SPHERICAL FIBRATIONS

BY 8.Y. HUSSEINI

Introduction

Suppose that p: E- B and p': E' -~ B are two fiber spaces with the same
fiber S, where 87 is the standard Euclidean m-sphere. Recall that a fiber homo-~

topy equivalence
¢: E—- L

is a fiber-preserving map which covers the identity map B - B and which is, at the
same time, a homotopy equivalence. The object of this article is to answer in part

the following problem.

Problem A. Determine when one can replace a given homotopy equivalence

£:(E, 8™~ (&', 8™

by a fiber homotopy equivalence where Sm is identified with the fiber above the

basepoint.

This problem is related to the classification part of the second problem,

which follows.

Problem B. Given the pair (E,S™), determine when E is fibered by S

over a space B, and classify the various possible fibrations.

Problem B is the subject of [1]. There are necessary and sufficient condi~-
tions (which generalize the conditions on the existence of Hopf fibrations when E

is contractible) on Q(E, Sm), the space of based paths in E ending in Sm, which
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insure that E is fibered by S™ and, therefore, in some sense provide an answer
for Problem A, But whereas these conditions are perfectly satisfactory for the pur-
poses of existence of fibrations, it is generally difficult to see how to use them,
particularly when the possible fiber homotopy equivalences between E and E' are
not necessarily in the homotopy class of f. Our object is to provide a different kind
of answer.

It is easy enough to see that some additional conditions are necessary if one
hopes for a positive answer. For example, two Hopf fibrations S7 - S4 are equiva-
lent if, and only if, the multiplications on S3 which give rise to them are equivalent
(see also [4]).

James and Whitehead study in [3] the problem of the homotopy-type classifi~
cation of E and E' when B is a sphere. Their study has some bearing on
Problem A. It indicates that there are two essentially different cases, depending
upon whether or not the fibrations admit sections, and that one cannot hope for a
positive answer, even in the easier case when there is a section, unless one stabi-
lizes the problem,

The positive answer we give is a stable result. The fiber homotopy

equivalence
¢ : E—~ E

is constructed by induction on the skeletons of the base. The given maps f and ¢
are related in a certain way which can be described roughly as follows: the stable
nature of the problem allows us to think of f as effecting a horizontal twist of B by
Sm and a vertical twist of Sm by B. (This is precisely the situation if the fibra-
tions are trivial. ) In constructing ¢ one insures that it has the vertical effect of B.
To make the preceding precise is a delicate task and requires use of the RPT-
category; the relevant facts and results are summarized in §2. In §3 the problem of

the Theorem is given. We conclude with some remarks and examples in §4,



- 109 -

1. Statement of the Main Theorem

It will be assumed tacitly throughout this article (unless otherwise noted)
that spaces and maps are in the category of based spaces and basepoint-preserving
maps.

Suppose now that
(€) p:E—~B

is a Hurewicz fibration with fiber F, and assume that B is a simply connected
finite CW~complex, By definition, let E(an) be the space obtained from E X Sn,
where Sr1 is the standard Euclidean n-sphere, by collapsing pnl(x) VSn to a point,
for all x ¢ B. One can prove easily, either directly or by using the classification

theorem of [2], that the map
=% : B(="¢)~ B
induced by p is also a Hurewicz fibration, We shall denote it by Eni, and call it

the nth suspension of §. Two Hurewicz fibrations

(£) p:E— B, and
(&) p' : E' > B,
with the same fiber F and over the simply connected finite CW~complex B are said

to be stably fiber homotopically equivalent if, and only if, there is a fiber homotopy

equivalence
n 1
¢ E(z"¢)~ B(z"¢'),

for some n, covering the identity map B — B.

The main theorem is the following.
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THEOREM 1.1. Suppose that

(£) p:E~ B, and

(€9 p':E' =B

are the Hurewicz fibrations over the simply connected finite CW-complex B and

. . m . . . .
with the same fiber S, where s™ is the standard Euclidean m-dimensional sphere,

Then §{ and &' are stably fiber homotopically equivalent if, and only if, there is.a

homotopy equivalence

£: (5= ™) - (&g, sTT,

where n+m>dim B and Sn"'m is identified with the fiber over the basepoint,

When B is a sphere, the theorem follows from the classification, up to
homotopy type, of the total spaces of sphere bundles over spheres carried out by
James and Whitehead in [3]. In general the fiber homotopy equivalences E - E'
obtainable are not homotopic to I but are, however, related to { in certain ways

to be described in §3, where the proof is given.

