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(6S — 88)Sa + (6S — 85)Sa +
Jnl Lin qg anl an jj
6S — 8S)Sa + (6S — 65)Se + (2.18)
an anl jq jtn Jnl ¢ j
S*S,(56a — d6a + 66a — 88a) = 0,
Jlgnn gnlg l qlnjn qnljl
where § (subindex /, j ...) is the Kronecker symbol. If all the indices are
distinct, then the left hand side of (2.18) vanishes; if / = j and the re-
maining indices are distinct, we obtain
- SSa 4+ SSa = 0. (2.19)
nqyq nqJ
Since .S, is a non-zero vector, then .S (subindex %) is not zero for some %
and hence (2.19) becomes

— Sa + Sa = 0. (2.20)
a9 (')

Now let S (subindex 1 ... m) be the zero components of S,; and let S
(subindex m -+ 1 ... n) be the non-zero components of .5,. Take the
index g in the last set and then (2.20) yields

e=a¢=a q=jj=1...n (2.21)
q J

Equation (2.18) now becomes an identity. When the condition (2.21) is
used in (2.16), we find

'a)\,, = alyy. (222)

Hence, we have the

THEOREM. If coordinate systems in V,(£) and in 'V,(£) can be chosen
so that at corresponding points P(£"), 'P(£"), the connections of these spaces
are related by (1.3) and if the principal dirvections of 'ay, existin V,, then the
spaces are conformal.
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If X is a topological space, B a metric space with metric function
o(b, b"), and 7 a continuous map of X on all of B, we shall say that X is a
Jfibre space over B relative to w if there exist a positive ¢ and a continuous
function ¢ as follows:
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1. ¢ = ¢(x, D) is a point of X and is defined for all x ¢ X, b ¢ B such that
p(m(x), b) < e,

2. wp(x, b) = b wherever ¢ is defined,

3. o, m(x)) = .

The map = is called the projection X — B, and the sets #—1(b) in X are
called the fibres. We refer to ¢ as the slicing function; for, if x, e X is fixed
and b ranges over the ¢ neighborhood of 7 (x0), ¢(xe, b) is a point of =—1(d)
near %o, so that ¢ provides a section through x, of the fibres neighboring
which is homeomorphic to the neighborhood of =(xs). The simultaneous
continuity of ¢ in x, b insures that this section varies continuously with .
Note that ¢ is defined in a neighborhood U of the graph G of = in the
product space X X B, and the correspondence (x, b) — (¢(x, b), b) is a
retraction of U into G parallel to X. Conversely if such a retraction
exists, the function ¢ is readily constructed. Observe also that = is an in-
terior map (carries open sets into open sets). If we did not insist that = (X)
be all of B, it would follow that =(X) is both open and closed in B.

The class of fibre spaces includes the class of fibre bundles in the sense of
Whitney.! We shall need the following examples of fibre spaces which are
also fibre bundles.

I. The product space X = B X A.—Here w(b, a) = b, and ¢((b, a), b")
= (b/, a); i.e., ¢ is defined over all of X X B and the slices are the sections
parallel to the codrdinate B.

II. X a covering space of B.—The function = attaches to each point of
X the point of B it covers. It issupposed thereis an e > 0 such thatrisa
topological map on a neighborhood of ¥ whose image contains all points
at a distance < ¢ from w(x). Then ¢ attaches to (x, b) that point in the
neighborhood of ¥ whose image is b.

III. #(X) = B a non-singular map of one differentiable manifold on
another—By non-singular we mean that the Jacobian of = has maximum
rank at every point of X. Then the fibres are differentiable submanifolds.
The function ¢ is defined by introducing a Riemannian geometry in X
and sectioning the fibres by perpendicular geodesic planes. An example
of this is the Hopf? mapping of the 3-sphere on the 2-sphere (S — S?),
likewise his mappings S7 — S* and S*® — S8 The fibres are great spheres
of dimensions 1, 3 and 7, respectively.

IV. B a coset space of the compact Lie group X.—We consider a closed
subgroup H of X, and define B to be the space of left (or right) cosets, and
m(x) = the coset containing x. We first define ¢(1, b) by means of a co-
ordinate neighborhood of the unit 1 and a plane perpendicular to the
tangent plane of A at 1. Then ¢(x, b) = x¢(1, x~1b). For example, let
R, be the rotation group of the n-sphere S”. If by e .S” is fixed and () =
7(bo), this projection of R, in S” is the projection of R, into the space of
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left cosets of the subgroup R, _; leaving b fixed. In this way R, is a fibre
space over S”.

