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GENERALIZED LEFSCHETZ NUMBERS 
BY 

S. Y. HUSSEINI 

ABSTRACT. Given [C; f ], where C is a finitely-generated v-projective chain complex, 
and f: C - C a (v, (p)-chain map, with p: S -S being a homomorphism, then the 
generalized Lefschetz number L( zp)[C; f I] of [C; f I] is defined as the alternating sum 
of the (v, (p)-Reidemeister trace of f. In analogy with the ordinary Lefschetz 
number, L (IT[C; f] is shown to satisfy the commutative property and to be 
invariant under (S, (p)-chain homotopy. Also, when H*C is v-projective, 

L(IT,T) [ C; f ] =L(7T,T)[ H*C; H* f] 

If v' C S is (p-invariant and with finite index, then for a E r', the (V', (P)- 
Reidemeister class [a; r'] is essential forf: C - C if and only if [a; v I ' is essential. 
If v' C v is normal, then one can use the cosets of S mod v' to detect the essential 
(S, (p)-classes of f: C - C. This is expressed as a decomposition of L( IT)[C; f I] in 
terms of L(, [C'; f] where f(-l)C ft( ) and (p&) = (p()-1 The algebraic 
theory is applied to the Nielsen theory of a map f: X - X, where X is a finite 
CW-complex relative to a regular cover X" - X. One can define a generalized 
Lefschetz number L using any cellular approximation to f, where q" is the 
group of covering transformations of X" - X. The quantity L(,,) can be ex- 
pressed naturally as a formal sum in the v"-Nielsen classes of f with their indices 
appearing as coefficients. From this expression, one is able to deduce from the 
properties of the generalized Lefschetz number the usual results of the relative 
Nielsen theory. 

Introduction. Suppose that C is a finitely-generated K[?T]-projective graded mod- 
ule, where ST is a group and K a commutative ring with a unity. If f: C -> C is a 
K-homomorphism such that f(xa) = f(x)p(a) for all x in C and a in 7T, we shall say 
that f is a (7T, p)-map. The generalized Lefschetz number L(,TJ)[C; f I] of [C; f I] is 
defined to be the alternating sum of the Reidemeister trace of f [7]. The quantity 

L(,P)[C; f] lies in KRj,[?T], the free K-module generated by the (7T, T)-Reidemeister 
classes of g". The aim of this article is to study algebraically the quantity L( ,)[C; f ]: 
Does it satisfy the commutative property? Is it chain-homotopy invariant when C is 
a chain complex? Can it be computed at the homology level? How is L(, ,)[C; f ] 
related to L(,qT,)[C, f ] when 7T' is a p-invariant subgroup of 7T? 

These quantities arise naturally in the fixed point theory of nonsimply connected 
finite polyhedra. Suppose that f: X -* X is a map of the finite polyhedron X to itself. 
If f is simplicial, then using any lift of f to the universal cover one obtains at the 
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chain level a (?T, 9p)-map with S being the group of covering transformations. In [8] 
Wecken defined a formal sum R0( f ) in the essential Nielsen classes of f, with the 
coefficients being the usual indices of these classes, and noted that if f is replaced by 
a simplicial map fS with isolated fixed points and whose fixed simplices are maximal, 
then the formal sum RO( f ) can be interpreted as the generalized Lefschetz number 
of fS. But the questions of whether RO(f) can be computed in terms of any 
simplicial approximation, or at the homology level, were left open. We shall see that 
the answer to these questions are positive to the first without any restriction and to 
the second when the homology of the covering space is projective over ?T. In [3], an 
obstruction o( f ) E Hm(X; 6J@), where 6i3 is a certain local coefficient system, to 
deforming f into a fixed point free map was defined and evaluated on the equi- 
variant fundamental class to yield RO( f). It was also shown that if : ST ST has 
finite image, then RO( f ) can be described as a trace-like quantity ,( f ) in terms of 
the subgroups ?T,,iT'/?T' acting on the homology groups of the cover corresponding to 
?T, where ?T' = ker , and ?T = I E ST I aap(a- ) a}. We shall see that f,(f ) is 
actually a generalized Lefschetz number L and that 9p need not have a finite 
image. The results of [3] also suggest that there are nice and natural relations 
between and that of its subgroups. This article is largely motivated by the 
search for such relations. 

The main results are stated in ?1. The first set of results is concerned with the 
basic properties of L( ,p)[C; f ]. In analogy with the ordinary Lefschetz number it 
satisfies the commutativity property (Proposition (1.2)), is chain homotopy invariant 
(Proposition (1.3)), and if H*C is projective over K[ 4], then the Hopf Trace Theorem 
is valid (Proposition (1.4)). 

The next set of results is concerned with the inductive properties of L If g' is 

p-invariant and has finite index, then (Theorem 1.5) for a in 7T', a class [a; ?T JP 
appears with a nontrivial coefficient in L( ,p)[C; f ] if and only if it appears with a 
nontrivial coefficient in L(, 9p)[C, f ]. Moreover the coefficient in is a multiple 
of that in L Oo) and the multiplicity can be described group-theoretically. Thus 

L(,g, P)[C, f ] can be computed in terms of appropriate subgroups. Also Theorem (1.5) 
can be used in situations where it is convenient to vary the subgroup g' and the 
homomorphisms 9p, for example, such as in the construction of the quantity P&,( f) 

(Definitions (6.13) and (6.28) of [3]). Further study of the inductive properties 
requires a more general trace-theory, one which reflects the module structure of C 
over K[?T']. The object [C; f ] is relativized accordingly: one specifies in C a 
?T'-submodule C' which generates C as a nT-module. The values of the generalized 
Lefschetz number L(, cp)[C, C'; f ] is in KR<P[ T, ST'], where R<,L[ 7, ST'] is the set of 
equivalence classes of ST by the action a - aac(a)- l for a in ?T'. If ?T' is normal, then 
L( Or/) [C, C'; f ] can be expressed as a sum It L(, zP,)[C'; fil] 0 ( where t ranges over 
a set of representatives of S mod ?T', cp(-) =p( 1)- and fi is, roughly speaking, the 
restriction of f( -) = f(- )(- to C' C C. If moreover [ ?: T'] < oo, then one can 
deduce therefrom an expression for I ?"T L(gP z[C; f ], where ?"T = ?T/r"", in terms of 
L( O, zP)[C; f ], the generalized Lefschetz numbers of C instead of those of C'. This 
generalizes Theorem (6.22) of [3]. 
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The third set of results relates to the topological applications. A generalized 
Lefschetz number is more conveniently assigned to a commutative diagram 

J'I,, 

SOT ,,w) [XI f P"t f P" 

f 
x x 

where p": X" X is a regular cover, 7T" its group of covering transformations, and 
q": g" * s" is the homomorphism such that f "(xa) f"(f "(a) for all xc in X" 
and a in 7T". Here X is assumed to be a finite CW-complex, and X" to have the 
induced cellular structure. If one approximates f by a cellular map f c, then the lift of 
fC provides a (7r", (p")-chain map C( j)": C *X" -* C* X" of the cellular chain 
groups. It is shown that the generalized Lefschetz number L0 zp )[ X, f I] 

(IT C*(fC)"] is well defined, commutative (Proposition (1.12)), homo- 
topy invariant (Proposition (1.1 1)). It is also independent of the cellular structure on 
X. Theorem (1.13) asserts that if L(,, S[X, f ] #O, then f: X -- X has essential 
fixed points, and, moreover if X is also a Wecken complex, and X" -> X is the 
universal cover, then L(ct p' )S[ X, f ] = 0 implies that f is homotopic to a fixed-point 
free map. Theorem (1.13) generalizes Theorem (6.26) of [3] because ;: ST -ST is 
arbitrary, and for the first assertion, X is a finite CW-complex and not just a 
polyhedron. 

In ?2 we give examples where L(07T # 0 but the ordinary Lefschetz number 
L = 0. The examples are given to illustrate the methods of the paper. The second of 
these examples is really the same as McCord's [5], except that it is presented in a 
different manner. Other examples could have been easily constructed, but it seemed 
of interest to show the relative ease of computation afforded by the methods of this 
paper. 

In the remaining sections, the proofs of the results stated in ?1 are given. I would 
like to thank Ed Fadell for many useful and stimulating conversations pertaining to 
this paper. 

