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ABSTRACT. We formulate and prove a geometric version of the Fundamental
Theorem of Algebraic K-Theory which relates the K-theory of the Laurent
polynomial extension of a ring to the K-theory of the ring. The geometric
version relates the higher simple homotopy theory of the product of a finite
complex and a circle with that of the complex. By using methods of controlled
topology, we also obtain a geometric version of the Fundamental Theorem of
Lower Algebraic K-Theory. The main new innovation is a geometrically defined
Nil space.
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CHAPTER 1
Introduction and Statement of Results

1.1. INTRODUCTION

The Fundamental Theorem of Algebraic K—Theory relates the K-theory of the
Laurent polynomial extension R[t,t~!] of a ring R to the K—theory of the ring (see
[2]). For the functor K7, the result is due to Bass, Heller and Swan [3]:

Ky (R[t,t™"]) = K1 (R) & Ko(R) & Nil(R) & Nil(R).
When R is the integral group ring Zm(X) of the fundamental group of a space

X, then R[t,t71] = Zm (X x S') and the Bass—Heller-Swan decomposition gives a
calculation of the Whitehead group of X x S*:

Wh(m (X x SY)) = Wh(m(X)) & Ko(Zmi (X)) @ Nil(Zm (X)) @ Nil(Zr(X)).
For recent expositions of these results as well as for applications to topology, see
Ranicki [42] and Rosenberg [43].

Whitehead groups measure the difference between homotopy equivalences and
simple homotopy equivalences. That is, every homotopy equivalence f : ¥ — X
between finite CW complexes determines an element 7(f) € Wh(m (X)) which
vanishes if and only if f is simple (see [13]). For a finite CW complex X all
homotopy equivalences to X from other finite CW complexes can be organized into
a moduli space, the Whitehead space Wh(X), which is the domain of higher simple
homotopy theory (see [23], [24], [27], [29]). One of the new results of this paper is
a geometrically defined Nil space based on the earlier work of Prassidis [41].

Our main result is a moduli space version of the Bass-Heller-Swan decomposi-
tion where the moduli spaces involved in the decomposition are Whitehead spaces
and Nil spaces. More specifically, we prove

THEOREM (Main Theorem). If X is a finite CW-complex, then there is a ho-
motopy equivalence

Wh(X xS') ~ Wh(X) x Q"' Wh(X) x Nil(X) x Nil(X).

The classical Bass-Heller-Swan decomposition follows from this homotopy equiv-
alence by considering the set of path components of the spaces involved. That is,
there are 1somorphisms

ToWh(X x S') = Wh(m (X x SY)), moWh(X) = Wh(m (X)),
T Wh(X) = Ko(Zmy (X)), and moNil (X) = Nil(Zmi(X)).

However, the present paper does not represent a new proof of the Bass-Heller-Swan
decomposition.

The Fundamental Theorem of Algebraic K-Theory was extended to higher K-
theory by Quillen (see [22], [45]). More recently, Klein, Vogell, Waldhausen and
Williams have established a Fundamental Theorem in the A—theory of spaces [38].
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2 1. INTRODUCTION AND STATEMENT OF RESULTS

Their decomposition descends under the linearization map to the decomposition in
the higher K-theory of rings. It is widely believed (but as yet unpublished) that the
fiber of the A-theory assembly map is the geometrically defined Whitehead space
discussed above. One would like to compare the fundamental theorems of higher
K-theory and A-theory with the decomposition which we obtain here. The problem
with making such a comparison is that the techniques used in higher K-theory and
A-theory are algebraic and rely on the description of R[t,t~1] as the ring obtained
from the polynomial extension R[t] by localizing at ¢. In fact, Bass, Heller and
Swan [3] and Bass [2] also use this description in the original treatments. Tt seems
that in order to understand those algebraic arguments from our geometric point of
view, one needs a geometric model for the passage from a ring R to its polynomial
extension R[t] similar to the way crossing a space with the circle models the passage
from R to R[t,¢~1]. This is an intriguing problem.

Ranicki [42] gives a proof of the original Bass—Heller-Swan decomposition
which avoids RJ[t]. This is not surprising since Ranicki’s algebra is often designed to
match geometry. Our decomposition relies in part on finding parametric geometric
arguments modeled on Ranicki’s algebraic constructions.

Chapman-West theory allows us to formulate results involving simple homotopy
theory and Whitehead groups in terms of Hilbert cube manifolds (see [6], [50]). The
key result due to Chapman and West is that a homotopy equivalence f : X — Y be-
tween finite CW complexes is simple if and only if the map fxidg : XxQ — Y xQ
between Hilbert cube manifolds is homotopic to a homeomorphism (here ¢ denotes
the Hilbert cube). This allows Wh(X) to be defined as the infinite dimensional ana-
logue of the structure space from the surgery theory of finite dimensional manifolds.

We also obtain results related to Bass’s Fundamental Theorem for lower alge-
braic K-theory [2]. The techniques come from controlled (or bounded) topology.
The finite CW complex X is replaced by X x R” and homotopy equivalences to
X x R™ are required to be controlled in the R™-direction.

Topologists have long been interested in problems “over the circle S1”. Besides
the classical Bass-Heller-Swan decomposition of the Whitehead group of the fun-
damental group of a product of a space with S* (or, more generally, of the total
space of a bundle over S1), there is the fibering problem (when is a map to S*
homotopic to a fibration?) and the problem of determining the homotopy groups
of the space of self-homeomorphisms on the product of a manifold with S (see
Farrell [17], Farrell and Hsiang [18], Siebenmann [19], Chapman [9], Burghelea
[4], Waldhausen [47], Burghelea, Lashof and Rothenberg [5], Kinsey [37], Hughes,
Taylor and Williams [32], and Prassidis [41].) While the literature is extensive,
a synthesis still seems to be lacking. It is hoped that the current moduli space
approach will lead to a more coherent theory.

We thank Bruce Williams and Pedro Ontaneda for several enlightening discus-
sions. The second author would like to express his graditute to the Max Planck
Institute in Bonn for the hospitality during the completion of the paper.
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1.2. STATEMENT OF RESULTS

For a compact Hilbert cube manifold X the Whitehead space of X 1s a simplicial
set Wh(X) whose homotopy groups are the higher Whitehead groups of any finite
CW-complex homotopy equivalent to X. For example, moWh(X) = Wh(m (X)),
the classical algebraicly defined Whitehead group of the group m (X), and QWh(X)
is homotopy equivalent to the space of pseudoisotopies on X (see [27], [29]). For
an arbitrary Hilbert cube manifold and a proper map p : X — B the controlled
Whitehead space is a simplicial set Wh(p : X — B) whose homotopy groups are the
domain of higher Whitehead torsion with control in B.

The first result is a homotopy splitting of the controlled Whitehead group over
a circle.

TueorREM 1.2.1. If X is a compact Hilbert cube manifold and X x S' — S!
1s projection, then there 1s a homotopy equivalence

Wh(X x ST — S1) ~ Wh(X) x QT'Wh(X)

with Q='Wh(X) a delooping of Wh(X), that is, a (non—connected) simplicial set
whose loop space is homotopy equivalent to Wh(X), QQ ' Wh(X) ~ Wh(X).

We will obtain this splitting as follows. From Hughes, Taylor and Williams
[32] there is a homotopy equivalence

U Wh(X xSt — S') — Map(ST, Wh(X xR — R))
(see Section 5.7). Evaluation at the basepoint of S yields a fibration
QWh(X xR = R) 5 Map(S', Wh(X xR = RB)) 2 Wh(XxR = R).

In Chapter 5 we will define the unwrapping (or infinite transfer) map

u: Wh(XxS' — 5" = Wh(X xR — R)
and the wrapping up map

w: Wh(X xR — R) — Wh(XxS" — St
such that

1. vw ~ 1Wh(X><]R—>]R)a and
2. BV ~ u.

In fact, all of the Whitehead spaces considered here carry the structure of
abelian monoid-like simplicial sets (see Section 5.2) which induce abelian group
structures on 7y of these spaces and the usual group structures on higher homotopy
groups. The natural simplicial group structures on

OWh(X xR = R) and Map(S', Wh(X xR — R))

induce abelian group structures on mg and the simplicial maps ¥, I, F| u, and w
induce group homomorphisms on homotopy groups including mg.

If i : QWh(X xR — R) — Wh(XxS? — S1) is any simplicial map such that
Voq¢~ I, then

ie = (W)L M QWh(X xR — R) — mWh(X xSt — St
is a group homomorphism for each k > 0. Thus,

0 — mQWh(X xR = R) 25 mWh(X xSt = S1) 5 mWh(XxR = R) — 0
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is a split exact sequence of abelian groups for each & > 0 with
wy : TWh(X xR = R) — meWh(X xSt — 51)
splitting u,. It follows that
(i,w) : QWh(X xR = R) x Wh(X xR — R) — Wh(XxS' = S*);

(z,y) = i(z) + w(y)
induces isomorphisms between homotopy groups (including my) with + denoting the
abelian monoid-like sum in Wh(X xS* — S1). In particular, (i, w) is a homotopy
equivalence.
To finish the proof of Theorem 1.2.1 we observe in Section 5.8 that the methods
of Hughes [27], [29] imply that

OQWh(X xR — R) ~ Wh(X)
so that
Wh(X xSt — S1) ~ Wh(X) x Wh(X xR — R)

as desired.
It follows from Chapman [8] and Hughes [27] that

ToWh(X) = Wh(mi (X)) and moWh(X xR — R) = Ko(Zm (X))

so that
ToWh(X xS — S') = Wh(m (X)) & Ko(Zm (X)).

For a compact Hilbert cube manifold X the Nil space of X is a simplicial
set m(X) whose homotopy groups are the higher Nil groups of any finite CW
complex homotopy equivalent to X. For example, ﬂom(X) = ﬁﬁ(Zm(X)), the
algebraically defined Nil group of Bass [2]. The simplicial set /\771()() is defined
using ideas from Prassidis [41] and carries the structure of an abelian monoid-like
simplicial set. The second main result is a splitting of Wh(X x S?) into a controlled
part and an uncontrolled part. The uncontrolled part consists of two copies of

Nil(X).

THEOREM 1.2.2. If X is a compact Hilbert cube manifold, then there is a ho-
motopy equivalence

Wh(X xSH) ~ Wh(X xS = S') x Nil(X) x Nil(X).
In order to prove Theorem 1.2.2 we define the forget control map

o Wh(X xSt — Sh) — Wh(X xSh)
which induces homomorphisms between homotopy groups including 7y. By Hughes,
Taylor and Williams [36] this map is homotopy split injective: there is a simplicial
map

riWh(XxS') — Wh(XxS' — Sh)
which induces homomorphisms between homotopy groups including 7y such that
row ~ lyp(xxs1-51). The map ris called the relaration map because it is related
to the relaxation construction of Siebenmann [44] (see also Kinsey [37]). This is the

source of the linguistic paradox: relaxing is the (left) inverse of forgetting control.
For each k > 0 we define a group homomorphism

J M Nil(X) @ mNil(X) — mWh(X xS
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and a simplicial map
P:Wh(XxS') = Nil(X) x Nil(X)

which inducesAthomorpgiims betweenAhJomotopy groups including 7 such that
Pood = 1: mNil(X)®mNil(X) — mpNil(X)DmeNil(X) (see Proposition 7.5.4).
Our goal 1s to show that for each k& > 0 there is a split exact sequence of abelian
groups

0= mNil(X) ® mNil(X) L mWh(XxS") 25 meWh(X xS = S') = 0
with P, splitting J and ¢, splitting r.. Once we have established exactness, it will
follow that
rx PiWh(XxSY) = Wh(XxS' = §Y) x Nil(X) x Nil(X); 2~ (r(z), P(x))

induces isomorphisms on homotopy groups (including my) so that » x P is a homo-
topy equivalence, proving Theorem 1.2.2.

In order to prove exactness, we need to show that .o J = 0 and that Ker(r,) C
Im(J). In Chapter 8 we will use transfer maps to establish the first property as
follows. The standard s—fold cover (s > 1) of S* induces a simplicial map

tr* : Wh(X xS*) — Wh(X xS1),
called the s—fold transfer map, such that
1. (Transfer Additivity on Image of i) the composition

tr?

OWh(X xR 5 R) 5 Wh(XxS" = 5') & Wh(XxS5') 25 Wh(X xS

is homotopic to the map  — @i(z) + - - -+ pi(x) (s times) with + denoting
the abelian monoid-like sum in Wh(X x S?),
2. (Transfer Invariance of Wrapping Up) the composition

tr?

Wh(X xR = R) & Wh(X xSt = ST 5 Wh(XxS') = Wh(XxSh)
1s homotopic to ¢ o w, . .
3. (Transfer Nilpotency on Image of J) for each z € m Nl (X)) G Nil(X)
there exists s > 1 such that
tr? (J(z)) = 0 € mWh(X xSt) for each S > s.
These transfer properties imply that
Im(ps 0 i) NIm(J) = 0 = Im(px 0 w.) NTm(J) in me Wh(X x S1).
When these images are pushed into m, Wh(X xSt — S by r. we get
Im(é) NIm(r. o J) =Im(ry o gy 04) NIm(ro 0 J) =0
and
Im(w.) NTIm(ry o J) = Im(rs o . o ws) NIm(r. o J) = 0.
Since mWh(X xSt — S1) = Im(i.) & Im(ws) (from the proof of Theorem 1.2.1
above), it follows that Im(r. o J) = 0, i.e. r. 0 J = 0.
Finally, the proof that Ker(r,) C Im(J) is given in Chapter 9 using a compli-
cated argument involving mapping tori (together with some technical results from

controlled topology given in an appendix). It is this part of our argument which is
modeled on Ranicki’s algebraic pentagon [42].
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The following result follows immediately from Theorems 1.2.1 and 1.2.2. It is
a restatement of the Main Result of the Introduction using Hilbert cube manifold
theory to interchange finite CW complexes with compact Hilbert cube manifolds.

THEOREM 1.2.3. If X s a compact Hilbert cube manifold, then there s a ho-
motopy equivalence of simplicial sets

Wh(X xS') ~ Wh(X) x Q"' Wh(X) x Nil(X) x Nil(X).

A pseudoisotopy of a space X is a self-homeomorphism on X x[0, 1] which
restricts to the identity on X x{0}. Let P(X) denote the simplicial set of pseu-
doisotopies on X. If X is a compact Hilbert cube manifold, then P(X) ~ QWh(X)
(see Proposition 5.8.1 and [29]).

COROLLARY 1.2.4. If X s a compact Hilbert cube manifold, then there is a
homotopy equivalence of stmplicial sets

P(X x S') ~ P(X) x Wh(X) x QNil(X) x QNil(X).

This result can be stated in finite dimensional language: Chapman [7] proved
that if M is a PL manifold, then P(M x Q) is homotopy equivalent to the simplicial
set of stable pseudoisotopies on M (i.e., the direct limit of P(M) — P(M x I) —
P(M x I?) — ---). Hatcher [23] also obtained a decomposition of P(M x S') with
P(M) x Wh(M) as a factor, but did not have a splitting of the Nil part.

We actually prove our results in more generality than stated above. The White-
head and Nil spaces of X are generalized to Whitehead and Nil spaces of X x R”
with control in R”™ (so that the first results correspond to n = 0).

THEOREM 1.2.5. If X s a compact Hilbert cube manifold, then there s a ho-
motopy equivalence of simplicial sets

Wh(X x S'xR™ — R™) »Wh(X xS xR™ — R™) x Wh(X xR — R «
Nil(XxB" o B") x Nil(X xR" = R").
By considering the set of path components of the spaces in the theorem above,

one obtains the statement of the Fundamental Theorem of Lower Algebraic K-
Theory (see [43]). This is because of the following calculations:

ToWh(X x StxR" — R") = { Ko@m(Xxsh) ifn=1
Ki_n(Zm(XxSY) ifn>1
ToWh(X xR — R+ = K (Zm(X)) ifn>1
moNil(X xR" — R™) = NK;_,(Zm(X)).
The first two are due to Chapman [7] and the third is carried out in Chapter 7.

The Fundamental Theorems of Lower Algebraic K-theory on which the results
are modeled are (see e.g. [43]):

Ko(R[t,t™1]) = Ko(R)&K_1(R) & NKo(R) & NKq(R),
and

Ki_n(R[t,t7) = K1_n(R) & K_n(R) & NK;_,(R) & NK;_,(R), n>1.
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There 1s also an analogue of Corollary 1.2.4 for bounded pseudoisotopies on
X xIR™. Let Pp(X xR™) be the simplicial set of bounded pseudoisotopies on X xR™.
In Section 5.8, it is shown (using [27], [29]) that, for n > 1,

Pp(X xR") ~ QWh(X xR" — R"™)
~ Wh(X xR+ 5 R+,
The following result is a consequence of Theorem 1.2.5.

COROLLARY 1.2.6. If X 1s a compact Hilbert cube manifold, then there is a
homotopy equivalence of stmplicial sets

Po(X X SR ~Pp(X xR™)x Wh(X xR" — R")x
QNL(X xB" — RY)x QNGl(X xR — R™).

As mentioned above; controlled topology plays a major role in our results.
One important part of controlled topology is the theory of manifold approximate
fibrations. Manifold approximate fibrations arise from the controlled Whitehead
spaces as follows: if f: M — XxB is a vertex of Wh(XxB — B), then the
composition projof : M — B is a manifold approximate fibration. In fact, this
construction induces a map between moduli spaces. Many of our constructions
are carried out on the level of spaces of manifold approximate fibrations and then
getting results about Whitehead spaces as corollaries. One consequence of this
approach is that the manifold approximate fibration results hold equally well for
finite dimensional manifolds (of dimension greater than four) as for Hilbert cube
manifolds. However, we offer no analogue for finite dimensional manifolds of our
splitting of the uncontrolled part of Wh(X x S1xR™ — R") into two Nil spaces.

In addition to giving parametric treatments of the wrapping up, unwrapping
and relaxation constructions for moduli spaces of manifold approximate fibrations,
another innovation is to give interpretations of these as maps between classifying
spaces. The spaces of manifold approximate fibrations and the Whitehead spaces
were shown to be homotopy equivalent to spaces of cross sections of certain bundles
of classifying spaces in [30] and [32]. We obtain simple descriptions of our geometric
constructions as maps between these spaces of cross sections. These descriptions
should allow easier application of the complicated geometry in the future.

There are two more new ideas in this paper which should be mentioned here.
The first is a clarification of the boundedness properties of the infinite cyclic cover
of a space with a map to S'. As pointed out in [31], the infinite cyclic cover is
finitely dominated if and only if the natural map to R is a bounded fibration, in
which case the space is called a band. Here we encounter spaces with maps to
S1 x R™ and the situation is complicated by the noncompactness of R™.

The second is a parametric version of the sum theorem for Whitehead torsion.
Our proof uses Hilbert cube manifold machinery.

For background on Hilbert cube manifolds including the notion of Z-sets, con-
sult the books by Chapman [6] and van Mill [39]. The Hilbert cube @ is the count-
able infinite product of closed intervals. A Hilbert cube manifold, or QQ-manifold, 1s
a separable metric space which is locally homeomorphic to open subsets of (). We
will also need basic results from )-manifold theory parametrized by fiber bundle
projections, including the notion of sliced Z-sets (sometimes called fibered Z-sets).
The standard references for the parametrized theory are Chapman and Wong [11],
Chapman and Ferry [12], Ferry [20], and Torunczyk and West [46]. For a recent



8 1. INTRODUCTION AND STATEMENT OF RESULTS

survey describing the connection between Hilbert cube manifold theory and finite
dimensional manifolds, see Weiss and Williams [49].



CHAPTER 2

Moduli Spaces of Manifolds and Maps

Throughout this chapter let B denote a locally compact, separable metric space
with a fixed metric and let m € {1,2,3,... 00} be fixed. When m = oo an m-
manifold means a Hilbert cube manifold. The Hilbert cube is denoted by @ and
when m = co we also write m = Q).

2.1. THE SIMPLICIAL SET OF MANIFOLDS

A k—simplex of the simplicial set Man™(B) of m—manifolds over B consists of
a subspace M C f5 x B x AF of small capacity such that

(i) the projection p : M — AF is a fibre bundle projection with fibres m—
manifolds without boundary, and

(ii) the projection p : M — B x A¥ is a proper map.
See [32] for the notion of small capacity of subspaces of £5x BxA* . We will usually
ignore this embedding property; the reader can easily supply the missing details.
For us the important information is the map p : M — B x AF; the embedding
M C fy x B x A* just allows us to avoid defining k-simplices of Man™(B) as
equivalence classes of such maps. The “small capacity” condition is a technical one
which allows easy manipulation of the embedding (this is similar to Z—embeddings
in Hilbert cube manifold theory). In other words, we often specify a k-simplex of
Man™(B) by giving a proper map p : M — B x A* such that the composition

p: M — Bx AF o AF

is a fibre bundle projection with fibres m—manifolds without boundary. This should
be thought of as a k—parameter family of manifolds mapping to B.

ProrosiTION 2.1.1. Two verticesp: M — B and q : N — B are wn the same
component of Man™ (B) if and only if there exists a homeomorphism h : M — N
such that p s properly homotopic to qh.

Proo¥. See Hughes—Taylor—Williams [35], Proposition 1.6. O
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2.2. THE SIMPLICIAL SET OF MANIFOLD APPROXIMATE FIBRATIONS
Recall the following definition.

DEeFINITION 2.2.1. If If is an open cover of B, then a map p: M — B is a
U—fibration if for every commuting diagram

x LM

xOl lp
X x[0,1] £ B
there is a map F': X x [0,1] — M such that F|X x 0= f and pF is U—close to F.

If ¢ > 0, then we also use ¢ to denote the open cover of B by c¢—balls. Thus, we
speak of c—fibrations. If p: M — B is a c—fibration for some ¢ > 0, then we say p
is a bounded fibration.

We assume that the reader is familiar with the basic properties of approximate
fibrations as discussed in [32], Appendix. In particular, if M and B are ANRs (as
they always will be in this paper), then a map p: M — B is a c—fibration for every
¢ > 0 if and only if p 1s an approximate fibration.

A manifold approximate fibration is a proper approximate fibration between
manifolds without boundary. Important special cases to keep in mind are fibrations
(i.e., maps with the homotopy lifting property for all spaces) and projection maps
of locally trivial fibre bundles, as long as these maps are proper and have manifolds
without boundary as domain and range.

Assume now that B is a manifold without boundary with a fixed metric. The
simplicial set MAF™ (B) of manifold approximate fibrations over B was defined in
[32]. A k-simplex consists of a subspace M C £5 x B x AF of small capacity such
that

(i) the projection p : M — A is a fibre bundle projection with fibres m—
manifolds without boundary, and
(ii) the projection p: M — B x A has the property that for each t € A¥,

plp7H (B x {t}) = B x {t}
i1s a manifold approximate fibration.

We will usually ignore the 5 embedding property in the definition, as mentioned
above in the case of the simplicial set of manifolds over B.

By analogy with Proposition 2.1.1 we have the following characterization of
components of the simplicial set of manifold approximate fibrations. Let B be a
fixed manifold with dim B < oo and assume that B is either a closed manifold or
a product Y x "™ of a closed manifold Y and R™ (with the standard metric) and
that B has the product metric. The reason that we make this assumption here and
elsewhere is so that we can use epsilonics rather than open covers of B in making
estimates.’

PROPOSITION 2.2.2. If m > b5, then there exists eg > 0 so that if p; : M; — B,
i =1,2, are two vertices of MAF™(B), then the following are equivalent :
(1) p1 and ps are in the same component of MAF™ (B).

I More generally, B could be a non-compact manifold with a sufficiently homogeneous metric,
for example, hyperbolic space or any cover of a closed manifold.
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(i1) There exists a homeomorphism h : My — My such that pah is eg—homotopic
top1.

(iii) For every € > 0 there exists a homeomorphism he : M1 — My such that pah,
1s e—homotopic to p;.

Proor. See Hughes—Taylor—Williams [32], Corollary 7.12. O

2.3. THE SIMPLICIAL SET OF MANIFOLD BANDS

We continue to let B denote a manifold without boundary with a fixed metric.
The standard exponential map is denoted by e : R — S and is an infinite cyclic
covering projection. We also generically use e to denote the product of e with
identity maps, for example e = 1d x e x id, so that e is always an infinite cyclic
covering projection.

A k-simplex of the simplicial set ManBan™ (S x B) is a k—simplex of Man™ (S x
B) with projection

p: M — St x BxAF

so that the infinite cyclic cover

M —2 5 B« BxA*

M —L— St x B x A
has the property that for every ¢ > 0 there exists ¢ > 0 such that for every ¢ € A¥
the restriction
plip T R x Bx{t}) =R x B x {t}

is a (¢ x e)—fibration where (¢ x €) denotes the open cover of R x B consisting of
products of ec—balls in R with e—balls in B.

A k-simplex of ManBan™ (S x B) is called a k-parameter manifold band over
B, and a O—parameter manifold band over B is just a manifold band over B.

In the case B = {point}, the property defining a manifold band over B is that
there exists ¢ > 0 such that each restriction

Bl (B x 1) > R x (1)
is a c-fibration. By Hughes-Ranicki ([31], Proposition 17.14), this is equivalent
to saying each p~!(R x {t}) is finitely dominated. This explains the terminology
because a manifold band is a manifold M with a map M — S such that the infinite
cyclic cover M is finitely dominated.

In Chapter 5 we will encounter homotopy equivalences to manifolds of the form
X xS'x B in the definition of Whitehead spaces. When the manifolds are compact,
passing to infinite cyclic covers produces manifold bands over B as Proposition 2.3.2
below shows. After that result, we will discuss the noncompact case. We begin with
a simple lemma which illustrates how infinite cyclic covers induce boundedness.
This lemma is established in [35], Lemma 3.2, in a more general situation when S*
is replaced by any closed manifold of nonpositive curvature.

LEMMA 2.3.1 (Bounding Lifts). Let Z be a compact space with a homotopy K :
Z x [0,1] = SY. There exists ¢ > 0 such that if w : [0,1] — R is any path covering
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a track of K with respect to e (i.e., there exists z € 7 such that ew(t) = K(z,t) for
each t € [0, 1)), then diam(w) < c.

PROPOSITION 2.3.2. Suppose M and X are compact manifolds, B is a closed
manifold, and f : M — X x S' x B is a homotopy equivalence such that the
composition

ppof: M L X xSt x B 22 B
is a verter of MAF™(B). Then the composition

psixpof: M L X x5t x B 125 gl p
is a vertex of ManBan™ (S x B).

