
Le
ture notes on Morse homology (with an eyetowards Floer theory and pseudoholomorphi

urves)Mi
hael Hut
hingsDe
ember 15, 2002Abstra
tThese are informal le
ture notes for a topi
s 
ourse that was taughtat UC Berkeley in Fall 2002. Floer theory (for whi
h Morse homologyis a prototype) and pseudoholomorphi
 
urves and their appli
ationsto low dimensional and symple
ti
 topology are 
urrently the subje
tof a lot of a
tive and ex
iting resear
h. The basi
 goal of this 
oursewas to introdu
e some of the fundamental ideas whi
h should prepareand inspire one to understand what workers in this �eld are doingand why, and perhaps even begin new resear
h in this area. We gavean introdu
tion to some of the te
hni
al ma
hinery whi
h is needed,while referring to other sour
es for details of the analysis. We exploredsome of the frontiers of (at least the author's) knowledge.The �rst part of the 
ourse 
overed Morse theory as a prototypefor Floer theory. Unfortunately (but not too surprisingly), I onlyhad time to write detailed notes for this part of the 
ourse. These
ond part of the 
ourse gave an introdu
tion to pseudoholomorphi

urves in symple
ti
 manifolds, and the third part of the 
ourse gave a(sometimes quite sket
hy) dis
ussion of Floer theory. The last 
hapterof these notes gives a brief outline of these last two parts of the 
ourse,with referen
es to some starting points for further reading on thesetopi
s.I thank all of the parti
ipants of the 
ourse for their enthusiasmand 
omments and questions. 1
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e whatwe will be doing and how it �ts into the bigger pi
ture. Like many \intro-du
tions" to mathemati
al works, this is easier to understand if you alreadyknow some of what follows | and we sometimes use terminology whi
h wewill not begin de�ning until the next se
tion | so you might want to referba
k to it later.Let X be a �nite dimensional 
ompa
t smooth manifold, and f : X ! Ra smooth fun
tion. In Morse theory, one often but not always assumes thatthe 
riti
al points of f are nondegenerate, and relates the topology of X tothe 
riti
al points of X.There are two basi
 approa
hes to Morse theory.1.1 The 
lassi
al approa
h: atta
hing handlesThe 
lassi
al approa
h [46℄ is to de�neXa := fx 2 X j f(x) � ag;3



where a 2 R is not a 
riti
al value of f , and study how the topology of Xa
hanges as a in
reases. One 
an show that if there are no 
riti
al values inthe interval [a; b℄, then Xa is di�eomorphi
 to Xb. If, say, f�1[a; b℄ 
ontainsa single 
riti
al point of index i, then up to di�eomorphism, Xb is obtainedfrom Xa by atta
hing an i-handle. This has three important appli
ations:1. This leads to the Morse inequalities, whi
h are lower bounds for thenumbers of 
riti
al points of f of ea
h index in terms of the ranksof the homology groups of X. Namely, if all 
riti
al points of f arenondegenerate, if 
i is the number of 
riti
al points of index i, and biis the rank of Hi(X), then
i � 
i�1 + 
i�2 � � � � + (�1)i
0 � bi � bi�1 + bi�2 � � � � + (�1)ib0 (1)for all i. Without the assumption of nondegenerate 
riti
al points,there are te
hniques su
h as Lusternik-Shnirelman theory to establishweaker inequalities for arbitrary f , and there is also Morse-Bott theoryfor fun
tions f with \nondegenerate 
riti
al submanifolds" whi
h wewill dis
uss later.2. One 
an generalize this to 
ertain fun
tionals on 
ertain in�nite dimen-sional manifolds, parti
ularly the energy fun
tional E on the free loopspa
e LX := f
 : S1 ! Xg of a Riemannian manifold X, de�ned byE(
) := ZS1 j
0(t)j2 dt;whose 
riti
al points are the 
losed geodesi
s. This leads to existen
etheorems for 
losed geodesi
s, su
h as the famous result that for anymetri
 on S2 there exist at least three 
losed geodesi
s. One 
an alsoturn this around and determine the topology of the loop spa
e of amanifold whose geodesi
s one understands; this approa
h was used inthe original proof of Bott periodi
ity [8℄. There are also relations be-tween 
urvature and Morse theory of geodesi
s whi
h lead to relationsbetween 
urvature and topology.3. Understanding �nite dimensional smooth manifolds in terms of atta
h-ing handles is the basis for 
onstru
tive methods for proving that man-ifolds are di�eomorphi
. 4



