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WHEN IS A COMPLEX FIBERED BY A SUBCOMPLEX? 

BY 

S. Y. HUSSEINI(1) 

Introduction. Suppose that (B, F) is a pair of spaces of the homotopy type of 
countable CW-complexes. Problem 10 of Massey's list of 1955 [6] poses the ques- 
tion of when (B, F) is homotopically equivalent (i.e., there is a homotopy com- 
mutative diagram 

B F 

h 

B' - F' 

such that g and h are homotopy equivalences) to a pair (B', F') such that B' 
is fibered, in the sense of Serre, by F' with base-space Y, for some suitable Y. 
If B' is contractible and F' fibres B', then F' (and hence F) is of the homotopy 
type of the loopspace Q(Y) (see e.g. [9]). Conversely, if B is contractible and if 
Fis of the homotopy type of a loopspace Q( Y), then there is a pair (B', F') homo- 
topically equivalent to (B, F) such that F' fibres B' with base-space Y (see [1], 
[11]). In both cases, Y is of homotopy type of the projective space of F, which 
is inductively defined by means of Hopf fibrations. Since projective spaces and 
Hopf fibrations have proved useful in the study of H-spaces, I have tried to 
preserve these features in the solution of the general problem which I offer in 
this paper. 

The general idea of the solution is to consider first QA(B, F), the space of paths 
beginning in some fixed point b? and ending in F, as a right Q(B)-space, and 
then to investigate certain multiplications on Q(B, F) which extend this action. 
These multiplications yield fibrations of the Hopf type, in which the total spaces 
are the manifold joins of F with itself when F is a suspension and are "twisted" 
manifold joins of F in general (see ?6). One also gets spaces which resemble the 
classical projective spaces; in particular, one gets a filtration of Y (or rather a 
space of the homotopy type of Y) by subspaces determined by F and B (see ?6). 

The solution is given in the context of constructions of the reduced product 
type (RPT-constructions for short). To be able to handle the right action of Q(B) 
on Q(B, F), one needs a relative theory of RPT-constructions. This can easily be 
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developed as follows. (All complexes are supposed to be special, i.e., countable 
CW-complexes with a single 0-cell.) Suppose A is an H-complex which is a limit 
of RPT-complexes [3]. Then A, like RPT-complexes, is essentially an associative 
H-complex with a nondegenerate multiplication in the sense that the product 
of two cells of A is again a cell of A. The domain of the theory is the category 
whose objects are complexes containing A as a subcomplex and on which A acts 
on both sides nondegenerately in the sense given above. (The objects are called 
two-sided A-complexes.) The maps of the category are cellular maps which respect 
the action of A. (The maps are called two-sided invariant maps.) Having established 
the category, one proceeds in a manner similar to that of the absolute theory 
as developed in [3]. Thus if X is a two sided A-complex, then a set of A-relations 
in k variables on X, 

AtMX) = (Mo(X), Mi(X), ..., Mk(X); pp,q, A), 

is given by a two-sided A-complex Mk(X) filtered by two-sided A-subcomplexes 
Mp(X), such that MO(X) = A and M1(X) = X, and by two-sided invariant maps 

1Up,q which are associative, with a two-sided identity, and take Mp(X) x Mq(X) 
into Mp+q(X) nondegenerately. (If A consists of a single 0-cell only, then this 
notion of a set of relations is that given in [3] for the absolute case.) One also 
shows, as in the absolute theory, that X generates a universal H-complex modulo 
any Skk(X). The details of the theory are given in the first and third sections. 

The application of the relative theory of RPT-constructions to the problem 
mentioned at the beginning of this introduction is a continuation of the refor- 
mulation of Stasheff's An-structures given in [3]. First, replace Ql(B) by a complex 
A which is a limit of RPT-complexes and Q(B, F) by a right A-complex U. It turns 
out that the existence of a fibration 

F'-+B'-+ Y 

such that (B', F') is equivalent to the given pair (B, F) implies, first, that 
U - Q(B, F) is of the homotopy type of a two-sided A-complex X and, second, 
that X admits a set of A-relations for all n ? 1 

Ign(X) = (MO(X), M(X), ..*-., Mn(X); 1p,q' A) 

such that Mi is a deformation retract of M +1, where 1 < i < n - 1, the defor- 
mation being given by two-sided invariant maps. (X is said to admit a Qn-structure 
if it admits a set of A-relations such as X"#(X); if A consists of one 0-cell only, 
then Qn- and An-structures agree (see [3]). Conversely, the existence of a two-sided 
A-complex X of the homotopy type of U - Q(B, F) and of a Qn-structure on X 
imply together the existence of a fibration, 

Fn-+ B' -Yn 
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such that the pair (B', F) is equivalent to the pair (B, F) in a range that increases 
with n (see ?5). This reduces Massey's problem 10 to a problem on the existence 
of Q,-structures. 

To get the fibrations of the Hopf type from the set of relations defining a 
Qn-structure on X U Ql(B, F) demands a point of view quite different from 
the one usually employed. This point of view can be roughly described as follows. 
Suppose G is an associative H-space and consider the kth stage Hopf-fibration of G, 

(I) G Ek k>Pk' 

where Ek is the (k + 1)-fold join of G with itself and Pk = Ek/G, the so-called 
projective space of G (see [1], [11]). Then Pk induces a fibration 

(II) Q~~~~~~KPk - >l 

from the path-space fibration over Pk, 

QlPk P(Pk) Pk. 

Note that & is an Q(Pk)-space of the homotopy type of G, 4' equivalent to ik, and 
Pk the classifying map of the fibration (II). In Massey's problem, M1(X) = X is 
analagous to G, and kM, to Q?Pk where kM is the RPT-complex generated by X 
modulo Ak(X). What I do here is construct (II) first and then obtain (I) from it 
by constructing the classifying map Pk. To construct (II) one must replace M1 by a 
homotopically equivalent right kM-complex Nk and then show how in general a 
right A-complex N is quasi-fibered by A over a base-complex N//A similar to an 
orbit space. The latter problem is answered by Theorem (2.2) of ?2-a result of 
independent interest which plays a primary role in this work. The complex Nk is 
constructed in ?8. Now, Theorem (2.2) shows that Nk is quasi-fibered by A over 
the orbit complex Nk/I A. The complex Nk /A is shown to be of the homotopy 
type of the (k + 1)-fold join of F with itself, when F is a suspension, and is the 
"relative" (k + 1)-fold join of M1 //A in general (see ??6 and 8). The quasi- 
fibration of any right A-complex N over N// A is shown, in ?4, to admit a clas- 
sifying map. One obtains (I) from (II) by taking Pkto be the classifying maps of (II). 

I would like to express my thanks to the referee of this paper for his suggestions 
which contributed to its better organization and for the title, a more descriptive 
one than the original. 

1. Preliminary notions and definitions. Suppose A is a special complex in the 
sense of James, i.e., a countable CW-complex with a single 0-cell a?. Take a0 to 
be the basepoint of A. Assume that A is an H-complex with multiplication a. 
(Recall that, by definition, a is cellular, associative, and has a0 as an identity.) 
Suppose also that A is filtered by subcomplexes 

AO={a?} c A, c ... c Ap c ... 
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and x takes Ap x Aq into Ap+q for all p and q. Write An(X) for An, where A1 = X. 
Then we say that A is a complex of the reduced product type (an RPT-comiplex 
for short) if, and only if, the set 

-Wk(X) = (A0(X),A1(X), ...,Ak(X); op,q), 

where ap,q = Of j Ap(X) x Aq(X), is a set of relations in the sense of [3], for all 
k _ 2. If, moreover, there is an integer m such that 

Ap(X) = U Xr,s(Ar(X) x A,(X)), 
r+s =p,r,s> O 

for all p > m, then we say that A is of rank < m. Otherwise we say A is of 
infinite rank. (This notion of an RPT-complex is slightly different from that 
given in [3]. An RPT-complex in the sense of [3] is always of finite rank. Here we 
are going to admit RPT-complexes of arbitrary rank.) 

Suppose that B is a special complex containing A as a subcomplex and that it is 
filtered by an ascending sequence of subcomplexes 

Bo = A c ..cBm c . 

Assume that there is a cellular mapping 

(1.1) i: B x A-+B, 

with the following properties: 
(1.1)a the basepoint a' of A is the identity, i.e. il(b,a') = b, for all b in B; 

(l.l)b i is associative, i.e. ( x 1) = j(l x ii); and 
(1.1)c i' restricted to A x A is just x, the multiplication in A. 

So far, what we have is a complex B and an action on the right by A on B. 
However, one must restrict one's attention, in the context of reduced products, 
to those actions which are nondegenerate in the sense that the product of a cell in B 
by a cell in A is a cell in B. The precise condition is the following: 

il takes Bm, x An to Bm+n and imbeds the complex [Bm,An] obtained by 
(1.1)d attaching Bm x An to Bm+,,1- by the map f I Bmi- x An UBm x An_l, 

into Bm+n as a subcomplex. 

DEFINITION (1.2). Suppose B is a special complex and A an RPT-complex 
imbedded in B as a subcomplex. B is said to be a right A-complex if it isfiltered 
by an ascending sequence 

Bo=A c ... c Bm c*** 

and there is a cellular mapping 

il: B x A-+B 

subject to the conditions (1.1)a, *"(l.l)d given above. 
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Similarly, we define a left A-complex B to be a filtered special complex with a 
mapping 

b:A xB-+B 

subject to conditions similar to (1.1)a, * *, (lIl)d given above. A two-sided A-complex 
B is, by definition, a left and right A-complex such that the left and right actions 
of A on B commute with each other. 

In studying A-complexes one can vary the given filtration to a certain extent 
(see ?3 below). In fact, one can always replace an arbitrary filtration by the one 
given by its skeletons, as can be easily checked. Note also that nondegeneracy is 
defined by means of the filtration, rather than by requiring that the product on 
any two cells be also a cell, because quite often one gets naturally defined filtrations 
(see ?5), with which it is more natural to work. Note also that the filtrations of the 
left and right actions a two-sided complex need not be the same. 