2. The RPT-category

Before we can give the proof, we need a few concepts from the theory of RPT-

complexes [1, 2]. Recall that a special complex is a countable CW-complex with a

single vertex which we take as a basepoint . An RPT-complex (i.e., a complex of

the reduced product type) is a special complex with an associative multiplication
AXA—- A

for which the vertex is a two-sided identity and such that the product of two cells of
A is again a cell of A, (See [1, 2] for details. ) The purpose of the RPT-theory is to

provide suitable combinatorial models for loopspaces and path spaces, For example,
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if B is a special complex and Q(B) is its space of Moore loops, then there is an

RPT-complex M and a homomorphism
(2.1) v: M- QB)

which is also a homotopy equivalence, and the indecomposable cells of M are in
one-to-one correspondence with the cells of @B. Moreover, there is a universal

quasi~fibration
q: BM —~ B,
for M, whose total space 8M is a contractible special complex on which M acts
on the right, and a map
M —~ PB

of an M~space to an Q(B)~space which covers the identity B >B (P{B) being the
space of Moore paths).
These combinatorial models for ©(B) and ©(B) allow us to prove a classifi-

cation theorem [2] for fibrations.

THECREM 2. 1. Suppose that
p:E—-B

is a Hurewicz fibration with fiber F; and assume that E,B, and F are special

complexes and that B is simply connected. Then there is a fiber-preserving map

' 1 BMX F—~E

which induces a fiber homotopy equivalence

. 4 i
¢ : BM MF E

which covers the identity map of B and such that the maps (x,f)—~ F defined by

the induced action
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MXF—-TF

give a homomorphism

v : M~ G(F),

where G{F)} is the monoid of homotopy equivalences of I with itself. Moreover, if

p: E— B admits a section, then ny.takes M to the submonoid GO(F) of basepoint-

preserving homotopy equivalences.

The following corollary is the starting point of the proof of Thecrem 1. 1.

COROLLARY 2. 2. Suppose that
p:E—-B

is a Hurewicz fibration as in Theorem 2.1, and let

where Br stands for the r-skeleton of B. Then there are fiber-preserving maps

@, : 3D X F— E,
1 T

where i=1,..., kr’ (kr being the number of cells of Br - Br-l)’ and a fiber homo-

topy equivalence

E,*E_ u D XFu ...u DXF
r 011 Orz k

which is the identity on Er~l' Moreover, if p: E— B admits a section, then

r
o= 3% . Xy
Br Br_1 U ozl(D X &)U . u¥3 D

where * stands for the basepoint of F.
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3. The Proof of Theorem 1. 1.

In order to prove the theorem, it is enough to consider the following.

Suppose that

p:E- B, and

p':E -~ B

are two Hurewicz fibrations with fiber Sm over the simply connected finite CW-

complex B; and let
£:(E,8™) ~ (E',5")
be a homotopy equivalence where s™ is identified with the fiber above the base-

point in B. To prove Theorem 1.1, it is enough to show that there is a fiber

homotopy equivalence
o :E~E
covering the identity map of B, provided that dim B<m - 1.
Observe that, since dim B<m, we can find sections
s:B—-E and s':B—-E

for the two fibrations p: E~ B and p': E' — B, Identify B with the subsets of E
and E' given by the sections, and choose cellular structures on E and E' which
make the sum BV S" a subcomplex of E and E', Itis clear that the given homo-~
topy equivalence f can be assumed (after a deformation, if necessary) to induce a

homotopy equivalence of pairs
f:(E,BvsTy> (g,Bvs™

which takes each summand of B VSm into itself, We can also arrange it, after

changing p': E' -~ B by a fiber homotopy equivalence if necessary, so that

£ | Bv 8™ = identity.
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As in §2, denote the r-skeleton of B by Br’ and let