(a) This lies at the heart of the h-
obordism theorem and the proofof topologi
al Poin
are 
onje
ture in dimensions greater than four[47℄. For example one step is the Smale 
an
ellation lemma, whi
hasserts that if f has 
riti
al points p and q of index i and i + 1with f(p) < f(q), if there are no 
riti
al values in the interval(f(p); f(q)), and if the atta
hing sphere for the handle 
orrespond-ing to q goes exa
tly on
e over the handle 
orresponding to p, thenone 
an modify f to 
an
el the 
riti
al points p and q. If one 
an
an
el all 
riti
al points ex
ept the minimum and maximum of f ,then X must be homeomorphi
 to a sphere.(b) There is also the Kirby 
al
ulus [37, 38, 26℄ whi
h is used to ex-pli
itly des
ribe three and four-dimensional smooth manifolds andshow dire
tly that di�erent manifolds are di�eomorphi
.1.2 A newer approa
h: gradient 
ow linesIn these le
tures we will fo
us on a se
ond, newer approa
h to Morse theory.In this approa
h one introdu
es an auxiliary Riemannian metri
 g on X.One then 
onsiders the negative1 gradient ve
tor �eld of f with respe
t tog, whi
h we denote by V . One then looks at 
ow lines of the ve
tor �eldV whi
h start at one 
riti
al point and end at another. If the metri
 isgeneri
, then there are �nitely many gradient 
ow lines from a 
riti
al pointof index i to a 
riti
al point of index i�1. One then de�nes a 
hain 
omplexCMorse� (f; g) overZ, the Morse 
omplex, whose 
hain group Ci is generated bythe 
riti
al points of index i, and whose di�erential 
ounts gradient 
ow linesbetween 
riti
al points of index di�eren
e one. A fundamental result is thatthe homology of this 
hain 
omplex is 
anoni
ally isomorphi
 to the singularhomology of X. Roughly speaking, the isomorphism fromMorse homology tosingular homology sends a 
riti
al point to its des
ending manifold; this hasappeared in various forms in many papers2. One easily dedu
es the Morse1The negative gradient, as opposed to the positive gradient, �ts in better with the
lassi
al approa
h above, but sometimes leads to annoying signs.2The Morse 
omplex has a 
onfusing history. An essentially equivalent 
omplex wasdes
ribed in Milnor's book on the h-
obordism theorem [47℄, but not in the language ofgradient 
ow lines; and there were earlier suggestions by Thom [67℄ and Smale [64℄. Butin the form des
ribed above, the Morse 
omplex was introdu
ed to a large audien
e byWitten [70℄, who obtained it (over R) from a radi
al approa
h inspired by supersymmetry,as a limit of deformed Hodge theory in whi
h the de Rham di�erential d is repla
ed by5



inequalities from this: there have to be enough 
riti
al points to generate thehomology.The signi�
an
e of the language of gradient 
ow lines is that, as realizedby Floer [16, 18, 17℄, it extends to important in�nite dimensional 
ases wherethe 
lassi
al approa
h is useless3. These are 
ases where the 
riti
al pointshave in�nite index, so that passing through a 
riti
al point does not 
hangethe topology of the manifoldXa. However sometimes the index di�eren
e be-tween two 
riti
al points is still �nite, in that one 
an make sense of \gradient
ow lines" between two 
riti
al points, and these form a �nite dimensionalmoduli spa
e. One 
an then de�ne an analogue of Morse homology, 
alledFloer homology.The relation of the Floer homology to the topology of the in�nite dimen-sional manifold X is somewhat un
lear4. However Floer homology is typi-
ally asso
iated to some �nite dimensional manifold, e.g. as its loop spa
e, orto some more 
ompli
ated �nite dimensional obje
t, and the Floer homologyhas topologi
al signi�
an
e for the �nite dimensional obje
t. There are manyinteresting examples of Floer theory, but in order not to stray too far fromour 
urrent topi
 of Morse homology, we will save these for later.In the �nite dimensional 
ase, it is possible to des
ribe topologi
al notionsother than just homology, su
h as Reidemeister torsion and the Leray-Serrespe
tral sequen
e, in terms of gradient 
ow lines, and these then have Floertheoreti
 analogues. There are also new 
onstru
tions in Floer theory, su
has the \quantum produ
t" in symple
ti
 Floer theory [51℄, whi
h do not5have analogues in 
lassi
al topology.e�tfdetf and t ! 1. This is a remarkable way to establish the isomorphism betweenMorse homology and singular homology (over R), and was made rigorous by Hel�er andSjostrand. See [9℄ for a ni
e survey.3The book [56℄ gives a detailed te
hni
al treatment of Morse homology with an eyetowards Floer-theoreti
 generalizations.4This matter is dis
ussed in [13℄. Also, for some versions of Floer theory, the analogywith Morse theory of a fun
tion on a spa
e begins to break down. For example symple
ti
�eld theory is like the Morse theory of the symple
ti
 a
tion fun
tional on the loop spa
e,ex
ept that there 
an be several loops whi
h fuse and separate in a \gradient 
ow line" orpseudoholomorphi
 
urve.5It is possible to 
onstru
t the 
up produ
t in �nite dimensional Morse theory in a waywhi
h relates to the quantum produ
t mu
h like the way that Feynman diagrams relateto string theory [7℄; but this is not a dire
t translation as in the pre
eding senten
e, whereone type of \gradient 
ow line" is repla
ed by another.6



1.3 Comparison of the two approa
hesTo summarize, let us brie
y des
ribe how the Floer-theoreti
 approa
h 
om-pares with the three basi
 appli
ations of the 
lassi
al approa
h from x1.1.1. Both approa
hes establish the Morse inequalities, and while the newerproof of the Morse inequalities seems more elegant, the two proofs haveroughly the same 
ontent.2. Roughly speaking, from an analyti
 point of view, the 
lassi
al ap-proa
h extends to in�nite dimensional settings in whi
h the gradient
ow equation is paraboli
, while the Floer-theoreti
 approa
h extendsto 
ases where the gradient 
ow equation is ellipti
.3. Floer homology is generally used as an invariant to tell spa
es apart.However it is very intereting to ask if it 
an lead to 
onstru
tive results.For example, is there a Smale 
an
ellation lemma in Floer theory? Thisquestion has been 
onsidered by Fukaya [22℄ and in a di�erent form byTaubes [65℄.2 The de�nition of Morse homology2.1 Morse fun
tionsLet X be a smooth (�nite dimensional) manifold, say 
losed for now, andf : X ! R a smooth fun
tion.A 
riti
al point of f is a point p 2 X su
h that dfp = 0 : TpX ! R. Welet Crit(f) denote the set of 
riti
al points of f .If p is a 
riti
al point, we de�ne the Hessian H(f; p) : TpX ! T �pX asfollows. Let r be any 
onne
tion on TX, and if v 2 TpX, de�neH(f; p)(v) := rv(df):This does not depend on the 
hoi
e of 
onne
tion r be
ause df vanishes at pand the di�eren
e between any two 
onne
tions is a tensor6. If x1; : : : ; xn are6Here is another way to see why if s is a se
tion of a ve
tor bundle E ! X and s(x) = 0then the derivative rs : TxX ! Ex is well de�ned, as this is an important point whi
hwe will need later. Let us write E = f(x; e) j e 2 Exg, and let � : E ! X denote theproje
tion. Let � = f(x; s(x))g denote the graph of s. Then at any point (x; s(x)) 2 �,7