Proo¥F. Form the pull-back diagram

M —L XxBxB 5 pyB

M —L 5 xxstxp 2525 g1y

It is known that the conditions on f imply that for every € > 0, there is a pgl(e)—
homotopy inverse for f; that is, there exist a map ¢ : X x S! x B = M and
homotopies F' :idx«sixB ~ f9 and G :idpys ~ gf such that pgo F and pgo fo G
are e-homotopies. Similarly, it suffices to show that given € > 0 there exist ¢ > 0
and a pﬂgiB(c x €)-homotopy inverse g for f (see [27]). So let € > 0 be given and
let g: X xS'xB =3 Mbea p§1(€)—homotopy inverse for f with homotopies F, G
as above. The lifting problem

X xR xB Jdxmxs v R« B

XOl le
F(e xidpg 4
X xBxBx[0,1] ZMen v ogyp

has a solution ' : X x R x B x [0,1] - X x R x B so that Fo = idxxg«B
and eFt = Fie for each ¢ € [0,1]. Since the tracks of p]RF cover tracks of pgi F
with respect to e, it follows from Lemma 2.3.1 that there exists ¢; > 0 such that
p]RF i1s a c;-homotopy. Moreover, each track of pBF is a track of pgF’, so Fisa
g ! (¢)-homotopy. Thus, Fisa p]RxB(cl x €)-homotopy.

Define §: X x R x B— M by g(z) = (ge(z), Fi(x)) € M C M x (X xR x B).
Note that 6§ = ge and I} = fg so that I : idxxgxp ~ f§ is a pﬂgiB(cl X €)-
homotopy.

It remains to show that g is a left homotopy equivalence for f (with the correct
control in R x B). Define K : M x [0,1] — M by K(z,t) = G(e(z),1 —t). The
lifting problem

Mo

| E

MxI —% 5 m
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has a solution K : M x [0,1] — M so that Ky = gf and eK; = e. Thus, K; :
M — M is a covering translation and, letting v = [\1 it follows that ~vg is a left
homotopy inverse for f.

Since tracks of F' cover tracks of F' with respect to e, it follows that tracks of
'ygF cover tracks of gF with respect to e, and tracks of pﬂgf'ygF cover tracks of
ps1 fgI" with respect to e. It follows from Lemma 2.3.1 that vgF is a (prf)~t(e2)-
homotopy for some ¢5 > 0. Thus, G F f : vgf ~~ifgf is a (prf)~*(ca)-homotopy.
Moreover, pr'ygF is a 3e-homotopy.

Tracks of the homotopy 'y[( cover tracks of GG with respect to €. Thus, tracks
of p]Rf"}/IX cover tracks of pg1 fG with respect to e. It follows from Lemma 2.3.1
that YK :vgf ~ ids; is a (prf)~*(cs)-homotopy for some c3 > 0. Moreover, peYK
i1s an e-homotopy.

It follows that there is a (prxpf)~"((c3 + 2¢2) x Te)-homotopy

idy = v9f ~vg(fa)f = (vaFlaf = af
completing the proof. O

When B is not compact, passing to an infinite cyclic cover may not produce
boundedness. We next give one general situation where boundedness is produced,
and then give an example when it is not. For notation, we use

e =exex---xe:R"T"
for the standard covering projection as well as e =1d x ™ x id.

PROPOSITION 2.3.3. Suppose M and X are compact manifolds, Y s a closed
manifold, and f: M — X x S' x Y x T™ is a homotopy equivalence such that

pysrnofi M L X xSt xy s DXy o
is a verter of MAF™ (Y x T™). Then the map
f:M—>XxSxYy xR?

induced by pulling back along the covere”™ : X x S' x Y xR" 5 X x S x Y x I™
is a vertex of ManBan(S1 x Y x R™).

ProoF. Consider the diagram of pull-back squares:

L X xRBRxY xR"

M —L X xSt xyxTm

Given € > 01t needs to be shown that there exists ¢ > 0 such that pgxyxg~© }]\7—)
R xY xR"is a (¢ x ¢)-fibration (where RxY xR" = Rx(Y xR")). Note that }
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also fits into the diagram of pull-back squares

—,

M — % XxRBRxY xR"

! I8

ML X xBxY xT™

M — s X xSty T

It follows from Proposition 2.3.2 that there exists ¢ > 0 such that prxyx7n o [’ :
M =R xY xT"is a (¢ x €)-fibration. Now the diagram

meBO?
_—

M RxY x R?
PRxyxTnOf’

M —— RxYxI"

immediately implies the result (provided ¢ is small enough). O

ExAMPLE 2.3.4. This example illustrates the failure of Proposition 2.3.2 in the
case that B = [0,c0). For notation let S* = {[t] | ¢ € R} where [t] = [t] if and
only if t — ¢/ € Z. Thus, the exponential map e : R — S is given by e(t) = [¢].
Let M = [0,1]Vv St = {(s,[t]) € [0,1] x S* | s = 0 or ¢t € Z}, the circle with a
sticker attached. Define a homotopy equivalence f: M x [0,00) — St x [0, 00) by
(s,[t], u) = ([t + su], u) (see figure below).

7N 7N\

/ \ / \

I \ I \

| ! |

| ! f |

I —_— I

| | |

| | |

\ | \ |

Vo Vo

oy oy
S1x10, 00)

Let M = {(z,y) €R? |z =0ory€ Zand 0 <z < 1}. There is a pull-back
diagram

M x[0,00)

M % [0,00) —L— B x[0,00)

‘| e

M x [0,00) —L— S x [0, 00)
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where f(z,y,u) = (y + xu,u) and &(z,y,u) = (=, [y],u). Since P,y © f ¢+ M x
[0, 00) = [0, 00) is projection, it is certainly an approximate fibration. However, the
composition p]RX[OyOO)OfT: M x[0,00) = R x [0, 00) is not a (c x 1)-fibration for any
¢ > 0. Of course, M is not a manifold, but manifold examples can be constructed
by taking a regular neighborhood of M or crossing with the Hilbert cube (to get a
Hilbert cube manifold).

Because of this example, we introduce another simplicial set, ManBan]" (S x

B), which will contain homotopy equivalences to B x S even though B is not
compact. A k-simplex of ManBan"(S* x B) is a k-simplex of Man™ (S x B) with
projection

p: M — St x BxAF
so that the infinite cyclic cover

p:M—RxBxA*
has the property that for every compact subspace K C B and for every € > 0 there
exists ¢ > 0 such that for every t € A* the restriction

plip T R x Bx{t}) =R x B x {t}
is a (¢ x €)-fibration over R x K x {t}. Thus, there is an inclusion map
ManBan™ (S* x B) — ManBan?"(S* x B)

which is the identity if B is compact. The subscript ¢ stands for “compact subsets,”
and ManBan]'(S' x B) is called the simplicial set of manifold bands with respect
to compact subsets.

We need the following analogue of Proposition 2.3.2. Its proof is omitted since
it follows that of Proposition 2.3.2 almost word for word.

PROPOSITION 2.3.5. Suppose X is a compact manifold, M and B are manifolds
without boundary, and f : M — X x S* x B is a proper homotopy equivalence such
that the composition

ppof:M L X xSt xB 25 B
is a verter of MAF™(B). Then the composition
psixpof M L X xSt xp x5 p
is a vertex of ManBan!" (S x B).
In Proposition 2.4.2 below it will be shown that the inclusion
ManBan™(S* x B) — ManBan”(S' x B)

1s a homotopy equivalence in the case B =Y x R™ with Y a closed manifold.
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2.4. THE FORGET CONTROL MAP

If B is a manifold, then
¢: MAF™(B) — Man™(B)
will denote the inclusion and we call ¢ the forget control map. Note that the forget
control map on MAF”(S? x B) actually has image in the simplicial set of manifold
bands,
¢ : MAF™(S' x B) — ManBan™(S* x B).
This is because if p : M — S! x B is a manifold approximate fibration, then so is
p: M —RxB.
There is also a natural map
¢ : ManBan” (S' x B) — MAF™(B)
defined by taking a k—simplex p : M — S x B x A* of ManBan™ (S* x B) to the
composition
M 2 St x Bx AF B2 B AR
Of course, one needs to verify that this composition is a k-simplex of MAF™ (B).
We give the proof of this fact for vertices (k = 0), the more general case being
entirely analogous.

LEMMA 2.4.1. If p: M — S! x B is a verter of ManBan™ (S' x B), then the
composition ppp : M — B is a verter of MAF™(B).

Proor. Consider the commuting diagram

M —Lr s pxB 22, B

| | [

M-t stxB 25 B
where the square on the left is a pull-back. By assumption, for every € > 0 there
exists a ¢ > 0 such that pis a (¢ x ¢)-fibration. It follows easily that for every ¢ > 0,
ppp is an e-fibration. We need to show the same for pgp: M — B. To this end let
€ > 0 be given and consider the a lifting problem:

7z L m

o Jror

Form the pull-back

£

£
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Let F' : Z x [0,1] — M be an ¢-solution where € is as small as we like (and
depends on e).

If (7 : M = M and (5 : Z — 7 denote the covering translations induced from
the 41 covering translation on R, then it follows that (5 f = f(z, 9(z = ¢, and
Fo (CZ X id[o,l]) =F.

Let Z; = (prpf)~'(i) for i = 0,1 and Z[o,l] = (prpf)~1([0,1]). Define Pt
(ZoUZl) X IUZX {0}—)Mby

Ptz Fﬁ(g’t)’ ifzeZyort=0
0= CaFH(CGH ), itz 2y

Note that this is an ¢-lift of F|. Hence, if ¢ is chosen small enough, F! extends
to a map F' : Z[o,l] x [0,1] = M which is an elift of F/|. Finally, define an e-
solution F' : Z x I — M of the original problem by F(z,t) = eF'((g])~1(2),1)
where g| : Z[o,l] — 7. O

The proof of Lemma 2.4.1 shows that the map ¢ : ManBan™(S! x B) —
MAF™(B) extends to a map ¢. : ManBan' (S x B) — MAF" (B) defined by the
formula: a k-simplex p : M — S* x B x AF of ManBan]'(S* x B) is sent to the
composition

M 5 s« Bx AF 225 g AR

This extension exists because the property of a map to B being an approximate
fibration is a local property (see [16], [14]).

The composition of these two maps gives yet another simplicial map, also de-
noted ¢ and called the forget control map,

¢ : MAF™(S' x B) — MAF™(B).

Note that this map is really just a partial forgetting of control: it forgets control
in the S' direction, but remembers the control in the B direction.

We end with a result showing that there is essentially no difference between
ManBan and ManBan. in the cases we will need.

PrOPOSITION 2.4.2. IfY 1is a closed manifold, then the inclusion
ManBan™ (S x ¥ x R™) — ManBan”"(S' x ¥ x R™)
15 a homotopy equivalence.

Proor. It suffices to show that the inclusion induces an isomorphism on ho-
motopy groups. To this end let f : M — S* x Y x R” x A* be a k-simplex of
ManBan*(S! x Y x R™) which is a union of (k — 1)-simplices of ManBan" (S* x
Y x R™) over ST x YV x R™ x A*. By a deformation rel JA* we may assume that
f has the ManBan property over a collar neighborhood C of A* in A*. Let U be
an open subset of R™ x A¥ such that U N (IR" x {t}) is the ball of radius 1 about the
origin for t ¢ C, U N (R" x JA*) = R™ x 9A* and U N (R" x {t}) is a ball of radius
r(t) > 1 fort € C'\ OA* such that r(t) — oo as t — OA*. Let h: U — R" x A*
be a radial homeomorphism rel 9A* and let My = f~1(S' x Y x U). Then fy =
(idsiyy xh™Hof : My — ST xY xR"x A is a k-simplex of ManBan™ (S x Y xR")
which is homotopic in ManBan?® (S x Y x R") rel A* to f. The key ideas needed
to verify this are in [30], §6. That fy is in ManBan rather than just ManBan,
follows from the fact that U/ N (R™ x (A* \ (') has compact closure. O



CHAPTER 3
Wrapping-up and Unwrapping as Simplicial Maps

Fix m € {5,6,...,00} and suppress m from the notation for the simplicial sets
defined in Chapter 2. Let B denote a fixed manifold with dim B < co and assume
that B is either a closed manifold or a product Y x R™ of a closed manifold Y and
R™ (with the standard metric) and that B has the product metric.

In this chapter we define two simplicial maps, wrapping-up

w: MAF(RxB) — MAF(S'xB)
and unwrapping
u : ManBan(S' x B) — MAF (R xB)

such that ww ~ Ipar®xB)- More precisely, we show that the composition
MAF(RxB) - MAF(S'xB) < ManBan(S'xB) - MAF(R xB)

is homotopic to the identity (where ¢ is the forget control map defined in Section

2.4).

3.1. UNWRAPPING

The idea behind the map u : ManBan(S! x B) — MAF (R xB) is simple. Just
pull-back along the infinite cyclic cover RxB — S'xB. The problem is that
the result of the pull-back construction is only a (e¢xe)—fibration rather than an
approximate fibration (this is because of the very definition of ManBan(S! x B)).
Thus the Sucking Principle for manifold approximate fibrations must be applied
(hence the dimension restriction). This principle originated in Chapman’s papers
[8], [9] and was developed parametrically by Hughes [26], [28] and by Hughes,
Taylor and Williams [32]. In order to get a simplicial map the construction is
carried out inductively over the skeleta and the following lemma allows us to carry
out the induction.

LEMMA 3.1.1 (Sucking to get MAFs). For every € > 0 there exists & > 0 with
§=46(e,m, k, B) so that if p: M — RxB x A* is a proper map such that
1. the composition p : M — R x BxA* — AF is a fibre bundle projection
with fibres m—manifolds without boundary, and
2. there exists b > 0 such that for all t € A* the restriction

pl:ip () = BxB x {t}
is a (b x §)—fibration.

Then there exist ¢ > 0 and a f.p. (¢ x €)-homotopy h : p ~ p' with the property
that for each t € A the restriction

P :p_l(t) — RxB x {t}

18
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1s a manifold approrimate fibration.

The property of p’ above can be restated as “p’ is a f.p. manifold approximate
fibration” .

ADDENDUM 3.1.2. LIfp'| : p~YH(OA%) — RxBxJA* is already a fp.
approzimate fibration, then the homotopy h : p ~ p' can be chosen rel
p=H(OAR).

2. If m = co, X C M is a sliced Z-set Hilbert cube manifold and p| : X —
RxBxAF is a fibration, then the homotopy h : p ~ p' can be taken rel X
(in addition to the other properties above).

The proof of 3.1.1 and 3.1.2 can be obtained from [26].
For n > 0 consider the

Inductive Statement S,: For each k, 0 < k£ < n, and each k-simplex
p: M — S'xB x A*
of ManBan(S! x B) and each ¢ > 0, there exists a k-simplex

2P Ry B« AF

of MAF (R xB) and ¢ > 0 together with a homotopy H, : M x[0,1] — RxB x A*
such that

1. M comes from forming the pull-back diagram

M —2 4 BxBxA*

l l

M —2 5 S'xB x A
2. Hyis afp. (¢ x €)-homotopy from u(p) to p,
3. foreach 7, 0 < 7 < k|
Hy,p = Hy|

as a homotopy from u(d;p) to d;p = p|,
4. for each i, 0 < 7 < k, u(9;p) = 9;i(u(p)).

PrROOF OF Sy. Given a vertex M — S'x B of ManBan(S'x B) and ¢ > 0,
form the pull-back

M —I 4 BxB

l l

M —r— S'xB
and let § > 0 be given by Lemma 3.1.1. By the definition of ManBan(S! x B),
there exists b > 0 such that p is a (b x d)—fibration. By Lemma 3.1.1 there exist
¢>0and amapu(p) : M — RxB which is a vertex in MAF (R xB) together with
a (¢ x €)~homotopy H, : u(p) ~ p. O

PROOF THAT S,,_1 IMPLIES S, FOR n > (. It suffices to consider an n-simplex

p: M — S'xBx A"
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of ManBan(S! x B). Form the pull-back
M —I & BRxBx A"
M —2— S'xB x A"
Let p: M — A" denote projection; that is, the composition
p: M D RxBx A" — A",
For each ¢, 0 < ¢ < n, we have constructed
u(&p) ﬁ_l(ﬁlAn) — RxB x ;A"
by our inductive statement S,,_1. These fit together to give a map
u(p) : p~H(OA™) — RxB x OA™.
We also have a f.p. (b x §)~homotopy
Hap : u(dp) ~ plp~t(OA™)
for some b, > 0 where b is possibly large, but § is as small as we desire. Using this
homotopy and an exterior collar 9A™ x[0, 1] of IA™ on A™ so that A" x{1} = JA™,
we can define a new map
p* i MUpPTHOA™)x[0,1] = RxBx(A"U(GA™ x[0,1]))

such that

1. p* = u(dp) on p~1(0A™) x {0},

2. p* = Hpp on p~HOA™) x [0,1], and

3.pf=pon M.

The point is that p* is an f.p. (b x §)—fibration, so Lemma 3.1.1 can be used to
deform p* rel 9A™ x{0} to a map in which we can find u(p) and H,. That is, we
get a map

F:Mx[0,1] = RxB x A"x][0,1]
which is f.p. over A" %[0, 1] such that
FIMx{1} =p and Flp~ (dA™)x[0,1] = Ha,.
Then we take H, = F and u(p) = F|Mx{0}. O
It follows that we can define the simplicial map
u : ManBan(S' x B) — MAF (R xB)
by letting u(p) be given by the construction above.
REMARK 3.1.3 (The Infinite Transfer). The composition
MAF(S'x B) < ManBan(S'xB) - MAF(RxB)

is homotopic to the simplicial map given by the pull-back construction (no sucking
needed). This composition is also called the unwrapping, or infinite transfer, map
and denoted

u: MAF(S*x B) — MAF(RxB).
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Finally, we note that the unwrapping map can be extended to a simplicial map
u : ManBan,(S' x B) — MAF(RxB).

The idea is to write B as an ascending union of compact subsets, B = U2, B;, and,
after pulling back, to inductively shrink in the R—coordinates of R x (B;11 \ B;).

3.2. WraprPING Up

The construction of the map w : MAF(RxB) — MAF(S!xB) is based on
the existence of certain engulfing isotopies which we get from the Approximate, or
Controlled, Isotopy Covering Principle for manifold approximate fibrations. This
principle originated in [25] and [28] and has been exposited in [32], [34] and [31].
We only need a special case which we now develop.

The 1nitial construction of w is rather technical because the isotopies mentioned
above have to be constructed inductively on the skeleta of MAF (R xB). However,
once we have this concrete definition of wrapping-up in hand, we will be able to use
the classification results of [32] to give w a simple description (see Theorems 3.4.1
and 3.4.3 below). As a corollary we will be able to show that when B = R" the
wrapping-up w : MAF(R"*1) — MAF(S?xR") is independent (up to homotopy)
of which R—factor is used to wrap-up.

Recall that an isotopy on X is a homeomorphism h : X x[0,1] — X x][0,1]
which is f.p. over [0,1] and hy = idx.

Let g : Rx[0,1] — Rx[0, 1] be the PL isotopy such that

1. g is supported on [—1, 3]x][0, 1], and

2. for each s € [0,1], g5 takes [—1,—0.5] linearly onto [—1,s — 0.5], takes

[-0.5,1.5] linearly onto [s — 0.5,s + 1.5] and takes [1.5,3] linearly onto

[s 4+ 1.5,3].
In particular, g1|[—0.5, 1.5] has the form ¢ — ¢ + 1.

LEMMA 3.2.1 (Controlled Isotopy Covering). Given a k-simplex
p: M — RxBxAF
of MAF(R xB) and ey > 0, there exists a “continuous family of isotopies”
G(p) : M x[0,1]x[0,0) = Mx][0,1]

such that

1. G(p) is a map which is f.p. over [0,1] and A¥,

2. for each t € [0,00), G(p): : Mx[0,1] —» Mx[0,1] is an isotopy supported

on p~H([~2,4]x Bx A¥),

3. (pxid 1)oG(p)e + Mx[0,1] — R x[0,1]xBxAF converges uniformly to

(g x idgyar)o(pxidy 1) as t goes to 0o, and
4. foreacht € [0,00), (pxid,17)oG(p): is eo—close to (g xidgyar)o(pxid 1])-
ADDENDUM 3.2.2. 1. If p: M — AF is the projection and
G(0p) : p~HOAF)x [0, 1]x[0, 00) — p~H(AA®)x[0,1]
is already such a family, then G(p) can be chosen so that
G(p)|p~H(OAF) %[0, 1]x[0, 00) = G(Ip).
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2. If m = 0o, X is a compact Hilbert cube manifold, X x RxB x A* is a sliced
Z-set in M, and p| : X x RxBxAF — RxBxA¥ is projection, then G(p)
can be chosen so that for each t€[0, c0)

G(p)]: X x BxB x AF = X x RxB x A"
is g X idxxpxar (in addition to the other properties above).

ProoF oF 3.2.1, 3.2.2. See [28], [27], [34], [31]. O

We will also need the following version of the Sucking Principle for manifold
approximate fibrations (cf. Lemma 3.1.1).

LEMMA 3.2.3 (Sucking to get MAFs). For every € > 0 there exists & > 0 with
§=4d(e,m, k, B) such that if p: M — S*x B x A* is a proper map satisfying
1. the composition
p: M D StxB x AF 5 AF
15 a fibre bundle projection with fibres m—manifolds without boundary,

2. for each teAF®,
pl:p7t(t) = S'xB x {t}
is a d—fibration, and
3. for each t€OANF,
pl:p Ht) = S'xB x {t}
15 a manifold approrimate fibration,

then there is a homotopy p ~ p’ which is f.p. over A* and is rel p=*(OA¥) such
that for each tEAF

Plo (1) = 81 B {1}
1s a manifold approrimate fibration.

ADDENDUM 3.2.4. If m = oo, X is a compact Hilbert cube manifold with
XxS'xBxAF a sliced Z—set in M, and p| : XxS'xBxA*F — S'xBxA* is
projection, then the homotopy p ~ p' can be rel X xS' x Bx A¥ (in addition to the
other properties above).

PrOOF OF 3.2.3, 3.2.4. See [26], [28], [32]. O

One more result on manifold approximate fibrations is required.

LEMMA 3.2.5 (Local Connectivity for MAFs). For every € > 0 there exists § =
§(e,m,k,B) > 0 such that if po,p1 : M — S'xB x AF are k-simplices of
MAF(S1x B) satisfying

1. po = p1 over S'xBxOAF,

2. po and p1 are 6—close,
then there is a map

p: M — S'xBxAFx[0,1]
such that

1. p=p; over S'xBxAFx{i} fori=0,1,

2. p| = po|xid = p1|xid over St x BxdA*x[0, 1],

3. the composition

p: M L S'xBxAFx[0,1] = AFx[0,1]

1s a fibre bundle projection with fibres m—manifolds without boundary, and
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4. for each teA*x[0,1],
pl:ipt(t) = S'xBx{t}
1s a manifold approrimate fibration.

ADDENDUM 3.2.6. If m = oo, X is a compact Hilbert cube manifold with
X xS x BxAF a sliced Z-set in M, and both po|, p1| : X xS'x Bx AF — S'x Bx Ak
are projection, then the map p can be chosen so that p| : X x St x Bx A*x[0,1] —
Stx BxAkFx[0,1] is projection.

PrROOF OF 3.2.5, 3.2.6. See [26], [28]. O

3.3. DEFINITION OF w

The definition of w is given inductively over the skeleta of MAF(RxB). To
begin the construction let p: M — RxB be a vertex of MAF(RxB). Let
G(p) : M x[0,1]x[0,0) = Mx][0,1]
be given by Controlled Isotopy Covering Lemma 3.2.1. Choose ¢y > 0 so large that
if ¢ > 1o then
p~H (=00, 0)x B)CG(p) (1,6~ (=00, 0] x B))
where G(p)(1,0): M — M is
G(p)| : Mx{1} x {t} = Mx{1}.
For such ¢ let
Yo = G0 (=00, 0% B)\p~ ((—00, 0) x B)
and Mt =Y;/ ~ where ~ is generated by
v~ G(p)n(x) if p(x) € {0}xB.
For each ¢ > ty there exists a map ¢; : Y; — [0, 1]x B constructed by first consid-
ering
p|:Y: = [0,2]xB.
The constant map [1,2] — 1 induces maps
c:00,2]xB — [0,1]xB, ¢p|:Y: = [0,1]xB.
Now ¢p| is homotopic rel p~1((—o0,0.5]xB)NY; to a map ¢ : ¥; — [0,1]x B such
that ¢:oG(p)(1,n(p~ ({0} xB)) = {1} xB and the diagram

p ({0} xB) S0, =1((13 5 B)

r=a | B

{(0}xB  ——  {1}xB
commutes.
By identifying S! with [0,1]/{0 = 1}, ¢; induces a map p; : M, = S'xB.
Moreover, p; is a d;—fibration where §; — 0 as t — co.
The construction of ¢, from ¢p| involves the use of the Homotopy Extension
Property, so is not completely canonical. However, any two choices will yield two
maps p; and p; which can be assumed §;—close with §; as above. It follows from
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Lemmas 3.2.3 and 3.2.5 that there exists a manifold approximate fibration p : M —
S x B such that [p] € mo MAF(S* x B) is well-defined by the construction above.
It is easy to see how to continue this construction inductively to construct

w: MAF(RxB) — MAF(S'xB).
THEOREM 3.3.1. The composition
MAF(RxB) % MAF(S'xB) 2% ManBan(S'x B) 2% MAF (R xB)
1s homotopic to the identity.

PrOOF. We need to recall a bit of germ theory from [32]. Let GMAF(R xB)
be the simplicial set whose k—simplices are equivalence classes of k—simplices of
MAF (R xB); two such being equivalent if they are equal over some neighborhood
of {0} xBxA* in RxBxAF. This process of taking germs induces a homotopy
equivalence ' : MAF(R xB) — GMATF(RxB). Now one only needs to observe that

since upw does not affect a neighborhood of {0} x BxA¥ it follows that Tugw ~
r. O

3.4. CLASSIFYING SPACE INTERPRETATION

In the special case B = R™ for n > 0, w has an especially pleasant descrip-
tion in terms of the classification results of [32]. Since S1xR™ is parallelizable
and S'xR"~ Sl according to [32] (Theorem 2.2.2 and Example 4.8) there is a
homotopy equivalence

¥ : MAF(S*xR™) — Map(S*, MAF(R"*1))
where Map(X,Y) denotes the simplicial set of maps from X to V.
THEOREM 3.4.1. The composition
MAF (R xR") % MAF(S'xR") % Map(S', MAF(R"1))
1s homotopic to the map which takes a k—simplex
pi M — R xR AF = R AR
of MAF(R xIR™) to the constant map in Map(S', MAF(R"+1)) with image the k-
simplex p.

