m-dimensional P. L. submanifold (i.e., a s
space which is a manifold) of X. N meets the boundary regularly if N N 8

or is a regular neighborhood of XN M in 9M.

Theorem 3.8. Let Xo be a compact P.L. subspace of the P. L. m-m3

M. Then a regular neighborhood of Xo which meets the boundary regularl ‘ ,

exists., If N'1 and N2 are any two regular neighborhoods of X, then there

a P.L. homeomorphism of N1 onto N2 pointwise fixed on Xo . If N‘1 anr

meet the boundary regularly, then there exists an ambient isotopy

H: MXI——> MX1I throwing Ni onto N2 and leaving Xo fixed.

Proof. Let (f,K) be an element of the P, L. structure g of X such

Xog-_ Int, £(K) and K is a p.l. m-manifold. Let N be the image under £

-1
a regular neighborhood of f (Xo) in K.
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The uniqueness theorems follow similarly by taking N 1 U N2 c IntM £f(P).

One can also define regular neighborhoods of non-compact subspaces of a

P.L. manifold. If X and Xo are closed P, L. spaces, X0 a subspace of X,

we say Xo collapses to X by an elementary generalized collapse if cl(X-Xo)
is the union of a .disjoint locally finite family of P.L. subspaces Bi of X,
where, for each i, Bi is a p.1l. ball having Bin Xo as a face. A generalized

b collapse is a finite sequence of elementary generalized collapses. We write

X‘f X0 if X collapses to Xo by an elementary generalized collapse.

A generalized regular neighborhood of XO in the P, L., m-manifold M,

a closed P, L, subspace, is a closed topological neighborhood.which is an
-submanifold and which collapses to X by an elementary generalized collapse.
This definition gives rise to the analogous existence and uniqueness

heorems as for the compace case. However, these generalized regular neigh-

gborhoods have had no importance so far.

b
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Chapter IV - General Position

§1. Definitions

Let K and L be P.L. subspaces of the P. L. manifold Q, q = dim Q,
Then K and L are in general position (or Kis in gen. pos. W. r.t. L) if
dim (KN L)< dim K +dim L - q. (Note the similarity between this conditig
and the condition in dimensions that is necessary and sufficient for two su
spaces of a finite dimensional vector space to span that space.)

If f: P—> Q is a map, S'r(f) = xe P| f—if(x) has at least r-point
and Sr(f) = g:rf-) . If P& Q are P.L. spaces and f is a P.L. map, then
follows from the fact that P and Q may be triangulated to make f lineart
S'(f) is a P.L. subspace of P. If £ is proper, then Sr(f) is a closed P
subspace, and dim Sr(f) = dim S'r(f). .

I f: P—> Q is a map, P & Q P.L. spaces of dimension p and q

respectively, we say that f is in general position provided

1) £ is P, L. and proper. L

2) for all r, dim S'r(f) < rp ¥ (r-1)q

3) Soo(f)=¢ (i.e. £ is non-degenerate).

Let f and g be two maps P—> Q, P and Q P.L. spaces. Let
E: P—> R+ be a positive, continuous function. Let/D be a metric for |
the topology of Q. Then we say f is an & -approximationto g (with reSP _
to/O ) provided that Vx e P, /O (f(x), g(x)) < E£(x). |
If fand g are maps, f =f (rel K) means that { is homotopic to f'

a homotopy which is the constant homotopy on K.
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§2. Approximation of Continuous Functions by P. L. Maps.,

Lemma 4.1. Let P'l’ P2 , and P3 be subpolyhedra of the polyhedron P.

;Let f: P—> I® be a continuous map, with f] P3 a p.l. map. Assume
‘kp1ﬂ P2 =@ . Given £> 0, there exists f's P—> I" with the following properties:
1) f'IP'1 is a p.l. map

2) fIPZuP =f'|P3UP .

3 3

3) f' is an B-approximation to f (w.r.tthe usual metric on ™)
~ Proof. Let p bea metric for P and choose & >0 such that p(x,y) <6

2’73
is full in K, mesh(K)< §, and f|K is linear.

| "jymplies d(fx, fy) < &/2. Let Ki’ K.,K_C K be simplicial triangulations of

cC P
4 2,P3 C P, such that K1

v“_ow define f': lKI — 1" by first putting fi(v) = £(v) for every vertex v ¢ K,

b

, P

Then f' Ior,, 0 any simplex of K‘l’ be defined by extending linearly the definition

bf {' on verticesof o. If ¢ n|K1| = g, however, (i.e., ¢ hasno facesink, ,
:"t i'lo = f|o. Finallyif oe K - Ki’ but o'f\|K1| # @, we may put ¢ = T4,
€ K1, o'ZnIKil = @, as K1 ijs full, Then we define f'IO' by extending

i
B

‘ early the map f' already given on o, and o,. Clearly, f'|KZu K

> = f|K,UK,,

3
f'|K‘1 is linear. Since Voe K, diam fo< €/2 and diam f'oc < &/2 by

nstruction, f' is an &-approximation to f.

*mark., f is homotopic to f' (rel PZ v P3) by the homotopy
W) = tf(x) + (1-t)f'(x). Then d(Ht(x),Hs(x)) <€, all xe I, alls,tel. In

er words, we can choose the homotopy H of fand {' to a "arbitrarily




Lemma 4.2. Let f: P—> Q be a continuous map of the P. L. spacgd
P into the P. L. g-manifold Q. Let Po C. P be aclosed P, L. subspace
of P on which f is already a P.L. map. Let £: P—> R be a continuoll
positive function. Then there exists f': P —> Q such that
1) f' >~ f (rel P ),
o
2)/0 (fx,f'x) < £(x) all x ( © some given distance function for the |
!/ |

topology of Q),

3) f' is a P.L. map.

Proof, Let {Bi} be a locally finite countable family of g-balls in Q]

(For example, triangulate Q and take closed vert]

with Q C UInt B

r 1

Q
stars.) Let Ko G K be (locally finite) simplicial complexes triangulating |

POE P, such that if o e K, fo C Int Bj’ some j. This is possible becaud

Q 3
there is atniangulation L of P, containing a triangulation of PO, such tha§
oo
L= U L., L. finite subcomplexes suchthat L. N L =g if [i-j| > 2.
iy 1 i i j ’
Subdivide each Li to get Li such that o ¢ Li implies fo C Int Bj’ some jd

Then further subdivide (proceed inductively) to get L'i such that for all i

are compatible; this gives the required subdivision, K, of |

L" 1"
; and Li

Let {Ail i=1,..., oo} be the simplices of K-KO, ordered so that a
simplex follows its faces, (For example: first take the vertices of L;-
then the 1-simplices and Lg - Ko and the vertices of (L" - L'(')) - Ko’ then . ._
the 2-simplices of L"O-KO, the 1-simplices of (L"i-L"O)-KO and the zero-

impli £ (L" - L") - K ) Put K.=K U |) A,. Wearef
simplices o 5 - LY -K,, etc. ... ut K. = K_u }31 ;e e are §
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t0 define inductively maps f: K—Q
1) fil |Ki| is P, L,
2) £ ~f (relP)

Q
9) (5,8, () < £/25 , all x.

3) if ¢e K, fi(cr) c Int Bj , some j.

. - . f. . ! A. C
We start with f0 f. Suppose fi-i is defined Then fi-—'l( 1) c IntQ Bj’
-1

"ome j. Let K' be a subdivisior of K such that N(Ai s K') € fi_i(lntQ Bj)-

et hs Bj — 1% bea P.L. homeomorphism. Put R = N(Ai ; K'), R‘1

= At
i!
1
t
L = . R N = °
N(Ai,K), R,=RNK _, Then R,N R, § and h (fi_1|R)

Hence for every €£> 0 ther- exists a:R—> 11 such that

=Fr

3 .

?l . 1o <
:!Ri is P. L., alRZU R3 h°(fi_1[R2u R3), and p(a(x),hofi_i(x)) £ ,

i x ¢ R. Define fi: K—>Q by

£|R = b le
1

fiI cl(|K|-R) = fi_1[c1(|K|-R).

Now R is compact, so by choosing £ small enough we can ensure that

some Int Bj . Then fi is a well-defined map which clearly satisfies 1), 3),

Q

d 4). Moreover, from the remark following Lemma 4.1, we see that

R) > fi-'1|R (rel. RV R3) and so, extending the homotopy by the identity,

2
ee that 3) holds. Call this homotopy Hi.

By construction, fi agrees with f, q exceptona simplicial neighbcrho-d
1-

R, . If o0e¢ K, o meets only finitely many of the Ri' Therefore the f,



eventually agree on o. Hence putting f' = lim fi defines a P. L. map
i—> o

lKl —> Q. Similarly, the homotopies I—Ii are eventually the identity on

given o0 ¢ K and so H= lim Hi © ve, O H,1 is a well defined continuous
i

K| XI—>Q, and so f ~f' (rel lKol).

Remark. Using the remark following 4.1, the reader can easily show that
under the hypotheses of 4. 2, we can find a homotopy H of £, fixed on PO
such that f'= H,1 satisfies the conclusions of 6. 2 and in addition, for ever

x e P and every s,t in [0,1], d(st,Htx)< E(x).

§3. Approximaiion of P. L. maps by Non-Degenerate P. L, Maps.

Definition, If X is a finite set of points in En, let QX be i:he unio
all proper affine subspaces of joks spanned by subsets of X, QX is a clos

n n . . n
subset of E= of measure zero, so E - QX is dense in E7,

Lemma 4.3. Let Pl and P2 S P be polyhedra, dim P < n. Let
f: P—>1" bea p.1l. map with f]Pl N PZ non-degenerate. Given £> 0 th
exists a p.1. map {': P — I" such that

1) f'fPl is non-degenerate

2) f'IPZ = f]P2

3) £(P-P,) cinr

4) forallxe P, /O (f'x, fx) < &

Note: In general we cannot shift f to be non-degenerate on Pl -PZ, witho

changing it on PZ’ if it is not already non-degenerate on P, for example,
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glet PZ = 1-face of a 2-simplex P, P1 = P, and suppose f(PZ) is a point.

1

Proof of Lemma 4. 3. Let Kl’ KZ C K be triangulations of Pl , PZ cP

1

'so that f:K—> I" is linear. Let v.,... V. be the vertices of K1 N K2

: and that v

P

3 0 0 0y i -K n K - i <
o+l v be the vertices of Kl 1 5 For i< r put

bw. = f(vi). For r<i<s we may choose points W W, arbitrarily close to
1

’;f . 2 3 1o —_—
":i(vi)’ such that W, ¢ Q {wl N ’Wi-l} , and W, € In. 1f we define f':K—>1

»“ o be the unique linear map such that f'(vi) =W, 1<i<s, and f'(v) = f(v) for
;11 other vertices v, then by choosing each w, close enough to f(vi), we may
igensure that f' satisfies 4). It clearly satisfies 2) and 3). To show that such
:an f! is non-degenerate on K1 , it suffices to show that its restrictionto each 0 ¢ K

This we prove by jnduction on dim o, If o€ Klf\ KZ’ i | o= fl o, so there

4 i . n K, EV, sV, 5 37 < eee <3 ) 2T
snothmgto prove, If U{Kl 2 put o v; VJ Jq Joo 7 F

1 t
y induction, f' Iv. vesV, is non-degenerate. As dim P £ n,
J1 o
pan {fv. yeeesf'V, } # En, so f'(v.) is not in this aifine subspacz. There-
J1 Jg.1 X
ffore the points {f'(vj Yyeoes f'(vj )} are independent; so. f'|oc is non-degsne:

t

Lemma 4.4. Let f: P—> Q be a P. L. map, Q a P.L. manifold and

a P.L. space with dim P < dim Q. Let Po C P be a closed P. L, subspace

Uppo se flPo is non-degenerate. Then f~ f' (rel PO), where f' is a non-

Cegenerate P.L. map and f'(P-Po) C Int Q. Moreover, given £€: P—> R+

 Positive continuous function, we may insist that /O(f(x), f(x)) < €(x), all x,

‘a given metric for the topology of Q.

LN




Proof. Exactly as Lemma 4.2, using Lemma 4,3 instead of 4.1,

Remarks.

1) As in 4.2, we could actually insist that there be a homotopy
H: f ~f' (rel Po) such that for all x ¢ P and all s,t in [0, 1]
<
d(Hs’ X, Htx) (x).
2) In 4.2 and 4.4, one can insist that if the given map f is proper,

then so is the map f'.

§4. Shifting Subspaces to General Position.

EERRE Rr be polyhedra contained i

Lemma 4.5, Let PO ¢ P and R

n . .
I, with P o1" ¢ PO. Given - > 0 there exists an ambient isotopy h of

I® such that

1) h is fixed on 3L u P,

2) h (P-PO) is in general position w. r.t. each Ri

1
3) for allt, d(htx,x) <€ . \

n .
Proof. Let J be a triangulation of I having as subcomplexes triangy

L of P P, R,...,R_, with K_fullin J. Let
O r (o]

tions K € K, L.,...,
o 1 r 1

MR Vg be the vertices of K-Ko, and let X be the set of all the verticesg
n 1 ¢

Let Wisee s W be points in Int I, such that Wigé- QX i_wl, cea W]

i ‘

all i; we may choose each w, to be less than any preassigned distance {ro ;

n i
In particular, we may choose the Wi so that if £ is the linear map J —> I

determined by putting I(vi) = w, and f(v)=v if veX, andv# v, all i, t

£ is ambient isotopic to 1 via an ambient isotopy h satisfying 3) and 1) .




-97-

(Certainly we can make f isotopic to the identity by "small" moves. Then

see proof that isotopy by moves implies ambient isotopy, Chapter V, §1,

-,emma 5.1.)

To check 2), let oe K-K , Te¢ R.. Write 0=0,0,, 0, ¢ K and
o i 1°2 1 o}
‘ = = i . L =i Le.Vi o, i <. <i_.
Zr\ |KO| g (crl # possible) et 0, = Vi...Vigs 1) i,. Then
b o = <r1-(wi cee W, ). If fo and T span E", then
1

S

dim(fc N 7) £ dim ¢ + dimT- n< dim P + dim Ri -n.

3 n oL .
{fo¢ and T do not span E, then since w, ¢ QX Ug_wl,...,wis_l}), w, is

?bt the affine subspace spanned by Oy Wy - e W3 and 7T . This implies
& 1 2-1
= . Since P-Po = | K| - |Ko| = U % , this shows that
o€ K-KO

dim[(P-Po) N Ri] < dim(P-Po) +dim R.- n,

Lemma 4, . Let Pog P, Rl’ vo o Rr be closed P. L. subspaces of the

. g-manifold Q, with PN aQ C Po . Let £: Q —>K be a continuous
;tive function. Then there exists an ambient isotopy h of Q such that:

1) h fixes the points of 9Q v PO,
2) hl(P-PO) is in general position w.r.t. each R,
:3) d(htx,x) < £(x) for all x (d a metric for the topology of Q.).

Proof. Let {Bi} be a locally finite countable family of g-balls such thz*
0

IntQ Bi' Let KOC-_ K be triangulations of PO(; P such that, for
oeK, o Clint Bi for some i. Let {Aj} be the simplices of K-Koq
. ‘

Q

80 that any simplex follows its faces. Let K, = K U LJ i



are going to define P, L., homeomorphisms hi (i>0) of Q and ambient

isotopies H(l) of Q (i21) fixing 8Q UPO, such that

(i) _
1) HY»h  =h,

2) V'creK,Vt, Ht(l)(a)_C_.IntQBj, some j ,

3) Vx, d(Ht(i)x,x) < f‘f(x)/Zi , all t.

4) hi(|Kil - lKO,) is in general position w. r.t each of the Ri .

We start by putting ho = identity. Now suppose hi- is constructed,

3
1 4

some i>1. Let Ai < IntQ Bj . Let a: B—> 1T bea P.L. homeomo rphismgy

Let Vo =f‘a((hi_lKi_l)/‘\ Bj), let V= ah,

K.NB,)=V \ ah,
i-1771 o i-

A, , and le'
J 1 Y

%

1
B.). Notethat Vn 0I%¢ V .

k 7j = o0

By Lemma 4.5, for every £> 0 there exists an ambiént isotopy k of ;

fixed on Vo v axq, such that kl(‘V--VO) is in general position with respect t

each Wk and such that , for every t, /’(x,ktX) <& . Now define H(l) by

H(i)[BjXI= (a'lx 1)oko(aXx1)

H<1)] cl(Q - BJ,) X I = identity,

Put hi = Hl(l)o hi-l . By choosing £ small enough we can ensure that
d(Ht(1 x, x) < E(x)/?_1 for all x ¢ |K|, te I, and also that, given o e K, t¢ I.

HEI)(O‘) C Int Bj’ for some j.

Q

To complete the proof, we observe that, by the construction of the H

q |

we may have that each is the identity outside the interior of some Bj. Hence:

if C is any compact subset of Q, then on C X I all but a finite number of th

H(l) are the identity. Hence it makes sense to define
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h= lim it g o ...oH
i —> 00

Then h is an ambiént isotopy and by construction satisfies 1), 2), and 3) in

the statement of the lemma.

§5. Shifting maps to General Position.

Lemma 4.7. Let K be a (locally finite} simplicial complex and let

¢+ K—> Q be a P.L. map which embeds each simplex. Let KOC_:, K, and

' let Rl’ oo Rn be tlosed P, L. subspaces of the P. L. manifold Q. Assume
: £(|K| - IKOI)g_ Int Q. Let £: K—> [R_‘_ be a positive continuous function.
Then there is a map f't+ K—> Q and a homotv, » H: KXI—>Q of fandf{'

| such that

1) H is the constant homotopy

2) H is a P.L. map

3) f' embeds each simplex of K and f'(|K]| -IKOI) CIntQ

4) Mo,...,0_ in K-K
1 r o

r r
dim( ﬂ £ 3‘i) < E dim o, - (r-1)g
1 1
r r
diml( f'¥)nR,] £ dim o, +dim R, - rq , all j.
[ D IR 21: : ;- T j

5) d(st,fx)< €(x) forall xand s, (d a metricon Q)

6) f'(|K| - IKOI) C Int Q




Proof. Let {A;|i=1,2,...} be the simplicesof K-K , with eac

1
simplex following its faces. Let Ki = Ko U LJl Aj , a subcomplex. We 34
J= 4

{{‘

going to define, inductively, P.L. maps fi , 120, and P.L. homotopies

i > 1, such that
1) YoeKk, £i| ¢ is an embedding;

2) H(l) is a homotopy of fi-l to fi which leaves Ki-l fixed;

3) VO‘,...,U’ e K -K ,
1 T i o

r T
dim( m £§) <S>, dimo, - (r-l)q
J=l 1) J=1 J
r r
dim £, G, < dim o, t dim - rq, all k.,
( j(]l (IR le J R, - T4

4) d(H(si-)-x,fi_lx) < gx)/2

5) fi(lKl - |K0|)§_IntQ.
Put £f = f. Now assume f, is defined, i>1. Let L.,...,L be]
o i-1 1 N »

all the following P. L. subspaces of Q:

J
r .
b) n (fi-lo-j) ] a«]-l 0-1,'..’0-1' mn i_l ’
j=1
r
. < °
c) [JQ fi-—lo-j] r\Rk , all Troeerr @, i0 Ki-l and 1<k<n

(Note: r not fixed.)

Now we are going to apply Lemma 4.{ . Let L = link (Ai; K). Let

P =f _(A.L), andlet P=P Uf, (A)). Note that PnaQ ¢ P_ .
o i=-1" 1 o i-1" 1 o
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By Lemma 4.6, there exists an ambient isotopy h of Q, fixed on

fpof_\ 9Q, such that hl(P-Po) is in general position w.r.t. each L, and

%Vs and \/x,

d(hsx, x) < —;1-1— minig(y)l V€ Ai.L} .

| Define H(l) on (Ai' L) X I by putting Hs(l)(x) = hy f(x). Extend H(l) to KXI

(i) _
1 = by

Clearly H(l) and fi satisfy 2) and 4). Condition 5) holds because

by the constant homotopy outside (Ai. L) X I, and put £ = H ° fi_

1
:hI(Int Q) € Int Q and because f, , satisfies 5). Condition 1) holds for £,
fbecause fi differs from fi-l only on simplices of Ai. L, where it is the com-
bosite of fi-l and a homeomorphism.

©
To check 3), we first observe that fi l(Ai) < P-Po (in fact have =),

‘_ or suppose X € POO f, I(Ai)' Then x = fi-ly’ say, where y e AiL’ and

fi 1(z), Z € Ai. Let ye p.7, pE€ Ai and Te L. Then Ai'r is a simplex

f K and so is embedded by fi-l' Therefore y = z, SO X ¢ fi 1(A1) There-

4
&
k!

k-

fore P Nt (A)C f. (A). Therefore, as f, . embeds A,
: o} i-1 = 1V i i i

-1

= . Condition 3) now follows for fi from the corresponding con-

dition for f.

[
il and the fact that fi(Ai) is in general position with respect to

the L., .
i

To complete the proof, put H= lim 1) ana o - H = lm Hl(l) = lim
i o i-=> oo i->oo

dThese are well defined p.l. maps because H(l)[ Ai X1I= H(J)‘ Ai X1 for

i..




Finally we put some of the above results together to get:

Lemma 4.8. Let P be a P.L. space, PO a closed subspace. Le

Q be a P.L. manifold , dim P< dim Q. Let f: P—> Q be a continuous
such that fIPo is P.L. and non-degenerate. Let Rl’ oe ey RN be closed P
subspaces of Q. Let €: P—> R bea positive continuous function. The{;
there exist g+ P —> Q and a homotopy H: f =g (rel Po) such that

1) g is a P.L., non-degenerate map,

2) gl P-P_ isin general position,

3) g(P-PO) is in general position w.r.t. €ach Ri ,

4) g(P-PO) CintQ,

5) Vx, d(st, fx) < € (x) \vzs ¢ [0,1] (d some metric for the
topology of Q).

Proof. By 4.2 and 4.4 we can find f' =~ f{ (rel Po) and a homotopy "
between f and f' relative PO, with f' P.L., and non-degenerate,
f'(P-PO) C Int Q, and d(H'Sx,fx) < E(x)- -;— . Let Ko C K be triangulations:"
of Q, sothat f's K—> L is linear on simplices. Then f{' embeds the 31m
plices of K. Let H" be a homotopy of f' to a map g, relative Po’ sa.tisf

a) g is P.L. non-ddgenerate; ’

b) g(P-P ) ClInt Q

T r
i @ < i -{r- i - .
c) dlmq go, < 51 dim o (r-1)q, o‘l,...,O'rmK KO,

d) dim(g?rnRj) < dim ¢t dim Rj -q, C€ K-Ko ;

e) d(H:x, £'x) <% E(x), all x,
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‘ Then c) and 4) imply 2) and 3) in the statement of the lemma. Put

' 1
H'(x, 2t) 0 >

In
-
IA

H(x,t) =

vl
IA
[ ol
IA
-

H"(x3 2t-1)

By the triangle inequality, H satisfies 5). Certainly, g satisfies 1) and 4).

Definition. Let POC P be polyhedra. We say that Po is of local

i

codimension > r in P if, for any triangulation KOC K of POC. P, and for

any simplex A of Ko’ there is a simplex B of XK with A<B and
¥ dim B - dim A > r.

Lemma 4.9. Let Q be a P.L. manifold, and p: QXI—> Q the pro-
jection on the first coordinate, Suppose X is a polyhedron in QX1 with
Xc (8Q X 1) = Xo ., If dimX <m-r, r2>1, and dim XOS_ m-r-1, then there

18 a level-preserving P. L. homeomorphism h: QX I—> QX I, arbitrarily close
the identity, such that SZ(pIhX) is of local codimension 2 r in hX,

Furthermore, if Sz(pIXo) is already of codimension > r in Xo’ we

an insist that h[ 89Q X I is the identity.

ote: 'Level-preserving' means that h commutes with projection onto the

econd factor.

Before proceeding with the proof of lemma 4.9 we need another technical



Lemma 4.10. Let K bea full subcomplex of K. Let K' be the sy]

division of K obtained by starring all simplexes of K-Ko in order of

decreasing dimension. Then Ko is a subcomplex of K' and if A e K'-K
o

then link(A;K') N Ko is either empty or a single simplex.

Proof. One may readily check, by induction on dimension, that a gene

A

N A
simplex of K' may be written in the form B.C..C,...C_ where Be K, and}
1" 2 T o}

Ci e K and B< C1 <...< Cr' Now if A € K'-KO is written in the above ““*ﬂ;
D e link(A;K') 0 K if and only if AD € K' and De K . In which case
A A ‘
AD = BD.C....C and BD<C <C <...<C . Now K isfullin K, an
1 T 1 2 r o] A

so C1 N Ko is a single simplex ¢ say, and the above conditions are satisfi

if and only if BD <. So link(A; K"') N Ko = 1link(B; o) = a single simplex (if

is not empty).

Proof of Lemma 4.9.

Case 1: First consider the case when 0= A% and when Sz(p|Xo) is

E

already of local codimension >r in X ; and we wish to keep 9Q X I fixed.
Let K CK C/p(AT™% I) be triangulations of XC X € AXI, with K full in'Kl
Let K' C B'(AX1I) be obtained from K C B(A X I) by starring at interior pom
the simplices of K-KO in order of decreasing dimension.

.,¥, the vertices of K'-K

Let x,,... X be the vertices of Ko, v ¢

1 1’

For every £530 let vl‘, ce ,vt' be points in A X1 such that the following hold:
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1) there is a linear homeomorphism #: (A X I) — A X1, sending v,

' and z to itself if z is any other vertex of PB(AXTI);

to v,
' i
2) v. and vi' are on the same level; d(v:,vll)LE, for all i,
and
1 3 ry i ' e e U '
) for every i, pv {Q{pxl, L PX s PV ,pv_l_lg
Note Condition 3) does not in fact depend uporx the order of the vertices
(Vl’ con ,vt)

Let h: p(A X I) —> A X1 be the linear homeomorphism of 1) above.

I‘We claim that h is the desired hemeomorphisr.
: To prove this claim, let o, T be simplices of the simplicial complex hK',

L We consider (p|o) (pT ).

L Case 1: po and pT together span E™. Thren

dim(poc n p7) £ dim po +dimp -m < dim po - .

Therefore dim(p] O’)—lp’? < dim o-r.

Case 2: po and pT do not span E7.

°
A) o & AXI, Write o=p0,, 7 =pTys TN T = ¢ . By 3)on page 102,
There-

e vertices of p(crl) are linearly independent of the vertices of piT).

(pr)=p=0n T.

B) ¢ and 7 both mest KO and o T ¢ KO.

P = . N = 9. (k is . =
ut o= 0,0,, 0, ¢ Ko" Ty KO ¢ (J:(O is full.) Put 7=7,7T,,

NK = g, T, € KO. Then the vertices of p(ql) are linearly independent of

o
g.ose of PO, and pT together. Therefore (plc)“l(p'r) = (p'o‘z)-l(p-r) C KO .



And so is of codimension 2 r in Ko by the given conditions.

C) 0,7 both meet K, ch,{KO.

= = N =
Let p=o T, @ PO, T, where T Ko g, T, € KO. Let

T= p'rl-rz, T

= : K'-K . Hence link{p; X' =1
" Ko g, T, € Ko Now p e o ence link{p: X') N Ko ]

a single simplex, P, say. By 3), the vertices of POy and pT; are iride’penci
of the (space spanned by the) vertices of PT,5: PT, and pp and of each other, l
Therefore pe N pr = p(pcrz) A p(p-rz). But po,,pT, are faces of pp,, and
p |pp1 is one-one because SZ(pIKO) has loc.codim > r and so Soo(p|Ko) = a‘
Therefore (p| or)-l(p'r) = p.

Now,

Sz(p [hK') A o = U Cl[(plu’)-lp'r -oNnT),

where T ranges over hK'. So SZ(PIhK') is of local codimension 2 r in h

Proof of Lemma 4.9 continued -- The General Case.

s

Let K triangulate X, J triangulate Q, be such that p|X: K—> 17T is

simplicial. Let K' and J' be first derived subdivisions such that
p|X: K'—> J' is still simplicial.

Let Al’ . ’An be the simplices of J. Let A:‘ = dual cell of Ai inJ
Let Ki = (pIX)_lA?: (K| n (Af X I). Ki is a subcomplex.

s
Claim: dim Ki < dim Ai -T,

A A A
Forlet ¢ K.. Put o=8,...8, B, <...<B_. Then pv = pB,...p5
i 1 r 1 T 1 !

e .
(with possible repetitions). Now, po ¢ Ai if and only if Ai < pBl. Therefor

dim Ai < dim pB1 < dim Bl'
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However, dim B_ < dim Br-(r-l) = dim B_ - dim ¢ < dim X - dim o,

1
| Therefore dim ¢ < dim X - dim B, < dim X - dim A,. So dim ¢ < (m-r)-dimA_.
1 s &

i But m - dim Ai = dim Ai . Hence dim ¢ £ dim Ai - r.

Suppose that A . As’ s < n, are the simplices of the boundary 5.

=
Let A#i = dual cell of Ai in J'. Then, since dim Xo <m-r-1, if

Li = (p[Xo)-lA# , then dim Li < dim Af -r, i<s, bythe same argument

as in the last paragraph.

Now let B1 ye oo Bt be the dual cells Ai: and Ai in order of increasing
ydimension , and let Kj = (p|X)-1Bj, changing notation. We recall from the
theory of dual cells that the Bi cover |J|, that their interiors are disjoint, and
that <'DBi is the union of some of the Bj with  <1i.

Now we construct inductively p.l. homeomorphisms hi: BiX I—> Bix I
such that

1) if 13j ¢ 9B, , hiIBjXI= b .

2) SZ(pIhiKi) is of local codimension > r in Ki .

Suppose that hj is defined for j < i-1. Then the maps hj’ j<Li-1
efine a p.l. homeomorphism

h'e BBi XI—> aBi X1,
ince Bi is a ball, h' extends to a p.l. homeomorphism of (831 XI)u (Bi X 37)
nto itself, and this homeomorphism extends in turn to a p.1l. homeomornhis:

3 "2 Bi XI— Bi X I, which is level preserving. To define hi’ we now appiy toc

B-28e 1 of this proof with X = h"Ki and Q= Bi .




Clearly Sz(plh K|) = klj SZ(plhi Ki"), where h is the p.l. homeo-
morphism, h: |J| XI—> |J| X I, defined by the h.. Therefore h satisfi
the requirements of the first paragraph in Lemma 4. 9. ’

The proof in case SZ(plxo) is already of local codimensi on at least
is nearly the same. We start out by defining h to be the identity on
(8J) X I and then extend the definition inductively in order of increasing di

b .
sions over the dual cells Ai of J (not J) using Case 1.




Chapter V: Sunny Collapsing and Unknotting of Spheres and Balls

 §1. Statement of the Problem

Suppose that Sng s are P.L. spheres of dimension n and q respectivelr.
Then the pair (S%S") is called a sphere pair of type (q,n). The pair

g . .q-n +n+l
| (An+1,Aq A" called the standard pair of type (q,n). The sphere pair

{(Sq, Sn) is called unknotted if it is P. L. homeomorphic to the standard pair:
‘ i.e., if there exists a P. L. homeomorphism h: s — An+1. A" such that
h(Sn) - An+1.
Question: Is a sphere pair always unknotted?
LiAnswer: Yes if g-n>3

No if g-n= 2 (e.g., Trefoil knot in 3-sphere.)

Unknown if gq-n =1 (Schoenflies Conjecture.)

We are going to show in this chapter that the answer to this question is

kdeed affirmative if q-n 2> 3.

A related question is that of the unknotting of ball pairs. A proper ball

q

ot

air (B4, B") of type (q,n) is a P.L. m-ball BT contained in P.L. g-bail B

 such a way that 9B = B N 8B8., The standard (proper) pair of tyve {q, ="

Is a proper ball pair always unknotted ?
Yes if g-n 2 3 -- we will prove this.

2

No if g-n

i
[
.

? if g-n




In order to prove that pairs of codimension >3 (i.e. q-n > 3) are

unknotted, we shall also have to consider the

Factorization Question: If Ko C K CM are compact P.L. spaces, with M '

an m-manifold, and if K\KO and M\KO, soes M\ K
In some cases the answer is always affirmative:

Lemma 5.1. If, in addition to the hypotheses of the factorization ques :

K CInt M= M - 8M, then M\K.

Proof. Let N be a derived neighbourhood of K in M. Then N € Int |

and N \KY\ KO. So N is a regular neighbourhood of Ko’ meeting the bound
regularly. By the generalized annulus theorem, M-N =~ (FrN) X I. Therefo
M\N \K, so M \ K.

However, the result we will need for the unknotting question is:

Theorem 5.2. If KOQ K CM are compact P.L. spaces, M an

m-manifold, then if M\K_ and K\K_ andif dim (K-K )< m-3, then M \ ¥

Here dim(K—Ko) = largest dimension of simplices of K not in KO.

The proof of this theorem occupies the next few sections,

§2. Sunny Collapsing

Definition. Say Xog. X €CMXT1 are compact P. L. spaces. If (x,t)
and (x',t') ¢« MX1I, we say (x,t) is directly below (x',t') if x=x' and t <15
If U= MXI, the shadow of U is defined to be the set {y e MXI| y is direc

below a point of U } . We write sh(U) for this set.
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Picture: ___\
- —
/

sh(U)

2) there exists a sequence of elementary simplicial collapses:

es es es
\\1 Kr-l \ \ Ko such that (]K1| - ‘Ki_l|)=.5h(Ki) =q.

If K= entire figure inside the box,

then |K| sunny collapses to !KOE .

/ N [&,]



Lemma 5.3. Suppose X C MXI are compact P.L. spaces. Let

XO =X A[(MX0)u (dMXI)]. Suppose that X sunny collapses to Xo i

M XI. Then MXI \(Mx 0) u (AM X I) U X.

Proof, Let M= |J]|, X_= lKol, X = |K|, where K_C K, and K
es es es
contained linearly in J X I. Let K=K \ K \ cue \ K  with
r r-1 o

(IKll - |Ki- s sh(Ki) = ¢ be the sunny collapse.