lo
al 
oordinates for X near p, then with respe
t to the bases f�=�xig andfdxig for TpX and T �pX, the Hessian is given by the matrix (�2f=�xi�xj).Sin
e this matrix is symmetri
, if we use a Riemannian metri
 to identifyTpX ' T �pX, the Hessian be
omes a symmetri
 bilinear form on TpX, or aself-adjoint map TpX ! TpX.The 
riti
al point p is nondegenerate if the Hessian does not have zeroas an eigenvalue. In this 
ase we de�ne the Morse index ind(p) to be thenumber of negative eigenvalues of the Hessian.It is easy to see that a nondegenerate 
riti
al point is isolated. Moreover,although we will not really use this, the Morse lemma asserts that if p isa nondegenerate 
riti
al point of index i, then there exist lo
al 
oordinatesx1; : : : ; xn for X near p su
h thatf = f(p) � x21 � � � � � x2i + x2i+1 + � � �+ x2n:The fun
tion f is Morse if all of its 
riti
al points are nondegenerate.One 
an show that a generi
 smooth fun
tion on X is Morse. We will laterdo a systemati
 study of how to pre
isely formulate and prove su
h generi
itystatements.2.2 The gradient 
owLet g be a metri
 on X, and let V denote the negative gradient of f withrespe
t to g. The 
ow of the ve
tor �eld V de�nes a one-parameter group ofdi�eomorphisms 	s : X ! X for s 2 R with 	0 = id and d	s=dt = V .If p is a 
riti
al point, we de�ne the des
ending manifoldD(p) := �x 2 X ���� lims!�1	s(x) = p�and the as
ending manifoldA (p) := �x 2 X ���� lims!+1	s(x) = p� :the map �� : T(x;s(x))� ! TxX is an isomorphism, be
ause � Æ s = idX . If s(x) = 0, wede�ne rs : TxX (��)�1�! T(x;0)� � T(x;0)E = TxX �Ex �! Ex:The key point is that there is a 
anoni
al identi�
ation T(x;0)E = TxX � Ex be
auseTxX in
ludes into T(x;0)E as the tangent spa
e to the zero se
tion. A 
onne
tion r is anextension of this (satisfying some restri
tions) to an identi�
ation T(x;e)E ' TxX �Ex forall (x; e) 2 E, but su
h an identi�
ation is not 
anoni
al ex
ept when e = 0.8



(These are sometimes also 
alled the \unstable manifold" and \stable mani-fold", respe
tively, of the 
ow V .)If p is a nondegenerate 
riti
al point, then D(p) is an embedded open dis
in X with dimension dimD(p) = ind(p):In fa
t, the tangent spa
e TpD(p) � TpX is just the negative eigenspa
eof the Hessian H(f; p). Likewise, A (p) is an embedded open dis
 with the
omplementary dimensiondimA (p) = dim(X)� ind(p):We refer to [1℄ for the proof7.We assume for the rest of this se
tion that the pair (f; g) is Morse-Smale: namely, f is Morse and for every pair of 
riti
al points p and q, thedes
ending manifold D(p) is transverse to the as
ending manifold A (q). Wewill see later (maybe) that this 
ondition holds generi
ally.If p and q are 
riti
al points, a 
ow line from p to q is a path 
 : R! Xwith 
0(s) = V (
(s)) and lims!�1 
(s) = p and lims!+1 
(s) = q. Notethat R a
ts on the set of 
ow lines from p to q by pre
omposition withtranslations of R. We letM (p; q) denote the moduli spa
e of 
ow lines fromp to q, modulo translation. We 
an identifyM (p; q) = D(p) \A (q)=R;where R a
ts on X by the 
ow f	sg. In parti
ular, the Morse-Smale 
ondi-tion implies thatM (p; q) is naturally a manifold withdimM (p; q) = ind(p)� ind(q)� 1 (2)(ex
ept in the 
ase p = q, when the R a
tion is trivial, where dimM (p; p) =0). When p 6= q, we orient M (p; q) as follows8. For ea
h 
riti
al point p,
hoose an orientation of the des
ending manifold D(p). At any point in the7This is more or less obvious if one 
hooses the metri
 near the 
riti
al points to beEu
lidean in a 
oordinate 
hart given by the Morse lemma. This assumption is sometimesmade in the literature in order to simplify various te
hni
al arguments. However this
ondition is not generi
, as the eigenvalues of the Hessian are all distin
t for a generi
metri
.8This 
onvention follows [54℄. There are other ways to do this whi
h are more abstra
tand possibly ni
er but also more diÆ
ult to work with. We we will see a very slightlymore elegant version when we study Morse-Bott theory.9