An example of a two-sided A-complex is given by taking B = A and letting 

il and 4 be the multiplication cx in A. Other examples are obtained by taking 
first a special complex C containing A as a subcomplex, and then setting 

B=AuC xA, 

where the complex C x A is attached to A by the multuiplication x6 of A. Clearly 
B is a right A-complex with A acting naturally on the right. Similarly, one can 
define A u A x C and A UA x C x A. The former is a left A-complex, and 
the latter is a two-sided A-complex. In fact, any A-complex is filtered by sub- 
complexes of one of these three types. To see this, suppose A is an RPT-complex 
of arbitrary rank, and let B be a right A-complex. By definition, let B1 be the 
smallest subcomplex of B which contains A and the cells of B - A of lowest 
dimension. Then the complex 

B=AUB1 xA, 

where BL x A is attached to A by the multiplication A x A -> A, is a subcomplex 
of B, as follows easily from (l. l)d . Suppose we have been able to define a sequence 
of subcomplexes of B, 

Bo=AcBA c... cBm, 

and a sequence of right A-subcomplexes of B, 

Bo = A c B1, ca ... c Bm,, 
such that 

(i) i DBi- 1 and 

(ii) B = Bi_1uB_ix A, 
where the attaching map is given by the action of Bi -1 x A -+Bi 1 . If B. #A B, 
define Bm+ 1 to be the smallest subcomplex of B containing B.. and the cells of 
B - Bm of smallest dimension. Now, if we let 
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Bm+1 = Bm UBm+l X A, 

where the attaching map is given by the action of Bm x A Bm, we get what 
we wish. Hence we have the following proposition. 

PROPOSITION (1.3). Suppose B is a right A-complex, where A is an RPT- 
complex of arbitrary rank. Then there is a sequence of subcomplexes of B, 

A-BoBc,c ZcJ Bmcz*, 

and a sequence of right A-subcomplexes of B, 

ABo cB1o ... cB** ,B. a. 
such that 

(i) Bm Bm; 
(ii) Bm-Bm U BmX A, m 2 1 

(the attaching map being the action Bm- I x A - Bm- 1); and 
(iii) B = limmBm. 

Similarly, one can prove the following proposition. 

PROPOSITION (1.4). Suppose B is a two-sided A complex, where A is an RPT- 
complex of arbitrary rank. Then there is an ascending sequence of subcomplexes 
of B, 

A Bo cB, c. - r-B.fc- 

and an ascending sequence of two sided A-subcomplexes of B, 

A = Bo (c B1 c ... c Bm c* 
such that 

(i) Bm_ Bm; 

(ii) Bm=Bm_ UAxBm xA,m>1 
(the attaching map being the action A x B.-, X A + Bm_i); and 

(iii) B = limmBm. 

There is a similar representation for the left A-complexes. Note that these 
representations depend on the cellular decomposition of B and not on the filtrations. 

Suppose B is a right A-complex and B' a right A'-complex. By definition, a 
right invariant map 

f: B-*B' 

is a cellular map of B into B' such that 

f b(x,a)= = (f(x)j(y)), 

where f and 4' are the actions of A and A' on B and B', for all x in B and a in A, 
and f IA is a homomorphism of A into A'. Similarly we define a left invariant 
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map, and a two-sided invariant map. A right (left, two-sided) A-map f is a right 
(left, two-sided) invariant map such that A = A' and fj A = 1. 

Suppose next that B and B' are, respectively, right and left A-complexes, and 
denote the actions of A by 4 and i'. We wish to join B to B' along the "orbits" of 
A. Consider, therefore, the special complex 

B x A xB'. 

Suppose xl = (b1, a,, b') and x2 = (b2,a2, b') are two elements of B x A x B'. 
Then we shall say that xl is an amalgam of x2 if, and only if, 

bi = b(b2,a2), a= ao, and b' = b', or 

'= 1(a2,b'), a,= ao, and b1=b2, 

where a,,a2 are in A, bl,b2 in B, and b',b' in B', and a' is the basepoint of A. 
This notion of amalgamation is similar to that of [3] and generates in a similar 
manner an equivalence relation. Let B XAB' be the quotient space of B x A x B' 
modulo this equivalence relation, and give B XA B' the quotient topology. Clearly 
B XA B' is a covariant functor in two variables. The following result can be proved 
in the same manner as Theorem (2.4) of [3]. 

THEOREM (1.4). Suppose B and B' are right and left A-complexes. Then the 
cellular structure of B x A x B' induces the structure of a special complex on 
B XAB'. Also, if B and B' are two-sided A-complexes, then the left action of A 
on B and the right action of A on B' make B XAB' a two-sided A-complex. 

By definition, B XAB' is the A-cartesian product of B and B'. Observe that the 
imbeddings of B and B' as the first and last factor in B x A x B' induce imbed- 
dings of B and B' in B XA B', as subcomplexes whose intersection is A. Note also 
that if A = {a?}, a single 0-cell, then an A-complex is just a special complex, and 
B xAB' is the usual cartesian product. 

2. The quasi-fibration of an A-complex over its orbit space. Recall that a map 

p: E - B 

of the space E onto the space B is a quasi-fiber map if, and only if, 

p*: 7ei(E, p -'(x), y) = ri(B, x), 

for all x in B, y in p-1 (x), and i ? 0 [2]. Also recall that if A is an associative 
H-space, then a left principal quasi-fiber map for A is a quasi-fiber map 

p: E -+ B, 

together with a left action of A on E, 
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l: A x E -E, 

such that 

(i) ii(a',e) = e, 
where a' is the 0-cell of A and e is in E; 

(ii) il(A x e) c_ p-'(p(e)), 
p 1(p(e)) being the fiber through e; and 

(iii) the mapping 

fle: A -+ p'(p(e)) 

which takes a to il(a, e) is a weak homotopy equivalence [1]. Similarly one defines 
a right principal quasi-fibration. 

The object of this section is to define the complex of orbits of A in N and to 
show that the natural projection of N on its orbit complex is a quasi-fibration. 

Suppose A is an RPT-complex of arbitrary rank, and let N be a right A-complex 
as in ?1. Denote the action of A on N by q. Two elements n and n' of N are said 
to be equivalent if, and only if, there is a chain of elements n1, * , n, in N such 
that, for every consecutive pair nS, n, +1, there is an element a in A such that 
either il(n, a) = n,+ 1 or il(n,+ 1, a) = n,. Denote the quotient space by N// A, 

and give it the quotient topology. N //A is, by definition, the orbit complex of i . 
Suppose p is the natural projection of N onto N//A. Now, according to Prop- 
osition (1.3) of ?1, there is an ascending sequence 

(2.1) No c . NmcCN 

of right A-subcomplexes of N such that 

(2.1a) No = A, and Nnz = Nm, I U Sm x A, m > O, 

where Nm is the smallest subcomplex of N containing Nm1 and the cells of 
N - Nm 1 of lowest dimension. We conclude from this that the cellular structure 
of N induces the structure of a special complex on N// A and that the natural 
map, 

p: N- >N//A, 

is cellular. 

THEOREM (2.2). Suppose N is a right A-complex. Then the natural pro- 
jection 

p: N- >N//A 

is a principal quasi-fibration. 

Theorem (2.2) is a special case of the following theorem. 

THEOREM (2.2'). Suppose N and N' are right and left A-complexes. Then 
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(i) the map 

p':N XAN'-* N//A, 

induced by the projection on the first factor, is a quasi-fibration with fibre N'; 
and 

(ii) the map 

y: N + p- (pn)) 

which takes the point n' to n xAn', is a homotopy equivalencefor all n in N. 

Proof. Consider the ascending sequence (2.1) given above. If m = 0, then 
No//A=a0, the 0-cell of N//A, and, hence 

pO:No XA N'-d, POI-No 

is trivially a quasi-fibration; and, since A is arcwise connected, condition (ii) 
is also satisfied. Suppose we have proved that the map 

PmNm xA.N'-+Nm//A P, P|Nm 

is a quasi-fibration with fiber N' and such that (ii) of the theorem is satisfied 
when N = Nm. We wish to do the same thing for the case m + 1. Note that 

Nm+1-Nin= U bn- x A 

where D'n ranges over the cells of 'Rm+ -Nm and bk denotes the interior of 
Dk. Hence, 

Nm+1 XAN' Nm XA N'U brxN. 

Moreover, we can write 

Nm+i//A = UUV, 

where 

V= p II (U Dnr(3/4) x N') 

(Dnr(3/4) being the n,-disc of radius 3/4), and 

U = PI+i(Nm+1(1I4) XA N'), 
where 

Nm+i(1/4) = Nm U U (Dnr - bn,r(1/4)) x A. 

Clearly Vis a distinguished set. Hence, to finish the proof we need to show that U 
is also distinguished since U r) V is distinguished (see (2.2) of [2]). But, according 
to (2.10) of [2], we need prove only that the map 

y.: N' -+ PI-+l(p + l(n)) 
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which takes n' to n XA n', for all n in Nm+i is a homotopy equivalence. (This 
also proves the assertion (ii) of the theorem when N = Nm+.+) Observe that 

7 t+'(p' (n)) = pm'+(pm+ l(n)), 

if n is in Nm. In this case the induction assumption implies y,, is a homotopy 
equivalence. If n is in Nm+ I - Nm, then 

n = (n, a), 

for some n- in NSm+1 - Nm and a in A. Hence y4 takes n' to (ni,an'). Since A is 
arcwise connected and 

Pm-1 (Pm + (n)) = n x N', 

Yn is a homotopy equivalence. This establishes the induction step and hence 
the theorem. 

REMARK (2.3). Suppose N' is a left A-complex. Then one can define an equiv- 
alence relation on N', as was done for right A-complexes. Denote the quotient 
space by A\\N'. Then A\\N' inherits from N' a natural cellular structure, and 
the projection 

p' : N'- A \\ N' 

is again a principal quasi-fibration. Moreover, if N is a right A-complex, then 
the projection 

N XA N'- A \\ N' 

induced by the projection on the second factor is a quasi-fibration with fiber N. 