Our principal tool is embodied in®

TueoREM 1. If X is a fibre space over B, Y « topological space, g a con-
tinuous map of Yin X, and h(y, 1) (0 £ t = 1) a homotopy of themap h(y, 0)
= wg(y) uniform in the sense that there is ¢ 5o > 0 such that ]t - t’l < &
smplies p(h(y, 1), k(y, ') < e for all v ¢ Y, then ihere exists a homotopy
2(y, t) of g in X (called the covering homotopy) such that wg(y, t) = h(y, ).
In addition, if h(y, t) leaves vy fixed, so also does g(y, 1).

Subdivide the interval (0, 1) into the subintervals (4, #;4,) of length
< 8, and define g(v, ¢) stepwise by g(, &) = ¢lg(y, &), b(y, 1)), & < ¢t =
tig1)

In case Y is compact metric, the uniformity requirement is redundant.

CoroLrLarY 1. If B is arcwise connected, any lwo fibres have the same
homotopy type.

If F, F, are the fibres over by, by, respectively, and %4(f) is a path from b;
to b2. Choose Y = Fi, g = identity and % as the homotopy of =(Fy),
then the covering homotopy deforms F; into F,. Using %'(¢) = k(1 — ¥),
we deform F into Fy. Since %'k is homotopic to b, the homotopy of F into
Fy back into F; is homotopic to a homotopy in F;. Similarly for F,.

CoRrROLLARY 2. The Hopf mappings S® — 52, §7 — 54, SB — S8 are
essential (i.e., the images are not homotopic fo points).

Let ¥ = S® and g = identity. A contraction of 7(S?) to a point by of S5?
would be covered by a contraction of S? on itself into the circle over by.
This is impossible since no homotopy of .S? on itself can free a point.

In the following theorems, ;(X, F) is the 4th homotopy group* of X
relative to the closed set F. If Fis a single point and X is arcwise con-
nected, the group is independent of F and we write m;(X).

TueOREM 2. If X is a fibre space over B, and F, is the fibre over the
point by, then (X, Fo) = m;(B, bo).

An element of m;(X, Fy) is represented by a continuous map f of an ¢-cell
E’ carrying the boundary F' into F, and a fixed point yo ¢ £’ into a fixed
point %y ¢ Fo. Clearly «f represents an element of m;(B, by). This defines
a homomorphism m;(X, Fo) = m;(B, by). If «f is homotopic to b, leaving f*
at by, the covering homotopy deforms f(E’) into F, keeping f' in Fy and o
at x9. The correspondence is therefore an isomorphism into a subgroup.
Let g(E') represent an element of m;(B, bo). If h(y, ) contracts E' on itself
into o, then gh contracts g(E) into g/(E) = b,. Define f'(E) = x.
Then #nf’ = g’, and the homotopy of g’ into g is covered by a homotopy of
f' into an f such that nf = g. Since gh leaves v, at b, we have f(y) = %o
and the theorem is proved.

CORrROLLARY 3. If X is a covering space of B, then (X) = m;(B) for
=2
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Since F, is a discrete set of points, and £’ is connected, any map of E’
representing an element of 7;(X, Fo) must carry £ intox,. Hence m;(X, Fo)
= T, ,(X y xo).

CoroLLARY 4. For the 1-sphere S, we have m;(SY) = 0 for 1 = 2.

The covering space of S!is a line L, and m;(L) =

TueoreMm 3. If S” is an n-sphere and F a closed arcwise conmected
proper subset of S™, then w;(S”, F) is the direct sum m;(S") + m;_,(F).

Let %o € F be the fixed reference point and choose a fixed homotopy 4(x, £)
of Fin S” contractmg F mto %o and leaving x, fixed. Choose a fixed map g
of "' on [ carrying [ ! into y, and being topological on E'~! — fi™1,
If f represents an element of r,(S”, F), then f' = fg represents an element of
m;—1(F). This defines a homomorphism ;(S", F) — m;_,(F). Using co-
ordinates (y, 7) in E' where 7 = radius vector, and y is the central projec-
tion of the point on £, we define

f(y,zf), O_S_Té 1/2;
h(f(yr 1)’ 2r — 1): 1/2 =r=s 1r

and f” represents an element of ;(S™). This defines a homomorphism =;(S",
F) — 7,(S"). These two homomorphisms induce a homomorphism into
the direct sum. On the other hand if f' and f” are given, we define

ffo,2r), 0=r=1
h(f,g_l(y)r 2 — 27’): 1/2 sr=s 1;

,ﬂmﬂ=;

fo,r) = 3

and this shows that the correspondence with the direct sum is 1-1.