image of 
, we have an isomorphism, 
anoni
al at the level of orientations9,TD(p) ' T (D(p) \A (q))� (TX=TA (q))' T
M (p; q)� T
 � TqD(q): (3)The isomorphism in the �rst line 
omes from the Morse-Smale transversalityassumption; the isomorphism (D(p)\A (q)) ' T
M (p; q)�T
 holds by (2),and the isomorphism TX=TA (q) ' TqD(q) is obtained by translating thesubspa
e TqD(q) � TqX along 
 while keeping it 
omplementary to TA (q).We orientM (p; q) so that the isomorphism (3) is orientation-preserving.2.3 Compa
ti�
ation by broken 
ow linesWhen ind(p)� ind(q) = 1, the moduli spa
eM (p; q) has dimension zero, andwe would like to 
ount the points in it. For this purpose we need to knowthat M (p; q) is 
ompa
t. This follows from the following general fa
t.Re
all that a smooth manifold with 
orners is a se
ond 
ountableHausdor� spa
e10 su
h that ea
h point has a neighborhood with a 
hosenhomeomorphism with Rn�k � [0;1)k for some k, and the transition mapsare smooth.Theorem 2.1 If X is 
losed and (f; g) is Morse-Smale, then for any two
riti
al points p; q, the moduli spa
e M (p; q) has a natural 
ompa
ti�
ationto a smooth manifold with 
orners M (p; q) whose 
odimension k stratum isM (p; q)k = [r1;:::;rk2Crit(f)p; r1; : : : ; rk; q distin
tM (p; r1)�M (r1; r2)�� � ��M (rk�1; rk)�M (rk; q):When k = 1, as oriented manifolds11 we have�M (p; q) = [r2Crit(f)p; q; r distin
t(�1)ind(p)+ind(r)+1M (p; r) �M (r; q):9That is, there are lots of 
hoi
es involved in de�ning this isomorphism, but any twoisomorphisms that result will di�er by an automorphism of positive determinant.10The \se
ond 
ountable" and \Hausdor�" 
onditions are the same 
onditions one makesin de�ning an ordinary manifold in order to rule out the long line and other strange beasts.11For now we will omit the 
al
ulation of signs like this. Generally the fa
t that the signbehaves in a uniform way is more important than what the a
tual sign is. For exampleif equation (4) held with a global minus sign then we would still get �2 = 0 below. Thepaper [19℄ des
ribes a general pro
edure for showing that \
oherent orientations" exist,where the signs behave in a suÆ
iently uniform way to give �2 = 0 et
.10



For example, if ind(p) = i and ind(q) = i � 1, then M (p; q) is 
ompa
t.If ind(q) = i � 2, then M (p; q) has a 
ompa
tifa
tion M (p; q) whi
h is a
ompa
t 1-manifold with boundary�M (p; q) = [r2Criti�1(f)M (p; r) �M (r; q): (4)Note that by (2), a 
riti
al point r 
an arise here only if its index is i � 1;be
auseM (p; r) 6= ; and p 6= r implies that ind(r) � i�1, whileM (r; q) 6= ;and r 6= q implies ind(r) � i� 1.Theorem 2.1 and many variants and in�nite dimensional generalizationsthereof 
omprise the te
hni
al 
ornerstone of Floer theory. The proof hastwo main parts. The �rst part is a 
ompa
tness result asserting that anysequen
e of 
ow lines in M (p; q) has a subsequen
e that 
onverges in anappropriate sense to a \broken 
ow line" in M (p; q)k for some k � 0. These
ond part is a \gluing theorem" whi
h asserts that any broken 
ow linein M (p; q)k 
an be perturbed to an honest 
ow line in M (p; q), and theseperturbations are parametrized by (R;1)k, su
h that taking one of thesegluing parameters to in�nity 
orresponds to breaking the 
ow line at one ofthe k intermediate 
riti
al points r1; : : : ; rk. One also has to 
he
k that theorientations work out. We will go into more details of some of this later.The basi
 idea to remember is that in favorable 
ases, one 
an 
ompa
tifymoduli spa
es of 
ow lines into 
ompa
t manifolds with 
orners by addingin suitably \broken" 
ow lines. (In unfavorable 
ases, there are issues su
has \bubbling" whi
h make 
ompa
ti�
ation more 
ompli
ated.)2.4 The 
hain 
omplexWe de�ne theMorse 
omplex (CMorse� (f; g); �Morse) as follows. Let Criti(f)denote the set of index i 
riti
al points of f . The 
hain module Ci is the freeZ-module generated by this �nite set:CMorsei (f; g) :=ZCriti(f):The di�erential �Morse : Ci ! Ci�1 
ounts gradient 
ow lines. That is, ifp 2 Criti(f), then �Morse(p) := Xq2Criti�1(f)#M (p; q) � q:11



Here #M (p; q) 2 Zdenotes the number of points inM (p; q), 
ounted withthe signs given by the orientation onM (p; q).Lemma 2.2 (�Morse)2 = 0.Proof. This follows immediately from (4), be
ause the boundary of a 
ompa
toriented 1-manifold has zero points 
ounted with sign. More pre
isely, ifp 2 Criti(f) and q 2 Criti�2(f), then
(�Morse)2p; q� = Xr2Criti�1(f)
�Morsep; r� 
�Morser; q�= # [r2Criti�1(f)M (p; r) �M (r; q)= #�M (p; q)= 0: 2We de�ne the Morse homology HMorse� (f; g) to be the homology of the
hain 
omplex (CMorse� (f; g); �Morse).Example 2.3 Let X = T 2, let f be the height fun
tion for an embedding ofT 2 into R3 in whi
h the torus is \standing on end", and let g be the metri
indu
ed by the Eu
lidean metri
. The height fun
tion f is Morse and thereare four 
riti
al points: one minimum of index 0, two saddles of index 1, andone maximum of index 2. The pair (f; g) is not Morse-Smale, be
ause thereare two 
ow lines from the upper saddle to the lower saddle. However thesewill disappear if we perturb g slightly. Then �Morse = 0, be
ause for ea
hsaddle, there are two 
ow lines from the maximumwhi
h have opposite signsand 
an
el, and two 
ow lines to the minimumwhi
h also have opposite signsand 
an
el. Therefore HMorse2 'Z, HMorse1 'Z2, and HMorse0 'Z.Example 2.4 Suppose f is a Morse fun
tion on S2 with two maxima x1; x2,one saddle y, and one minimum z. Then for any metri
 g, the pair (f; g) isMorse-Smale, and for suitable orientation 
hoi
es we have�Morse(x1) = ��Morse(x2) = y;�Morse(y) = 0:Therefore HMorse2 'Z, HMorse1 = 0, and HMorse0 'Z.12