Er=p Br and Er—p Br'
According to Corollary 2. 2, we can assume that
E=E_ u Dxs"u ..u Dxs"
1 “2 “x
r
E'=E;_lu,DrXSmu,. u, D xs™,
1 “2 *x
r
where
@ : 8Dr>< Sm - E—l and
(3.1) 0
o' oD x s - B,
i r-1

for i=1,..., kr (kr being the number of cells in Br - Br—l)' are suitable fiber
maps. Since p: E— B and p':E'— B admit sections, we can assume that the

maps a, and a; have been so chosen that
r
ai(BD X {xo}) CBr—l CEr—l and

¥ r 1
ai(aD b {xo})CBr_1 CEr_l,

where xO is the basepoint of Sm. Observe that the {r+m)-cells of Er and El'_ are

obtained from the (r+m)-cells of products D' x s™. Let

r+m
5. 2) ﬁi : 0D - Er—l U Br and
‘ pr oD ™ . B uB
i’ r-1 r

for i=1,..., kr’ be the attaching maps of the {r+m)-cells.

Consider now the filtration
m .
S vBC... CErUBC... CE.
Suppose that M is the RPT-complex representing E, and let

v: M- QE
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be the representing homomorphism. The filtration of E induces an ascending

filtration

vl cm

of M by sub~RPT-complexes <r)M such that

(1) vy (r)M is a homotopy equivalence

Ty Q(E_UB), and

{r-1)

(2) (r)M is generated by M and the cells {ei} in one-to-one corres-

pondence with the cells of Er UB - Er U B, whose characteristic maps

1

'+ r+m

B, : (D ,8D ) ~ (E UB, E_, UB)

i 1

are those of (3. 2) above.
We shall construct now a complex useful in measuring the difference between
s R r . ns
two given homomorphisms of ( )M into G, an associative H-space. To start out

with, denote by A the RPT-complex of M which corresponds to Q(B), and note
that () mti-ly

M is generated by A and the set of cells {e , with 0<i<r, which

are in one-to-one correspondence with the cells of Er U B - B. Therefore, according

(r)

to {1, 2], an element of M is an equivalence class of the form

(Xl: L :Xn)a

mi-1
where each Xj is either an element of A or one of the generating cells {e + 1.

One can easily see that the condition dim B < m implies that the subset N; of

(r)

M consisting of those elements represented by sequences

(Xl’ . .,xn)

m+i~1

such that at most one xj belongs to a generating cell e is actually a sub-

complex of (r)M. Now let NI'_ U N; be the complex obtained from two distinct

A

copies of N; by joining them along A and put
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i+m-1 x

Lr=U (D n. .,

Y

with the disjoint summation ranging over the set of indices (i, ji), where 0<i<r
and, for each i, 1 gji < ki (ki being the number of indecomposable cells of

dimension 1i). By definition, let

= (N! ! X L X
Nr (Nr UA Nr) uA Lr A,

where the attaching map

AxU O™ 5o xa >N U N

3y r 'A'r

. : o itm=1
is the one induced by the characteristic map of the cells D x {0} and
pttm=l o {1} onto the cells ™ML 1 ihe left and right copies of N! in

NI" UA N]'r respectively. We shall call Nr the difference complex relative to A.

We can now result the proof of the theorem. We shall construct the desired

fiber~preserving map
¢ : E~E
by induction on the skeletons of B. So we put
—_ m — ¥ = m ¥
¢ EG =3 EO S CE
equal to the identity map of Sm. Suppose we have been able to define a fiber-

preserving map
Pt Er - Er

which covers the identity map Br 3 Br such that the following conditions are

satisfied
(3. 3)r qor{Sk and ka are homotopic as maps
Sr+m—1 . E; U B,

where Bk are the maps defined in (3. 2) above.
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In order to state the second condition, we need a new concept. Consider

therefore the adjoints

~ = (r)
Pt

M - Q(El'r U B) CQE'.
Together they define a map

~

oo, 1) : N/A - oE U B)CQE

m+i=-1

~ o~ ~ m+i-1
by first putting 6((pr,f) equal to ¢, on D th

x {0} and to f on D x {1}

m+i-1 %

and then using the homotopy of (3. 3)r to define it on 8D I. (Cf. [5].) Here

Nr/A is the complex obtained from Nr by collapsing A to the vertex,

We shall say that a map

h: K- QE
of the complex K into the loopspace QE' is horizontal if, and only if, the maps
nh,h : K- QF'
are homotopic. Here w is the composite
g 20, g 2L, op
The second condition is the following

(3. 4)r The map

6(;r,fN): N/A -~ QF

is horizontal.