1
Step 1): [ x I\ (|3]x0)u (Jaa| x 1) u | K] v sh(|K]).

Let PB(IJXI) and y(J) be simplicial subdivision such that B(J X 1)

contains a subdivision of K and P1: B(J X 1) —> y(J), projection on the f

coordinate, is simplicial. Let {Ai} be the simplices of v(J) - y(83) in of

order of decreasing dimension. For each i, PB(JXI) contains a triangul

of A XL Consider cl{Aix I-(a X0 n(Ku sh(K))] . Now, if this se
non-empty it is a convex linear cell with Ai %X 1 as a principal face. Henc
collapses to the closure of the difference of its boundary and Ai X1, So
AiXI\(Aixn L (A, X0) v {(a,x1) N (X ush (K)} .

So doing these collapses in order of increasing i we find that

l3x1}\ (13] x0)u (|&| u sh(|%])) v(|aT] xXT1) .

Step 2): (FX0) L (8IXI)v Ku shK&(JXO)u(BJXI) v K.

In this step we use the existence of the sunny collapse. We are going ' .

show that

(Ix0)w (3T XI)vEKuU sh(Ki) \(J X 0)w(dF X I) u K wsh (Ki_l)-
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IU A u B, with A=aB, A Ki ) = aB, Therefore

2 = K
| Let K=

b An sh(K,)C aB.

A
Let B be an interior point of B. Let b bea point directly below

L . A .
' B, Then for b near enough to B, b.AnNn Ki-l = aBj note that b is joinable

f 0 A because A can contain no vertical line segments, So b.A M Ki = A,

since bA ¢ sh(K)\ K., this implies that bA K= A, So, collapsing bA

from the face bB

K ushK _, Jsh baB U bab

KushKi\qK"shKi~IntbA-Inth L -

sing the fact that (ba.B) N (K v ShKi-l) ¢ aB Ki ) collapse vertically as

K ushK, ,u shbaB \ KushK, ..
i- i-1

1

sh(taB)

éy sh(Kjq)

1 the defirition: if P and Q are (compact) P.L. spaces, PC Q, we =5y
f local ¢odimension greater than or equal to ¢ in Q provided that, fe =
Coted

iangulaticn Kog_ Kof PC Q, and say ¢ EKO, there exists T¢ K

;and dim ¢ 3l dim T -cC.



Lemma 5.4, Let F: XXI—> MXI be a P.L. embedding, X and }

compact P. L. spaces, such that

F'l((Mx 0) V(M XTI) = X X0,

Let w: XXI—>X , pr MXI—> M be projections on the 1lst factors,
Suppose that

1) S2 (peF) is of local codimension2 2 in X X1

2) -rr|SZ(po F) is non-degenerate.

Then F(X X I) sunny collapses to F(X X 0) in M XL

Proof. By induction on dim K. Let Kand J be simplicial complexé
triangulating X and M, respectively. Let (K XI) and PB(K) be subdi
of KXI and K, respectively, such that

1) a(K X1I) contains a triangulation L of Sz(p F).

2) w: alKXI)—> p(K) is simplicial.

Let yL. be a subdivision of L suchthat p F | yLt: wh—> J' is simplicial:ﬁ'l
for a suitable subdivision J' of J. lNote that yL contains a subdivision
v(L N KX 0) of LN (KX0).

Let dim K= r and let Al’ e ,.Ar be the r-simplices of BK. Let
Bloeews Bs be the (r-1) simplices of yL - y{L n (KX 0)). Any (r-1) simplex
L is a face of an (r+l) simplex of a(K X I). Hence each Bi lies in a face of
sormne simplex of oz(,AJ.' X I), some j. Since a(Aj X I) -*'Aj is simplicial, 3

means that each Bi is contained in Aj X I, some j.
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Now we are going to construct nplisters" on the B, as follows. For
g g 3

] . A . A
each i, let Bi: barycenter of B.1° Choose Xi directly below Bi and near

:I: it (how near will be specified in a moment). If Bist X X1, choose Yi near
A °
b and directly above Bi' Choose Aj such that B,1 c Aj X I, and let Zi € Aj X1

. “,. A
i be a point on the same level as Bi and near it (how near to be specified

f shortly). Let
i . A
XY.Z.B, i B.CXX1 (i.e. B, XX1);
_ iTiid i i
! X.Z.B, if B.C XX1
1 1 1 1 -

sothat EEN E =B, NnB,
1 J 1 J

’ TA)
We choose Xi’Yi , and Zi near enough to Bi
and, if Bi¢ XX 1, B A(Xx1)=BN (XX, and EN (X X 0) = B, (X X0).
We observe that Xi and Yi are not in 3, because Soo( 'rrISZ(po ) = ¢,

nd so no simplices of v(L) may contain a vertical line segment.

Picture (of 4 blisters):

i Zi
\ \




Let E' ,...,E, be the blisters which meet A, X I. Each blig
iy iR j :
(3)
a ball of dim (rX1) and meets <‘9(Aj X I) in a face. Hence cl(Aj X1

an (r+l)-ball. Since E, n E. =B, N B. , it is not hard to see that
J J J J
2 1 2 1
E. N 3cl{A, XI-E, ))=E, n 9(A, X I) = a face of E, . Hence
iy j i i, j iy
Cl(Aj X1I- Ej o Ej ) is an (r+1)-ball. Continuing thusly, we at last find
1 2
cl(A,XI-E, oy ... uvE, ) is an (r+l)-ball. A similar argument sh;:
J J]. JR()
J
that cl(Ale-(Ale)r'\(Ej O ... O E, )) is a face of
- 1 2:)
]. Hence the closure of the complement o

Cl[A,XI-E, U ... UE,

face is also a face of cl[Aj XI-E, u....UVE,
1 TR(3)

hedron collapses. So, A, XI \,[(A X 0) w(dA. XI)Jw (E, u.. .VE,

], to which this last pol

Let A = (#-1) skeletonof PK= ﬁK-{Ai} . Then, by what we have ju

proved‘
BKXI\(BKXO)U(AXI)U(EIU VES),

and so
R = F(BK X I) \F((BK X 0) U (AXT) U (B ... VE )= S.
Moreover sh(R)m R C S. For if F(x) ¢ sh(R) " R, then xe Sz(pOF) and

x e A X I, Since there exist subdivisions making the collapse R \S simplici

it follows that R sunny collapses to S.
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Now let U, = (2.X.B, B.CXX1.
1 1 1 1 1

zXB wzyYB B ¢XxXX1
i 1 1 11 1 1

v. = [XB, BiQXXI.

X B. v Y.B, B,¢xx1 )
11 1 1 1

hen Ei\ Ui’ as a ball always collapses to a face.

Recall that Bl’ c e Bs are the (r-1) simplices of yI and that

oF:yL —> J' is simplicial. We may suppose in addition that the Bi are
Ordered so that if F(Bi) overshadows F(Bj) (i. e. has interior points of
Bj) in its shadow and therefore all of F(Bj) in its shadow) then 1< j,

ote that since Sz(p oF) is of local codim. at least two, none of the polyhedra

’B.) may contain a vertical line segment. )

J
Since Ej\ Uj all j, we have:

i-1 i-1 s
X 0)y (AXTI) - vV, + U, + E, collapses to
\u) ) L{J 3 klj j Llj j P
XO)U(AXI)-UV+U U+ UE Hence

i+l

i-1 i-1 s
F(kx o) vw(ax1 - v, ¥ Llj U, Ll) EJ.]\

1

F[(Kxo)u(AXI)-UV.+U u .+ | F.

over, F(Int Ei) = Int F(E, ) misses the shadow of

5 i-1 ti-1

; lx Ou (AXI) - U V + U U + UE ]. For otherwise, we would nz-
1 1



Int F(El) meeting sh(F(Ej)), some j>1i. From the construction of the blig
Ek’ this implies that F(Bj) overshadows F(Bi)’ an impossibility for i<j,
It now follows that any simplicial subdivisions which make (I) a simplicial co

lapse make it a sunny collapse. Hence we may conclude that F(K X 1)
S

s
collapses to F((K X 0) v (AXT) - U v, + \‘ Uj)'
1 1
s

S
Now let ki AXT—>AXI- | JV, +{J U be the p.l. homeomorphism
1 1

sends %i to Zi and is the identity on clA XTI - UVj). Let F'=Fok: AXE
M X I. Then F' satisfies the hypotheses of this lemma. For ]
Sz(poF') cyL - {le J=1,..., s} and so Sp(peF') has local co-dimension'
at least two in A X I, and 'rr|SZ(poF‘) is the restriction of a non—degeneraté?

map and so is non-degenerate. Hence by induction F'e k(A X I) sunny collaf‘
S s 3

to F'o k(A X 0); therefore FAXI- U Vj + \) Uj) sunny collapses to F(AS
1

This means that

F((AXT) 0 (KX 0) - UV, + UUJ,)\F((AXO) U (K X 0)) .

Since F(K X 0)C (J%x0)u(arX I), this collapse is also a sunny collapse. T

completes the proof.

§3. Factorization of Collapses -- Proof of Theorem 1. 2.

Lemma 5.5. Let BC QXTI bean n-ball, Q a compact g-manifold.
Suppose that B 0 [(QX 0) U (83Q X I)] is a face of B. Suppose that n<q-2. ;

Then (QXI)\(on)u(anx) v B.
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Proof. Let F = By‘\[(QXO)u(aQXI)]. Let h: FXI—> B beaP.L.

pomeomorphism with h(x,0) = x. By Lemma 4,9, there is a P. L. homeo-

i morphism kiQ X 1—> QX]I, level preserving, such that Sz(plkB) is of
 local co-dimension 2 2 in kB. Consider K= h-l(SZ(ple)). (p = pro}. on the

‘3

ffirst coordinate). It is of local codim2 2 in F XI, and so its intersection
f’;with (i" X I) 1 (F X 0) is of local codimension 21 in (i?‘ x I) y(F X 0). Hence
‘ e may apply Lemma 4. 9 to find kK F XI—>FX I, a level preserving homeo-

.

‘morphism, such that 5,( 7| k'(K)) has local codim 21 in k'(K), ¥ the pro-

ection of F X1 onto F.

-1 -
Let ¢ = koho(k') 1: FXI—> QXI. Then SZ(pctwp) =k'¢eh ¢k 1(Sz(plkB))
2s of local codimension 2 2| in F X1. Moreover, SZ( 'WISZ(pcqo)) is of local

dimension>1 in Sz(pocp); hence '“'lSZ(P°¢) is non-degenerate. Finally,

1
(@ XTI wQX0)=F X0, This is because k' and k are level preserving

boundary preserving, and because of the definition of h. Hence by

emma 5.4, kh(F X I) sunny collapses to Kh(F X I) n ((Q X 0) w(8Q(x 1)).

y -1
lence by Lemma 5. 2, (Q X1) Y (Q X 0) U (8Q X I) L kh(F X 1). Applying k

(Qxx)‘\(oxo)u(agxn w B.

Theorem 5.2, Let Kog K<CM, Ko' K P.L. subspaces of the compact

. m-manifold M. Suppose M\“Ko’ K\!Ko' and dim(K-Ko)sm-B. Then



e .
Proof. It suffices to suppose that K \KO; i.e. cl(K-KO) =B, a
r-ball and B n Ko = F, a face of B. Subdivide M with K, Ko’ and B

triangulated as subcomplexes. Let N bea 2nd derived neighborhood of

in M. M is also a regular neighborhood of KO and N also meets the

regularly. Hence, by the generalized amnulus theorem, there exists a p,

homeomorphism
h: cl(M-N) —FrNXI
with
n(x) = (x,0) if xe FrN.

Now, NN B is a regular neighborhood of F in B meeting 9B reg
So NN B is an r-ball and NN B is an (r-1) ball, being regular neighbor!

of collapsible sets. Therefore (Fr N)N B is also an (r-1) ball.

Let B1 = cl(B-N). Fl -BNFrN. Let Q=FrN. Let h‘:]:."‘1 —>Q

be the restriction of h above. We must now construct 2 p.1l. homeomorph

pr QXIT—=>QXI throwing QX0 into (Q X 0) v (8Q X I),
2
Let X\: I2 —> I° be a p.l. homeomorphism such that N1,t) = (1,t)

for every t, and \(IX0)= ((1x 0) u (0 X1I)). (Exercise: Construct )\

Set A = (A,,%,). Let c: 9QXI—>Q bea boundary collar. Then define
p: QXI—>QXI by
plc(x, s),t) = (C(X,Xi(s,t)),KZ(S,t)) if xe 9Q

uly, t) = (v, t) if ye cl(@Q-Im c).
re s =41 in the first definition

The two definitions agree on the overlap (whe

The map p is p.l. Foron Im(c) X I, it is the composite:
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X
£ X1 o oaaxixI—AZr s agaxixt S22 5 im(e) X1,

" This also shows that is is a homeomorphism.

Now, w(hB,) is a ball in Q X I meeting (Q X 0) s (8Q X'I) in the face

)

dim B, € dim M-3 < dim Q-2. Therefore QXI (QX0) ..(9QXI)u phB

: P'hFi' 1 !

.
- -4
Hence cl(M-N)'(Fr N) B1, applying h 17 " to the preceding collapse.

v

Al

Therefore M\N. B, . NuB, =NuB, so M N' B, But N B\K uB=K,

1° 1

%Note: It LOC_ L © J are simplicial, Lo full in J and L"D C L' J' are
girst deriveds, then N(L(') s JY) L \\*\L'.

Proof. Let \ Aig =}8implices of J-L which meet Lo’ in order of
decreasing dimension. Then Aif”'x N(Lg ;J')"-“JAi n N(L(');J'). For

O N(L('); J') is a regular neighborhood of Ai 7 LO which meets Ai regularly,

;ﬁd so Ai N(Lé;J') is a face of the ball Ai‘( \ N(L(');J') . )

Unknotting of Ball Pairs and Sphere Pairs

flotation: If P = (B4, Bn) is a proper ball pair, then P denotes the sphere
; q n,. . q n .. .
r (BB ,0B"); and vP denotes ball pair (vB*, vB), v a joinable point.
ofe that vP is proper.
Lemma 5.6. Let P and Q be two unknotted ball pairs of type (g, m).

hif > O bea p.l. homeomorphism. Then there exists a P.L. homeo-

BOrphism k: P —> Q with k}é = h.




)& AMATATT ATA™) & (A

Proof. (Am. Ad-™, A™
So there are P.L. homeomorphisms P —> vf—", Q —> vQ and we can exte

h: P— é conically.

Lemma 5.7. The cone and suspension (join with a sphere) of an

ball or sphere pair is an unknotted ball or sphere pair.

Proof. Exercise.

By B we denote the statement: all proper ball pairs of type (q,

q9,

are unknotted. Let S m - "all sphere pairs of type (g, m) are unknotte

b

Lemma 5.8. B implies S
—_— q, m q, m

Proof. Let P = (Sq, Sm). Let KOE_ K be a triangulation of Smg S

Let v be a vertex of KO . Let P1 = (st (viK) , E?(V,Ko)). Let

P2 = cl(P-Pi) = ( | K-st(v;K)‘ , IKo-st(v;Ko) ). Then P, and P2 are bot§

proper ball pairs, and P1 = I.’Z. The identity i?1 —_— 12’1 extends to a p.l.

homeomorphism P'1 —_— vl?’1 and a p.l. homeomorphism PZ —> v'PZ. Sot
P is p.l. homeomorphic (as a pair) to VP1 v v'Isi, a suspension of 15’1 én,

so unknotted.

Definition. A face of the proper ball pair P = (Bq, Bm) is a proper bal

pair F = (4971, 2™ win a%7'c 8B and Ao A1 A 5™, We de

b

m

fine cl(iD-F) = (BBq - Aq-i, 9B - A -1), which is also a face of P.

Lemma 5.9. Let P and Q be unknotted ball pairs of type (q, m) which ,

in a common face. Then if B 1 m-1 is true, P u Q is an unknotted ball P
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Proof. Let F be the common face. Let P‘1 = cl(P-F), Q= c}Q-F).

?'B implies F,P, ,P_ are unknotted. Then F is unknotted as p.1.
§ “q-1,m-1 1’ 2

homoemorphisms preserve boundaries. By 5.6, the identity F—> F extends

L to p. 1. homeomorphisms:

: > s
h‘1 P1 aF
M > i‘“ s
hz, F b
. P ——> cF
h3. 2 c

.

‘1u hz:l‘j —_— a};"u bf‘ extends to ki:P _ abf? and h2 h3:(‘.2 - bf‘ Y cf‘
xtends to kZ: Q—> ch", both homeomorphisms. So

1-_1 kzt PLwQ——> abi? L) bcl‘:"_.j aF 1 cF is .nknotted.

Lemma 5.10. Let (Bq,Bm) be a proper ball pair, Let N be a regular

= m q . m
eighborhood of B~ in B". Then Bq-i, - and Sq-i, I imply (N, B),

| proper ball pair, is unknotted.

. s
Proof. Let K C K triangulats ™ ¢ BY, and suppose that KO\K

y uniqueness of regular nelghborhoods, we may also suppose that

N(KO;K") without loss of generaliiy, Let K =L \ \ L =V € oo.
et Ei = (N(L‘; s K", N(L;' ;Kg), where K" = 2nd derived subd1v151on.

= (N, Ko ). Moreover, E,1 is a ball pair, by regular neighborhood theory,
is easily seen to be properv.

Eo = (star(v;K"), star(v, KO) = »{link({v; K"}, link(v;K"o)), a4 cone on a

ere pair of type (q-1. m-1). Hence Eo is ».nknotted, Suppose by induction

t Ei-i is unknotted., Put L = L A 13, A=aB. Then Ei = E, 1 uPuQ,

1 '1"1 1=




E. =E, ,UPuQ, where
i i-1

P = (st(A, K"), st(A; K‘;))

Q = (st(Bs K", st(B: X))

(See regular neighborhood theory, Chapter III)

A A
Now P = A(link(g; K"), link(A; Kg)) The link pair is either a sphere
A " A [
or a ball pair, according as A e Int Ko of Ace Kc'; . Since
. " NSy o, N . N . n o -
3(1mk(A;Ko)) = link(A;Ko)glmk(A;K") = 9(link(A; K")), in the event A ¢ KX
this pair is a proper ball pair or a sphere pair of type (q-1 ,m-1). Hence
is unknotted.
Now we are going to prove that P N Ei-1 is a face of P and Ei-—i'
A N . A A . E
Let L= (link(A;K'),link(A;K('))). Let P = (link(A;K"),l’ink(A;K"‘D)). Then}

A
P= AP1. Let p:P1 —> L be the pseudo-radial projection given by

A A
P(Ag) = & if o e link(A;K").
(See regular neighborhood theory. ).
We now introduce some new notation, by writing P = (Pb’ Ps)

(P"big" and P"small"), Q= (Qb, Qs)g etc. Then P sends Euf\ (Ei-i)B
onto the derived neighborhood of (al..%) in L and sends P_N (Ei-i)s on
the derived neighborhood of (aB) in L, - Using the sublemma appearing
the end of this proof, we see that the image of PN Ei-i is a proper ball P’
of type (q-1,m-1) and so a face of P and of Ei-'l' Therefsre P Y Ei-i
unknotted pair. Similarly, (see reg. nbhd. theory) (P v Ei-'i) ~Q is a faC

Pu Ei- and of Q; Thence Ei is unknotted.

1
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Sublemma 5.10.4. Let X cCMC Q, MCQ a manifold pair,

MN 9Q = oM. Assume everything is triangulated so that X is full in both

M and Q. Let N = derived neighborhood of X inQ. Then 8(N n M) = (8N) M.

Proof. First, FrM(N N M) = FrQ(N) A M. For say LC KOC_ K

riangulates X € M & Q, with L full in K_, K_ full in K. Let L'C K! < K!

e first derived subdivisions, and suppose N = N(L';K!'). Then NN M= N(L';KZ_,).

ay A e K(‘) . Then A ¢ FrM(N A M) if andonly if A NL= g but there exist

Be L with BA e K;. Ace FrQ(N) M M if and only if A e Ko’ AN L‘1 =¢ and

here exists B e L' with AB ¢ K'. It is clear that these conditions are equi-

valent. Therefore FrM(N A M) = FrQ(N) N M.
Now, (ON) M= ((FrQN) AM) U(NAM N3Q).

(NN M) = FrM(N n M) u (N n.aM).

ut M~ 8Q = 8M,

o > B
Corollary 5.141. If g-m 23, then m-1,q-1 and Sm-i, q-1 imply Bm

m
Proof. If gq-m 23, then by Theorem 5. 2, B4 \B

since both collapse to a point.) Hence B? is a regular neighborhood of B™.

0 (Bq, Bm) is unknotted by 5. 10.

Theorem 5.12. If gq-m > 3, then every proper ball pair or sphere pair

w\,f type (m, q) is unknotted.
Proof. We already have the following implications:

_ S => B i - > .
Bm,q sm,q and m, q i+, gt if g-m >3

start the induction, assume m = 0, q=3. So we have a point, P say, in the



interior of BY. Triangulate BY with P as a vertex. By the uniqueness of

regular neighborhoods [P C BY) o [P ¢ star(P,K)] which is clearly unknotted

§5. Unknotting of Embeddings of Balls in Balls.

Now we ask the followiag question: given P.L. embeddings

-1

£, g:B™ —>BY, with flaBm = gl 9B™, 8B™ = £ H(8BY) = g~ (8BY), is there

an ambient isotopy throwing f(x) onto g(x), all xe B™?

Lemma 5.13. If Bm§ B? is an unknotted proper ball pair and if

h: B U 3B% —> B U 9BY is a P.L. homeomorphism, then there exists a

P.L. homeomorphism k: 5% — B4 extending h.

N
=

Proof. By Lemma 5.6, there exists k': (BY; B™) == (B%;B™) such
that k' |9BY = h|3B% So ' [9B™ = identity. Let @:(B%B™)—> (A™AT"
be a P.L. homeomorphism. Let B = ak‘h_ia-lz AT —> A™. Let
=8 :a7.AYT — ATAY™ 1o the suspension of B (i.e. join up B with the -
identity on AYT™) Them =B is the identity on ATALTT a(Am.Aq-m).
Therefore k" = o} (ZB) @: BY—> B is the identity on B2, Moreover,
K |[B™ = kb1, Let k= k") k', Ther k|0B%=k'|9BY=n|8BY,
k|8B™ = ('h" Y)Yk = b |

Lemma 5.14. Let f,g: BT —> B? be P.L. embeddings,

£ 1989= g"18B% = 8B™. Assume gq-m323 and £[3B" = g 9B™. Then f and g
are ambiént isotopic keeping aBY fixed. (That is, there exists an ambient iso- }

topy h mach that hof=g and h leaves 9BY fixed.)
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Proof. There exists a P. L. homeomorphism h: B9 — BY such that
h(me) = g(Bm), as (Bq, me) and (Bq, gBm) are unknotted proper ball pairs.
The map fg-1h: me —_ me is a P. L. homeomorphism, and
fg“hlf(aBm) = h|£(8B™). So nufg 'h:od . BT —> 8B%. BT isa P.L.

’ homeomorphism. By 5.13, there exists a P.L. homeomorphism
«: B4 —> B with k|8B%=h and k| B = fg"1h. The map @ = ne"l: g9 — BQ
-1

is 2 P. L. homeomorphism, and « |me =gf . So af=g. Moreover,

i o | oBY = identity, so @ is ambient isotopic to the identity keeping aB? fixed.

TE‘§6, Unknotting Cones

We state the following without proof: (Lickerish's Theorem)

If fand g are P. L. embeddings of v.K into Bq, K a polyhedron

. -4 -
‘and v a joinable point, with { (8Bq) =g 1(an) = K, and if fiK = glK, and if
 dimv.K £ q-3, then fand g are ambient isotopic keeping oB% fixed.
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Chapter VI: Isotopy '

§1. Concordance, Isotopy, Ambient Isotopy, and Isotopy by Moves.

Definition. The embeddings f and g of M into Q (PL spaces)

are called isotopic if there exists a PL map F: M X I —> Q such that

2) Ft is an embedding . (Ft(x) = F(x,t) .)

Equivalently, we say that f and g are isotopic if there exists a level}

preserving embedding F : MX I —> QX I such that —F—O ={ and F1 =g,

(F(x,t) = (i‘;(x),t)) The relation between F and F is F(x,t) = (F(x,t),t).]

We say that f and g are ambient isotopic if there exists an ambient

isotopy h! QXI—> QX1 with hef=g,
We say that f and g are concordant if there exists a PL embedding

FiMXI—>QXI with F(x,0) = ({(x), 0) and F(x,1) = (g(x),1) for all

x e M,

Definition. If Q is a PL space and h: Q —> Q is a PL homeo-

morphism, sup(h) = {x € QI hx # x} = support of h. We say h is

supported by X if sup(h) € X € Q. Then h is supported by X if and only
if h|Q-X is the identity.
If Q is a PL g-manifold and h is supported by a PL g-ball contained§i

in Q as a PL subspace, then h is called a move. We call the move h

a proper move if either hl 9Q = identity or there exists BqC_: Q, BY a q-ba*

with sup(h) C BY, such that BY A 8Q is a face of BY,
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Definition. If f and g are embeddings of M into the g-manifold Q,

we say that fand g are isotopic by moves if there exists a finite sequence

Ahi, fe ,hr of proper moves of Q with
hio Ohrof = g.
Lemma 6.1. Each of the following statments implies the ones
below it (f and g embeddings M — Qq).

a) fand g are isotopic by moves.
b) f and g are ambient isotopic
c) fand g are isotopic.

d) f and g are concordant.
Proof. b)=>c). Let h: QXI—> QX1 be an ambient isotopy
L with b,f =g Define F: MX1—> QXTI by F = ho(fX1).

c)=>d) . Clear.

a) = b). It suffices to show that any move is ambient isotopic to the

identity. So let h: Q —> Q be a move.

Case 1: Sup(h) € Bq C Q and h| 9Q = identity. Then hl 8;3(:‘ is the
dentity, so h|Bq is ambient isotopic to the identity keeping 0B fixed.
| Hence h is ambient isotopic to the identity (keeping Q-Bq fixed).

Case 2: Supph € Bic @, B%n 8Q=aface F of BYL,  Let
= cl(an - F). Then by continuity, th1 = identity. Let a: B% — At
‘He a PL homeomorphism sending F into a principal face A1 of A,

Define k: AdX T —> AYX T by first putting k|A?X 0 = identity,

A%x 1 = ghe !, k|cl(A - Ai) X I = identity, k(81;1/z) = (2\1, 1/2) and




A, = barycenter of A,; then extending k, by joining up linearly, to

{ £’
-1

AYXI. Then k is an ambient isotopy ending in c¢he and keeping

cl(A - Ai) fixed. Therefore hIBq is ambient isotopic to the identity keep- .

ing cl(Bq - F) fixed, and so h is itself ambient isotopic to the identity.

Theorem 6.2. If Q is a compact q-manifold and H: QXI—> QX

,h of

is an ambient isotopy, then there exists a finite sequence hi’ ceesh

proper moves of Q such that H1 = hio ... %h .
r

Proof. Let K triangulate Q. Assume [K'E‘__En, and view

1

+
IKIXIQ_EH . Given a linear map #: K—> I, (1,¢): K—> KX 1 is an

embedding., Let Py K X I—> K be projection on the first factor. Given
g, iet ¢* = p1°H°(1,¢).
Let of{KX1I) and B(K X I) be subdivisions making HealKXI) -> B(KXI) simpll

Let oe B(KXI). Let £ ¢ ¢ be a vertical line segment in o (i.e. a line
whose projection under PZ: KXI—>1 is a point). Hni( 2) is a line in the
simplex H-i( o). Since H is level preserving, H=i( £ ) makes an angle
of less than 7 /2 with the vertical. (Mozr= precisely, if £ is viewed as
an upward pointing vectcr, then Hgi( £) is a vector which makes an angle
of less than 7/2 with, say, the vertical unit vector; equivalently, the last

w-ordinate of the vector Hni(l ) is positive.) Moreover, by linearity of
H on simplices, this angle is independent of the choice of £ ir o, f ~-r-
tical. Since PB(KXI) is a finite simplicial complex, thers sxiste w < u,”
such that H-i(l) makes an angle < ¢ withthe vertical if £ is anv v - Zical

line in a simplex of B(K X I).
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On the other hand, there exists & >0 such that if @(K) has diameter

< &, then if ¢ € K, any line segment contained in the (convex linear cell)

(1,#)(c) makes an angle of at least ¢ with the vertical.

Now (1,§)K separates KX 1 Thatlis, 2 path from KX 1 to KX0

meets (1 X §)K in at least one point. This is because if NnI—> KXI is

such a path and \, = pZO)\, then if MI) N (1,¢)K =§, the sets
{s|)\1(s) > @(s)} and {si)\i(s) < ¢(s)} form a splitting of 1 by disjoint,

non-empty open sets, contradicting the connectedness of I. Therefore the

"broken line" H-l(X X I), X e K, meets (1,#)K in at least one point.

However, (1,f#)K and H_i(X X I) meet in at most one point. For if

g is a point of intersection whose co-ordinate in I is to # 1, andiif

Me H-i(X X I) and 1 has t co-ordinate greater than to’ then 1\ lies inside

the solid cone consisting of all rays starting at g and (when when directed

away from g ) making an angle of at most ¢ with the upward vertical.
:If UE (1,¢)K, however, M lies outside this cone. This proves that the

point of intersection with smallest t co-ordinate is the only point of inter-

. section.

Therefore § = poHe(i,#) is a homeomorphism if diam @#(K) < 6.

Then there exists a finite sequence ¢1, ces ’¢N of linear maps of K into I

such that
1) g (k)= fo} and f(K)= {1}
2) diam ¢1(K)< 5 all i.

3) ¢i and ¢i 44 agree on all but one vertex of K.



N * L & -1
= = . i . L o -
Then ¢0 { and ¢N H1 Consider ¢i ° (¢i-1) et v be the ver
*x *
tex such that ¢i(v) # ¢i_1(v). Then ¢i(¢i-1 ) is supported by ¢i-1

3 %
¢i_1(star(v; K)) and is the identity on ¢i_1(link(v; K)). Therefore if v ¢ 9K,

%, % -1
¢i(¢i-1 )"" does not move 9K. If ve 9K, | star(v; K')| n (8K'") = | stax(v; oK
* ‘
is a face of |star(v;K')| . Since ¢i-1 is a homeomorphism, it follows that
%

¢

i(¢i-1) is a proper move.

Theorem 6.2 has several improvements in each of the following,

H:QXI—> QX1 is an ambient isotopy. In all but the last, Qq is a com-
pact PL g-manifold. “
6.2.1. If a is an open cover of Q, then ore may choose the moves
hi such that H1 = h1° .. © hr to be supported by elements of a.
Proof. Let aXI= {UX I| Ue oz} . H-i(ax I) covers QXI,
Let € > 0 be the Lesbesgue number of H-i(a X I) with respect to the metric 2’.

induced by the triangulation K of Q. Let K('r) be the r-th barycentric

subdivision of K, r such that mesh K(r) = maximum diameter of a simplex‘

2 mesh K, n =dim K, K' = first
n.+1 T

of K(r) < %E . (In general mesh K'<
barycentric subdivision.)

Let 6§ >0 be suchthat 1) &< 12 e , 2) dim ¢(K(r)) < & implies
g is an embedding. Now construct ¢i as in 5. 2, but with K replaced
throughout by the triangulation K(r) of Q, and let hi = ¢i ('gi-i:"' Then
sup(hi) c ¢i_1(Star(v;K(r))), But diam[(1 X ¢i_1)(star(v; K(r))] <e¢; for

the diameter of star(v;K(r)) is at most ‘12'6. Therefore {1 X ¢i 1)(5*‘;&1‘(%";1{
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lies in some element of H-i(ax I), and so ¢i 1(s'caLr(v; K(r)) lies in some
element of a.

6.2.2. If H keeps the boundary fixed, then we may assume each

proper move hi keeps the boundary fixed.

6.2.3. If the hypothesis of 6.2.1 and 6.2.2 hold simultaneously, then

i the moves hi may be chosen so that the conclusions hold simultaneously.
Proof. Clear.

6.2.4. Let H:QXI—> QXI be an ambient isotopy, 0% not compact.

; Let X € Q be a compact PL subspace. Then there exists a sequence of
| moves hl’ .o ’hr such that H1 = h1° ces vhr on a neighborhood of X,
Proof. Let Ko C K be finite complexes triangulating two neighborhoods
i of X in Q, with Int|K| 2 IKOI. Let N = N(KO;K). We may also suppose
that |N| € Int K by choosing K suitably. If §:N—1=[0,1] is a linear
‘ map we may still define ¢* = p.Ho(1,#): N—>Q. By the same argument
as for 6.2, there exi.sts § >0 suchthat diam #(N) < & implies ¢* is an
| embedding.

Now suppose that ¢1, ¢2:N —> 1 are such that diam ¢i(N) < & and

* -1
Now X € ¢1 Int N if and only if H (xX 1) intersects (1 X ¢1)N, which
happens if and only if H-l(x X 1) homologically links (1 X ¢1)(Fr N). Simi-

: E b
larly for ¢2. Thus ¢1 N = ¢2 N. Then by arguing as in the proof of 6.2,

ok % £ 5k
F = = = =
#,(Fr N) g, (FrN) {t_} . Then g FrN=¢, FrN. So Frff N Frg, N.



b3 s
one can find a sequence of proper moves of ¢1 N, fixedon Fr ¢1 N, whose

% +1, %, -
composite is (¢2) 1(jS) 1. Extending these moves to all of Q by the

o * oad
identity outside of N, we see that (,02 )(¢1) is isotopic by moves to the

s e
identity. Therefdre ;252 is isotopic by moves to ¢1 .

1
=t = < < < = = ith - < =20,
Now let 0 t to ti “ee tr tr+1 1, with ti ti-i ) )

;zSi: N—»>1I, -1 £i< r, such that ¢i(v) =t if ve Fr N is a vertex, and
i
= - i N- i . Defi . =t, 1
¢i(v) ti+—(2 tiry ti) if ve Fr N is a vertex efine l.lJl(V) t1 if

ve FrN and Lbi(v) = t,,1 - %(t -t if ve N-Fr N, v always a vertex,

i i-wi)

oi¢ %

. ) (3 F . . 13

Then L[Ji_H and q;i agree on Ko ¢i 4:1 agreeon FrN So Lpl and ¢1
sk

are isotopic by moves. Let hi be an isotopy by moves throwing Lbi onto

b
. = i i K =H, K.
in Then h hrhr h, is an isotopy by moves and h| ° 1[ °

ey

Corollary 6.3: If f,g: Mn——->Qq are two embeddings, M compact,

then f and g ambient isotopic implies f and g isotopic by moves.