Exer
ises for x2.1. Let f
ng be a sequen
e of 
ow lines from p to q, and let 
̂ = (
̂0; : : : ; 
̂k) bea k-times broken 
ow line from p to q; that is, there exist distin
t 
riti
alpoints r0; : : : ; rk+1 with r0 = p and rk+1 = q su
h that 
̂i is a 
ow line fromri to ri+1 for i = 0; : : : ; k. Let us say that limn!1[
n℄ = [
̂℄ if for ea
h nthere exist real numbers sn;0 < sn;1 < � � � < sn;k su
h that 
n(sn;i + �)! 
̂iin C1 on 
ompa
t sets.Show that any sequen
e of 
ow lines f
ng from p to q has a subsequen
ewhi
h 
onverges to some k-times broken 
ow line as above for some k � 0.3 Morse homology is isomorphi
 to singularhomologyWe will now prove the following theorem, whi
h is one of the most funda-mental fa
ts about �nite-dimensional Morse theory.Theorem 3.1 If X is a 
losed smooth manifold and (f; g) is a Morse-Smalepair on X, then there is a 
anoni
al isomorphismHMorse� (f; g) ' H�(X):3.1 Outline of the proofThe idea of the proof of Theorem 3.1 is simple. We de�ne a 
hain mapD : CMorse� ! C�(X) by sending a 
riti
al point to its des
ending manifold.We de�ne a map A : C�(X)! CMorse� by taking a simplex, 
owing it via V ,and taking the sum of the 
riti
al points that it \hangs on". Then A Æ Dequals the identity on the 
hain level. On the other hand, D Æ A is 
hainhomotopi
 to the identity; the 
hain homotopy sends a singular 
hain to itsentire forward orbit under the 
ow V .To make this rigorous, we will use various 
ompa
ti�
ations by broken
ow lines. But �rst, we need to de
ide what we mean by C�(X), and thereare various approa
hes to handling the te
hni
alities. Here we de�ne C�(X)as follows. We say that an i-simplex � : �i ! X is generi
 if � is smoothand ea
h fa
e of � is transverse to the as
ending manifolds of all the 
riti
alpoints of f . We let Ci(X) denote the subspa
e of the set of all i-dimensional13




urrents12 on X generated by generi
 i-simpli
es. Standard arguments showthat the homology of Ci(X) so de�ned is 
anoni
ally isomorphi
 to H�(X)as de�ned say by the Eilenberg-Steenrod axioms.3.2 The 
hain map via 
ompa
ti�ed des
ending mani-foldsTo 
arry out the program outlined above, we start by de�ning a 
ompa
ti-�
ation of the des
ending manifold D(p) of a 
riti
al point p. The proof ofthe following proposition is similar to the proof of Theorem 2.1.Proposition 3.2 D(p) has a natural 
ompa
ti�
ation to a smooth manifoldwith 
orners D(p), whose 
odimension k stratum isD(p)k = [q1;:::;qk2Crit(f)p; q1; : : : ; qk distin
tM (p; q1)�M (q1; q2)� � � � �M (qk�1; qk)�D(qk):When k = 1, as oriented manifolds we have�D(p) = [q2Crit(f)p6=q (�1)ind(p)+ind(q)+1M (p; q)�D(q):The maps D(p)k ! X given by proje
ting to D(qk) � X pat
h together to asmooth13 map e : D(p) �! Xextending the in
lusion D(p)! X.Example 3.3 De�ne f : [�1; 1℄n ! R byf(x1; : : : ; xn) := 14 nXi=1 (xi + 1)2(xi � 1)212The approa
h here is basi
ally taken from [34℄, ex
ept that here we use 
urrents insteadof modding out by \degenerate singular 
hains". What we are doing here is di�erent fromthe elegant treatment of Morse theory via 
urrents in [29℄, whi
h uses more general 
urrentsbut makes additional assumptions on the gradient 
ow.13I think this smoothness 
laim is OK but I need to 
he
k it, hopefully later.14



and let g be the Eu
lidean metri
. (If you like, in
lude X into a 
losedn-manifold and extend f and g arbitrarily.) Then�rf = � nXi=1 (xi + 1)xi(xi � 1):Thus f has a 
riti
al point of index k at the 
enter of ea
h k-fa
e of the 
ube,and no other 
riti
al points. The des
ending manifold of a 
riti
al point isthe interior of the 
orresponding fa
e.The 
ompa
ti�ed des
ending manifold of a 
riti
al point is di�eomorphi
to a \fully trun
ated k-
ube". If k = 2, its boundary is an o
tagon. Ifk = 3, its boundary is a polyhedron whose fa
es 
onsist of 6 o
tagons, 12quadrilaterals, and 8 hexagons.Remark 3.4 One 
an show in general that D(p) is homeomorphi
 to a
losed ball, of 
ourse of dimension ind(p). Hen
e the 
ompa
ti�ed des
endingmanifolds D(p), together with the maps e : D(p)! X, give X the stru
tureof a CW-
omplex, with one i-
ell for ea
h 
riti
al point of index i. There aresofter ways to see that a Morse fun
tion gives a CW-stru
ture with one 
ellfor ea
h 
riti
al point; however the approa
h above shows that the metri
gives a CW-stru
ture more 
anoni
ally.Now the 
ompa
t oriented manifold with 
orners D(p) has a fundamental
urrent hD(p)i, and we de�neD(p) := e� hD(p)i :Note that D(p) 2 C�(X), be
ause by the Morse-Smale assumption, we 
an
ompatibly triangulate all the des
ending manifolds using generi
 simpli
esby indu
tion on the dimension.Lemma 3.5 D is a 
hain map: �D = D�Morse.Proof. Let p 2 Criti(f). By Proposition 3.2 we have�D(p) = [q2Crit(f)p6=q (�1)i+ind(q)+1M (p; q)�D(q):15