3. Constructions relative to an RPT-complex. Very often one has a complex 
X on which an RPT complex A already acts, and one is interested in studying 
multiplications on X which extend to given action of A. The absolute theory 
of RPT-constructions given in [3] does not take care of this problem. One needs 
a relative theory. The object of this section is to develop such a relative theory. 

Suppose A is an RPT-complex of arbitrary rank as in ?1. Assume that X is 
two-sided A-complex, and let 

MO(X) c MA(X) C ... c Mk(X) 

be an ascending sequence of two-sided A-complexes such that MO(X) = A, 
M1(X) = X, and Mp(X) is a subcomplex of MP+ l(X) for k > p > 0. Suppose 
also that there is a two-sided invariant map, 

(3.1) jUpq: Mp(X) XAMq(X) + Mp+q(X) 

for all integers p, q > 0 with p + q < k, such that the following conditions are 
satisfied. 
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(3.1)a The map j/p,qIMp(X) UMq(X) is the folding map; 

(3.1)b any two maps 1p,,q and ,up,, ,q agree on their common 
domain of definition; and 

the maps Iup,q are associative, i.e. 
(3.1), ,up+q,r(Yp,q X 1) = Ilp,q+r(l X Pq,r) 

whenever the mappings are defined. 

Notice that Mk(X) is a two-sided A-complex filtered by two-sided A-subcom- 
plexes and with a partially defined multiplication which is associative and which 
extends the action of A on both sides, as (3.1)a easily implies. If A = {a0}, then 
this is precisely the situation described in [3]. Again as in [3], we need another 
condition on *pp,q to guarantee that the product of a cell of Mp(X) by a cell of 
Mq(X) is also a cell of Mp+,q(X). So, proceeding in a similar fashion, we note that 
the mappings Yp,q- - and ,up 1 ,q induce together a cellular mapping 

p,q:Mp XAMq1_ UMP_1 XAMq, Mp+q_1, 

where Mk stands for Mi(X). By definition, 

[Mp(X),Mq(X)]A = Mp+q_ 1(X) U bp,qMp(X) XA Mq(X) 

where the complex Mp(X) XAMq(X) is attached to Mp+q 1(X) by the mapping 
6p,q. It is easy to see that [Mp(X), Mq(X)]A is a two-sided A-complex and that it 
contains Mp+q 1(X) as a two-sided A-subcomplex. The desired condition is: 

(3.1)d the map ,up,q induces an imbedding of [Mp(X),Mq(X)]A into Mp+q(X) 
as a two-sided A-subcomplex, for all p, q 2 0 and p - q < k. 

DEFINITION (3.2). Suppose X is a two-sided A-coinplex, and let 

A = MO(X) c M1(X) = X c ... c Mk(X) 

be an ascending sequence of two-sided A-complexes. Assume that for every pair 
of integers p, q > 0 such that p + q < k, we are given a two-sided A-mapping, 

,up q: Mp(X) XA Mq(X) -+ Mp+q(X)i 

subject to the conditions (3.1)a,-,(3.1)d given above. Then we say that 

.,#k(X) = (MO(X) ...-, Mk(X); JLp,q, A) 

is a set of A-relations in k variables. 
Note that if A = {a?}, then this notion reduces to that of [3]. Thus any set of 

relations in the old sense is a set of {a?}-relations in the sense of Definition (3.2). 
One can relativize an absolute set of relations in other ways, and sometimes it is 
both natural and necessary to do so. In fact, let 

-4'k(X) (MO(X) ...i, Mk(X) Itp,q) 
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be a set of relations in the sense of [3]. Let A = X., the reduced product complex 
of James [4]. By definition, let 

Mip = A UyA x Mpx A, 

where Mp is the complex A u Mp(X) obtained by attaching A = X.A to Mp(X) 
along the subcomplex Xp and the attaching map 

y:A x A xA--M 

is the one induced by the multiplication in A. Observe that Mo7 = A. Put Ml= 
and Mp(X)= Mp. Denote by #p,q the two-sided invariant maps 

,up,q: Mp(X) XA Mq(X) Mp+q(X) 

induced by tp,,q Then the set 

-fk( ) = (MO(i), Mk(Z); #ip,q,A) 

is a set of A-relations in k variables equivalent to the original set Sfk(X) in the 
sense that it does not restrict the multiplications ,up,q any further (see end of 
section). Clearly one can, in a similar manner, relativize the set S4k(X) with 
respect to any of the RPT-complexes 'M generated by X modulo the subsets 

-&m(X) = (MO(X) ... M X(X); Ilp,q), m ? k - 1. 

Under certain circumstances the converse is also true. We shall indicate how it 
can be done by discussing a simple situation. Suppose A = XO,, the reduced 
product complex of a special complex X, and assume that 

If2(X-) = (M0(2), M1(T), M2(?); ftp,q,A) 

is a set of relations on I in two variables such that 

,V=M,(X_)=AUf x DTxA, 

where D 'is the r-disc and the attaching map 

f:AxSr-lxA-3A 

extends the multiplication in A. Assume also that 

-M2(P= [MI(f),M1GV)1A. 

To define an equivalent absolute set of relations, let k be the smallest integer such 
that f(Srl) c Xk, and put 

Mk(X) = Xk U fD 

Then the set 

-4'k(X) = (MO(X) *.* Mk(X); X p,q) 
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where Mo = xo, the 0-cell of X, M1 = X, M = XP, for p < k-l, Mk is as above, 
and I1p,q are the natural maps, is a set of relations in the absolute sense (see [3]) 
equivalent to the given set Xk'2(X). 

DEFINITION (3.3). Suppose that 

.kk(X) = (MO(X), *-*, Nk(X); iUp,q, A) and 

-14(X ) = WOW)l.IMk(X'); 9',q,A) 

are two sets of two-sided A-and A'-relations on X and X'. A mapping 

f: AM(X) + Jk(X ) 

is a tuple of two-sided invariant maps (fo, .-,fk) such that 

p4, q(fp Xfq) =Jfp+qPU,q, 

for all p and q such that p + q ? k. 
Again this concept reduces to that of [3] in the case A = {a?}. 
Suppose next that M is an H-complex with multiplication it, and assume 

that M contains an RPT-complex A of arbitrary rank as a sub H-complex. Suppose 
also that M is filtered by an ascending sequence of two-sided A-complexes 

A=MO cMl a... c:Mkc ..., 

and assume that mt takes Mp XA Mq into Mp+q, for all p and q > 0. Denote 
M1 by X, and write M,(X) for Mp for all p > 0. Then, as in the absolute case 
(see ?1), we say that M is an RPT-complex relative to A if, and only if, the set 

lk(X) = (Mo(X), M1(X), ..., Mk(X); /lp,q) A) 

where /lp,q is induced by u on Mp(X) XA Mq(X) is a set of A-relations on X, 
in the above sense, for all integers k _ 2. If, moreover, there is an integer m such 
that 

&p(X)= U lr,s(Mr(X) XAMs(X)) r,s>O, r+s=p, 

for all p > m, then we say that M is of rank < m. Otherwise we say that M is 
of infinite rank. Here also an RPT-complex relative to {a?} is just an RPT-complex 
in the absolute sense, as defined in the first section. 

Next we wish to show that every set of A-relations generates an RPT-complex 
relative to A. The construction will be seen to be a modification of the one given 
in [3] for the absolute case. 

Suppose that 

AM(X) = (MO(X),M *-- Mk(X); yp,7 A) 

is a set of relations as above, where A is an arbitrary RPT-complex. By definition, 
the index of an element a in A is 0, and the index of an element x in Ml - Mi- 
is i. If 
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U=(X1,,__,X.) E(Mk)n, 

where (Mk)n is the n-fold cartesian product Mk x Mk x --X Mk, then the index 
of u is 1 index (xi). Consider now the set 

Sn = {u E (Mk)n I index(u) ? n}. 

It can be easily seen that Sn is a two-sided A-subcomplex of (Mk) . If 
u=(x1, ***,xn) and u' = (xl, ...,x') are in (Mk)n, then u' is said to be an amalgam(2) 
of ut if, and only if, there is an integer p < n such that 

Xq =X ,if q<p, or q>p+l, 

t(xp, xp 1) = x4, and 

ao = xi 

where ao is the 0-cell of A and p stands for the appropriate multiplication of 
.&k(X). The notion of amalgamation generates an equivalence relation on Sn 
(see [3]). Denote the quotient space by Mn(X), and give it the quotient topo- 
logy. Note that A acts on the left and right on M'(X) and that the two actions 
commute with each other. Since the mappings [tp,q are associative, the juxta- 
position map of Sm x Sn into Sr+n induces a continuous mapping 

(3.4)rs 'Mr, _+ A SX M+ s(X). 

Note that the mappings Yp4,q induce a mapping 

r,S MX(X) XA Ms-1I(X) UM-1(X) XA MS(X)+ Mr+s1(X) 

By definition, let 

(3.5)r,s [M(X) , MS(X)]A = Mr+s- 1(X) tJ6r,,Mr(X) x A MS(X). 

Then A acts on both sides of [Mr(X), M(X)]A, and the actions commute with 
each other. 

THEoREM (3.6)rs- Mn(X) inherits naturally from Sn a cellular structure 
which makes it a two-sided A complex with the following properties: 

(a)n there is a natural imbedding fin-, of M'-1(X) in M'(X) as a two-sided 
A-subcomplex; 

(b)n if r + s = n, then the map !tr,s of (3.4)r,s is cellular, and [Mr(X), Ms(X)]A 
is a two-sided A-complex imbedded in M'(X) as a two-sided A-subcomplex, the 
imbedding being induced by 4r,, of (3.4)r,s; 

(C)n Mn(X) is naturally isomorphic to Mn(X) of .4k(X) as a two-sided A-com- 
plex for n _ k, and Itr,s is equal to IYr,s of Sk(X) as a two-sided invariant 
map for r +s?k. 

(2) Cf. definition of A-cartesian product in ?1. 
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Note that this theorem is just Theorem (2.4), of [3], when A = {a0}. The 
proof is also similar to that case, and therefore will not be given. 