§2 Locally Unknotted Manifold Pairs and the "Weak" Isotopy Extension Theore

Definition. Say (Q,M) is a PL manifold pair; i.e. Qand M are PL

manifolds, and M is a PL subspace of Q. We say that (Q, M) is a proper

manifold pair if M N 8Q = 8M. (R, M) is said to be locally unknotted if

given any x ¢ M, there exists a neighborhoocd V of x in Q such that
(V,V A M) is an unknotted ball pair; observe that it is a proper ball pair if

it is a ball pair at all.
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Lemma 6.4. If KO_C_ K triangules M €Q, then (Q,M) is

Jocally unknotted if and only if given any A ¢ Ko’ (1ink(A; K), link(A; KO))

is an unknotted sphere or ball pair.

Proof. => . First we consider the case when A = v 1is a vertex.

If K(‘)g_ K' is any subdivision, then the radial projection

1
link(v; K') —> link(v; K) carries the simplices of link(v;Ko) into simplices

of link(v; K(’)) Hence the same is true of the pseudo-radial projection, a

PL homeomorphism. Hence it suffices to show (link(v; K"), link(v; Kz))) is

unknotted. But by choosing a suitable subdivision (for example, the rth bary-

centric, some large r), we may suppose that the link pair of v with respect

to this subdivision lies in a neighborhood V of v such that (v,vn M) is

an unknotted proper ball pair. In other words, it suffices to consider the

. '+
case Q= Ar-A1 t and M = Ar, and V€ AT isa given point (not necessarily

a vertex) of AT,

If v e AT, stellar subdivide by starring AY at r, getting the pair
. <941 . 141 . .
V. ArAl , Vo Ar). Then the link pair of r is (Al 1Ar, Ar), the standard

If ve A, where AT = A.B,

<itd

unknotted sphere pair of type (r+i-1, r-1).
(vABAM ', vAB).

B # ), stellar subdivide by starring A at r to get the pair

- i+l

The the link pair of v is (ABA ,AB), an unknotted ball pair.

assume the result

To prove the result of an arbitrary simplex A of KO,

by induction for simplices of lower dimension than A. Let a be a vertex

of A, and put A = a.B. (link(A;K), link(A, K )) =

[link(a; link(B, K)), link(a; 1ink(B; K ))]. By inductive hypothesis,
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link(B; Ko) C link(B; K) is an unknotted ball or sphere pair and so a locally
unknotted proper manifold pair. Hence we may apply the result for verticeg

to the link pair of :a in this manifold pair.

.
.

<= . As (link(v;K), link(v;K_)) unknotted implies (star(v;K), 5tar(v;K )i§

unknotted.

Lemma 6.5 (weak isotopy extension theorem): Let (Q, M) be a proper
locally unknotted manifold pair, with M compact. Suppose that h: M—>M

is a homeomorphism which is ambient isotopic to the identity 1M’ Then

4

there exists a PL homeomorphism k:Q —>Q with k| M="h, If h is ambie7

isotopic to 1 keeping OM fixed, then we can assume that k is fixed in aQ*

M
Proof. Let KOE K triangulate M C Q. Then let @ be the star

convering of M; i.e., a = {si?ar(v;Ko)lv is a vertex of Ko} , where
stgr(v;Ko) = IKOI - U{oe Kol v o}. By 6.2.1, there exists a finite .
sequence of proper moves hi’ cees hr , each supported by some element of .
hr: M— M, with h= hio cen ohr' If h keeps the boundary fixed, we may
assume each h, also,

We are going to complete the proof by showing that each hi can be ex~-
tended to Q. So suppose that supphig_ gtar(v;Ko), v a vertex.
Case t: v ¢ 9K. Then h, is the identity on link(viK ). Mc=-cv
(star (v K), star(v; Ko)) is a proper unknotted ball pair, and its boundary is
the sphere pair (lir+ X}, link(v; Ko)). We may extend h, toa p.1l. homeo- |
morphism of .star{ve % 1 lizkf=eK) hy #.4°-" y it  be the identity on

link(v; K). By Lemma 4, this msp =xtends i¢ 4 p.i. homeomorphism of
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star (v; K) into itself, which we then extend to all of Q by the identity
‘, outside star (v;K).
Case 2. v e 0K. Assume for the moment that (star (v; K), star(v; K ))
_— o
- is unknotted. Then by the same argument as in Case 1, we may extend
hi‘ star(v; KO) to a homeomorphism of star(v;K) which is the identity on
L link(v; K). ‘This homeomorphism extends to link(v; K) u star (v; K) by the
” jdentity outside star (viK), and so we get a homeomorphism of

b o(star(v;K)) into itself which agrees with h, on star (viK) and is the

identity on link(v;K). But hi is the identity on link(v; KO) and is defined

on star(v; Ko) (whose boundary is link(v; Ko) U star(v; Ko)). Hence by the

l lemma quoted in Case 1, we may extend h, to star(v; K), getting a homeo-
morphism which is the identity on [1ink(v; K)| 2 FrK| star (v;K)|. Now ex-
tend to all of Q by the identity outside star (vi K).

To prove that (star(v;K), star(v; Ko)) is unknotted, we simply observe
ithat it is the coneron the sphere pair (link(v; K), link(v; Ko)) which is un-

otted because it is the boundary of the ball pair (link(v;K), link(v; KO)).

emarks: 1) k can be chosen to be the identity outside of an arbitrary
eighborhood of M.
2) It is clear that if k is constructed as in the proof of Lemma 6.5,

" hen k is isotopic by moves to the identity and so ambient isotopic to the

3) We also proved that the boundary pair of a locally unknotted pair is

cally unknotted.




§3. Uniqueness of Boundary Collars and Construction of Compatible Collarg

—

for Proper Manifold Pairs.

Let M C Q be compact PL manifolds, with M n 8Q = aM. Then the
boundary collars c,: M XI—> M and Cyt QXTI —> Q are said to be
compatible if <y is the restriction of 5 to M X I. In this section we see
how to obtain compatible collars in general and, given a collar

c : OMXI—> M, we can extend it to a collar of <, In the process we

i
prove the uniqueness of collars up to ambient isotopy. These results will beé

used to help prove the general isotopy extension theorem.

Theorem 6.6. If (Q,M) is proper pair of compact manifolds and is

a locally unknotted pair, then there exist compatible boundary collars of

M and of Q.

Remark. The reader will observe from the proof to follow that it would

suffice to assume that the pair (Q, M) is locally unknotted at the boundary;

i.e. every point in the boundary of M has a neighborhood in Q, V, such that]
(V,V A M) is an unknotted proper ball pair. One would need a variant of

Lemma 5.4. The details are left to the reader.

Proof. Let Q+ = (QX0) u(dQ X1I) and let M= (Mx23Y BV T
W wili monstruct a PL homeomorphism Q+ —> Q carrying M+ info M,
which sends 9Q X i —— 3Q by mapping (x,1) onto x.

Let KOQ K tri-og:lai- MC Q. Let K' bethk barycentric first derive

Let Ai’ cee ,AN Le the simg to- ol BKOT o decreasing dimension.
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Let A1 be the dual cell of Ai in K and let Af be its dual cell in 9K,

If A, e K, let A and A#
i o i i

2 O 1

be the dual cells of Ai in Ko and BKO,

respectively.

We are going to construct homeomorphisms (A1 X 0) u (AiiE X I)—> A,

which, if A ¢ K , send (A~ X 0) U(A,# X 1) onto A,

? lyo 1,0
B st # B _ sk #
Let B.= (A, X0)u (A, XI). Let B, =(A XxX0)u (A, XI) if
1 1 1 1,0 i, 0 i, 0
L A,c K . Let C, = cl(SAT-A#) and ¢, =cl(8A - At ) if
g i o i ! i 1,0 i,o 1,0

;; a, € Ko' (See the section on dual cells, Chapter I1.)

E Claim: If Ai € E')KO, then (Bi,B_ ) is an unknotted ball pair.

i,

The following picture indicates the situation:

sl
k3

1




To prove the claim, we use the pseudo-radial projection

ES

*® N 8
p:Ai —_— Ai link(Ai;K). Under this map, Ai o is carried onto

A ’ %
. i H . L = C-’C ) ir. >
Ai l1nk(Ai KO) et F, ( A i,o) a proper ball pair. Under p (see the
section on dual cells), this pair becomes the pair (link(Ai; K), link(Ai; Ko))
an unknotted ball pair. The pair 8F1 = (Bci, 8Ci o) ~ (link(A; 8K), link(A; 3Kk
is also unknotted.
VIR N Y e . A

Let F, = (Ai , Ai o)’ under p it is carried onto A. p(aFl), also an
unknotted pair. Therefore FZ X I is unknotted. Let ;
F3 = (F2 X1)u (817“2 X I), an unknotted pair because there is a p. 1. homeo- |
morphism (FZ X 1)u (E)F2 X 1) —> v. dF 5 (To see this, embed the first

pair in v. 8F2 suitably and use a pseudo-radial projection, as in the follow

ing picture:

The identity oF_ —> 81“2 extends to homeomorphisms

2

. (
h1 : F1 > a\aF:“
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: > b(dF ) ,
hZFZ b( 2)

)3 note that 8F, = 8F _ = OF

h:F_—> c(BF 1 2 3°

373 3

Extending homeomorphisms defined on boundaries by these maps, we

get homeomo rphisms

>== s
: > oF
b, (Ai’Ai,o) ab( 2)
hS:FZXI >(bc).3F2.

: . U = ' -
Finally, h4 U h5. <Bi’ Bi,o) > (abaF2 bc OF 2) . ac{0F 2‘) is a homeo

morphism. This proves the claim.

Now we define inductively a sequence of p. 1. homeomorphisms

% %
ki:(Ai X 0)u (Af X I) > Ai with the following properties:

1) ki(x,1)=x if xe 9Q ;
! #

sk
X if xe A, - A,
i i

2) ki(x, 0)

e

b3

3) I A,e¢ K, then k, maps (A, XO)U(A# X I) onto A
i o i o i,0 i,0

1, 3y )

£ sk sk
4) If Ai<Aj (=>i>2j and AJ,_C_ Ai), then kj = kiI(Aj X 0) U (A? X 1).

Having defined kj for j<i-1, we define kil aBi by conditions 1), 2)
‘and 4), and then extend it to all of Bi to satisfy 3), if it applies, by using

+
he "claim." Having defined the ki’ we define c¢:Q —> Q by extending
N
. . . sk +
l&\l , by the identity on (Q X 0) - U (Ai X 0), toallof Q . Clearly c
i-1
8 the desired homeomorphism.



To solve the problem of extending a boundary collar on the smaller
manifold of a manifold pair, we first must consider the question of com-
pairing boundary collars of a manifold.

Lemma 6.7. Let KOQ K be finite simplicial complexes. Consider
a p.l. embedding c:KX[0,£]—> KXI with Lc(x, 0) =(x,0), xe K.
Suppose that cl Ko X [0,¢] is level preserving. Then there exists 0 < § <€}
and h: KXI—> KXI, a p.l. homeomorphism, such that:

1) hec|K X [0,8] is level preserving; and
2) h is ambient isotopic tothe identity keepihg (K X 8I) U c(KO x[o,e])
fixed.

Proof. Let a and B be subdivisions such that « contains triangulations'
of KX0and KX[0,€], and c: KX [0,8]) —> B(K X I) is simplicial.
Let 6§ > 0 be such that no vertices of ¢ and B have a level t such that
0<t<& and such that c(KX[0,8] " (KX 1)=@g. Now choose first derived

subdivisions @' and B' of @ and B, using the following starring points:
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1) & has level & if & has any points of level & :
2) If oe a(Ko x0) , &o = c(8)
3) If oeofK_X[0, ), o =c& ; and

4) G arbitrary otherwise .

Note that 3) and 1) are consistent because ¢ is level preserving on
K X [0,£]. Now define c':a'(K X [0, ¢]) — BY(K X 1I) to be the simplicial
map defined by c'(q) = &s. Then c' is a simplicial embedding which is
level-preserving on K X [0,86] and agrees with c on KO x [0,€ ].
Now let B" be a first derived subdivision of B such that
c: ;z'(K % [0,8]) —> B"(K X I) is simplicial; it is clear that such a subdivision
exists, and that we may choose B" such that
1) B"(KX 1) = p{K X 1) and B"(K X 0) = (K X 0) ; and

2) pr(c(x_x[0,€1) = p'le(K X [0.e ).

{ Then let h: B"(K X I) —> p'(K X I) be the natural simplicial homeomorphism

"
i
o
i
i
g
L
i
L
;

between two first deriveds of the same complex. Then hoc = c¢' on all of

i Kx[0,¢ ], clearly. Moreover, by moving one vertex at a time, it is easy

to see that h is ambient isotopic to 1 by moves keeping

(KX aI) u o(K_ X [0,8]) fixed.

1

Lemma 6.8. If c, and c, are boundary collars in M, then there exists

>0 and an ambient isotopy H of M, fixed in 8M, such that

-1
> chl I 8M X [0, 8] is defined and level preserving. (M = compact PL

anifold. )
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Proof. Let € >0 be such that cl(aMX [0,€]) € Im c, - Then there

exists an ambient isotopy H' of 9M X I, fixed d9M X 9I, and § <&, such

that Hje c; ° (c1 |aM x [0,8]) is level preserving. Define H on
-1

X = ! .
CZ(BM I) by Ht c HtCZ

5 Since Hi': is the identity on 9M X 1, we may

extend Ht to all of M by the identity where it is not already defined.

Lemma 6.9. If ¢ is a boundary collar of M and 0<§ <1, then
there exists an ambient isotopy H of M, fixed on 9M, such that

H, c(x,t) = c(x, 6t), all (x,t) e IMX L.

1
Proof. Let M, = cl(M - Image c), a PL manifold. Let c,: M, XI—> M1
be a boundary collar. Define c,: aIM X [0, 2] — M by
cz(x,t)=c(x,t) 0st<l1.

cz(x,t) = cl(c(x, 1),t-1) , 1<KtL2 .

Then c, is a well-defined embedding, since cl(c(x, 1),0) = c(x, 1).
Let a:[0,2] XI—>[0,2] XI be a PL ambient isotopy with
@|(0 X I) U (2 X I) = identity and ql(t) =6t if 0<t<1. Now define

h: MXI—> MXI by

hlc (x,8),t] = [c,(x, pals, t)). t]
h(y,t) = (y,t) for all ye cl(M - Im CZ)' Here p:[0,2] XI—>[0,2] is pro-
jection on the first coordinate. Observe that h is well-defined as
[c 2(x, pa(2,t)), t] = [c2(x, 2),t]; and h[cz(x, 0),t] = [cz(x, 0),t] = [x,t], so
h|8M X I = identity. The map h is piecewise linear, for in Imc2 X1 its

first coordinate is st the composite:
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c2 X1 1 X oo
Imc, X1 > aM X [0, 2] X I ——E=— M x [0, 2]
€2
, M
® To show h isa homeomorphism, suppose that h(cz(x, s),t) = h(cz(x',s'), t').

Then t = t'. Therefore x = x' and p,a(s,t) = p,a(s', t'). As a is alevel
preserving homeomorphism, this implies that s = s'. So h is one-one,
B a2nd b is clearly onto.
To complete the proof, we just note that if 0 <t<1, hic(x,t), 1) =
h(c

x,t),1) = (c (x,pe(t,1)),1) = (cz(x;()t), 1) = (e(x; 6t), 1).

2( 2

Lemma 6.10. Let < and CZ be boundary collars of M, with

Im c1 = Im CZ’ and suppose in addition that c2 c:i: OIM XI—>0MXI1 is

level preserving. Then there exists an ambient isotopy h of M, fixed on

M, such that hio(c1|8M>< [0,1/2]) = c2|8M>< [0,1/2].

Proof., Let a = cz-iciz IMXI—>0MXI, We may write

E oa(x,t) = ( atx,t). Let B: IXI—>1 bea p.l. map such that B(t,0) =t,

1/2

1 )

st

VA
IN

IN

t

IA

0
1
2

- B(t,s) =1, p(0,5)=0 for 0<s< 1.

Now define Hs'. IMXI—> M X I by putting Hs(x’ t) = ( aﬁ(

)<x), t).

t, s

Then Hs defines an ambient isotopy of M X 1; for if

Hs(x,t) = Hs(x',t'), then t =t' and aﬁ(t, s)(x) = aﬁ(t s)(x) implies x = x'.

¥




The ambient isotopy defined by Hs is a p.l. map because it is the
composite of p.l. maps.

Define h: MXI—> M X1 by h(ci(x, t),s) = (csz(x,t), s),
h(y,s) = (y,s) if ye cl(M - Im Ci)' Then h is a well-defined p.l. homeo-

1)=c (x,1). Now ‘

morphism, as c,H (x,1) =c 1

2s 2<a5(1,s)’

h(c,(x,t),0) = (CZHO(X’ t),0) = (cz(ozt(x),t), 0) = (ci(x, t), 0); so hO = identity,

1
Moreover, if t< % , h(ci(x,t), 1) = (CZ(aﬁ(t, 1)(x),t), 1) = (cz(ozo(x),t), 1) =
(CZ(X’ t),1). Finally, if t =0, h(ci(x,t), s) = (CZ(X,t), s) = (Ci(X, t),s) = (x,s

so h fixes the boundary.

Theorem 6. 11. (Uniqueness of Boundai“y Collars). If cy and c, are

two boundary collars of M, then there exists an ambientisotopy h of M,
. SM. wi - .
fixed on 9M, with hic1 c,

Proof. By 6.8 and 6.9, there exist ambient isotopies Hand K of M,
. M 2 1 = 3 t = = ' = !
fixed on 0 such that if < Hic1 and ¢, Kicz, then Im ¢} Im 5

-1 '

and (c'z) c'1 is level preserving. By 5.10, we may suppose after another
ambient isotopy that we also have c'1 = c‘2 on dM X [0,1/2]. Now apply 6.9,

again, with & = 1/2.

Corollary 6.12. Let (Q, M) be a locally unknotted compact proper

manifold pair. Given a boundary collar c, on M, there exists a collar 5,
of Q, compatible with c1 .
Picol. By Theorem 6.6, there exist collars ¢ and c' of M and Q

eesporively, which are compatible. By Theorem 6.11, there exists a p. L.

homeomorphism =n: M- ® M, ambient isotopic to the identity, which keeps :
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aM fixed, such that hc = Cy- By the weak Isotopy Extension Theorem,
. Lemma (a 5, there exists a p. 1. homeomorphism k:Q —> Q, fixed on 0Q,

 with k(M) =M and k|M=h. Put c,=k c'

® 4. The Isotopy Extension Theorem.
Definition. Let M and Q be P.L. manifolds. An isotopy
1 . -1
f F:MXI—> QX1 is said to be proper if F (3Q X I) = dM X 1. Itis called

locally unknotted if in addition, for all 0< s<t< 1, the following proper

_ manifold pair is locally unknotted: (Qx [s,t],F(M X [s,t])). F is always

'3 locally unknotted if it is proper and dim Q - dim M 2 3.

Theorem 6.12 (Isotopy Extension Theorem): Let Fi1 MXI—> QXI,

:M compact, be a proper locally unknotted isotopy. Then there exists an

ambient isotopy H of Q such that

F=H (FO X 11).
Furthermore, if F|dMX1I= (FO| M) X 1, then we may choose H so

that H|8Q X I = identity.

Remarks: 1) C. 12 may be generalized as follows: Call F allowable if

‘4 -1(8QX I)= NX1I, where N is an (m=-1)-manifold, m = dim M, in M
ossibly ). One can define the notion of locally unknotted for allowable
sotopies by defining the notion of unknotted for certain types of non=-proper
all pairs, One can prove that if dim Q - dim M 23, all allowable isotopies

¢ locally unknotted, and one can prove an isotopy extension theorem for
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2) If g-m > 3, one can prove the corresponding theorem for isotopies
F: KX1—> QX1 where K is a polyhedron and F-i(aQX 1) = Ko X1,
Ko a subpolyhedron of K,

Unsolved Problem. Find a definition of locally unknotted for isotopies of

polyhedra in manifolds which would make the theorem work for codimepsioﬁ ,
< 3.
3) One can also generalize by replacing I by 1. We shall do this later

in section 5.

To prove 6.12, we start by proving a restricted version in a special ,;

case,

Lemma6.12.1. Let F: MXI—» QX1 be a proper locally unknotte
isotopy, Q and M compact. Suppose Fl OMXI= (FolaM) X1, Then ‘
ther exists &€ > 0 and a P.L. homoemorphism h:QX[0,&] —> QX [0,£],
level preserving, such that

1) h|8Q X [0, £] = identity.

2) h(Fox, t) = F(x,t) forall (x,t) e MX[0,&].

Proof. Let c:(8(MXI))XI—> MXI be a boundary collar.

Let c and c,t (QXI)XI

> QX1 be boundary collars such that the

following diagrams commute:

I(MXTI)XI > MXI
(1) (Fox1)x1 F X1

IQXI)XI > QX1
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c
(M XI)XI > M X I
 (2) FXI F
C’Q—
8(Q X I)X I > QX1

A
: ’ Q=T

This is possible because (Q, FO(M)) is a proper locally unknotted manifold

fi.

g pair, and

(Q XI,F(MXI)) is a locally unknotted proper manifold pair.

Now choose & > 0 suchthat Q X [0, G]Cci([(Q X 0)y (8Q X I)] X I).

his is possible because the set on the right is a neighborhood of QX 0 in

!X 1 and because Q is compact.

Define h: QX [0,6] = QX I by putting h=c, (c1-1|Q><[0,6]).

learly, h is the identity on (Q X 0), (8Q X [0, 8]), since c, and c, are

oundary collars of Q X I, Moreover, h (Fo oy 1[0 6]) = F|Qx/[o,s],

(1) ana (2) and the fact that (Fo X 9[ IMXI= F' M X I. In particular,
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h 1is level preserving on (FO(M) x [0,68]) v(8Q X [0,8]). Hence by

Lemma 6.1, there exists 0<£< 6 and a p.l. homeomorphism

h':QXI—> QX1 suchthat h' h is level preserving and h' is the identity
(Qxar)uv h(FO(M) X [0,£]) u (0@ X [0,£]). The map h' h satisfies the

requirements of the lemma.

Lemma 6.12.2. Theorem 6.12 holds in the case Q is compact and

F IBM X I is the constant isotopy Fo X1,
Proof. Let tO e I, to# 0 or 1. Then by Lemma 6.12.1, applied in
both directions , there exists £ = Z(to) >0 and
t QX - + - . . .
hto Q [to gt ¢] —> QX [1:O £t +¢] such that hto is the identity on
QX [t -¢ ,t +¢] and hy (Fy x,t) | F(x,t) for t -g <t<t +¢ . Similarl
o (o] [e] (o] o] (o]
we may find ho: Qx [0, ¢(0)]—> QX [0, ¢£(0)] and
hizQ X[1-¢(1),1]—> QX [1- ¢(1),1] with similar properties. The open
sets in I of the form (to- L(to),to-l- Q,(to)), [0, £(0)), and (1-¢&(1),1] cove
I, and this covering has a Lesbesgue number a@. Choose numbers
0=t =8 <s,<,,. <s. <s_ =1, suchthat s, - s, , <a. b
o o) 1 r-1 r i i-1 o3
Now we define inductively a sequence of maps H(l): QX [o, si] —> QX ‘~
as follows: let H(o) = identity. Suppose that H(l-i) has been defined and had
the property that H(l_i)l 9Q X [0; s 1] is the identity, and
-1
H(1 )(Fox, t) = F(x,t) if (x,t) e MX]O, si-i]' Then there exists
ks Q X [Si-i’ si] —> QX [si T si] which is level preserving, which is the
identity on 3Q < [si L si], and which satisfies k{F; -,t) = F(x,t) for 5, 15 t
- o - ‘
(1)

and for some to . Now é¢fine H by putting
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Hil) e Y 0<t<s,

i and

Y
—
=
~—
it
e
~
I
[
s
—
=
1
[
~—
Laag)
o]
H
n
1

The definitions
agree for t = 5, ¢ H(l) is a P.L. homeomorphism of Q X [0, Si] onto

 itself, as shown by alternative definition

H Y (x, 1) =k (k-: X 1) (H(si'i)

X 1)x,t), s. ,St<s, .
. 1
i-1 i1

 Clearly H(l) is the identity on 9Q X [0, si]. If 5: 4 <£t< s, then we have

(1) BN S B _ ! - -
Ht (Fox) - k’cks. Hs. (FOX) - ktks. Fs. * - k'tFt (x) = Ft(x)'
: i-1 Ti-t i-1 Ti-d o
'« ‘ The lemma is thus proved by putting H = H(r)

Lemma 6.12.3. Let Q be a compact manifold. Suppose that h is

lan ambient isotopy of 9Q. Then there exist an ambient isotopy of Q extend-
ing h.

: Proof. Let ci M X I—> M be a boundary collar, Let ¢: IZ —> 1
jbe a p.l. map with

g(0,t) =t forall t

g(1,t) =0 forall t

E #(s,0)=0 for all s.

§Define 1:QXI—> QX1 by

k c(x,s) = clh X, s x¢e¢ OM, sand t in I
Lobe8) = clhg )

s, t
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and kt(y) =y if ye cl(Q -Im c). Note that c(h¢(1 t)x, s) = c{x,s). Itis

not hard to see that k is an ambient isotopy extending h.

Lemma 6.12.4. Suppose that Q and M are compact and that

F:MXI—>QXI is an isotopy which is proper and locally unknotted. Then .
there exists an ambient isotopy H of Q suchthat F=H (FO X 1).

Proof. By 6.12.2, there exists h:9Q X1 —> 3Q X I, an ambient isotopy, ‘.
with h (FO X 1) = F|d8M X I, Let k be an ambient isotopy of Q extending h,
Let F'= k_iF:M XI—> QXI, Then F' is alocally unknotted proper i.SotQ ;
whose restriction to M is a constant isotopy. By 6.12.2, there exists an .
ambient isotopy k' of Q with k' fixed on 9Q and k'(F; X 1) =F', Let
H = kk'.
Remark: The proof shows that if one is given an ambient isotopy h of 9Q
such that h (FO X 1)=F on M X I, then H may be chosen to extend h,

For we had H|0Q X 1I= h|8Q X I in the proof.

Proof of Theorem 6.12, By the lemmas already proven, it suffices

to consider the case in which Q is not compact. Let PizQ X I—> Q be the
B3
p rojection onto the first co-ordinate. Let Q Dbe a regular neighborhood of

P, F(M X I) meeting 9Q regularly. Let Q, = Q A 9Q and let

Q, = cl(8Q - Q,), both (q-1)-manifolds.

Now, FlSMX I:oaM X1 _—_ Q1 X I, since F is proper, Q1 is compacf
If F{d8M X I is a constant isotopy, define « :Q1 XI— Q1 X1 to be the

identity; othezrwsise by lemma 6.12.2 let « be such th:*
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oL (Fo X 1|8M X I) = F|8M X I and such that 3Q1'><"JI is the identity,
Let hidQ X1 — 8Q" X1 be defined by h|Q XI=« and

h| Q2 X I = identity. By the remark following lemma 6.12.4, we can

extend h to an amibient isotopy ki (2>:< XI—> Q* X1 with k (F‘o X1)=F,

¢
Now extend k to all of Q by putting k = identity on cl(Q - Q ) XL,

5. The n-isotopy Extension Theorem.

Definition. An n-isotopy is a P. L. embedding F:MX r—oxI"
which is level-preserving ; i.e,, the following diagram commutes:

F
MXT? —— s g x 1"

P
PZ. 2

i where P2 = projection on the 2nd factor (In =IX,.. XIcC En).

An ambient n-isotopy is a level preserving P. L. homeomorphism

B 1:0x1"—> 0XI” suchthat H(x,0,...,0)=(x,0,...,0).

An n-isotopy F1MXI% —> QX I" is called proper if . (aQ X 17%) =
IMX I, A proper n-isotopy is called locally unknotted if, for any simplex A
linearly embedded in 1, (Q XA ,F(MXA)) is a locally unknotted manifold
pair.
n n . . . n
If F::MXI —> QXI 1is an n-isotopy and if x ¢ I, then FX is

defined by F(z,x) = (sz, x).
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Theorem 6.13. Let F:MX In —> QX In, Mand Q P.L, manifolds
L 4

M compact, be an n-isotopy which is proper and locally unknotted. Then
there exists an ambient n-isotopy H of Q with H(Fo Xx1)=F. If
Ft| oM = Fo| OM for all te I, then we can insist that H| 0Q X 1" be the

identity, (Note : 0 = (0,0, eee,0) € ™.

Remarks: 1) Let an allowable n-isotopy F': MX I —>Q X1 bean

n-isotopy such that r leax 1) = Nx 1%, N a manifold in M of
dim(m-1), m = dim M, Then one can prove an analogous theorem to 5.13
for allowable n-isotopies.
2) One also can prove an analogous theorem for isotopies of complexes

into manifolds, provided one has codimension at least 3.

Lemma 6,14, Let F:MX " — QX I* be a proper n-isotopy, 1oca11yi

unknotted and fixed on 9M, i.e., Ftl M = Fol 9M for all t. If M and Q
are compact then there is a2 P. L. homeomo rphism H:Q X " — 1" such that .
H|38Q X I = identity, H(QX A) = QX A for every face A of the cube I, and &
H(Fo X1)=F.
. . n-1 n-1 |, 1
Proof. By induction on n. Suppose h: QXI —>QXI is a P. L.
homeomorphism, equal to the identity on QX In-1 and sending QX A o
¢ A n-1 . n-1 ; 5 1
O X A tor 2och faceof A of I , and with h(Fo X 1) = FlMX I . Then @

define h: QX T —>QXI® by h'=h X1, Let F':(h')-iF:MX " — QXI

. . . . n
and regard this as a {-isutzoy with the last coordinate of I as parameter.
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Let A,,..., Ar be the faces of In-1 in order of increasing dimension

1

(with A_ = ™Y,
r

Then, by the remark following 6.12.4 we can define
inductively PL homeomorphisms ki: QX Ai XI—>QX Ai X I, level-pre-
serving on the last coordinate such that

1, ki[ 8Q X A X I = identity,

2. if A,<A, ,k =k,|QXA XI, and

i j i j i

3. ki(Fox’ s,t) = F'(x,s,t) forall xe M, se¢ Ai’ tel,
Then k = h'erQ X 1" —> QX I" is a PL homeomorphism satisfying all the
required conditions.

e e r . r+i .

Definition. Identifying I with the face of I having the last

coordinate zero we define a primary simplex of 1" asa n-simplex linearly

i )
B cmbedded in I® with a vertex at 0, a 1-face in I, atwo face (2-face) in IZ,

. etc. Thus a primary simplex will be of the form (0,v1, Vorees ,vn) where

Lemma 6.15, Let F:MX ™ — ox 1" bea proper locally unknotted

n-isotopy, fixed on M, M and Q being compact. Then there is a primary
simplex A in I and a PL homeomorphism H:Q X A —> QX A commuting
with projection onto A, with H|3Q X A = identity and H(Fo X1)=F|MXA
> Q XA,

Proof. Let k:QX " —> QX I" be a PL homeomorphism given by
Lemma 6. 14. Let @ and B be triangulations of QX 1" such that
ki o{Q X I%) —> B(Q X I™) is simplicial and the projections a(QX I") —> °,

B(Q x In) —> I are linear. Now choose constants 60, 61, cens 6n as follows:
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Choose 60> 0 such that, for any simplex ¢ in 2(Q X In) or B(QX I‘n),
either d(0, pzcr)_.O or d(o,pZO') > 8

Now suppose that o is a simplex of 2(Q X In) or B(QX In) having
a vertex X in QX 0 and a vertex xj in axI -Qx I‘]_1 for each j<i,
Let x3 --_-;pzxj for each j. Let A(pZO’,II) [minimum angle between I1 and

v LU x! . > ,

(xox1 Xi-1Y) for ye p20'] Choose &, 0 such that, for all such o,
either A(pZO",Il): 0 or A(pzo-, ') > 61. Now let A be the simplex

(0,v,,v v ) in I® where v, eI - 11_1, for each i, d(0,v.)=8 , and
1 n i i o

ARERE

angle(Ovivz. EASIPALY IJ)-;6J, for all j<i. As a result of the way we have

chosen the 61 , if ¢ 1is any principal simplex of QX In) or ﬁ(Q X In)

such that P, N A?Efd, then P,7 DA, and Q ><vn meets Into. Moreover,
for each i, ¢ meets Ii in a face, v, say, and vai meets Into‘i.

Now choose first derived subdivisions &' and f of « and B such that,
if © denotes the subdivision point of ¢, then

i. /(\T € QXVi if QXVi meets Into,

N\ :
and 2. ko K@) if cCF(MXI) L QXTI
Note that these two requirements are compatible since k is level-
. n n
preserving on F(MXTI) and QXTI
Now let k's o'(Q X In) — B'(Q X In) be the inducsd simplicial map.
n 4
Then we still have k' a PL homeomorphism, equal to the iden®ity o- QX1 ' 38
and with k'(FO X 1) F. Moreover, k' is level-preservingon QX A, For @

B

let x be a vertex of a'(QXIn) lying in QX A, Then <: QX0 or ”)_"’-V"j

for some j. But k'x must also lie in the same ser, and sc p_)k'x.; By*
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But k' is simplicial and so we may join linearly to get pzk'y = P,Y for
all points y in QX A,
{1

Lemma 6.16 (A covering theorem): Let :/ be the group of

L~

n
rotations, reflections, and translations of R . Suppose that for each

h ei—// we are given a primary simplex o(h). Then there is a finite set

r
| n
hi’ hZ’ e ,hr of elements of/j--{ such that I C iU1 hi((r(hi)).