Before proving Theorem 3.4.1 we need to make five comments about the ho-
motopy equivalence W.

COMMENT 3.4.2. The first comment involves an explicit model for the simpli-
cial set Map(S*, MAF(B)). A k-simplex consists of a subspace M Clyx St x B x A*
of small capacity such that

1. the projection p : M — S' x A¥ is a fibre bundle projection with fibres

m~—manifolds without boundary,

2. the projection p : M — S'xB x A* has the property that for each

(5,1)EST x AF,

plep™ ({shxBx{t}) — {s}xBx{t}

i1s a manifold approximate fibration.
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In this model constant maps are described as follows. If p : M — B x AF is a
k-simplex of MAF(B), then the constant map in Map(St, MAF(B)) with image
the k-simplex p is simply the k-simplex idg: xp : S*'xM — S'xB x A¥. Thus,
Theorem 3.4.1 is equivalent to Theorem 3.4.3.

THEOREM 3.4.3. Wow is homotopic to the map which takes a k—simplex p :
M — R AR of MAF(R™Y) to the k—simpler of Map(S*t, MAF(R"*1)) given
by

idgixp: S« M — SR AR,

COMMENT 3.4.4. The second comment involves recalling the simple geometric
description of the homotopy equivalence ¥. This is a distillation of the differential
of [32].! Fix a small number a > 0 (a < 7 = diam(S5)) and for z€S?* let U,
denote the open interval about x of radius a. Let 5 : S'xR — S'xS! be an
open embedding such that for each €S, n(z, ) : {z} xR — {z}xS? takes R
homeomorphically onto U, with n(x,0) = (z, ). (Thus, » is just a trivialization of
the topological tangent microbundle of S*.) Then given a k-simplex

p: M — S'xBxA*
of MAF (St x B), form
idgixp:S'xM — S'xS'x BxAF
and let
M’ = (idxp)~H(n(S* xR) x Bx A¥).
Then

i ~'xid
Y(p): M’ )l n(St x R)x Bx A" T exak ol px B AR

is a k-simplex of Map(S!, MAF(R xB)). In other words, there is a pull-back dia-
gram

M’ — Stx M
w) | [z
1 S T N k
STxRBRxBxAF ————3 § xS x Bx A",

In the case that B = R" it follows from [32] that this construction defines a
homotopy equivalence

¥ : MAF (ST xR") — Map(S', MAF(R"*1)),

COMMENT 3.4.5. The third comment is to describe another interpretation of
the map ¥ which is reminiscent of the constructions in [35].2 For this construction
represent S! as the quotient IR / ~ where the quotient map is the exponential map
e:R — S ¢+ [t]. There is another version of the exponential map , namely

e 1 STxR — Stx S ([s],t) = ([s], [s +1]).

We may assume that the trivialization 1 : STxR — S'x S mentioned above is
defined so that it agrees with e’ over a neighborhood of the diagonal in S xSt.
Form the pull-back

1Tt should be emphasized that the differential in [32] is based on the differential in [30] which
in turn is inspired by the differential of immersion theory.
?We are invoking the fact that S! has nonpositive curvature.
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N — Stx M

p’l lids1 X p

e’ xid

SIxRxBxAF 2255 STxStx Bx Ak,
Define W' : MAF(St x B) — Map(St, MAF(RxB)) by ¥ (p) = p'.

LEMMA 3.4.6. U ~ ¥ : MAF(S' xB) — Map(S', MAF(Rx B)).

ProoF. Note that ¥(p) and ¥’(p) agree over a neighborhood of St x {0} x B x
AF in S' x RxB x A*. The result then follows from the uniqueness of germs
principle for manifold approximate fibrations (cf. [32], Proposition 3.2). O

COMMENT 3.4.7. The fourth comment concerns the construction of yet another
map
U MAF(S'xB) — Map(S', MAF(R xB))
which we will show is homotopic to ¥ (for arbitrary B). Given a k—simplex p :
M — S'x BxAF form the pull-back

M —2 s BxBxAF

l exidl

M —LF— S'x BxAF.
Let ¢ : M — M be the +1 generating covering translation, let v : Rx[0,1] —
R x[0,1] be the isotopy defined by y(x,t) = (z + t,t), let % = yxidgyar :
RxBxAFx[0,1] — BRxBxA*x[0,1]. Let T({~!) be the mapping torus of (!
(thus T(¢™') = M x[0,1]/ ~ where (z,1) ~ ((~'(x),0), Definition 7.1.1). Repre-

sent S' as above and define
W (p): T(C™Y) — S'xRxBxA*
by [z, 1] = ([t], (+7) ' p()).
LEMMA 3.4.8. W' ~ ¥” : MAF(S'xB) — Map(S', MAF(R xB)).

ProoF. Using the notation above define a homeomorphism v : T(¢~!) — N
as follows. First define a : T((™1) — S'xRxBxAF by representing a point of
T(¢C™1) as [x,t, y, s] where s€[0,1] and (2, t, y)EMC M xR x Bx A* with €M, t€R,
yEBx A so that p(z) = ([t],y). Then let a([z,t,y,s]) = ([s],t — s,y).

Now define 8 : T(¢™') — S'xM by B([z,t,y,s]) = ([s],z). Since one can
check that (¢/xid)a = (idxp)8 and N is the pull-back of ¢’ xid and id xp it follows
that o, 8 uniquely determine a map v : T((™') — N. Moreover, p'oy = a. Since
a = U"(p) and p’ = ¥(p) we are done. O

COMMENT 3.4.9. The fifth and final comment is about yet another map
@ : MAF(RxB) — Map(S*, MAF(R xB)).
The definition will be illustrated only for vertices; the remaining details are similar
to those in the constructions above. Given a vertex p: M — R xB in MAF(R xB)
we have associated to p an isotopy G : M x[0,1] — M x[0,1] in the definition of w

above (using Lemma 3.2.3). In the notation above G = G(p); for some sufficiently
large t. If T(GT') denotes the mapping torus of GT': M — M, define

P T(GTY) — S'xBxB
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by [#,t] — ([t], pGy *(x)). Then ®(p) = p’ is the map which we are interested in for
the following reason.

LEMMA 3.4.10. ® : MAF(RxB) — Map(S!, MAF(R xB)) is homotopic to the
map p—idgi X p.

PrOOF. The mapping torus T(G~1) of G=! provides a one-simplex from idg: x p
to ®(p). O

ProOF oF THEOREM 3.4.3. For a vertex p: M — RxB of MAF(R xB) we
will construct a one simplex from ¥”w(p) to ®(p). This construction can then
be generalized to provide a homotopy ¥’ow ~ ®. By letting B = R", the
proof of Theorem 3.4.3 then follows from Lemmas 3.4.6, 3.4.8 and 3.4.10. Let
G Mx[0,1] = Mx[0,1] be the isotopy used in the definition of ®(p) above. In
particular, pGy is close to g¢p for 0 <t < 1. Let

Y = Gip~! (=00, 0]x B)\p ((~o,0])
and
v=[]Gery)cm.
meZ
The Wrappingiup map w yields a manifold approximate ﬁbration w(p) =q: M —

S'x B where M =Y /~,Y is the infinite cyclic cover of M, and ¢ induces ¢ : Y —
R xB. The +1 generating covering translation ¢ : Y — Y is such that { = G41]Y.
The key observation now is that the map ¥"w(p) = ¥ (q) is given by

(™) = S'%BxB; [, 1] = ([t], (+7) " a(2).

Over [—0.5,1.5]xB, p is close to ¢ and v = g;. Thus, over [—0.5, 1.5]xB we have
(vZ)~1q close to pG;t. Tt follows that the composition

T(¢Y) = T(GTY) 25 BxBxs!
is close to
W (q) : T(¢h) — RxBxS?

over a neighborhood of S'x{0}xB in S!xRxB. Moreover, these two maps are
equal over a neighborhood of {0} xBx{1} in RxBx{1} (because the homotopy
p ~ ¢ is rel such a neighborhood). Now once again use the fact that taking
germs about 0 induces a homotopy equivalence together with local connectivity
(Lemma 3.2.5) to show that ®(p) = p’ and ¥"”(g) are in the same component of
Map(St, MAF(R x B)). O

We now will interpret the unwrapping (or infinite transfer) map u : MAF(S? x
R™) — MAF(R"*!) in terms of the classifying map ¥. Evaluation at the basepoint
of S! yields a fibration

QMAF (R L Map(st, MAF®R™)) £ MAF (R ).
THEOREM 3.4.11. The composition
MAF(S' x R") -5 Map(S*, MAF(R™ 1)) £ MAF(R™)

1s homotopic to the unwrapping map u.
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ProoF. According to Lemma 3.4.6 it suffices to show that u~F¥’ where ¥
is constructed in Comment 3.4.5. If p : M — S'xR"xA* is a k-simplex of
MAF(SLxR™), then W' (p) = p' is formed by pulling-back along e’ xidgny ax to
obtain p’ : N — S1xR"+l x A* Then EW/(p) = E(p') is formed by restricting p’
over {1} xR"*1xA¥ to obtain

BV (p) =p'| + ()T ({1 xR < AF) - {1}xR"T AR,

Since ¢/ : {1} xR — {1} xS? is the standard exponential cover, EW(p) is obtained
from p by the pull-back construction and the result now follows from Remark 3.1.3.

O

3.5. INDEPENDENCE OF COVERING IsoToPYy

As a consequence of Theorem 3.4.3 note that the homotopy class of the wrap-
ping up w(p) is independent of the approximate covering isotopy which is used
to perform the wrapping up construction. This is because the map p—idg: xp
has nothing whatsoever to do with a covering i1sotopy. The following result is an
application of this observation.

COROLLARY 3.5.1. If p: M — R is a verter of MAF(R) and p : M — St s
its image in MAF(SY) under the wrapping-up map, then M xSt is homeomorphic
to M x .

PrOOF. Let p : R2x[0,1] — R? be the isotopy which rotates R? through an
angle of % in the clockwise direction; that is,

cos%t sin%t x
pla,y,t) = o o :
—sin  cosTr Yy

Let g; : IR — R 0<s<1, be the isotopy used in the construction of w, and let
Gs: M — M, 0<s<1, be an isotopy which approximately covers g, (that is, gsp
is close to pGy).

Consider the vertex p x idg : M xR — R? of MAF(R?) and note that the
component [w(pxidg)] in MAF (5! xR) determined by the image of pxidg under the
wrapping up map w is the component [px idg] determined by px idp : MxR — R2
This is because (5 xidg is an isotopy on M x R which approximately covers g, xidg
and hence can be used to wrap-up p X idg; the result of this wrapping up is p x 1dg.

On the other hand, p1(p x idg) : M x R — R?is in the same component of
MAF(R?) as pxidg (because p;(pxidg), 0<t<1 provides a path). Note that the
diagram

M xR D% g m

m(pxidm)l lm(pxidm)
g2  LXidm o
commutes. This means that idas x g, is an 1sotopy ezactly covering g, x idg with
respect to p1(pxidg) and so can be used to wrap-up p1(p x idg). The result is
pi(p xidg1) : MxSt — S'xR

where p} i RxS!1 — 5! x R is the map (z,y) — (y, —2).
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Thus,
ph(pxidgi) s MxS' — S'xRand p x idg : MxR — S* xR

are in the same component of MAF(S! x R). In particular, M x R and M xS? are
homeomorphic. O

Note that the wrapping up w : MAF(R"*!) — MAF(S! x R") as constructed
above appears to depend on the fact that the first R factor was the one which was
wrapped-up to get the S' factor. However, the map in Theorems 3.4.1 and 3.4.3
which is homotopic to w does not depend on which factor is used. We next make
this observation precise.

Let o be a permutation of {1,2,...,n+ 1}. Then ¢ induces a homeomorphism

o R 5 RATL (g wag) (To(1)s -+ To(nt1))
and therefore a simplicial isomorphism
o : MAF(R™Y) - MAF(R™Y);  (p: M — R x AF)s(oxidar)op.
This in turn induces a simplicial isomorphism
o : Map(S*, MAF(R"t)) — Map(S*, MAF(R" 1))

and thus we can define (up to homotopy) a simplicial isomorphism on MAF(S* xR™)
so that the following diagram homotopy commutes :

MAF(S' x R")  —7—  MAF(S' x R")
Map(S*, MAF(R"*+1)) —Z— Map(S*, MAF(R"1)).
COROLLARY 3.5.2. The following diagram homotopy commutes:
MAF(R"+Y)  —2—  MAF(R"H)
wl lw
MAF(S? x R") —Z— MAF(S* x R").

ProoF. Theorem 3.4.3 reduces this to observing that the following diagram
commutes

MAF (R™+1) —7 MAF (R +1)

l l

Map(S', MAF(R"*1)) —7— Map(S*, MAF(R"+1))
where the vertical maps are both given by p—idg: xp. O



CHAPTER 4

Relaxation as a Simplicial Map

In this chapter we define a simplicial map
r: ManBan(S*x B) — MAF(S'xB),

called the relazation map, such that ro~idyar(sixp)- In particular, the forget
control map ¢ : MAF (S x B) — ManBan(S! x B) is homotopy split injective.

The definition of r is given inductively over the skeleta of ManBan(S! x B). To
begin the construction let p : M — S1x B be a vertex of ManBan(S! x B). Form
the pull-back

M —2 4 BxB

l I

M —r— S$'xB.
Let ( : M — M be the +1 generating covering translation. The unwrapping map
of Section 3.1 yields
p=u(p): M — RxB
which is a vertex of MAF(RxB). We now follow closely the definition of the
wrapping up map in Section 3.2 with p’ taking the place of p and { playing a role.
Let
G(p') : M x[0,1]x[0,00) — Mx[0,1]
be given by Controlled Isotopy Covering Lemma 3.2.1. Choose ¢y > 0 so large that
if £ > g then

(#) ™M (=00, 0% B) C CG(P')(1,0)((#) ™ (=00, 0]xB))
where G(p')(1,0) ‘M — M is
Gp)|: Mx{1}x{t} — Mx{1}.
For such ¢ let
Vi = (G ) 1,0 ()7 (=00, 01xB)) \ ()™ ((—00, 0)x B)
and Mt =Y;/ ~ where ~ is generated by
x~Gp)an(x), if p'(z)e{0}xB.
Equivalently, M; may be described as a quotient space of M :
M, = M/CG(P) 10
As in the construction of w, it is possible to construct a continuous family of maps

Pt - M; — S'x B such that pr 1s a d;—fibration with §; — 0 as ¢ — oo. Then
Lemmas 3.2.3 and 3.2.5 imply that there exists a canonical manifold approximate

30
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fibration r(p) = p : M — S'x B associated to the family {p+}. This construction
can be continued inductively to construct » : ManBan(S'x B) — MAF(S! x B).

Given a k-simplex p : M — S'xBxAF of ManBan(S! x B), we will need to
describe the infinite cyclic cover p : M — RxBxAF of the relaxation r(p). To
this end note from the construction above that there is a fiber preserving isotopy
G : Mx[0,1] — Mx]0,1] such that G = G(p'); for sufficiently large ¢ so that
r(p)=p: M =M, - S'xBxA* If (: M — M is the +1 generating covering
translation of the pull-back p : M — RxBxAF of p, then it follows easily that
é’ = (o(y : M — M is a covering translation of an infinite cyclic cover of M /(G =
]\Z/Q2 = M. We summarize this as follows.

ProprosITION 4.1.3. The relazation
p: M — S'xBxAF
of p: M — S'xBxAF is such that M and M have the same infinite cyclic cover M
so that M = M /¢ and M = M /¢ with {, - M — M the +1 generating covering

translations. Moreover, there exists a fibre preserving isotopy G : M x[0,1] —
M x[0, 1] supported on p~1([—2,4]x Bx A¥) so that { = (oG.

We now specialize to the case B = R”.

THEOREM 4.1.4. The composition

MAF(S! x ") & ManBan(S' x R") s MAF(S! x R")

1s homotopic to the identity.

Proor. We will show that ¥'rp~¥" where

W MAF(S' x R™) — Map(S', MAF(R")

is the homotopy of Comment 3.4.5. It suffices to illustrate the homotopy on vertices,
solet p: M — S xR"be a vertex of MAF(S* x R™). Since the pull-back p: M —
R+ is a manifold approximate fibration, we may take p’ = p in the construction
above (no sucking is needed). Let G : M x[0,1] — M x][0,1] be an isotopy such
that G' = G(p): for some sufficiently large ¢ so that r(p) = p: M = M; — S x R™.
As above the infinite cyclic cover of M is M with 41 covering translation { = (G4 :

M — M. The construction also shows that p,p: M — RxBxA* are boundedly
homotopic. It then follows that ¥/(p) are ¥ (r(p)) homotopic. O

The relaxation map agrees with Siebenmann’s relaxation construction [44] as
is shown in [31] (Chapter 18) and with the splitting of the forget control map of
Hughes-Taylor-Williams [35], [36].

Finally, we note that the relaxation map extends to a simplicial map

T ManBanc(Sle) — MAF(Sle).

This extension is accomplished just as for the unwrapping map in Section 3.1.



CHAPTER 5

The Whitehead Spaces

In this chapter we recall the definition of the controlled Whitehead space as
given in Hughes [27] and define analogues of the wrapping, unwrapping, relaxation
and forget control maps.

5.1. THE CONTROLLED WHITEHEAD SPACE

Let B be a finite dimensional manifold without boundary with a fixed metric
and let X be a Hilbert cube manifold with a fixed closed embedding X C/s of small
capacity. Let p : X — B be a manifold approximate fibration. Consider X as a
subset of £4x B of small capacity via the embedding # — (#, p(2)). A k-simplex of
the simplicial set Wh(p : X — B) consists of a subspace M C {3x Bx A* of small
capacity such that

1. the projection p : M — AF is a fibre bundle projection with Q-manifold
fibres,

2. X x A¥ is a sliced Z—set in M (in particular, p|X x A¥ is projection),

3. there is a fibre preserving strong deformation retraction f : M — X x AF,

4. the map f is actually a proper (pxidax)~!(¢)-sdr for every e > 0.

Condition (4) above is equivalent (in the presence of the other conditions) to
4'. the composition (pxidax)of : M — B x A¥ is a k—simplex of M AF?(B)
(see [27]).
As a consequence note that this defines a simplicial map
Wh(p: X — B) — MAF?(B).

As in Chapter 2 we will usually ignore the small capacity embedding in ¢5 and
just denote a k—simplex of Wh(p: X — B) by amap f: M — X x AF satisfying
the properties above.

When B = {point} we denote Wh(p : X — B) by Wh(X). This is the classical
Whitehead space of X with mgWh(X) = Wh(Zn1(X)) and QWh(X) homotopy
equivalent to the space of pseudoisotopies on X (see [29]).

It is easy to see that Wh(p: X — B) is a Kan complex (see [32]). In order
to describe a basepoint of Wh(p : X — B), fix an embedding X x[0,1] C {3 of
small capacity such that X x {0} = XC/;. The base vertex eq is the projection
Xx[0,1] = X. (The identity X x A¥ — X x A* can not be used because of the Z—
set condition.) The degenerate k—simplex e; on eg is the projection X x [0, 1]x A% —
X x A*. The subcomplex e = {ex} of Wh(p : X — B) is the basepoint at which
homotopy groups are based unless otherwise mentioned.

By analogy with Propositions 2.1.1 and 2.2.2 we have the following charac-
terization of the components of the controlled Whitehead spaces. The version for

32
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higher simplices is also explicitly stated here. Let B be a fixed manifold with
dimB < oo and assume that B is either a closed manifold or a product Y xR” of a
closed manifold Y and R™ (with the standard metric) and that B has the product

metric.

ProrosITION 5.1.1. Suppose X s a Hilbert cube manifold, and p: X — B is
a manifold approrimate fibration.

(1) There exists eg > 0 so that if f;  M; — X, i = 1,2, are two vertices of
Wh(p: X — B), then the following are equivalent:

(i) f1 and fa are in the same component of Wh(p : X — B).

(i1) There exists a homeomorphism h : My — My such that h|X is the
mncluston and pfah s eg—homotopic to pfy rel X.

(iii) For every € > 0 there exists a homeomorphism h. : My — My such
that h.|X is the inclusion and pfah. is e=homotopic to pfy rel X.

(iv) For every € > O there exists a homeomorphism he : My — My such
that pfohe ts e=homotopic to pfy.

(2) For each k>1 there exists ¢x > 0 so that if fi : M; — XxAF, i =12
are two k-simplices of Wh(p : X — B) which represent classes [fi1],[f2] €
mr(Wh(p : X — B),e), then the following are equivalent:

() (/1] = [flems Wh(p : X — B),¢).
(i1) There exists a homeomorphism h : My — My such that

h|(X x AR)YU(X x [0, 1]x0AF) = inclusion

and pfoh is eg—homotopic to pfy rel (X x AF)U(X x[0, 1] xDA¥).
(iii) For every € > 0 there exists a homeomorphism h. : My — My such
that

he|(X x AFYU(X %[0, 1]x0A%) = inclusion

and pfoh, is e~homotopic to pfy rel (X x AFYU(X x[0, 1]xJAF).

(iv) For every € > O there exists a homeomorphism he : My — My such
that he|(X [0, 1]x0AF) is the inclusion and pfah. is e-homotopic to
pfi rel X x[0, 1]x0A%.

PROOF. See [29], Theorems 3.2, 3.3. O

5.2. ABELIAN MONOID-LIKE STRUCTURES

We will now define a binary operation which gives Wh(p : X — B) what might
be called the structure of an abelian monoid-like simplicial set. However, the op-
eration is not basepoint preserving. We begin by describing a new basepoint of
Wh(p : X — B) which will be the product of the standard basepoint with itself. Let
Y = (Xx[0,2)IT(X x[—1,—=2])/ ~ where ~ is the equivalence relation generated
by (2, 1)~(x,—1) for each z€X. Then Y is a Hilbert cube manifold homeomorphic
to X [6]. The key features of Y are that it contains a natural copy of X as a Z-set
and that it corresponds to what should be the product of the basepoint with itself
(see figure below).

Fix a closed embedding Y C/s of small capacity which agrees with the embed-
ding X x[0, 1]Cls. Let egVey be the vertex Y — X; [(#,t)]—x, of Wh(p : X — B).
The degenerate k—simplex on egVeg is denoted ejVey (essentially the product
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X x[—1,1]

Xx{1} = Xx{-1}

X = Xx{0}

X x[0,2]

eoVeg x AF), and eVe = {exVey} is a basepoint of Wh(p : X — B). Consider
the simplicial maps:
i1 :Wh(p: X = B) > Whip: X = B)xWh(p: X = B); a—(z,e),
io :Wh(p: X = B) > Whip: X = B)xWh(p: X = B); z—(e,z),
A:Wh(p: X = B) > Wh(p: X = B)xWh(p: X = B); a—(z,z).
Let B be a fixed manifold with dimB < oo and assume that B is either a closed

manifold or a product ¥ x R” of a closed manifold Y and R™ (with the standard
metric) and that B has the product metric.

PrOPOSITION 5.2.1. Suppose X is a Hilbert cube manifold, and p: X — B is
a manifold approrimate fibration.

(1) There exists a simplicial map
wWh(p: X > B)xWh(p: X = B) > Wh(p: X = B); plz,y)=z+y
satisfying the following properties:

(1) poiy ~id ~ piois,

(ii) the two maps Wh(p: X — B)xWh(p: X = B)xWh(p: X —- B) —
Whip: X = B); (z,y, 2)—=p(p(z,y), z) and (x,y, 2)—=p(z, w(y, z)) are
homotopic,

(iii) the two maps Wh(p : X — B)xWh(p: X = B) = Wh(p: X — B);
(z,y)—=>p(x,y) and (z,y)—=p(y, ) are homotopic,

(iv) u(e,e) = eVe.

(2) For each k>1 there exists an isomorphism vy, : my(Wh(p : X — B),eVe) —
mr(Wh(p : X — B),e) such that the operation induced by the composition

m(Wh(p: X = B),e) x m(Wh(p: X — B),e) 25 m(Wh(p: X — B), eVe)
2 me(Wh(p: X — B),e)

1s commutative and agrees with the standard homotopy group operation.
(3) . induces an abelian group structure on moWh(p : X — B).

ProoF. (1) The idea behind the definition of the operation
wWh(p: X = B)xWh(p: X - B) - Wh(p: X — B)
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is simple : if f; : M; — X x A¥ are k—simplices of Wh(p : X — B) fori = 1,2, de-
fine M = MiUx  ax Mz and f: M — X x A* by f|M; = f;. Then u(f1, f2) should
be f. However, there are two technical problems with this. First, some attention
must be paid to the required embedding into f5x BxA¥. Second, X x A is not a
sliced Z—set in M. To deal with the embedding problem, let A; : £ — f£2, i = 1,2,
be two embeddings of small capacity such that A;| : Xx[0,1] — £3 is the inclusion
and Al(gz) N Az(ﬁz) = XX[O, 1] Let A; = AiX1B><Ak . EzXBXAk — EzXBXAk.
Given k—simplices f; : M; — X x A are k—simplices of Wh(p : X — B) fori = 1,2,
the embeddings M; — fox BxA* x—Al(x), determines an embedding M =
MiUx g ax My — £ox Bx AF of small capacity. Other aspects of the 5 embeddings
are handled in a standard way ([32], §15 is useful here) and no further mention of
this problem will be made. The second technical problem is dealt with as follows.
Define

M= MTT(X [0, 1]xA%) /(X x AF = X x {1} xAF).
Then X x{0}xA¥ is a sliced Z-set in M’ and the composition

oM 22 ko, 1]x Ak PO X Ak

is a k—simplex of Wh(p : X — B) defining p(f1, f2). The proofs of properties (i)-
(iv) are straightforward.

(2) The natural retraction ¥ — X x[0, 1] is cell-like, so it can be approximated by
a homeomorphism h : Y — X x[0, 1]. The mapping cylinder M (h) is a 1-simplex
in Wh(p: X — B) from ey to egVey. In the usual way, the I-simplex M (k) (and
degenerate simplices on it) define the isomorphism vy,. More explicitly, if f: M —
X x AF represents a class [flem,(Wh(p : X — B),eVe), then f71(Xx9A*) =V x
OAF. Now f induces a map f : M = MUy gar (M (R)xOAF) — X xAF repre-
senting a class [flem,(Wh(p : X — B),e). Set vi([f]) = [f]. The proof that v .
is the standard homotopy group operation follows the usual proof for H-spaces in
homotopy theory, aided by the fact that there is a fibre preserving homeomorphism
M(h) — X x[0,1]xA! which is the identity on (X x[0,1]x8pA)U(X x{0} x Al)
and is h from Y to X x[0,1]x9;A’. That the operation is commutative follows
from the characterization of 5.1.1.