From here on write Mp(X) and Itr,s for M'(X) and It',,, and identify 
[Mr(X),MS(X)]A with its image in Mr+s(X). 

COROLLARY (3.7). Suppose n > k ? r ? 1. Then, if r < s, 

[Mn - v, MS]A (- [Mn - r~ Mr]A 

is isomorphic to [Mn_sMMsFr,Mr]A. Moreover, Mn is the union of the two- 
sided A-complexes [Mn_r, Mr]A, for r = 1, * ., k. 

By definition, let 

M(X) = lim Mn(X). 
n 

Then M(X) is certainly a two-sided A-complex, and the two-sided invariant 
mappings jr4,s of (3.4)r,s induce a two-sided invariant map 

it: M(X) XA M(X) + M(X). 

THEOREM (3.8). M(X) with the multiplication It is an RPT-complex relative 
to A. 

Suppose next that B is an associative H-space on which A acts on both sides; 
i.e., the left and right actions of A commute with each other and are associative, 
and the 0-cell of A acts like the identity. (If B is an H-complex, then the product 
of a cell in B by a cell in A is not required to be a cell of B.) Then by a map 

f: S4k(X) -+ B 

of Xk into B, we mean a tuple of two-sided invariant maps (fo, .. ,fk), where fp 
takes Mp(X) to B, and 

fp = (fq x fr), p = q + r, 

P being the multiplication in B. 

THEOREM (3.9). Suppose that 

/#k(X) = (MO(X), * *, Mk(X), Upq, A) 

is a set of two-sided A-relations on X, and suppose that 

f: /Ak(X) -B 

is a map of the set Xk(X) into the associative H-space B on which A acts on 
both sides. Then there is a two-sided invariant homomorphism, 

foo: M(X) -e B, 
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uniquely determined by f, where M(X) is the RPT-complex generated by X 
modulo Sk(X). Moreover, f0, is cellular if f is cellular and B is an H-complex. 

The proof is straightforward. 
In the first part of the section we indicated how the absolute and relative relations 

correspond to each other. Suppose 

-&2(X) = (MO(X) M1)X,(12(X); Up,q) 

is a set of absolute relations; i.e., MO(X) = {a0} and M1(X) = X. Assume also 
that M2(X) = X2 U D , where X2 is the 2-fold reduced product of X and D" 
is the n-disc. Then, as above, X42(X) corresponds to a set of A-relations 

-&207) = (Mo( ) Ml (), M2( x); f'p,q' A) 

where A = X0,, M1(T) = A u A x D nx A, and M2(2) = [Ml(X),Ml(X)]A. 
Here Ml(,V) is formed by attaching A x Dn x A to A by the multiplication 
A x A x A -+ A. One can see easily that the RPT-complex M(X) generated by X 
modulo X42(X) is naturally isomorphic to the RPT-complex M(X) generated by l 
modulo X2(V)- 

4. The universal quasi-fibration of an RPT-complex. One knows that an asso- 
ciative H-space A always has a principal quasi-fibration 

PA: E(A) -+ B(A) 

such that the total space E(A) is aspherical [1]. (Recall that such a principal 
quasi-fibration is called universal.) This quasi-fibration is, however, not quite 
appropriate to the needs of this study, since it is not possible in general to tell if 
the restriction of a quasi-fibration to a subset of the base is also a quasi-fibration. 
The aim of this section is to construct a universal quasi-fibration (for any RPT- 
complex) which is more appropriate in that respect for the cases under consideration 
here (see Corollary (4.5) below). The construction is based on the following 
theorem. 

Suppose A is an RPT-complex of any rank (see ?1), and assume that 

f: L -A 

is a cellular map of some special complex L into A. By definition, let 

MO(X) = A, and M1(X) = X = A UA xA' x A, 

where A' = AU TL(TL being the cone on L) and A x A' x A is attached to A 
by the multiplication A x A x A -> A. Clearly MO(X) and M1(X) are two-sided 
A-complexes; and, if we put M2(X) = [MI(X),Ml(X)]A, then the set 

(4.1) -42(X) = (Mo(X) Ml(X), M2(X); ,p,q, A), 
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where itp,, are the natural maps, is a set of A-relations in the sense of ?3. Suppose 
M(X) is the RPT-complex generated by X modulo X'2(X). Assume now that 
E(A) is a contractible right A-complex, and denote E(A)//A by B(A). Then 

PA: E(A) -- B(A) 

(pA being the natural projection) is a principal quasi-fibration according to Theo- 
rem (2.2). We wish to imbed E(A) in a contractible left M(X)-complex E(M) in 
such a way that the action of M on E(M) extends the action of A on E(A). Consider, 
therefore, the right M-complex E(A) XAM, and let 

pA: E(A) XA M > B(A) 

be the quasi-fibration induced by the projection on the first factor. Observe that 
we can extend f to a map 

g:L=S#L-+E(A) XAM 

which is equal to the natural map g of TL into M c E(A) x AM on the upper 
cone and to a contraction of f, 

g_: (TL, L) -+ (E(A), A), 

on the lower cone. (S # L is the suspension of L.) Then 

(4.2) E(M) = E(A) XA M U.8 TL x M, 

where the attaching map, 

f,:L x M-+E(A) XAM, 

is the map that takes (x, y) to g(x)y and is clearly a right M-complex, and the 
natural projection, 

PM: E(M) - B(M) = E(M)// M 

is a principal quasi-fibration for M. Observe also that 

(4.3) B(M) = B(A) U. TL, 

where 7 is the composition of g and pA. 

THEoREm (4.4). Suppose E(A) is a contractible right A-complex where A 
is a given RPT-complex, and let M be the RPT-complex relative to A which is 
determined by (4.1). Then the complex E(M) of (4.2) is a contractible right 
M-complex which contains E(A) as a subcomplex, the imbedding being of a 
right A-complex into a right M-complex. Moreover, in the induced diagram 



266 S. Y. HUSSEINI [August 

E(A) ---> E(M) 

PA {PM 

B(A) - -> B(M) 

the vertical maps are universal quasi-fibrations, and B(M) is obtained from 
B(A) according to (4.3). 

We need prove only that E(M) is contractible, which we shall do a bit later. 

COROLLARY (4.5). Suppose A is an RPT-complex. Then there is a universal 

quasi-fibration, 

PA: E(A) -+ B(A). 

Moreover, if N is an RPT-subcomplex of A, then E(A), B(A) and PA can be 
constructed so that 

pAj(K) = E(N) XNA, 

where K is a subcomplex of B(A) and 

(PA | E(N)): E(N) -* K 

is a universal quasi-fibration for N. 

The corollary can be proved easily by expressing A as the ascending sequence 
of RPT-complexes 

2AC9Ac3 C_Ack... 

where 2A XO,,, for some special complex (X.O being the reduced product of 
James), and "A is obtained from k- 'A by adding one indecomposable cell to 
k- 'A, in the same manner that the RPT-complex M(X) is obtained from A 
by adding the cone on L (see (4.1)). Now, by definition, let 

E(2A) = 2A u TX x 2A, 

where TX is the cone on X and TX x 2A is attached by 2a I X x 2A (2C being 
the multiplication in 2A). It is easy to see that E(2A) is contractible; and, if we 
make 2A act on the right on E(2A), then E(2A) becomes a right 2A-complex, 
and 

P2 E(2A) _ E(2A) /2 2A = B(2A) = SI# X 

is a universal quasi-fibration for 2A. Now, by Theorem (4.4), we can find an 
ascending sequence 
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E(2A) ca *. c E(kA) C ... 

{P2 Pk 

B(2A) ca : cB(kA)c.. 

where Pk is a universal quasi-fibration for kA. 
By definition, let 

E(A) = lim E(kA), B(A) = lim B(kA), and PA lim pk. 
k k k 

Then the map 

PA: E(A) -> B(A) 

is a universal quasi-fibration for A (see (2.1) of [2]). 
The fact that E(A) can be constructed so as to satisfy the second assertion 

of the corollary can be shown by constructing E(N) first and then applying The- 
orem (4.4) to a filtration of A by RPT-subcomplexes starting with N and such 
that each RPT-subcomplex is obtained from the preceding one by adding one 
indecomposable cell only. 

Similarly one can construct a universal quasi-fibration on which A acts on 
the left. 

Proof of Theorem (4.4). As we mentioned above, we need prove only that 
E(M) is contractible. So let P(B(M)) be the space of Moore paths based at the 
0-cell bo, and let 

q: P(B(M)) -* B(M) 

be the fibration that sends a path to its end-point. The fiber is the space of loops 
Q(B(M)). Observe that Q2(B(M)) is an associative H-space and that it acts on 
the right on P(B(M)). We can find a homomorphism, 

u: M -(B(M)) 

which is a homotopy equivalence [3]. It is not hard to see that u can be extended 
to a map 

v: E(M) -+ P(B(M)) 

of an M-space into an Q(B(M))-space such that the induced diagram 

E(M) V _ P(B(M)) 

4PM Jq 

B(M) - _ > B(M) 



268 S. Y. HUSSEINI [August 

is commutative and the induced map v is homotopic to the identity. This implies 
that E(M) is contractible, which is what is to be proved. 

REMARK (4.6). Given a simply-connected complex B, one can find an RPT- 
complex A and a homomorphism 4 of A into Q(B) which is a homotopy equiv- 
alence. It is easy to see that 

B B(A). 

Thus the universal quasi-fibration represents the canonical fibration of the space 
of paths over B. 

Next we show that the principal quasi-fibrations 

p: N -+ N//A 

admits a classifying map, where N is a right A-complex. Let 

PA: E(A) -+ B(A) 

be a universal quasi-fibration on which A acts on the left, constructed as above. 
Consider the commutative diagram, 

N4N x E(A) >E(A) 

pt PA 

N//A 1- N XAE(A) >_ B(A) 

where the vertical maps are the natural projections and the horizontal maps 
are the projections on the factors and the maps induced by them. 