1. Statement of results. Suppose that 7T is a group and let p: r -s 7 be a 
homomorphism. Then a subgroup 7T' of to acts on 7T on the right according to the rule 

a*a a9(a) 

where a E g' and a E v. Note that p is not required to take 7T' to itself. This action 
is, by definition, the (T', p)-Reidemeister action of 7r' on v. Denote the (x', p)-orbits 
by RP [ i, 7T'J, and when so = 7T', by Rq,j[1T. Let K be a commutative ring with unity, 
and denote by KRP[ ] and KR [r, 7'] the free K-module generated by R [T] and 
Rp,[ 7T, vi'] respectively. 

Now let 9DTpXq(7T) be the set of (p X q)-matrices with entries in K[7T], the 
group-ring of ST over K. Observe that if B = a- 'ap(a), where a E r, then a = tt and 
,B =zp(r), where = a- a and D = a. Hence the natural map 

K[ T] -* KR,[ , T'] 
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which takes a to [a; 7T, 7T'],p, its ( 7', T)-orbit in R9p[ 7T, 7"'], has the property that 

[De; r , Xg ]w = [ (c( M; X, 'gl ] 

for all ( E- 7 and ' E 7T'. This fact leads easily to a trace-like function. 

PROPOSITION (1.1). There is a unique function 

tr0, 91) Xp p,7T ) ->KRJ [ T, 7 T'] 

such that 

(1) tr(,,,,))(M + N) = tr(,Q,T)(M) + tr(,,9,, )(N) 

for all M, N in 9pDp(7r); 

(2) tr(q,, ,,)(MN) = tr(,T, )(NM") 

for all M in 6q p(7T) and N in D1p, q(Qr'), where MW is obtained from M by applying p 
to each of the entries of M; and 

(3) tr0,",,,)(M) = [Ma;g "g% ] 

where [m,,; 7T, 7T'], is the class of m,i in KRp[,r, 7T']. 

Note that Condition 3 defines tr(n",<W)(M) uniquely. The rest of the proof is 
straightforward and is left for the reader (cf. [6]). 

A finitely-generated v7r'-based right K[r f]-projective module is, by definition, a pair 
(P, P') such that 

(i) P is a right K[72]-module; 
(ii) P' is a finitely-generated right K[,r']-projective submodule of P; and 
(iii) the natural imbedding P' -- P induces an isomorphism 

PI 9K'I K[ 7,TK] -->P 

of K[ T ]-modules where K[ 7T] acts naturally on the right on P' ?K[,'] K[ r]. Note that 
this implies that P is itself a projective finitely-generated K[7i]-module. 

If P is a finitely-generated free K[T 7]-module, then P can be turned into a 7T'-based 
module by choosing a nr-base {x} and then defining P' to be the 7r'-submodule of P 
generated by {x}. A K-homomorphism 

f: P -*'P 

is said to be a (7T, p)-homomorphism if and only if 

f(xu) = f(x)w(a) 

for all x E P and a E g. Now if P' is free over 7T' and if {xl,. . . ,xp} is a 7T'-basis for 
P', then f defines in the usual way a matrix A with entries in K[ ?r]. By definition, let 

tr (7,,9 q[ P PI; f ] = tr(,T " 0(A). 

It is easy to show, as in [6], that the element tr(,," )[P, P'; f ] of KRWL[n, 'Z'] is 
independent of the choice of the ?T'-basis of P'. It will be shown in ?3 that 
tr(,, ,Tp)[P, P'; f ] can be also defined when P' is projective but not necessarily free. 
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The preceding concepts can be naturally extended to graded modules. A finitely- 
generated K[ T, ?T'; c]-projective graded right module is a triple [C, C'; f ] where 

(i) C is a graded right K[7T]-module; 
(ii) C' is a graded right K[ T']-submodule In,=0 C, of C such that, for each i, [C,, C/I] 

is a finitely-generated ?T'-based K[?T]-projective right module; and 
(iii)f: C -* C is a (iT, p)-map of degree 0. 
If [C, C'; f] is a finitely-generated K[?T, ?T'; qj-projective graded right module 

then, by definition, let 
n 

LOT"(p) w[C, C'; f ] I (-I )'tr(,T", )Ci I C,l; fi] 
i=O 

be the generalized Lefschetz number of [C, C'; f ]. Note that f is not required to take 
C' to itself. If g"' = v, then C = C' in which case we write [C'; f I] for [C, C'; f ]. 

If C is a K[?T]-chain complex, and f a chain map, then we shall call [C; f] a 
K[ i, Tp]-chain complex. Two K[ T]-chain maps f: C -* C and g: C -* C are said to be 

(?T, Tp)-chain homotopic if and only if there is a (?T, p)-map 8: C -* C such that 

sa + as= f- g. 

The following proposition describes the commutativity property of L. ,;.P). To 
formulate this property, suppose that 1: -T* 7T2 and 9)2: 7T2 - 7T are homomor- 
phisms, and let 7T' C 7T, and 7T2' C 7T2 be subgroups. Assume that p1(7T() C 7T2. Then 
the correspondence a p p 1(ca) induces a homomorphism 

( )*:K P2(PI 1 [ TI, 9r I KRg PI[T2,72 72] 

PROPOSITION (1.2). Suppose that (Cl, C) and (C2, C2) are finitely-generated 
K[7T1, nT'l- and K[ 72, 7T2'j-projective graded right modules, and let f: Cl C2 and g: 
C2 -* Cl be (Tl, q1)- and (7T2, 9)2)-maps respectively. Iff(Cl) C C2, then 

(Tl)*(L(X, ;;p2p)[Cl, C; gf] = L( T2, ;g1g2)[C2, Cf;fg] 

Proposition (1.2) implies the chain-homotopy invariance of L( ,p)[C, f I]. 

PROPOSITION (1.3). Suppose that [C; f] and [C; g] are two finitely-generated 
K[ T, c ]-projective complexes, and assume that f: C -* C and g: C -* C are (7T, )-chain 
homotopic. Then 

L(?r T) [C; f ]=L(?T c) [C; g] 

The proofs of Propositions (1.2) and (1.3) are given in ?3. We shall also show there 
how to deduce the following version of the Hopf Trace Theorem from Propositions 
(1.2) and (1.3). 

PROPOSITION (1.4). Suppose that [C; f ] is a finitely-generated K[ T, (]-projective 
chain complex, and assume that H*C is K[ 7r]-projective. Then 
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Note that Proposition (1.4) applies, for example, when K has characteristic zero 
and S is finite. 

Now let 
q: KR,4[ , 7T'] - KR,4[ ] 

be the homomorphism induced by sending [a; 7r, 7T'],, to [a; '7]7j. If [C, C'; f ] is a 
K[ T, ST'; (f]-graded module, then it is easy to see that 

q(L( O 7; )[C, C'; f ]) = LO ,)[C; f 

where [C; f ] is the complex obtained by disregarding C'. 
Before taking up the problem of how L( ,>) is related to L let us observe that 

in computing L(,r)[C; f ] we can divide out the kernel of (p. For if we denote ker (p 
by 'T' we can easily see that the natural projection p: ST -T" / 7T/7T" induces an 
isomorphism p*: KRq,[7T] -* KR,S,,,[T"I, where cp": ST" -- 7T" is the homomorphism 
induced by 9p. Moreover, a simple calculation shows that p* takes L( ,,P)[C; f I] to 
L(,,,, f9)[C; ] where C = C ?K[1'] K and f = f ?K[ ['] 1. In particular if I 7" < oo we 
can compute in terms of [H*C, H* f I as a consequence of Proposition (1.4). 

We wish to describe how L( ,T)[C; f ] is related to L( ,)[C; f 1]. If a E T, denote 
by w, the stability subgroup {a E X7 I aa(a)-f 1 a). 

THEOREM (1.5). Suppose that p(7T') C T' and that [XT: S'] < oo. Assume that [C; f ] 
is a finitely-generated K[IT, T ]-projective graded module, and let a E 7T'. Then 

A [ a; tw= IA[a;T7']px [a; T],p 

where A[, is the coefficient of [a; 7'L1,, in L(,,W,)[C; f ], Aaq is the coefficient of 
[a; 7TL], in L( ,,)[C; f ], and tt i'] = [t7Ta: ,] with 1Ta = 7Ta n T'. 