4

Definition. An r-flag in R" is a set of oriented affine subspaces
[AO C A, C AZ cC...C Ar]’ where dim(Ai) = i, An r-wedge on this r-flag
. n :
i < A A)< :
is a set of the form {xe R ld(x,Ao) 60 , %( o5 1) 61,...,%(Ar_1x,Ar)< L

\ | where 60, 61, ...,0p are positive constants and § denotes angle between

@ oriented subspaces.

We shall show by induction on decreasing r that, given any r-flag in Rn,

i there is an r-wedge on it that may be covered by finitely many simplexes of

the form required in the lemma. Since an O-wedge is simply a spherical

neighbourhood, the compactness of I will complete the proof of the lemma.
To start the induction, consider an (n-1)-wedge [AOC e CAn-i]'

There are two possible orthonormal coordinate systems having this wedge as

0’ 0 ) 3 o0 0y LI 9 i i i
[ X, 0x1x2 0x1x2 Xn-i] one being simply the reflection of the other
" in x = 0. For each of these coordinate systems we have a primary simplex

and we can choose an (n-1)-wedge contained in the union of these two simplexes:

see figure:




The inductive step. Let F = [Ao oo Ar] be an r-flag, Let S be the

set of oriented (r +1)-spaces through Ar. () i# naturally isomorphic to
the set of unit vectors orthogonal to A"r’ which is an (n-r-1)-sphere. Now

for each B¢ g , let W_ be a wedge on the flag [AOCA1C CArCB] 'f

B
given by the inductive hypothesis, and suppo=s= *-at WB is determined by the

B
B _B B "
. ) 1) < }
constants (60 ,61 ""'6r+1 )e Then the set §° eg | ¥ (B, B') 6r+1

is a neighbourhood of B in 8 . But gis compact, and so we can choose

a finite set B,, B Bs such that the corresponding neighbourhoods

1, 2:"0:
cover S . Let W be the wedge on F determined by the constants
B, 8 1
(6 ,6,,...,6 ) where &, = min(6, J), j=1,2,...,8. Then W C U W
o' 1 r i i gl :

Proof of Theorem 6.13 (The n-isotopy extension theorem): First |
consider the special case when Q is compact. By reflection in the subspaée
. n ;
xj = integer, we may assume that F: M X Iln —> QXI is the restriction of a P
. n T . . . . n, . |
embedding F;: MXR —> QXR", commuting witr projection on R, and with
Ti R . .“
F‘tIaM ='F6|5M- forallte R, Neow b Lara-r-. 5,415 and 6,16 there are a fin
n b i .
humber of sirnplexes A‘i in R, .erve=ing *, -n* PLhomeomorphisms

kit-' QXAi.-—’ QXAi commuting with projection cnto the second factor, such that ;

kil 9Q X A, is the identity snd



-159-

ki(ai X 1) = FI M X Ai for some PL embedding ai: M— Q. (In fact,

@, = Ft for t = a vertex of Ai') Now let K be a triangulation of -

such that 1) each simplex of Ki lies in one of the Ai , and 2) K col-
lapses simplicially to the origin, Let K= KPM Kp-i NN K_ = the
origin, be the simplicial collapse. We define indictively level-preserving
PL homeomorphisms hi: QX Ki —> QX Ki such that hil aQ X Ki = identity
and hi(Fo X1)=F on MX Ki' Start with h_ = identity. Suppose h, , is

defined. Let Ki = Ki +aA +A. Let p:aA —> aA be a PL retfaction, Suppose

i
that aA C Aj' Then define hi: Q X Ki —> QX Ki by hi(x’t) = (hi £ t) where

h ifteKi

i-1,t 1

Lt k. (k. ) tn

. ] A
it J,pt i-1,pt i tea

One may readily check that this is a PL homeomorphism, equal to the

identity on 90Q X Ki. Moreover, if x e M, te aA,

| -1
i h(F x,t) = k. (k, F . L Q.
] 1( o™ t kJ,t( J,pt) Pt(x) bt t

"
-
R

®

]
|
¥

n
Putting H = hp: QXTI —} QX ° gives the required ambient n-isotopy.
The extension to the case when Q is not compact is more or less identical to

¢ the argument when n = 1 and so will be omitted.




Chapter VII. Engulfing

0. Introduction.

Suppose X is a closed subspace of the PL manifold Qq. Then we
may pose the question: Is there a g-ball B in Q with X~ B? Some
uses for the answers to this question are in proving embedding theorems
(See Chapter VIII) and in proving a weak generalized Poincare conjecture
in dimensions > 5 and a variant of the h-cobordism theorem (see 5).

We approach this question by considering the following two related
questions:

(A) If U isopenin Q and X is a cc.w..oct PL subspace of Q, is
there a PL. homeomorphism h:Q—> Q with X2 hU?

(B) If C and X are compact PL subspaces of Q, is there a compact
subspace C' of Q with X C' and C! NC ?° What can we insist about the

dimension of (C'-C)?

1. Preliminary Results.

Lemma 7.1. Suppose that XoC X are compact PL subspaces of Q,

5

and suppose Y is a closed PL subspace of Q such that X 5 (8Q y Y)< xo. ]

Assume that X&Xo and let U.DX0 be open in Q. Then there exists a
PL homeomorphism h:Q —> Q with compact support, which is the identity

on QU YU Xo, such that X< h(U).




Proof. Let J be a triangulation of Q containing tridngulations

i s
, Ko’K’ and L of XO,X, and Y, respectively. We may assume that K N KO.

H
lg
i

es €S
N ..o N\ K_. Then Ki\JKi and

es
Let K=K \ K
r r-1 = i

IKi!/\ (IBJI U ILI)(: IKi-i | . Hence it suffices by induction to prove the
' lemma for Ki’ Ki—i’ and Y. So we may as well suppose K = K1 \ZS Ko

Let K= KO + aA + A, Then aAC U. Let /P\s be the barycenter of A.
Let b# a be a point of ajﬁx\ close enough to a so that abAC U. Let
R = link(A; J). Since A ¢ 8J R is a PL sphere of dimension q-dim A-1,
Since dim A< qg-1, R # §. Therefore there is a PL homeomorphism
@:R—> {a,c}.S, S a sphere of dimension q-dim A-2 (S=4¢ is possible).
Define a PL homeomorphism f:A.R—> A (ay c).S=(av c)f\> A.S by

- letting ﬁ\A = identity and 6] R = o and extending linearly.
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Now let y':(av c).A—>(auUc).A be a PL homeomorphism such that
' /\- /\ . VA

vi(a) =a, y'(b)=A, and y'(c) =c. Thenlet y:(avc)A.A.S—> (ayc).A.A,
be a PL homeomorphism such that y|[(av c)A =y' and yIA.S = identity.
Then let &: star(A;J) —> star(A;J) be defined by & = ﬁ-iyﬁ. Then
6(abA) = aﬁ.A = aA. Moreover, § is the identity on A.R. So if we put
h|star (A:J) = & and h = identity elsewhere, then h| lKol = identity and
h(U) D |K]|.

Definition. If K= Ko + aA + A is an elementary simplicial collapse

es
K \ Ko, then dim(aA) is called the dimension of the collapse.

S
Lemma 7.2: If K\ Ko’ then we can rez.~range the elementary
s
simplicial collapses K \ Ko to be in order of decreasing dimension.

Proof. Suppose K2 = K1 +aA+ A and K1 = Ko +bB + B are

two simplicial collapses, and dim B > dim A. Then aAC Ko . So

5 Moreover, KZ: (KO + aA + A) + bB + B‘ ‘

€5 es
So KZ \ (Ko +aA + A) \ KO is in order of decreasing dimension.

Ko +aA + A is a subcomplex of K

Lemma 7.3. If X,Y.{ Z are polyhedra.and if Z\X, then there
exists TC Z, a polyhedron, such that Y UXc<Z T, ZNX 0 TAX, and
dim T<dim Y + 1,

Proof. Let K,L< J triangulate X,Y < Z., Choose subdivisions
K, L'C J' so that J‘\é K', andlet J'= K"r\ies - \ils Ké be elementary
simplicial collapses in order of decrensing diiersion, Let i< r be the

least integer such that KLD L', We may suppose i #0, as if i =0 there
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s nothing to prove. Let K'1 = K'i__1 + aA + A, Then Ac L', as otherwise

v K‘1 X In particular, the collapse Ki\Ki_1 has dimension £ (dim L+1).

So if T=c1\K‘i-Kg\= \K;-K;\, dim T € dim L+1 and Z\X u T¥X.

3, Engulfing Theorems, Type (A).

Definition. A topological pair (X, A) is n-connected, n 2 0, if every

point of X may be joined by a path to some point of A and if 'n'i(X; A)=0

for 1 £1i<n. [if A is not connected, we insist the condition holds for any

base point in A.]

Theorem 7.4. Let U be an open subset of the PL manifold o,

Assume 0Q = g. Let X Q be a compact PL subspace of Q, and let Y. U

be a closed PL subspace of Q. Let j=dim X, s=dimY, suppose that

Rl
- (Q,U) is k-connected, and suppose that j<9q-3, 8% q-3, and t Sk. Then
G

. iﬁ there exists a PL homeomorphism h: Q —> Q, which is the identity on ¥,
4 such that X w(U).

Proof. Welet k and s be fixed and proceed by induction on }. So

given j, assume the result for -1

Because of the connectivity assumptions on (Q, U), we can construct

a map f:XxX1I—>Q such that #(x, 1) = x all x, and @(X X 0)C. U, as

follows: Let K triangulate X, KJ = jth skeleton. Define

¢o on (K(O)XI) (KX 1) by B(x, 1) = % and f(v,t) = <pv(t), where @_ is

a path from v to 2 point in U. Suppose that ¢j—1: (K(J-i) X 1) U (KX 1) — Q,

j < dim K, has been defined so that ¢J._1(K(J—1) X 0)¢-U and ¢j-1(x’ 1) = x,



() 4

is defined on (A X 1) y (AX 1),

all x. For each j-simplex A of K

j-1
a retract of A X I, Hence there exist fA: AXI—>Q extending

¢r_1|(Ax1)u(Ax1). Let g, = (£ Then gA:(A,A)—-—>(Q, U). Since

A)o'

dim A £k, let HA:A X1-—> Q be a homotopy of gp = (H , relative A

A)o
such that H,(x,1) ¢ U forallxe A, Thenif xe¢ A k) andif te 1,

define
fA(x; 2t-1) t/25tst

g.(x,t) =
J H,(x;1-2t) 0<t21/2 .

Then ¢ij(J) XI—>(Q is a well-defined map, ¢J.(K(J) X 0) £ U, and

¢j(x, 1) = x. Finally, put ¢ = ¢J., where j = dim K.

By the lemmas of Chapter IV we can assume, after a small homotopy
of # relative X X1 that § is also a non-degenerate PL map (Lemmas 4.2
and 4.4).

Now let L be a triangulation of X X I, containing triangulations Lo
and L, of (X X0) and (X X 1) respectively, such that #: L —> Q can be

1

made simplicial by suitably triangulating Q. Then g embeds each simplex

of L, Let L' be a subdivision of L such that L'§ L(’) = induced subdivisioﬁ
of Lo . By Lemma 4.7, f =@ (rel XX 1), where §' is a PL map which »
embeds each simplex of L and which satisfies the following: 4

1) If o, 7Te L'-L'1 , dim(f#'c)n (i 1)< dim o + dim T-q;

2) Forall ce L'- L‘1 , dim (fo)~ Y £ dim 7 + s-gq;

3) Forall ¢ ¢ L'-L! , -rE,L'1 , dim(f'c n @' 1) < dimo + dimT-q.




es es

(),

! = - 1 J_
Now let L Rn\) ooy R =L Let R,

j-skeleton of Ri'

each i. By inductionon i, we are going to find PL homoemorphisms

h ‘Q —> Q, fixed on Y, with g'(R (J)Ch U . This will complete the proof

)

for if we take i=n then X gHX X 1) #(R Ch() Since @'(R CU

let h = identity. Suppose h, is defined. Thenlet V=h, ,(U). Let

i-1 i-1
Ri = R, { +a2A + A, Let Z be a polyhedron such that
1—
(¢'|aA)-1(Y ¥ ¢'R(i‘])1) = aA v Z, By 1) and 2) above,
dim Z < max(j+i+s-q,j+1-j-q) £ j-2. By 7.3, there exists a polyhedron T
such that aA\aA V) T\\aA, Zc Ty aA, and dim T £ j-1. Therefore
(3) 1)
g (R 1 +aA + A)\¢ , Y T) by a collapse "not crossing Y'"; i.e., a col-
lapse in which no points of Y are disturbed.
Now we are going to use the main inductive hypothesis to engulf
(3) (J)
¢'[Ri_1u T]. Dim #(T)<j-1. Yy #(R7)CV. So letting g (T) play
the role of X in the theorem, and Y () ¢‘(Ri_1) the role of Y, there exists
J
a PL homeomorphism a:Q —> Q, fixed on Y U ¢'(Ri_1), with @'TC oV,
Now by Lemma 7.1, there exists a PL homeomorphism $:Q —> Q such that
B is fixedon Y L #'(R (J) T) and #'(R ( )

4 U aA U A)cC(BaV). Now
1-

- (3)
R:,L(J)é;Ri { +aA + A, So put hi = ﬁafhi_i. Then ¢Ri )C hiU° This com-
pletes the proof.
Remarks: We can insist that h have compact support. In fact, in view of

the fact that the homeomorphism of 7.1 could have been taken to be isotopic

to the identity by moves, the same is true of h.



Corollary 7.5. Let X,Y,Q,U satisfy all the hypotheses of

Theorem 7.4 except that X is merely a closed PL subspace of Q.
Suppose that X - X A\ U is compact. Then there exists h (with compact
support) a homeomorphism of Q, such that X< h(U).

Proof. Let XOC X be a compact PL subspace of Q (or X) con-
taining X - Xn U, Then X - XOC_ U. But X'= Xo’ Y'=Y Y cl(X-X(;),),
Let h:Q—> Q be a PL homeomorphism with compact support, such that

h|Y' = identity and h(U) DX. Then h(U)DX o (X - xo) = X,

Corollary 7.6. Let U< Q? be an open subset of the PL manifold Q,

3Q # §. Let X be a compact PL subspace of Q, Y a closed PL subspace
of X, withdim X =r<q-3, dimY = s <q-3. Assume (Q,U) is k-connected
k 2 r, and assume Y U and X 9QC U. Then there exists a PL homeo-
morphism (with compact support) h:Q —> Q, with h| 9Q VY = identity,
such that X< h(U).

Proof, X'=X -XnAn 9Q and Y'=Y - Y 9Q are closed PL sub-
spaces of Q - 9Q, U'=U-TUpn 9Q is open in Q - 3Q. The pair (Q-9Q, U')
is g-connected; to see this suppose
f: (Dq;sq-i) —> (Q -LE)Q, U-9Q N U) is homotopic rel Squi, to a map of
D? into U. Then by using a boundary collar, one can push the homotopy
slightly off the boundary without disturbing it on Sq_i, getting a homotopy

H of f such that H (DY) C U - (8Q) N U.

1
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| Now let h':Q-9Q —> Q-9Q bea PL homeomorphism such that
h'(U') DX' andh has compact support. Define h: Q —> Q by extending

h' to be the identity on 9Q.

Remark, This corollary could have been included in Theorem 7.4 using

almost the same proof.

4, Engulfing Theorems, Type (B)

Theorem 7.7. Let C and X be compact PL subspaces of the PL

manifold Qq, 9Q = ¢, with (Q, C) a t-connected pair. Let r = dim X,
and suppose CNY, whoere Y is a closed PL subspace of dimension s.
Then if r<q-3, s<qg-3, and r <, there is a compact PL subspace C!'
of Q suchthat C L X C'NC and dim(C'-C) £ r+i.
Proof. Let X = cl(X-X ~n C); assume X1 Z@. Then dim(X1,“\ C)< r-1.

1

Hence by Lemma 7.3, there exists a compact PL Y1 in Q such that

CNY UYi’ Xiﬂ C..m Y \.‘Yi, and dim Y1_<_r. Therefore C U X =

1 t’
Let N be a regular neighborhood of Y in Q, and let U= Int. N. The

Cu xi\Y LY,u X,, by Lemma 2.

inclusions Y- C and Y U are both homotopy equivalences; therefore

(Q, U) is t-connected, By Theorem 7.4, there is a PL homeomorphism

h:Q —> Q such that h|Y = identity and X, U Y T h(U). So

X1 LY, U Y~ h(U). By 7.1,there is a PL homeomorphism k:Q—>Q with

k(Y Y, uX, = identity and C yXc—khU. Since kh|Y = identity, khN is a

1




regular neighborhood of Y. In particular, khNXNY. But C\Y and
C(C Int khN. So by Lemma 5.1 (on factoring collapses), khN'\ C, So
by Lemma 7.3 again, khNN C'YC, where X C' and dim(C'-C) <

dim X + 1.

Lemma 7.8, Suppose that C and X are compact PL subspaces of

Qq, c\ Cn 9Q. Assume that (Q, dQ) is r-connected, dim X = r, and
r £ q-3. Then there exists C' in Q, a compact PL subspace, such that
C LU XCCNC'A 3Q) y C, and dim(C'-C) < r+i.

Proof. Let N be a derived neighborhoed of 9Q in Q. Let
U= IntQN. Then (Q, U) is r-connected. Now, as in the proof of 7.7,
C UX\(C(\ 8Q) u Y, where dim Y < r. So, by Corollary 7.6, there is a
PL homeomorphism h:Q—> Q with hl 9Q = identity, Y hU, h-iY < UCN,
Now <C N BQ)U (h-iY) is compact, and so there is a compact polyhedron P
in 8Q suchthat (C n 9Q) \ (hﬂiY)CV = IntQN‘, where N' is the derived
neighborhood of P in Q. By Lemma 7.1, there is a PL homeomorphism
k:Q—>Q, fixedon 9Q J Y with Cy X khV<« khN', Now khN' is a
regular neighborhood of P in Q and P U CNP, Py Cc Int:QkhN'° So,
by Lemma <t , khN' is a regular neighborhood of PU Cin Q. So, by

Lemma 7.3, khN'\P u CV TP JC, where X T T and dim T < r+1,

C'=Cw TNCy (T~ 9QN\(C U T)n 9Q.
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5. Applications of Engulfing,

Definition. If Q is an open manifold (i.e., Q is not compact and

amriems et it vt

9Q = ¢), Q is called {-connected at co.if given C¢ Q, C compact, there

is a C' Q, compact, suchthat C: C' and (Q-C') is t-connected.

Theorem 7.9 (Stallings): Let < be open, (q-3)-connected PL mani-

fold which is 1-connected at co. Suppose q = dim Q 2 5. Then Q is PL
homeomorphic to ﬂ, Euclidean space of dimension q.

Proof. We shall prove that if C Q is compact, then C 1is con-

tained in the interior of a PL g-ball contained (as a PL subspace) in Q.
oo

This is sufficient: it implies that Q = Bi’ where B.1 Int Bi+1 are all
i=1

q-balls. By the annulus theorem, Cl(BiH- Bi) is PL homeomorphic to
aBiX I. Moreover, Eq‘ is also such a union of balls, and so it is clear how
to define a PL homeomorphism of Q onto E,

So let C:~ Q be any compact subset of Q. Let C'°C be aﬁother
compact subset, so that (Q-C') is 1-connected, Let V = Q-C'.

Let J be a triangulation of Q. Let J1 be the (q-3)-ske1eton of J.
Let JZ be the subcomplex of J' consisting of all simplices of J' which
do not meet (i.e., have no faces in) J'i, where J' = barycentric first

\
derived of J. A general simplex of J' is of the form o = A1. ee A

> -

<Are J. If o does not meet J1| , then dim Ai_>_q-2, 1 <ifr.

LK)

Therefore r< 3. So dim J2_<_ 2.
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Now, Ji‘ is full in J', so there is a linear map ﬁf:J' —> 1, such that
¢(J2) =1 and ¢-1(0) = J“i., If D is any compact subset of Q not meeting
JZ’ then there exists 0 <¢< i such that @#(D)C [0,&]. But ¢-1[0,g] is a
derived neighborhood of .]'1 in J. In fact, if D is compact, D is contained
in a derived neighborhood of a finite subcomplex of J1° Therefore there are
compact PL subspaces Z and Zo of Q (cantake Z to be a g-manifold)
such that DC 2ZY Z_ and dim Z <q-3.

JZ - (JZ A V) is compact, and dim JZ < 2< q-3 because g2 5. Since
V is one- connected and Q is(g-3)-connected, q>5, (Q,V) is 2-connected.
Hence by Corollary 7.5, there is a PL homeomorphism h: Q —> Q, such that
IJZ[C_ hV.

In particular, Q-hV = h(Q-V) is compact and does not meet J o
Hence, we may take D = Q-hV; so , Q-hV T Z\Zo, dim ZO < q-3.

Now let U be the interior of a PL g-ball contained in Q. Then (Q, U)
is certainly (g-3)-connected. Therefore there is a k:Q —> Q such that
ZOC, kU, by Theorem 7.4. By Lemma 7.1, there exists a k': Q —> Q with
Z<o k'kU. Therefore Q-hV < k'kU, and so Q-V h_ik'k(U). But

i

CCC' =Q-V&< h Kk(U) C b 'e(T), a PL q-ball.

Corollary 7.10. (Weak Generalized Poincare Conjecture); Let M

be a closed (= compact without boundary) PL manifold, m 2 5. Assume M
is [m/2]-connected. Then there is a topological homeomorphism of M onto

the sphere s™.
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Proof, By Poincare duality, M is (m-1)-connected, (1 -connected
implies orientable.) Therefore M is a homology sphere. Moreover, by
excision Hi(M’ M-pt.) = 0, for i<m, Hi(M-pt.) =0, all 0 <i< m-2.
As TTZ(M, M-pt.) = 0, (by general position), ni(M-pt) = 0. Therefore,’
M-pt. is (m-2)-connected.

If C< M-pt, is compact, there is a regular neighborhood N of pt.
in M not meeting C. C'=cl(M-N) is compact in M-pt.
(M-pt)-C' = N-pt. But N isa m-ball, so N-pt. is homotopy equivalent to

m-1 m-1
)

S , and 1r1(S = 0, Therefore M-pt. is i-connected at co. Therefore

by Theorem 7.9, M is topologically equivalent to the one point compactifi-

cation of E, vwhich is s™,
We conclude this chapter with a type of h-cobordism theorem.

Theorem 7.11. Let W be a compact PL q-manifold with q > 5.

Suppose OW = M1 UMZ’ where M,,M_ are disjoint g-1 manifolds.

1 2
Suppose that (W, Mi) is r-connected, (W, MZ) is s-connected, where

X [0,), W-M, = M_ %[0, ),

r<q-3, s£q-3, rts+l = q. Then W-M_ =M % 5

2 1

and InthM1><RgM2><R.

Proof. It suffices to prove the first statement of the conclusion. Let

Q= W-MZ. We will show that if C is compact, C<=Q, then C 1is contained

in the integoior of a regular neighborhood of M1 in Q. From this it follows

that Q= U Ni , where each Ni is a regular neighborhood of M1 and
1

N. ¢  Int N,,, . Then, since cl(N,
i i+l

- 3 i N.) X
(1 Ni) is PL homeomorphic to (FrQ i) I

by the generalized annulus theorem, and since by uniqueness of regular
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neighborhoods and the existence of boundary collars for Q, Fr Ni ~ M

Q 1° -

we have cl(Ni_H- Ni) = M, X1, Using this PL homeomorphism, it is clear
N

how to define inductively PL. homeomorphisms hN: U Ni —> M
i=1

such that hN = hN+1 where both are defined, Clearly the h

{ X [0, N]

N define the

required homeomorphism. So let C< Q be compact. Let N be a regulay
neighborhood of M1 in Q, andlet U= IntQN. Let N' be a regular neigh-
borhood of M2 in W suchthat N'nNC=§¢, andlet V = IntQ(N'-MZ). Then
the inclusion M —> U = M, X [0,1) is a homotopy equivalence, so (Q, U)
is m-connected. A similar sort of argumant, but using a boundary collar

of MZ’ shows that (Q, V) is also co-connected.

(r)

Let J'OC J be a triangulation of M, Ql, Let J, = .]'O uJd T,

1 1

Ao

= r-skeleton of J. Let JZ consist of those simplices of J' which do

not meet Ji' As in the proof of 7.9, dim J'Z L g-r-1=s.

By the engulfing theorem, Corollary 7.5, (J ~J2ﬂ V is compact) there

2 :
exists a PL. homeomorphism h: Q —> Q, with [JZI(:: hV, h(C) < h(Q-V) = Q-hV;

i

 is full in J', h(C) is con-

therefore h(C) ﬂ]JZI = §. Hence, since J

tained in a derived neighborhood of a finite subcomplex of J, (see page 17,

1

2nd complete paragraph). We may suppose that the subcomplex of Ji is of

the form M1 U Y, where dim Y < r., Then if Z is the regular neighborhood

h(C)k= z \Mi UY. By Corollary 7.6, there is a PL homeomorphism

k:Q—> Q, with M, y Y& kU, By Lemma 7.1, there is a PL homeomorphism

1
k':Q —> Q with ZE&k'kU, So hC< k'kU. Therefore
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- -1
¢ nlkku Int(h k'kN), and the latter is a regular neighborhood of M,
in Q.
Note. In fact, Poincare duality and the Hurewicz theorem ensures that the
inclusions M W, M_. W, are homotopy equivalences.

1 2




Chapter VIII -- Some Embedding Theorems

1. An Embedding Theorem Relative the Boundary

Theorem 8.1. Let M™ and Qq be connected P. L, manif.olds,
M compact. Let f:(M,dM)—> (Q,3Q) be continuous, and suppose that
f|d8M is a P.L. embedding, If M is (2m-q)-connected and Q 1is (2m-q+1)-
connected, and if q-m >3, then f =~ {' (rel 8M), where f' is a P.L.
embedding.

Proof. By the general position theorems of Chapter IV, f. =~ g (rel 3M),
where g is a P.L. map, dim Sz(g) < 2m-q, and g(Int M) € Int Q.

We can suppose that Sz(g) C Int M. Forlet d:M-——> (MX0). (8M X TI)
and B: Q —> (QX0),(9Q X I) be P.L. homeomorphisms such that
a(x) = (x,1) if xe dM and B(y) = (v,1) if ye 8Q. Then let g' be the fol-
lowing composite:

-1
9X1 Siaxou (saxI) L—q.

M —2—> (M X 0) . (8M X I)

Then Sz(g') = ( a/-1|M X 0)(Sz(g) X 0), so SZ( g) S Int M and dim SZ( g) < Zm-’
But we can choose B so that there is a homotopy Ft: (Qxo0)U(aQxI)—Q |
such that for all t, Ft|8Q>< 1= ﬁ-ilan 1,F_= s“‘, F1[Qx 0 is a P.L.
homeomorphism of QX 0 onto Q, and F1(x, t) = x, all xe¢ 8Q and te I,

This can be seen by adjoining a boundary collar for Q* = cl(Q-[S(BQ X I)) to

the collar B]}8Q X I and then expanding the inner collar at the expense of the
outer one. Similarly for suitable @ , there is a homotopy

Gt:M-——> (MX0). (dMXI) ‘with GO =a , Gt(x) e xXI for all xe M, and

G—1 a P.L. homeomcrphism of M onto M X0 such that Gi(x) = (x, 0).
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Then g'=F o(gX1)°G_ = F,olgx1)eG = F,°(gX1)°G, and each

homotopy is relative 9M. But the last map may also be written in the

form k.g.h, where kand h are P.L. homeomorphisms of Q and M
respectively, which are the identity maps on 9Q and OM.
So we may assume Sz(g) C Int M. Dim Sz(g) < 2m-q<m-3. Int M is
as connected as M, and so there is a collapsible compact P.L. subspace C
of Int M, with SZ(g) C C and dim C € 2m-q + 1, by the Engulfing Theorem 7.
By the same theorem, there exists a collapsible P. L. subspace D of
Int Q such that g(C) € D and dim D < 2m-q+2. By general position theorems,
there exists a P.L. homeomorphism h: Q —> Q, fixed on g(C), so that
dim((hD-gC) N g(M)) £ (2m-q+2) + m-q = 3m-2q+2 < 2m-q-1.

So if D' = hD, g-iD' = Cu X, where X is a compact P. L. subspace of M,

and dim X < 2m-q-1.

Let C1 =C, D1 = D!, X1 = X, and suppose by induction

we have found collapsible P. L. subspaces Ci C Int M and DiQ__-_ Int Q, and
Xi C Int M, such that Sz(g) - Ci’ (g')“iDi = Ci o Xi’ dim Xi < 2m-q-i (£ m-3).
Then by the Engulfing Theorem 7. there is a compact P.L. subspace

C - i - - i - < di
i+ = Int M with Ciu Xi’ Ci_H\O, and d1rn(Ci_l_1 Ci) < dim Xi+'1. By the

same theorem, there is a P. L. subspace D" of Int Q such that

Diu g'(C.,,) ¢ D"\O, and dim(D" - D,) £ dim Xi+ 2. By the General Posi-

i+’ — i

tion Theorem, there exists a P. L. homeomorphism k: Q—> Q with
E k|D U g'(C
. i

- 3 . . "_ g < 3 -
i+1) identity and dim[k(D Di g(ci+1))] n g(M) £ dim Xi+ 2 +m-q

LS ) i ) <. _ "
. d1mXi 1, since m-q £ -3. Let Di+1 kD",
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For k large enough, Xk= g, as 2m-q- k<0. So we get
1

g D= Cx

i

Sz(g). Now let K and L triangulate M and Q respectively,
with Ck and Dk triangulated as subcomplexes (some large k, now fixed),

and with g: K —> L simplicial. Since g is non-degenerate, it carries

barycenters to barycenters, and so if K" and L" are barycentric 2nd

derived subdivisions, then g:K" —> L" is simplicial. Let N1 = N(S;K")

and N2 = N(T; L"), where S and T are subcomplexes of K" and L"
respectively triangulating Ck and Dk respectively. Then by uniqueness
of regular.neighborhoods, N,1 is an m-ball in Int M and N2 is a g-ball
in Int Q. Also, N1 = q-iNZ, as S = q-1T and q is simplicial. As
Sz(g) C Int N1 , 9 |c1(M—N1) embeds cl(M-Ni) piecewise linearly in
cl(Q-NZ) and embeds 8N1 piecewise linearly in BNZ .

Now g 8N1 extends to a P.L. embedding of N1 into NZ’ f', say.
We may extend f' to all of N by putting f'=g on cl(M-Ni), Then f'

is a P.L. embedding. Since N, is a ball, f‘lN1 o~ g]N1 (rel. 8N1).

Therefore f' =g (rel 8M). This completes the proof.

Note. The hypothesis that M be compact can be removed provided we
insist that f be a proper map, i.e., £ " (compact) = compact, and Sz(f)

is compact.

Corollary 8.1.1. If k< m-3, a closed, k-connected m-manifold

can be embedded in EZm—k.
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r[ Corollary 8.4.2. If Q% is k-connected, then every element of

‘ITr(Q) can be represented by an embedded sphere provided that

qtk-1
2

).

r € min(q-3,

2. An Embedding Theorem Modulo the Boundary

Theorem 8. 2. Let Mm be a compact P. L. manifold, Qq a P. L. mani-

fold, and let f:(M, aM) —> (Q, Q) be a continuous map. Then if (M, 9M)
is (2m-q)-connected and (Q,09Q) is (2m-q+1)-connected, and if g-m > 3,
then f =~ f' via a homotopy of pairs, (MX I, 9MX I) = (Q, 9Q), with f'

a P.L. embedding.

Corollary 8.2.1. If (Q,9Q) is k-connected, an element of 'rrr(Q, aN)

may be represented by a properly embedded disk, provided that

qtk-1 )
-

Proof of Theorem 8.2. By the results on General Position (Chapter IV),

and by the Homotopy Extension Property for polyhedral pairs, f = f1 via a
homotopy of pairs, where f1 l 9M is a non-degenerate P.L. map. Again by

General Position, f1 o fZ via a homotopy fixed on 9M, where f‘2 is a P. L.

map with fZ(Int M) € Int Q and where fZI Int M is in general position,

In particular, dim(S,(f,) N Int M) £ 2m-q.

272

Write f for fz, and let Xo = cl(SZ(f) - Sz(f) A 8M). By the Engulfing
Theorem 7. , there exists a compact P.L. subspace C of M such that

Xo S C \ C ~ ®M and dim C < (2m-q) + 1. By the same theorem, there
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exists a compact P. L. subspace D of Q such that f(C) € D \ Dn 8Q
and dim D € 2m-q + 2. By General Position, there exists a P.L. homeo-
morphism h:Q —> Q, fixed on fZC « 9Q, such that

dim[(hD - (£€C) < 8Q) ~ fM] < (2m-q+2) + m-q < 2m-g-1. Therefore,

f-i(hD) =Cu XuY, where dim X < 2m-q-1 (because f is non-degenerate)

and Y € oM.

Letting C = Ci, hD = D'l’ X = X1, Y = Yi’ we can define inductively

C.,X,Y.SM and D, S Q suchthat X < C,\ C.~ oM, D, & D. 7 2Q,

R S | i o i i i i

-1
and f (Di) = Civ Xiv Yi , where Yig OM and dim Xi_C_ 2m-q-i. The
inductive step combines the first step and the inductive argument used in
Theorem 8.1. (At each step, the Yi's are ignored.)
Assume now that Q is compact. Let K and L triangulate M and Q

respectively so that f:K—> L is simplicial and Ck and Dk are triangulated
as subcomplexes, where k is an integer such that Xk = §. Then

S f= o 2 - = o
,E5C - M, ck\ C, N M, Dk\Dk 8Q, f D, =C, v Y, sothat
-1

D o = , - - KN
£ (D, ~ 9Q) = C, v 8BM. Let N, N(8M = C,;K") and

N2 = N(9Q v Dk; L"), where K" and L" are 2nd derived subdivisions so

-1
that f: K" —> L" is still simplicial. Then f£ N.2 = Ni' Moreover,

N{l \ M u Ck\‘ oM and NZ\ Dk “ 0Q \ 8Q, so by uniqueness of regular
neighborhoods and existence of boundary collars, N1 =2 gMX1I and
N2 ~ 9Q X I. In fact, N1 and N2 may be realized as the images of boundary

collars in M and Q respectively. Using these collars and adjoining to each
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a second "inner collar", we may construct homotopies Ft: M—> M and
Gt: Q —> Q with the following properties: Fo = identity, F1 is a P. L.

homeomorphism M—>M - N, Ft(aM) - N1 all t; GO = jdentity, G1

maps cl(Q-NZ) homeomorphically onto 2 and carries N, into 9Q, and

gt(BQ) = 9Q for all t.