Theorem (2.2)' implies that 

,B:NXAE(A)-NIIA and 

7r: N XA E(A) - B(A) 

are quasi-fibrations with fibers E(A) and N respectively. Since E(A) is contractible, 
,B has a homotopy-inverse, fl-1, say. Define 

(4.7) X = f'17r: N//A-+B(A) 

to be the classifying map of the quasi-fibration 

p: N -+ N//A. 

5. Fibrations of complexes by subcomplexes. Let us say that a sequence 
f 

.F:F B > Y 

of special complexes and cellular maps is a fiber sequence, if and only if, F can 
be imbedded in a homotopy-commutative diagram, 
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f % F B Y 

F 4 > B . > y 

where the lower row is a Serre fibration and the vertical maps are all homotopy- 
equivalences. F is the fiber, B the total space, and Y the base-space of E. 

Consider now the following problem, which is essentially Problem 10 in 
Massey's list of 1955 [6]: suppose 

i:F-B 

is a map of special complexes. When is it possible to imbed i in afiber sequence 

SF: F B Y? 

Is F unique? 
Assume i is an imbedding, since there is no loss of generality in doing so. One 

can see right away that the problem does not always have a solution. For example, 
let F = S2n, the 2n-sphere with n > 0, B = S2n+ I the (2n + 1)-sphere, and let 
i: S2n_- S2n+ 1 be the natural imbedding. Since S2n cannot be an H-space, i cannot 
be imbedded in a fiber sequence [10]. Note also that the injection of F in B plays 
an important role. In fact, for some spaces F and B it may happen that one im- 
bedding gives rise to a fiber sequence, while another does not. For example, 
let B = TF x F, where TF is the cone on F. Then if we imbed F in B as the 
second factor, the projection on the first factor defines a fiber sequence for which 
F is the fiber; but if we imbed F as the base of the second factor TF, then the 
resulting sequence is not a fiber sequence, for this would imply that F was an 
H-space [10]. 

Moreover, the sequence 

f S;: F-+ B - Y 

in which i can be imbedded is not unique. For example, let F = S3, the 3-sphere, 
and B = S7, the 7-sphere; and let i be the natural imbedding. Then there are 
inequivalent multiplications {a}, on S3, which yield inequivalent fiber sequences 

OC: S3-4 S7-* S44 

according to [5]. 
We shall give necessary and sufficient conditions for the problem to have a 

solution, as well as a method, at least in theory, for obtaining all solutions when 
B and F are simply connected special complexes and F is a subcomplex of B. 
Denote the space of Moore paths based at bo by P(B) and by Q(B) the subspace 



270 S. Y. HUSSEINI [August 

of loops. Then, with the usual juxtaposition multiplication, P(B) is a right Q(B)- 

space. Suppose 

(5.1) u: A - K(B) 

is a homomorphism of some RPT-complex A into Q(B), which is a homotopy 
equivalence [3]. Then, as we saw in ?4, there is a commutative diagram, 

A > E(A) PA> B(A) 

u v v 

Q)(B) P(B) -q-> B, 

where the upper row is the universal quasi-fibration for A and the lower row 

is the canonical fibration which sends a path to its end-point and v is a map of 

a right A-space into a right Q(B)-space. Moreover, u, v, and v are all homotopy 
equivalences. Now, let 

U = p7A '(F), and Q(B, F) = ql'(F) 

Corollary (4.5) of ?4 implies that the restriction of PA to U is a quasi-fibration, 
and hence, comparing the homotopy groups, we conclude that 

(5.2) (v I pA1V 'i 1(F)): U -* Q(B, F) 

is a homotopy equivalence. (Recall that Q(B, F) is of the homotopy type of a 

countable CW-complex [8].) 
What kind of A-relations does U admit, when F is the fiber for some fiber 

sequence in which the total space is B? The following theorem gives the answer. 

THMOREM (5.3). Suppose that 

F BA Y 

is a fiber sequence such that B and F are simply connected special complexes 

and F is a subcomplex imbedded by i in B. Assume also that A is the RPT-com- 

plex representing Q(B) and U the right A-complex representing Q(B,F) as in 

(5.1) and (5.2). Then there is a right invariant map, 

0 : U -+ml,< 

which is a homotopy equivalence, and,for every n > 1, there is a set of A-relations 

on M1, 

.I#n(Mi) = (Mo5...*Mn;1LLp,q,A), 

such that 
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(a)n 4k(Ml) is a subset of #n(M1), for k < n, and 
(b)n there is a two-sided invariant deformation retraction, 

kht:Mk+Mk, k=2,***,n, 

of Mk onto Mk.1 - 

The proof will be given in ?7 below. 
DEFINITION (5.4). Suppose that M1 is a two-sided A-complex, A being an 

RPT-complex. Then M1 is said to admit a Qn-structure if and only if, there 
is a set of A-relations on M1, 

An(Ml) - (Mo~ .. * Mn ; lpp,q s A),X 

subject to condition (b),1 of Theorem (5.3). 
Note that the necessary conditions of Theorem (5.3), which are satisfied if F 

is the fiber of a fiber sequence for which B is the total space, are of two kinds. 
First, U or, equivalently, Ql(B,F) must be of the homotopy type of a two-sided 
A-complex M1; and second, M1 must admit a Qn-structure for all n > 2, and 
the Qn-structures must extend each other. We shall take up the discussion of 
when M1 exists in another paper, confining our attention here to the implications 
of a Qn-structure. We shall see in effect that the existence of a Qn-structure is 
a sufficient condition for the existence of sequences, 

f 

which are fiber sequences in a range which widens with n. The following con- 
dition will be needed in most of what follows. 

CONDITION (5.5). Suppose B and F are simply connected special complexes 
with F a subcomplex of B, and let A and U be the RPT-complex and the right 
A-complex representing Q(B) and 92(B,F), as in (5.1) and (5.2). The condition 
is that there be a two-sided A-complex M1 and a right A-map 

q5: U - Ml 

which is a homotopy equivalence. 
Consider now the set of A-relations 

(5.6) An(Ml) = (Mo ..*, Mn; !1p,qX A), 

and denote by kM the RPT-complex relative to A which is generated by M1 
modulo the subset J/k(Ml) of i(n(Ml). Put Bk = B(kM), the base-space of the 
universal quasi-fibration of kM (see ?4). Then the imbedding of k-lM intokM 
induces an imbedding 

fk: Bk-1 - Bk. 
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Thus we obtain an ascending sequence 

B-B1 e+ ->B. 

of special complexes. Let 

fk = qk 1I: B Bk 
and 

Fk = Q(Bk, B) = {oc P(Bk)I |(O) e B}, 

where (Bk) is the space of Moore paths a ending in b? (i.e., a(1) = b?). Suppose 
that 

ik:Fk > B 

is the natural map which sends a path to its initial point. Then 

F1 B - B1 

A2 . ;12 

12 f2% 
F2 -i B - B2 

A3 l 1 13 

*. > ... ...@ 

An 11 , lt 

fng 
Fn B - Bn 

is a commutative diagram in which the rows are fiber sequences, and Aj is the 
natural imbedding of Fj-1 into Fj. 

THEOREM (5.7). Suppose that Condition (5.5) is satisfied. Assume that the 
set of A-relations (5.6) defines a Qn-structure on M1, the two-sided A-complex 
of (5.5). Then, for k < n - 1, with the notation as in the preceding paragraph, 
there are natural maps, 

Yk:F>Fk and flk:Fk>F, 

for k =1,..,n, such that 
(a)k f3kYk - IkYk Y Yk + 1, and gi = ikYk, where g is a homotopy equivalence 

of B; and 

(b)k the induced homomorphism 

(Yk)*: 7ij(F) -> 7Cj(Fk) 
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is an isomorphism for j ? c(k + 1) + (k - 2), where (c - 1) is the connectivity 
of F. (- denotes homotopy.) 

The proof is given in ?9. 
Thus the existence of a Qn-structure on M1 implies that the pair (B, F) can be 

"approximated" by pairs (B, Fn) with the property that Fn is a fiber in a fiber 
sequence in which B is the total space and F and Fn agree in a range which in- 
creases with n. Thus the existence of Qn-structures on Q2(B,F) which extend 
each other for all n is a sufficient condition for the existence of a fiber sequence 

F -B->X. 

Note that if B is contractible, then the fibers Fk are all of the homotopy type 
of loopspaces [9], and, hence, F is increasingly getting like a loopspace. This 
suggests that if B is contractible, our conditions are just Stasheff's An-structures 
[11]. In fact, this is the case. First we need prove that Condition (5.5) is satisfied. 

(5.8). Suppose B is a contractible special complex and F is a simply connected 
subcomplex, and let A and U be the RPT-complex and the right A-complex 
representing Q(B) and Q(B,F), as in (5.1) and (5.2). 

Then there is a right A-map, 

0 : U -+Ml, 

of U into a two-sided A-complex M1 which is a homotopy equivalence. 

In fact, let 

Ml= UU,AxU, 

where the attaching map is the map 

,B:A x AUU-> U 

induced by the multiplication in A. Then clearly M1 is a two-sided A-complex, 
and the right A-imbedding, 

&: U -M1l, 

is a homotopy equivalence. 
Let us denote by A1 the complex M1 without the action of A. (Recall that 

an An-structure in the sense of Stasheff is according to [3], just a Qn-structure 
relative to {aW}, a' being the 0-cell of A.) 

THEOREM (5.9). Suppose that the assumptions of (5.8) are satisfied, and let 

Ml and M1 be as above. Assume that 

An(ATJi) = (2Of, -An; p,qs {a?}) 
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is a set of {a'}-relations which defines an As-structure on i1. Then there is a 
set of A-relations 

Wn(Mi) = (MO, * ,Mn; up q, A) 

which defines a Qn-structure on M1, and conversely. In either case, there is a 
map 

fn: -fn(ft) -+ (Mi) 

which is a homotopy equivalence when restricted to M1. 