The proof will be given in ?4. 
Roughly speaking, Theorem (1.5) is a generalization of the well-known result 

about the Euler characteristic of a finite cover. Actually if f is the identity map of C, 
and C is free over K[7T], then the theorem is just that, since [1; ST]<, is the only class 
with a nontrivial coefficient in the generalized Lefschetz number, and the coefficient 
is the Euler characteristic. Also Theorem (1.5) allows us to extend certain properties 
of 7T' to finite extensions. As an illustration, consider the following extension of 
Gottlieb's Theorem [4, 6]. First let us say that a (7T, 99)-Reidemeister class [a; 7T]9, is 
(I, T))-essential for [C; f ] if and only if the coefficient of [a; 7T]9, in L(,,,)[C; f ] is 
nontrivial. 

COROLLARY (1.6). Suppose that the (T, cp)-complex [C; f] is a finitely-generated 
Z[ 7r; (p]-complex such that H*C Z, where Z denotes the integers, and let [a, i],p be a 
(IT, (p)-essential class for [C; f ]. If ['T: Fix Ta] < 0, then 

Fix T,a n cent(im a) TJ { 1 } 

where Fix q,, = {(J E I T|qa(a) = a}, and cent(im Ta) is the centralizer of im T,, in IT. 

For the proof see ?4. 
Gottlieb's Theorem is the special case when C is free, T: IT -* IT is the identity, and 

f induces the identity H*C Z - H*C Z. For then one can show that f is 
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(7T, p)-chain homotopic to the identity map C -- C [see Lemma (3.4) of ?3]. Hence 
L( ,rp)[C; f # 0 is just the condition that the Euler characteristic of C is # 0, and 
a =1. 

Thus, if the characteristic of K is zero, an immediate corollary of Theorem (1.5) is 
that, for a E v', the class [a; iT]<, is (T, Tp)-essential if and only if [a; 1']p is 
(7T', p)-essential. Hence the (7T, p)-essential classes of f and their coefficients can be 
obtained by means of the qp-invariant subgroups so' of 7T, whose index is finite. Since 
there is only a finite number of such classes it is sufficient in general to compute 

L(J.<.) in terms of a finite number of p-invariant subgroups of finite index. For 
example, if I X I < oo, T is the identity, and the ground ring K is of characteristic zero, 
then L(r is determined by L(', ,) when 7T' ranges over the cyclic subgroups of r. 

If the subgroup so' in Theorem (1.5) is a subgroup of Fix p, then the theorem 
allows one to reduce the computation, for those classes with representatives in ?T', to 
the more standard situation when f: C -* C is r-equivariant. Sometimes it is possible 
to account for every class [a; T],p by reducing the problem to the ?-equivariant case, 
if one is willing to vary p and f: C C. In fact, the correspondence y _ ya-I 
defines an isomorphism a*: KRJ[7T- KR,, [4r], where =a(*) ap()a-1. Also 

L(r, p)[C; f] goes to L( ,)[C; fa] where f() z=f(.)a-', with [a, ?T]<, going to 
[1, ?T It is easy to see that 

FiX(Ta) = r. 

and that Ta(pTa) C f7T. Now if I image (p 1< oo, we see that the subgroups (ker (P) T C 'T 

are all with finite index and for each a, (pa((ker p) wa) C (ker T)T'a. Thus, (ker p) ii 
detects [1; (ker p) iT'],, according to Theorem (1.5) and hence, [a, 1r],,. This is how 
C,,( f ) of [3] was constructed. 

If 7T' is normal in ST and rp(?T') C ', then one can use the cosets of 7r' to detect the 
essential classes of a ('7, qp)-map f: C -> C as follows. First choose a set Z -(D} of 
coset representatives of Xi mod i'T, and define 

Z*: KRq, [ v, 7T'] KRqt[s 7r] 2' 

to be the homomorphism induced by sending [y; 'r, iT']<, to [yt- ; r'i], 0, where 

qpg()) = ? If [C, C'; f] is a finitely-generated K[7n, 'T'; cp]-projective graded 
module, then we have by definition the isomorphism 

C -2 C" ?K[,r']KL7T K ] 

induced by the imbedding C' C, where D ranges over Z. Let j: C -* C' = C' 

?K[T] K[-T'] be the K[T']-projection defined by the preceding decomposition, and 
define 

fC -: C' 

i A l 
to be the composite C' -* C -*C C- C', where f(.* ) f( * * . Then [C'; f] is a 
finitely-generated K[iT'; TJ]-projective graded module. 
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THEOREM (1.7). With the notations and assumptions given above, we have 

Z*L(-r,,P I )C, C'; f ] L(7,,PO[ C ; fi] 8) 

where ' ranges over Z. 

The proof is given in ?5. A consequence of the theorem is the following result. 
Suppose that _= {} C ?T is a set of coset representatives of ST mod ?T', and define 

_: KR7T['] 0 ? - KR,,4qg] 

to be the homomorphism induced by sending y to yt. 

THEOREM (1.8). Suppose that cp: (?T, ?T') -* (T, ?T') is a homomorphism and assume 
that g' is normal in ?T and with finite index [?T: T']. Let [C; f ] be a finitely-generated 
K[T, cp]-projective graded module. Then the homomorphism defined above takes 

LO,,, [C; ft ] X0 (, where ft( ) = f( )1- l, to a linear combination in those (?", Tp)-classes 
off: C -* C which meet the coset ?T't nontrivially, and 

I''LOr, 0 IC;] f ^*LO,T C; ft] st) 

where T" = ?/?'. 

The proof is given in ?5. 
The first corollary is of the Jiang-type: it describes L in terms of a single 

where g"' is a normal subgroup of ST. 

COROLLARY (1.9). Suppose that for all E z , | = T |'. Then 

1TI I7 L( '7T, )IC; f I H* L(V,, C; fe]X 

Moreover, if [C; f] is a complex and the maps f~: C C are (n', p)-chain homotopic, 
then 

1 L 1 (L (r) IC; f ]) = , '*(P,)[C; f ID(& E 3 

Hence, in this case, L(,, ,)[C; f] 0 if and only if L(',c,,)[C; f] 0. 

The condition that (p, I -T = T" for all E is satisfied, for example, when 
?T = ?T' X v " and n= v", or when v' is central. The other condition that the maps f 
are (v", p)-chain homotopic is satisfied when, say, H*C _ K (cf. the proof of 
Proposition (3.4) of ?3). 

Next observe that the natural projectionp: v -* v" induces a homomorphism 

p*: KR9,[jl] - KR,,L7T"]. 

It is easy to verify that if [C; f ] is a projective K[v; 9p]-chain complex, then [C; f ] is 
a projective K[ 7"; 9p"]-chain complex, where C = C 0K[s'] K and 

f = fK[v'] 1: C-* C. 
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Also, the splitting of Theorem (1.8) is natural with respect to p: T -> n", and 
consequently we obtain the following corollary. 

COROLLARY (1.10). Let C = C ?K[,'] K andf = f ?)K[,'] 1. Then 

IST"/ I L(IT ,,[C_; f ] = L(f) " 

where t" ranges over 7T" and L( f,,) is the ordinary Lefschetz number of ft (.) 
f(t 

Note that if X is finite and one takes t" I{ 1), then Corollary (1.10) is essentially 
Theorem (6.22) of [3]. 

Now let us consider the applications to fixed-point theory. Let f: X -> X be a map 
of the finite CW-complex X to itself, and let p": X" -- X be a regular cover. Assume 
that there is a lift f": X" -- X" of f. Then there is a unique homomorphism (p: 

T"- S" where r" is the group of covering transformations of p": X" -- X, such 
that 

f"xa) = h"x)q)(0f) 

for all x E X" and a E 7T". We shall call such maps (7T", 9")-maps, and denote the 
whole given data by the commutative diagram: 

I,, 

S( 7,,,,,J XI f ]: pr ,,J,t 

f 
x x 

We shall call S(,,,)[X, f ] a (X", cp")-geometric setting of the map f: X -4 X. Let us 
observe that if f" is replaced by another lift f'"(***) ="(*** )a1 then " is 
replaced by ma' where a('p) ap"( )a- '. Replace f by a cellular approximation. 
Then there is a (vT", cp")-homotopy of the setting S(1, /WT,,)[X, f I] to another where the 
lift is also cellular. Denote the cellular chain groups of X" by C*(X"), and, by 
definition let the generalized Lefschetz number of the (nr", p")-setting S(v,, zp,,)[X f ] 
be 

L( It") S[X, f] = L t, [C* X"; C*fj. 