(3) Existence of inverses (in my) follows from the usual geometric construction ([13],
p. 21) with control ([8], p.320) (cf. [27], §4). This can even be done inductively on
the dimension of the simplices of Wh(p : X — B) to define a simplicial map. As
with the higher homotopy groups, commutativity follows from the characterization

of 5.1.1. O

5.3. THE VARIOUS SIMPLICIAL MAPS

In order to define forget control, unwrapping, wrapping up and relaxation maps,
we consider only controlled Whitehead spaces in special situations. Thus, for the
remainder of this chapter X denotes a compact Hilbert cube manifold, and Y and
B denote finite dimensional manifolds with Y closed and B without boundary and
with a fixed metric. We then have projections

pP=pyxB: XxYXxB = YxBandp=pp: XxYxB — B,
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and consider the controlled Whitehead spaces
Wh(XxY xB =Y x B) and Wh(X XY xB — B)

with unlabeled arrows out of cartesian products of spaces always denoting projec-
tion maps. As in the previous sections we will be interested only in the special
cases Y = St or Y = {point} and B = R" or B = R"*! with the standard metric.
We will define the following simplicial maps:

(1) the forget control map
¢ : Wh(XxS'xB — S' x B) = Wh(XxS*xB — B),
(i) the unwrapping map
u: Wh(XxS'xB — B) - Wh(XxRxB — R x B),
(iii) the wrapping up map
w: Wh(XxRxB — R x B) - Wh(XxS'xB = S* x B),
(iv) the relazation map

r i Wh(XxS'xB = B) = Wh(XxS'xB — S' x B).

5.4. THE FORGET CONTROL MAP
A k—simplex
f:M — XxS'xBxA*
of Wh(X xS'xB — S' x B) has the property that the composition
M L XxS'x BxA* 5 S'x BxA*

is a k—simplex of MAFQ(S1 x B). Hence, the composition

M L XxS'xBxA* — B x AF
i1s a k—simplex of MAFQ(B). In this way the forget control map is defined
¢ : Wh(XxS'xB — S' x B) — Wh(XxS*xB — B).

This is compatible with the forget control map of Chapter 2 so that the following
diagram commutes:

Wh(XxS'xB = S* x B) —Y— Wh(XxS'xB — B)

MAF? (S x B) — MAF?(B)
The proof of the following proposition is obvious.

PROPOSITION 5.4.1. The forget control map ¢ : Wh(XxS'xB — S* x B) —
Wh(X xS'x B — B) induces homomorphisms between homotopy groups (based at
e) including my.
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5.5. THE UNWRAPPING MAP

The construction is similar to the construction of the unwrapping map in
Section 3.1 so we will not give all of the details. Given a k—simplex f : M —
X xStx Bx A of Wh(X xS'x B — B), the composition

pi M L XxS'xBxAF = SLxBxAF
is a k-simplex of ManBan (S'x B) (see Section 2.3). Pulling back along B — S
gives maps _

f: M — XxRxBxA*

and B

5: M L XxRxBxA* & RxBx A",
As in Section 3.1, p~u(p) with u(p) a k—simplex of MAFQ(]R xB). Using the
Addenda 3.1.2, the homotopy can be taken rel X xR xBx AF . Lifting this homotopy
gives a homotopy f~u(f) rel X xR xBxA* so that u(p) is the composition

u(p) : M M X xRxBxAF 5 RxBxAF,

Thus, u(f) is a k—simplex of Wh(X xRxB — R x B) and this defines the map u
so that the following diagram commutes:

Wh(XxS'xB = B) —~— Wh(XxRExB = R x B)

| !

ManBan? (S'x B) —%— MAF® (R xB).
ProPOSITION 5.5.1. The unwrapping map
u: Wh(XxS*xB — St x B) — Wh(XxRxB — R x B)

induces homomorphisms between homotopy groups (based at e) including my.

Proo¥. Taking pull-backs 1s compatible with the sum operation. After taking
pull-backs, the remaining modifications are rel X xR xBxA¥. O

REMARK 5.5.2 (The Infinite Transfer). As in Remark 3.1.3 the composition
Wh(XxS'xB = S' x B) & Wh(XxS5'xB = B) & Wh(XxRxB =R x B)

1s homotopic to the simplicial map given by the pull-back construction. This com-
position is also called the unwrapping, or infinite transfer map and denoted

u: Wh(XxS'xB — St x B) — Wh(XxRxB — R x B).

5.6. THE WRAPPING Up MAP

As with the unwrapping map we will just note that minor modifications can
be made to the wrapping up map w : MAF(RxB) — MAF(S!xB) of Chapter
3. Thus, given a vertex f: M — X xRxB of the simplicial set Wh(XxRxB —
R x B), the composition

p: ML XxBxB = BxB

is a vertex of MAFQ(]R x B). Adopting the notation of Chapter 3 and using the full
strength of the Addenda 3.1.2, 3.2.2 and 3.2.4, it is possible to construct a lift f :
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M — XxS'xB of the map p : M — S'x B such that fis a homotopy equivalence
and f|X><Sl><B is the identity so that w(f) = f is a vertex of Wh(X xS*xB —
St x B). The construction is continued inductively to define the map w so that the
following diagram commutes:

Wh(XxRBxB — R x B) —~— Wh(XxS'xB — S! x B)

l l

MAF®(R x B) — MAF?(S'x B)
ProPoOsITION 5.6.1. The wrapping up map
w: Wh(XxRBRxB =R x B) - Wh(XxS'xB — S* x B)
induces homomorphisms between homotopy groups (based at e) including my.

ProOOF. Since the Addenda 3.2.2,3.2.4 and 3.2.6 are used, all the constructions
are compatible along X xR xBx A*. O

By analogy with Theorem 3.3.1 we have
THEOREM b5.6.2. The composition

Wh(XxRBxB =R x B) - Wh(XxS'xB — S x B)
2 Wh(XxS*xB — B) % Wh(XxRxB — R x B)

1s homotopic to the identity.

ProoF. This follows from germ theory as in Theorem 3.3.1. See [30] for the
analogue of GMAF in this case. O

5.7. CLASSIFYING SPACE INTERPRETATION

There are also analogues of Theorems 3.3.1 and 3.4.1 in the special case B = R”
for n >0, in which w and u have descriptions in terms of the classification results
of [30] and [27]. According to [30] and [32] there is a homotopy equivalence

U Wh(XxS'xR™ — St x R™) — Map(St, Wh(X xRt — R H1))
making the following diagram commute:

Wh(X x STxR™ — ST x B") — 25 Map(S!, Wh(X xR+! — Rn+1))

l l

MAF@(S! x ") — ¥ s Map(St, MAFQ (R+1).

THEOREM b5.7.1. The composition
Wh(X xRxR" — R x B™) 5 Wh(X xS'xR" — S! x R")
2y Map(S!, Wh(X xR+ — R7H)
1s homotopic to the map which takes a k—simplex
f M = X xRxRx AP = X x R« AF

of Wh(X xR — R+ o the constant map in Map(St, Wh(X xR*+1 — R +1))
with tmage the k—-sitmplex f.
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PrOOF. One just needs to make the relative additions to the proof of 3.4.1. O

Evaluation at the basepoint of S* yields a fibration compatible with the one in
Section 3.4 so that we get a commuting diagram of fibrations:

QWh(X xR o Rt ———  QMAF? (Rt

| |
Map(ST, Wh(X xR+t 5 R?H1)) — 5 Map(S', MAF?(R" 1))
Wh(X xR — Rty — MAF?(R"H1),
The proof of the following result follows the proof of 3.4.11.
THEOREM b5.7.2. The composition
Wh(XxSTxR" = S1 x B7) L Map(Sh, Wh(X xR"+! — Rrt1))
Ly Wh(X xR R
is homotopic to the unwrapping (or infinite transfer) map u.

ProrosITION 5.7.3. ¥, [ and E induce homomorphisms between homotopy
groups (based at €) including my.

Proo¥. This is obvious for I and E. The result for ¥ is obvious as well if one
i1s armed with the geometric description in Comment 3.4.4 of ¥ and the relative
modifications needed to define ¥ on Whitehead spaces. O

Let i : QWh(X xR 5 R 5 Wh(X x STxR™ — S1xIR™) be any simpli-
cial map such that Wo¢ ~ I.

ProPOSITION 5.7.4. The simplicial map
(i, w) : QWh(X xR — R 5 Wh(X xR — R )
Wh(X x STxR™ — STxR™), (z,y) — i(x) + w(y)
15 a homotopy equivalence.
ProoOF. Note that
ie = (W) L M QWA(X xR 5 R o m Wh(X x STXR™ — STxR™)

is a group homomorphism for each k£ > 0, and the fibration above implies that there
is a long exact sequence

= mOQWA(X xR 5 RO L Wh(X X STXRT o STxRY)
L mWR(X R 5 R o QWA(X KR 5 R Dy

Since the wrapping up map w induces a splitting of u, by Theorem 5.6.2, the long
exact sequence reduces to split short exact sequences:

0 = mMOQWh(XxR™! SR Ly p Wh(XxR? = R")
2 mWh(X xR 5 R 0.

Thus, (w,¢) induces isomorphisms on homotopy groups and, hence, is a homotopy
equivalence. O
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5.8. DELOOPING THE WHITEHEAD SPACE

We show how results already in the literature can be used to provide a de-
looping of the controlled Whitehead space (Corollary 5.8.3 below). The proof uses
pseudoisotopy theory.

The simplicial set P(X) of pseudoisotopies on X has k-simplices of the form

h: X x[0,1]xAF = Xx[0, 1]xA*
where h is a homeomorphism which is fibre preserving over A* and h| : X x {0} xA* —
X x{0}xA* is the identity.

The simplicial set P(X x R™ — R™) of controlled pseudoisotopies is defined in

[29]. Essentially, a k-simplex is a parametrized family
he : X x[0, 1]xAF — Xx[0,1]xA* ¢ >0,
of k-simplices of P(X xIR") such that projoh; : X xR"x[0,1]xA* — R™ converges

uniformly to the projection as ¢t — oo.

ProrosiTION 5.8.1. If X s a compact Hilbert cube manifold, then there is a
homotopy equivalence

QWhA(XXxR" - R") ~ P(X xR" - R").

Proo¥. The result is explicitly stated in [29] for control measured in a compact
base space, but the proof works equally well for the base space R™ with the standard
metric (cf. the footnote in Section 2.2). O

ProPOSITION 5.8.2. If X s a compact Hilbert cube manifold, then there is a
homotopy equivalence

P(XxR™ 5 R ~ Wh(X xR" — R").

Proo¥r. It is not hard to adapt the techniques of [27], §6, to give a proof of
this result. O

The following result follows immediately from the previous two propositions.

COROLLARY 5.8.3. If X s a compact Hilbert cube manifold, then there is a
homotopy equivalence

QWh(X xR 5 R ~ WhH(X XxR™ — R™).

COROLLARY 5.8.4. If X s a compact Hilbert cube manifold, then there is a
homotopy equivalence

Wh(X x S'xR™ — S'xR™) ~ Wh(X xR" — R") x Wh(X xRt — R,
Proo¥. Apply Proposition 5.7.4 and Corollary 5.8.3. O

5.9. THE RELAXATION MaAp

The construction is similar to the construction of the relaxation map in Chapter
4. Moreover, the necessary modifications are so similar to the modifications needed
to define the wrapping up map that we omit further details. Note that if f: M —
X xStx BxAF is a k-simplex of Wh(X x S* x B — B), then the composition

pi M L XxSTxBxA* 5 S1x BxAF
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is a k—simplex of ManQ(S1 x B). Moreover, it is easily seen that p is actually a
k—simplex of 1\/[anBaan(S1 x B). Thus, there is a simplicial map Wh(X x S1x B —
B) — ManBan? (5! x B) and the following diagram commutes:

Wh(XxS'xB — B) —— Wh(XxS*xB — S* x B)

| |
ManBan% (S'xB) —— MAF?(S'x B).
ProrosiTION 5.9.1. The relazation map
r:Wh(XxS'xB = B) = Wh(XxS'xB — S' x B)
induces homomorphisms between homotopy groups (based at €) including mg.
By analogy with Theorem 4.1.4 we have

THEOREM 5.9.2. The composition

Wh(XxS'xB = S'x B) % Wh(XxS'xB — B)
5 Wh(XxS'xB — S x B)

1s homotopic to the identity.

We make some remarks about the relaxation construction. Given a k—simplex
fiM — XxS'<xBxAF of Wh(XxS'xB — B), let f: M — XxRxBxA* be
the pull-back so and ¢ : M — M the +1 generating covering translation. There is a
fibre preserving isotopy G : M x[0, 1] — M x[0, 1] supported on f~!(X x[~2,4]x Bx
A*) such that é’ = (o(; 1is a covering translation of the infinite cyclic cover of the
relaxation M /¢ = M. Moreover, G1| : X x[0, 1]xBx A* — X xR xBxAF has the
form (z,s,y,t)~(z,s+1,y,t). Note that there is a natural copy of X x S*x Bx A¥
in M obtained from X x[0,2]xBxA¥ C M. Note that é’(x, 0,y9,t) = (»,2,y,t) for
each (z,y,1)€X x Bx A*. The map f: M — XxS'xBxA* is the identity on this
copy of XxS'xBxAF. More precisely, on the S'-coordinates the map has the
form

St =10,2]/0=2 — S'=1[0,1]/0 = 1; [s] = [s/2].

5.10. THE BouNDEDNESS CONDITION ON THE INFINITE CycLic COVER

Proposition 2.3.2 allows the construction of a map
Wh(X xS* = B) — ManBan?(S* x B)
if B 1s a closed manifold. On the other hand, it follows from Proposition 2.3.5 that
there is a map
o Wh(XxS'x B — B) — ManBan? (S x B)

if B is any manifold without boundary. Let Why,,(X xS — B) denote the inverse
image o~ (ManBan® (S x B)). The subscript “mb” stands for “manifold band”
and indicates a boundedness condition after passing to the infinite cyclic cover.
Proposition 2.3.3 shows that the image of

U Wh(X xSt XY xT™ — Y xT™) — Wh(XxS'xY xR" — Y xR")
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lies in V\/hmb(XxS1 xY xR" — Y xIR"), where YV is a closed manifold. Therefore
there is a map

uly Wh(X xS <Y xT™ — Y XT") = Whynp (X x S'x Y xR — ¥V xR™)

given by pulling back. Moreover, the composition

Wh(Xx S' XY XT" — Y xT") =% Why(Xx S'xY xR" — Y xR")
nelsion, YR(Xx ST xY xR — Y xR")

is equal to u”, the previously defined n-fold unwrapping (see Remark 3.1.3). Hence,

since u”ow” is homotopic to the identity (Theorem 5.6.2), the composition

Wh(X x S'xY xB7 5 Y xR?) s Wh(XxS'xY xT™ 5 Y xT") oty

inclusion

Whinp(X x S'xY xR™ — YV xR™) Wh(X x S'xY xR™ — Y xR"),

where w” is the n-fold wrapping map, is homotopic to the identity.
In analogy with Proposition 2.4.2 we have the following result.

ProrosiTION 5.10.1. IfY s a closed manifold, then the inclusion
Whinp(X x ST XY xR™ — YV xR™) — Wh(X xSt xY xR" — Y xR")

15 a homotopy equivalence.

5.11. BOUNDED WHITEHEAD AND PSEUDOISOTOPY SPACES

We recall the definitions of the bounded Whitehead and pseudoisotopy spaces.
The bounded pseudoisotopy space was used in Section 1.2 in the formulations of
some of the main results. The bounded Whitehead space will be used for various
technical reasons in Chapter 7 in the discussion of the Nil space. The consequence of
Proposition 5.11.1 below is that there is no essential difference between the bounded
and controlled theories. This principle is exploited in the series of papers [34], [35],
and [36].

The bounded Whitehead space Why(X x R™ — R™) is defined similarly to
the controlled Whitehead space in Section 5.1. The difference 1s that a k-simplex
f: M — X xR"x A¥ is required to be a proper (p x idax)~*(c)-sdr for some ¢ > 0
(rather than for every ¢ > 0).

A bounded pseudoisotopy on X x R™ is a pseudoisotopy h : X x R™ x [0,1] —
X xIR™x [0, 1] such that there exists a ¢ > 0 such that projoh : X xR x[0,1] = R"
is c-close to the projection. Let Py (X x R™ — R™) be the simplicial set of bounded
pseudoisotopies on X x R™.

ProrosiTION 5.11.1. If X s a compact Hilbert cube manifold, then there are
homotopy equivalences

Wh(X xR" — R") ~ Why(X x R" 5 R")
and

PX xR" 5 R") ~ Pp(X xR 5 R").

Proor. This follows from standard results about manifold approximate fibra-
tions. See [27]. O
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The following result follows immediately from the previous proposition and
Corollary 5.8.3. In fact, the proofs of 5.7.4-5.8.4 use the bounded approach of [27].

COROLLARY 5.11.2. If X s a compact Hilbert cube manifold, then there are
homotopy equivalences
OWh, (X x R* 5 R ~ Why (X x R" — R™)

and
QP (X x R 5 RPH) ~ Py(X x R" — R").



CHAPTER 6

Torsion and a Higher Sum Theorem

Let X be a Hilbert cube manifold with a fixed closed embedding XC/s of
small capacity. Let p : X — B be a manifold approximate fibration with B a
finite dimensional manifold without boundary with a fixed metric. In this chap-
ter we show how certain homotopy equivalences to X x AF represent elements in
7 Wh(p : X — B). This is analogous to taking the torsion of a homotopy equiva-
lence in classical simple homotopy theory (cf. [13]). The higher controlled version
is a straightforward generalization of the construction in [27], §3. We also prove a
sum formula for elements in m;Wh(p : X — B). For k = 0 and B = {point} this
formula reduces to the classical sum formula of simple homotopy theory (cf. [13]).
Chapman established a sum formula for controlled simple homotopy theory ([10]).

It is understood that the basepoint of the Whitehead space Wh(p : X — B) is
generated by the vertex eq which is the projection X x[0,1] — X.

Let (e, p, f, h) denote the following data :

(i) a constant € > 0,
(ii) a bundle projection p : M — A* with Hilbert cube manifold fibres,
(iii) a fibre preserving (pxidax)~!(¢)~homotopy equivalence f : M — X xA¥
so that there exists a fibre preserving homeomorphism h : X x[0, 1] x0A* —
p~1(JAF) such that

fh = projection : X x[0, 1]xdAF — X xdAF,

In this chapter, let B be a fixed manifold with dimB < co and assume that
B 1s either a closed manifold or a product Y x R” of a closed manifold Y and R"
(with the standard metric) and that B has the product metric.

THEOREM /DEFINITION 6.1.3. (1) If € > 0 is sufficiently small (or, in the
case B =R", for everye > 0), then data (¢, p, f, h) determines a well-defined
element

r(fyemWh(p: X — B),
called the torsion of f.

(2) If f : M — XxAF is a k—simplex of Wh(p : X — B) which represents a
class [flemyWh(p : X — B), then there is data (¢, p, f,id) for every ¢ > 0
and 7(f) = [f].

(3) There exists eg > 0 (or, in the case B = R", for every ¢y > 0) such that
if (6,p,f,h) and (€', p', f', h') are two sets of data associated to f : M —
XxAF and '+ M' — XxAF, respectively, for which the torsions are
defined and €,e'<eq, then 7(f) = 7(f)emWh(p : X — B) if and only if
there exists a fibre preserving homeomorphism H : M — M’ such that the
composition

Xx[0, 1]x0AF B pmraaky 2 (-1eak) P07 x (o, 1)xAk

44
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is the identity, and f'H is fibre preserving (p x idax )~ (eq) ~homotopic to f
rel p~1(OAF).

ProoF. We will review the definition of torsion and refer to [27] for the remain-
ing details. Given a (pxidax)~!(¢)-homotopy equivalence f: M — X x A¥ asin
the data, choose an inverse g : X x A¥ — M which is fibre preserving over A¥. We
may assume that ¢ is a sliced Z-embedding and g| : X x9A* — p~1(DA¥) is given
by g(z,t) = h(z,0,t) for each (x,t) € X xJAF. If X x A* is identified with the im-
age of g, then f can be slightly deformed rel p~1(9A*) to a map f' : M — X xAF
which is a (pxidax)~1(€')-sdr where the size of ¢ > 0 depends on ¢. The the suck-
ing principle (Lemma 3.1.1) can be used to deform f' to a map fiM = XxA*
representing a class 7(f) = [f]Eﬂ'kWh(p : X = B). O

REMARK 6.1.4 (Hypothesis for the Higher Sum Theorem 6.1.5). Suppose f :
M — XxAF is a k-simplex of Wh(p: X — B) and M is a union of closed
subspaces M = M{UM>s with M, = M;NM; and My a sliced Z—set in both
M and M, so that f; = f|M; : M; — XxAF i = 0,1,2 are k-simplices of
Wh(p: X — B). If k > 0, suppose there exists a fibre preserving homeomorphism
h: Xx[0,1]x[—1,1]x0A* — f=1(XxJA¥) such that
(a) fh=proj: X x[0,1]x[-1,1]xdA* — X xIA*,
(b) A=Y (M iNp~H(OAR)) = X x[0,1]x[—1, 0] xDA*,
(c) AL (Manp~(0AF)) = X x[0,1]x[0, 1] x JA¥,
(d) h|: Xx{0}x{0}xOA* — M agrees with the given Z—embeddings X x A* —
M;, i =0,1,2, when restricted to X x A,

Even though M, My, My, My are k—simplices of Wh(p : X — B) they are not
based at the basepoint e (with the possible exception of My). We now correct this
by adjoining canonical collars to get new k—simplices which are based at e. These
canonical collars are mapping cylinders of certain maps. To this end let

¢ Xx[0,1]x[=1,1]x0A% — X x[0,1]x0A*
be the projection. This map restricts to projections
L. ey Xx[0,1]x[—1,0]x0A* — X x[0,1]xdA*

2. cg 1 Xx[0,1]x[0,1]xdA* — X x[0, 1]xdA*
3. co: Xx[0, 1]x{0} x0A* — X x[0, 1]xOA*

The mapping cylinders are such that
M (c) = M(c1)UM (ca), M(c1)NM (ca) = M(co) = X x[0,1]x[0, 1]x0A*.

Consider M = MUM (e) and M; = M;UM (¢;), ¢ = 0,1,2, where the mapping
cylinders are adjoined to M and M; at their tops. The map f : M — XxAF
induces a map f M — XxAF by using a collar of OAF in AF and f restricts to
maps fZ M; — X xAF so that f fZ are k—simplices of Wh(p : X — B) which are
based at e and, hence, define classes in T Wh(p : X — B).

THEOREM 6.1.5 (Higher Sum Theorem). (i) If k =0, then
[f1=1[f1] + [fo] = [fo]emoWh(p : X — B).
(ii) If k > 0, then
[fl=[f]+ [fz] — [fo]Eﬂ'kWh(p : X = B).



46 6. TORSION AND A HIGHER SUM THEOREM

ProoF. Let
Ny = MUx Mo = (M][Mo)/ (X x A" = X x AF)

and

Ny = MUy ax My = (My [ [ Ms) /(X x A% = X x AF).

There are maps g1 = fUfy : Ny = XxAF and g0 = fiUfs : Ny — XxAF. Now
g1 and g2 are not k—simplices of Wh(p : X — B) because X xA¥ is not a sliced Z—
set in N1 or Ny. We will show how to construct a homeomorphism H : Ny — Ny
which is fibre preserving over A* and then show further below how to use this
construction to prove the result. For notational simplicity we will assume that

FTHX xOAR) = X x[0, 1]x[—1,1]x0AF

and that h is the identity. Since My is a sliced Z—set in both M; and Ms, M,
is fibre preserving collared in both M; and M,. Thus, let Myx[—1,1] be a fibre
preserving bicollaring of My in M with

MOX[_l, 0] ng and M()X[O, 1] gMz

so that M is identified with My x{0}. In the case k > 0, over A* we have already
identified My with X x[0,1]x{0}x9A* and we may assume that the bicollaring
coordinates [—1,1] of My in M agree with the standard bicollaring coordinates
[—1,1] of Xx[0,1]x{0}xOA* in X x[0, 1]x[~1,1]x0A*. Let
A= (Mox[-1, ] [Mo) /(X x {0} xAF = XxAF) C NV
and
B = ((Mox[—1,0) T (Mo x[0,1])) /(X x {0} xA¥ = X x {0} xA*) C Ny,
Let o : Myx[—1,1] = Myx[—1,0] be the homeomorphism «(z,t) = (z,t/2—1/2).
Then
X x {0} xAF s Mox[-1,1] 2 Mox[-1,0]
is f.p. homotopic to the inclusion X x {0} xA* < Myx[—1,0] so that fibred Z—set
unknotting implies that « is f.p. isotopic to a homeomorphism o’ : Myx[—1,1] —
Myx[—1,0] such that o' : X x{0}xA* — Myx[—1,0] is the inclusion. Let j :

My — Myx[0,1] be a f.p. homeomorphism such that 37! is close to the projection
Myx[0,1] = My (at least close enough to imply that they are homotopic). Then

XxAF s My 2 Myx[0,1]

is f.p. homotopic to the inclusion X x A* = X x {0} x A*¥ — Myx][0,1] so
that fibred Z-set unknotting implies that 3 is f.p. isotopic to a homeomorphism
B 1 My — Myx[0,1] such that /| : X x A* = X x {0}xA* — Myx][0,1]
is the inclusion. Thus, o’ and @ glue together to define a f.p. homeomorphism
v : A — Bsuch that y] : X x{0}xA* — Bis the inclusion. We now modify v by a
f.p. isotopy to get a homeomorphism~’ : A — B such that v'| : Myx{—1,1} — B
is the inclusion. To this end note that

Myx{-1,1} = A 5 B

1s the composition

Mox{—1,1} =5 Mox[~1,1] 25 Myx[~1,0] = B
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which 1s f.p. homotopic to
Mox{=1,1} = Mox[-1,1] = Myx[-1,0] < B

which is the map
(z,—1)—=(x,—1), (x,1)—~(x,0).

Since XxA* < My is a f.p. homotopy equivalence, there exists a f.p. strong
deformation retraction of My to X x A*. Thus, Myx {0} — Myx[—1,0] < B is
f.p. homotopic to Myx{0} — Myx[0,1] — B. It follows that Myx{—1,1} —
A 5 Bis f.p. homotopic to the inclusion, and fibred Z-set unknotting implies
that ~ is f.p. isotopic to a homeomorphism 4’ as above. Now 4 extends via the
identity to a f.p. homeomorphism H : Ny — Ns.