We shall sketch the proof in the case n = 2 only, the general case being similar. 
So suppose that 

2(M 1) = (Mo,Mi,M2;jp1q A) 

is a set of A-relations which defines a Q2-structure on M1 (see Definition (5.4)). 
By definition, let 

Mo ={a} and M1=M1, 

and let 

Y: [M1 A1] -+ [M1, M1]A 

be the natural projection. Let 

M = M2 uYjM1, A] x I, 

where I is the unit interval, the point (x, 1) is identified with y(x) e M2, and 
{a0} x I is identified with the basepoint a'. (A2 is just the mapping cylinder 
of y with the segment through a' identified with a'.) Clearly the set 

-#2(Rl) = (o0, A1, M2; ,ip,q, {a?}) 

where ftp,q are the natural maps is a set of relations which defines an A2-structure 
on RI , and the natural map 

f2: -'1(AI2(2(R) -> -2 WO 

is a map which satisfies the requirements of the theorem. 
The converse is similar. Suppose that 

(MAIW = (JOFJ,T1J,2;tpq, {a?}) 

is a set of {a?}-relations which defines an A2-structure on A1. By definition 

Mo= A and M1 = A1l. 

Suppose also that y is the natural map 

Y:[A?1,A?1] -4 [M1, M1]A 
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Then since A is contractible (B being so), we can easily check that the natural 
map 

A?l xA?1 X+ M1 X AM l 

is a homotopy equivalence. This implies that y is a homotopy equivalence by 
comparing the homology groups. Hence 

=2 = [Ml,Ml1]AUYAM2, 

where A2 is attached to [M1,Ml]A by y, is of the homotopy type of M2, and 
the two-sided A-complex 

M2 = At2uA xM2 xA, 

where A x x A is attached to 2 by the map 

[MI,Ml]A x Au x A2-2, 

is of the homotopy type of M1. To find an invariant two-sided deformation 
retraction of M2 onto M1, apply Lemma (7.1) of ?7. Thus, with ,up,q being the 
natural maps, 

2(M 1) = (MO,M1,M2; jipq,A) 

is a set of A-relations which defines a Q2-structure on M1. 
Observe that the first part of the proof did not use the fact that B is contractible. 

In fact, the same argument can show that any set of A-relations on a two-sided 
A-complex M1 defines a set of A'-relations on M1. A' being any RPT-subcomplex 
of A1. The two sets are related but do not define the same RPT-complex. 

6. Fibrations of the Hopf type defined by a Qn-structure. One of the attractive fea- 
tures of the Hopf fibrations defined by an H-structure on a space is that they enable 
one to reduce the property of the existence of an H-structure, which is essentially 
an algebraic property, to the existence of fibrations and projective spaces defined 
by them (see e.g., [9]). In fact, this has been one of the most productive tools 
in the study of IH-spaces. We shall see that the A-relations defining a Qn-structure 
provide us with fibrations on the Hopf type. First we need introduce the concept 
of smashed product and join in the category of A-spaces. Suppose M1 is a two- 
sided A-complex, and let 2M be the RPT-complex generated by M1 modulo the 
set of A-relations 

-1'2(M1) = (MO M1, [M1l Ml]A; Pp,q, A) 

where IUp,q are the natural maps. Consider 

tndex n n(M1) = aw-iddAc 

the subcomplex of 2M of index n. Then []n(Ml) is a two-sided A-complex 
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which includes [ ]'-'(Ml) as a two-sided A-subcomplex. By definition, the 
n-fold smashed product of M1//A relative to A is 

(6. 1) (I)A(M1// A) = ([ ] n(M1)H/A)/([ ]n- 1(MJ11/A),, 

the special complex obtained from [ ]n(M1//A) by identifying the subcomplex 
[ ]An-(M1//A) with the basepoint. Note that if A = {a'}, where a' is a single 
0-cell, then 

(1)n(Ml//A) = (#AMn ), 

the usual smashed product, since in this case M1// A = M1. By definition, the 
n-fold join of M1//A relative to A is 

(6.2) (*)n(M1IIA) = S-1 #(#)n(M1//A), 

where S" # (#Y)A(Mi/HA) is the usual smashed product of the (n-1)-sphere 
and (#)n(M1I A). Again observe that if A = {a0}, then the join relative to {a?} 
is just the usual join. 

Suppose that M1 is a two-sided A-complex, and let 

-Wn(M1) = (MO, " * Mn; Lp,q , A) 

be a set of relations which defines a Q,-structure on M1 (see Definition (5.4) 
above). Denote by kM the RPT-complex generated by M1 modulo the subset 

4k(M1), k = 2, ***, n, and by Bk, the basespace of the universal quasi-fibration 
of kM (see ?4). We have then the following theorem. 

THEOREM (6.3). There is a commutative diagram, 

M1 -> (*)l(M,I/A) > B 

4111 4 

Ml - (*)k (MI/A) Bk- 

| k 

wrtrseirqn ,hm aehe y t 
A~~~~~~ fin- 1 

where the rows arefiber sequences, the maps lk are those induced by the imbed- 
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dings k-lM_kM, and (*)k(M1//A) is the k-fold join of M1//A relative to A. 
Moreover, M1 is contractible in (*)k (Mk//A), for k > 2, and (*)k(M1//A) is 
contractible in (*)k+ l(M1//A), for k ? 1. 

The proof will be given in ?8 below. Note that if A = {a'}, then the preceding 
fibrations are the usual Hopf fibrations associated with an An-structure [11]. 

Suppose now that Condition (5.5) is satisfied, and assume 

fn(M ) = (MO, - ,Mn; Up,q A) 

is a set of A-relations which defines a Qn-structure on M1. Then Theorem (6.3) 
implies that there is a ladder of fiber sequences 

Mlll A c M1// A *AM11J A * (*)n(MI// A) 

B c B1 cBn c-1 

wit,h fiber M1. Observe that, from the second stage on, M1 is contractible in 
the total space (*)k(M1// A), while (*)k(M1//A) is always contractible in 

(*)k+ 1(M1//A). This implies that 

(6.4) Bk Bkl U T((*)k(Ml// A)) U other cells, 

where T((*)k(M1//A)) is the cone on (*)k(M1//A). The fact that 4 (see (5.5)) 
is a right invariant map which is a homotopy equivalence implies that the induced 
map 

: U//A = F - M111A 

is also a homotopy equivalence. But what can we say about (*)&(M1//A), for 
k > 2? A partial answer is given by the following proposition. 

PROPOSITION (6.5). Suppose F is a suspension. Then there is a natural homo- 
topy equivalence 

W: (*)k (Mlll A) _>(*)k(F) , k > 1 . 

PROOF. Suppose that 

F = S # F, 

where F is a special complex. Since F is a subcomplex of B, Fc,,, is an RPT-sub- 
complex of A, the RPT-complex representing Q(B) as in (5.1) above. This means 
that 

U=E(F,) xF- A, 

where E(F,) is the universal quasi-fibration of Fo (see Corollary (4.5)), and 
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E(F)=Foo u TF x F, 

(see proof of Corollary (4.5)). Hence 

U-=AUTF 

where the cone TF is attached by the imbedding on the base is a subcomplex 
of U. Note that 

U/A = U//A, 

and hence U/A and M1//A are of the same homotopy type. To finish the proof, 
note that the imbedding of U induces a map, 

t: ( U/A) ( U/A) -e (M1//A) #A (M1// A). 

Since U is right invariant homotopy equivalent to M1 (see Remark (7.2) of ?7), 
it follows that (U//A) #A(M1//A) (defined by identifying the image of 
U x A U A x M1 in (U XAMM)//A with the basepoint) is homotopy-equivalent 
to (M1// A) #A(Ml// A). But 

(U//A) #A(M1//A) = (U/A) #(M1//A), 

since U = U U U x A, the attaching map being the multiplication 

Ax A-A c U. 

This is enough to prove that t is a homotopy equivalence and, therefore, the 
proposition when k = 2. The general case follows similarly by induction. 

Rewriting (6.4), we get the following 

(6.4)' B(kM) , B(k -M) U T((*)kF) U other cells, 

when F is a suspension. How are the "other cells" related to F and B? This 
turns out to be a tractable problem. A complete description of how they are 
formed out of F and B and how they are attached to B(k 1M) U T((*)AF), as 
well as some applications of these results, will be given in a future article. Here 
we shall note only that, if B is contractible, then these extra cells do not change 
the homotopy type of B(k -M) U T((*)kF). To see this, apply Theorem (5.9) 
of ?5 to replace the given set of A-relations, 

An(Ml) = (Mo) * * * s M.; 11p,q A), 

defining the Q.-structure on M1 = Q(B,F) by a set 

w#n(AIl) = (A0T ... B [n; up,q {a }) 

of relations which defines an An-structure on R, = M1. We also have a homo- 
morphism 

k-; +kM k = l,*... n, 
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of the RPT-complex kf generated by A1 modulo .1dk(Al) into the RPT-com- 
plex kM generated by M1 modulo Aik(Ml). Now we note that fk induces a map 

k : B(R) -+ B(M) 

and that Theorem (6.3) implies that Ak is a homotopy equivalence, which is enough 
to prove the assertion. 

Thus, if B is contractible, B("M) is the projective space of F corresponding to 
the An-structure which is defined by the given Qn-structure, and conversely. 

It is well known that F is an I--space if, and only if, F,,, =,S # F retracts onto 
F (e.g., see [4]). This result was extended to An-structures in [3]: F admits an 
A,n-structure if and only if, Q(Pn(F)) can be retracted onto F, Pn(F) being the 
n-projective space of F. The following theorem gives a similar result for Qn- 
structures. 

THEOEM (6.5). Suppose M1 is a two-sided A-complex, A being an RPT- 
complex, and assume that M1 admits a Qn-structure defined by the set of 
A-relations 

ffn(M l-= (Mo ... ) Mn; tp,q, A). 

Then this Qn-structure can be extended to a Qn+1-structure if there is a two- 
sided invariant retraction, 

rn+ .nM _+ 

where 'M is the RPT-complex generated by M1 modulo 4fn(Ml) and Mn is 
the subcomplex of nM of index n. 