Therefore�D(p) = Xq2Crit(f)p6=q (�1)i+ind(q)+1e� hM (p; q)�D(q)i 2 Ci�1(X):Now if ind(q) > i� 1, thenM (p; q) is empty by the Morse-Smale 
ondition,while if ind(q) < i� 1, then the 
ontribution on the right hand side is zeroin Ci�1(X), be
ause e maps M (p; q) �D(q) to the support of D(q), whi
his a 
urrent of dimension � i� 2. Therefore�D(p) = Xq2Criti�1(f)#M (p; q) � e� hD(q)i= D ��Morse(p)� : 23.3 The left inverse 
hain mapIf � is a generi
 i-simplex and q is a 
riti
al point, let M (�; q) denote themoduli spa
e of gradient 
ow lines from � to q, i.e. maps 
 : [0;1) ! Xsu
h that 
(0) 2 � and 
0(s) = V (
(s)) and lims!1 
(s) = q. As in (3), wehave an isomorphism T
(0)� ' T
M (�; q)� TqD(q);and we orientM (�; q) so that this isomorphism is orientation-preserving.As in Theorem 2.1 and Proposition 3.2, M (�; q) has a 
ompa
t�
ationto a smooth manifold with 
ornersM (�; p) whose 
odimension k stratum isM (�; q)k = k[j=0 [p1;:::;pj2Crit(f)p1; : : : ; pj; q distin
tM (�k�j ; p1)�M (p1; p2)�� � ��M (pj�1; pj)�M (pj; q):Here �j denotes the 
odimension j stratum of �. When k = 1, as orientedmanifolds we have�M (�; q) =M (��; q)[ [p2Crit(f)p6=q (�1)i+ind(q)M (�; p)�M (p; q):16



Clearly dimM (�; p) = i� ind(p). By this and the 
ompa
tness result, itmakes sense to de�ne A(�) := Xp2Criti(f)#M (�; p) � p:Lemma 3.6 A is a 
hain map: A� = �MorseA.Proof. This follows from the 
ompa
tness result, sin
e if q 2 Criti�1(f), then#�M (�; q) = #M (��; q)�# [p2Crit(f)p6=q M (�; p)�M (p; q)= #M (��; q)�# [p2Criti(f)M (�; p)�M (p; q)= hA(��); qi � h�MorseA(�); qi:Here the se
ond equality holds be
ause of our transversality assumptions. 2Lemma 3.7 A ÆD = id : CMorsei ! CMorsei .Proof. If p is an index i 
riti
al point, then M (D(p); p) 
ontains one point,the 
onstant gradient 
ow line, oriented positively by our sign 
onvention;while M (D(p); q) is empty if q is any other index i 
riti
al point, be
auseM (p; q) is empty by the Morse-Smale 
ondition. 23.4 The 
hain homotopy via 
ompa
ti�ed forward or-bitsIf � is a generi
 i-simplex, we de�ne its forward orbit to be the setF (�) := [0;1)� �together with the map e : F (�)! X de�ned bye(s; x) := 	s(�(x)):The forward orbit has a natural 
ompa
ti�
ation to a smooth manifold with
orners F (�) whose 
odimension k stratum for k > 2 isF (�)k = F (�k)[ k[j=1 [r1;:::;rj2Crit(f)r1; : : : ; rj distin
tM (�k�j; r1)�M (r1; r2)�� � ��M (rj�1; rj)�D(rj):17



When k = 1, as oriented manifolds we have�F (�) = �� [ �F (��)[ [r2Crit(f)M (�; r)�D(r):The map e extends over this 
ompa
ti�
ation as a smooth map whi
h proje
tsto D(rj) � X.We now de�ne F : Ci(X)! Ci+1(X) byF (�) := e� hF (�)i :Then the above 
ompa
ti�
ation result implies that F is a 
hain homotopybetween D ÆA and the identity:Lemma 3.8 �F + F� = D ÆA� id.Lemmas 3.5, 3.6, 3.7 and 3.8 
omplete the proof of Theorem 3.1.3.5 Morse 
obordisms and relative homology.Theorem 3.1 has the following useful generalization. Let X be a 
ompa
tsmooth manifold with boundary, whose boundary is partitioned into twounions of 
onne
ted 
omponents X0 and X1. A Morse 
obordism is asmooth fun
tion f : X ! [0; 1℄ su
h that f�1(i) = Xi for i = 0; 1, and all
riti
al points of f are nondegenerate and in the interior of X.Theorem 3.9 Let f : X ! [0; 1℄ be a Morse 
obordism and let g be a metri
on X su
h that (f; g) is Morse-Smale. Then there is a 
anoni
al isomorphismHMorse� (f; g) ' H�(X;X0):Exer
ises for x3.1. Dedu
e the Morse inequalities (1) from Theorem 3.1.2. Use Theorem 3.1 to prove the K�unneth formula for 
losed manifolds.3. Use Theorem 3.1 to prove the Poin
ar`'e-Hopf index theorem: if X is a 
losedoriented smooth manifold, then RX e(TX), i.e. the signed number of zeroesof a generi
 ve
tor �eld, is equal to the Euler 
hara
teristi
 �(X).4. Use Theorem 3.1 to prove Poin
ar�e duality for 
losed oriented manifolds.5. Prove Theorem 3.9. Dedu
e Poin
ar�e-Lefs
hetz duality.18