In ?7 we shall show that L(,,S [X, f ] is well defined and independent of the 
CW-structure on X. Moreover it has the following two basic properties in analogy 
with the usual Lefschetz number. 

PROPOSITION (1.1 1) (HOMOTOPY INVARIANCE). If So<,i, ,,) [X, f ] is a (n ", T")-set- 
ting, and g: X -- X is homotopic to f, then there is a ('r", cp")-setting S(,,,,P, )[X, g] 
homotopic to S(,T , ,)[X, f ] and 

L(, ,I,S[X, f]=L qsS[X' g]. 

The other property is commutativity, appropriately formulated. Suppose therefore 
that f: X -* Y and g: Y -- Y are maps, where X and Y are finite CW-complexes, and 
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let i": X" -* X and q": Y" -> Y be two finite CW-complexes. Assume that f": 
"- Y" and g": Y" - X" are lifts of f and g respectively. There are unique 
homomorphisms (p": v" -> y" and {": y" n ", where v" and y" are the groups of 
covering transformations of p": X" -> X and q": Y" -> Y, respectively, such that f" 
is a (v", (p")- and g" a (y", 4")-map. Thus we obtain the settings 

SOT//14 ,4",[XI 9f ]: p I p 
gf 

x x 

and 

-* 

fg 
Y _> Y 

PROPOSITION (1.12) (THE COMMUTATIVE PROPERTY). Let 

(p'*: KR4/,,,Q,,[ 7"] KR [] 

be the homomorphism induced by p". Then 

*L(p,", L / )S[X, gf ]) - L(7"w 4 
+ )S[Y, fg]. 

For the proof of Propositions (1.12) and (1.13) see ?6. 
The geometric significance of 

LOT 
is summed up in the following generaliza- 

tion of Theorem (6.26) of [3], and is based on Wecken's special calculation [8]. 

THEOREM (1.13). Suppose that S(,,, m [X, f ] is a geometric (n ", (p")-setting for the 
map f: X -> X, where X is a finite CW-complex. Then 

OT(,, w)S[X, f I = Exal[a[<; 7T ]w" 

where X [a is the usual index of the v "-Nielsen class p"(Fix fa'). Here p" is the covering 
map p": X" X in the given setting and Fix fI' is the fixed-point set of the lift 

Note that .p": v" -> v" is not required to have finite image. The proof of the 

theorem is not difficult; it amounts to a direct calculation of the generalized 
Lefschetz number L(7,1,,,)S[X, f ] in the manner of [8] and will be indicated in ?6. 
For the definition of v"-Nielsen classes see ?6 of [3]. 

Theorem (1.13) implies, obviously, the Lefschetz theorem. Namely, if 

L(9,1, m )S[X, f] # 0 for some setting S(7,., ,,,)[X, f ] for the map f: X -> X, thenf has 

essential fixed points. Also Theorem (1.13) implies that if X is a Wecken complex, 
then L(,,.,)S[X, f ] # 0 if and only if f has no essential fixed points, where 

S(V,T,)[X, f ] is a universal setting, in the sense that the cover of X in S(,, ,)[X, f ] is 
universal. 
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One can conclude from Propositions (1.11) and (1.12) that the generalized 
Lefschetz numbers are homotopy-type invariants for maps f: X -* X in the following 
sense. 

PROPOSITION (1.14). Suppose that f: X -- X and g: Y -- Y are maps of finite 
CW-complexes which are related by a homotopy-commutative diagram 

f 
x x 

Ih Ih 

g 
y -* y 

where h is a homotopy equivalence. Let S(7w|w) [Y, g] be a setting for g: Y -4 Y. Then 
there is a setting S(,/., ,,)[X, f ]for f: X -* Xsuch that 

h*L(V1,,, P,)S[X, f I = L(-y +4/)S[Y, g] 

where h*: KR4P,,[v"] KR,,,,[y"] is an isomorphism induced by h. 

The proof follows easily from the previous results, and is therefore left for the 
reader. 

2. Examples where L ,57) 0 but L- 0. 
EXAMPLE (2.1). Let X" C 12 be the CW-complex which consists of the union of 

the vertical and horizontal unit segments with 12 being the Euclidean plane, and 
denote the group of translation Z ED Z by n". Then there is a (v", 9p")-cellular map 
f": X" X" which leaves (0,0) fixed, with q/": 7" -T " being the homomorphism 
which takes a to a3 and T to -2 Here a and T are, respectively, the horizontal and 
vertical translations. Then if we put X X"/7", we see that f" induces a cellular 
map f: X -* X which fits in the geometric (n ", 'p")-setting 

- ,, 

SOT(P" 
, [X; f] ptt pt 

f 
x -* x 

where p" is the natural projection. An easy computation shows that 

Rp [ qr"]_coker{p"-1: yr" -} {a I a2 11 X {r p T 1 

Put ej = (0,0), ej' = (1,0) and e' = (0, 1). Then these cells of X" are clearly a 
Z[V"]-basis for the cellular chains group C*(X") as a K[v"]-module. A straightfor- 
ward calculation shows that 

L (9t,,P)S I X; f I= [1; X']- -([1; I"Tm + [a; IT I, + la2; ITI 

- - T_ 2; IT7 ] 1 [T_ ,IT ]w 
Clearly L(7,., ,,)S[X, f] #0 but L(f) = 0. Note that Corollary (1.10) implies that 
the generalized Lefschetz number at the universal setting is also -# 0. Theorem (1.13) 
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implies that the Nielsen number of f is > 4. To obtain higher dimensional examples, 
we thicken X. The generalized Lefschetz and Nielsen numbers remain the same by 
virtue of Proposition (1.14) and Theorem (1.13). 

EXAMPLE (2.2) (after McCord [5]). The best one could do in the manner of 
Example (2.1) is to obtain a compact manifold with boundary. To obtain a closed 
manifold one proceeds differently. Let Al R2, v = the group of translations, and 

f : M -->M 

the linear map defined by the matrix (- - I). Put M = M/l and note that f induces 
a homeomorphismf: M -- M which fits in the universal (v, (p)-setting 

M M 

S('7,r)[ MI f p I p 

f 

M M 

where p: v -> is the homomorphism defined by sending a to T i-2 and T to T-a1. 

If we consider Al as a CW-complex with the usual subdivision defined by the unit 
lattice, the vertical and horizontal unit segments and the unit square, we see that f is 
cellular and a straightforward computation shows that the chain map C*( f): 
C*M -> C*M is as described by the formulas 

co(l)(io) =io, 

l( )(i ) =- (e )T 21-1 + j,(l + T), 

- (ei)(a 1) + jJ(a1), 

C2(1)(j2)= 2(a1 + a1I - T ). 

Here eo = (0, 0), e - (1, 0), ej = (0, 1) and j2 is the unit square. We also have, by 
easy calculations, that 

RT[V7 --{[1], [TI-)Z2, 

IT2 
- = [1 ] [a-1I] [ ] [T 2a-21] 

[To11 [T]. 

So we conclude that 

L(,, ,)S[M, f I [1] +[T]. 

(Let us note here that this calculation can be avoided by appealing directly to 
Corollary (1.9): take v' = image(p - 1) and note that [v: '] = 2. Also the condi- 
tions of the corollary are satisfied because v is abelian and Al is contractible.) 