Theorems 2 and 3 together with the Hopf mappings of spheres on spheres
give the following results.

THEOREM 4. 7;(S%) = m(S®) + m_1(SY), m(S*) = m(ST) + m-1(S9),
(S8 = m(S¥) + m;_1(S7).

The first of these relations and Corollary 4 give

COROLLARY 5. m;(S?) = m;(S%) for< = 3.

Since m;(S™) = 0 for ¢ < #, and 7,(S") is the infinite cyclic group, de-
noted by oo, we have

COROLLARY 6. m;(.S%) = m;_,(S%) fori = 2, ..., 6, and m(S%) = o +
m6(:S%), m;(S¥) = m_1(S) forz = 1, ..., 14, and m5(S8) = o + 7(S7).

The first parts of these relations are special cases of some results of
Freudenthal® (obtained in an entirely different manner) which state:
(8" = m;_ (" Dfori=2,...,20—2andn = 2,3, ....

The results of the following theorem are based on the coset mapping
R, — S” described in IV.

THEOREM 5. w;(R;y;) is a factor group of m;(R;), and m(R;4,) =
‘ll','(RH_k) for k, 7= 1, 2, e

Since m;(S™) = 0 for ¢ < #, any continuous map of an ¢-sphere in S” is
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homotopically deformable into the point be. If this ¢-sphere is mapped in
S”* through R,, the covering homotopy deforms the ¢-sphere into R,_;.
Hence any ¢-sphere in R, © < %, is deformable into R;. If an ¢-sphere in
R; is the boundary of an (¢ 4 1)-cell in R,, the image of this (z - 1)-cell
in S” is contractible into by leaving the boundary of the cell at b, providing
2 + 1 < n. Hence if an ¢-sphere of R; is contractible in R, (n > 1), it is
contractible in R; ;).

CoroLLARY 7. m(R,) = the cyclic group of period 2 for » > 1, and
m(R,) = 0 forn > 0.

Since R, = projective 3-space, m(Rs) = group of period 2. Since R,
is covered by .S? and m(S?) = 0, we have by Corollary 3 that m(R,) = 0.

The results of Theorem 4 cast considerable light on the problem of find-
ing fibre mappings of spheres on spheres. If S* is a fibre space over S"(k
> n) with fibre F, then m;(S") = m;(S¥) + =, (F). This implies m;_;(F)
= (0 for 7 < n. Hence if the dimension of Fis < n — 2, F is contractible
on itself to a point. This implies m;(¥) = 0 for all 7, and therefore =;(S") =
7:(S¥). This can happen only if & = n. On the other hand, if the di-
mension of Fis > n — 2, we obtaink = 2» — 1. Thus S¥=1 is the sphere
of least dimension which can be a proper fibre space over S”. If we require
in addition that the fibre F be a sphere, we obtain from m,_,(F) = 7,(S")
that F = S"~'. Hence only S**~! can be proper a sphere space over S”.

The following is an example of a fibre space which is not a fibre bundle
in the sense of Whitney. Let B = the interval 0 < ¥ £ 1l and let X =
the triangle in the (x, y)-plane defined by 0 = y < ¥ £ 1. Define =(x, y)
= x. The slicing function ¢ is then given by

(x', &) forx’ =y

x, y), x') =
¢, 9), %) (x', v) for x’ > v.

1 These PROCEEDINGS, 26, 148-153 (1940); also 21, 464468 (1935).

2 Fundamenta Math., 25, 427-440 (1935).

3 An inverse of this theorem has been proved by Dr. R, H. Fox as follows: If B is
an absolute neighborhood retract and »(X) = B is continuous and there is an ¢ > 0
such that the conclusions of Theorem 1 hold, then X is a fibre space over B relative to .

4 See W. Hurewicz, Proc. Amsterdam Acad., 38, 112, 521 (1935); also 39, 117, 215
(1936).

5 Compositio Math., 5, 299-314 (1937).