Conversely, if the given Qe-structure can be extended to a Qn+l-structure, 
then there is an invariant right retraction oJ ̀M onto M,. 

The fact that a Qn-structure can be extended to a Qn+1-structure if r,+i exists 
can be proved in the same way as Theorem (4.6) of [3], the only modification 
being to replace "complex" by "A-complex" and "map" by "invariant map." 
To prove the converse, apply Theorem (6.3) to prove that 

K<, x Mn and nM are of the same homotopy type, 

(K being a special complex such that S # K = (W)A+1(M1//A)), and then ap- 
ply Remark (7.2) of ?7 to the mapping cylinder of the homotopy equivalence 
to get the right invariant retraction. (Consider K,o, x Mn as a right A-complex 
by making A act on Mn.) 

7. Proof of Theorem (5.3). In general outline the proof resembles that of Theorem 
(4.5) of [3], but some of the details are different. Suppose 

F 
i 1 f 
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is a fiber sequence of special complexes, where B and F are simply connected 
and F is a subcomplex of B. Assume also that B is a suncomplex of Y. As in ?5, 
let 

g: A -(B) 

be a homomorphism of the RPT-complex A into Q2(B), which is also a homo- 
topy equivalence, and 

g': U -4Q(B,F), 

the map of an A-space into an Q(B)-space, which is a homotopy equivalence 
(see (5.1) and (5.2)). Now, according to [3], there is an RPT-complex M, pos- 
sibly of infinite rank, which contains A as a sub-H-complex, and a homomorphism, 

q: M -(Y), 

which extends g and is a homotopy equivalence. Clearly M is a two-sided A-com- 
plex. 

By definition, let 

Mo=A and M1=M. 
Next, let 

M2 = [MI,Ml]A. 

Then the mapping 

q2: ft2+ M1 

which sends the point [xl,x2] to y(xlx2), where x, Ix2 eM2 and y, the mul- 
tiplication in M1, is a two sided invariant retraction of M2 onto M1. By defi- 
nition, let 

M2 = A2 U#2Mt2 XI 

where I is the unit interval [0,1] and the attaching map P2 is defined by the 
equations 

fl2(x,0)=x, f32(x,1) =q2(x), for xeA?2, and 

P2(x, t) = x, for (x,t) eM1 x I. 

Now, if we make A act on M2 according to the rule 

a(x, t) = (ax, t) and 

(x, t)a = (xa, t), 

for all (x, t) E M2 and a cA, then M2 becomes a two-sided A-complex, and the 
map 

2hs: M2-*M2, 
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which sends the point (x, t) to (x, (1- s)t + s), is a two-sided invariant deforma- 
tion retraction of M2 onto M1. Hence the set 

2(AM 1) = (MO)MD, M2;p,q A) 

where the complexes Mi are defined above and Plp,q are the natural maps, is a set 
of A-relations on M1, which defines a Q2-structure on M1 as desired (see Defi- 
nition (5.4)). 

Proceed by induction. Suppose that we have been able to define a set of A-re- 
lations 

m - 1(Ml) = (MO) .. * Mm_ 1; Yppq, A) 

and a two-sided invariant mapping, 

(i) ih : Mi x I +Mj , j = 2, ... m -1 

which is a deformation retraction of Mj onto Mj1, and a two-sided invariant 
retraction 

(ii) tjj:Mj-Ml, j =2, j-,m-1 
such that 

y(p xflq) = tp+qp,q, p,q _O and p+q> m-1, 

y being the multiplication in M = M1. We wish to do the same thing for the case 
m. Consider, therefore, 

km = U [Mp, Mq]A, with p + q = 

the subcomplex of index m of the RPT-complex m 'M generated by M1 modulo 

l'm- 1(Ml). Since the mappings tj and y are two-sided invariant and associative, 
the maps nj induce together a two-sided invariant retraction, 

4m: Mm-+ MlX 

such that 

4lmIMk=t1k) with 1k?m-1. 

By definition, let 
Mm = Mm U Mm + I, 

where I is the unit interval [0,1] and the attaching map fBm is defined by the 
equations 

f3m(x,O) = X,fm(x, 1) = lm(x), for x EMm, and 

flm(x,t) x, for (x,t)eMl x I. 

Now, if we make A act on M.m by the rule 

a(x, t) = (ax, t) and 

(x, t)a = (xa, t), 
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for all (x, t) e Mm, then Mm becomes a two-sided A-complex. Define 

flm: Min-) Ml 

to be the map that takes (x, t) to 4m(x). Clearly the set 

.&M(Rl) = (Mo . R@Mm ftr,gq A), 

where Mk = Mk, for k < m, and jIp,q are the natural maps, is a set of A-relations 
which satisfies (ii) of the induction hypothesis and which extends /m- (M1). 
Thus, to finish the induction step, we need find a two-sided invariant map 

mh: Mm x I-+ Mm 

which deforms Mm onto Mm -I 
Note that the imbedding 

7 Mm- I -+ Mm 

is a homotopy equivalence, since each of the complexes is of the homotopy type 
of M1 = M1. Hence we need prove the following lemma only. 

LEMMA (7.1). Suppose N and N' are two-sided A-complexes, and assume 
that there is an imbedding 

y: N - N' 

which is a homotopy equivalence. Then there is a two-sided invariant deforma- 
tion retraction 

t: N' -+ N' 

of N' onto N. 

Proof. According to ?1, there is an ascending sequence of two-sided A-com- 
plexes, 

N=Noc... cNkcz.. cN', 

such that N'= UkNk and, for each k _ 1, 

Nk =Nk uA x k X A, 

where Ak is the subcomplex 

R= Nkl UfkDnk 

(DUk being the nk-disc attached to Nk-l by some map fk) and the complex 
A x Ak x A is attached to Ak by the map 

A x Nkl, x A UNSk- <&,k, 

which is induced by the multiplication by A. We shall construct the deformation 
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?, by induction on the two-sided A-subcomplexes Nk. Now, since the imbedding 
y of N into N' is a homotopy equivalence, the attaching map 

fi. (Dn% Sn' - 1) _>(Nlg N) 

can be deformed relS" -1, into a map of Dn' into N. This deformation yields 
a deformation retraction, 

(0t)l: N', 

of N1 onto N which is extendable uniquely to a two-sided invariant deformation 
retraction, 

(40): N1 -* N', 

of N1 onto N. Suppose that, by induction, we have been able to find a two-sided 
A-deformation retraction, 

(4)t)m- 1: Nm.- N', 

of Nm onto N. Consider the characteristic map 

fA (Dnm, Snm -1) _ (m Nm) 

Note that we have a deformation of Snm 1 into N defined by (4t)m-1. By the 
homotopy extension property of the pair (Dnm, Sm -), we get a deformation of 

fm into a map 

f,': (Dnm Snm l) -+ (N' N). 

But and N' are of the same homotopy type. Thus we get a deformation, 

(4't)m m _+ N', 

of Rm onto N which extends (0it)m-I. Then (4t)m can be extended uniquely to 
a two-sided invariant deformation retraction, 

(0t)m: Nm + N, 

of Nm onto N as desired. 
REMARK (7.2). A similar argument proves that, if N and N' are right (left) 

A-complexes and y is a right (left) A-imbedding, then one can find a right (left) 
invariant deformation retraction t of N' onto N. 

8. Proof of Theorem (6.3). Suppose that M1 is a two-sided A-complex which 
admits a Qn-structure defined by the set of A-relations 

An(Ml) = (MWO **.,Mn;9p,q,A). 

Denote the subset of .An(Mj) in k-I variables by 

= {AX o,..A.,A? .l;.p, AX. 
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Suppose k-lM is the RPT-complex generated by I1 modulo Wk- 1(A?l), and 
consider the complex 

(8.1)k kN = k-lM UMk XAkiM 

where the complex Mk X A k-M is attached to k 'M by the map 

Mxk- 1M _+k- 1M Mk XAM M 

which is induced by the multiplication in k-'M. (Here Mk = k- 'M n Mk, the 
subcomplex of k- 1M of index k.) Now let k- 'M act on kN on the right, thereby 
making kN a right k- 'M-complex. Hence, by Theorem (2.2) of ?2, the sequence 

(8.2)k k-lm _+ kN __, kNII k- lM 

is a quasi-fibration and, hence, a fiber sequence. The fibrations of the Hopf type 
are induced in the following way by (8.2). Denote by Bk_1 the base-space of the 
universal quasi-fibration of k- 'M (see (4.5) of ?4). Then the sequence 

(8.3)k kN +kNII 
k IM _ qk_ B 

is a fiber sequence, where qk is the classifying map of (8.2)k. Observe that (8.3)k 
maps into (8.3)k+ 1 in a natural fashion. Thus we get the commutative ladder, 

N .-> -2N - nN 

)001 1~ 0 
'NII OM I2NII M > InNII M 

B B > ..B-* - 1, 

where 0M = A, the vertical sequences are fiber sequences, and the maps of the 
lowest sequence are those induced by the homomorphisms kM _ k+ 'M. Thus, to 
finish the proof of the theorem, we need prove the following two lemmas only. 

LEMMA (8.4). The natural imbedding 

Mk .+kN 

where Mk is the kth complex of I4k(M1) and kN is the complex defined above, 
is a homotopy equivalence. 