Let f = GofoF =~ G, ofcF =G ofoF =f£,  These homotopies are
3 1 1 1 o o o

all homotopies of pairs (M, dM) in (Q, 9Q); i.e., G'lth(BM) c g’lfN'1 c

GiNZ = 8Q and thFO(BM) - Gt(aQ) € 0Q. Clearly, f3 is the required

P. L. embedding.
It remains to consider the case in which Q is not compact. Choose
b
the C's and D's as above, and let Q be a regular neighborhood of

% X
f MuD, in Q meeting 9Q regularly. Let P1 =Q M oQ, P2= FrQ.

k

Then D\ D, NP, and £,(8M) S P,. Let KandL triangulate M and Q"

1

so that f:K—> L is simplicial and Ck and Dk are triangulated as sub-
complexes. Let K" and L" be barycentric 2nd derived subdivisions. Let
N = N(Cku OM; K"), N

1
. . -1
simplicial, f (N

- . e T CKM —> LM
2 N(Dk\, P1,L ). Then as f:K L" is

- -1 _
2) =N,. Also, f (PZ) = g.

. *
Now, NZ\ Piv Dk\ P1 , SO N2 is a regular neighborhood of P:1 inQ .

Also, NN P2 is a regular neighborhood of BPZ in P2 (as it is a derived

2

neighborhood). As in the compact case, we want to use uniqueness of
regular neighborhoods to conclude that (NZ;NZ N PZ) = (P1 X I, E)P,l X 1).

(We still have N, 2 8MX I, of course.)
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Let C1: BQ=I= XI—> Qa‘ be a boundary collar. Let

CZ: OP, X1 —> P2 be a boundary collar. Let C3: 8(P1XI) X1—> P1x I

be a boundary collar. Let & > 0 be such that

Pix[o,g] C cg([(pixo) . (apixx)]xn. Define c:P1X[O,F]——>Q

to be the following composite

c3"1 (cf CZ)X id. " cq .
Pix[o,é] >[(Pi><0) - (8P1>< ] X1 Q0 XI—>qQ .
I
103
> *
P, Imc ] Q
P, X1
Fy
Q Q

Then it follows from results in the sections of Chapter IV on uniqueness of
regular neighborhoods that there exists a P.L. homeomorphism

N_:N_~
(NN~ P

5 2) ~ (P, X [0,z ],aP1 x[0,£]) = (p1 x [0, 1], 8P, X [0,1]).

1

Now define f3: M—> Q" by letting f3 be the composite with P. L.

homeomorphisms:

als
R

£ 8
M > cl(Q - N,)) —> Q.

> c1(M-N

) )

As in the compact case, we can choose % and B so that f = £3 via a homo-

topy of pairs, (M, dM) —> (Q*; Pi) C (Q, 3Q). This completes the proof.
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Note. A separate argument for the compact case would have been
unnecessary, had we developed the regular neighborhood theory for

regular neighborhoods of non-compact P.L. subspaces of a P. L. space.

3. Embedding into a non-bounded manifold.

Definition. Let f:X —> Y be a continuous map of topological spaces.

Then B(f), the branch locus of f, consists of all those points of X no

neighborhood of which is embedded by f.

Suppose f:M—> Q, M compact, is 2 non-degenerate P. L. map of P.L.
manifolds (or spaces). Then B(f) is a P.L. subspace of M, B(f) © Sz(f),
and dim B(f) % dim Sz(f). For let K and L triangulate M and Q respectively,
| with f: K —> L simplicial. If x e B(f), let x e &, o ¢ K. Then the open
star st(Q;K) contains points y,z, y# z, with f(y) = f(z). Suppose y ¢ '?'1
and ze¢ T, where ¢ < 1, and o< Toe Then T # T, because f is non-

2 1

degenerate. But f-r1 = f'r2 because f is simplicial. Also, neither T, nor Ty

! ] equals o , because f is non-degenerate. Therefore o C B(f) and Ty and 1’2

® -rc contained in Sz(f).

Theorem 8.3. Let M™ be a compact P. L. manifold, oM #@d. Let

Q% be a P. L. manifold without boundary. Suppose that q-m > 2 and
B (M,5M) is (2m-q-1)-connected. Then if f:M—> Q is a continuous map,

f is homotopic to a P. L. embedding, f'.
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Proof. Let f be homotopic to fi’ where f1 is non-degenerate and
dim SZ(fi) < 2m-q. Let K and L be triangulations of M and Q respectively,
so that f1:K ——> L is simplicial. Let K' be a first derived subdivision
of K with each simplex starred at o so that if dim 0'1 >1, fio'1 = f1o'2,
then f191 # 1,0, .

Now let KO be the 2m-q-1 skeleton of K, and let K, be the simplices J

1
of K' which do not meet |K |. ThenK = {¢,...0 o, <... <o and
o 1 1 r 1 r
dim 0'12_ 2m-q} . Therefore Kif\ SZ(fi) = {3‘!0’& SZ(fi) and dim o = 2m-q}.

Hence K1 ~ B(f) = § so there exists a neighborhood U of |K1| in | K|
such that f1| U is an embedding, because f.|K1 is an embedding and each
point of Ki has a neighborhood embedded by f.

Now M-U is a compact set not meeting Ki' Hence there is a derived

neighborhood N, of K  suchthat M-US&N \K .
o 1 o}

1
Now let c: @M X I —> M be a boundary collar. Then (M, c(dMX [0, 1)))

is 2m-q-1)-connected, and so, from engulfing theorems [ Chapter 7 1,

there is a P.L. homeomorphism h:M—>M with NiC h(Im c). So

M - h(Im ¢) C U. But M = M - h(Im c) by a homeomo rphism homotopic to

the identity. Composing with fil M-h(im c) gives the required embedding.
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Chapter IX: Concordance and Isotopy

1. Introduction.

Definition. A proper concordance of M in Q 1is a P.L. embedding

Y Y

F: MXI—> QX1 with F(QX0)=MX0, F (QX1)=MX1,

F-i(BQ XI)=8MXI, F is a concordance between FO and F1, where

F(x,t) = (th, t), t=0,1. F is said to be fixed on the boundary if

F|aMX 1= (Fo(aM)X 1.

Definition. Two proper embeddings f and g are said to be (properly)

concordant if there exists a concordance between them.

In this chapter we consider the question of when concordance implies
isotopy. For example, concordance does not in general imply isotopy when
the codimension (dim Q - dim M) is two. For example, the "slice knots" of
classical knot theory are precisely the knots cobordant to the trivial knot.

The main positive results that we shall prove are the following two

about a proper concordance F of Min Q fixed on the boundary, M compact.

Theorem 9.41. If dim Q - dim M > 3, then there exists an ambient

isotopy H of QX I, fixed on 9(Q X I), such that H1° F is level preserving.

Theorem 9.2. If dim Q - dim M 2 3, then there exists an ambient

isotopy H of (QX1I), fixedon (QXO0 )V (8Q X 1), such that H1°F = FOX 1.
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2. Relative Second Derived Neighborhoods.

Let Ko c K1 - K2 be finite simplicial complexes. Then let
- . = < 1 1 - .
N(K1 Ko ’KZ) {oe KZ' cd< 7T for some simplex T meeting K,1 Ko }

This subcomplex is called the simplicial neighborhood of K., mod Ko in K

2

Let K'ig K'Z be first derived. Let K‘2 be obtained from K'Z by star-

1

ring the simplices of K'Z - K} inorder of decreasing dimension. We may

1

obtain a second derived K" from K2 by starring all the simplices of

sk - ,
Ky (=%

N
3

1 E

) in order of decreasing dimension. If A e K2 - K

link(A;K;) A K1 =g ora single simplex. So the same is true of

link(A; KZ) ~ (K

ste

sk ) sk sk _ sk - (K -K % . K >:<. :.
1 Ko ), as K1 Ko ( " o) is full in 5 Moreov

IN(K, - K 5 K,)[ = [N(K] - K" SK)].

. 3. C C i i= .
Lemma 9.3 Suppose that Ko_ Ki“ KZ , Ki full in Ki+1’ i=1,2

Suppose that if A ¢ KZ- K1,

Then N = N(K, - KO;KZ)\ (Ki-KO).

link(A;KZ) . (K1- KO) is § or a single simplex

Proof. Let {A} be the simplices of N not meeting K1 - Ko’ in
— i

order of decreasing dimension. For each i, link(Ai;KZ) a (Ki_ KO) = a singl
simplex Ci which meets Ki_ Ko. By fullness N = UAiCi . Let

1
NJ,=(K1- K) v (.U =A.C.

j=2i

o ) ¢
(A€ NN 2 AC. (Ac)N(N, ) (ac) (KK ) (ac.nac)
i i+1 i1 1 o) >it1 11 J )

Therefore N\K - K . §
N 1 o g

A.C). -
J.CJ) Then cl(Ni Ni+1)

)=4.C . So N\ N,
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Lemma 9.4. With the conditions of Lemma 9.3, suppose K1 and KZ

a-re manifolds and KO - 8K,1 . Then N(K'1 - KO;KZ) is a manifold of the
same dimension as KZ.
Proof. By induction on the dimension of KZ. Let N = N(Ki- KO; KZ)’
and let Ae N, If A meets Ki- Ko, then link(A;N) = link(A;KZ),
a sphere or ball.

Suppose A N (K, - Ko) = . Then

1
link(A; N) = N[link(A;KZ) (\,Ki - link(A;KZ) N K ; link(A;KZ)]. For
o e Link(A;N)<=> cA e N<=>o0< p, Apc K2 and p N (Ki- KO) 9 <=>

N - NK ;LD =13 A;K_).
o e N[L Ki L o KZ]’ L = link(A; 2)

Now LN KO_C_ L nK, C L satisfy the hypotheses of this lemma. For
certainly each of these complexes is full in the next. If Be L,
1 . N [ - =1y M - = 13 . M - =
link(B; L) (L (K1 KO)) link(B, L) (K1 Ko) 11nk(AB,K2) (K1 Ko) )
or a single simplex. If A e Ko’ then L N K1 = 1ink(A;K1) is a submanifold

of the manifold L and LN Ko c link(A;aKi) is contained in the boundary.

N = - C
1f A{Ki, LN K, Ln(K Ko),as K_ G 9K

1 so LNK, = p, a single

1’ 1
simplex. Since A is a face of a simplex meeting K1- Ko , p N Ko is a sub-
complex of p not equal to p and so lies in op.

Therefore by induction link(A; N) is a manifold of the appropriate
dimension. By Lemma 9,3, link(A;N)\L r\(l?".“i"o) = p\0 if A{ K, -

If Ae KO , 1ink(A;N)\link(A;N) N (K - KO) = link(A;Ki)\O. So link(A;N)

is a collapsible manifold and so is a P. L. ball.




3. The Main Lemma.

Lemma 9.5. Let F:B™ XI—> Q%% 1, B™ and m-ball, be a

proper concordance which is fixed on the boundary. Suppose q-m > 3,
Let U be an open neighborhood of FOBm in Q. Then there exists an
ambient isotopy H of (Q X 1I), fixed on (Q X 0) v (8Q X I), such that

H1°F(BmXI) CUXI.

Picture:

T

|

I )

|

|

/)‘

(_—
t f i [:
S~ St

Before. 5y After {JL

The main idea is to construct "walls" (dotted line) and then to push the
concordance back behind the walls., That is, we find Wi such that Fr Wi
is not overshadowed by Wi and use these to "push the concordance back"
until it eventually looks like the 2nd picture.

Proof.of Lemma 9.5. From the chapters on General Position and

Sunny Collapsing, there is a P. L. homeomorphism h: QX I—> QX I, level

preserving and ambient isotopic to 4 by an arbitrarily small ambient isotopy,




such that hF(B X I) sunny collapses to hE((B X 0) v (8B X I)). Let

X = hF(B T X 1), X_ = LF((B™ X 9) - (8B X I)). We may assume by

choosing h near enoughto 1 that there is a neighborhood V of FoBm
in Q such that XOC_ Vv XI<h(UXI).

Let Ko; K be triangulations of Xo C X andlet J be a triangulation
of Q such that the inclusion embeds K linearly in J X I and such that

es es es
there is a sequence K=K K \ . \ K with shadow
N r-1 o

K, " K| C K. 4

Let ~K and 51J be subdivisions such that if p.:QXI—> Q is
projection on the first coordinate, then p1lK: AK—> bJ is simplicial.
It follows from the last section of Chapter V, already quoted, that h above
may be chosen so that Py |K is non-degenerate; this also follows directly from

the sunny collapse. So let ~"K and g"J be 2nd derived subdivisions with

p1|K: WK —> B"J still simplicial. Let T: QX I1I—>1 be projection on

the 2nd coordimte. Let LJ,Ji: A"K —> ".Q* be the linear map defined by
setting lii(V) =0 if v is a vertex of o("Ki and ll»'i(v) =1+ 7(v) if v is

-1
a vertex of «"K - aL"Ki . Then qu (0) = OLI'Ki , as 'i"Ki is full in «"K.

-1(

In particular, qu 0) C V X I. Hence there exists 0< £ <1 such that

-1 . _
¢ [0,E] SV XL

Let Wi= q,;i[o,é]. Then Wi is a derived neighborhood of o"K, in

A'K. W= W = X. (See picture following this proof.)




Claim: Shadow(W.)™ W Z Int. W..
_ i W o

Suppose x ¢ Wi’ ye W, and x overshadows y. Choose o,7e a"(K),

’

xe o and yeT . Then PyT =P, and o #T because p1IK is non-
degenerate. Let ¢ = po-1 , P o€ oz"Ki , 0'1 N oz"Ki = Qf Let v = p"r1 , Where

' = = 3 i C {,‘
PP P4P and PyTy T Pyoy - Since shadow Ki K< Ki-i ~ Ki ,

p'e a/“Ki . For each vertex v of Ty tbi (v) is not less than the value

of Ll.li or the vertex v' of ™ with piv' =PV - Moreover, Lpi(v) >¢i(v')

unless v = v'. Therefore qu(x) > Lpi(y) unless 0‘17( T So it suffices to

1
show that Ty # Ty

If Ae o"K - af"Ki , then link(A;a"K) ™ ar"Kif g or the first derived
B' of a single simplex B of af'Ki . So as p1|K embeds B', no point

of B' overshadows any other. Therefore if Ty TP = p' and so ¢ = T,

a contradiction.

Notation: If ST JXI, let S = S - {pts. lying above pts.of S}.

Let Y =W. 0 Fr, W.,. Y CVXIL Y =W =X, We are going to
i i W i o r r

throw Yi onto Yi Suppose Ki= K, 1 + A +aA. Let

1-

1

N = N(a"(aA) - a/"(aA);oz"K). Outside N, qu =y N is an (m+1)-manifold

i-1°
and N\L aA,
Consider N, (See 2nd picture following this proof.) Then
N Nr(QXI) pyN = N[pi(aA) - p1(aA);p1(a"K)]\pi(aA). Since p, embeds
A

Aa, this shows that N \0.
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Wi "N is a derived neighborhood of a"(aA) in N, an (m+1)-ball.
Similarly, Wi_1 ™ N is a derived neighborhood of @"(aA) in N and so
is an m+1-ball.

Now a(wim N) = (Frwi ~ N) < [Wi AN~ (QX1)]u [wif\ Fry N]J.
If Ae QX1, ON= [N"N(QX1)]u FryN, NN (QX 1) = a derived neigh-
borhood of either A mod A or of aA mod a:% in WM (QX1)., So Nn(Q X 1)
is an n-ball. IfA ¢ QX 1, 8N = Fry N.  In either case Fr N isan
m-manifold. Wif\ FrN-= Wi-im Fr N = a derived neighborhood of a"(aA)
in Fr N = an m-ball. So w.n N\ [(Fr W.) N N]u [wi NN N (QX1)]. So

[

~ N = i ‘ 14 .—»-~~\\ ' ) x

Yi N (Wi- FrWWi)_\ N\ FrWir\N\,Wi N n(QX1)
X[Frwir\ N ~(QX 1)] [W.n N~ (Qx1)]
E‘p[FrWif\N‘vWimN-’”\(QX'l)]

= an n-ball \0.

Similarly ¥, 0 W\, n Nn(Q x1) | o.

Let us assume for the moment that each Yi is an (m+1)-manifold.
That this is actually the case follows (Cor. 9.6.1).

Subdivide J X1 (J = triangulation of Q) so that 'N, the K., etc.,..,
are all subcomplexes. Let R be a 2nd derived neighborhood of N in this
subdivision. Then because N \0, R isa (qfi)—ball. Since N ~ (Q X 1)\0,
and since we may assume QX 1 was a subcomplex of JXI, Rn(QX 1)

is also a ball, of dim q.
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R o Yi is a 2nd derived neighborhood of Yi AN in Yi’ and so is an
(m+1)-ball, by uniqueness of regular neighborhoods. Similarly,
(R r\Yi) ~ (QX 1) is an m-ball. Similarly, R " ¥, , is an (m+1)-ball
and (R ™ Yi—i) ~ (QX 1) is an m-ball. Also, Yi ~"FrR= Yi—i “Fr R
because Lpi = lii_i outside of N.
But g-m > 3. Therefore all of the following ball pairs are unknotted:

-

[R Yif'* (Qx1) S R~(Qx1], [R~ Y, S R], [Rf\Yi_i N(QX1)CRN(QX1)],

1

[R™Y R]. Moreover, Yi ~ Fr R is a face of Yi"v R and

i-1 =
Y, Fr R~ (QX1) isthe boundaryof Y, SR N(QX1). Hence we may
find an ambient isotopy of R, fixed on Fr R = cl(d8R - R " (Q X 1)), throwing
R™Y, onto R™Y, .
i i-1
ambient isotopy Hi of QX I, fixed on (QX 0) -(8Q X 1I), which throws Y.

Extending by the identity outside of R, we get an

onto Yi-'l'

Hence by induction there is an ambient isotopy H of QXI, fixed on

—

(@X%0)w (8QX 1), with H X & X VXL Recall that X = he F(B™ x 1).
Define H' by Hi': = h-thh. Then H' is the required ambient isotopy.
Lemma 9.6. If N is a submanifold of QX1 with Py IN an embedding
and N~ (Q X 1) € 9N, then 'N' ( = N and points lying above N) is a manifold.
Proof. By induction on dim N. If dim N = 0, this lemma is clear.
Now suppose x¢€¢ ¥ , y e N-N N (QX 1). Then there exists a closed P. L.

ball V of y in N with VN (QX1)=¢. Then Q?/j is P. L. homeomorphic

to VXI. So r—l? is a manifold near x; i.e., there is a neighborhood of x in
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N which is P. L, homeomorphic to a ball. Say, on the other hand,

x e NN (QX1)., Triangulate N so that P, 'rltf N — Q is simplicial

-1

for some triangulation of Q. Then link(x;N) = link(x; N). Link(x;N) is
a ball meeting QX 1 in a subset of its boundary. So by induction,

[ ———— [ e =

link(x;N) is a manifold. But Tink(x; N)\\ link(x; N)\O, and so is a ball.

So r—N—‘ is a manifold.

Corollary 9.6,1. Let X S QXI bea properly embedded manifold.

Let KS X bea polyhedron. Let W be a derived neighborhood of K in X

with (shadow W) " X < IntXW. Then W .. rf‘i'an—\;1 is a manifold.

Proof. If N = FrXW, then pilN:N —> Q is an embedding.
ON=N " 38X 2NN (QX1). Therefore N is a manifold, Clearly, N < 0N,
So W FrXW is the union of two manifolds of the same dimension which
meet in a submanifold,of one lower dimension, contained in the boundary of

each.

Therefore it is a manifold,
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4. Proof of Theorems 9.1 and 9. 2.

Theorem 9.2. Let F: M X1 —> Qq X 1 be a proper concordance,

fixed on 8M, M compact and ¢-m 2 3. Then there is an ambient isotopy
H of QXI, fixed on (QX 0)V (8Q X I), such that Hi"F = Fo X id.
N
Proof. By induction on dim Q. Let K triangulate M. Let {Ai}4_

be the simplices of K - 9K, in order of increasing dimension. Let K

i

.uA, (=these simplices and all their faces). We shall de-

i~ T i
fine ambient isotopies h(l) of QXI, fixed on {QX 0) « (9QX I), such that
hi(l) F is fixed on a neighborhood of Ki .

Suppose that h~ ~ is defined. F'= h(1-1)°F: MXI—>QXI is fixed

on a neighborhood U of K. 1 and on 8M. Triangulate MXI, QXI, and

! Py

Q so that MX1I > QX I ——> Q are simplicial, and so that

Ki—i X1 and Ai X I are triangulated as subcomplexes of MXI.

Now (p,° FIO(K, X I) = F)(K,_,). Let N, and N, be 2nd derived

neighborhoods of Ai—'l X1 in MX1I and of Fo'(Ki-i) in Q, respectively,

-1
- X = ! N =
such that N1 C UXI1 and N'1 (p1°F ) X Then clearly N'1 N3 X1,
-1
where N3 = (FO) N2 .

Let M™ = cl(M - N3), and let Q" = cl(Q - NZ). Let F*=

F'| M¥XI:M XI—> Q¥ x 1. Ai M N3 is a derived neighborhood of E)Ai

in A, because of the ordering of the A, Put B=A " M =A, -A "N

a ball.
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te
St

Let V be a regular neighborhood of FoB in Q. By Proposition 9.5,

53 b x
there exists an ambient isotopy k of Q X I, fixedon (Q X 0)u (8Q X 1I),

such that k1F(B X I)< (Int V) X I. By uniqueness of regular neighbourhoods

V is a g-ball. By the unknotting of balls, there exist an ambient isotopy

k' of V XI, fixedon (VX 0)w (8V X I), such that

kflkiF'fBXI=FOXid|BXI. We may extend k' to all of Q X1 by

letting it be constantly the identity outside V X I, Put

* sk b3
F!' =k Kk F M XI—> Q XI.
1"

s p
% 4
> Q X I———>Q simplicial,

Now triangulate to make M XI

with B X I triangulated as a subcomplex. Subdivide so that F" and p are

F3
be the 2nd derived neighborhood of FOB in Q.

4
Let N = (p F")_iN Let N =(F'1N )X 1. N =F'1(N
5 1 4 6 o 4 T o

neighborhood of B in Mq‘, and so N

simplicial and let N

4) is a derived

6 is a derived neighborhood of B X I

in M X1I. Sois N,.

ok
Lemma 9.7. There is an ambient isotopy k" of M XI, fixed on

(M X 0) - (8M" X 1), such that Ky N = Ng .

(Proof postponed until later. )

Proof of 9.2 continued. Let k" be as in Lemma 9.7. By the isotopy

extension theorem, there exists an ambient isotopy k™ of Q" X I, fixed

*® sk
on (Q X0). (8Q XI), so that ky' F"N_ = F'N, .
1F". Then (piF'")-1N =N, =N, XI. Consider

" — my-
Put F (k1 ) 4 6 7

Fm lFrM*N7 X I. Then the image of this map is contained in (FrQ*N4) X1,




|
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as in fact N_ = Fo-i(N

A OM. .
7

M*N7) = (FrM*N,?)

Therefore we are in the situation in which the inductive hypothesis applies

4). Moreover, Fr

to give us an ambient isotopy k(4) of (F rQ*N4) X I, fixed on the bottom and

4
sides, such that k(4)F"'|Fr JON_XI=F Xid|Fr ,N_XI. The k( )
1 M* 7 0 M* 7

' (4)

extends to all of Q X I to an ambient isotopy also called k' '/, fixed on

(Q*x 0) v (0Q™ x 1).
(5) of

By the unknotting of balls, there exists an ambient isotopy k

e

Q" X I, fixed on (Q X0)u (3Q XI) L (Q - N

(5) (4
10Ky

4) X I, so that

k )F"'[N,? X1-= (FO X id)lN,] X I. This completes the proof of the
inductive step because the relation of ambient isotopic is an equivalence
relation.

To start the induction put ¢ = 3, m = 0. Then a simple version of

the same proof work: there are no neighborhoods in which to straighten

out the concordance, and so an inductive hypothesis is not necessary.

Proof of Lemma 9.7. N_ is a derived neighborhood of B X1 in

A (0M* x 1) = N, N (aM™x 1),

=N, XI, N
’ 6

5
sk %
» =
M XI. N N5r\(M X 0), N . 5

7

-t

Now let a:M XI—> M X1 bea P.L. homeomorphism throwing

sk ES E
(M X0)uv (d8M XI) onto M X 0. aN_ and aN, are regular neigh-

5 6

8 5
b
aN6 N (M X 0). By the uniqueness of regular neighborhoods, there is an

¢
ambient isotopy H of M X I such that Hi(aN5) =N8XI. Let H' be the

ambient isotopy of M X I defined by H! = [Htl(M" X 0)] X 1. Then
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- ‘ %
H'i(NS XI)= (N8 X I) and (H') 1y is an ambient isotopy fixed on M X 0,

Similarly, we may throw aN6 onto N8 X I, keeping M X0 fixed. Com-

posing these two isotopies and conjugating with « gives an ambient iso-

s % *
topy of M X1, fixedon (M X 0)u (eM X 1I), throwing N5 onto N6 .

Theorem 9.1, Suppose F: MT XTI —> QqX I is a proper concordance

fixed on 0M, M compact, q-m > 3. Then there exists an ambient isotopy

H of QXI, fixed on 8(Q X I), such that H,F is level preserving.

Proof., By 9.2, there exists an ambient isotopy K of QX I, fixed on

(QX0) o« (8QX1I), with K, F = Fo X id. Let k be the ambient isotopy of Q

1
defined by Kt(x, 1) = (ktx, 1). Let {: 12 —> I be a P.L. map with

#(s,1)=s, g(1,t) = t, #(s,0) = #(0,t) = 0 for all s,te I. Define

K:(QXI)XI—>(QXI)XI by putting K'(x,s,t) = (k¢ )(x), s,t). Then

(s,t
K' is the identity on (0Q X IXI) L (QX 0 XI)w (QXIXO0).

K(‘):Q XI—> QXI is the identity. Kt': agrees with Kt on QX 1. Define

H:QXIXI—> QXIXI by H=(K')'1

-1
and HiF = (Kji) KiF = (Kjl)Fo X id 1is certainly level preserving.

K. Then H is fixed on 8(Q X I)

5. Extensions.

In this section we quote without proof two further results along these
lines. The first follows from what we have already shown, the second can
be proven using a result on unknotting of cones quoted at the end of the

chapter on Sunny Collapsing and Unknotting.
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i T e T,

9.7. If F: MTE X1 —> QqX I is a proper concordance and if g-m >3

and M 1is compact, then there is a ambient isotopy H of QXI, fixed on

; QX 0, with H F = FO X id, and an ambient isotopy K,1 fixed on Q X 91,

1

with K'lF level preserving.

-9.8. If KOE—_ K are polyhedra and f:KXI—> Q%X 1 is a concordance
1 -1 _ -1
(QX0)=KX0, £f (QX%X1)=KX1,{

with f~ (0Q X I) = Ko X I, and if

{ dim K< g-3 and dim Ko < g-4, then there exists an ambient isotopy H of
Q X I, fixed on QX 0, with H'lF = FO X id. If F is fixed on KO, then one

can insist that H be fixed on 9Q X1,

et e < aipmi

i T o e
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Chapter X: Some Unknotting Theorems

1. An Unknotting Theorem Keeping the Boundary Fixed.

Theorem 10.14. Let M™ and QY be compact P, L, mam‘.folds, and
let f,g: M—> Q be two proper P.L. embeddings. Suppose that f is
homotopic to g relative 89M. Then if q-m 23, M is (2m-q+1)-connected,
and Q is (2m-q+2)-connected, then f and g are ambient isotopic keeping
0Q fixed.

Proof. Let FiMXI— QX1I bea (level-preserving) homotopy of
f to g. FI|OMXI=(fX id)|dM X I. Now, (M X I) is q(m+1)-(q+1) = 2m-q+1
connected, and Q X I is q(m+1) - (q+1) + 1 connected. Hence by the em-
bedding theorem 8.1 , F is homotopic relative (M X1I) to F'tyMXI—> Q XI,
a proper embedding. Therefore F' is a proper concordance of f to g, fixed
on 9M. By Theorem 9.2, there is an ambient isotopy H of Q X I, fixed on
(Qx0)w(8QX 1), with H F' = FlXid. Then H|(QX1)X1I is an ambient
isotopy, fixed on 8(Q X 1), throwing g onto f = [HIQ X1X I]1 og.

Corollary 10.1, Any k-connected closed manifold M unknots in

2m-k+1 -
g™ ; i.e., any two embeddings of M in Ezm k are isotopic, ifk<m-2,

Corollary 10.4.2: If Q is k-connected, then the elements of 'rrr(Q)
can each be represented by a unique isotopy class of embedded spheres,

provided that

+k-
r < min(qg-3, 1_12(_2 )
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2. An Unknotting Theorem Moving the Boundary

Theorem 10.2. If f,g: M™ —> Q% are proper P, L. embeddings,

M compact, f,g homotopic as maps of pairs (M, 8M) —> (Q, 8Q); and if
g-m >3, (M, 8M) is (2m-g+1)-connected, and if (Q, 8Q) is (2m-q+2)-

connected, then f and g are ambient isotopic.

Note: As in 10.1, it suffices to show that fand g are properly concordant.

Unfortunately, we have not proved an appropriate embedding theorem; we

need to alter a homotopy to an embedding keeping M X 91 fixed.

Proof. Let F:tMXI1—> QX1 be a (level preserving) homotopy of
f to g, with Ft(aM) C 9Q for all t. We may assume that there is £>0,
so that Ft = FO for t<£& and Ft = F1 for t>1-% . Applying general
position first to M X [£,1-8 ] in 3QX [¢,1-2] and thento M X[t ,1-%]
in QX [z,1-7] (this also uses the well-known homotopy extension property
for polyhedra), we get a proper P. L. map F:MX I—> QX I, with the
following properties:
“(£x, t) t<¢t

F! = =
) Feet) = g t2e

MX[:,1-2].

i

1
2) SZ(F )
3) dim[SZ(F') ~ (M X I)] £ 2m-q
4) dim(SzF’) < 2(m+1) - (g¥1) = 2Zm-q+1.
Now (M X IntI, 3(MX Int I)) is (2m-q+1)-connected and

(WX Int I, QX Int I)) is (2m-g+2)-connected. Notice that SZF' isa

compact polyhedron in M X Int I. By an argument we have used several
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times (see Engulfing Theorem 7.8 and the embedding theorem 8. 2)

there exist polyhedra C and D in M X IntI and Q X Int I, respectively,

such that SZF' €S c\C " (M X 1), D\D " (0Q X Int I), and (F')-1D = C.

Triangulate so that F' is simplicial and SZ(.F'), C,D,Cr (M X1I),
and D~ (M X I) are all subcomplexes. Take 2nd deriveds keeping F'

simplicial. Let N2 = 2nd derived neighborhood of D in QX I. Let
N1 = (F')-iNZ, a 2nd derived neighborhood of C in M X I. Then

F'lel(MX1I- N'l) —> cl(QXI-N_) is a proper embedding. To complete

5)

the proof it suffices to find P.L. homeomorphisms h:cl(M X I- N, ) —> MXI

.

and k:cl(QXI-N)—> QX1 with h|MX 8l = id and k|QX 8I = id. For

5)
then kl:"h'/l is a proper concordance from f to g. Now Ni\C \C =~ (M X I).

So N1 is a regular neighborhood of € ™ (M X I), meeting the boundary

regularly. Let N3 = N{\ (M X1I). Let c:d(MXI)XI—> MXI bea
boundary collar. Then c(N3 X I) is also a regular neighborhood of

C N (dM X I), regular at the boundary. c(N3 X I)\ac[(N3 X 1) (8N3X D).

So, by the uniqueness‘of regular neighborhoods, N\Fr(N) Let N 4 be a

~.—

derived neighborhood of N, Then M XI and cl{MXI-N) are both regular
neighborhoods of cl(M X I-N4). So there is a P. L. homeomorphism

M X I—> cl(M X I-N) which is the identity outside N

2

A similar argument works for Q.

Corollary 10.2.2. If (Q, 9Q) is k-connected, an element of vr(Q, Q)

is representable by a unique isotopy class of properly embedded r-balls,

qtk-2 )

provided that r < min(q-3, >
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3. Unknotting in a Manifold without Boundary

Theorem 10.3. Say M is compact, oM 4, 2% = 0. Let

f,g:M—> Q be P. L. embeddings, o g, q-m > 3. Suppose (M, 8M) is

(2m-gq)-connected. Then f and g are ambient isotopic.

Unfo rtunately, we cannot prove this theorem based only on preceding

results because we did not prove a concordance implies isotopy theorem
for concordances of a bounded manifold in a non-bounded manifold,
Modulo this gap, the proof of 10.3 proceeds as follows:

Let F:MXI—> QX1 be a (level-preserving) homotopy of f to g,
As in the proof of 10.2, we may assume that F is a P.L. map in general
position and S.F S MXIntI, (dimS)F = 2m-g+1). Let |K| = MXx1
and |Q| = QX1 be triangulations such that F:K —> Q is simplicial.
Let K' be a first derived of K such that dimo > 41 and Fo = Fv+ =
Fo }( Fg . Let K C K be the 2m-q skeleton. Let L be

1

the "dual skeleton" of K'1 in K, together with the top and bottom; i.e,,

the simplices of K' na meeting K}, together with (M X 0) v (MX 1)
which we assume to be a subcomplex. Then F' embeds a neighborhood of L

U say, (see proof of embedding theorem 8.3 ). Engulf Ki to oM X I

i.e., let C be a polyhedron containing K1 which collapses to C~ (dM X I)

R e i) e

with C < MX IntI. Let N be a derived neighborhood of C in aM X I.
Then then there exists a homeomorphism, fixed in M X 39l, MX 1 x~ cl(MXI-N)

a compact set not meeting K1 . Hence cl(MXI -N) is contained in 2

i -
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1
|
i
i
§
i

regular neighborhood of L not meeting K1 (see proof of

Theorem 7. 9), N. On the other hand , U contains a regular neigh-

borhood N of L. So N =z ’lif , via a homeomorphism which leaves L

pointwise fixed,

Hence by compositing F with homeomorphisms, we

get a concordance F' between f and g. Now apply the unproved con-

cordance => isotopy theorem to deduce that f and g are ambient iso-

topic.
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Chapter XI: Obstructions to Embedding and Isotopy

1. Linking Numbers.

+q+
1f Sp,Sq are disjoint spheres in the sphere sP™4 1, the linking
: P q . gptatl .
number of S° and S° in S is defined to be equal to the degree of
+qt
the map sP —s P71 ! - Sq, this latter being a homology p-sphere
by Alexander duality. We shall only use the linking number reduced
modulo 2 in this chapter, and so will not have to worry about signs and

orientations.