Since L( f ) 5& 0 we need to alter M in such a way that one of the two terms in 

L(V7 ,)S[M, f ] is reversed in sign. In order to do so, we note that f has two fixed 
points x0=p((O,O)) and x1=p((4,0)). Also, according to Theorem (1.13), xo 
corresponds to the (v, p)-Reidemeister class [1; v7], and xl to [1,T],. Now by 
standard techniques, say, the Tubular Neighborhood Theorem, we can modify f by 
an isotopy to obtain a diffeomorphism 

g: (M; D2, M-D2) -*(M; D2, M-D2) 
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where D2 is a small disk centered at xl. Since the local index of f at xl is 1, we can 
assume that g is actually fixed on D2. Now by definition, let 

h: M#M -* M#M 
be equal to g on the first summand and to the identity on the second. Let 

Ml- ii152 = p-1(M- D2 ) 

where p: Al -M M is the projection in the setting S(,T9,)[M, f ], and define (M#M)" to 
be the cover of M#M obtained by attaching to M - uD2 copies of M - D2 along 
the circles in Al - ID2 which form the boundaries of the deleted disks iiD2. Thus 
we obtain a setting 

(M#M)" (M#M) 

SO,(p) m[M#M, h]: P" I 
p,, hi. 

~~~~~h 
M#M -* M#M 

where p" is equal to p on Al - uD2 and to the identity on each of the attached 
copies M - D2. Finally we find that L(7r S[M#M, h] = [1] - [T] since the gener- 
alized Lefschetz number of the setting restricted to the first factor is [1], while it is 
-[T] when restricted to the second factor and 0 on the intersection. Hence if 

SO, 0 [M#M, h] is the universal setting for h: M#M -* M#M, Corollary (1.10) 
implies that L(-Y4,)S[M#M, h] # 0. Clearly, the ordinary Lefschetz number L( f) is 
0. 

EXAMPLE (2.3). To obtain higher-dimensional examples, one takes 

h X 1: (M#M) X S' -- 
(M#M) X S', n ,> 2 , 

where M,M and h: M#M -- M#M are as in Example (2.2). But M#M has a 
complicated fundamental group and, therefore, L(-Y4,)S[M#M, h], is hard to calcu- 
late. However, it is possible to modify M to make the ordinary Lefschetz number 0 
without changing the fundamental group as follows. First, by definition and keeping 
the notation of Example (2.2), let 

f X r:MX Sn-MX Sn 

where n is even and > 2, and r: Sn -* Sn is a notation with the north and south 
poles as the only fixed points. Then it can be easily proved that 

L(, ,)S[M X S , f X r] = 2[1] + 2[T] 

where S(7,,)[M X sn, f X r] is the (v, (p)-setting obtained by multiplying 

S(V,T,)[M, f ] by sn. Observe thatf X r has exactly four fixed points (x0, s0), (x0, s1), 
(xl, s0) and (xl, sl) where x0, xl are the fixed points of f: M -* M while s0, s1 are 
the fixed points of r: Sn -* Sn . Note also that (xl, s0) and (xl, sl) correspond to [T]. 
Now proceeding as in Example (2.2), let D', D" be two disjoint and sufficiently 
small (n + 2)-dimensional disks centered at (xl, s0) and (xl, sl), respectively, and 
modifyf X r by a diffeotopy which is fixed outside a neighborhood of D'uD" which 
excludes the other fixed points to obtain a diffeomorphism 

g': (M X sn; D'uD", M X Sn - (D'i ID")) 

-* (M X sn; D'uiD", lM X Sn - (D'i ID")) 
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which takes D' to D' and D" to D". We can also assume that g I (D'uD") is the 
identity. Next let N', N" be two copies of a simply connected manifold of dimension 
n + 2 and Euler characteristic 0, and choose two (n + 2)-dimensional disks D' C N', 
D" C N". By definition, let 

Mt = (M X Sn D - (D')D")) U ((N' - )( N" - D')) 

be the orientable manifold obtained by identifying AD' with AD' and AD" with AD", 

and let h': M' -- M' be the map equal to g' on the first summand and to the identity 
on the others. Then 

L( )S[M', h'] = 2[1] - 2[T] 

where S(,,,,)[M', h'] is the (n", (p)-setting defined by the universal cover of M'. 
Clearly, the ordinary Lefschetz number L(h') of h' is 0. Note that h' has exactly two 
essential Nielsen classes of fixed points and as dim M' > 3, it is homotopic to a map 
with exactly two fixed points corresponding to the two essential Nielsen classes. 

3. Proofs of Propositions (1.2), (1.3) and (1.4). Suppose that (PI: (VI, V') -*(2, ( 72) 
and p2: (S72, S72) -- (l, v7) are homomorphisms of groups. The following proposi- 
tion is the key to much of what follows. 

PROPOSITION (3.1). Suppose that (PI, P() and (P2, P2) are, respectively, a finitely- 
generated free vr-based right K[ LT ]-module, and a v2-based right K[ V2]-module, and let 
f: P1 -- P2 and g: PI -- P2 be, respectively, a (rl, pl)-homomorphism and a (72, (P2)- 

homomorphism: Assume also that f(Pj ) C P2. Then 

((p )*tr PI, P'; g o f] tr(192, 22)[P2, P;fo g] 

where 

T20(P (P I ) *:KT2 ?,[S1, V7 R,O2[2, 72] 

is the homomorphism induced by p. 

The proof is just a straightforward computation. Let {x} be a v(-basis for P', and 
{y} a v2-basis for P2. Then, by definition, {x} is a V7I-basis for PI, and {y} a v2-basis 
for P2. Note that f: PI -- PI is represented by a matrix A with entries in K[ vfl, since 
f(Pj) C P2, while g: P2 -* PI is represented by a matrix B with entries in K[ 1.]. A 
direct and simple computation shows that g o f: PI -* PI is represented by BA 2 and 
f o g: P2 -- P2 by ABP' where (*)P is obtained from the matrix (.) by applying 'p to 
each of its entries (cf. Proposition (1.1) (2)). Now, by definition, we have 

tr( 0,22 0 (P)[P2, P2: g o f] tr(7T,;<2 0 (I(BA22 

and 

tr('7,2 ',I 2) [ P2, P2; f o g] tr(172,w, 0 2)(AB ). 

But 

(( zPI)tr 420 (PI) (BAT2 )= tr(92 R )(BA2 ) 2' B 2) 

=tr ('72 ,,I ? 2) (BT1AT' T2 ) 
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Finally, the commutativity of tr(,,,991 2) implies that 

tr (2' 1 ?2)(BPIAP' 2) = tr(O2 ,91 ? V2)(AB-P ). 
This proves the proposition. 

Now let p: T -* r be a homomorphism, IT' C I a subgroup, and [P, P'; f I a 
finitely-generated, 7T'-based and KPTI]-projective module. We would like to define 
tr(, ,p)[P, P'; f ], when P' is not necessarily free. Choose a finitely-generated right 
7T'-projective module Q' so that F' P' fEf Q' is K[T']-free. If we let F= F' 
?&K[,'JK[iT], we see that (F, F') is a free finitely-generated IT'-based K[IT]-module, 
and that F= P E Q where Q = Q' ?K[,,, K[7TI is a finitely-generated projective 
K[IT]-module. Let OQ: Q -* Q be the zero homomorphism and, by definition, put 

tr(ir" ,,) P, P'; f ] = tr(1 ,,p )[ F, F'; f (ED OQ]. 

To see that tr( r;T)[P, P'; f] is well defined (compare [6]), suppose that Q' is another 
finitely-generated right K[iT'I-projective module such that Fl = P' GE Q' is I'-free. 
Denote Fl ?K[,'] K[T] by F1 and Q' ?K[,'] K[I] by Ql. We need show that 

tr(,TW) [F, F'; f + OQ] 
- 

tr(.,T )[Fl, F'; f ( OQJ]. 

First of all note that the additivity property of tr(, ".) for maps of v'-based 
K[7 ]-modules implies that 

tr(?,'; 4F, F'; f ED OQ] tr( O,;4p)IF GD F1; F' E F'; f D OQ Ei3 OF] 

and 

tr(',)[F l, F'; f ED OQ] = tr(Ir,; (,)[Fl ED F, F, G F';f E OQI OF] 

wheref E OQ E OF, F E FI - FF ED F, andf D OQ ED OF: F (DF-- F1 ED F. But, 

F' ED F, = (P' E Q') E (P' E Q') 

_(P ED(Q' ED (P E Q'))) 

-(P ED (Q' ED (P (ED Q ))) 

_(P' ED Q')ED(P' EDQ') 

=F,' ED F' 