We wish to extend the fiber homotopy equivalence ¢ to the (r+1)-skeleton.

For the sake of simplicity, we shall give the proof when Br+ - Br consists of one

1

cell only, the general case being similar. Then

r+1 m . . r+1 m
= =E' u
EI-H Er U, (D X 8} and Er+l " Uy

where the attaching maps
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e: 0D xs™ o B and o' :oDlx g™ - E!

are those given in (3. l)r 1 above. Next choose an RPT-complex Pr o of the form

3

4

P - eO U er—l U em—l U ex‘+m—l
r,m

U higher dimensional cells
r+l1 m ' .
to represent the loopspace Q{8D X 8) (see [1,2]). The maps a and o' define

homomorphisms

. (r) ~ ,
: Pr,m M_Q(Eru B) and «a': Pr m Q(Eru B),

3

which correspond to the adjoints of o« and o'. Observe now that the two homo-

morphisms
LA for . PI‘, m” Q(Er U B)
0 r-1 m=-1 ;
agree on the m-skeleton e u e ue and hence induce a map
~ o~ ey -1
Ao @ £a) - s - e U B)
as in [5].

Next we note that
do a,Ta) = 8o, T) © (a v ),

where @ Vv a is the folding map

induced by the mapping P into N;* by a [1]. Since S(Sr,fj is horizontal by
3

induction, we conclude the following.

(3.5) The mapping

a5 5,2 - s (e v B)

is horizontal.

Consider next the diagram
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{r)

R
R

e
R

> Q(Er U B)

)y

where the triangles are not necessarily commutative. One can easily see that

(cf. [5])

dp 2, fa) = dg @, a') - da',fa)

as maps of Sm-"r—l into Q(El: U B), or that

(3.6) [dle @, Ta)] = [dlg @, a")] + [d(a’, Ta)]
as elements of nm+r_1S2(E; U B). To compute [d(gr;, ;‘)], consider the commutative
diagram
P —2% 5 Q(E_ UB)
r,m
v J/ ~ Lf’r
p —2% o Q(E' UB)
r,m r

3

where ¢ is the loopspace map induced by the map

and a'_l is a fiber homotopy inverse to o'. Now let

oD o gs™)

be the map of ‘c)DrH into GO(Sm), the monoid of basepoint-preserving homotopy

equivalences of Sm defined by the equation
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oo alx, ) = (x, TWx)y),

for all (x,y) in D" T x s™.

LEMMA 3.7. The element {d(;;ra, @')] lies in

o m )
1m(1* ST mel S nr+m—lQ(Er U B)),

where i is the injection of s™ in El'r U B as the fiber above the basepoint.

Proof. Note that
(@) (e, id)] = [d(a's, @')] = [dle 2, a" )],

where id stands for the identity map of Pr m But d(oN-, id) is the adjoint of the

3

map

Ao, 1d) : 8T = o't x g™,

1
Since the two maps ¢ and id agree when projected onto st = i’;‘:Dr+ , it follows

that the component of d(o, id) which lies in aDH.1 is trivial. This implies that

d{oN-, id) factors through s™ -=which proves the lemma.

LEMMA 3.8. d(e', fa) is null-homotopic as a map of S ' into E' U B.

Observe that f induces a homotopy equivalence of pairs

Proof.
- ! E .
(Er+1UB’ErUB) (Er+1UB’ rUB)
But
r+m+1l

Er+1U B-(ErUB)uﬁD and

, . r+m+1

Er+1UB_(ErUB}U{3’D ,

where B and f' are the attaching maps for the (r+m+1)-cells (see (3. 2) above)
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Hence the maps

gt g : s E! U B

are homotopic, After a more or less straightfarward computation {(see [6]), one sees

that
d(pf, p') = d(ef, 2')