Lemma 11.1. Let M,N, W be compact connected P. L. manifolds

T
+n-
with dim W = dim M + dim N. Suppose that oW = U smm 1

r r 1
- -1
oM = U Sjm 1 , ON = U SJ.n and suppose f: M—> W, g:N—>W are
1 1

. ’

- +n-
proper P. L. maps in general position with fSJ,m 1C SJ,m n 1,
- +n-

gS_n 1;_‘ s ™ ! for each j. Suppose fM ~ gN = ¢ , andlet L. = linking

J ) J

- - 41 -

number of fsj’frl v gsjn i sjrn n-1 (mod 2). 1 H™(W,8W) =

m+1 =
H™ (W, 9W) = 0, then > Lj = 0.

Proof. Consider the following commutative diagrams, all homology and
cohomology having ZZ coefficients.

m-1 £
jz Hm_i(Sj )

ale
b3

ok

H (M) —> H (W - gN)
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Ho o (WogN)<— W ¥t W /gN) <—2 H(gN, goN) = Z,
i, | 5 5
© Ow m 6 n-1
g (OW - gaN) < 2% pMigy ©any < 2 1 (gan)

The left-hand isomorphism being given by Lefshetz duality and the
right-hand ones from the exact cohomology sequences of 9W INULWCw

and 8N C 8W. Now the right-hand vertical arrow maps the generator of

-1 -
H" (gS;1 l) onto the generator of Hn(gN, gdN) for each j. So
+n- -
the generator of Hm 1(Sjm n-1 - gSjn 1) maps onto the generator of

Hm_1(W - gN) for each j. So in the first diagram, if gj generates

m-1 N . - . . . . .
Hm—i(sj )s = Lj-12f*2§j = f*112 {E,J. = 0 since 112 gj is

a boundary.

Intersections, Let Mm, Nn, Wm+n be P.L. manifolds. Let ftM—> W

H

g:N— W pe proper P.L. maps in general position. If xe fM N gN ,
We can define an intersection number £(x) as equal to the linking numbers
(mod 2) of link(x, fM) and link(x, gN) in link(x, Q).

Lemma 11.2, If M = N=S§

then zl(xi) =0,

g
IR
)

n -
and megN—{xiyxzs'--’xk}’

Lemma 11.3, If M2 N =~

/4
w

s WE’an and fM”\gN={x1... X

then z !(xi) = linking number of oM, goN in 8w,

Proof. Triangulate and remove the stars of the points s Xyyen )%y -

Applying Lemma 11.1 now gives the required result,
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2. An Obstruction to Embedding and Isotopy.

Let f: MW —> Q9 be a proper P. L. map in proper general position;
i.e., f’ 9M: 9M —> 9Q is also in general position. Assume M 1is com-
pact, and m < g-1. Triangulate M and Q, getting K and L such that
f: K —> L is simplicial, and Kog_. K a full subcomplex triangulating SZf°
Let K' and L' be formed by starring at the barycenters the simplices of
K-KO and L-fKO , in order of decreasing dimension. Then f:K'—> L!
is still simplicial.

If oe¢ Ko is a (2m-q)-simplex, then there exists a unique o' ¢ KO,
¢'# o, with fo = fo', as the triple points have dimension 3m-2q < 2m-q.

Let S, = link(c;K'), S, = link(c';K'), = = link(fo; L'),

1 2

dim S, = m-(2m-q) -1 = g-m-1 = dim S,. Dim Z = 2(q-m)-1. Now, since

1 2°

&
dim ¢ = 2m~q = dim o', f Zmbeds S1 and S.2 . Moreover, Sim S.2 = ¢
Forif T ¢ S1 i SZ , or and o't ¢ K' implies o,0' € link(T; K'). But
link(T; K') N ]KOI = a single simplex p. Since f{ embeds p, this means
¢ = o', a contradiction.

Now, define ¢f(0’) = linking number of fS1 and fS2 in =, mod 2;

i.e., ¢f(<y) € Z, -

Definition. c(f) = E g (c)ceC MK z_, I
—_— f 2 2
o€ KO

dimo =2m-q

dim KO < 2m-q, c(f) = 0.
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Now, c(f) is defined with respect to triangulations of M and Q.
Let 8f = £|dM and let c(9f) be defined with respect to the induced
triangulation.

Lemma 11.4. 0c(f) = c(0f).

Proof. Suppose T ¢ KO and dim T = 2m-q-1. Assume T ¢ OM, and

that there exist 7' # v and fr' = fr. Let S‘1 = link(+; K'), S

Z = link(fr; L"), dim S1 = dim s2 = q-m, dim Z = 2(q-m). S

5 = link(T'; K"),

1 SZ’ and Z
are spheres, and Sif\ S2 = ﬁ , as above,

Let g = f| Siu SZ' Then g(S1) A g(SZ) consists entirely of vertices,
for otherwise dimSZf > 2m-q. Moreover, each point of intersection y

determines a pair of vertices x and x! in S and S', respectively, such that

xT and x't' are in Szf. Conversely, if 1< ¢ ¢ Szf, let x be vertex of ¢

notin T. Then if ¢' is a simplex such that fo = fo!, v<¢’ because, as
m < q-1, the triple points of f have dimension at most Zm-q-2. Thus

the simplices o ¢ Szf such that T <o correspond to intersection points

of gS1 and gSZ.

Now say x e X1 and xT ¢ SZf° Then ﬂf(X'r) linking number of

f(link(xT; K')) and f(link(x't'; K")) in link(f(x7; L'), where x'e S2 is the

unique point such that £(x') = f(x). But link(tx; K') = link(x;S and

)
link(T'x'; K!') = link(x';SZ) and link(f(x7); L') = link(fx; Z), as f is

simplicial., Therefore gf(x-r)= Q’g(x).

Let Xi’ con ’Xq be the vertices of S1 mapped by g to intersection

q
points of g(Si) and g(SZ). Then U_;; ] {fo(c) =i; ¢g(xi)= sum of the

o‘eSZf
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linking numbers (mod 2) of link(yi; gSi) and link(yi;gS ) in link(yi;Z),

2

y. = f(xi). Since g is in general position (its double points are of dimen-

sion zero and it has no triple points), Lemma 11.3 implies that this sum

R e e

is congruent to zero modulo 2.
Now, for T e Ko’ dim T = 2m-q-1, suppose there is no T' with

fr =fr' but T # v'. Then suppose T<o and o ¢ Szf. Then there exists

o' such that fo = fo' but ¢ # ¢'. Since f embeds o and c', ' has a

face T' such that ft = fr'. Therefore T =7'. Therefore if (T'l’ oo ,crp

are simplices of SZf having 7 as a face, p is even and we may suppose

f(O’i) = f(0'i+1) for i = 4(2). By definition, ¢f(0'i) = ¢f(ai+1) , i=1(2),
i<p-1. So z ¢f(0') = 0 (mod 2) in this case also.
oc>T
S
o € 2f

Now suppose T ¢ Ko and T ¢ O9M and there exists 7' such that fr = fr',
T#7', and Te M. Let B, = link(T; K'), B, = link(7'; K'), (g-m)-balls.
Let B = link(ft; L'), a 2(q-m)-ball. Since T is a principal simplex of
Sz(f) M, BB1 and 8B2 are embedded disjointly in 9B, An argument

similar to that for the first case, using Lemma 14.3 instead of Lemma 11.2

shows that z ¢f(0') = linking number of E)B‘1 and BBZ in 0B = ¢8f(-r)

c>T
o€ Szf
(all modulo 2). Now ac(f) = z ( ¢f(0'))-'r where we sum only over
T o>T

simplexes of Sz(f). But > ¢f(°')

0 if v ¢ S_(df)
2
o> T

i

¢af('r) if Te Sz(af) .
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So 8c(f) = c(df). So c(f) represents an element (f) ¢ H (M, OM; Z)

2m-q 2

if 9f is an embedding, c(f) gives an element a(f) e H (M; Z_).

2

2m-q

Lemma 11.5. «a(f) and @(f) do not depend on the choice of tri-

angulation.
Proof. Suppose f:K —> L is simplicial, Ko is full in K with
|KOI = Sz(f) and K',L' are obtained from K, L as above. Let o be

a (2m-q) -simplex of fSZf . Now suppose aK: BL are subdivisions of

K,L and f: aK—> BL is still simplicial, and let «'K,B'L be obtained

by starring simplexes not in KO,fKO . Then pseudo-radial projection

ey s A S

assures us that there is a P. L. homeomorphism link(o-i, B'L) — link(c, L')

sending link(c,, fa'K) —> link(cri,fK'). So ¢f(0‘1) = ¢f(cr). Thus each

1’
principal simplex occurs with the correct coefficient and gives rise to the

same homology class.

Lemma 11.6. If f, g:Mrr1 — Qq, m < g-2, are proper P.L. maps

in proper general position, and if f = g as maps (M,0M)—> (Q, 9Q),
then off) = a(g). If f|8M is an embedding and f = g (rel M), then
a(f) = a(g).

Proof. Let F:MXI—>QXI bea level preserving homotopy
between fand g. F|MX 8l is in general position. Therefore, let
G:MXI—>QXI beaP.L. map in proper general position which agrees
with F on M X 9l

Triangulate so that M X 0, M X1, and M X I are subcomplexes and

G is simplicial. So 3c(F) = c(8F) = c[F|M X 0] + c[F|M X 1] + c(F|aM X I).






Proof. Let F:f=g. Let G:ig @ h. Define H:f = h by

F(x, 2t)
H(x,t) =
kG(x; 2t-1)

Then it is not hard to see that a(H) = &(F) + &G).

Remark. Say f{f: M® — Q9 is a proper P.L. map in proper general position,
and 2m-q = 0. Then o(f) is defined, since 2(m-1) - (gq-1) = -1, and

a(f) € HO(M;Z However, it is clear from the definition that

2 )-
E ¢f(<r) = 0 (mod 2), M is triangulated with £ simplicial. Therefore we

g€ SZf

may view a(f) e HO(M;'ZZ). Similarly, if f, g M — Eq are embeddings

oM = § and 2m-q+1 =0, d(f,g)e ﬁO(M; ZZ)' Note that this is consistent
2

with the fact that M connected implies that M can be embedded in E m

+
and any two embeddings of M in EZm 1 are isotopic.

3. Obstruction to Isotopy of Embeddings of a Manifold in Euclidean Space.
m q . . -
Suppose fo: M T —=> E* is an embedding, M compact, oM = g. Then
:M—> E :
if g is an embedding, d(fo, g) € HZm-q+'1(M’ ZZ) depends only
upon the isotopy class of g. For d(fo, f) = d(fo, g) + d(g,f), and if gandf{
are isotopic, d(g,f) =0. Then g—> d(fo, g) defines a map of isotopy

classes of embeddings of M™ into E? into H (M; Z

2m-qt+i Z)'

Theorem 11.9. Let Mm be a k-connected closed manifold, k< m-4.

Let f :M—> g2k Lo a2 P.L. embedding. Then g —> d(fo, g) defines a

map of isotopy classes of embeddings onto Hk+1(M; ZZ).
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We first prove this theorem in a special case. Then we use this
special case to prove the general result.

Let Sj and Bk denote a P. L. sphere and a P.L. ball of dimension
j and k respectively.

+
Lemma 11.10. Let f:S0 X B® —> BZS 1 be a proper P.L. embedding

with s> 3. Then there exists a level preserving P. L. map

+
F: S0 X B® X 1 —> BZs 1 in general position such that
(1) Fo = f
(2) F, is a P.L. embedding

1
(3) Ft|so><a_13S = FO|SOX8BS , forall tel

and
~ 0
(4) a(F) e HO(S x B®; ZZ) is non-zero
. 0 s .
Proof. Write S XB = B,1 ) B2 . By general position, any map
2s+1 . . .
g:B1 —> B - fBZ with g] E)B1 = f| 8B1 is homotopic to a P.L.

embedding keeping the boundary fixed. Homotopy classes of such maps

+
are determined by elements of 'n's(st ! - fBZ) = Z. Choose g so that
) 2st+1 .
gB1\«' fB1 determine a generator of WS(B - fBz). Define
F:(B,w B,)X1 > 825 x4 by
(a) F =1¢
o
(b) FilB1 =g , FilBZ= f

(c) Ft[(BBi\j aBZ) = flaBiua 8B, , for all te I.
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Now extend conically on each ball.

/——’/[\

</

a +
Then o(F) = linking number of F 8(B1 X 1) and F 3(32 X 1) in a(BZS 1 X 1)

reduced mod 2, which is one by construction.

Let M be a regular neighborhood of an r-sphere, dim M = r+s. Let

+2s+
f:M—> B" 2s+l be a P.L. embedding with s> 3. Then there is a level
+2s+
preserving P.L. map F:MXI——> B 25+t X I such that
(1) ¥ =f
o

(2) F1 is an embedding
(3) Ft|8M=f|8M forall tel

(4) @F)#0 in I—Ir(M; zz) = Zz‘

Proof. The proof is by induction on r, keeping s fixed. When r =20

this is simply Lemma 411.10.

The inductive step: Let K C L triangulate s*C M with K full in L.

IL.et N be the derived neighborhood of K in L. Then M = N,
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Let ¢ be an r-simplex of K. Let o be the dual cell of ¢ in K'.,
Notice that
(1) o 1is an s-ball properly embedded in N;

(2) N~ star(c,K) is a regular neighborhood of ¢ in N meeting

ON regularly;

arem— L ]
(3) N n star (o, K)~ N - star(o, K) is a derived neighborhood of ¢ in

. link(c, K), and so is P.L. homeomorphic to Sr"1 x B®

(1) and (3) are clear enough. To show (2): Let T,...Ty Pe the simplexes

1 N

of & in order of decreasing dimension. Then N ’&tilink(d, K)\
N n B"F,link(o‘K) by an elementary polyhedral collapse. Similarly,

N o, 11nk o, K)\ Nn G, 11nk(o‘ K) by an elementary (simplicial) collapse.

Let h:N—>M be a P.L. homeomorphism. Let D =ho .

+2s+ 128+
fD N aB* 2stl foD. Now (Br 2s 1,fD) is an unknotted ball pair, so there

is an s+1 ball E in gT2s™ _in 8E =D v (E N 9B

r+Zs+1)

By general position we may assume that dim(E n{(M)) £ (r+s) + (s+1) -
(r+2s+1) = 0. So f-1E = Du X. X = a finite number of points. M is con-

nected, so there is a polyhedron D' with D v X C D' \D, dim(D'-D) £ 1.
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+2s+1
We can assume D'-D C Int M. Now choose E' in Br s with

+25+
E¢ fD'C E'\E, dim(E'-E)<2, E'-EC Int pries 1. By general

position we may assume E'n fM = fD'. Now triangulate with D', E'
as subcomplexes and f simplicial. Let N, = 2nd derived neighbor-

1
+2s+1
hood of D' in M and N2 = 2nd derived neighborhood of E' in B* 2s .

r+2s+1
s = f'\ =
Then put U1 Nif\ aM , U2 N2 9B , Vi =Fr
W, = cl[dM-U,], and W_ = aBr+Zs+1_ Int U.. Then U_,V_,W_ are P.L,
1 1 2 2 2’ 2 2

r+2s+1

Ny oV, =Fr N, ,

N,] are r+2s+1 balls. N,, being a regular

(r+2s)-balls, NZ, cl[B .

N
neighborhood of D in M is an (r+s)-ball and, from the above remarks on

bid -
o etc., V1 =~ st 1 x B, N1 and cl{M-N) are (r+s)-balls.

By induction, there is a level preserving P. L. map IE":V1 XI——> VZX I

1 E' - x

2) F{ = a P. L. embedding ,

3) Ft'|8V1><I=f|8V1><I , forall tel,

i 1 3 . =
4) 2(F") # 0 in Hr_i(vixLzz) z, .
+2s+
Define F:M X[ —> BY 2s 1><I as follows: put
F o=f,
o

Ft[8M=f|8M for all tel,

= 1
F1|V1><I F,

Extend F1 over

N1X1 >N2><1

M- N, X1 —>cl[B

+
r+2s+1 ) NZ]X 1



by conical extension. Then SZ(F) =~ suspension of SZ(F'). Moreover,

the linking numbers correspond and @(F) = suspension of 2(F")

#0 in r(M,ZZ)

Proof of Theorem 11.9. M is a compact k-connected closed manifold.

k £ m-4, fo:M——> EZm-k is a P.L. embedding. Let § ¢ H

rag (M3 2

2)'

+
Let me w (M) be an element representing £ . Let i:Sk 15 M be

k+1

a P.L. embedding representing W [which exists by embedding Theorem 8.1].

+ _ —_—
Now fOiSk 1 is unknotted in EZrn k, so bounds a k+2 disc, D say, in

EZm—k. By general position assume En fo(M) has dimension £

(k+2)+m - (2m-k) = 2k-mt2 < k-2. By the familiar argument used for

example in proving the embedding theorems, we define inductively sets

- + -
c.CM,DC g™ k, X.C M with C.\iSk 1, DO, f 1D. =C.u X, ,
1 1 1 1 1 (o] 1 1 1

dim Xi < dim Xi—i . Eventually, for i= R say, XR is empty.

Now triangulatewith fO simplicial, Ck and Dk as subcomplexes, and

let N_ = 2nd derived neighborhood of D, in EZm—k. Let N, = { -1N ,
2 k 1 o 2
2m-k x

a 2nd derived neighborhood of Ck in M. Now let Fs MXI —>FE 1

be such that F = fo X 1 outside Ni’ F is in general position, F1 is an

embedding, f_ = £, F(N, XI)C N, X I, and oF |N1 X I) is the non-zero

1
element of Hk+1(N1X I; ZZ). (in the notation of Lemma 11.1, r = k+1,

s = m-(k+1) > 3, r +2s+1 = 2m-1.) But clearly, a(F) = J*E(FlNi X 1),
where J:N'1 X ] —> M X 1 is inclusion; in fact, both elements are repre-

sented by the same chain. But j,:H

1(_'_'1(N1 X I; ZZ) —_ Hk-l-‘l(MXI) maps
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the non-zero element onto §. So d(F'l’ fo) = £. Thus we have found

a new embedding having the required "difference class" from fo .

4, Other Results.

In this section we outline some more results that can be proven about

obstruction to isotopy of embeddings.

1) Suppose M™ is a k-connected compact closed P. L. manifold,
PP

2m-k
k < m-4, and suppose m-k is even. Suppose fO:Mm — E“" " is an

embedding. Then the correspondence between isotopy classes of em-

beddings of M in EZm-k and Hk+1(M; ZZ) given in section 3 is also

one-to-one,.
II) Consider maps of an orientable closed manifold M™ in a manifold
Q2. Then one can develop an obstruction theory analogous to the above,

but with coefficients in Z, provided q-m is odd. Then if M is orientable,

k-connected and closed and fO: M—> EZm-k is an embedding, one gets

a map from isotopy classes of embeddings of M in Ezm—k to Hk+1(M; Z).

For k < m-4, this map is one-to-one and onto.

III) Suppose f:M —> Q is in general position. Let (Ef = mapping
(MXI)u Q
{(x,0) ~ £(x)}

o' be such that fo = fo', o' # o, and let ¢f((r) = linking number (mod 2) of

cylinder of £ = If o is a (2m-q)-simplex of SZf’ let

f(link(o; M) and £(link(¢'; M)) in link(fo;Q). Then let

C(f) = z ¢f(cr)[cr>< I] e C*(Cf) X ZZ , where [¢ X I] denotes the chain one
o



obtains from the usual triangulation of « X 1 (or denotes a chain in

prismatic homology theory). Then 9C(f) = C(f) € C (M X 0). So C(f)

H o« N o = .
represents A(f) e 2m-q+'1(c tM; Z and 9A(f) = off) € M)

f 2) ’ HZm—g(

Suppose F:MXI—> QX I is a homotopy of f and g. Then the

inclusions (Cf; M) —> (CF; M X I) and (Cg; M) —> ((EF; MX1I) are

homotopy equivalences. So F induces an isomorphism

F,: H (CpM;2,)—> EA(f) = A(g). So A(f)

tM; Z
f’ (Cg’ H

2m-q+1 HZm-q+'1 2)'

depends on the homotopy class of £, In particular, if f is homotopic to an
embedding, A(f) = 0.

If oM=98Q=¢ , g-m =23, 2m-q21, vi(Cf;M) =0 for i< 2m-q,
Ti(M) =0 for i< 3m-2q+2, and g-m is even, then A(f) = 0 implies
£ is homotopic to an embedding. If g-m is odd, then there is an analogous.
theory over Z, and the analogous result is true.

If F is a homotopy of f and g, fixed on the boundary, say, we can
use A(F) to measure the obstruction to getting an isotopy. In general,

however, A(F) depends not only upon f and g but also upon the choice

of F.
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Chapter XII: Embedding Up to Homotopy Type

1. Introduction.

Theorem (Browder, Sullivan, Cassen): If f: M — Q% is a homo-

topy equivalence (M compact), q-m > 3, dM = ¢, and if i*:-1T1(8Q) —> 1, (Q)

1
is an isomorphism, then f is homotopic to an embedding.
k . . .. m
Corollary. Let K be a finite simplicial complex, M a closed
P. L. manifold, Q% a P.L. manifold without boundary, Suppose g-m > 3,
g-k >3, §:M—> K is a homotopy equivalence , and the following diagram

(of continuous maps) is homotopy commutative:

Then f is homotopic to an embedding.

Proof. Let N be a regular neighborhood of K in Q. By general
position, -rr,l(N;N-K) =0 for i< 2. The generalized annulus theorem
implies that N-K = 9N X [0, ©], and so N-K has 0N as a deformation

retract. Therefore vi(aN) —> 7 ,(N) is an isomorphism. @:M—> N

1

is a homotopy equivalence, as N\(K. Hence the theorem applies to §.
In this chapter we are going to find a condition on f: M —> Q which

implies the existence of a homotopy commutative diagram as in the

corollary.
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Definition. Let f:X—>Y bea continuous map of topological spaces.
(XX I)VY
{(x,0) ~£(x)}
identifying x ¢ X with (x,1). Then define 'rri(f) = vi(Cf; X).

Let Cf = mapping cylinder of f= Identify X C Cf by

Theorem 12.1: Let f:Kk —> Qq be continuous, K a finite simplicial

complex, 0Q= g, k< q-3. Suppose “rr.l(f) =0 for i< 2k-q+1. Then
there is a homotopy commutative diagram in which K' is a finite simplicial

complex, g a (simple) homotopy equivalence, and dim K' L k:

N\

K|

2. Lemma on Homotopy Groups of a Triad.

Lemma 12.3. Let Kkg_ U C Mm, K a simplicial complex, U open,

M a manifold, 8M = §. Then if 'rri(M-K;U—K) =0 for i< r, then
-n-i(M; M-K;U) = 0 for i< rtm-k-1.

(Compare Blakers & Massey, Homotopy Groups of a Triad, Annals of Math,

55, (1953). Note that -n'i(U; U-K) = 0 for i<m-k-1, by general position. )

Proof. Let ™ e ‘T\’i(M; M-K; U), i < rtm-k-1. Let
f: (B, Fi;FZ) —> (M, M-K, U) represent ol , where B =i-ball, F1 and FZ
a i-1)-bal F o F_= F NnF_=20 = i -
re (i-1)-balls, F, w ¥, 0B, 1 5 F'i 8F2' Since M-K and U

are open, we may assume, after a small homotopy if necessary, that f is

P.L. non-degenerate and £(B) is in general position with respect to K.



Let X = f—i(K). Then XN F1 = ¢ and dim X £ itk-m. For

engulfing in a ball, codimension hypotheses are not necessary; So there

a polyhedron CC B with X T C\C N F_, dim C < itk-m+1 < r. Let P

1

2
be a polyhedron in C with PN f K=¢ and C - f-1U C IntCP. Let
P0 = FrCP. So fPO C U. Now (M-K,U-K) is r-connected and dim P < r,
so there is a homotopy of P, in M-K, fixed on PO carrying P into U-K,
This extends to a homotopy of B, F'l’FZ —> M, M-K,U carrying f onto
f' where

(1) () 'k=1x,

(2) £(C) CU.
Let R be a second derived neighborhood of FZ '/ C in B with f(R) _ U.
qu C\‘]E"2 . So R is an i-ballin B, R 0B is a face. So there is a
strong deformation retraction g:B—> B-R. ' f‘|3 : B,Fi,F2 —> M, M-K,t

and f'B(B) & M-K. So f'p represents zero in -n'i(M; M-K; U-K).

k
Lemma 12.4, Say K C Mm, k < m-3, K a finite complex, M

a manifold. Let N be a regular neighborhood of K in M. Say 'rri(M,K) =0,
i<r. Then 'n'i(M,N,N—K) =0 if i< rtm-k-1.

Proof. The following sequence is exact:

>, (M-K;N-K)

~K:N-
w (M-K; N-K) 4

> 'n'i(M, N)
N

'rri(M, K)

> 7 (M; M-K; N)
i

So (M;M-K;N) i-connected, i< r+l => (M-K,N-K) (i-1)-connected =

(N, M-K,N) is (i-1)+m-k-1 2 i+1 connected. So by induction, the result
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follows. (Observe that in applying 12.3 we can replace N by N because

N—>N isa homotopy equivalence,. )

3. Proof of Theorem 12.1.

Let szk —s 1 , 9>k+3, 0Q =0, "n'i(f) =0 for i< 2k-q+1, X a finite
complex. Then we want to find X' < Q, a subpolyhedron, dim X'< dim X,
and a homotopy equivalence @:X —> X' such that @:X —> Q and
f:X —> Q are homotopic.

We proceed by induction. Let {Ai} = simplices of K, |K| = X, in order
of increasing dimension. Let Ki = {Aj ] j< i}, a subcomplex. Then we use
the following inductive statements f is homotopic to fi:K —> Q, where
fi(Ki) ¢ L, SQ L. asubpolyhedron, dim L. <k, and fifKi:Ki —> L, is
a homotopy equivalence.

When i= 0, KO = a point, and there is nothing to prove. So assume fi

Let N be a regular neighborhood

has been constructed, and let A = Ai+1 .

of Li in Q. Let r = dim Ai . Then Ki contains the (r-1)-skeleton of K.
Therefore 1rJ,(K; Ki) =0 for j< r-1, by the cellular approximation theor em
(cf Spanier, Alg. Topology, p.404).

Let C = mapping cylinder of fi .  Then

0

— 7 (K, K. > r.(C,K,) —> 7.(C,K
J( ) J( ” ;) J( )
I

vj(Q, Li) 'rrj(fi)

>w, (K,K.) is exact.
j-1 i
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So 11'J.(Q, Li) =0 for i< min(2k-q+1,r-1). If N is a regular neighborhood
of Li in Q, we have 'rrJ.(Q,N,N-Li) =0 for j< min[r+q-k-2,k]. So

wr(Q-Li,N-Li) e vr(Q, N) is onto. 8N is a strong deformation retract

of N-L, , so vr(Q-N, 9N) > vr(Q, N) is onto. Furthermore, from the
i

exact sequence of the triad,

—_— _— a
> 'rrJ.(Q-Li, N-Li) > ‘1rJ.(Q, N) > 'rrJ,(Q,N, N-Li) —_— .

wj(Q-Li,N-Li) = 0 whenever j< min(2k-q+1, r-1) and jt1 < min(r+q-k-2, k),
So, in particular, whenever j<2r-2+1., Let A = Ai+1 and choose

#: A, 0A —> Q-N , 9N such that [/ = filA:A, 0A —> Q,N, By the embedd-

ing theorem 8.2 |, we may assume f to be an embedding., By the homotop
extension property fi 2 K —> Q where qJIA = gA, Lp]Ki & filKi:Ki —>N,

Then L[J’Ki U A:Ki UA—> NuU@A isa homotopy equivalence., Now N\SLi s

so N\L.u T where fANN C T, dim T¢ k. So NuﬂA\‘LiuTu;JA:LiH

say. If a:NugA —> Li+1 is a corresponding deformation retraction

define f, lK = af and using the homotopy extension property extend

it1' i

fi+1 over the whole of K with fi+'1 > f,

This completes the inductive step.
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Handle-Body Theory and the s-Cobordism Theorem

Introduction.

A cobordism is a manifold W with boundary the disjoint union
W = 8+W . B_W. An h-cobordism W satisfies the further requirements
8+W CW and 8 W I W are homotopy equivalences,

The method of Smale consists of representing a cobordism as the
union of handles and sliding these handles around to obtain a product
structure on certain h-cobordisms of dimension 2 6. That is, for such
an h-cobor‘dism W, there is a P. L. homeomorphism of W onto 0 W XI,
written W =2 0_W X1,

In this process an obstruction called torsion occurs naturally. An
h-cobordism with no torsion is called an s-cobordism. Alternatively,
an s-cobordism is defined as a cobordism satisfying the requirements:
LW CW and oW C W are simple homotopy equivalences.

A simple definition of simple homotopy equivalence is given as the
equivalence relation on compact polyhedra generated by collapsing (K\L)
and by P. L. equivalence (K = L), For example, the finite sequence
Ki\Kz 1K3 = K4 defines a simple homotopy equivalence of ]':(1 and K4 .
With any such sequence we can associate a sequence of maps of one term
into the next, the composition map is well-defined up to homotopy and is

called a simple homotopy equivalence.




The object of these lectures is to obtain the following

Theorem: If W is an s-cobordism, dim W > 6, then W =29 WXI

1. Suppose w" s given and suppose i: aB" X B —> 8+W is a
PL embedding. Let W'=W ui B X Bn—r’ then we say W' is got by
attaching an r-handle to W. W' is still regarded as a cobordism with
B_W' = 8_W, 8+W‘ = OW!' - B_W'. We will frequently be attaching several
. . . T n-r
handles simultaneously. Suppose 1,,15,.--> L B" XB —> 8+W are

PL embeddings with disjoint images. Then we can stick all the handles

corresponding to 11, i AR 1k
Vo= ) rx n-r, r>< n-r ' I"X n-r
w w \-i'lBi B1 ‘JiZBZ BZ. 8 ...L_:lkBk Bk ,

and we say W' is obtained from W by attaching r-handles.

on at once, say

A standard handle body decomposition of W is a sequence

WOC W1 c . .l Wn+'1 where W0 ~ 9 W X I, we insist that Wi+1 is
obtained from Wi by attaching i-handles and Wn+1 ~ W. The main ques-
tion of the theory may be stated: what handle body decompositions give
the same manifold?
Lemma 1. Every cobordism W hasa standard decomposition.
Proof. Let K be a simplicial complex triangulating W with KO
a subcomplex triangulating 9 W. Let L,= K, L. = K, ((i-1)-skeleton
of K) and write Wi = N(Lll‘ ,K"), the simplicial neighborhood of the 2nd

derived Lfl' of Li in the 2nd derived K" of K.
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Now W0 is a regular neighborhood of 8 W inW (Chapter II)
but by the collar neighborhood theorem (Chapter I) there is
a regular neighborhood of 8 W in W, PL homeomorphic to 6 WXI and
so by the uniqueness of regular neighbourhoods. Wo =0 WXL The
proof will be completed after establishing the following assertions.

Assertion; Wi= U St (¢, K") where o = barycentre of 0. (1)
[ L,l

Let A be an i-simplex of K, then

—, A > .

§t(A, K" NW, = §t(AK")N N(A,K") . 2)

Let L = { simplexes of K whose vertices are barycentres of simplexes
' I

having A as a face} = {BiBZ...}%rl A< B1<B2< <Br}' Alternatively,

we can write Bi = ACi with Ci ¢ link(A, K), then the map Bi — di induces

a PL homeomorphism L > 1ink(A, K) called pseudo-radial projection.

L

A
We can make the same construction again; let p: link(A,K") — A L

A~ A ~
be the pseudo-radial projection defined by AC —> C for C e link(A,K') (2)

A'L

[link(A, K") N W]

A link(A, K")
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The fact that p sends link(z&, K") (\Wi —> derived neighborhood of A’
in A'L follows from standard considerations (cf Chapter II). Since Al
is full in A'L, p[link(A,K") mWi] is a regular neighborhood if A'in A'L
(see Chapter II).

The remainder of the proof divides into two cases.
Case 1. A ¢ 8+W.

In this case, L = link(A, K') is a PL sphere so A is an unknotted
(i-1)-sphere in the (n-1)-sphere AL. Thus by uniqueness of regular
neighborhoods there is a PL homeomorphism & : AL —> E)(Bi X Bn-i),
sending A—> B(Bi X 0) and sending p[link(;&, K")n Wi] — E)Bi X Bn-i.
Now extend ®« conically to give a PL homeomorphism from S—t‘a_l_r(./,\%, K") —>
B! x B®™*. Thus attaching EE—I'—(A,K") to Wi is attaching an i-handle.
Case 2. A« 8+W.

Here L is a ball, thus AL is a ball and A o B(AL) as an unknotted
(i-1)-sphere.

i

n—
L 0B =F v
et 1 F2 where }3‘1,]?2

interiors, and observe that (B’ X F'l) C (8B x Bn-l) = c1[8(B* x B™ ™Y -

are (n-i-1)-balls with disjoint

(B1 X FZ)] is an (n-1)-ball with 9B X % as an unknotted (i-1)-sphere in

the boundary. Thus there exists a PL homeomorphism

a: AL —> (B1 X Fi) w aB" x Bn_l) sending A —> 3B" X *, and sending a de-

rived neighborhood of A —> B x B" 7', (* is an interior point of Fi.)
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Then ap:link(ﬁ, K") —> (B1 XFE) U (E)B1 X Bn-l) extends conically to
a PL homeomorphism
h:star (A, K") —>p- [(B*x F) _(8B" x B® ] 2 B x B" ",

where the last PL homeomorphism extends the identity on the base of the

cone. Thus we have again attached an L-handle.