where all the isomorphisms are all 7T'-isomorphisms leaving the first summand P' 
fixed. Hence there is a K[IT']-isomorphism 

a: F' HED F, ED F' 

such that a P' I lp,. Denote the natural extension to F ED F, also by a and note 
that 

f D OQ E OF, = 1(f E ?QI E OF)a. 

Proposition (3.1) now applies and yields the equality 

tr(, [F ED F,, F' E Fl,; f E OQ EOFD = tr(,,q,)[F, E F, F, D F; f O OQI D OF]. 

This equality taken with the two equalities at the beginning of the argument give the 
desired result. 



262 S. Y. HUSSEINI 

It is quite easy to show that Proposition (3.1) remains valid in the more general 
case when (PI, P() and (P2, P2) are projective but not necessarily free. Proposition 
(1.2) is now an immediate consequence of Proposition (3.1). 

PROOF OF PROPOSITION (1.3). Suppose that [C; f I and [C; g] are finitely-generated 
K[qT, p]-projective chain complexes, and let 

8: Co- C 
be a (7T, (p)-map such that 

8a + 38-g. 
The proof is formally the same as that of the corresponding assertion in [6]. We have 

L(v , 0)[C; f- g] = L(1T, p)[C; 83a + L(1, )[C; a8]. 
Now if we apply Proposition (1.2) to replace 8a by as in each of the summands of 
the alternating sum defining L(, , )[C; 8a] one sees immediately the two terms above 
cancel each other to yield the desired result. 

We shall need a slightly more general form of the Homotopy Invariance. Suppose 
that [C1; fi] and [C2; f2] are two finitely-generated K[ r, Tp]-projective complexes. 
Assume that 

Cl - C2 

C1 -- C2 

commutes up to a (v, p)-chain homotopy, where i is a 7r-chain map. 

PROPOSITION (3.2). Suppose that the induced homomorphism 

H*(i): H*C1 -4 H*C2 

is an isomorphism. Then 

L(,f,)[Cl; fi] =L(P)IC2; f2] 

PROOF. Using the mapping cone of i: C1 -* C2 we can find n-maps r: C2 C1, 8,: 
C1 -. C1, 82: C2 -4 C2 such that r is a T-chain map and 

sla, + a181 = id, - ri, 8232 + a282 = id2 - ir 

where id1: C1 -4 C1, id2: C2 -4 C2 are the identity maps. Now note that rf2i and rifi 
are also (7T, (p)-chain homotopic and hence 

L(,17,P, )[Cl; rf2i] = L(14,,)[CC; rif1] 

by Proposition (1.3). Next observe that 

L(,7r,P m[ Cl; rf2i] = L (,T,,) IC2; irf2] 

by Proposition (1.2). But by Proposition (1.3), 

L(r,",,) [ C2; irf2 ] = L( ,) I C2; f2] 

since irn2 and f2 are easily seen to be (v, p)-chain homotopic. The proposition is 
therefore proved. 
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PROOF OF PROPOSITION (1.4). Let j: Z*C -* H*C be the natural projection, with 

Z*C being the module of cycles. Since H*C is projective, we can find a K[7r]-homo- 
morphism j-1: H*C - Z*C C C* such that j- 1o j = 1. Note that JO j-I _ 
- 1o H*f takes H*C to the submodule of boundaries B*C C C*. By Lemma (3.3), 

there is a (7r, 'p)-map 8: H*C -> C* such that 

a3 zfo j-I -j-1 o H*f. 

If we regard H*C as a chain complex with the trivial boundary homomorphism, we 
see that the diagram 

H*C - C* 

H*f I If 

H*C -* C* 

commutes up to chain homotopy. Hence Proposition (3.2) applies and we obtain the 
result that 

L(',P )[C; f L(= L,P) H*C; H*f 

as required. 

LEMMA (3.3). Let 

0 -O M'-M--M" -* 0 

be an exact sequence of right K['fl-modules and homomorphisms. Suppose that P is a 

K[ fT]-projective module and assume 

f": P -. M" 

is a (r, p)-homomorphism. Then there is a (,r, p)-homomorphism 

f: P -M 
such that j o f = f ". 

PROOF. Suppose first that P is free and let {x} be a n7-basis. Define f on {x} so 
that j o f = f", and then extend it to a (iT, (p)-map. If P is projective then P is a 

direct summand of a free K[fT]-module F. Then the composite F -* P -* M", where r 

is a retraction on P, is an extension of f" to all of F. Since F is free, f"r can be lifted 
to M. Now let f be the restriction of this lift to P. 

4. Proof of Theorem (1.5) and Corollary (1.6). Suppose that iT' C iT is a subgroup 
with finite index ['i: r'] < oo and such that 'p('r') C rt'. To prove the theorem it 

suffices to consider the case when the graded module is free and concentrated in a 
single dimension. So suppose that P is a finitely-generated free right K[7g]-module, 
and letf: P -- P be a (ri, (p)-map. Choose a 7T-basis {x} for P, and denote by P, the 
free 7r-module generated by the element x of the basis. Then if ix: Px - P is the 
natural imbedding, andjx: P -> Px the natural projection, we see that 

tr ( ,) [ P;f q]=E tr ('T P) I PX; ix fix] 
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and 

tr( T", P)[P;f] = f tr(7T ,,)[PX; IX fix] 
x 

with x ranging over the basis {x}. Hence it suffices to prove Theorem (1.5) when P is 
generated by a single element. So consider the equation 

(4.1) f(x) = x * X 

where 

(4.2) A= E 

is an element of K[iT]. Now let a E iT', and write (4.2) in the form 

(4.3) X A +A' 

where f3 ranges over the set of elements of the class [a] = [a; v72,i, and X' is a linear 
combination in the elements of iT not in [a; 'c],p. Let S {a} be a set of 
representatives of the cosets of iT mod ire, where 

q = P E T I Pa(P) =a}. 

Thus we see that 

,#E[a] a C-S 

where X is the coefficient of [a; Trl, in L(,r,)[P; f ]. Next let -r.' = % n ', and 
choose a set of representatives T {X} of the cosets of 7, mod 7Ta. The assumption 
that [Xr: iT'] is finite implies that [Tra: T7r] is also finite, and we have 

(4.4) [7ra Sra] . Aa;a = ( I XaiPaq,7cri-) = aTaFM(aT)-1 
aES ET CT 

where CT ranges over a set of coset representatives of so mod 7r,', for 

7T= Ila vra = ll( Cll rIT,) = II Tr(( ). 

Now let -a = {4} be a set of coset representatives of iT' mod g7, and Z = } a set 
of coset representatives of 1T mod fr'. Then {D(} is a set of coset representatives of 
1T mod ira and we can rewrite (4.4) in the form 

(4.5) [77a TTjX[a;r1 - E X?p(yl 2 ( x Xap(yi)) 
UEZ3Z^ 'EZ fE.a 

To finish the proof of the theorem, it suffices to show that the expression on the 
right is exactly A J, the coefficient of [a; 7T']9, in L(, <W)[P; f ]. So first note that 

{xg) with D E Z is a iT'-basis for P. Hence to compute L(,7T 4,)[P; f ] in terms of {xt'}, 
we consider the equation 

A(X0) (X)W-'XA(0 
(4.6) () (Xf(() (4.6) = 

(4)~.~( 
1( +x3)~~ ? 4 
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where ,B ranges over [a; 7T],, while X' is a linear combination in elements /3' not in 
[a; T]c. Hence the contribution of xD to the coefficient X is exactly the sum 
2 X, where ,B ranges over the set 

D[a; ST ]9(D) D_1t E E}mD 

with a being the set of coset representatives of g' mod T as above. But 

Therefore the contribution of xt to X; a;,7T] is exactly 

the tth term in (4.5). Adding up the contributions of all the elements of {xt} we see 
that 

Xa; X ( 2 X ap ) l ['Ta : Va a; 

where ( ranges over -a, the set of coset representatives of T' mod ?T,, and g over Z, 
the set of coset representatives of ? mod ?T'. Hence the theorem is proved. 

PROOF OF COROLLARY (1.6). Suppose that C is a finitely-generated K[?T]-projective 
graded complex and assume that H*C -Z. Letf: C -* C be a (?T, (p)-chain map such 
that L(7 )[C; f] r O, and suppose that [a; vT], is an essential class such that [ST: 
Fix qm] is finite, where ma(a) = a( )a-1. Denote Fix ma by g', and note that the 
