

A New Proof of Lebesgue's Covering Lemma

John Hunt

The American Mathematical Monthly, Vol. 74, No. 8. (Oct., 1967), pp. 990-991.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28196710%2974%3A8%3C990%3AANPOLC%3E2.0.CO%3B2-A

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

- 6. E. Hewitt, Integration on locally compact spaces, I, Univ. of Washington Publications in Math., 3 (1952) 71-75.
 - 7. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, Berlin, 1963.
 - 8. W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.

A NEW PROOF OF LEBESGUE'S COVERING LEMMA

JOHN HUNT, University of Virginia

Introduction. Lebesgue's covering lemma states that, given an open covering U_1, \dots, U_n of a compact metric space X, ρ , there is a positive number δ such that if $\rho(x, y) < \delta$ then both x and y belong to some U_i . The purpose of this short note is to enlarge upon this conclusion and thereby provide a more interesting proof of the lemma than the usual ones.

We first explain how we arrive at the new result. Figure 1 shows a compact metric space covered by two open subsets U and V. If δ is the distance between U-V and V-U, then any two points whose distance apart is less than δ both lie in U or V; further, no number greater than δ will ensure this. Figure 2 shows a compact metric space X, ρ covered by a finite number of open subsets U_1 , \cdots , U_n and one may suspect that the same idea holds. The lines of the figure divide the set X up into a number of "compartments" (those white bits crossed by no lines) and by analogy one may suspect that two of these compartments A and B, at a positive distance apart, have the properties

- (i) if $\rho(x, y) < \rho(A, B)$ then both x and y belong to some U_i ,
- (ii) no number greater than $\rho(A, B)$ has this property. Except in a trivial case this is so, and it is the extension of Lebesgue's lemma that we shall prove.

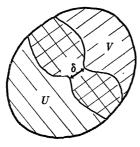


Fig. 1

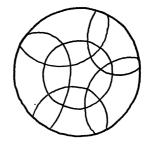


Fig. 2

The trivial exception. When each pair of points is contained in some U_i , no pair of compartments satisfies (ii), because every positive number satisfies (i). In this case, however, Lebesgue's lemma is trivial.

DEFINITION OF A COMPARTMENT. Let X be a set covered by a finite number of subsets X_1, \dots, X_n . A compartment (of the covering X_1, \dots, X_n) is a nonempty set expressible as the intersection of n distinct sets, consisting of X_i 's and complements of X_i 's.

It follows from the definition that the compartments of a finite covering of X form a finite, disjoint covering of X. Where no confusion arises, we simply speak of compartments, instead of compartments of a particular covering. We do this below.

THEOREM. If U_1, \dots, U_n is an open covering of a compact metric space X, ρ , and some pair of points is contained in no U_i , then there are two compartments A and B, a positive distance apart, such that

- (i) if $\rho(x, y) < \rho(A, B)$ then both x and y belong to some U_i ,
- (ii) no number greater than $\rho(A, B)$ has property (i).

Proof. The two points contained in no U_i belong to a pair of compartments contained in no U_i . Thus we may define

$$\delta = \min \rho(E, F),$$

where E and F are any compartments contained in no U_i . Then δ is attained as the distance between some pair of compartments A and B, and it satisfies the requirements of the theorem.

First, $\delta > 0$. For, let E and F be compartments such that $\rho(E, F) = 0$. Then from E and F we can select sequences $\{x_i\}$ and $\{y_i\}$ such that $\rho(x_i, y_i) \to 0$. By compactness, there is a point x and a subsequence $\{x_{N_i}\}$ of $\{x_i\}$ such that $x_{N_i} \to x$. Since $y_{N_i} \to x$ as well, x belongs to both \overline{E} and \overline{F} . But x belongs to some open U_k . Thus U_k meets both E and F and so, by the definition of compartment, contains both E and F.

 δ also satisfies (i) and (ii). For, let $\rho(x, y) < \delta$. x and y belong to compartments E and F. If E = F then both x and y necessarily belong to some U_i , because each compartment is contained in some U_i . If $E \neq F$ then $\rho(E, F) < \delta$ and some U_i contains both E and E. Thus some E contains both E and E then there are two compartments E and E contained in no E such that E and E we can select points E and E such that E and E we can select points E and E such that E and E and E we can select E and E would contain both E and E

AN INTERESTING DUAL GALOIS CORRESPONDENCE

W. A. LaBach, Northwestern University

Let P and Q be complete lattices and let $\sigma: P \rightarrow Q$ and $\tau: Q \rightarrow P$ be isotone (i.e., order preserving) mappings. Define for $x \in P$, $\bar{x} = x^{\sigma\tau}$ and for $y \in Q$ define $y^* = y^{\tau\sigma}$. Suppose that $\bar{x} \leq x$ and $y \leq y^*$ for each $x \in P$ and $y \in Q$, respectively. Then it is a standard exercise to verify that $x \rightarrow \bar{x}$ is a dual closure operation, $y \rightarrow y^*$ is a closure operation, and that σ and τ are inverse isomorphisms (after suitable restriction) between the complete lattices of closed elements of P and Q [1], [2]. The mappings σ , τ are said to establish a dual Galois correspondence between P and Q. It is hoped that those with a knowledge of group theory will be able to find interesting applications for the following example of a dual Galois correspondence.