One property of the construction is that if € > 0 is given, then H can be
constructed so that g H is fibre preserving (pxidax)~!(e)~homotopic to g1. To see
that this i1s the case, first note that we may assume that the bicollaring intervals
{x}x[~1,1], xEMy, are small when mapped to X x A* by f. Using this fact and
the full strength of the estimates available in Z—set unknotting, it follows that ~
can be constructed so that gy is (px idax)~!(¢)~homotopic to g1|A where ¢ > 0
is as small as we want. Then in the modification of v to 4, one must use the fact
that the homotopy equivalence X x AF < My has good control when measured in
X xAF,

Now when k& = 0, note that ¢; : Ny — X and g5 : N3 — X determine torsions
and 6.1.3(3) implies that 7(g1) = 7(g2)EmeWh(p : X — B). On the other hand, it
is clear from the definitions and Z—set unknotting that

e (f, fo) = 7(g1) and pa(f1, f2) = 7(g2) in 1oWh(p : X = B).
It then follows from 5.2.1 that
[f1+ [fo] = [1] + [fo]€maWh(p : X — B).
Now when k > 0, according to Chapter 5, it suffices to show that vy . ([f], [fo]) =
Vit ([f1], [f]) for then [f]+[fo] = [f]+[fo]. Note that p(f, fo) = N1U(X x[0, 1]xAF)
and p(f1, f2) = N2U(X x [0, 1]xA¥). Since the composition X x A* < N, A, Ns

is f.p. homotopic to the inclusion, with good control in B x A* Z-set unknot-
ting can be used to induce a f.p. homeomorphism H' : u(f, fo) — wp(f1, f2)

with u(f, fo) —H—I> p(fi, fa) — XxAF fp. homotopic to u(f, fo) — XxAk,
with good control in BxA*. Now observe that H’ induces a homeomorphism
H: u(f, fo) — /1(]’71, fz) The construction of H involves suitable modifications of
o, # and 4" over A, For example, the use of Z-set unknotting to modify o to
o' implies that the exists a family of homeomorphism

Doy = X x[0, 1]x[=1,1]x0AF — X x[0,1]x[-1,0]x0A*, 0 < t<1,

such that day = o/|, da’| X x {0} x{0} x DA* is the inclusion and lim;_1 ¢;0da; = ¢,
so that there is an induced map between mapping cylinders. Similar considera-
tions apply to 3’ and 4'. Finally use 5.1.1(2) to conclude that v pu.([f],[fo]) =

vi s ([f1], [f2])- -



CHAPTER 7

Nil as a Geometrically Defined Simplicial Set

In this chapter, we will give the definition of the Nil-space of a compact Q-
manifold X equipped with a map to a manifold B, Nil(p: X — B). It is going to

be a simplicial set such that ﬂom(XxR” — R™) has a natural group structure
which makes it isomorphic to the lower reduced K-theory Nil-group of the integral
group ring of X, for a compact @-manifold X. The definition generalizes the
geometric definition of Nil-groups given in [41].

7.1. PRELIMINARIES

DEeFINITION 7.1.1. Let f : Y — Y be a map.
1. The mapping torus of amap f:Y — Y is the identification space
T(f) =Y x[0,1]/{(x,1) = (f(x),0)] x€Y}.
2. The reversed mapping torus of f is given by
T'(f) = Y x[0,1]/{(f(x),1) = (z,0)| z€Y }.
We also define the canonical infinite cyclic covers of the mapping tori:

1. The canonical infinite cyclic cover T(f) of T(f) is the identification space
7(5) = (I1 <0011 (1) /(. 1.3) = (7(),0,5 4 D]z €Y, jEZ).
2. For the inverse mapping torus we have a similar construction

7 () = (I1,_, 0 <001 % (1) AU, 13) = (2,0, + D]z €V, j € 7}

There are maps ¢ : T(f) — S, [z, t]=[t], (¢ : T'(f) — St [z,t]—[t]) and
T(f) = B, [e,t,5]=t+5 (@ T (f) > R, [2,t j]—t+j). For ack,

To(f) =7 0,00), T, (f) =7 "(~c0,0].

We use similar notation for the reversed constructions.

=2

Let B be a finite dimensional manifold without boundary with a fixed metric.
In most of our calculations B will be a product ¥ xIR™, with Y a finite dimensional
closed manifold, with the standard metric on R” and the product metric on B. We
give B x AF the standard metric denoted d.

DEFINITION 7.1.2. Suppose Z is a compact space equipped with a proper map
p:Z — B. Let M be a space containing ZxA* with inclusion ¢ : Zx A" — M
and p’ = pxidar : ZxAF — BxAF.

1. Amap f: M — M is boundedly close to a map g : M — ZxAF if there

exists a positive number b such that d(p’gf(z),p'g(x)) < b for each z€M.
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2. A homotopy h : M x[0,1] — M with hy (M) C ZxA¥ is bounded if there
exists a positive number b such that d(p'hih(z,t),p'h1(x)) < b for each
(z,t)eM %[0, 1].

3. Amap f: M — M is boundedly homotopic to a map g : M — ZxAF if
there 1s a bounded homotopy A : f~ig.

7.2. THE SIMPLICIAL SET OF NIL SIMPLICES

Let X be a Hilbert cube manifold with a fixed embedding X C #» of small
capacity, and let p : X — B be a manifold approximate fibration.

DEFINITION 7.2.1. (1) A nil k-simplex over X consists of a pair (M, f), with
M a ()-manifold, such that

(i) M C ¢3x BxAF is a subspace of small capacity,

(ii) the projection p : M — AF is a fiber bundle projection with Q-
manifold fibers (in what follows, ‘fiber preserving’ refers to fiber pre-
serving with respect to the projection p),

(iii) X xAF is a sliced Z-set in M (in particular, p|X x A* is the projec-
tion),

(iv) f: M — M is a fiber preserving map with f|X x A* equal to the
inclusion i : X xA*F — M,

(v) there exist a positive integer s and a fiber preserving retraction r :
M — X xAF such that

1. the composition M 5> X xA Bx Ak is a proper map.
2. f is fiber preserving boundedly close to r, and f* is boundedly
homotopic to r rel X x A¥.
(2) Two nil k-simplices over X, (My, fo), @ = 1,2, are related, written (M1, f1) ~
(Ma, f2), if they are germ related in the following sense:

k pxid ok

there is a nil k-simplex (N, g) over X with N containing both
M;i and M, and inclusions denoted j, : M, — N such that
9ja = jofo (@ =1,2) and g(N) C h1(M1)Nho(M2).

(3) Let ~ denote the equivalence relation on the set of nil k-simplices over X
generated by the relation ~. The equivalence class of a nil simplex (M, f)
is denoted [M, f].

(4) The simplicial set m(p : X — B) of nil simplices over X is the simplicial
set whose k—simplices are equivalence classes of a nil k—simplices over X.
Face and degeneracy operations are induced from the standard ones on A,

For B = {point}, we use the notation m(X) = /\771(19 : X — point).

REMARK 7.2.2. If the nil k-simplex (N, g) provides the relation (My, f1) ~
(M2, f2) between two nil k-simplices, then so does the nil k-simplex (N %[0, 1], ¢'),
where

/ proj g x0
g Nx[0,1] 2% N L N >0 o, 1),
Let (N, g) provide the germ relation between (M, fo), (o = 1,2). By replacing
(N,g) by (Nx[0,1],¢'), if necessary, we may assume without loss of generality that
Jo: My — N, a=1,2 are fiber preserving Z-embeddings.
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LEMMA 7.2.3. The simplicial set /\771(19 : X = B) is a Kan complexr.

Proor. We will show the extension condition for 1-simplices. The general
extension condition follows inductively. Let (Mg, fo), @ = 1,2, represent two

simplices of m(p : X — B) such that dy[My, f1] = 61[Ma, f2]. Since the pro-
jections M, — A! = [0,1] are trivial fiber bundles, there are @-manifolds N,
and fibre preserving homeomorphisms h, : M, — N,x[0,1], « = 1,2. Then
Il = hofoahZl : Nox[0,1] — Ngx[0,1] is a fiber preserving map over [0,1]. By a
slight abuse of notation we use h, to replace M, with N, x[0, 1] and assume that

(Nx {1}, f1]) = (N2x{0}, f3]).-
Therefore there are nil O-simplices (A4;,a;), j = 1,2,...m, over X such that:

(Nx {1}, fil) = (Ao, a0) ~ (A1, a1) ~ -~ (Apgr, @my) = (N2x {0}, f3]).
Let (Li, 4), i = 0,1,...m, be the nil 0-simplex that provides the relation between
(Ai,a;) and (Ajq1,a541) (£=0,1,...m) and let

Ay —> Ly, 1=0,1,...m, K?jiAj—)Lj_l, i=12,..m+1
be the inclusions which, according to Remark 7.2.2, can be assumed to be fibre
preserving Z-embeddings. Thus 44 = ya; (1 = 0,1,...m) and {;_1k; = Kja;
(7 =0,1,...m+ 1). Use the homotopy extension property to extend the map
(Lo X id[O,l])of{ : N1 X[O, 1] — Lo(Nl)X [0, 1]
to a fibre preserving map
A Lox[0,1] = wo(N1)x[0,1] C Lo
such that AY = ¢5. Thus (N1 x[0,1], f]) ~ (Lox[0,1],A%. The adjunction space
LoUy, Ly 1s a @-manifold since ¢ and k1 are Z-embeddings. By construction,
(Eougl)(LQUAlLl) C K?l(Al) C Lg.
To this end, if £3° is boundedly homotopic to a retraction to X, rel X,
(CoUly) ot = (LoUby )0 (LoUly) = £5° (LoUly)

which is boundedly homotopic to a retraction to X, rel X. Thus (LoUa, L1, {oUt;)
is also a nil 0-simplex. Using the homotopy extension property again we construct
an extension of A\ to a map A defined on (LoU4, L1)x[0,1], such that A} = £oUf;.
Repeating the same argument as before, we show that

(Lox[0,1], A% ~ ((LoUa, L1)x[0,1], A1)

Set L = LoUa, L1 ...Uya,, Ly. Continuing this process, we construct a sequence of
relations

(N1 x[0,1], f1) ~ (Lox[0,1], /\0) ~ . (Lx]0,1],A™)
where L = LoUa, L1U4, ... Ua, ., L. Thus (N1 x[0,1], f1) ~ (Lx[0, 1], A™) with
AT = LUl .. UL, . Repeating the same process ‘backwards’ starting from Ny we
conclude that

(N2x[0,1], f2) = (Lx[0, 1], ™)
with puf* = £oUfy .. ULy, . Since A" = uf*, we glue the simplices (Lx[0, 1], A™) and
(Lx[0,1], u™) to form an nil 1-simplex (L x[0, 1], v) by

ATz, &) 0<t<i
v(z,t) = . .
w2t = 1) <t <1.
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Set

v Lx[0,1]x[0,1] — Lx[0,1]x[0,1]; v'(z,¢,t") = (v(z,¥),t).
Let h : [0,1]x[0,1] — A? be a homeomorphism that maps [0,1/2]x{0} and
[1/2,1]x{1} to the horn Ay by mapping each space to a face of Ag. Define
a nil 2-simplex by (LxAZ? hov'oh~!). Then p~!(Ag) of the last simplex con-
sists of two faces that are equal to the simplices (M, f1), (M2, f2) respectively
(p: LxA? — A?is the projection map). O

7.2.1. Characterization of nil simplices. We give a characterization of nil
k-simplices over X analogous to the one given in [41], Proposition 2.6. Let p : X —
B be as before and p’ = pxidar : XxAF = BxAF. As always, i : XxAF - M
denotes the inclusion map of X xAF as a sliced Z-subset. Let f: M — M be a
fibre preserving map such that f|XxA* = idy, ax. Let ¢ : Xx A St — T(f)
denote the induced inclusion map and p’ : T(f) — A* be the map defined by
p'(z,1) = p(x). By replacing f by a sliced Z-embedding if necessary, we can
assume that p’ is a fiber bundle projection with @-manifold fibers. We say that
there is a f.p. bounded strong deformation retraction of T(f) to X xS!xA* if
there exists a f.p. bounded homotopy h : T(f)x[0,1] — T(f) rel X xSt x A¥ with
ho = idpzy and hy (T'(f)) C X xStx A*. The homotopy h induces a f.p. (over A¥)
strong deformation retraction f : T(f) — T(f) of T(f) to X xRxA* which is
bounded over Bx A,

PRrROPOSITION 7.2.4. (1) If (M, f) is a nil k-simplex over X, then X x ST x A¥
is a f.p. bounded strong deformation retraction of T(f).

(i1) Let (M, f) be a pair satisfying the conditions (i)—(iv) of Definition 7.2.1.

Let h - T(f) — T(f) be a f.p. strong deformation retraction of T(f) to

X xS xAF such that h is f.p., bounded over BxR xAF* strong deformation
retraction. Then (M, f) is a nil k-simplex over X.

ProOF. (i) Since (M, f) is a nil k-simplex over X, there exist s € Z 4 and af.p.,
bounded homotopy H : M x[0,1] — M rel X xA* such that Hy = f* and Hy = ir
for some retraction r : M — X x A¥. Let ¢ > 0 be a constant such that p'rf is
c—close to p'r (by Definition 7.2.1(1)(v)) and which is a bound for the diameters of
the tracks of p'rH : M x[0,1] — B x A*. Define H' : M x[0,1]x[0,1] = M by

S H (e, (1= 2u)t), if0<u<i
H/(l‘, s ): ] - -
FPH(f(2), 2u—1)t), if+<u<l
Observe that H' is bounded in the sense that p'r H'(z,t, u) is (s+2)c—close to p'r(x)
for every (x,t,u) € M x[0,1]x[0,1]. To see this note first that since p'r is c—close

to p'rf, it follows that p'r is sc—close to p'rf* (and p'r is (s+ 1)e-close to p'rf5T1).
Thus, p'rH'(x,t,u) is

(s + 1e—close to p'rH(z, (1 —2u)t), if0
se—close to p'rH(f(x), 2u—1)t), if %

Now M is c-bounded, so p'rH (z,v) is c—close to p'rHi(x) = p'r(z) for every (z,v) €
Mx[0,1] and the (s + 2)e—bound on H' follows. The map H' has the form f*oL,
where L : M x[0,1]x[0,1] — M. Define a homotopy

h: Mx[0,1]1x[0,1]x[0,1] = M; h(z,t,u,v) = H(L(z,t,u),v).



52 7. NIL AS A GEOMETRICALLY DEFINED SIMPLICIAL SET

Then
h(z,t,u,0) = H(L(x,t,u),0) = ffol(x,t,u) = H'(x,t,u)
hz,t,u, 1) = H(L(x,t,u),1) = rol(x,t u).

Since the distance from f* to r is bounded, h is a bounded f.p. homotopy from H' to
a retraction to X x A®. Furthermore, the homotopy h has the following properties:

h(z,1,0,v) = H(L(x,1,0),v) = H(fH(x,1),v) = ir(x)
h(z,1,1,v) H(L(x,1,1),v) H(H(f(x),1),v) irf(z).
Thus h is a homotopy relative to M x{1}x{0, 1JUX x A¥x[0,1]x[0,1]. We write
h~ for the homotopy, A~ (2,1, u,v) = h(x,t,u, 1 — v). Define the restrictions
h' = h™|(Mx[0,1]x{0,1} U M x{0} x[0,1]) x[0, 1]
" = h|(M x{1}x[0,1])x[0, 1].
On the intersection M x{1}x{0,1}x[0, 1] the two maps agree because
W(x,1,0,v) = h(z,1,0,1—v) = dr(z) = h"(z,1,0,v)
Wz, 1,1,v) = h(z,1,1,1=v) = drf(x) = h'(x,1,1,0).
Using the estimated homotopy extension property, there is a f.p. bounded homo-
topy

G - Mx[0,1]x[0,1]x[0,1] — M
extending h'Uh", rel XxA¥x[0,1]x[0,1]. Define & : T(f)x[0,1] — T(f) by
k([x,t],u) = [G(x,u,t,1),t]. Then
1. & is well-defined: On M x{1}x][0, 1],

k(e 1w) =  [Gl,u1,1),1] = [K(z,u1,1),1]=
(h(z,u, 1,001 = [H(L{@,u,1),0),1] = [FH(f(x),u), 1],
On f(M)x{0}x[0, 1],
&([f(2),0Lu) = [G(f(x),u,0,1),0] = [h'(f(2) u0,1),0]=

[h(F(2).,0.0),0] = [H(L(F(2).,0),0).0] = [FFH(f(x),u).0]

which are equal in T'(f).
2. K 1s a homotopy between

k([x,t],0) = [G(x,0,t,1),1] = [W(x,0,t,1),t]=
[h(x,0,¢,0),t] = [H(L(z,0,t),0),t] = [f*T(x),{]
and the map
ile 2], 1) =[Gz, 1,61),4) = [h"(z,1,t1),1]=
[h (a:,l,t,l),t] = [H(L(z,1,8),1),t] = [irL(z,1,1),1)].

Thus &(T(f)x{1}) C X xSt xA*. Also, Mather’s trick gives a f.p. bounded homo-
topy of k|T'(f)x{0} to the identity. Combining the two homotopies, we complete
the proof of (i).

(ii) Let h : T(f) — T(f) be the strong deformation retraction given and h :
T(f) — T(f) the infinite cyclic cover of h which is bounded over BxR. Identify
M with M x{0}x{0} C T(f). Since h is bounded over R, there is a number b’ > 0
such that

h(M x[0,1]) C hi (X x (—o0,b']xAF) C T, (f).
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for some positive integer b. Also, there is a map induced by collapse maps

o Ty () = Mx{Tx{b), eollet, ) = [ (), 18]
Define a homotopy
cpoh|: Mx[0,1] = M = Mx{1}x{b}
which is f.p. over A¥ and bounded over Bx A*. Then cyoh(z,0) = f*(x) (x€M),

and cpoh(—, 1) is a retraction to X x A* rel X x A*. Thus (M, f) is a nil k-simplex
over X. O

REMARK 7.2.5. The lift of the homotopy &, constructed in the first part of the
proof, to T(f) is given by:
g:T(f)x[0,1] = T(f); &([=,t,4],u) = [G(z,u,t,1),t,7].
Thus the retraction of T(f) 0 XxRxBxAF is given by:

1 T(f) = XxRxA

ﬁ\
;R\

which implies that
FHX % [0, 00) xAF) = THH ().
Let ¢ : X xR xA* — R denote the projection. Let [z, ¢, jJ€T(f). Then, for u€[0, 1],
qri([x, 1, jl,u) = qF[G(z, u, t, 1), 1, j] = ¢[G(G(x,u,t, 1), 1,t, 1), t,j]=t+j

which implies that pre({[z,t, j]} [0, 1]) = {t + j}. Thus & is a bounded homotopy
over R.
Similar calculations apply to the reversed mapping torus 7"(f).

7.2.2. Abelian monoid-like structures. We will now define a binary oper-
ation which induces a structure of an abelian monoid-like simplicial set on m(p
X — B). We modify the construction given in Section 5.2. We begin by describing
a new basepoint of /\771(19 :X = B). Let Y = (X x[0,2))U(X x[—1,=2])/ ~ where
~ is the equivalence relation generated by (z,1)~(z, —1) for each 2€X (see Section

5.2). Let eqVeg denote the vertex Y — Y5 [(z,1)]—][x, 0], of /\771(19 :X — B). The
degenerate k—simplex on egVeq is denoted eg Ve, and eVe = {egVey } is a basepoint

of /\771(19 : X — B). Consider the simplicial maps:
1 :m(p:X — B) — m(p:X — B)Xm(p:X — B); x—=(x,e),
is :m(p:X — B) — m(p:X — B)Xm(p:X — B); (e, ),
A:m(p:X — B) — m(p:X — B)Xm(p:X — B); a—=(z,z).

PROPOSITION 7.2.6. Suppose X is a Hilbert cube manifold, and p: X — B is
a manifold approrimate fibration.

(1) There exists a simplicial map
ﬂ:m(p:X — B)xm(p:X — B) — m(p:X = B); plr,y)=z+y
satisfying the following properties:
(1) poiy ~id ~ piois,
(i) the two maps
m(p:X — B)xm(p:X — B)xm(p:X — B) — m(p:X — B);
(z,y,2)—~p(p(z,y), 2) and (2,y, 2)—~p(z, p(y, 2)) are homotopic,
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(iii) the two maps m(p X = B)xm(p :X - B) — /\771(19 X —
B); (z,y)—=p(x,y) and (x,y)—p(y, ®) are homotopic,
(iv) u(e,e) = eVe.
(2) For each k>1 there exists an isomorphism vy, : T, (/\771(19 : X — B),eVe) =
ﬂk(m(p : X — B),e) such that the operation induced by the composition

ﬂk(m(p : X — B),e) x ﬂk(m(p :X — B),e) 25 ﬂk(m(p : X = B),eVe)
LI ﬂk(m(p : X = B)e)
1s commutative and agrees with the standard homotopy group operation.

ProoF. The operation p is defined as a push-out construction. The exact
definition and the properties of y are given in Proposition 5.2.1. O

REMARK 7.2.7. In Proposition 5.2.1, there is a construction of homotopy in-
verses for Wh(p: X — B). We are going to prove the existence of inverses for
./\771(]) : XxR" — R7"), with X a closed @-manifold and p the projection map,
later in this chapter.

7.3. THE SIMPLICIAL/A/[APS
ps : Wh(X XR™"x S — R") — NGl(X xR™ — R"™)

We assume that the control space B = R”, X a compact ¢-manifold with
control map proj : X xR"® — R™ The main technical reason for the restriction
is that in this case, the Whitehead spaces defined using controlled and bounded
strong deformation retractions are homotopy equivalent (Proposition 5.11.1). Let
[ M = XxR"xS'xAF represent a k-simplex in Wh(X xR"x S — R"). We
assume that f represents an element in Why,p(X xR"xS1 — R™) because the
two Whitehead spaces are homotopy equivalent (Proposition 5.10.1). Form the
pull-back:

M —f y XxRrxRxAF

l l

M —L o XxBr"xST AR,
Set Uy = fF~HXxR"x[0,00)xA*F) and U_ = f~H(X xR"x(—00,0]xA*). By a
small homotopy of f, we may assume that p : U_NU; — AF and p: Ux — AF
are fibre bundle projections with @-manifold fibres and that U_NU4 is a sliced
Z-set in Uy. Let p: M — R be the composition

5 M L XxRAxR AR PO

LEMMA 7.3.1. There exist closed Q-submanifolds K+ C Uy of M such that
1. p| : K+ — R s proper,
2. p: K1 — A¥ is a fibre bundle projection with Q-manifold fibres,
3. KeN(XxR"xRxAF) is a sliced Z-set in Ky,
4. K3 dominates Uy as follows: there exist homotopies hE Uy x[0,1] = Ux

rel f7HX xR [—1, 1]xAF) U (KLN(X xR" xR xA*)) such that

(i) hE =idy,.



7.3. THE SIMPLICIAL MAPS p4 55

(i1) There are y1 €R such that

R 1f T XX X [yg, 00) xAF) = rpof]
hIFHX KR X (=00, ]xA%) = ryof],

where r1, ro denote the retractions

7 XxXRPx [y, 00)x AP = XxRx{yy }xA*
7ot XxRPx (=00, y_]xAF = XxR"x{y_}xAF

Also, hli(Ui) C Ky, and hti 15 a fibre preserving bounded homotopy.

5. Define subspaces over OAF: OU, = f~H(X xR"x[0, 00)xIAF) and OU_ =

FHX xR x (=00, 0] xdAF). Suppose 0Ky C Uy are closed Q-submanifo-

lds of M such that the analogues of (1)-(4) hold over OA*. Then Ky can
be chosen such that 0Kt CKy.

Proor. We will show how to construct K., the construction of K_ being
analogous. We use the construction presented in [10], p. 42. Let F: M — M
be the homotopy from the identity to f and let ¢ be the bound of F' over . Set
Ky = f~Y(XxR"x][0, 3¢] x A*) Define h as follows

z, on f‘l(XxR”X[O,c]xAk)
h(z,t) =4 F(z,t(a—1)), on FTHX xR < {ackxAF), 1< a <2
F(x,t), elsewhere

Then hy(U;) C KyU(XxR"x[0,00)xAF) and h satisfies all the assumptions of
(4) except (ii). Let £ be a f.p. bounded homotopy on Ky U(X xR"x[0, c0)x A¥)
starting from the identity, rel K;N(X xR"x[0, 00)xA*), such that

O (KL U(X xR"<[0, 00)xAF)) C Ky

(the homotopy ¢ is induced by a homotopy on [y4,o0) from the identity to {v4},
rel {y41}). Using the estimated homotopy extension property, we can extend ¢ to
a f.p. bounded homotopy ¢ on Uy starting from the identity. Then hjof’ is a
homotopy on Uy such that

hlogl : h1 ~ hlogll = h10£1~

Then the homotopy AT, defined as the composition of the homotopies h and hi#,
satisfies all the requirements. O

Let ¢ : M — M be the generator of the group of covering transformations such
that ((Uy) C Uy. Since Ug is dominated (in the sense of Lemma 7.3.1) by K,
there are map

Ky 5 Uy 5 K,
(with 7 the inclusion and d = h}) such that iod is f.p., bounded homotopic to idy,
Let Vi = Uy /~ where “~" is the relation generated by (z,s,d) ~ (#,0,d) where
r€X xR", s€R, §€A*. Let o : Uy — Vi be the projection map and Ly = o(K ).
Since (X xR"xRxA*)NK is a Z-subset of Ky and ¢ is a CE-map, L} is a Q-
manifold. Denote by fy the map induced by the composition

Foily S vy S vy S0y
to Ly, where ¢/, z, d’ are induced by i, ¢, d respectively.