2. We now consider methods of altering the standard handlebody
decomposition so as to eliminate handles. The first crucial way of modi-
fying a handlebody decomposition uses the boundary collar to slide handles
around as in the following lemma.

t— 8+W are PL ambient isotopic

Lemma 2.1. If £, g: 8B X B™”
imbeddings, then W o (B.1 X Bn—i) ~ W ug (Bi X Bn-i),

Proof. Let c be a boundary collar of W (restricted to 8+W),
That is, c: 8+W XI—>W with c(x,0)=x forall x¢€ 3+W. Let
H: 8+W XI1I—> 8+W X I be a PL ambient isotopy with Hif = g. Define

a:W—>W by ac(x,t) = c(H, x,t) and by « = id. outside Im c. Then

1-t
a extends to a PL homeomorphism

W L-f_(Bi x B® ) — w Uy Bl x BP7Y). j
We will now look at homotopy classes. If f: E)Bi X Bn"i —> 8+W is an
imbedding, then f(aBi X 0) C 8+W is called the a-sphere of this handle and
is said to represent the element éewi_1(8+W) if by homotoping a point on
the a-sphere to the base point in 8 W we obtain a map representing §.

£ is determined to within the action of ni(a+w) on 1(8+W). If

1= 2, this action of ™ on m, is an inner automorphism.,
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We introduce the followin g notation. If £ = wi_1(8+W) and wen1(8+W)
then £° is the element of wi_1(8+W) induced by carrying the base point

around the path w. If i= 2, .‘g'w = w-igw.

3. We will now look at the following main construction. If we have
two handles attached to a cobordism, both attached to the same level,

then we can slide one handle over the other,

Theorem 3.1 (Handle addition theorem): Let 8+W be connected

and let W'=W L;fhir ugh; where hirgBrXBn'r, i=1,2 and f,g
disjoint embeddings aB" x BT — 8+W. Suppose f represents £,

= 3 £ - - =
g represents 7 in wi_1(8+W) and 2 £r ¢ n-3. Let w.w1(8+W).

Then W' W __h'  h, with f,g' disjoint imbeddings of

£ Vg2
BT X B""F in 8+W and g' representing v % £€“ with prescribed sign.
[If i=2 we can choose g' to represent either w-igw or w—iﬁ_iw.]

Proof. Choose x ¢ 9B" % andlet D= B Xx -~ h. Let c bea

boundary collar of 3 W - #(oB* x B""Y). ¢ is an imbedding of
£(0B" X aBs) XI— 8+W. Let c be chosen so that Im(c) ~ h2 = ¢ and
let D'= D o c[(BBi X x)X1]=D _c[dD X IJ.

For convenience in notation write SZaL = g(aBr X 0). Since
£(8B" X B" ")\ £(9B" X 0) of codimension 3 in 8, W, 3 W - hir rW is
still connected. Let P be a path in 8+W from 9D' to SZa with

P A hjr = §. By general position, P can be chosen as an embedded path

with 150D=15/“Sza=¢.
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Let N be a 2nd_derived neighborhood of P in 3+W, so that N
is an (n-1)-ball and N 7 3D', N7 SZa are both properly embedded
(r-1)-balls (3). We now apply Irwin's embedding theorem (Chapter 8)
to embed a cylinder Sr-Z %X I in N joining the boundaries of the two
(r-1)-discs. Since we are embedding Sr-2 %1 in an (n-1)-ball, Irwin's
connectivity conditions reduce to the condition that Sr-2 X1 be
Z(r—i)-(n-i) connected, that is, r-2 52r-n-1 or n-1>r. The condition is
satisfied, so let i: Sr“2 x 1 —> N be an embedding mapping the boundary

onto ON N aD!' and ON N Sza,

Let g':8B" X0 —> 3, W send 8BT X 0 onto s; - (SZa N N) -

T

L n-2
(™2 x1) U (8D - N) (4). Let W, =W ~hy . Claim o',g 8B X0

are ambient isotopic in 8+W1.
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First subdivide further with N a subcomplex, Let N' = 2nd derived
neighborhood of D' - D' NiInt N in R R Int N, N' is an (n - 1) ball
meeting ON in an (n - 2) ball, therefore N U N' is an (n - i) ball, g' and
g| 3B" x 0 agree outside NUN', In (NUN') we have two properly embedded
balls which agree on the boyndary. By Zeeman's " Unknotting balls" (Chap-
ter 5), g' is isotopic to g in (N U N ), keeping the boundary fixed,

Any ambient isotopy ofa+wl throwing gl 3B" x 0 onto ¢’ (BBr X 0)
gives an extension g" : 38" x B"T -'8+Wl of g' , ambient isotopic to g in
3 W 1° By uniqueness of regular neighborhoods there exists an ambient
isotopy of 3+W1 s, fixed on g' (3B x 0) and throwing
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g'(aBr X Bn-r) onto a 29 derived neighborhood of g'(BBr X 0). Thus we
. r n-r . r
can arrange for g'(8B° X B ) to be disjoint from h1 .
We have two important choices
(1) The path P

(2) The orientations of the homeomorphisms

sT"2 % 0 —> 8N ~ 8D

5T % x ¢ N " sza

w
Then g' represents an element of the form r t§ where P determines

w and the orientations determine the sign.

4. We now consider the problem of cancelling handles. We first
prove a simplifying lemma.
Lemma 4.1. Suppose Ming: MZn are compact PL manifolds,

\ ~
MZ‘ Mi' Then M2 = Mi.

Proof. (Using regular neighborhood theory): If ¢ is a boundary

collar of M then M

£ 2& Mi\\ Mo = cl[M1 - Imc] and hence Mi’ M2 are

both regular neighborhoods of Mo in MZ' Thus M1 = MZ'

n

+
Definition. Let M™,N% 2= Q™ ® be PL manifolds. We say M

and N are transverse at x if there exists a closed neighborhood U of x

in Q and a PL homeomorphism U,U &~ M, Ur N— BT X Bn, B™ x 0,

n .
0XB® M and N are transverse if they are transverse at each point

of M~ N,




Note: If M,N are transverse at x, then

star(x, Q), star(x, M), g’c";;(x, N) = B™ x B, B™ % 0,0 X B" .

(Recall that the star of a point is well-defined up to PL homeomo rphism. )

+
Now suppose W' =W ufhir "";ghzr 1. We introduce the following
notation:
a r+i r
= B X - - ,
S2 g(9 0) 8+(W h, )
sP - oxaB* T8 (W . h,)
t R AR S
D= 0XB "Thf
a b . . . .
Theorem 4.2. If S°,S intersect transversally ina single point
then W' =@ W,

(5)

Proof. We shall prove W' (W and apply Lemma 4. 1.

+ e N +1 -1 - +1

First note that BT x B®7T L™ x B™7T b o (8™ x0) by the
+ -r- + -r- + -r-2

collapse BrixBnr1\8B1‘1><Bnr1‘\,Br1><Bnr \

\ -r- + i + -r- +

\48Br+1XBnr 1 UBr 1><B1\~4..,\8Br 1><Bn T 1-, Br 1X0, (6).

© N N A /7

/ VvV oV

-r- +
e ry aordl o oner-l ol gy e Ty (BT L« 0).

R, i e



Prme———— e

£
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Let W1 =W\ hlr and triangulate with Sa,D as subcomplexes.

f

Let U, = star (X,Wl) and let N1 = the 2Rd barycentric derived of

1
D-U1 in Wl - U1 . Note N1 o 8W1- U = the 27d barycentric derived
neighborhood of .U in 3 W, - U = an (n-1)ball in 9N, . Now collapse
NJW-U; N -(N,~AoW -U)=F - o
N1 away from N1 OW-U; 1\aN1 (Nlm . U) r N1 (N1 Ul)
N -9

Notice that U1 ~ D = star (x, D), so U1 ~ DD - U, = link(x,D)

1

an (n-r-1) ball. Hence U "N, = 2nd derived neighborhood of U, ™ D - U,

= 774 4erived neighborhood of a ball = an (n-1) ball.

s0 Ul\UuFr U

W, -N
1 71

This ball is a face of Ul’

From the above remarks, Wl\ Wl-Nl‘l‘ W1 -N

l-—U1 - U.

By transversality there exists a PL homeomorphism

b r-1 n-r

y,un st uns —> B xB" T ,B"X0,0XB

-1
(U is the star of x).

Now 8U NN, = »nd e rived neighborhood of 38U N s® and b(BUN N))

-r-1 -
is a regular neighborhood of 0 X oB" T in (BT X B"

assume b(8U N Nl) =B' X aBn'r'1

so U\ (U ~s*yu (Fr U) .

Ww-
0 N1

r-1
), so we can

Also BT X B‘“'r'l\(Br x 0) L (8BY x B™”

We have now shown that by a sequence of collapses Wl\W1 -NI-U1 ) Sa,

rt+l e r+l
L X o)\wl-Nl-U (BT X

w
ug(B .

+1

0) and B¥"" X 0 has been undis-

+1

turbed during the sequence of collapses. Since S°N U is a face of BY X0

+
we can collapse B" ! X0 \ s? - s?nU so W1 ug(B

r+l B AN T
X -N_ - .
0) \Wl 1 U1

Nlm U1 is a regular neighborhood of D in W1 and h.' is a regular neigh-

R P

b 1 - - o~ - =
orhood of D in W1 SO W1 N1 U1 o~ W1 h1

1
W.

r—

1

)




The first application of Theorem 4. 2 will be in

/L// S

(7)

A

/
/

removing the O-handles.

0 0 0
Lemma 4.3, Let W1=W\)h1 uh‘2 u...‘uhp and
1 1 1
W = W ' . e j . W ) W i - ’
> 1\J k1 V) k2 U ukq If ( > ) is O-connected, then
W2 &~ W u(a number of 1 -handles).
Proof . By induction on the number of O0-handles. The exact sequence

iple | > H (W i :
of the triple (WZ, Wl, WO) shows that H1 (WZ’ Wl) HO( 1WO) is onto

Thus for each pair of points x,y in two different components of W1 we can
find an explicit 1-chain having x-y as boundary. Thus there exists a 1 -handl}
kj say, with one endpoint in hp.
0

Note that a 0-handle has the form B~ X B" so the b-sphere of a 0-handll
. . b n . 1 n-
is the whole of its boundary S~ = 0 X 8B". Similarly, for a l-hanlde B~ X B
the a-sphere is a pain of points s* = aB" x 0, so an a-sphere of h1 always

0

meets the b-sphere of h transversely,

By Theorem 4. 2, W2 = Wou(p-1) 0-handles w l-handles. This com-

pletes the inductive step.




~235~-

§5. We now want to deliberately add on an extra pair of handles for

cancellation.

Theorem 5.1.

Suppose W is given with r < dim W-1 and U open

+1
1 2

in 8 W. Then Waew'=Wouh' o h', where

(1) (hlu hz)ﬁwcu

(2) SZa and S.°

meet transversely in one point.

1
Proof. In v.Br, let C,l_ = (2w +(1-N)x: xe B” , X< lZ}
r 1
C2 = {)\v+(1-)\)x: xe B, xz-z- }
Observe that vBT X Bn—r-l is an n~ ball and v(8Br) X Bn-r-l is a face,
say F. Let i:F —> U bean embedding, then W & W LJi (VBr X Bn-r—l).
Now C1 ~ B X I, soput hy = C1 X Bn—r-l' Then
B b N W= BT x 1x BT, aBTxIx BTl Thus h) is an r-handle,
— ol o Tt . _ n-r-1

C2=VB =B , and if hZ—CZXB

h, O (W o hl) = 8C, X g7~ , s0 h, isan (r+1) handle attachedto W U h,.




§6. Transversality and intersections

Lemma 6.1. Suppose Kk, Lﬁ are compact combinatorial manifolds in

+1 ‘
Ek and suppose given oce¢ K, Te¢ L, dim (8— N 3) ¢ dim o + dim 7= k+4

(i. e., simplexes meet at most in isolated points in their interior). Then, K, L
meet transversely in a finite number of points.
Proof. This is clear from general position considerations .

+
Corollary 1. If B m’ B" c B are properly embedded balls with

+
BN B nap™ " = g, then there exists an arbitrarily small PL homeomorphi

+ +
h: BT —s g™ fixed on the boundary with Bm, hB"” transverse.
+ +
Proof. Suppose BT & TR and triangulate Bm,Bn so they are
. . m+n . . .
linearly embedded in I . Now shift the vertices by a small amount into

general position (Chapter 4).

Corollary 2. If Mn, N Qm+n are manifolds without boundary and
M compact, then there is an arbitrarily small PL homeomorphism h: Q —> Q
with M, hN transverse,

Proof. By general position assume M N N is a finite set of points.

Now apply Corollary 1 in disjoint neighborhoods of these points.

§7. Geometric and algebraic intersections.

T r r+l r+l
L = . = W] '
et W1 Wuhlu...\_, hp’WZ W1 kl U oee e U kq and
suppose 1r1(W) = wl(Wz). Let W C ~2 be the universal covers of W, w,
~ _1 ~
and let W1= P Wl where p: W2 — WZ is the natural projection map of the

covering space.




Now for each handle h,1 choose a lift ii of hi and for each j

a lift k, of kj. Given Xe€ 'rrl(W) we regard x as a transformation of the

covering space and write xhi as the handle obtained by applying the trans-
formation to gi chosen above.

Let gi generate Hr(hi’ hi ~ W), £ be the corresponding generator of

Hr( Ei’ii n W) Similarly, define nj as a generator of Hr-’rl(kj’kj ~ W) and

write qu as the corresponding generator of Hr+1(§j’ij ~ W) Let A be

the group ring of ’rrl(WZ). Now El' . 'Ep generate Hr( VVI,VV) as a free A

module since every handle in the covering is got by a translation of one of

~s

~ ' . . ~ ~ w
the §i s. Similarly 7y... g generate Hr+1( WZ’ ) as a free A module

and we obtain a matrix relating these generators from the boundary operator 8,

writing - N
a(m.) = >, N & with Xy € A

jivi
We will now see how these elements of the group ring are tied up with

the intersections of the a-spheres and the b-spheres. Let

a
= a- C oW
Sj a-sphere of kj +
b

= b~ oW
Si b-sphere of hiC "

b -

D, = usual disc spanning S, (0 X BT hi)'

b ~ ~
Notice Sa,S bound discs in WZ so we have also chosen lifts S.a,Sib
in W_. and D, spanni Sb
2 , Spanming = -

b
The first thing to observe is that Sja, S,1 transverse in 8+W implies

b ~
xSJ. s yS,1 are transverse in 8+W1 for all x,vy € 11'1(W2). This is true since

the condition of transversality is local and p is a local homeomorphism.



~
Further, W, is orientable,so to each transverse intersection we may give

2

a sign.

(9)

N

~b
S,

N

s 5\\ s
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In general if M™ and N® are submanifolds of an

+
orientable manifold an n

which meet transversely

at a point x, there is a homeomorphism

h:U,UNM, UNN—> B x B®, B™ X 0, 0 X B", where

U is a neighborhood of x in Q. Geometrically, we can ‘

choose h so UNM, UNN are mapped with the natural §

orientation and give intersection sign + 1 according as

whether U is mapped with correct orientation.

More precisely, in the diagram

H )——> H _(Q,Q-N)
m m
A
l k
H_(M, M- U[U ~ M])
i=1
R
k
EH Uf\Man\M) ,
i=1 m

for each i the generator of Hm( Uif\ M, 8Ui(\ M) maps
onto 1+ the generator of Hm(Q, QtN) by the local pro-
duct structure, the sign 1 is precisely the sign of the
intersection.

We define the algebraic intersection of gja with
xgib by taking the signed intersections and adding.

Then the algebraic intersection is the coefficient of x

in N\,
ji
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P 4~ pP*td '
Lemma 7.1. If B",B°T B are properly embedded balls, p,q=>1

and (Bp+q, Bq) unknotted with Bp, B4 meeting transversely at two points
with opposite sign, then 9B" is inessential in Bp+q - B4

Proof. BBp is homologous to zero in Bp+q - B4 [because 98P is
cobordant to two spheres each linking BY once in opposite directions] and

is therefore inessential since

+ + -
+ (BPT9_BY x u  (BPTY. BY ~ H (P h: 2.
p-1 p-1 p-1

Corollary. If p< p+q-3 and the above hypotheses hold, o spans
+
a p-disc BP properly PL embedded in BP9 B,
Proof. This is a direct application of Irwin's embedding theorem.

A Note that 2p - (p+q) +1 £ p-2, thus the connectivity condition on the image

space is satisfied.

+
Theorem 7.3. Let W1 =W u H , WZ = Wlu kr ! with 2 < r<n-4

and 11-1(8_‘_W) = -rrl(W). Let Sa,Sb represent the a-sphere of k and the

b-sphere of h respectively, in 8+W1. Assume Sa,Sb meet transversely.
~ ~h
Now lift to the universal cover and assume Sa, xS~ meet in two points Pl’ PZ

with opposite sign (plus some more, possibly).

Then we can alter the attaching map of k by an isotopy to an attaching

a' . . b .
map k' so that S (corresponding to k') is transverse to S and meets it

. +
in two fewer points than s® and so that W2 =] '\)\/'1 o k' 1.

Proof. Let 1“1,1"2 be paths in Sa,Sb from P1 to PZ. By general

position (r >3, n-r-1 2> 3) we can assume that I‘l, 5 are embedded and do

a b
not meet S° M S except in their end points.



We now have to notice that 1"1, FZ lift to paths in the universal

cover 8_{_7\/1 having the same endpoints. In fact, by the choice of

~a ~b
P,P i i in S. So, T T isi i
15 we can lift I‘l in S, FZ in o 1x) 5 is inessential
in 8_‘_Wl .
We will split the proof into two cases:

Casel. r>3. Let D be a disc in 8+W1 spanning Fl - I‘Z. By

general position, assume D is embedded (dim 8+W >5), D s =T

b
n-l-r>3), and similarly D" s =T,

i

(dim 8, W, - dim s*
(dim 8+W1 - dim Sb =r>3).

Let N be the ond gerived neighborhood of D in 8+W, then N 1is
a ball with Fl, FZ properly embedded, meeting in two points with opposite
sign. By Corollary 7.2, we can shift N s* off N~ Sb keeping

8+W1 - N fixed.

Case 2. r = 2. Here, the spanning disc used in the previous argument
. . b . .
might hit S~ ina number of points.
. b _
Notice that 8+W1 -8 = 8+W1 - (hl 8+W1) (10)

e (e ) .8 N -
But now, if (') is the a-sphere of h, 8+WW s") 8+W (h 8+W).

by _ an )
So, 1T1(8+W1 -S7) = -rrl(8+W - (s"Y%) = 1’1‘1(8+W) 1rl(8+W1) where the

isomorphism is induced by inclusion.

Let I.,I, be as before, N

- ond : :
172 1 2 derived neighborhood of Tz

b
in 8+W1 with Fl,TZ,Sa, and S~ as subcomplexes. Let

=T -(T

. b
- l} 1 s 1 - ! =
! ! . Nl)’ P!, P! endpoints of IL;'. 8N1 (N S7)

2 1 1

(n-2) sphere - (n-4) sphere and is therefore connected. So let T'! be a
P P A



path in 9N, - (ale‘\ sb) from P} to P . (11).

(10)

From the diagram (11) it is clear that 1"1' ) l"'2 is homotopic in

8+W1 to I‘1 U FZ and is therefore inessential in 8+W1, hence in

b
- S by the previous isomorphism. Thus there is a disc D in

8+W1
b . ' .
8+W1 - Int N1 - S~ spanning Tl' U I‘Z . By general position we can
assume D is embedded, DN S =L' and DNAN, =T,".
Now let N2 be a 204 derived neighborhood of D in 8+W1 - Int Nl.

Since N1 meets NZ in a common face, N = le\ N2 is an (n-1) ball (12).

Notice that NNS* isa regular neighborhood of Tl in 8% and

N N Sb = N1 N Sb is a regular neighborhood of FZ in Sb. For,
N, N s* = 279 derived neighborhood of I, in s?, Nzﬂ s? = 2nd derived
neighborhood of l'i' in S% - N1 , so N Ns® is an r-ball. Similarly,
for N N Sb. b
S
(11) \ (12) ]
N
2
N
r,” 1




a b
Using this construction we may manipulate S and S to get them to
intersect transversely in a single point, provided we know something

about their algebraic intersection.

+
Corollary 7.4. Let W; =W u h', W2 = WI\, k' 1, 1r1(8+W) = 'n-l(W)

and 2 < r<n-4. Suppose £ generates’ Hr(Wl,W), n generates Hr+1(w2’w)

Lk W) respectively,

and E ,:]‘ are lifts generating Hr((ﬁ,’}\; ~ VNV) and Hr .

+

If M = £ , then W, =W

Proof. We have to look at how this algebraic condition ties up with

intersection numbers. We know 91 = E a_ X ¢ where the integer a_ is
XEeT
. . Sa . =b . ~ 7 .
the intersection number of S~ with xS”. So if 9n=¢§, a_ = 0 if x # 1

and a = 1. So by repeated application of LLemma 7.3, observing, for example,

~

~a . . . .
that S~ meets xS in pairs of points with opposite intersection sign and

b
cancelling these pairs, it follows that W2 = W1 < (k') where s*' cuts S°!

transversely in a single point and cancelling the handle, WZ =~ W.

We now show how to cancel r handles by adding (r+l) and (r+2)

handles.
+ +
Lemma 7.5. Suppose W =Wv‘-hr,W =W« krl\d ...\,krl,
—emma 7. > 1 2 M- K q
171(8+W) = ‘nfl(W), 2<r<n-4. If (WZ , W) is r-connected then
W2 ~ W _ (r+l) handles o an (r+2) handle.
Proof. . Sr o — S0OSh . .
roof. 8 Hr+l( WZ’ Wl) Hr( Wl’ W) is onto and so we can write
9
~ ~ ~ ~r+l ~ r+l
= \ - .
£ izzl i8 un where )\i ¢ A and n, generate Hr+l( ki ’ki ; Wl) ]

We will introduce a complementary pair of handles (14). The attaching spheres §




€,

res

of k1 . ...kq do not cover 8+W1, therefore the attaching maps do not cover

81W1. So choose U T 8+W1 with U disjoint from kl. . .kq. We may

attach a pair of trivially cancelling handles in U. Let

(14)
r+l T r+l rt+2
g a [ Kgh
, ! Va4
4 !’l/ ) | : '
: . e
U
r+l 42
kq+1 , 1 be the pair of complementary handles attached in U. So,
W, =W, o b . Let W'= W, o eee - .
p EWy = ko - Koy et W= W,k kgl
Kq+2 is null homotopic in WZ' . Thus under the boundary map
~! ~ ~ ~ ~
'H w_,W)— W, W —> 0.

We will now apply the handle addition Theorem 3.1. Since the theorem
is stated in terms of homotopy classes, we must pass from the spherical
homology class :’1 to the corresponding homotopy class. Let

h: -rrr(8+W~ ) —> Hr(8+\7/'1) be the Hurewicz map. If the a-sphere of ki repre-

o w
= W 1 1 a—
sents @, ¢ 11-1_(8+W1) 11-1_(8+ 1) (up to the indeterminate @ o ) we

obtain from the following diagram

] r,l
e
'n'r(8+W1) Hr(8+W1)

H (Wl)

the relation jh a, = 87]1 . By the handle addition theorem we can choose

g
k! i - ! =
) so that its a-sphere represents aq+1 aq+1 + i%: )\iari. So



~244~

ih(a' )= 8n . = a[n 4 }cb N ml=F W 7,
Jh(aq+1) d nq+l [nq+1 2 ini] ¢ We can now use 7.4 to cancel
1
- i Wi = W._. v e W_ =W _ o
the r-handle in > 1~ k1 L _ kq+l and hence > > £

W C (rtl) handles _ an (r+2) handle.

The following handle rearrangement lemma is sometimes useful .

Lemma 7.6 . If W, = W o h', W2=W1\.ks, s < r, then

W2 ’EWI; k' where k'° is disjoint from h'.

Proof. First of all, if s* = a-sphere of k and Sb = b-sphere of h,
. a . b - a
dim S° +dim S~ = (s-1) + (n-r-1) <n-2<n-1. By general position S° can
b
be moved off S° by an ambient isotopy. Let Nl be a 289 derived neighbor-
hood of Sb in 8+W1 not meeting s* (15). There exists an ambient isotopy
of 8+W1 throwing N1 onto a+wl " h which is also a regular neighborhood
of Sb in 8+W1. So S% is now disjoint from h.
s

¥ f:8B° x B"% — 8, W, is the attaching map of k with S°~ h= g,

let N, bea 20d derived neighborhood of S% in 9.W. not meeting h.

1
There exists an ambient isotopy carrying £(oB° x Bn-s) onto NZ’ and now

the two handles are disjoint.

(15)

A o i S
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Collecting all our results, we have
+ +

Lemma 7.7. If W =W . h’ ... h', W =w _ k5t .. x7H

—emma 7./ 1 1 - b 2 - 17 % q
'rrl(8+W) = 'n'l(W), 2<r<n-4 and (WZ’W) is r-connected, then
W2 = W _ (r+l) handles  (r+2) handles.

Proof. By induction on p. Let Wl' =W~ hlr:\, el L hi)-l' Now we
1 ! —_— —_ wW_,W!')— d
ook at the exact sequence -n'r(Wl,W) 'rrr(WZ, W) — -n-r( 5 1) 0 an
conclude that 'Trr(WZ, Wl') =0. By?7.5, W2 = W‘1 _ {r+l) handles _ (r+2) handles.
By induction, W! -_ (r+l) handles @ W _ (r+l) handles _(r+2) handles.

1~

§8. We have now done all the geometry necessary to cancel r-handles,

r 2 2. In this section we show how to cancel 1-handles.

Lemma 8.1. Let W1=W;_hl,W =W :'»kz;,-... ~_k2,n> 5,

Trl(8+W) = 'rrl(W) and (WZ’ W) l-connected. Under these conditions

W2 =2 W o 2-handles _ 3-handle.

The proof will be very much like the case r> 2. Let P = B1X x T h',
Xe BBn_l. We can assume that P is disjoint from all 2-handles, since
we can move the attaching spheres off P by general position and use regular
neighborhood theory to move the 2-handles off P,

Since (W_, W) l-connected, P is homotopic in W_ keeping endpoints

2’ 2

fixed to a path in 8+W. So there is a new path P' in 8+W - h' with
OP' = 8P and P U P' inessential in W2 (16 ). By general position we may
assume that P UP' is an embedded 1-sphere in 8+W1, which cuts the

b-sphere of h' transversely in a single point.




-246~

attaching sphere of
another 2-handle

2
We will now introduce kq+l’ £ 3, a pair of complementary handles and
slide the attaching map of the 2-handle around to throw it onto P U P'. Let

s? = attaching sphere of k , by construction (§5) s* is inessential in 8+W

qtl 2’

a . L.
So by Zeeman's unknotting theorem, PuP', S are ambient isotopic in

8+W2.

Thus W_ =W Uklzu...‘gk \_:k

3
— 2! 1
2 1 q q+1 where the attaching

2
! i ~ P ! ) 4.2. W
sphere of kq+1 is PJu P So we can cancel h and kq+1 by 4. 2 e can
cancel a whole lot of 1-handles by using this technique repeatedly. Collecting

the various preceding theorems we obtain

Theorem 8.2. Let W be a connected cobordism, with (W, B_W)v

r-connected, r < n-3. Then W & (8 WX I) handles of index 2> r.

Proof. Choose a standard handle decomposition and apply various
lemmas above.

One of the important things about cobordism is that we can turn them
upside down. By this process, an r-handle becomes an (n-r) handle.

If W_ o W1 Lo W W 1 is a standard handle body decomposition,

0 n
let W'=W o (3+W X I) and identifying 8+W X 0 with 8+W, let 8+W' =9 W,
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9 W'= 8+W % 1. Notice that attaching an i-handle to Wi removes an

(n-i) handle from W' - Wi’ That is, B* x B"™! is attached to Wi by

9B X B™"' and so is attached to the complement by B! X 9B" t. If

[
W!'=W'-W WL CWI oL u W! i
: n-itl’ then 0 L v N4 82 standard handle body

decomposition. This enables us to state a stronger form of Theorem 8. 2.

Theorem 8.2'. If W is as in 8.2, 2<r<n-3 and (W,8+W) is

(n-r-2) connected, then

W= WXI r-handles o (r+l) handles.

Proof. Turning upside down we must cancel the handles of index

< n-r-2. This is possible by our lemmas provided n-r-2 < n-4, i.e., r 2> 2.

T r r+l r+l
N W, =W e e e W, = i e e A
ow suppose 1 h1 » - hp , > W1 k1 w - kq
1r1(8+W) 'rrl(W) and 2< r<n-4. Let §ie Hr( 1,W), m; € Hr+1( 5 l) be

generators chosen as before.
r~ ~
?

: W, W) —> - ,
Then the boundary a'Hr+l( Z’Wl) Hr(Wl W) is represented by a

matrix M= (mij) where

0 = T i = A,
n. JZ: mij gj with mij A

First of all we know that:
(1) 1 w (W, W)=0 forall i, then H, (VVZ,W) = 0. Thus M has an
inverse as it represents an isomorphism between two free A-modules. In

particular, M is square, p = Q.



(2) M is not completely determined by the handle body decomposition;

there is an element of choice in the orientations of the &i and in the choice

of lift gi —> Ei . M is determined by the handle body decomposition up to

left multiplication of a row or right multiplication of a column by elements

+ x where x ¢ 11'1 .

(3) 1If M = 1 | 2 < r<n-4, then by Corollary7,4,W2 =~ W,

We are going to look at ways of altering a handle body decomposition by
adding complementary handles and sliding handles around to get M in this

form.

§9. Whitehead torsion of a handle body decomposition
Let R be a ring with identity. Let GLn(R) = nXn invertible matrices
over R and note GLn(R) - GLn+1(R) under the natural identification

M 0 .
M e GL_(R) [o J ¢ GL_, (R). Let GL(R) = lim GL_(R).

o
1

A matrix M ¢ GL(R) is called elementary if it agrees with I = \ .

i

o 1

except for at most one off diagonal element. Let E(R) Z GL(R) be the sub-
group generated by elementary matrices.

Theorem of Whitehead: E(R) = commutator subgroup of GL(R).

Thus Kl(R) = GL(R)/E(R) is an abelian group, usually written additively.
Consider (-1) e GLl(R) < GL(R). Let [-1] be the image of (-1) in

KI(R) and let ”Kl(R) = Kl(R)/[—l].
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If 11 is a group, write 711 = group ring of 1L We have a natural
map 11— GLI( 7Z11), since every element of 11 has an inverse in 11 and

is hence a unit in ZIT and therefore a non singular 1 X 1 matrix. We have

h: 11— GL,(Z1) —> GL( zn) — K, (#1n) —>K

1 1( 71). Then Wh(l) = the

Whitehead group of 1l = —Kl( 711)/hil.
If M is the matrix as sociated with a handle body decomposition as

in §8 with W, = W v r-handles and WZ = W1 ~ (r+l) handles, let

1

+=[M] e Wh(ll). T is called the Whitehead torsion associated with the handle
body decomposition. The main theorem of this section enables us to cancel
the handles of this particular decomposition in case T = 0. Note that T is
well determined by the handle body decomposition. In fact, first note that

if we permute the rows of M we do not change [M]. Write Eij = [akl] with
a..= 1 and 21 g = 0 otherwise, for i # j, and observe I+ aEiJ_ is ele-

1)

mentary given ae€ 71 Let M'= M(l +E1j)(l - Ejl)(l + Elj)' The effect

of this posmultiplication is to add the first column to the jth, subtract the jth

from the first and add the new first column to the jth. Write

-1

M"=M‘:’ 1

, 1 All these extra factors go to zero in —Kl and we have
|

1

|

. |

. !

.

|

— -

M" = M with the first and jth columns interchanged. A similar argument

using premultiplication shows that we can interchange the rows of M.



Now if we multiply a row or column by an element +11 we don't

+x 0
alter 7. For, we may permute columns, postmultiply by 11
— — 0
Ix 0
11
and then permute again. The matrix . —> 0 in Wh(I).
0

r B T - r+l r+
Theorem 9.1. Let W, =W h o ... . h , W =W _k, - ..._k
]. 1 p 2 l. ]. ~ p k-
-rr1(8+W) = 'n'l(W), 2<r<n-4 and (WZ, W) (r+l) connected. Let T be defined |

as above. Then T =0 implies W2 =~ W,

Proof. T =0 means that M —> 0 under the map

GL (Zn) —> GL( Zn) L s Wh(l) where kerd is the ‘subgroup of GL(Z 1)
n —1l 0 x 0]
generated by elementary matrices, 1 and 1 1

|
0._! o |

Then for some N, = EU where E = finite product of elementary

Moo |

matrices and U = 1 with x e Il.

First of all we can choose a new lift él to eliminate U. Introduce

N pairs of complementary r and (r+1) handles, all disjoint from

+1 +1
h r{ ... _nh Ny 5 k. e kr . This gives a new handle body decom-
1 - p 1 - p k
position represented by the matrix E= I1 e, with e, elementary. Let

i-1 1

e, = (1+ aEij)'
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r r+l
' ‘ r ‘ W' o= W r+l _
If we now have W1 W h1 “"'“hp+N’ > 1" k1 ""kp+N

and zi’:{i chosen to give E, we apply the handle addition theorem to slide

+1
one of the handles k; over the others to get

+1 r+l
Vo~ rt+l oo rtl Tl r
A T e T T R

where 8’1\1’j' = 8(?’]}. - a:']’i) (see 7.5).

The matrix of the new handle body decomposition is E with a times

the ith row subtracted from the j‘Ch row, i.e., is (I - aEij)E' So the new

Xk
matrix is ] l e, . We repeat this process unitl we get a new handle body
i=2 11 0
1
decomposition with matrix . . This enables us to cancell all the
i 0 )

handles.