--which proves the lemma,

An immediate consequence of the preceding two lemmas is that
[do &, a)] = o,

since they imply that the element under consideration is both horizontal and lies in

the image of QSm. It follows now that we can extend o, to a map

@ : E —>Er+

r+l r+l1 1

such that ¢' |B

=i i ' i i ival
il identity and cpr+1| Er is the fiber homotopy equivalence

r+l
E ~ E1[ obtained by induction. According to [6], or computing directly in the spirit

of [3], one can find a fiber homotopy equivalence

i3 : — El
q’r-&l Er-{-l r+1

such that

?r1 I E1r+1 eY
The map (P;H’ however, may not satisfy Condition (3. 4)r of the induction assump-

tion without further modification. So consider the map
~a 3 . A e H
6(¢r+1’f) : Nr+l’/ QE',

where Nr+1/A is the difference complex and 6(5;_,_1, F} is the map induced by the

adjoints ;;;H and f of q;;_l_l and f respectively. Observe that
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Sor, . DN /A) = &o, D).

The necessary modification is intended to make 5(5;‘_}_1, ;} horizontal by choosing

rrl appropriately. So let us consider the diagram

¢

6(q’rH' f)

A — Qb
Nr+1/ @
8o, 10 D) n
QE'
where m is the composite
QE' —P, op S, op

introduced earlier. We wish to modify (p; so that the preceding diagram becomes

+1

homotopy commutative, To begin with, we change &;;+ X f‘) up to homotopy if

necessary, so that the diagram becomes strictly commutative when restricted to

Nr/A' Then the difference (in the sense of [4]) of the two maps 6(;1:‘+1, N) and

n o 6(5; fN) is a map

1’
h: (N, /AV(N/A)~ QE,

where (Nr+1/A)/(Nr/A) is the complex obtained from Nr+l/A by collapsing NI/A to
a point. But

m-r +

(N, /BN /B) = (& x (87T~ s v 8™ x ay/a x ),

as follows readily from the structure of Nr+l‘ Next we note that h can be factored

according to the diagram

h H
(N, /AN /A) —— o

m }

Ax S™T x A/(A x A)—s QF'

where the vertical map on the left is that induced by the folding map
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m m
S +r VSm+rv S T Sm+l~ and h is a map of two-sided A-spaces. Therefore, to

insure that h is homotopic to 0, it is enough to consider its restriction,

hs™ . g™ L gp,

Now the fact that p': E' - B admits a section implies that
T QE' = os" ®r_ . oB
mr = T Tmtr o

The component of [h] Sm+r] in Trm+rQSm is represented by a map h': Sm+r - qs™

which we regard as a map

B e G,(s™),

m
where GO(Sm) is the monoid of basepoint-preserving homotopy equivalences of S

with itself. By definition, let

B _>Er+

Pre1 ” Crel 1

be the fiber homotopy equivalence satisfying the following:
|E

(i) o =g, and

r+l'r T ¥r

(i) ¢ (%) =0, (% 0" (x)y),
where o' 1is the composite

r+1 r+l m m Sm

the map Dr“'-1 - Sr—l—1

being that which sends aDH'1 to the basepoint, One can now
easily check that Prr1 satisfies the two conditions of the induction assumption.

This proves the theorem,

4. Remarks.

Suppose that in Problem A the spaces E,E' and B are all smooth closed
manifolds and that f is a diffeomorphism. Then, assuming that dim B <m and
dim E > 5, one can adjust f up to diffectopy so that it takes B diffeomorphically

onto itself, where B is regarded as a smooth submanifold of E and EB' (this is
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possible since dim B <m). Now, by appealing to the Tubular Neighborhood Theorem,
one can change f up to diffeotopy so that it induces a map of closed disk bundles of
a tubular neighborhood E0 of B in E onto a tubular neighborhood E'O of B in E'.
Note that E1 =E - int EO and E'l = E' - E'0 are also closed disk subbundles of E
and E'. Hence one can find an orthogonal bundle equivalence ¢ : E— E' which
obviously need not be homotopic to f.

The preceding remark raises the question as to whether or not one can find
an equivalence ¢ : E— E' of the same nature as f. For example, if the given fibra-
tions were Top (Sm)—bundles, Top (Sm) being the group of homeomorphisms of Sm,
and f a homeomorphism, would it be possible to find a Top (Sm)—bundle equiva-
lence E—~E'?

It is not clear what the answer is, but it seems likely that further conditions

on f need to be imposed.
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