LEMMA 7.3.2. The pair (Ly, fy) is a nil k-simplex over X xIR™.
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Proor. We will show that there is s€N such that f{ is f.p. bounded homotopic
to a retraction to X xR"xAF rel XxR"xAF. TLet hf : Uy — Uy be a fp.
bounded homotopy constructed in Lemma 7.3.1. Let y4 be as in Lemma 7.3.1.
Set A = f~H(X xR"x[0,y4+]xAF). Again from Lemma 7.3.1, AT |U;\ A = U4\ A.
Choose s€N so large that U, \ A contains ¢*(Uy). Then hjfol* : Uy — Uy is f.p.
homotopy, which restricts to a homotopy on X xR"x [0, 00) x A* | from (* to hi"Cs
But

RFCH(UL) ChT(Up\ A) = (U4 \ A) C X xR [0, 00) x A"

Then h, = hi(hjo(*)i : Ky — K, is a f.p. bounded homotopy, restricting to
a homotopy on K NXxR"x[0,00)xA* from hi"Csz to a map whose image is
contained in X xR"x[0,00)xA*. But (hf(i)* ~ hF({*i through a f.p. bounded
homotopy. Combining the two homotopies, we construct a f.p. bounded ho-
motopy H;t : Ky — K4 from (h{(i)* to a map whose image is contained in
X xR"x[0,00)xAF. The map h(i induces the map fy on L. Thus H;" induces
a f.p. bounded homotopy H{ : Ly — L4 from fi to a retraction to X xRPx AR
rel XxR"xA¥. Therefore (L, f1) is a nil k-simplex over X xIR™. O

We can now define a map of simplicial sets
Py Wh(XXR"xS' - R = Nil(XxR" — R"),

The construction of p; will be done inductively on skeleta.

Let f: M — X xR"xS?t represent a 0-simplex in Wh(X xR"xS1 —
R™. Then we define pi([f]) = [L+, f+], where (L4, f4) is the nil

0-simplex constructed in Lemma 7.3.2.

We assume that p; has been defined on the (k — 1)-skeleton of
Wh(XxR"x St — R™). Let f: M — XxR"xS!xAF represent a
k-simplex of Wh(X xR"xS? — R"). Using Lemma 7.3.1(5) we can
construct [Ly, f+], as in Lemma 7.3.2; extending the construction
already done over AF.

Let f: M — XxR"xS!xAF represent an element in muWh(XxR"xS? —

R"™). The construction py outlined above gives an element in mNil(X xR" —
R™). We will check if the resulting element is independent of certain choices made
in the construction of p;. Let a€R and U} = FHX xR"x[a, 00)xAF). As in
Lemma7.3.1, we can construct a @-submanifold K, and a domination g1 satisfying
properties analogous to the ones listed in Lemma 7.3.1.

LEMMA 7.3.3. Let [L',, fi] be the nil k-simplex constructed as above using the
data (K, g%) and [L4, f1] be the nil k-simplex constructed using the data (K4, h').
Then

[Ly, f] =L, 4] € mNil(X xR? — R™).

Proo¥F. We will split the proof of the Lemma into three cases.
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Case 1. We first consider the case Uy = UL = f~1(XxR"x[0, 00) x A¥F). Then
Foily Sve S v boo,
Aoy, Sve v S

where 7,, 7' are the inclusion maps, z is the map induced by the translation ¢, h
and ¢ are induced by the maps hi", gf’, respectively. Let M (gi) be the mapping
cylinder of the map gi. Set M = M(gi)/~ where ~ is the relation generated by
(z,y,t,6)~(z,y,0,48) for (z,y,t,8) € XxR"x[0,1]xA*. By approximating gi by
a Z—embedding, if necessary, we assume that M is a @J-manifold and the map p
induces a bundle map to A*. The space M contains X as a Z-subset. We denote
by ¢ : M — L the collapse map and by j : Ly — M, j': L, — M the inclusion
maps. Define

i =dloc: M = Vy; k=jg:Vy - M; m=xz":M — M.

The composition koi” is f.p. bounded homotopic to the identity on Vy (relative to
X xR"x AF) because

v ” .
kot = j'gi'c ~ j'c = idy, .

Thus (M, m) is a nil k-simplex and it represents an element in m(XXR” — R").
By construction,

mj' = j'gzi'cj’ = j'gzi" = j'f}

which implies that the following diagram commutes

M

Al
r, ——wm
Also by construction, m(M) C j'(L’;). The germ relation on the Nil-spaces implies
that [M,m] = [L/_, fi] in Nil(XxR" — R").
Now we will compare [L, f4] to [M, m]. By construction,

j=dcj=dgi~i rel XxR"xAF

Thus -

(L, f+] = [Ly,hzi] = [Ly, h2i”j];  in mp Nl (X xR™® — R").
A similar calculation can be made for m:

jh~jlejh=j'gih~j'g =k, rel XxR"xA*.

which implies

[M,m] = [M, kzi"] = [M, jhzi"]; in mNil(XxR" — R™).
There is a commutative diagram

Ly —4— M

hzz’”jl ljhzi”

Ly —L > M
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and jhzi" (M) C Ly. Thus [M, jhzi"] = [L4, hzi"j] in Nil(X xR" — R"). There-

fore, in mpNI(XXR™ — R"™),
(L, fi] = M, m] = [M, jhzi"] = [Ly, hai”j] = [Ly, f4]-

Case 2. Let |a| < 1. For simplicity we will assume that a > 0, the other case
follows similarly. Let Ky dominates Uy and K dominates U} . Then the space
K = I(+Uf_1(XXR”><[O, a]x A*) dominates also U} (just choose the homotopy
to be the identity on the second set). Let [L’}, f/] the element constructed using
K. By the result in Case 1,

(L, £ = [14, f1] € mNil(X xR™ — R™).
Let i : L', — L[ be the inclusion map. Then the diagram commutes
L, ——

f;l lfx

7

L —— LY
and fY (L) C L because a < 1 and the map f is induced by the translation.

Thus [L, fi] =[LY, f{]in m(XXR” — R™) and the result follows. The proof
also works in the following case

General Case. We are going to show the proof when a > 0. The other case follows
similarly. Let b€l such that 0 <a—b< 1. Fore=a—b,a—b+1,...,a we write

Ue = [THXXR"x[e,00)xA*), K, = KLUf (X xR"x[0, a]xAF)

and (K¢, f¢) as the nil k-simplex constructed using K.. By repeated applications
of the methods in case 2

[Ly, f4] = [Lat, fazb) = [La—bt1, facbp1] = - = [L, fi]

which completes the proof. O

7.4. THE HOMOMORPHISM P, IS A SPLIT EPIMORPHISM
DEFINITION 7.4.1. Define a simplicial map P =
(P, p-) : Wh(XxR"xS" = R") — Nil(XxR" = R xNil(XxR" — R").

Since m(XXR” — R") satisfies the Kan condition (Lemma 7.2.3), it makes
sense to talk about the homotopy groups of m(XXR” — R"). Following the
ideas in [41] we will show that the maps p+ induce split epimorphisms on the homo-
topy groups. A k-simplex (M, f) of m(XXR” — R™) such that (p~1(0;A%), f|)
is equivalent to the “base (k — 1)-simplex” of m(XXR” — IR") for each i =
0,1,...,k represents an element of ﬂkm(Xx]R” — R").

We start with some useful properties of elements of TWh(X xR" — R7).
For the rest of the chapter we will identify Wh(X xR" — R"™) with the bounded
Whitehead space Why(X xR" — R"™) (Proposition 5.11.1).
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LEMMA 7.4.2. Let ¢ : N — XxAF be a strong deformation retraction that
represents an element in mWh(X xR® — R") with p : N — AF a fiber bundle
surjection with Q-manifold fibers. Let ¢' : N — XxR"xAF be a f.p. retraction
which is bounded distance apart from idy, when distances are measured in R?x A*
such that p~1(8;A*) is in the same component as the “base (k — 1)-simplex” of
Wh(X xR" — R"). Then ¢’ represents an element in my Wh(X xR"™ — R") such

that [g] = [g'].
ProoFr. Let F : Nx[0,1] — N be a f.p. bounded homotopy between idy

and g. Then ¢’oF is a bounded homotopy, rel X xR?xAF from ¢ to ¢'. Thus

[9] = [¢'] € mWh(XxR" — R™). O
LEMMA 7.4.3. Let M be a Hilbert cube manifold, containing X xR"x A* | which

is equipped with a bundle map to A* and f; : M — M, i=1,2, be f.p. maps, which

are the identity on X xR"x A* | such that there are strong deformation retractions

ri 1 T(fi) — XxR"xS'xA*
representing elements in mpWh(X xR"x St — R™). [f there is a f.p. bounded
homotopy between f1 and fz, then [r1] = [ra] in mWh(X xR x ST — R").

Proor. By Proposition A.1.2, there is a f.p. bounded homotopy equivalence
f:T(f1) — T(f2) which can be chosen to be rel X xR"x St xA¥. The map f can
be written as a composition of f.p. CE-maps and their inverses. Thus [ri0f] = [rq]
and by Lemma 7.4.2, [r1] = [r10f]. The result follows. O

COROLLARY 7.4.4. Let M be a Q-manifold equipped with a bundle map to AF
and f : M — M be a fp. map which is fp. bounded (over R™) homotopic
rel XxIR"xAF, to a retraction v - M — XxIR"xAF. If there is a deformation
retraction

¥ T(f) = XxR"x ST xA*
representing an element in myWh(p : X — R7) then [r'] = 0.

PRrOOF. Let ¢ : XxR"xAF — M be the inclusion map. Then there is a

sequence of f.p. bounded homotopy equivalences (Proposition A.1.2)

T(f) — T(ir) — T(ri) = XxR"x S'x A*

and each one can be written as a composition of bounded CE-maps and their
inverses. The result follows from Lemma 7.4.2. O

7.4.1. Definition of the maps ji. We will define Bass-Heller-Swan type
injections from the homotopy groups of the Nil-spaces to the homotopy groups of
the Whitehead spaces,

ji o mNA(X xR o B = mWh(X xR"xS" — R"),
We start by defining
i mNI(X xR = R — meWh(XxR"xS! — R").
Actually the image of j; will be in ﬂkWhmb(Xx}R”xSl — R™) and it will be
represented by a bounded (over R™) strong deformation retraction. Let [M, f]
represent an element in AVl (X xR? — R”). We assume that the map f is a
sliced Z—embedding. Define

Jo([M, f]) = (r : T'(f) = XxS'xAF)
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where r is the retraction given in Proposition 7.2.4.

1. j; is well-defined: Let (M, f) and (N, g) be two nil k-simplices that represent
elements in ﬂkm(XxR” — R™) such that M C N, g(N) C M, g|M = f.
We write ¢ : M — N for the inclusion map and g : N — M for the map
induced by g. Then T'(ig) = T'(gi) = T'(f) and j4 (M, f]) = i1 ([N, g])-
Thus j; maps elements that are germ equivalent to the same element. Using
Lemma 7.4.3, it is also easy to see that j; respects the homotopy relation
in mNil(XxR? — R7).

2. j4 1s a group homomorphism if £ > 1 and a monoid homomorphism for
k = 0: This follows from the geometric definition of addition.

Similarly we define
jo M NA(X xR = B — mWh(XxR"xS! — R").
by j_([M, f]) = (r : T(f) = XxR"xS'xA¥). Define J = jy +j_:
mNIL(XXR" = B xmpNil(XxR® — RB") = mWh(XxR*xS" — R™).
ProrosiTION 7.4.5. The map
P:Wh(XxR"xS" = R = Nil(XxR" — R xNil(XxR" — R")

mnduces a split monotd epitmorphism on the monoid of path components and a split
epimorphism on the higher homotopy groups with splitting induced by J. Further-
more, Im(j1) and Im(j_) are two orthogonal summands of T Wh(X xR"x St —
R™).

Proor. We will show that pyjy = id, p1j- = 0. The equalities p_j_ = id,
p—j+ = 0 follow similarly.

Let [M, f]Eﬂkm(XxR” — R™). Then j;([M, f]) is represented by the re-
versed mapping torus of f. Form the pull back

4

T (f) ——— XxR"xRxAF

! l

T'(f) —— XxR"xS'xAk

By Remark 7.2.5, 771 (X xR"x [0, 00) x A¥) = Tgl—(f) which is homotopy equivalent
to the “base” M x{0}x{0} via the collapse map. So we can choose M to correspond
to the space Ky of Lemma 7.3.1. Thus pyjy ([M, f]) = [M, ¢'], where

M ST ST S M

which is equal to f.

For the other composition, let [M, f] be an element as before with f¢ ~ ir rel
X xR"x Ak, Again by Remark 7.2.5, the infinite cyclic cover of T(f) is T(f) and
FHX xR x[0,00) xAX) = T;H(f). But there is a sequence of f.p. bounded ho-
motopy equivalences rel X xR"x [0, 00)xA¥ ([21], Corollary 2.5, [41], Proposition

TH(f) — T () — Tif(ir) — XxR"x[0, 00) x AF.

Thus for the definition of p; we can choose Ly = X xR"x[0,1]xA* and the map
f+ to be the projection. Thus pyj_([M, f]) = 0. O



7.5. HOMOTOPY INVERSES FOR Nil(X xR" - R™) 61

7.5. HOMOTOPY INVERSES FOR Nil(X xRB™ — ")

For constructing homotopy inverses, we will use the geometric construction
of inverses of nil elements presented in [41], Lemma 2.11. Let [M, f] represent an
element in m(XXR” — R™) and 7" = T(f)/~, where the relation ~ is generated
by

(x,y,1,8) ~ (,9,0,8); (,9,1,0) € XxR"x St x A*.
Mather’s trick implies that the map f induces a map ¢ on 7" which is homotopic
to the identity. By replacing the natural inclusion M — T(f) by a sliced Z—
embedding we can assume that 7"UpT" is a Q-manifold equipped with a bundle
surjection to A¥. Then the pair (T"UpT", #U¢) represents a nil k-simplex.

We will first construct inverses in ﬂom(XxR” — R

LEMMA 7.5.1. The map p induces an abelian group structure on the set of path

components ﬂom(XxR” — R™).

ProoFr. We will show that (T"UpT", ¢U¢), constructed above, is the inverse
of [M, f]. Since j; induces a monomorphism on the monoid of path components,
it 18 enough to show that

Je[M, 1+ e [T'Up T, ¢Ug] = 0 € mWh(X xR x St — R™).

The assumptions of Remark 6.1.4 are satisfied in the splitting 7'Up; T’ and the
Higher Sum Theorem (Theorem 6.1.5) implies

j+ [T/UMT/a ¢U¢] = j+[T/a ¢] + j+ [T/a ¢] - j+ [Ma f] = _j+ [Ma f]
which completes the proof of the claim. O

. COROLLARY 7.5.2. Let © be any simplex in the component of the identity of
Nil(XxR™ — R"). Then the map
p(—, 2) : mp(Nil(XxR® — R") e) — mp(Nil(XxR" — R") )
15 an isomorphism.
ProoF. Let y be the inverse of x in ﬂom(XxR” — R™). Then the inverse

of pu(—, x) is given by o, u(—,y) where o, is the isomorphism induced by a path o
from p(x,y) to the base point e. O

PropPoSITION 7.5.3. The map p induces an abelian group-like structure on the
simplicial space Nil(X xR™ — R").
Proo¥F. It is enough to show that the map
a: Nil(XxR® = R)x Nil(XxR" — R") —

Nil(XxR" = R")xNil(X xR — R")
given by a(z,y) = (x,z + y) is a homotopy equivalence ([48], p. 119). Actu-
ally 1t is enough to show that « induces isomorphism on homotopy groups. By
Lemma 7.5.1, « induces an isomorphism on the group of path components. Us-
ing Corollary 7.5.2, it is enough to show that « induces an isomorphism on the

higher homotopy groups of the component based on e. There is a similar map
o' defined on Wh(X xR"xS? — R") which is a homotopy equivalence, since
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Wh(X xR"xSt — R") is an abelian group-like space. Since J and (p4). are
monoid homomorphisms,

o/o(J, J) = (I, J)oar,  ((p4)s, (p4+)+)o0” = ao((p4 )<, (P4)+)-
Thus « is an isomorphism and the result follows. O

Combining the result of Proposition 7.5.3 with the result of Proposition 7.4.5
we show

ProrosiTION 7.5.4. The map
P, mWh(X xRSt = B?) = mNil(XxR® — R xmNil (X xR — R")

15 a split group epimorphism for all k > 0. with splitting induced by J. Furthermore,
Im(j3) and Im(j_) are two orthogonal summands of mxWh(X xR"x St — R") for
all k > 0.



CHAPTER &8

Transfers

Fix m € {5,6,...,00} but suppress it from the notation as usual. Let B be a
fixed manifold with dim B < oo and assume that B is either a closed manifold or a
product Y x R” of a closed manifold Y and R” (with the standard metric) and that
B has the product metric. Let X denote a fixed compact Hilbert cube manifold.

8.1. TRANSFERS FOR MANIFOLD APPROXIMATE FIBRATIONS

For each nonzero integer s define the standard s—fold covering projection s :
St — S by et 1y 275t There are naturally induced s—fold transfer maps

o tr' : MAF(S'xB) — MAF(S'x B) and

e tr° : Map(St, MAF(B)) — Map(St, MAF(B)).

First tr* : MAF(S'xB) — MAF(S!xB) is defined as follows. If p : M —
S'x B x A¥ is a k—simplex of MAF(S! x B), then tr*(p) is defined by the pull-back
diagram:

M — M

tr® (p)l lp

sxid
SYxB x Ak B8 Gl B AF
Second, transfers on the mapping spaces are defined by precomposition with the
covering projection s. For example, if f : S x A¥ — MAF(B) is a k-simplex of
Map(St, MAF(B)), then tr*(f) is the composition

sXid 5k

i (f) : S* x AF St x AF L MAF(B).

Recall from Section 3.4 the classifying homotopy equivalence
¥ MAF(S* x R") — Map(S*, MAF(R"*1).

LEMMA 8.1.1. For each nonzero integer s the following diagram homotopy com-
mutes:
tre

MAF(S! x B?")  —“ 5 MAF(S! x R7)

o Js

Map(St, MAF(R"*1)) ——— Map(St, MAF(R"+1)

)
PrOOF. We first interpret tr® : Map(S!, MAF(R"+1)) — Map(St, MAF(R"*1))
in the model of 3.4.2 in which a k-simplex of Map(S!, MAF(R"*1)) is given by a

63
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projection p : M — S x R+l x A* having certain properties. In this model,
tr®(p) is given by the pull-back construction:

M — M

trs(p)l lp

Stx R« AR *Xidpnttcat Stx R« AR
With this observation we can check that the diagram commutes after replacing ¥
by the homotopic map ¥’ of Comment 3.4.5. For suppose p : M — St x R"? x AF
is a k-simplex of MAF(S? x R™). Then W/(p) is given by a pull-back construction,
and then another pull-back construction is formed to give tr*(¥'(p)). These two
pull-back diagrams have the form

N T gl retl w AR
l lSXidmn+1xAk
N TP gl R xR x AF

l lel X id]RnXAk
StxM ——— St xSt xR x AR,
On the other hand, tr®(p) is given by a pull-back diagram

M — M

trs(p)l lp

sX1do o Ak
Sl x R x AR L ETXAT Gl g R AR

Note that by crossing the spaces in this diagram with S, crossing the horizontal
maps by s : S — S' and by crossing the vertical maps by idg:, we obtain another
pull-back diagram:

Stx M SLLLEN M

idg1 xtrs(p)l lidsl Xp

SXSXIdmnxAk

Stx St x R™ x Ak Stx St xR x Ak,
It follows that ¥/ (tr®(p)) appears in the following pull-back diagram:

N’ TR o1 R x R x AF

;o
l le de]RnXAk

idl I‘S
Jdst B (B), (v) St x Sl x R? x AF

sxgl lSXSXidR"XAk

M Mt P Gl ST BT x AR
To see that W' (tr®(p)) = tr° (¥ (p)) one just has to check that the outer rectangles
in the two double pull-back diagrams above are the same. This follows from the
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fact that the compositions of the maps along the bottoms of the two diagrams are
equal; i.e.,
(sxs)e' =e'(s x idg) : St xR — Stxst

Recall from Section 3.4 that there is a fibration sequence
QMAFR"Y) L Map(S', MAF(R™)) £ MAF(R? )
where F is evaluation at the basepoint of S'. Let
it QMAF(R"M) — MAF(S! x R™)

be a simplicial map such that Wi ~ T (thus, ¢ is well-defined up to homotopy).
Theorem 3.4.11 implies that there is a homotopy commuting diagram

7

QMAF (R ——  MAF(S'xR")  —%— MAF(R"t!)

-| ] -
QMAF (R —L 5 Map(s!, MAF(R™Y)) —Z 5 MAF(R1)
where u 1s the unwrapping map. Moreover, the fibration
E : Map(St, MAF(R" 1)) — MAF(R"H)

has a section ¢ : MAF(R"*!) — Map(St, MAF(R"*1)) which takes a k-simplex
p to the constant map with image p. According to Theorem 3.4.1 this section is
compatible with the homotopy splitting of u, the wrapping-up map w, so that there
i1s a homotopy commuting diagram

w

MAF(R") —Z—  MAF(S! x R")
- =[o
MAF(R"1) —°— Map(S*, MAF(R"+1)).

With these preliminaries the effect of the s—fold transfer on MAF(S! x R") can
now be described. In what follows the s—fold transfer on loop spaces is defined by
precomposing a loop with the s-fold cover of S'. In particular,

tr' : Q MAF(R") — QMAF(R™)
is defined by considering Q@ MAF(R"*1) as a subspace of Map(S!, MAF(R"+1)).

THEOREM 8.1.2. 1. The following diagram homotopy commutes:

QMAF(R") —— MAF(S' x R?)
trsl ltrs
QMAF(R™!) — 5 MAF(S' x R").
2. (Transfer Additivity on Image of i) On homotopy groups
trf i M QMAF (R — 7 MAF(S! x R™)
is given by [p] — ix(s - [p]) for k > 0.
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3. (Transfer invariance of Wrapping Up) The composilion
MAF(R™1) 2 MAF(ST x R") 55 MAF(S x R™)
1s homotopic to w.

Proor. (1) Since Woi ~ I by definition and Wotr® ~ tr’ o¥ by Lemma8.1.1,
it suffices to observe that

QMAF (R —L 5 Map(S!, MAF(R"+1))

trsl ltrs

QMAF (R ——— Map(S!, MAF(R"+1))
commutes.

(2) From (1) it follows that trf i, ([p]) = @ tri([p]). The very definition of the
transfer on loop spaces implies that tré([p]) = s - [p] € mxQMAF(R"+1).
This is valid even for £ = 0 when 7y of a loop space is given its usual group
structure.

(3) From Lemma 8.1.1 and the fact that Wow = ¢ (which follows from Theo-
rem 3.4.1 as noted above) it follows that ¥ o tr® ow ~ tr® oWow ~ tr’ oc.
Obviously tr®oc = ¢ so ¥ o trfow ~ ¢ ~ Wow. Since ¥ is a homotopy
equivalence, tr® ow ~ w as required.

O

8.2. TRANSFERS FOR WHITEHEAD SPACES

The s—fold covering projection s : S — S! also induces s—fold transfer maps
for Whitehead spaces

o tr' : Wh(XxS'xB — B) - Wh(XxS'xB — B),
o tr' : Wh(XxS'xB — S' x B) = Wh(XxS'xB — S' x B), and
o tr° : Map(St, Wh(X x B — B)) — Map(S!, Wh(Xx B — B))

in analogy with the transfer maps defined for simplicial sets of manifold approximate
fibrations. To define the transfer map on the Whitehead space, let

f:M— X xStxBx Ak
be a k-simplex in Wh(X x S1x B — B) and form the pull-back

M — M

() | |7

idx XsXidgn
XxS'xB x AF = Brxat X xSt x B x AR

The same construction defines the transfer on Wh(X xS*xB — St x B). This
is compatible with the forget control map ¢ of Section 5.4. so that there is a
commuting diagram

Wh(XxS'xB — S' x B) —= 5 Wh(XxS'xB — S' x B)

0| |¢

Wh(XxS'xB = B) —% &  Wh(XxS'xB — B).
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The transfer on the mapping space Map(St, Wh(Xx B — B)) is defined by pre-

composition with s and the transfer on the loop space QWh(X x B — B) is defined

by considering QWh(X x B — B) as a subspace of Map(S', Wh(Xx B — B)).
Recall from Section 5.7 the classifying homotopy equivalence

U Wh(X xS' xR = 5T x R™) = Map(Sh, Wh(X xR — prtly),

LEMMA 8.2.1. For each nonzero integer s the following diagram homotopy com-
mutes:

Wh(XxSTxR? 5 ST x R7)  —T 4 Wh(X xSTxR? — St x R?)
o o
Map(S', Wh(X xR7+1 = ety 1 Map(S1, Wh(X xR — Rn+))

ProoF. From Section 5.7 there is a commuting diagram
Wh(XxSTxR? - ST x B?)  ——  MAFY(S' x R")
‘| o
Map(S', Wh(X xR?*+! 5 R+ 5 Map(S*, MAF? (R"11)).

Since the transfers for Whitehead spaces and manifold approximate fibrations are
defined by pull-back constructions, there is a commuting diagram

Wh(X x STxR® — ST x R") — 5 Wh(X xS xR — St x R")

l l

tr?

MAF?(S' x R") — MAF@ (ST x R™).

Likewise there is a commuting diagram

Map(St, Wh(X xR+ 5 Rr+l)) M5 Map(S1 Wh(X xR+ 5 R7+1))

l l

Map(S!, MAF® (R+1)) —, Map(St, MAF?(R"+1)).
The lemma follows by combining these three diagrams with the homotopy commut-
ing diagram of Lemma 8.1.1. (]

Recall from Section 5.7 that there is a fibration sequence

QWh(X xR 5 R+ L Map(SY, Wh(X xR o R

L Wh(XxRrH o Rt

where E is evaluation at the basepoint of S*. Let i : QWh(X xR+ — R+l —
Wh(X xSt xR"™ — S1 x R") be a simplicial map such that Wi ~ [ (thus, i is
well-defined up to homotopy). Theorem 5.7.2 implies that there is a homotopy
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commuting diagram

OWh(X xR 5 Rt = OWh(X xR — Rt

i |

Wh(X x STxR" — §1 x B7) —2 5 Map(S, Wh(X xR+ — Rn+1))

d |2
Wh(X xR 5 RAHY = Wh(X xRPHL — R+
where u 1s the unwrapping map. Moreover, the fibration
E : Map(ST, Wh(X xRt — R H)) 5 Wh(X xR — R,
has a section
¢t Wh(X xR 5 R 5 Map(ST, Wh(X xRt — R7T1)

which takes a k—simplex p to the constant map with image p. According to Theo-
rem 5.7.1 this section is compatible with the homotopy splitting of u, the wrapping-
up map w, so that there is a homotopy commuting diagram

Wh(X xR 5 R 2y Wh(X x ST xR™ — St x R?)

-| =|»
Wh(X xR 5 R 5 Map(ST, Wh(X xR"FL - RHY),
With these preliminaries the effect of the s—fold transfer on Wh(X x St xR™ — R")
can now be described.