4 A priori invarian
e of Morse homologyLet X be a 
losed smooth manifold and (f; g) a Morse-Smale pair. Wewill now give an a priori proof that the Morse homology HMorse� (f; g) is atopologi
al invariant, i.e. it depends only on X and f and g. Of 
ourse wealready know this as a 
orollary of Theorem 3.1. The point of this exer
ise isthat it provides a model for proofs that various versions of Floer homologyare topologi
al invariants, where an interpretation in terms of a previouslyknown topologi
al invariant might not be available or possible14.A natural and enlightening strategy for the proof is \bifur
ation analy-sis": one deforms the pair (f; g), studies expli
itly how the 
hain 
omplex
hanges, and 
he
ks that the homology stays the same, see [17, 41℄. However,bifur
ation analysis is te
hni
ally diÆ
ult in general, and Floer dis
overedan elegant alternative approa
h [16℄ whi
h uses the same ideas as the proofthat �2 = 0, and whi
h we will now explain.4.1 Continuation mapsLet (f0; g0) and (f1; g1) be two Morse-Smale pairs. Let (C0� ; �0) and (C1� ; �1)denote the 
orresponding Morse 
omplexes. Let� = f(ft; gt) j t 2 [0; 1℄gbe a path of fun
tions and metri
s from (f0; g0) to (f1; g1). Under a generi
ityassumption to be explained below, we de�ne the 
ontinuation map�� : C0� �! C1�as follows.De�ne a ve
tor �eld V on [0; 1℄�X byV := (1� t)t(1 + t)�t + Vt; (5)where t denotes the [0; 1℄ 
oordinate and Vt denotes the negative gradient offt : X ! R with respe
t to the metri
 gt. The ve
tor �eld V is suÆ
iently14Perhaps on some other planet, Morse homology was dis
overed before any other formof homology. Then on that planet, this result proved that Morse homology is a powerfultool for distinguishing 
losed smooth manifolds; and whoever dis
overed this probablyre
eived that planet's analogue of the Fields medal.19



well behaved that we 
an de�ne its 
riti
al points, as
ending and des
endingmanifolds, and 
ow lines just as if it were the negative gradient of a Morsefun
tion, and the same transversality and 
ompa
tness properties will hold15.The fun
tion (t+ 1)2(t� 1)2=4 on R has a 
riti
al point of index 1 at t = 0and a 
riti
al point of index 0 at t = 1 with no 
riti
al points in between.Thus Criti(V ) = f0g � Criti�1(f0)[f1g � Criti(f1): (6)We say that the family � is admissible if the as
ending and des
endingmanifolds of the 
riti
al points of V interse
t transversely. One 
an show thatif (f0; g0) and (f1; g1) are Morse-Smale, then a generi
 homotopy � betweenthem is admissible. This is a slight modi�
ation of the proof that a generi
pair (f; g) is Morse-Smale. So assume from now on that � is admissible. Notethat for an admissible �, there might (and often must) be some \bifur
ationtimes" t for whi
h the pair (ft; gt) is not Morse-Smale. Generi
ity of a familydoes not imply generi
ity of all the individual points in the family.To 
ontinue, if P and Q are 
riti
al points of V , letM (P;Q) denote themoduli spa
e of 
ow lines of V from P to Q, modulo the R a
tion as usual.The orientation of [0; 1℄ and the orientations of the des
ending manifolds for(f0; g0) and (f1; g1) indu
e orientations of the des
ending manifolds for V andhen
e of the moduli spa
esM (P;Q). Now if p 2 Criti(f0), we de�ne��(p) := Xq2Criti(f1)#M ((0; p); (1; q)) � q:Lemma 4.1 �� is a 
hain map: �1�� = ���0.Proof. If p 2 Criti(f0) and q 2 Criti�1(f1), then the usual argument showsthatM ((0; p); (1; q)) has a 
ompa
ti�
ation to a 
ompa
t oriented 1-manifold15In the �rst draft of this le
ture I de�ned V to be the negative gradient of the fun
tionF : [0; 1℄ � X ! R de�ned by F (t; x) := 14(t + 1)2(t � 1)2 + ft(x); with respe
t to themetri
 G on [0; 1℄ � X de�ned by G(t; x) = dt2 + gt(x). But this doesn't work in thedis
ussion below be
ause I want the [0; 1℄ 
omponent of the ve
tor �eld to be positive on(0; 1)� X. Thanks to Tamas Kalman who pointed out this mistake, and also suggested�xing it by multiplying the term 14 (t+1)2(t�1)2 in the de�nition of F by a large 
onstantand assuming that ft is independent of t for t 
lose to 0 or 1. That would work �ne here,and also makes 
on
atenation of paths ni
er. However the ve
tor �eld (5) is the one Iwanted in the �rst pla
e be
ause of generalizations that I have in mind in [33℄.20



M ((0; p); (1; q)) with boundary�M ((0; p); (1; q)) = [r2Criti(f1)M ((0; p); (1; r)) �M ((1; r); (1; q))[ [r2Criti-1(f0)M ((0; p); (0; r)) �M ((0; r); (1; q)):If M0 and M1 denote the moduli spa
es for (f0; g0) and (f1; g1), then asoriented manifolds we haveM ((0; p); (0; r)) = (�1)ind(p)+ind(r)M0(p; r);M ((1; r); (1; q)) =M1(r; q):The lemma follows immediately16. 2Thus �� indu
es a map(��)� : HMorse� (f0; g0)! HMorse� (f1; g1): (7)4.2 Chain homotopiesNow let � and �0 be two di�erent generi
 paths with the same endpoints(f0; g0) and (f1; g1). Let � and �0 denote the 
orresponding 
ontinuationmaps.Lemma 4.2 A generi
 homotopy between the paths � and �0 indu
es a 
hainhomotopy K : C0� �! C1�+1;�1K +K�0 = � � �0:Proof. We regard the homotopy as a family f(fd; gd) j d 2 Dg, where D isa digon (a 
losed 2-manifold with 
orners with two edges and two verti
es).Let ĝ be a metri
 on D su
h that the edges have length 1. Let f̂ : D! R bea fun
tion with an index 2 
riti
al point at one vertex and an index 0 
riti
alpoint at the other vertex and no other 
riti
al points, su
h that the negative16Another way to say this is that the Morse di�erential � for the ve
tor �eld V is well-de�ned and still satis�es �2 = 0. With respe
t to the de
omposition of Crit(V ) given by(6), we have � = ���0 0�� �1� so �2 = � �20 0����0 + �1�� �21�.21