LEMMA (8.5). The complexes 

kNIIk-'M and (*)k(M11A) 

are of the same homotopy type. 
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Proof of Lemma (8.4). Recall that the RPT-complex k-IM is filtered by an 
ascending sequence of two-sided A-complexes 

k-i 

(k IM)r = U [Jp ,Afr-p]A 
p=1 

such that 

[[p ,ifr_p]A nU [Mq Mr-q]A = U [Mp_q, Mq, Mr-p]A 
q<p q<p 

where Ai is the subcomplex of k-IM of index i, i > I (see Corollary (3.7) of ?3). 
It can be easily checked that this implies that 

k-2 

(k M)r=[IjkF4Mrr-k]AUU [MkP_p Mr-kk+p]A 
p=l 

where 
q-1 q-1 

[Ak-qATr-k+q]A ( U [Mk-p,Mr-k+p1A = U [Mk -q' Mq-p, Mr-k+pJA 
p=O p=O 

Therefore we can filter the complex kN by an ascending sequence of two-sided 
A-subcomplexes, 

k-2 

(k N)r = [Mk, Jir-k]A U U [Mk-p, r-k + p]A , r > k, 
p=1 

such that 
q-1 

[Mk) Rr - JA U [Rk-p) MR-k+p]A) r] [Ak-,, r-k-q]A 
p=l 

U [Mk-q Bq-_p9Rr-k+p1A 
p -O 

where Ml is the subcomplex of k-KM of index i. Observe now that Ak- is a 
two-sided A-deformation retract of Mk, and, for p _ 1, Ak-P-1 is a two-sided 
A-deformation retract of !k_P. Hence (kN)r is made up of complexes each of 
which is of the homotopy type of (kN)r-1. One can show inductively, using the 
Mayer-Vietoris sequences of the appropriate proper triads which correspond to 
the decomposition of (kN)r given above, that in constructing (1N)r- 1 one attaches 
two complexes of the homotopy type of (kN)r-, along a subcomplex of the 
homotopy type of (kN)r-1. This establishes the lemma. 

Proof of Lemma (8.5). If Q is a subcomplex of the special complex P, then 
denote by P/Q the special complex obtained from P by identifying Q with the 
base point. Observe that 

(Mk1!A)I(IkIIA) = kNIlk- M. 
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Hence it suffices to prove that 

(8.6)k (MkIl A)I(ATkI1 A) and Sk -I 1 # (#)k(R1// A) 

are of the same homotopy type. 
Proceed by induction. If k = 1, then the assertion is trivially true. Suppose 

we have been able to prove (8.6)m,_. To prove (8.6)m, write 

[p, q, r] = ([Mp, lq,, r]JA)I/A; 

similarly, write [p] for (Mp)//A, and [p,q] for ([Ap, q])//A. Let us also put 

[PII] A [q]#A[r] = [p,q,r]/[(p-1,q,r] u[p,q-1,r] u[p,q,r-1]). 

Observe now that Corollary (3.7) of ?3 implies that 

m-1 

[m]/[m -1] = U [m - PI A[P 
p=l 

where 

[m -q] #A[q] n U[m- P] IA [P] =U [m-q]#A [q -p] A[p].P 
p<q p<q 

To finish the proof we need the following lemma. 

LEMMA (8.7)m. The complex 

m-2 

U [m-p]I#?A[P] 
p=l 

is contractible, 

Proof. Proceed by induction on m. If m = 3, then the Lemma is true ob- 
viously. Suppose (8.7)s,- is true, with s < m. To prove (8.7)s, argue by induction. 
Note that [s - 1] #A [1] iS contractible, since MS-2 is a two-sided A-deformation 
retract of M, 1-. Suppose that we have been able to show that 

r-1 

U [s-p] #A[P], r-1 <s-2, 
p=l 

is contractible. Observe that 
r r-1 

[S-P] #A[P] = [S-r] #A[r] U 
U-[s 

PI A[P] 

and 
r-1 r-1 

U [s-r] #A [r-pp] #A [PI = [s-r] #IA [r] r U [S-p] #A [PI] 

Next note that [s - r] #A [r] is contractible, since Mr 1 is a two-sided A-deforma- 
tion retract of Mr, for r = 2, - -, m < k. The complexes 



19661 WHEN IS A COMPLEX FIBERED BY A SUBCOMPLEX? 287 

r-1 r-1 

U [S-P]IA[p] and U[s-r]#A[r-p]#A[p] 

are also contractible, the first by induction and the second because Mr_ is a 
two-sided deformation retract of Mr, for 2 ? r ? m. Hence 

U [s-P]I #A[PI, r < s-2, p =1 
is contractible. This establishes the induction step, and hence, Lemma (8.7). 

Now we can go back to the proof of (8.6)m. Note that 

m-1 m-2 

U [m -PI A [PI = U [m -P] A [p]U [11 #A [M -] , 

and 

m-2 m-2 

U [In- PI #A [PI f[1 IA [M-1 =U [1]# IA[m p 1] /A[P] 
p=1 p1= 

m-2 

U [1] A [mM1 q] #A[q]. 
q-1 

The induction hypothesis implies that 

m-2 

U [m -' - q] #A[q]= ([m-1])/[mr-2] 
q=1 

This proves (8.6)m and, hence, the lemma. 

9. Proof of Theorem (5.7). Suppose B is a simply connected special complex 
and F, a connected subcomplex. Assume that A and U are the RPT-complex 
and right A-complex representing Q(B) and Q(B, F), as in (5.1) and (5.2) of ?5. 
Recall that Condition (5.5) of ?5 says that there is a two-sided A-complex Ml 
and a right invariant map, 

0): U -+MI,d 

which is a homotopy equivalence. Suppose that 

.dn(MI) = (Mo . * *, Mn; 4lpq A A) 

is a set of A-relations which defines a Q,-structure on Ml (see Definition (5.4)), 
and let 

B >-B. Bf 
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be the ascending sequence of complexes defined by the sequence of RPT-com- 
plexes 

A < me..e nM, 

where kM is the RPT-complex generated by M1 modulo #k(Ml) and Bk is the 
base-space of the universal quasi-fibration of kM (see ?4). As in ?5, let 

Fk= { e P(Bk) o(0) E B}, 

where P(Bk) is the space of Moore paths ending at the 0-cell b?. Observe that 
Q(Bk) acts on the left on Fk. The first stage of the proof is just the replacement 
of Fk by an equivalent left A-complex. Now note that, according to ?4, one can 
find a left universal quasi-fibration, 

Pk: E (kM) - Bk, 

such that E'(M) is a subcomplex of E (kM), the imbedding being a map of a 
left jM-complex into a left kM-complex, k > j (?M = A, by definition). More- 
over, there is a homomorphism Uk of kM into Ql(Bk) which extends to a map, 

Uk: E (kM) PP) 

of a left kM_complex into a left n(Bk)-space such that 

kM > E'(kM) > Bk 

tUk~~~~~~~~~~~~~ 
lUk lUk1= 

fl(Bk) > P(Bk) - Bk 

is a commutative diagram. Here qk is the map that sends a path to its initial point. 
Observe that u' takes kM xAE'(A) into Fk and, hence, induces the following 
commutative diagram: 

kM kM XAE'(A) 
> B 

{Uk tUk 

fl(Bk) > Fk - - B. 

This implies the following assertion. 

(9.1) uk is a homotopy eqtuivalence. 

Thus we can replace Fk by the left kM-complex kM xAE'(A). Consider now 
the following diagram (see end of ?4), 
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kM/IA Pk kM x -E'(A) > B > Bk 

45k 4Vk f 1= 

MkIIA < Mk xAE'(A)- fB - Bk 

4+k 40f~~ k fk 1= 

fk 1 F= UIIA < U XA E'(A) B X Bk 

B < E(A) XAE'(A) B > Bk, 

where the horizontal maps to the left of the B column are those induced by the 
projections on the corresponding factors, while the rest of the horizontal maps 
and all the vertical maps are those induced by the natural imbeddings, (see end 
of ?4). Note that the sequence 

kMXAE'(A) dk> B fk> Bk 

is a fiber sequence which is equivalent to the fiber sequence 

Q(Bk, B) = Fk B-> Bk, 

ik being the map that sends a path to its initial point. Observe also that the hori- 
zontal maps pointing to the left are all quasi-fibrations with contractible fiber 
E'(A) and hence are homotopy equivalences. Let p-7' be a homotopy-inverse for 

Pk, and set, by definition, 

Yk = Pk 'kk 

Then Yk takes F = U//A into Fk = kM XAE'(A), and 

AkYk Yk+I and gi = dkyk = ikYk 

(note that dk and ik become the same when kM XAE'(A) and Fk are identified), 
where g is a homotopy equivalence of B and Ak is the imbedding of kM X A E'(A) 
into k+ 'M x A E'(A) induced by the imbedding of kM into k+ 'M (or, equivalently, 
the imbedding of Fk into Fk +1 induced by the imbedding fk of B into Bk). 

To finish the proof of the theorem, consider the injection 

bk: Mk* kM. 

Denote by V the special complex Sk-l (#)k+ (Ml //A) (see ?6). Then the 
adjoint Pk+ 1 of the fibration 

Pk+ 1: A k 
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of Theorem (6.3) induces a homomorphism 

(fik + l 
),o Vloo +km, 

where V0O is the reduced product complex of James. In the usual fashion, Theorem 
(6.3) implies that the map 

(9.2) v* VV, x Mk +kM 

which takes the point (x, y) to (Pk+ 1)j.(X)3k(Y) is a homotopy equivalence. Consider 
now V00 x Mk a right A-complex by allowing A to act on the right factor. Observe 
that v becomes a right invariant map, and, hence, by Remark (7.2), there is a right 
A-map, 

r: kM + V0o XMk, 

such that vr - 1 and rv - 1. Define 

Pk: kM * Mk 

to be the composition of r and the projection on the second factor. It is a right 
map and, hence, induces a map 

Pk: kMIIA <MkIIA 

such that fikYk 1. 
This finishes the proof of part (a) of the theorem. Part (b) can be established as 

follows. 
If F - Ml I/A is (c - 1)-connected, then one can replace in a straight forward 

fashion M, by a two-sided A-complex MA1 of the same homotopy type and such 
that the cells of lowest dimension in Ml //A are of dimension c. Hence 
(*)Ak+'(MI//A) is of the homotopy type of (*)tA+ '(I f//A) (see Lemma (7.1) of 
?7). But the cells of lowest dimension in (*)A+1(A?l //A) have dimension (k + l)c 
+ k. Hence (*)k+ '(Ml f/A) is ((k + 1)c + (k - 1))-connected, and V is ((k + l)c 
+ (k - 2))-connected. Therefore, the injection 

bk Mk-* M 

induces an isomorphism 

(6k)*: 7j(Mj) _ 
*7j(AM), 

if j _ (k + l)c + (k - 2). 
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