correspondence -y t ya- 1 induces an isomorphism KR [T] - KR, L[7T] which takes 
L() [C; f ] to L(s [C; fa] where fa( * ) = f( )a-1. Moreover [1; T] is a (T, 

essential class for fa: C -* C. Now by Theorem (1.5) we see that [1; s']< is also 
(ST', CPa)-essential. Note that Ia I T' = identity. Hence [1; ?T']< is a single element 
{1}. If g E cent(imCa) n ?T' then 

Pra(f ) =ap( )a- ; p( 

and since C is acycic, and f,a and fa induces the same homomorphism on Z, it 
follows that fa andfa are (n', 1)-chain homotopic, and hence 

L(1T' I[C; ft,a] = L(X S) [C; fa] 

But the correspondence y " -yl induces an isomorphism ZRm [,'] = ZRcp [LT'] 

ZR,[?T']. Hence [t; T'], is also essential and consists of a single element. As there 
is a finite number of essential classes for fa: C -* C, it follows that ST' n cent(im (Pa) 
is finite and hence is equal to { 1). 

5. Proofs of Theorems (1.7) and (1.8). Suppose that 4: (S, g') -3 (S, g') is a 
homomorphism, where g' is a normal subgroup, and let = {t} be a set of coset 
representatives of S mod g'. We need prove that 

^*L(,, 9)[C, C';f] = L( ,,p[C;f4] ? ( 
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where [C, C'; f ] is a finitely-generated K[7T, 7T'; (p]-projective graded module. Recall 
that the isomorphism 

*:KR [7T, T'] -- 2KR[7t] 0 t 

is induced by sending [a; 7T, 7T'] to [at1; a ']< 0 T where a E ' q(*) =T* 
and that f' is the composite 

i j 
C' -4C-C-4C ' 

with i being the natural injection, f(( )= f( * )C 1, and j the natural projection. 
It suffices to prove the assertion when C' is concentrated in a single dimension, 

and freely generated over K[7T'] by a single element x, say. So let us consider the 
equation 

f(x) Xx 

where 

X= ' 

with the coefficients X. being in K. Express X in the form 

X= Xi + ... +X + ... 

where XA is in K[v't]. Now suppose that t is the unique element in such that 
[a; 7T, 7T'] > C 7T't, and observe that 

f'(x) = xXj1 = Xa' 
a' 

where a' ranges over 7T', and 

a' 

with the coefficients being in K. Thus we see that 

[a; 7T, 7T'] =2 Xal 

with a't ranging over the elements of the class [a; T, ?T'] C 7T't, and 

X[at I; 7T'] X ;a' 

where a't ranges also over [a; 7r, 7T'] p since [a; v, g']<1- [at-; g'], is a bijection. 

This proves the theorem. 
PROOF OF THEOREM (1.8). Suppose that C is a finitely-generated K[ T, p]-projective 

graded module. Put v" = v/l' and assume that I ST" 1< o. Then g induces a 
homomorphism p": ?T" -T". Let Z = {f} be a set of representatives of the cosets 
of v mod g'. Let be another copy of Z, and define 2 C to be a subset such that 
its image S" C qT" is a complete set of representatives of the (n", .p")-classes of q". 
Then we can write 

(5.1) u Q 
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where E, = { 1 c 'T'= wp(')', for some D E Z}. Note that the projection 
7 -q* T" takes E., onto [X", '7"],p,,. It is easy to see that the partition of described 
above, induces naturally the partition 

(5.1)' R4[ 7T, 7T] R= (, 

By definition, let 

P"*: KR9,[ 7, 7'] KRqJ-r'] 
@ 

be the isomorphism induced by sending -y to yt- 1, where t is the unique element in 
such that y C vT. Clearly _* preserves the decompositions induced by the partition 
(5.1) of _. Consider now the commutative triangle 

KR4[T, T'] KRq4'] 'It 

q*\ k-* 

KRcp['i] 

where q* is induced by sending [y; 7r']<, to [y; 7T]i, and _ by sending (y, t) to yt. It 
is easy to verify that q* takes the decomposition of KR 4r, '7] induced by (5.1)' to a 
decomposition of KR 'i ]. Thus we can write 

(5.2) L(O, [C; f ] = 2 L(7,[C; fL 

where L(w,)[C; f]. is in the component KRJ7T]j,n spanned by the image of 
II tC R 9['t, ']. It is clear that , takes L(,,, )[C; ft] to KR [']i, where 0 Ew. 
Hence to prove Theorem (1.8) it suffices to show that 

(5.3) I ST" I L(, ) [ C;f] = *( 2L(?TY9)J[C;ft ) 

where t ranges over E.. We shall first prove (5.3). when o - 1. Choose a 7r'-based 
structure [C, C'; f ] on [C; f ] and note that as a result we have the decomposition 

C - C' ?w'' T. 

Denote C' 01 7'T' by CD and let i~: CD C be the natural injection of CD as the gth 
summand and ij: C -* CD be the natural projection of C onto the 'th summand. 
Define fi: C' -* C' to be the composite jfAi. 

LEMMA (5.4). 

t* (L(IT ,O)[ Ci;jrfij]) = L(-7T',pV) [IC,; fd ] 

where t =4(t7'), and t* is the isomorphism KRJVT'] -* KRwe,['T'] induced by 
sending -y to Dyg- . 
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PROOF. It is clear that it suffices to consider the case when C' is free over K[ T'] 
and is generated by a single element x. Consider the equation f(x) = xX = xX'j 
+ ***+ XA + where X'a E K[ 7T'a]. An easy computation yields the equation 

(,OfiA)(W) = (4) * .-'AXMO 

where t = 4(t'f and X' = , with Xt E K[ T']. Hence 

t(7T,,9)[Ci;4fDid] =[ Ltpt) T] 

On the other hand we find that 

fi(x) =j(f(x) )1) (x x-1 = x I), 

and therefore we have 

tr 
(7r,q)[C' ft?] [e T ]g 

But 

(D*(D(Xw())= tt-14x?(t)t-1 = X- 

which proves the lemma. 
It may happen, of course, that 4(tf' = (' is not in the chosen set of representa- 

tives , in which case one has to adjust the isomorphism of Lemma (5.4) as follows. 
Suppose that 4(t)-1 = (t = at, with t E and a E ?T'. Then the correspondence 
which sends -y to -ya induces an isomorphism 

v~: KR> ,[J7"'] -* KRTt I T]. 

The adjusted Lemma (5.4) asserts that 

(5.5) Vt*L(7,,)[Cj;jDfit] = L( ,T [C';f J ]. 

Note that the decomposition. C = 1: CD gives the equation 

(5.6) L(7T,,,,),[C; f L L(7r,) [ Ci; 4D%id D 

But Lemma (5.4) as adjusted implies that 

v2 pDL(7r, m) [ Cj; jr fir~] (9 D ?T L( ,7T" [C1; ft]X 

where s5'l is the stabilizer {a" E ?T a"q"t(a"'-1) = 1") of 1" in g", and where ' 

ranges over Z while ( ranges over 1. Applying * to both sides of the equation and 
noting that the composite 

KRP [ ?T'] KRqj'[7T'] KR4 [RTr] 

is just the natural homomorphism KRq,[?T'] --KR[T] which takes [-y, ?T'],, to 
[-y, v]iQ, we see that 
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LEMMA (5.7). Suppose that ( = t4(t'). Then 

t*L (7,,, ,p) [C; fj = L(7,,(g) I C; f 

PROOF. Consider the commutative diagram 

fj(.) 
C C 

C C 

where the vertical maps are multiplications by the indicated elements. The assertion 
of the lemma now follows immediately by the commutativity property of the 
generalized Lefschetz number (Proposition (1.3)). 

Again if (' = 4(g-1) does not lie in , then Lemma (5.7) can be adjusted to 
assert that 

pD1g- 'L(,( [C; fj = L(,,7p) [ C;f 

where vD is the isomorphism 

KRL [ JT'] KRPj[?T'] 

induced by sending -y to -ya, where (' = at, with a E v'. 

Now by Lemma (5.7) as adjusted, we have 

(7* " L(,, I C; fd] *( L,e[C; fI] 

= *(q L~2 v*L( ,m[;)[C;C]) 

q ( *L(w,,,,) I C; f ]) I ?T /17,] 

where ( ranges over the elements of . But, since q* = on the submodule 
K RP[?T'] of KRP [ T, so'], equations (5.5) and (5.6) imply that 

q*L(,,) 
I 
C; f ] TI]|*( I L(M ,)L[C;f 

Thus we obtain the equation 

q*( L( ,,)[C;fJ) 1 I l;(L(7,,,[C';fJ ? 

where ( ranges over . Next we note that Theorem (1.7) implies that 