THEOREM 8.2.2. 1. The following diagram homotopy commutes:

QWA(X xR+ 5 RAF) L WhH(X xS xR? — 51 x ")

trsl ltrs
QWh(X xR SR+ Ly Wh(XxSTxR™ = S1 x R").
2. (Transfer Additivity on Image of i) On homotopy groups
trf iy - T QWhA(X xRPTL 5 RPHY 5 m WA(X ) STXR™ — ST x R™)

is given by [p] — ix(s - [p]) = s - iu([p]) for k> 0.
3. (Transfer Invariance of Wrapping Up) The composition
Wh(X xR — R 5 Wh(X x S'xR™ — St x R™)
S Wh(X x STxR™ — S x ™)

1s homotopic to w.

ProoF. The proof is analogous to the proof of Theorem 8.1.2. There is just one
additional point which needs to be made. In (2) the equation i.(s - [p]) = s - éx([p])
is to have the following interpretation when & = 0. On the left-hand side the
multiplication s times [p] takes place with moWh(X xSt xR™ — ST x R") given the
usual group structure of 7y of a loop space (i.e., induced by loop concatenation). On
the right-hand side s - i, ([p]) is the multiplication in moWh(X xS? xR™ — ST x R")
discussed in Section 5.2. Equality follows from Proposition 5.7.3. O
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We will now explain how the transfer acts nilpotently on image of the nil
elements in the homotopy groups of the Whitehead space. Recall from Section 7.4
that the simplicial map

P Wh(XxS'xR" = B") — Nil(XxR" — R") x Nil(XxR" — R")

is a split epimorphism on homotopy groups. This is shown by defining homomor-
phisms
Je : mENU(X xR — R™) — mpWh(X x SxR™ — R™)
whose images are orthogonal summands of Wh(X xR"™ — R"). Then J = j; ®j_ :
M NI (X xR = R") & mpNil(X xR" = B") — meWh(X x ST xR — R")
is a right inverse of Py, P.J = 1. In this Section we will show that transfer maps

act nilpotently on the image of J.

THEOREM 8.2.3. 1. For each xEﬂkm(XxR” — R™), there exists s'€Z
such that
trf (jo () = tr' (j_(x)) =0 € mWh(X xS xR™ = R™), for all s > §'.
2. (Transfer Nilpotency on Image of J) For each
(2, y)EmNIl(X xR" — B®) & m Nil (X xR" — R"),
there em/sts s'€Z such that tr*(J(z,y)) = 0 € mWh(X xS xR"™ — R") for
all s > s'.

ProoF. (1) For the first part, let (M, f) be a nil k-simplex representing the
element © € Nil(X xR™ — R™). We may assume that f : M — M is a f.p. Z—
embedding. Then the image of jy (x) is given by

Ji(x) = (r:T'(f) = XxR"xS*xA¥)

where r is the deformation retraction constructed in Proposition 7.2.4. For each
SEZ, the transfer tr°(j4 (x)) is given by the pull-back diagram

T/(f) —— X xR"xS'xAF

5

T'(f) —— XxR"xS'xAk
By a repeated application of Corollary 2.5 in [21] (also [10], p. 35, [41], Lemma
1.10), there is an ANR M, equipped with a map to A* and f.p. CE-maps

(a4

T M BT
such that composition

TS = M 5T
is a f.p. bounded (over R™) homotopy equivalence. Because (M, f) is a nil k-
simplex, there is a positive integer s’ such that fsl is f.p. bounded homotopic to
a retraction o to X xR"xA* rel XxR?xA*. Thus for each s > s, f* has the
same properties. Proposition 7.2.4 and Corollary 7.4.4 imply that there is a strong
deformation retraction

¥ T(f) = XxR"x ST x AR
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such that [r] = 0 in mWh(X x SIxR™ — R"). By Lemma 7.4.2, the composition
PTHS) o MOD T () D XxRPx S A

represents an element in mWh(X x SxR™ — R") such that [r”] = [r]. At the
same time, [#’] = [r'] = 0. Thus

[7] =[] = 0 € mWh(X x ST xR™ — R™).
Part (2) follows from (1) O

REMARK 8.2.4. Let (M, f) be a k-nil simplex over X xIR™ representing an ele-
ment z in 7 NI(X xR — R") and

rT'(f) = XxS'xR"xA*

be the strong deformation retraction constructed in Proposition 7.2.4. The methods
used in the proof of Theorem 8.2.3 show that tr*(j;(#)) can be represented

1. by a retraction »+ : T'(f*) — XxSTxR"xA* if s > 0,
2. by a retraction r~ : T(f*) — XxSTxR"x Ak if s < 0.

COROLLARY 8.2.5. The images of J, wy and i, are orthogonal direct summands
of mWh(X x SIxR™ — R").

ProoF. Let z€Im(w,)NIm(J). Then by Theorem 8.2.2(3), tr®(z) = « for all
s€Z and by Theorem 8.2.3(2), there is s€7Z such that tr°(z) = 0. Thus z = 0 and
Im(w.) is orthogonal to Im(.J).

Let z€Im(is)NIm(.J). Then by Theorem 8.2.3(2), there is s'€7Z such that for
all s > ', tr*(z) = 0. For such s, tr(z) = tr*+!(z) = 0. By Theorem 8.2.2(2),

se=trf(z) = tr'* T (z) = (s + 1) = = = 0.
A similar calculation shows that Tm(é, )NIm(w.) = {0}. O
Form the composition
FOWh(XxSTxR? = BR™) L Wh(X xS xR" = §'xR") 2
Map(S*, Wh(X x St xRl — RH)) =5
QWh(X x S xR o5 R OWh(X x ST xR 5 Rty 21O
QWh(X x St xR 5 R S Wh(X xR™ — R7)

where the last equivalence follows from Theorem 5.8.1. We summarize the splitting
results obtained so far.

THEOREM 8.2.6. 1. There is a map between abelian group-like simplicial
sets

(Fou,py,po) s Wh(X xS'xR™ — R") —
Wh(X xR™ — R™M)xWh(X xRt — Ry
Nil(XxB? o R™)x Nil (X xR” — ")
which induces a split epimorphism on homotopy groups. In particular, the

homotopy groups of the product are direct summands of the homotopy groups

of Wh(X x STxR" — R").
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2. There is a map between abelian group-like simplicial sets
(¢, py,p—) : Wh(Xx STxR™ — R") —

Wh(X x S'xR? — ST xR?Y)x Nil(X xR — R?)x NGl (X xR" — R")
which induces a split epimorphism on homotopy groups. In particular, the
homotopy groups of the product are direct summands of the homotopy groups
of Wh(X x STxR" — R").

ProoF. Part (2) follows from Part (1) from the decomposition
Wh(X x S'xR™ — S'xR™) ~ Wh(X xR" — R™)x Wh(XxR"t1 — R+,

For Part (1), notice that the map (4., ws«, jt, j—) is a right inverse of the map induced
on the homotopy groups by (7, u, p+, p—)«. The result follows from Corollary 8.2.5.
O



CHAPTER 9

Completion of the Proof

We have developed the necessary machinery for completing the proof of the
main result. Through this chapter, X is a compact @-manifold.

THEOREM 9.0.7 (Main Theorem). 1. The map
(Fou,py,po) s Wh(X xS'xR™ — R") —
Wh(X xR™ — R™M)xWh(X xRt — Ry
Nil(XxB? o R™)x Nil (X xR” — ")

15 a homotopy equivalence of abelian group-like stmplicial sets.
2. The map

(¢, py,p—) : Wh(Xx STxR™ — R") —
Wh(X x S'xR? — ST xR?Y)x Nil(X xR — R?)x NGl (X xR" — R")
15 a homotopy equivalence of abelian group-like stmplicial sets.

Parts (1) and (2) are equivalent because of the splitting of Wh(X x ST xR" —
StxR™). We will prove Part(2). Theorem 8.2.6 implies that the map (¢, py,p—)
induces a split epimorphism on homotopy groups. We will show that the map
induces an isomorphism.

Actually we will show that the sequence of simplicial sets

Wh(X xR"x St — R"xSY) & Wh(XxR"xS! — R")
Ly Nil(XxRB? = B xNil(X xR — R)
1s homotopy fibration with the map ¢ admitting a homotopy splitting. Equivalently,
it 1s enough to show that the sequence
0 = mWA(X xR xSt — R7xS) 2% mWh(X xR7xS' — R7)
Loy mNL(XxR? = R xmpNail(X xR — R?) — 0

is a split short exact sequence. Because of Theorem 8.2.6, the only remaining
ingredient that needs to be proved is that the sequence is exact in the middle term.

9.1. PRELIMINARIES AND NOTATION

Let f: M — XxR"xS'xA* be a strong deformation retraction representing
an element in mxWh(X xR"x St — R") such that P([f]) = 0. We will work with

72
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the image of [f] in s Whpp (X xR"xST — R™), which we still call [f]. Form the
pull-back diagram

M L X xR*"xR xAF

| l

M —L o XxRPx St x AR
The retraction f is a f.p. bounded (over R" xR xAF) strong deformation retraction.
Let ¢ : M — M be the 41 generating covering translation. Then ¢ is f.p. bounded
(over R"xR xA*) homotopic to idy because

=)~ = ~idy = f
where (+1) is the map on X xR"xR xA* that is +1 on the R-coordinate and the
identity on X xR?xAF. A similar argument implies that ¢! is f.p. bounded
homotopic idyz.
Let ¢, a positive integer, be the bound (over R) of the strong deformation
retraction f. We write

5 M L XxRPxR AR PO

Let a > 0 be a positive integer, a > 3¢, and = a + 3c¢. By [29] (also Chapter 5)
there is an f.p. isotopy G : M — M, bounded over R?xA* such that

(i) G 1dM,
(; ( o, 00)))Cp (B + 1,00))

(iii) Gy is supported in p~1([1,4]) for some positive integer 7.

(iv) G restricts to an isotopy of X xR" xR xA* to itself.
By Lemma 7.3.1, there is a domination At of p=1([0,00)) by p~1([0,3c]), rel
p~1({0}), which restricts to a retraction of p~1[3c,00) to X xR"x{3c}x AF. We
use ht to define dominations

h(+) = ¢*(hTUId) (¢ xidp 17), b = (7 (h* Uid) (™7 xid 17)
such that
(1) h(+)o ho are the identity maps.
(i) h(+)s ([ a]), hs|p~1([0,]) are the identity maps.

P~
(it) h(+)1 (5 ([0, 00))) € ([0, A)
(5[0, 500)) € 5= ([0, 4 3c]).
(iv) h(4+)s|p~1([3, 00)) is a retraction to X x xR™{3} x A¥
help=([y + 3¢, 00)) is a retraction to X xR"{y + 3¢} x Ak,

Let K_ be a compact @-submanifold of M dominating p~*((—o0,0]). We
can assume that K_ contains p~1([—1,0]) and that the domination is relative
p~1([=1,0]) (just choose h(—) = ¢~ (h~ Uid)({xid[p 1]), where h™ is a homotopy
on p~1((—o0,0]) having properties analogous to ht). We choose K as a compact
Q-submanifold of M so that

R(+)s(p~ ([e,y + 3¢])) € Kynp~H([er, 20)), for all s€[0, 1]. (¥)

Then K = K_ UK is also a Q-submanifold of M and H = h(—)Uh is a homotopy
of the identity on M such that H,;(M) C K. Write i : K — M for the inclusion
map.

Let N = M/~ where (z,0)~(z,t) for all (z,t)e(XxR")xR and o : M — N

denote the projection map. The projection p from M to A* induces a map (not
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necessarily a fiber bundle projection) N — A*. The strong deformation retraction
f induces a f.p. bounded over R" xR xA* strong deformation retraction f' : N —
X xR?xR xAF. The translation (~! induces a homeomorphismon N, denoted 2~ 1.
Let L = 0(K), L+ = 0(K4+). Then Hi(7'4 induces a map w’ = H{z71' : L — L.
For a subset A C R, set Ny = o(p~'(A)).

We review the definition of coequalizer of two maps f,¢ : U — V ([31]). Tt is
the space defined by

W(f,9) = Ux[0,1]|_|JV/{(u,0)~f(u), (u,1)~g(u), u€l}

We use the description of the mapping torus of a self map f : U — U (denoted
T(f)) as the coequalizer W(fy,¢1) where

fo:U = Ux[0,1], folw) = (f(u),0), ¢ :Ux{1l} = Ux[0,1], ¢1(u) = (u,1)

The reversed mapping torus of f (denoted T'(f)) is the coequalizer W(eg, f1) with
notation similar as above. There are CE-maps from the mapping tori defined above
to the classical ones ([31]).

Since w’ is a fiber preserving map over A* | there is a natural map T'(w') — A*
which is not necessarily a fiber bundle projection. Actually, T'(w’) is not necessar-
ily a @-manifold. We use the properties of coequalizers ([31], Proposition 13.18,
Proposition 14.2) to analyze the space T'(w'). By definition w’ = H{z7'i’. Since
271 is f.p. bounded (over R"xR xA¥) homotopic to the identity on N, w’ is f.p.
bounded (over R"xA¥) homotopic to a retraction to X x A¥. If ¢ is the inclusion
map, ¢ : X xR?"xAF « L then T'(w') and X xR"x S xA* are f.p. bounded over
R™x A* homotopy equivalent (Proposition A.1.2) through a sequence of homotopy
equivalences

v:T(w')=T(Hz") — T(Hf'T) =Tf?) =T0(f]) —
T((f'])t) = XxR"x S x Ak

where each one can be written as a composition of CE-maps and their inverses.

9.2. DESCRIPTION OF FINITE STRUCTURES ON MAPPING TORI
We will construct a f.p. mapw : . — L close to w’ such that
W LN(X xR"x ARFUN_ 4 = w'| = 271,

and p : T(w) — AF is a fiber bundle projection with -manifold fibres. To this
end let

L= N(_Ooy_l]ﬂL_, L/-I- = N[%OO)QL{_.
Approximate w'| : L’ — L_ by a sliced Z—embedding w_ rel

(L_N(X xR < AF)UN_;.
Likewise approximate w'| : L}y — L by a sliced Z-embedding wy : L, — Ly
rel (L), N(X xR"XA*))UN,. Then set w|L = wy and wlo(p~([-1,7])) = /| =
z~14'|. By Proposition A.1.2, there is an ANR 7' equipped with a map to A* and
f.p. CE-maps
X' T = Tw), xX":T — T).
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Define
xo:T(w) = T X—”> T(w)
x1:T(w) = T X—I> T(w).
The map yo induces a f.p., bounded over R”xA* homotopy equivalence
fo:T(w) 2% T(w') & XxS'xAk
rel X xS1xAF. The part of L that lies over A is
X' = XxR"x[0, 1]xIx0AF [~ (2,t,8) ~ (x,0,0),

for (z,1)€(X xR")x[0,1], €I xA* (I an interval). The part of T'(w) that lies over
OAF is the mapping torus of the identity map on X’. But the element X’xS" —
X xR"x St of Wh(XxR"xS1 — R") lies in the same component as the base
simplex. Thus fq represents a class in TgWh(X xR"x St — R™).

LEMMA 9.2.1. [fo] = 0€ mWh(X xR"x ST — R").
ProoF. The result follows from Corollary 7.4.4. O

9.3. DEFINITION OF AN EMBEDDING M — T'(w)

Let D =p~*([-1,0]) C M. Then M = D/¢™! (D is a fundamental domain for
the action of ¢ on M). Let M_; = p~1{-1} and

6:M_1x[0,1] > D, 6|M_yx{0}=id

be a collar of M_; in D. B
First we define a map p: M — [0, 1]

Then we define an embedding
0D = T = Mx[0,1][Mx[0,1]/{(m,0)1 ~ (¢™"(m),0)2, (m, 1)1 ~ (m, 1)}

as follows

(m’,2t)s if m=0(m',t), te[0, 1]
n'(m) =< (0(m', 2t — 1), pf(m’, 2t — 1)) if m=0(m’ 1), te[s,1]
(m, p(m))1 imeD—H(M_lx[O,l))

where the subscript indicates the copy of M x[0,1]. The map 5’ induces the em-
bedding 1o : M = D/{ — T(z7'). But the image of 7y is contained in T'(w').
Thus 7y induces an embedding M — T'(w’). Actually 1y induces an embedding
n: M — T(w) (Figure 1). From now on, we identify M with im(z).

COROLLARY 9.3.1. [fo|M]=[f] € mWh(XxR"xS! — R").

PROOF. fo|M is a f.p. retraction to X xR"xAF whose distance from idys is
bounded, (since fo is bounded homotopic to idp(,y). The condition over OAF is
satisfied because it is satisfied for f;. Thus we can apply Lemma 7.4.2 to get
[folM] =[f] € meWh(XxR"x St — R"). O
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FIGURE 1

9.4. DEFINITION OF THE RELAXATION

Let (N’ = (7'G;. We need a variation of the construction of the relaxation
presented in Chapters 4 and 5. Set

Y ={p ((—o0,a]) \ 5! (=00, a)) € M
and M = Y/(~= Also there is a map f : M — XxRB"xS'xAF representing an
element of mWh(X xR"xS! — R"). The methods of Section 5.9 show that the
element f is in the image of the forget control map ¢. R
The infinite cyclic cover of M is M, the covering translation is equal to ¢ and

the fundamental domain of the action is Y. Furthermore the map ¢ induces a
homeomorphism z on N. We write w’ : L. — L for the map induced by H,(z.

9.4.1. Description of finite structures on T(i;/). We will give a finite
structure on T(w’) as we did with T(w’). We will approximate w’ by a fiber
preserving map @ : L — L such that &|(LN(X xR xR xA*))UN[_; ) = w!| = 7|,
and p : T(@) — AF is a fibre buI}dle projection with @-manifold fibres. By
Proposition A.1.2, there is an ANR 7', equipped with a map to A¥, and f.p. CE-
maps

T = T@), x":T — T(w).
Define
WiT@) = T X5
T s T 1),
The map Yo induces a f.p., bounded over R”x AF strong deformation retraction

fo:T(@) = XxR"xS'xAF
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rel X xR"x ST x A* | such that [fo] = 0 in mWh(X xR?xS! — R™).

9.4.2. Definition of an embedding of M into T(w'). We work as in Sec-
tion 9.3. Set M, = p~*{a}. Let

0: Myx[0,1] = Y, 6|Myx{0}=id
be a collar of M, in Y. First we define a Urysohn map ji : M — [0, 1], so that
) A1) =5 (o).

(i) i(0) = (7 ({a).

(iii) fi] : XxR"x[a, 5+ 2] — [0,1] is decomposed as X xR"x[a,f + 2] —
[o, B4 2] — [0,1] where the first map is the projection and the second is
the order reversing linear map.

As before, we define amap 7' : Y — T(()

(3{/’%)2 ~ ify = Q(y/at)’ tE[O,%]
7'(y) =1 (0,2t —1),50(y, 2t = 1)1 ify=0(y,1), tel5,1]
(v, A(y)h ify ey —0(M,x[0,1))

where the subscript indicates the copy of M x[0,1]. The map 7’ induces the embed-
ding 7o : M = Y/¢ — T(%). But the image of 7 is contained in T'(«t'). Finally
induces an embedding 7 : M — T/(&). We identify M with im(7}) and [fo| M] = [f]
in mgWh(X xR"x S — R") as in Corollary 9.3.1.

9.5. SPLITTINGS

In this section we describe a splitting of T'(w) into a union of spaces corre-
sponding to the Bass-Heller-Swan splitting. The argument is a geometrization of
“Ranicki’s pentagon” ([42], p. 95).

9.5.1. First Splitting. The embedding
/ 1 '
n'| D —6(M_1x0, 5)) — Mx[0,1]
induces an embedding
1 _ _
n' D—H(M_lx[o,i)) — Mx[0,1] = Nx[0,1] = T(271)

into the first copy of Nx[0,1] in T(27'). The image of 5 decomposes N x[0, 1]
into ZyUip(yy 4~ where

Zy = (oxid)({(m,0) -1 > pm)}), 7. = (oxid)({(m, 1) : ¢ < p(m)}).
If we restrict w to L_, we get a decomposition of T'(w) = T(=)UnT". Set Li_ =
L_\ N(_1 0. The space T(—) is given by
T(=)=2Z_| |Li—x[0,1]/~'
where we identify
v~ (w(z),0) for zeZ_N(Lx{0}), =z~ (x,1)forzeZ_N(Lx{1}).
There is a CE-map from 7 (=) to T(w|L_) constructed in three steps:
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Step 1. There is a CE-map
s1:Lox[0,1] = L_x{1}ULy_x[0,1] = La_
which is the identity on Lo_ (Figure 2).

Proof. We will construct a CE-map
)t Ni—1,00%[0, 1] = Nj—1,0)x {1JUN_1 %[0, 1], rel Nj_1 gpx {1}UN_; %[0, 1].
Since p~1({—1}) is collared in p~*([—1,0]), N_; is collared in Nj_1 ). Thus
Ni—1,01x {1}JUN_; x[0,1] = Nj_1 ;< {1}
(N_1x[0,1] can be considered as an extension of the collar of N_ in Nj_; g]). Thus

there are two homotopic Z—embeddings i; and is of N[—l,o] x{1} into N[—l,o] %[0, 1]
with 1images

i (N—1,00<{1}) = No1,opx {1}, 2 (N1 opx{1}) = Nj—1,px{1}UN_1 x [0, 1].

Actually, the homotopy between the two embeddings can be chosen to be f.p. and
bounded (over R"xA*). By the Z-set unknotting theorem there is a f.p., bounded

isotopy ¢ : Ni_1 g)x[0,1] — N[—l,o] from the identity such that ¢10i5 = 7;. Then the
map s} = 1] Loprojoi; satisfies the conditions required (proj : M x[0,1] — Mx{1}
is the projection map).
Step 2. There is a CE-map

s Lox[0,1] —» Z_.

Proof. The embedding 7’| is the graph of the function p. Thus there is a CE-map
K_x[0,1] = {(m,1) : ¢ < u(m))
which maps
(z, pu(x)), for (z,t)eZ,;
(z,t) — .
(z,1), otherwise.

Actually the map is the identity on {(m,?) : t < p(m)}. The above map induces a
CE-map s» on the quotients.

Step 3. The two maps constructed in the first two steps are combined to form a

CE-map s : T(w|L_) = T(-) (Figure 3).

Proof. By definition the space T'(w|L_) has the form
T(w|L-) = L_x[0,1] I_I L_x[0,1]/~", (2,0)1~"(w(x),0)2, (x,1)1~"(x,1)s.
The map s is defined as the composition

1idUsy

s T(w|Lo) = Lox[0,1] | ] Lox[0,1]/~" 2% L_x(o, 17| | Lo- 222 7(-).
where s, is defined to be the restriction of s; on L_ x{1} and the identity elsewhere:

so(x, 1), forxel_,t=1
slz(x,t):{ 2, 1)

(z,1), otehrwise.
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FIGURE 2

L_x[0,1]

FIGURE 3

Notice that sq(x, 1)€Z_. We use the notation (x,t)’ for a pair that is an element
of Z_. Then

(i) 5((2,0)1) = s2(x,0) = (,0) = (w(),0) = 5((w(z),0)2).
(ii) For the element ((x,1)1) we consider two cases:
(a) JL‘(E(N[I)L(;]. Then, s((z,1)1) = s2(x,1) = (2, pu(x)) = sh(z,1) =
(b) #€L_ \ Np_1,07. In this case, s((z, 1)1) = (#,1) = (,1) = s((z, 1)2).
Therefore s 1s a well-defined f.p. CE-map.

LEMMA 9.5.1. j_p_([f]) = [fo|T(=)] in mWh(X xR"x St — R").
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PrOOF. There is a strong deformation retraction
riT(w]Lo) — XxR"xStxAF
representing j_p_([f]). Then the retraction

' T(w|Lo) < T(-) Jol, xRSt x AR

is a f.p. retraction which satisfies the conditions of Lemma 7.4.2. Thus, in the
group mgWh(X xR"x St — R,
j-p-(UD) =l =1"1=flT(=)].
O

9.5.2. First description of the space 7'. The space 7' admits a description
as the space 7(—) above. Set L4 = L{UN[_1 ). Then
T = Zy| |[Ligx[0,1]/~
where we identify
x~"(w(x),0) for zeZ,N(Lx{0}), x~'(x,1)forz€Z N(Lx{1}).
Then 7 is homotopy equivalent to the space 7", defined as
T" = Zy| |Ligx[0,1]/~
where we identify
~"(@(2),0) for zeZ,N(Lx{0}), x~'(x,1)forz€ZN(Lx{1}).

The homotopy equivalence is constructed as follows:

First of all ZyN(Lx{0}) = Ly and ZyN(Lx{1}) = Li4. The identification is
constructed using the map
w1 = ((w])x{0}) U (idx{1}): Ly U Li4 — Li4x[0,1].
The homotopy between ¢ and ¢~ induces a homotopy between
w1~ a1 = ((@])x{0}) U (idx{1}).
The space 7" is formed as 7' using the map &, for the identification. Then there is
a space T" and cell-like maps from 7" to 7" and 7" (Lemma A.1.1, [31], Proposition

13.18). The space 7" is a subset of T'(&). Furthermore the embedding 7 in Section
9.4.2 induces an embedding of M to 7.
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9.6. SPLITTING OF 7", SECOND SPLITTING OF T'(w)
The embedding 7 induces a decomposition 7" = T1Uy; 7.
9.6.1. Description of 7;. As in Section 9.5.1, the embedding
il Y —6(M,x|0, %)) — Mx[0,1]
induces an embedding
ﬁ”:Y—é(Max[O,%)) — Mx[0,1] = Nx[0,1] = T(7Y

into the first copy of Nx[0,1] in T(37!). The image of 7" is contained in Z;. It
decomposes Z = W, U0y W- where

Wy = (oxid)({(m 1) - > gm)}), W- = (oxid)({(m,1) : ¢ < (m)))
(Figure 4).