§10. Whitehead torsion.

Let R be a ring with identity. We also make the following assumption:
If Fn = free module over R with n generators, m # n implies Fm # Fn.
This assumption is certainly true for group rings R= ZI. For, we can
make 11 operate trivially on the rationals Q and regard Q as a right
R module. Then Q®R Fn = vector space of dimension n over Q and so m #Zn
implies Fm 7 Fn .

Definition. Let A be an R module, A 1is s-free if A® Fn is free

for some n.

Lemma 10.1. If 0—> A—> B —> C —> 0 1is exact and B,C are

s-free, then A is s-free.

—————
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Proof. 0 —>> A —>B®d Fn —> C® Fn —> 0 is exact. For large
enoughn, B® Fn and CO® Fn are free, so the sequence splits and

B@FnEAGB(CGBFn), therefore A is s-free.

Definition. If A is s-free, an s-basis for A is a basis for A D Fn
for some n. We will use a single letter underlined for a basis. If A is

free, and b = (b b ), c=(c

o A i .= \..
1 - 1 cr) are bases for A, write b1 E 1ch

where the )\ij form an invertible matrix. Write [b/c]= [)\ij] € R—I(R).
We can do the same thing for s-free bases. In general, if b isa basis
for A®@F , c is a basis for AS®F , and b +f , ¢ t§f are free
m - n =~ —-k-m’ = —k-n

bases for A D Fn where f , £ are standard bases for F

k-m’—k-n k-m’ Fk-n ’
define [b/c] = [E+_f.k-m/g +£ 1e X (R).

This element does not depend on the choice of k, and we write b ~c
if [E/E_] = 0. In particular, if b is obtained from c¢ by permutation or
adding multiples of one element to another, then b ~c. Note that
[a/b] +[b/c] = [a/c).

et 0 —> A —>B—>C —>0 beexact, AB,C s-free. Then the

following sequence is also exact:

0—> A®F SBOF O@F —E—>COF —0.
m m n n

Let a,c be chosen as bases for A ® Fm, Ce® Fn respectively,

a=(a,...a ),3=(c1...c ). Given i< s, suppose pc!1=c. . Then -

1" " Tr s i

(Aa,...Na_,c'...c') is a basis for B®&F @®F . Call this s-basis for B ac .
r s m n —

1 1

Then ac is defined up to a choice of the c; . I c!l' is another choice with




\o
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pc"=c., then <c!'-c, e Im N and we can write down a matrix comparing
i i i i

these as follows:

2y My
| L
C \a Na I
; r r |
! " = 1 :
f C | M C'1 } N
| :
i n !
| ° s J
. (1 M =
where M is of the form r 1 , so [M] =0 in K1(R). Thus the
0 I
s

equivalence class of ac is well determined.

Suppose now a , a' are s-bases for A, c,c' are s-bases for C and
choose related s-bases ac, a'c' for B. We would now like to compare
these s-bases.

Lemma 9.2. [ ac/a'c']= [a/a'] + [c/c']

Proof. Assume A,B,C free; a,c,a',c' are actual bases. We have

00— A A > B—t£—>cC 0, choose a: C—> B with pa =1, then

B= MNA®aC.

We can suppose ac = (ha,ac), a'c' = (Na',ac'). Then ac = Mal'c',
[-Mi 0] ™M, olfI
where M of of the form [_ 1
0

o
—

J with a = Mi_a_' ,
2

b =M,b. Soin K(R),[M]=[M]+[M

2]'

We will now define torsion for a general chain complex over R. Suppose

0 — Cn -_ Cn 1 —_— e —> Co —> 0 is a chain complex of free R modules.



Given 1, let _c_i be a basis for Ci' If either

(2) Hi(C) is s-free for each i with given basis t_l_i ,
!
let 0—>B —>2Z, —> H —> 0 and 0 ~Z, ~C,~B, ., -0 be the short
i i i i i i-1
exact sequences associated with C. Now by induction on i and 10.1, B.1
and Zi are s-free.

Choose s-bases b. for B, and choose in the usual manner s-bases
-1 i

. I . i
bh for zi, (bihi)l_gi_1 for ci. Define T= >, (-1)[(bihi)bi_1/gi]. If

_P; is another basis for Bi’ [( b'h )b' /c ] = [( b'h ) i 1/(b h. )'bi—’l] +

(o )b, 4/c] = [o)/B] + (b /By 1 +1(bh))

; }31 1/g:_i] and in the alternating

sum the terms [b'/b ] cancel. T is thus independent of the choice of Ei and

is called the Whitehead torsion of the based chain complex (C,_g_i).
Let us now consider the actual geometric situation. Let KOC_ K be a

pair of finite simplicial complexes with 'rri(Ko) = 'n'i(K) by inclusion.

If Ko . K is a homotopy equivalence, let rl\%o = K be the universal
cover, this has a standard simplicial structure given b.y that on Ko Z K.

Consider

—>C(RK,K )—> ERR)—> -
(R )—>c (R,R)

~

Given oc¢ K - Ko , let S be a lift of ¢ to K, o is determined to

whithin an action of T Ci(IA{‘, R‘o) is a finitely generated free 7II module

with generators of the form o, dimo =1, o¢ K - KO

Since KOC K is a homotopy equivalence, the chain complex above has

no homology and 7(C) is defined in —Ki( 711) and depends on the choices of

ot it s e~
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the lifts {;} . A different ’; differs by an element of ZII. Let
T(K,VKO) = [t] €« Wh(II), then is well determined . We will show that this
(K, KO) element of Wh(II) does not depend on the triangulation, i.e., is
invariant under subdivision.

More generally, if Hi(f{), ﬁo) is s-free with s-bases Ei we can still
define T(K,KO), now depending on the choice of s-bases -b-i° If bi is
another s-base of Hi(iZ, EO) and [l_:;_'i/pi] —> 0 under -Ki(ffﬂ) —> Wh(I),
then T(K,KO) is not changed by replacing _tzl by b_'i

Suppose we have a sequence of inclusions of R modules

GO —_—> G1 — G2 —_ G3—-—> -++ we attach symbols a,b,c ... to the arrows

> — « o 1 - 1
Go Y G1 b>G2 = G3 > where a is an s-basis for Gi/Go’ etc.

In the short exact sequence 0 —>G1 /Go —_ GZ/GO —> G, / Gi —> 0

the s-bases a and b of G'i/Go and GZ/Gi give rise to an s-base ab for

a b
G./G . Wewrite G —> G, —> G, —> . By exactly the same process, we
2" o o 1 =2

e e e

ab
define ‘bc> and fmal%y a(bc) S and (ab)c 5 ¢ Then a(bc)> ~ (ab)c> ,1l.e.,

[ a(bc) /(ab)c >] = 0.

7

Proof. We can assume all quotients free and all s-bases are actual

bases. Let (x 'Xr) be a basis for G'l/Go which extends to a basis

e
(Xi' . .xs) for GZ/GO such that (Xr+1' . .xs) —> b, the given basis for GZ/G'l'
L ce —> ¢ i . e i i

et (Xs+1 xn) c in G3/G2 Now (x1 xn) is equivalent to both

a(bc) and (ab)c.




This process is the refore as sociative. It is also commutative in a

reasonable sense. Suppose we have a diagram of inclusions

A

/f
\ v/,
ANB

with A,B, & C say, A+B={a+b|acAbe B}. We have the natural

isomorphism

A >A+B
A~ B B )

Thus A~ B-—2>4 gives B b > A + B. Similarly for b.

Lemma 10.2. ba ~ ab in the diagram
A+B
-~
!/'f /b/ Y\a \:
ab { A B ba

\\XA B 'bf/‘/

Proof. Recall that this equivalence is defined in .I_<~1(R), hence even and

odd permutations of the basis elements are allowed. We have got

A+B _ A & B
AB - A™B A B’

and going one way we get the basis (a,b), the other
way (b,a). We can thus choose ab, ba to be the same basis permuted.
Now suppose we have a short exact sequence of chain groups (finitely

generated free R-modules)

0— C! > C > C" > 0
Let Ci’C;. and c!l' be generators for Ci,C‘i and C;." respectively.

We also want to suppose that the homology groups Hi = Hi(C), Hl = Hi(C')
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H;‘ = Hi(C") are all stably free with given s-bases bi’ b!l and b;.' . Here

we regard H —> Hi—> H" —_— H; 1 —> -+* as a chain complex S of
i

length £ 3n.

Theorem 10.3. If ci NC;C%‘ for each i, then

=(C) = w(CY) +7(C) + (1),

This is the main lemma used to prove combinatorial invariance of
torsion. The first thing we will prove is that the torsion doesn't change if

the basis for Hi is changed. We have the short exact sequences

0 > X! H! > X, > 0
i i i

0 > X, > H, > X! > 0
i i i

0 > X! > HI > X! —> 0
i i i-1

where X% = ker (H; — Hi)’ etc. To form the torsion we choose arbitrary

s-bases x.,h,, etc., and b.,b!,b" for B,,B! and B" respectively with
i’ i’ 711 i’ 71 i

Bi - Ci the boundaries in Ci’ etc. Then the general fo rmula for torsion

A N 1
= >, (-1) [bihibi-i/ci] becomes

f() =S (0P LDy /by - Begey/nd o+ D/l

- Yy _ ny = - i - T K [ - nhmn 1

+(C) - 7(C) - (") = > (-1){[bhb, ,/c;] - [bibby /el - [othiby /e B
(1) Notice that changing bases c'i or c'i‘ does not alter

T(C) - 7(C") - 7(C") so long as c; ™ c‘ici' , and cy ci, c'i' do not appear in the

expression for (H).
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(2) Choosing a different basis for the Hi's ,that is, replacing h,
by Ei , adds to (A) a factor ('1)”1[}11/%-1] = (-1)1[ Ei/hi] since
[xx1/ K] = [xx)/n] + [b/B,], and adds (-0} [ohb, /el - bbb, /c]
- (-0) [bpb, ,/bnb ] = (-0)'R,/n,] to T(C) - 7(C!) - (C").

Thus changing bases hi’ h;,h';‘ adds equal quantities to T(ﬂ),

(C) - 1(C") - w(C").

So long as we can prove (C) = 7(C*) + 7(C") + T(f(, ) for one basis,

we will have shown the equality for all bases. Choose

o
1}

x.x" c. = b;h!hl

i i i i ii-1
hl - X'X C"= bllhllb"

i i1 i i i i-1

"= k!

i ii

(This choice will make +(C') = 7(C") = T(j/’() = 0.) We are now going to draw

an enormous diagram of subgroups and quotient groups of the Hi's and C, 's.
i
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Here D/vB means the basis represented by B is equivalent
A c gl
to the basis represented by T . All the arrows in the diagram represent
A
9

inclusions; note that Ci 1 c Ci 1< Ci . We also have the diagram

0—> c'—>sct scn—so

1 ] ] l 0
0—s &2 st s s

-1
Note that x e p B{’ if and only if there is a y ¢ Ci+1 with poy = px, i.e.,

if and only if x - By ¢ Ci , SO p-1B!i = Bi + Ci . We thus get



(4)

z.~ w ey z,~ (B +CY B, +2Z!
- "y - 1 1 1 1 1 1
X, = ker (H, —> H") 5 =) 5
1 Z1 1 1
_ i
B,z
1 1
, -1
z, " B, B. " Cl 8 C!
1 1
ker (H! —> H,) = ——=7— = , = — ,
+
’ ' Bi B Citt F %in

(Zg NB.=C! ™ B,
1 1 1 1

A
Im(H, — H!') = :
- n
Zif\, V) Bi
B. B,
i _ i
B.nC' =~ B N Z -
i i i i 0

Z,
—
B. . +C!' ’

i i

(since Ci

since everything in Bi is a cycle)

—_—> —>
7B 0
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Using (2), (3) and Lemma 10.2, we get

-1
g, C!
//'/ A i-1
/o
h"/ . i-1
i C'+ Z,
/’ 1 1‘\ :
/ X" \\\ bi-'l
. i . ™
C'+ B, i A
1 h\l - P 1
1-'1 N - l !
Z' + B, h
1 \\J.» 5
XT\
1 .

We can choose bi = b; x!lb'; so that all the remaining squares and
triangles commute. So c, ™~ bihibi-i and therefore T(C)=0. We have now

proved

g)

HC) = T(Ct) +r(Ccm) + (L),

Now suppose we have a cobordism and add on a whole lot of handles.
We will compare the torsion of the resulting cobordism with that of the
original one.

Lemma 10.4. Suppose W is a cobordism, W1 =W v h1r Ueere o h

Let Ko C K be a simplicial pair triangulating W - Wi, wi(Ko) = Tri(K)

and let ’ROC'Y( be the corresponding universal covers. Now H, (?(, K ) is
a free 7T module with given generators in each dimension. If

(1) Each component of IKl - IKO[ is simply connected, and

~

(2) Each given generator of H_*(K, Eo) is representable by a chain in



~ ~
one component of K - KO , i.e., a chain which is a combination of closed

simplexes whose interiors are in one component of Ko,

Then T(K,KO) = 0.

Proof. Let 1"1. . .l"r be the connected components of K - Ko, let

I‘i...I“r be lifts of I“i. . .1"r LI bi' ..bs € H*(K,KO) are the given

enerators. let £, ...6 ¢ C(I?,IN{‘ ) be cycles representin them, each §.
g 1 o ¥ 8 1

s
is contained in one component of K - filo .

Choose x ¢ m,, regarded as a covering transformation so that xéi is
contained in one of the {1:;} The generators {Xibi} € H,‘(IA{‘,I'ZO) are also a
free Z 1l basis. Moreover, this basis gives rise to the same T since multi-
plication by X, does not alter an element in Wh(i1). Choose free Z1n
generators of Ci(f{" ﬁo) and stably free generators of Bi(g, IA(‘O), all lying
in one of the {FJ}

Now all operations done in calculating T are done with integer
coefficients. In fact, Ci(IN{‘, go) = Ci(K’ KO) ®Z 71 where the isomorphism
sends generators onto generators. So

(K, KO) € Im{k"i( 7)) —> 1_{1( 7)) —> Wh(m)}.

But —K1( 77 )=0, i.e., every invertible matrix with integer coefficients
is equivalent under elementary operations to the identity matrix I. In fact,
let M be an m X m matrix with integer coefficients. First add rows until
the smallest non zero elerre nt of the first column divides all the elements in

the first column (this uses the division algorithm inductively). Cancel out

the other elements in the first column. Repeat with the other columns.
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matrices.
ments of T are X 1.

of T by elementary row operations. In Ki’

w
2

, H (R, 5, ,
generators gi 'qj of r( : hl’\ AWy

H

r+4

So
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M= TE with T upper triangular and E a product of elementary
Now M invertible implies det M = * 1, thus the diagonal ele-
Therefore, we can cancel the upper right hand corner

M is then equivalent to L.

Corollary 10.5. Suppose W1 =W hir e - hp ,

=W « k

1

(W,

+1 +1
r . k- , r>=2 and w (W_,W)=0, all i. Choose
1 = q it 2

W) < W oWw. H  (k ~W
)< H( W), r+1( j,kj N

~

o~

W,), respectively. Now then, we know that we have a matrix ex-

pressing 9, 9m, = zm..,fg--
i

Suppose that W, is triangulated with Wi,W as subcomplexes.

2

Then w(W_, W)= (—'1)r[mji] ¢ Wh(m,W).

2

Proof. We look at the exact sequence of chain complexes

s -~ N—— ~ N—— ~ ~ —>
0 >C(W1,W) >C(W2,W) >C(W2,W1) 0

0—> C!' > G > C" > 0 .

By 10.3 and 10.4,

+(C) = ~(C") + (C") + (M y=0+0 + (A ).

~ ~ o ~ ~
—_ e e e —_— —_— W > _— N ree
For /A we have 0 0 Hr+1( 5 Wi) Hr(W'l’W) 0>
with bases ﬂ :]j . and <z1 for the two non zero terms. We write this as
—> C > > —> .- >
0 41 Cr 0 0
n; £,

and split up the sequence, obtaining exact sequences

0—>B —>Z —>0—>0
T T

0—>0

0—> 2 —>( > 0 > 0
T r

> 7 —_ 0 —>0
r+1

-0



3 2
and so 0 —> Z —> C —> B —> 0 becomes 0—>0—>C —> B =0
r+1 r+1 T

~

We compare the new bases with the original one to get

(-7 [8n/E] = (-1) Im).

To complete the proof that T is invariant under subdivision we have

Theorem 10. . Let KO C. K be simplicial complexes, Tri(K,KO) =0

all i and oK a subdivision of K. Then T(aK,aKO)= T(K,KO).

Proof. Let Li = KO J i-skeleton of K. Let K be the universal cover
of K with the standard triangulation, and let ’ii be the cover of Li in K.
We consider chain complexes defined as follows:

Let C be the chain complex

)

8 ~ ~ 8 ~ o~
> Zs i — —
Hi—i(aLi—i , aLi_Z) > HO(aLO, aKO) 0

— H (oL, oL
Hylaly, ok 4
with each term a finitely generated free ZII module. By standard arguments

H (C)~H (oz%,a%o).

Let Er be the chain complex

~Y ~ a ~ ~J
—_ > —_— > —>
0 Hr(oz @ r-i) Hr_1(oer_1,oer_2) Ho(aLo,aKo) 0
with H (Er) =H (oz]j , arf{o)

We shall prove inductively that T(_C_r) = T(Q’Lr, ozKO) in Wh(w) with
the generators for Er chosen as follows: Given o e K - Li—i let & bea

lift of o in K and let gi be a generator of Hi(o/B"l, 9(a'v 1)): Hi(oz’ii, ati-i)'

This gives a set of free generators for Hi(afi, aii 4‘).
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We now pass from L _ to Lr+1 and look at the exact sequence
r

aK ) —> C(aL
o r

—>C K )—> L
0 (aLr,af O) C(e "y

c' c c

The bases c¢,c',c" satisfy the condition ¢ ~ cle" by the usual
y y

ition. o~ 2 o GR ) 4 el
definition. So T(aLr_H,aKO) (o r,a/KO) (o

T+ ().
iy’ @ r) w( +.). The

homology exact sequence FL s

0 — Hr_H(aL

For the sequence C , we have

> C >
0 - Cr+'1

>C —_—
Cr+'1[6r 0,

but C +1/ Er is zero except for a group in dimension (r+1) and we have

——

+(C )= T(Er) + T(Er+1/ Er) +7( 7. ) where ’. is the exact sequence

— — — .9

r+1(Cr+1) > Hr+1( Cr+1/ Cr)

0—>H >H (C)— 0
T T

By the inductive hypothesis T(&Er, af(JO) = 'r(—(_fr). Recall that

~

H“(Er) = H*(air, aKo) where the generators are chosen to corresponds under

the natural isomorphism. Further, Hr+'1( Cr+'1/ Cr) can be calculated from

"
ot

. s g ™~ — 0. % o . .
the chain complex 0 —> Hr+'1(aLr+1’ aLr) 0. So 7_, 7. are isomorphic
by an isomorphism sending generators to gene rators.

0 . . —_ g ~ _> . - -
Now since the chain complex 0 —> Hr_H(a/Lr_H, aLr) 0 is trivial,

T<Er+1/_ér) = 0. All we need to prove to show the inductive step is that

'r(azLr oer) = 0 using the generators already chosen for C(aLr-H’ aLr),

+1°

H (oL ,aL ). This follows from Lemma 10.4 since leL | - |aL_| is
r T r+i r

+1

the disjoint union of simply connected sets.
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Starting the induction with L L= Ko’ we have proved Tt(aK, aKO) =

7(C). Now
C Hr+1(aLr+1 aLr) > Hr(arLr aLr-i) >
N a R o
_ K > C (XK,K ) —>
Cr+1( ’ Ko) r( ? o)

where ac (o a lift of an (r+1) simplex of K - Ko), is a generator of

So C = C(K,KO) by an isomo rphism sending the generator suitably.

Therefore T(C) = T(K,KO).
We introduce the notation T(W) = +(W,d W).

Lemma 10.7. Let Wi’WZ be h-cobordisms with 8+W1 8_W2,

h a simplic al homeomorphism. Let W = W1 Uh W2 .

Then T(W) = T(W1) + T(WZ).

Proof. We have the exact sequence of chain groups

~

0 —> C(Vvi, ) \7&1) —> C(W, o \7\'/1) — C( ,Vvi) > 0
C(w W
( 2’ a_ 2)
Now the homology exact sequence is zero, so
W =
7( ,8_W) T(W1,8_W1) +T(W2,8_W2)

Lemma 10.8. T(M X I, MXD0) = 0.

Proof. Put W, =W MXI1I in 410.7. Then

1 2

T(MXI)=1(MXI)+r(MXI).




~267-

- . K ,K )=
Lemma 10.9. If Ko K1 ..K2 are complexes, 'rri( L o) 0,

all i and KZ\qK then T(KZ,KO)—‘- (K,,K ).

1’ 1’ o

Proof. Suppose K VK, by one elementary polyhedral collapse,

2V
S0 KZ-K1 is a PL ball B* say, with B' N K1 a face ¥ of B, and
K -K K - ™ o~ X X .
( oKy Ky K'1 Ki) (F XI,F X0)

We have the exact sequence

s ~ ~ s ~ ~ -_> ~ ~ _—> )
0 —> G(K,,K ) > C(K,, K ) C(K,.X,) 0

These complexes have zero homology, so

T(KZ,KO) = T(K'l’Ko) + T(KZ,Ki).

Now K2 - K1 is simply connected so by Lemma 10. 4, 7(K_,K,) = 0.

2'1)

Lemma 10.10. If n> 6, w"® is an h-cobordism, then

W = B_W X I if and only if (W) = 0.

Proof. Certainly by 10.8, W =3 WXI implies T7(W)=0. By §§7,8
if n>6 and W is an h-cobordism, W & (8 WX I)+v r-handles U (r+1)
handles with 2< r<n-4. In §9, we showed how to cancel these handles if

the matrix representing the boundary map Hr_}_i(w\’ Wi) — HT(VV1, \7/) from

Z’
the homology of the (r+1) handles to the homology of the r-handles was
equivalent to zero in Wh(w). We have now shown (10.5,10.6 ) that the

equivalence class of this matrix is (W,d W).

Lemma 10.11. If n>6 , W™ is an h-cobordism, then W =8 W X1

if and only if there is a PL space X with WC X, X\(W and X \ 2 W,
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Proof. W =8 WX I implies W\8_W. If WI X \W, X\ 9_W,
then T(W,d W)= (X,0.W) = (8 _W,8_W)=0 byl0.9, and so

W =98 WXTI by10.10.

§11. How many handles do we need in the case of an h-cobordism

with non zero torsion?

Theorem 11.1. Let W™ be an h-cobordism , n > 6. Given r,

2<r<n-4, let jp: GLp( ZTrl(W)) _— Wh(-rrl(W)). Then W =9 _ WXI_ p

r-handles U p (r+l)-handles if and only if (W) e Im jp.

T ROl x rtl
1 q 1 ~ q

Let h., ®. be lifts of h,k, ; let £,n. genrate H (h R 8 WXI),
i’ i roi’ i -

Proof. We know W = (8 WX I)uh

1)
H ~J ~ . ~7 . )
r+1(kj’kj r Wi) respectively
r r ~ ~ ™~
Wi W, = X 1I)w e e 9: W, W )—>H (W X
ith W, = (0_WXI)u by v - By H_, (W, W) (W, 0 wxD)

given by 3’;’]j = z xijz , we know [)\ij] = 1(W) ¢ Wh(w). Thus g<p im-
plies (W) e Im jp .

Now if T e Im jp there is an M e GLp such that for some N,

[)\i,] 0 M 0
J ‘EU  where E is a product of elementary

1]

0 IN-q IN-p-i

o

txy 6‘

matrices and U = Ix with xi e II.
- |

0 -

: i
I -




—————
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We first add N-q complementary pairs of r, (r+l) handles. By

altering the choice of the generators Zi’?j we can get the matrix repre-
M 0
senting the new handlebody decomposition equal to E. Sliding
0 I
n-p

ach other according to the handle addition theorem we

the (r+1) handles over e
M 0

can find a new handlebody decomposition of W with matrix
0 1

N-p

So W= (8 WXI) LN r-handles < N (r+l) handles and the a-spheres

handles cut the b-spheres of the last N-q r-handles

of the last N-q (r+l)

Thus we can arrange that they intersect transversely in

algebraically once.

one point. So we can cancel the last N-p (r+l)- and r-handles.

Note that Im j, = 0 and U Im jp = Wh(I1).
p
(W) = -rrl(B_W) = Trl(8+W)

Suppose now that W is a cobordism, Lo
\7\7)=0 for i# r and

by the natural inclusions, 3<r<n-3, and Hi(VV, 9

free of rank p as a ZIl module if 1= r.

Given a free basis for Hr(VV, 8_VNV) we can define T(W). Altering this

free basis of Hr(W, B_VNV) adds an element of Im jp to T7(W). So we can

define T(W) e Wh(IT)/Im jp .
Theorem 11.2. W = (8 WX I) U p r-handles if and only if 7= 0.

Thus T is an obstruction whose vanishing implies we can eliminate all but

the r-handles.

Proof. We know W = (8_.W X1I) o (r-1) handles « r-handles. Let
W =8 WXI, W =W\,hr+1u...\;hr-1 and
- 1 o] 1 s

(@]




r
W, =W L
2 1 kl - -k

Choose generators for Hr(v~v, 8_W)

in Wh(I1).

the homology exact sequence

~ ~J i
—> H (W, W
0 r( 2’ o) r 2

Let &,m be bases for Hr-l(wl’wo

lifting the handles in the usual way.

Lemma 10. 4.
Let

back into H (WZ’WI)'
Write m= M(h',£")

and [M] =27 in Wh(I).

where B is a t X s matrix over 7 11.

a tX p matrix.

N W_, W Im j
ow T( 5 o)e me

M 0 ™M!' 0

= EU
0 Iy, 0 In,

of elementary matrices and U =

can be converted to

If h' = ih,

w = w
Then 7( Z’Wo) T(Wl,

h be chosen a basis for H (VV ,VNV ) E'
r 2° o

(n',

Now write am n

'-:_:(WW

)+T(W W )+~r(

5 ), so T is defined

) where  is

2’
W e
W) Ho (W Wy
), Hr(VVZ,VVI) respectively, chosen by
W = =
Then T (W ,W )= (W, W,)=0, by

~~

a lift of the basis §

Z‘) form a basis for H (W Wl)

2’

where M is an invertible tX t matrix over 11

am = BE

Eké

Smce t> s,

, i.e.,

M = (A,B) with A

if and only if for some N,

where M' is p X p, E is the product
_ix 0

+

%2 , X, € T, . So

i 1
.0
™M 0
by the elementary row

0 I
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operations:

(1) permuting rows ,

(2) multiplying a row by ix with xe T,

(3) adding one row to another .
Notice that B is given by the last columns of M, and row operations do not
confuse the columns. Thus, by elementary row operations

M 0 A B 0 M 0

n-t n-t n-p

p columns

and so can be converted to

I
0 IN-t n-p

Recall 8’:1 = BZ. Add in N-t pairs of complementary (r-1)- and

B O0
r-handles, so B will be replaced by . Now each row operation
0 IN—’c
(B 0
of type (1) or (2) on can be effected by altering the choice of
0 IN t

generators m , either by permuting , altering sign or translating by a cover-
ing transformation. Type (3) row operations are effected by altering the

handle body decomposition by handle addition.

r-1 -

r-1
~ 1 3 1 - W s r . 1
So we get W 22 W2 with W1 Vo h1 o . - hN-p and
W WlL, kb toe- U ky where 8.(WZ,W1 ) Hr-l( : ,Wo) is

0

] . Then we may cancel the last (N-p) r-handles
N-p
with the (r-1) handles.

represented by L
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This proves the first part of the theorem. The converse follows

from a previous argument. ‘
We now look at duality. If we have a cobordism and turn it over,

what effect is there on the torsion?

r r
Suppose Wo =9 WX I, W1 = Wo\, h1 o - hp and 3
+1 +1 1
W2 = Wl o klr U e kpr is an h-cobordism W. Suppose to start _,
1

that W 1is orientable.

~

To get the torsion we choose generators gi,?j of Hr(Wl’ Wo)’

Hr+1(V~V2’ \7/'1) respectively and look at the boundary map Bqu = Zaxx ,
i
where a = algebraic intersection of fgja with xS.lb . S?= a-sphere of kj’

x'glb = b-sphere of xﬁi (17).

(FIGURE 17 WITH ACCOMPANYING TEXT IS ON NEXT PAGE)
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(17)
l; If we turn the whole picture around, the a-spheres
L
“[ﬂ' ;_\ szgb become b-spheres and the b-spheres become
T o .
N a-spheres, So the torsion is given by a matrix
ﬂ\ )\ij , )\Ilj = E a;(x , where a}'{ = algebriac inter-
S ~bh X €T
Lo _\...., ) - XS ~b L ~a
Lo section of S with ij = algebraic intersection of
S x T3P witn 32
| .' ! J
-1
; N So T(W,8,W) = (-1)"7" gr(W,8 W), where
| :\:\\:\‘.\ Nb
' ,~-3rs g: Wh(l1) —> Wh(lI) sends M into its transpose con-
- jugate, with conjugation in 711 induced by sending
-1
‘/ XxX—>x . ¢ induces an anti homomorphism
GLn( Z) —> GLn( 7“11) and so induces a homomorphism
(A =1 +x - x°)
Wh(il) — Wh(l1), since Wh(II) is abelian.
§ In the non orientable case we define o: 711 —> 711
| 1
; ; by x —> x if x is orientation preserving and
| RN -1
! S x —> -x if x is orientation reversing. This in-
I
_// duces a map @': Wh(II[} —> Wh(IT) and we get
: -1
/ (W, 8, W) = (-1)"7 g (W, 8_W).

.
OB I
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§12. h-cobordisms with given torsion.

Theorem 12.1. If M is a compact connected PL manifold of

dimension > 5, given any element T ¢ Wh('n'l(M)), there is an h-cobordism

W with 9 W =M and (W) = .

1!

Theorem 12.2. If W W‘2 are h-cobordisms of dimension 2 6,

then W, = W_ .

",
9 W]. = a_W 2) 1 5

and T(W.) = 1(W

2 1

Proof that 12.1 implies 12.2. Choose W with 9 W= 8+W and

(W) = -T(wl). Then by 10.7, T(W uwl) =0. So W._WwW, =9 W, X I

and 8+W o B_Wl &~ B_WZ. So form W3 = W1 o W L.WZ

é\
|
|
.=
=
4]

T(WLW,)=0. So WoW,=0 WXL So W, =W _ (38, W

2
(0 W_XI) L W_ =W

2 2 2°

In order to prove Theorem 12.1 we first need a lemma:

Lemma 12.3. If Mm is a PL man ifold, let i,j:SZXBm_2—> M

be disjoint PL embeddings representing elements E,me 11'ZM. If w e 'rrl(M),
. . 2 m-2 .
there is a PL embedding k:S X B —> M representing the element
£+ nw e ., M.
2
2 m-2 .
Proof. Let xe¢ S, ye 0B , let P be a PLpathin M from

i(x,y) to j(x,y) not meeting Im (i) or Im(j) again. Let N bea second

derived neighborhood of P in clM - Imi - Imj].
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The choice of the path P will determine the element w. By the

uniqueness of regular neighborhoods we may assume that

-1 - 2
i N=j lN = UX V, where U is a regular neighborhood of x in S

m-2

and V is a regular neighborhood of y in 0B . Now the embeddings
ijUXV: UXV—>0N, j|UXV:UXV —> 8N are ambient isotopic to
"standard" ones, since any two orientation preserving embeddings of a PL

ball in a connected manifold of the same dimension are isotopic. So there

is a PL homeomorphism h:N —> UX YV X I with hi|UXV:U><V—> UXVXOo0,

hj ] UXV:UXV—>UXYV X1 equal to the natural identifications. Now con-

-2 1 -
sider B as B  xB™ 3, with the point y lying in 8B1 X 0, and take

1
V= Vl XVZ’ where Vl is a regular neighborhood of y in 0B, and V2 is

a regular neighborhood of 0 1in Bm_3. Then there is a PL embedding

e:Imic Imj oN—> R™ such that a[i(SZXBl)v j(SZXBl)» h-l(UXV X1)]

1

lies in R3.

e ~
/ /_\ ..\\
[ . , \i
| . P
\ | ‘\k// |
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If Vl' is a regular neighborhood of y inside Vl’ let

o !
= = i(SZX 0) - V' UiV

- ot B
A 1X0y)uh1(V1XI)uj(Vl'X0y)ujSZXO-V'

1
where Oy denotes the segment of B' from 0 to y. Then o has a pro-
duct neighborhood R3 and so in Rm, so Z has a product neighborhood

in M. T will represent £ + nw provided we choose a suitable path P.

Proof.of Theorem 12.1. Given M and T ¢ Wh('rrl(M)). Represent T

m-1
by a matrix A e GLp(ZZ-n'l) for some p. Let T1282XB for i=1,2,...,p.

|
Let W1 be formed by taking (M X T)u U Ti and attaching p 1-handles,
1

h

,...,h , where h, connects T, to (M X I).
1 p i i

4 S31

0

//'\‘ ¢
A
\ Kk-///‘z
\,
.L\\

. ! m-1 .. 2.
Now in T, = 2 X B , choose a set of disjoint spheres Sij = 84X X5

xij € aBm. We may assume that these do not intersect the handles hl' ,hp.

These all have product neighborhoods in 3+W1.

~

Now let M be the universal cover of M and let W be the correspond-

ing covering space of W. Now every element of HZ(W,M x O can be repre-
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sented by a 2-sphere in 8+W formed by piping together a finite number of

the spheres Sij in accordance with Lemma 12.3. Let gi generate HZ(I‘i),

generate HZ(%i)’ where NTi is a lift of Ti in \’TV

If the matrix A = (aij)’ we can find, as above, disjoint PL embeddings

0.:Séx BPTZ BW, i=1,2,...

: ,p, representing the homology classes
%} a.ij §j. Attaching 2-handles by these maps gives rise to the required

j=1
h-cobordism W with torsion T.
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