(q*L I C,';f]) = L* *(L(T',P)[C, C'; f ]) 
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where L(,',,)[C, C'; f ],, denotes the terms which involve those elements in 

I1CZe, R4 Tq',T'I. But 

q* L( IT C, C'; f ]LOT = 
) Is C; f 

which proves that equation (5.3), holds. 
The proof of (5.3)(, when Xo 7 1 proceeds as follows. First observe that the 

correspondence y --* iy ' induces an isomorphism 

KR4n][ - KR,. [ ] 

which takes L(O, ,)[C; f ],, to L( W,q)[C; fj. Now with replaced by H - 
, f by 

g = f. and T by y = qp., we can conclude that 

I T" 
f L [C; g] = H'( IL(Xt,A)[C; gi ? ) 

as q ranges over HI = E H l = p p-') mod ', p E 4}. Also the correspon- 
dence -> y&-1 induces an isomorphism KR p[ T, r'] -* KRi, [ 'T, i'] which takes 

(L(', )4[C, C'; f ])@, to (L(-,+)4C, C'; g])%. Moreover the correspondence 
(y', F)- *(y', (W- 1) induces an isomorphism 

KR4Y, KR<Pt[T ']0[q 
-H 

which takes 

L(17%,eJC; ft] @ 9 

to 

z LW',n) C; g"]X - 
& H1 

Now it is easy to deduce (5.3),,, namely that 

( (1T LO [ C;]) f * L(-7T,,tjC, ft]) 

and this finishes the proof of the theorem. 

6. Proofs of Propositions (1.12) and (1.13) and Theorem (1.14). The proof of 
Proposition (1.9) depends on the following proposition. Suppose that 

It 
f 

f 
x *- x 

is a ('iT", ")-setting, where X is a CW-complex, and let 

F:XX I- XX I 
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be a homotopy, written as a level-preserving map, such that F I X X {O} = f. Then, 
by the covering homotopy property, we obtain a unique (T", (p")-setting 

F"t 
X"XI - X"XI 

S(7",,,,),[X X I, F] I I 
F 

XX I XX I 

such that 

S(,,//',,,[X X {0}, Fl X X {0}] = S(",P,<,,[X, f ]. 

PROPOSITION (6.1). Suppose that f and g: X - X, where g = F I X X {1}, are both 
cellular. Then 

L ft C ; C* f"] = L(, C*Xt, C*9g"] 

where C* X" are the cellular chains of X", and f" and g" are the lifts of f and g 
provided by the setting So,,,, ,p,) [X X I, F]. 

PROOF. We can assume without loss of generality that F is cellular, for we can 
replace F: X X I X X I by a cellular approximation without altering it at either 
end, and then deform the setting S(7T" ,,)[X X I, F] accordingly. But if F is cellular 
then the proposition follows immediately from Proposition (3.2). 

Now suppose that S(T ft,,)[X, f ] is any setting with X being a finite CW-complex. 
Choose any cellular approximation f C: X - X for f and alter the (T", p")-setting 
accordingly. As in ?1, by definition, let 

L S[X,f L ] = ; C*c)]. 

Since any two cellular approximations of f are homotopic, we see as a consequence 
of Proposition (6.1) that L(,, ", ,p")S[X, f ] is independent of the cellular approxima- 
tionfc: X -4 X, and hence it is well defined. 

The homotopy invariance of the generalized Lefschetz number (Proposition (1.1 1)) 
can be deduced from Proposition (6.1) in a similar fashion: if f, g: X -4 X are 
homotopic, then any cellular approximation of f is homotopic to any cellular 
approximation of g, and thus Proposition (1.11) follows immediately from Proposi- 
tion (6.1). 

If X is a simplicial complex then the generalized Lefschetz numbers L(7T < can be 
computed by means of the simplicial structure as follows. Suppose that f s: X X is 
a simplicial approximation of f, with X' being a simplicial subdivision of X. As f S is 
homotopic to f, the given (nT", p")-setting S(47T"g")[X, f ] induces a commutative 
diagram 

(X")s 
X"/ 

fs 

Xs X 
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where (x")S is the subdivision of X" induced by the subdivision X' of X, and (f//)s 
is the (T", p")-simplicial map overfs. Denote by 

C*(f()s: C (X//)s -4C*( )s 

the composite 

C*( X)CT Sd 
c Jr)s--) c* --3-C (Xff)s 

where Sd is the v"-chain map induced by barycentric subdivision. 

PROPOSITION (6.2). With the notation as above, we have 

L(0T "tt,,)S[X, f ] = L(I, V )[C*(JXf)s; C*(f/) S]. 

PROOF. Let h: X -) Xs be a cellular approximation of the identity map 

X Xs 

where we regard X and Xs as cellular complexes. Note that the cellular chain groups 
of X" and (X")s regarded as CW-complexes are the same as their simplicial groups 
[2] and consider the following diagram 

C*X" C*X" C*X 

C*()s tC*()s C d= (C )S ~~~~I 
C*(X " ) C*'f'c x Cx) 

where h is a lift of h, g" = (f)S o h" and Sd the chain map induced by barycentric 
subdivision. The square on the left is commutative by definition while the square on 
the right commutes up to homotopy, since Sd is T"-chain homotopy equivalent to 
any of the T"-chain maps induced by the projections (Xf)s -4 X". (The projections 
are simplicial approximations of the identity map (fXU)s -4 X".) Now the proposition 
follows immediately from Proposition (3.2). 

PROOF OF PROPOSITION (1.12). Replace f: X - Y and g: Y -4 X by cellular 

approximations fC and gC and note that gcf c and f CgC are cellular approximations of 
gf and fg respectively, and hence can be used to compute the generalized Lefschetz 
numbers. But then Proposition (1.12) is just an immediate consequence of Proposi- 
tion (1.2). 

PROOF OF THEOREM (1.13). Suppose that 

f 
X X 
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is a (T", p")-setting with X being a finite CW-complex. Imbed X as a retract X Ci Y 
in a polyhedron Y and denote the retraction Y -- X by j. Now the pull-back of 

S(7r /s,,JX, f ] byj is a (nT", (p")-setting 

(if)",() , 

SOT ,,<s,,)[Y, if/I 

y (if)] 
y y 

where (if )" andj" are lifts of if and j which fit in the commutative diagram: 

X" Y" X" 

if 
X -_3 Y -4 X 

Now according to Proposition (1.12) we have the equality 

L(T,,,,,,")S[X, f] = L(1",,q,")S[Y, if]]. 

Note that 

Fix(f)= Fix(ifj) 

and that the g"-Nielsen classes of Fix(f) agree with those of Fix(ifj). Thus it 
suffices to prove Theorem (1.13) for g = ifj: Y - Y. The rest of the argument is 
essentially Wecken's computation [8]. Replace g by a simplicial approximation gs: 

YS Y of the Hopf type. That is to say gS fixes only maximal simplices and each 
fixed simplex contains only one fixed point. Using the (T", (p")-chain complex 
[C(Y,)s, C(gk")s] one proceeds to compute the trace directly. It is clear that we need 
only consider the chains in the top dimension. Note that only those simplices which 
are fixed by gS contribute to the trace, and if {x} is a basis for C*(Y")s, where each 
i is a lift of a simplex x of Y maximal dimension, and if x is a simplex fixed by gS, 

then the contribution of x to the trace is exactly %ax where the integer -x is the 
index, in the usual sense, of the fixed point contained in x and ax is that element in 
IT" with the property that (g")s(x)a-l = (g")s(x) D x. Finally one verifies easily 
that [ax; q"], = [ax,; T"]q,,, if and only if the lifts (gQ")s and (g)s are conjugate 
by an element in T". Hence ax and ax are (T", p")-Reidemeister equivalent if and 
only if x and x' are T"-Nielsen equivalent, and since Dx, as x ranges over the points 
of the g "-Nielsen class {x}, is exactly the index of {x}, we see that 

X[ax; I, is equal 
to the index of {x} as required. 
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