FIGURE 4

Thus 71 admits a descriptions, 71 = W_ U L} x[0,1]/~', where L} = &(Njg,o1)-
The identifications are done using the map
(@)% {0}) U Gidx (1)) : W-A(Lx{0}) || W-n(Lx{1}) = Lix[0,1]

(notice that W_N(Lx{0}) = Njg,o) and W_N(Lx{1}) = L}). By construction, the
restriction
@|Njg,a) = w'|Njo,a) = H{ 77| Njg -
which is equal to the map induced on p~1([0, «]) by H,(i. But
¢ilp([0,a]) = TP G (FH([0,0]) C ¢THETH([0,9]) € BTH(=1,7)
because the support of G lies in p~1([1,7]). By construction, the homotopy H is
the identity on p~1([-1,~]). Thus

Sl ([0,a]) = Hililp ([0, o) = ¢l ([0, a)).
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Therefore (Z)|N[07a] = Z|N[o,o] which is a homeomorphism to its image. Set 7] =

W(jb, @~ 1) where
Jo Ly s Ix{1I}nW_ > W_, &7 L] = Lx{1}nW_ < W_.
There is a homeomorphism ¢ : 73 — 7T} defined by

P(e,t) = (x,1-1), xz€lf

(i) For (z,0)eL} x{0}, (&(x),0) is identified with z€W_NLx{0} in 7;. Then
P(@(2),0) = (@(x),1) =07 (@(2) = = = ¥(x).
(i) For (z,0)eL]x{0}, (x,1) is identified with xeW_NLx{1} in 7;. Then
P, 1) = (2,0) = 2 = Y(x).
Let
As = h(4):G5H pH([0,00)) — p ([0, o0)).
The restriction of A;{ to E(p—l([o, «])) is equal to ¢1: that is
MCCEH([0,a]) = CTHEETH((0, ) (x%)
(that is because for zep=1([0, a]),
M) = h(+1GTICT Gi(@) = h(+)i(2) =

and the last equality follows from the fact that h(4) is the identity on p~
construction). The homotopy A; induces a homotopy A, on L. Since
Z|N[0,a1, (**) implies that for 2€N[g 4,

Nz(@(z)) = NzZ(z) = =.
Therefore ) z|L} = @~1|L} which implies that 7] = W(j{/, \|z|) with
oL = Dx{1ynW_ — W_, Nz|: L] — Lx{0}nW_ — W_

As in Section 9.5.1, there is a CE-map from 7" (A z|L}) to T7:
We first construct a CE-map 7 : Lix[0,1] — W_ which is the identity on W_.
The map 7 is constructed as the composition

T Lix[0,1] = W_U(Z_NN_1,9) = W-

%])

H([o,
BN

where the two maps are constructed as in Step 2 of Section 9.5.1. We write 7_ for
the CE-map
Ly x[0,1] = W_, 71_(z,t)=7(z,1—1).
The CE-map from T"(M z|L}) to T} is constructed as follows (Figure 5)
dur_

TNz | L) = Tyx [0, 1] | < [0, 1]/~ —= Lhx[0, 1) W/~ =T}

(i) (#,0); is identified with (z,0)2 in T"(A{z|L}). But
7((w,0)2) = 7(2, 1) = (x,1) = (#,0) = 7'((2,0)1)

where the second equality follows because (z,1)eW_ and 7 is the identity

on W_, and the third equality follows from the relations in 7}, namely
(z,0)€L] x{0} is identified with its image in Lx{1}NW_.
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L, %[0,1] Lyx[0.1]

T'(Az[ L))

FIGURE b

(i1) The second relation in T'(A{z|L}) results from the identification of (z,1);
with (A{z(#),1)2. Then
T(Xi2(2),1)2) = 7N 2(), 0) = (N 2(2),0) = (&, 1) = 7'((, 1))

where the second equality follows because Ajz(z)€W_ and the third equality
follows from the defining relations for 77.

We use the homotopy A to define an element of 7x Wh(X xR"xS? — R™) as in the
construction of j;. By Lemma 7.3.3, there is a strong deformation retraction fi :
T'(MN 2| L)) — X xR"xS1x A¥ such that [f1] = jips ([f]) in mWh(X xR"x St —
R™). From Lemma 9.5.1, we derive
[A] = ThIT] = [(A1T1)ev] = [fol T1]

in mgWh(X xR"x St — R"). Thus

LEMMA 9.6.1. [fo|T1] = [f1] = jepr+([f]) in meWh(X xR"x St — R™).

9.6.2. Description of the space 7,. By construction,

w(p~H ([, 00))) = Hii(p™! ([o, 00))) = Hi¢(T Ga(p~ ! ([, 20)))
C Hi(THp™ (B +1,00)))
C Hi(p™ ' ((8,20))) = ha(p~ (B, o0)))
Cp~H((8,0))

the last inclusion holds because h is the identity on p=1([0,4]) and 2 < 5. Similarly,
w(Ky) C Ky. Thus

WKL 0P ([, 00))) C Kynp™ (8, 00)).
Let Lo = L+ON[QVOO) which is a subset of L. Then

&(Ls) = w'(Ls) C LyNN[g o).
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By construction,
T = Wy| |L2x[0,1]/~"
where
r~" (@(x),0) for zeWiN(Lx{0}), x~"(z,1)for zeWiN(Lx{1}).

As in Section 9.5.1, we construct a CE-map from 73 to the mapping torus T'(w|L2).
Condition (*) in Section 9.1 implies that the homotopy h(+) induces a homotopy
h(4) on &(Ls) starting from the identity and ending with a map that it is a
retraction of &(Lz) to X xR"x A*. Thus

W (+)&|Ly : &~ 1!

where 7' is a retraction. Thus there is a CE-map from T'(@|L2) to the mapping
torus of a retraction. Therefore [fo|72] = 0 in mxWh(X xR"x St — R") (Corol-
lary 7.4.4).

9.7. COMPLETION OF THE PROOF

We now use the Higher Sum Theorem (Chapter 6) to express the element [fy] as
a sum of elements of mu Wh(X xR"x ST — R"). The assumptions of Remark 6.1.4
of the Higher Sum Theorem (Theorem 6.1.5) are satisfied for the splitting of 7T'(w).
Thus

0= [fo] = [folT ()] + [foT'] = [folM] (1)
The first summand is equal to j_p_([f]) (Lemma9.5.1) which is zero by assumption
and the last term is equal to [f] (Corollary 9.3.1). Thus, again by the Higher Sum
Theorem,

/1= [olT) = ol Tl + ol T2l = [folM] - (2)

By Lemma 9.6.1, [fo|7T1] = j+p+([f]) which is zero by our assumption. [fo|73] is
also zero by Section 9.6.2. Thus

(/1= =[folM] = ~[f] € im(.).

The element [f] belongs to the image of ¢, and the sequence is exact.

REMARK 9.7.1. We summarize the structure of the construction presented in
Sections 9.1 — 9.7. Theorem 8.2.6 implies that there is a spit injection

TWA(XxR?xS' o R S xm Nil (X xR — R xmNil (X xR — R™)

o dedo)  Wh(X xRS — R
with splitting given by (7., (p4)s, (p=)«). In Sections 9.1 — 9.7 | we show that the
split injection (¢, j4+,j—) is an epimorphism. More specifically, equations (1) and
(2) in Section 9.7 imply that

[f] = ol M] = Lol T(=)] + ol T'T = Ll T(=)] + ol Ta] + [fol T2] — [fol M]
(the first equality is by Corollary 9.3.1). In Sections 9.1 — 9.6, we have shown that
the summands satisfy the following:

[folT(=)] = Jj-(p-)<([f]) by Lemma9.5.1
[folTi] = J+(p4)«([f]) by Lemma 9.6.1
[folT2] = 0 by Section 9.6.2
[folM] € im(¢.) by Section 9.4.2 and Lemma 7.4.2.
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Thus, we can rewrite the decomposition of [f] as

[£]1 = = (p=)« ([fD + J+ (P4 )< ([f]) — 0 ([F])
for some [f']lemWh(X xR"x St — R"xS1). This shows the injection (¢«, ji,j)
to be a surjection and therefore an isomorphism. The last equation also implies
that
[f] = —r([f)EmMWhA(X xR"x ST — R"xS!).



CHAPTER 10

Comparison with the Lower Algebraic Nil Groups

In this chapter, we assume that X 1s a compact J-manifold and p : X xR”? —
R™ is the projection map. For simplicity we will assume that the space X is
path connected. The general case follows by taking the direct sum over the set of
path-components of X. We will compare ﬂom(XxR” — R™) to the algebraically
defined exotic lower nil group NK;_, (Zm1(X)) of [2] (also [42], [43]). In particular,

moNil(X xR™ — R") & NKi(Zm(X)) & Nil(Zm(X)).

In lower K-theory, the Nil-groups appearing in the splitting theorems for the re-
duced K-groups coincide with the Nil-groups that appear in the splitting of the
non-reduced K-groups. In this section we will work with the Nil-groups that are
summands of the non-reduced K-groups.

10.1. PRELIMINARIES ON THE ALGEBRAIC LOWER NIL-(GROUPS

We start by reviewing the algebraic construction given in [42]. For an additive
category A, let C, (A) denote the graded category over Z" (or equivalently over
R™). The objects of C,(A) are the graded objects of A over Z™. Morphisms are
bounded morphisms between them. We write P,,(A) for the idempotent completion
of C, (A). The category A[z] denotes the polynomial extension of A, and Az, 271]
the Laurent extension category of A ([42], §7). If R is a ring and A = B/(R) is
the category of finitely generated free based left R-modules we write C, (R) for the
graded category, over Z" or R”.

The lower Nil-groups that are of interest are the ones appearing in the Bass-
Heller-Swan splitting (n > —1)

K _o(Rlz, 27 ) 2 K_,(RY®K_,_1(R) ®NK_,(R) & NK_,(R).
Actually, the lower Nil groups are expressed as the cokernels of the homomorphism
induced by the inclusion

NK_,(R) =coker(i: K_p(R) — K_,(R[?])) =
coker(i : K1(Ciqn (R)) = K1(Ciyn (R[2])))

where the last identification follows from [42], §11. In the proof of Proposition

11.2 in [42], the cokernel of i is shown to be isomorphic to Nily(Ci4y, (R)), the
Grothendieck group of the category of Nil objects in the additive category Ci 4, (R).
Therefore

NK_,, (R) = Nily(Cy 4 (R)).
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__ The reduced Nil-groups of A are defined in two equivalent ways. One, denoted
Nilg(A), is defined using the pairs (A, v) of objects of A and nilpotent endomor-
phisms. The second definition involves pairs (Cy, v.) of finite dimensional chain
complexes over A and chain homotopy nilpotent self-chain maps v, and it is de-
noted ﬁl;o (A) ([42], §9). The two definitions produce naturally isomorphic groups
([42], Proposition 9.3). We are going to use both definitions.

10.2. THE DEFINITION OF THE HOMOMORPHISM BETWEEN ALGEBRAIC
AND (GEOMETRIC NIL-GROUPS

Following the ideas in [41] §4, we define a group homomorphism:
a : moNil(X xR™ = R — NK;_, (Zm(X))

Let m = m1(X). Let [M, f] represent a 0-simplex in m(XXR” — R™). Then there
is a positive integer s such that f° i1s boundedly homotopic rel X x R™ to a proper
retraction r : M — X xIR™. We choose a finite complex K such that X = Kx@
and a locally finite complex L, containing K, such that M & Lx). The maps f
and 7 induce maps
f:L =L v :L— KxR"

such that f’* is boundedly homotopic to 7/, rel K xIR". We choose a triangulation
of R™ which is bounded in the sense that all the cells have diameter less than or
equal to a fixed positive number. The product cell structure on K xR" is a bounded
cell structure over R”. Form the pull back diagram

I — KxRn

l l

L —y KxR®

where K is the universal cover of K. Since K is finite complex and 7’ is proper, the
chain complex C.(L, [N&’XR”) is a complex in the additive category C, (Zn) ([40],
§4, [42], p. 14). Let f' : L — L be the pull-back of the map f’ (the domain
of f'is L because f'1' = 7/ and so the pull-back using f'+' is equal to the pull-
back using r’). Since the map f’° is boundedly homotopic to a retraction, rel
K xIR™ the chain map f/, induced by f° is chain homotopic to the zero map in

the category C, (Z). Therefore the pair (C(L, IN(X}R”), f'.) represents an element
in ﬁﬂéw (G, (Zm)) which is canonically isomorphic to ﬁﬁo(cn (Zm)). Define
a(M, f) = (Cu(L, KxR™, ,)

The construction of o does not depend on the choice of the retraction r because
any two retractions homotopic to some power of f are boundedly homotopic rel
K xIR™. The construction is independent of the choices of the complexes K and L
because of the chain homotopy condition in Nilg(C, (Z7)).

ProrosiTION 10.2.1. The map
a : moNil (X xR™ = R™) — Nily(C, (Z7)) = NEy_p(Z)

15 a group isomorphism.
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ProoF. First we will show that a is well-defined. Let (M;, fi), i = 1,2, be
two equivalent nil O-simplices. We will assume that they are germ equivalent. The
general case follows from repeated applications of the germ equivalence. Let f;
(s > 0) be boundedly homotopic to a retraction r;, ¢ = 1,2. Then there is a nil
O-simplex (N, g) and embeddings h; : M; — N such that gh; = h; fi, i = 1,2, and
g(N) C hy(M1)Nho(Ms). We will assume that M; is a subspace of N and h; is the
inclusion map (¢ = 1,2). By construction

gs+1 :gsog:ffog:ﬂg, 221,2

In particular, r1g ~ rog and the homotopy is bounded over R”?. We choose com-
plexes L;, i = 1,2, and T such that

1. K is a subcomplex of L;, 2 = 1,2, and T
2. M; =2 Lix@Q, N =2TxQ.
3. L1ULs is a subcomplex of T
We denoted by f/, ri (i = 1,2) and ¢’ the corresponding maps induced on the

2
complexes. Thus there 1s a Mayer-Vietoris exact sequence of chain complexes and

homotopy nilpotent maps, for i = 1,2

0— (C;(L,f(xﬂ%”),f’i*) — (C*(ﬂ,KXR"),j’i*) — (Cu(T, L), ¢';x) = 0
where T; is the pull-back of K x R" using the retraction rig’ and ¢/, is the lifting
of ¢'. But ¢’;, is the zero map because the image of ¢’ is contained in L; (i = 1,2).
Therefore (Cy(Ti, Li),9';x) = 0 in Nilo(C, (Z7)). The exact sequence relation in
the algebraic Nil-group implies

a(My, fi) = (Cu(Ly, KxB™), f1,,) = (C.(Ty, KxR"™), ¢'1,) =

(C*(TZa [%XR”)’ ‘5/2*) = (C* (EZa KXRn)a .f/Z*) = a(MZa fZ)
the third equality holds because g} is boundedly homotopic rel KxR™ to g5.
1 2

The chain homotopy relation in ﬁléw)((fn (Z7)) implies that « induces a map on

ﬂom(XxR” — R"™) and the exact sequence relation implies that o is a group
homomorphism.

Claim: « is an epimorphism.

We represent an element of NK;_,(Zx) by a pair (F,v) where F is an object in
C,, (Z7) and v is a nilpotent endomorphism of F' of nilpontency s. Then F is graded
over Z" 1.e. I = PiegnFy, where F; is a finitely generated based free Zm-module
of rank k; for all ¢ and v is a bounded nilpotent endomorphism. Let L be the
space obtained from K xR"” (Kx@Q = X) by attaching the wedge of k; 2-spheres at
K x{t} for each t€Z". The morphism v induces a map f' : L. — L extending the
identity on K xR™. The nilpontency condition on v implies that that the map f’* is
boundedly homotopic (rel K xIR"™) to a retraction. Set M = Lx@Q and f = f'xidg.
Then (M, f) is a O-nil simplex over X and (M, f) = (F,v).

Claim: « is a monomorphism.

The following diagram commutes ([41], Proposition 4.3)

T NA(X xR = RY) T5 roWh(Xx S'xB? 5 BY) 5 Ky (Zmy(XxSY))

o] =

g

Nilo (Co (Zmi(X))) s K(Co (Zm(X)[z,271])) D5 K1 (Co(Zmi(X xS1))
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([Z’l_n denotes the Whitehead group for n = 0, the reduced Ky-group if n =1 and
the lower K-groups, Ki_p, if n > 1) The map 7 is the torsion of an element in
ToWh(X x ST xIR™ — R") and it is an isomorphism ([27]), N-/I— is the geometrically
significant injection map in [42], §10, and 3 is the isomorphism in [42], §11. The
commutativity of the diagram implies that « is injective. Thus « is an isomorphism.

O

10.3. DELOOPING OF NIL-SPACES
We will construct a homotopy equivalence
dy : Nil(XxR" = R™) — QNGl(X xR - R+,

The definition of dy is along the ideas developed in [1], [23] and [27].
We start by defining explicitly the delooping for Whitehead spaces as explained
in section 5.8. We will define an isomorphism

(dw)s : TEW(X XR™ — R™) — mQWh(X xR — R
such that the following diagram commutes

mP(XxRPH 5 oty 2 WX KR - RY

(@n). | (). | (*)

QP (X xRH2 o B2y Py QWh(XxRAH 5 RAH)

where @ is the isomorphism defined in [27], §6 and dp is the homotopy equivalence
defined in [23] and [1].

For the definition of (dw ). we use an isomorphism
Kk Wh(XxRB™ = R") — Wh(Xx[0, 1]xR" — R")

induced by a homeomorphism X x[0,1] — X. Let f: M — Xx[0, 1]]xR"xA* be
strong deformation retraction representing an element in m Wh(X x [0, 1]xR" —
R™. Asin [27], §5, there is a strong deformation retraction

1 Xx[0,1]x[0, 1]xR"x A% — X x[0,1]xR"xAF
such that [f] = [f'] in mWh(X %[0, 1]xR™ — R™). Let
g Xx{0,1}x[0, 1]xR"x AF — X x[0, 1]xR"x A*

be a f.p. Z-set embedding approximating f’|. Using the estimated homotopy
extension property we construct a strong deformation retraction

7 X x[0,1]x[0, 1]xR"x AF — X x[0, 1]xR"x A*
such that [f'] = [f"] in mWh(X x[0,1]xR" — R") and
F1Xx{0,1}x[0, 1]xR"x A* = g.
On the other hand, let
P Xx{0,1}x[0, 1]xR"x AF — X x{0, 1}xR"xA* p(x,s,t,7,6) = (x,5,7,0)
and p’ a f.p. Z—set embedding approximating p. We will further assume that
(X x{i}x[0, 1]xR"x A*F) € Xx{i}xR"xAF i=0,1.
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By applying the f.p. Z-set unknotting theorem to the embeddings p’ and ¢, we
construct a strong deformation retraction

7 X %[0, 1]x[0, xR AF — X %[0, 1]xR"x AF
such that [f"] = [f"] in mWh(X x[0, 1]xR" — R"™) and
X % {0,131 x[0, 1] xR x AF = p/.
Now we can apply the usual construction for delooping. Let ¢ : (0,1) — R be an
increasing homeomorphism. Also, let
P’ Xx ((—00,0]U[1,00))x [0, 1]xR"x A*F — X x ((—00,0]U[1, 00)) xR"x Ak

be a f.p. Z-set embedding approximating the projection map and extending p’.
Define

fo XxBX[0,1]xR"xAF - X xRxR"x A"

to be .
fl@yt,r )= { ]{’/’/;i‘l:’ygf’;’:’é(;),’ :)ft:}glfr(v(\)/is{e).
We define (dy)«([f]) to be the class of [f] where
fo XxBx[0,1]xR < AFx[0,1] = XxR"xAFx[0,1]
is given by

- (171 ng(u)(x,y,t,r,é),u) if ue(0,1)
trou) =1 Lo
f(xa y’ 3 ra 3 U) { p//(l,’ y’ t’ 7,,’ 6’ U) OtheI'VVise,

where T}, denotes the homeomorphism induced on the corresponding space by trans-
lation, on the R-direction, by y.
The proof that the diagram (*) commutes follows from the proof of Proposition

6.6 in [27]. Thus if we define
dw Wh(XxR™ — R™ = Wh(Xx[0, 1]xR" — R") =
P(Xx[0, xR = R 2 p(X xR o5 RO Z
QWh(X xR — RH

then dyy is a homotopy equivalence inducing the homomorphism (dw). on the
homotopy groups.
A similar construction defines a homomorphism

(dn)e : mNA(X R = B — mpQNGl(X xR 5 Rt

such that (dy). P. = Pu(dw)«, (dw)«J = J(da)«. Thus (dar)~ is an isomorphism
and it is induced by a map

dy  Nil(XxR" = B") — QNl(X xR 5 Rt

which factors through the corresponding Whitehead spaces. Therefore dy is a
homotopy equivalence. Thus we have proved

ProrosiTION 10.3.1. There is a homotopy equivalence
dy : Nil(XxR" = R — QPNl(X xR 5 R

The following is the analogue for Nil spaces of Corollary 1 in [27].
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CoOROLLARY 10.3.2. There s an isomorphism
a: mNA(XXR” = B — NKy_yx(Zm(X)), if0< k< n.
Proo¥r. Combine Proposition 10.3.1 and Proposition 10.2.1.
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APPENDIX A

Controlled Homotopies on Mapping Tori

In many instances we have used the fact that mapping tori of homotopic maps
are homotopy equivalent. In fact, we used a controlled version of such a statement.
More precisely, we needed that if two maps are homotopic, through a small homo-
topy with control in an appropriate space, then their mapping tori are homotopy
equivalent with control. In this appendix, we outline a more general construction.
We construct homotopy equivalences between adjunction spaces when the gluing
maps are homotopic and we show that the homotopy equivalence is small when the
homotopy is small for appropriate control maps.

Let X and Y be Hilbert cube manifolds equipped with maps p and p’ over A*.
In practice the maps p and p’ are locally trivial bundles with Q-manifold fibers.
Let f; : Xx{0,1} — Y, j = 0,1, be f.p. proper maps. Form the adjunction
spaces X x[0,1]U, Y, j = 0,1 which are ANR’s equipped with maps to AF. Let
p: Xx[0,1]Us,Y — B be a map to a metric space such that there is a positive
number b,

diam{p(z, s) : s€[0,1]} < b, for all z€X.
Let F': X x{0,1}x[0,1] = Y be a proper f.p. bounded (in B) homotopy from fy
to f1 (with control the restriction p|Y).

LEmMma A.1.1. Thereisa f.p. bounded homotopy equivalence from X x[0, 1)Uz Y
to Xx[0,1]Us, Y. Actually, there is an ANR T and CE-maps
T — Xx[0,1]uy,Y.

ProoF. Let F: X x{0,1}x[0,1] = Y be the homotopy between fy and f; as
above. We form the adjunction space T'= X x[0, 1]x[0, 1]UpY. The maps p and p’
induce a map on 7" over A*. We will show that both adjunction spaces are strong
deformation retracts of T'. Choose strong deformation retractions

s7 0, 1]x[0, 1] = {0, 1} x[0, 1]u[0, 1] x{j}, 5 =0,1.
We choose the homotopies ¢/ of the deformation retractions so that the tracks of
the homotopies in {0, 1} x[0, 1JU[0, 1]x{j} are points i.e. s/¢7(t1,tq,t') = s/ (t1,12)
for all t'€[0, 1]. Crossing with X we get f.p. strong deformation retractions
X x[0,1]x[0,1] = Xx{0,1}x[0,1JuX x[0,1]x{j}, 7=0,1.
In terms, they induce strong deformation retractions
ol T = (Xx{0,1}x[0, JUX x[0, 1]x{jHUFY, j=0,1.
with the strong deformation retraction homotopies given by H‘Z (j =0,1). By the

construction of HY, ¢/ Hi(z,t) = ¢/(x) for all z€T. The retractions from 7' to
XUy, Y are induced by the homeomorphisms

hj - (X x{0, 1} x[0, JUX x [0, 1]x {j}UpY — X x[0,1]u;,Y, j=0,1
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given by

by, t) = { (z,,7) if (w,1,4)€X X [0, 1] x{j}
Y Fa,t,t) if (x,t,t)eX x{0,1}x[0,1]
h; () = if yey
We define the homotopy equivalence between the adjunction spaces as follows:

hlo'lbuho_

FoXx[0,1unY TS X k0,1, Y

with inverse hoO’OLlhl_l where ¢;, j = 0,1, are the inclusion maps. Thus the com-
posite

(hoO'OLlhl_l)(hlo'lLohal) = hOUOLlo'lLohal CXX[0,1]Up Y — X x[0,1]Ug, Y

is f.p. homotopic to the identity with homotopy hoO’OHtlLohal. Notice that the
homotopy 1s the identity on Y. Composing with the control map we get

(phlo'lLohal)(hoO'OHtlLoho_l) = phlo'lLoUOHtlLoho_l.

Using the properties of the maps we get for (z,s)eX x[0, 1],

wohyt(x,s) = (x,50) =

Hlohyt(x, s) = (z,5),55) =

1o Hluohy (2, 5) = (x,87,sY) =
phiotia® Hlohy H(x,s) = phi(z,s),s4)

If (#,s)¢ X x{0, 1} then (z,s])¢Xx{0,1} and (z,s))¢X x{0,1}. Then
100 Hlighgt(x,5) = (x, s, 1)
and phy(z, s, s4) = p(x,sy). Then
diam{phi(z, s}, s4) : si,s5€[0,1]} < b.
If (#,s)€X x{0, 1} then (z,s7)eXx{0,1} and
hi(z, sy, s9) = F(x,s], sY).

Let &' > 0 be the bound of F. Then

diam{pF (z, s}, sh) : s4el0,1]} < b’
which implies that

diam{phy (z, s}, s5) : sye€0,1]} < b'.
and

diam{phi (z, s}, s4) : s7€{0,1}, s5€[0,1]} < 2¥".

Therefore the homotopy hoO’OHtlLoho_l is a f.p. bounded homotopy. Similarly, we
can show that the other composition

hooluhTt X x[0,1]Up Y — X x[0,1]Up, Y
is f.p. boundedly homotopic to the identity. Therefore X x[0,1]Us Y is f.p. bound-

edly homotopy equivalent to X x[0, 1]U, Y.
The maps 77 = h; ocd, j = 0,1, are CE-maps by construction. O

We now apply Lemma A.1.1 in constructing homotopy equivalences between
mapping tori of homotopic maps. We use the definition of the mapping torus as a
coequalizer (Chapter 9).
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ProposiTION A.1.2. (i) Let X be an ANR equipped with a map to A* and
a control map p: X — B to a metric space B. Let f,g: X — X be two
f.p. boundedly homotopic (over B) maps. Then there is an ANR T and f.p.
CE-maps
T(f) =T 5 T(g)
which wnduce a f.p. bounded homotopy equivalence.
(ii) Let X andY be ANR’s as in Part(i) and

XLy 4 x
be proper maps. Then there is an ANR T’ and f.p, CE-maps
OCI /@I
T(gf) «— T" — T(f9g).

ProoF. Part (i) follows immediately from Lemma A.1.1. The homotopy equiv-
alence for Part (ii) is constructed as in [42], Proposition 13.18, Proposition 14.2.

The fact that the homotopy equivalences constructed are bounded follows from
Lemma A.1.1. O
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