gradient of f̂ with respe
t to ĝ is tangent to the edges and agrees with thenegative gradient of (t+ 1)2(t� 1)2=4 there. Let V̂ be the negative gradientof f̂ with respe
t to ĝ. We then de�ne a ve
tor �eld V on D �X byV := V̂ + Vdwhere Vd denotes the negative gradient of fd with respe
t to gd. The map Kthen 
ounts 
ow lines of the ve
tor �eld V . We omit the veri�
ation of the
hain homotopy equation. 2This proves that the map (��)� in (7) depends only on the homotopy
lass of �. In fa
t, sin
e the spa
e of paths � here is 
ontra
tible17, thisimplies that the map (��)� does not depend on anything18. We now wantto prove that it is an isomorphism. If �1 is an admissible path from (f0; g0)to (f1; g1), and �2 is an admissible path from (f1; g1) to (f2; g2), let �2 � �1denote the 
on
atenation of these two paths, reparametrized to be smoothand perturbed if ne
essary to be admissible.Lemma 4.3 ��2��1 is 
hain homotopi
 to ��2 Æ ��1 .Proof. This is similar to the proof of the pre
eding lemma ex
ept that weuse a triangle instead of a digon. 2The pre
eding lemma, together with Exer
ise 1 below, imply that for anytwo Morse-Smale pairs (f0; g0) and (f1; g1), there is a 
anoni
al19 isomorphismHMorse� (f0; g0) ' HMorse� (f1; g1).Exer
ises for x4.1. Show that if � = f(ft; gt)g is a 
onstant family with (ft; gt) Morse-Smale,then � is admissible and �� = id.2. Find 
ounterexamples with X = S1 to ea
h of the following statements.(a) Suppose (ft; gt) is Morse-Smale for all t 2 [0; 1℄, so that there is a
anoni
al identi�
ation Crit(f0) ' Crit(f1). Then the family � =17Note that the spa
e of metri
s on a manifold is 
ontra
tible, be
ause one 
an 
ontra
tall metri
s to a given one by averaging.18It is important to note that in Floer theory, there are often di�erent homotopy 
lassesof paths 
onne
ting two obje
ts, and sometimes the indu
ed maps on Floer homology 
andistinguish them, see [60℄.19In Floer theory the analogous isomorphism might not be 
anoni
al, see the pre
edingfootnote. 22



f(ft; gt)g is admissible, and �� is given by the 
anoni
al identi�
ationabove.(b) ��2��1 = ��2 Æ ��1 at the 
hain level.3. Show that the diagramHMorse� (f0; g0) ����! HMorse� (f1; g1)??y ??yH�(X) H�(X)
ommutes, where the top arrow is the 
ontinuation isomorphism, and theverti
al arrows are the isomorphisms given by Theorem 3.1.5 Generi
ity and transversalityWe now explain at least some of how to prove statements su
h as \a generi
fun
tion is Morse". We begin with a general de�nition of \generi
".De�nition 5.1 Let X be a topologi
al spa
e and let P (x) be a statementfor ea
h x 2 X (whi
h might be true or false). We say that P (x) is truefor generi
 x 2 X if the set fx 2 X j P (x)g � X 
ontains a 
ountableinterse
tion of open dense sets.This is a reasonable de�nition of \generi
", for example be
ause the Baire
ategory theorem asserts that ifX is a 
ompletemetri
 spa
e then a 
ountableinterse
tion of open dense sets in X is itself dense.5.1 The Sard-Smale theoremThe basi
 strategy for proving generi
ity statements is en
apsulated in Theo-rem 5.4 below20. It requires the Sard-Smale theorem, an in�nite dimensionalgeneralization of Sard's theorem. We �rst re
all the following de�nition.De�nition 5.2 Let V and W be Bana
h spa
es. A bounded linear operatorF : V !W is Fredholm if:20This theorem is distilled out of [44℄, whi
h provides tons of details regarding a lotof the analysis we will be dis
ussing (and there will be even more details in the se
ondedition). 23



� F has 
losed range, i.e. F (V ) is a 
losed subspa
e of W .� dimKer(F ) <1.� dimCoker(F ) <1.If F is Fredholm we de�ne the indexind(F ) := dimKer(F )� dimCoker(F ):The index is a lo
ally 
onstant fun
tion on the spa
e of Fredholm opera-tors with the norm topology.Theorem 5.3 (Sard-Smale) Let X and Y be separable21 Bana
h mani-folds22. Let f : X ! Y be a Ck map23 su
h that dfx : TxX ! Tf(x)Y isFredholm of index l for all x 2 X. Assume k � 1 and k � l + 1.Then a generi
 y 2 Y is a regular value of f , i.e. dfx is onto for allx 2 f�1(y), so f�1(y) is naturally a manifold24 of dimension l.The idea of the proof is to use the Fredholm assumption to lo
ally redu
eto Sard's theorem in �nite dimensions, and to use the separability assumptionto get a 
ountable interse
tion of open dense sets.We use the Sard-Smale theorem as follows. Suppose we have an equationof the form  (y; z) = 0, and we want to show that for generi
 y 2 Y , the setof z su
h that  (y; z) = 0 is \
ut out transversely".21A topologi
al spa
e is separable if it 
ontains a 
ountable dense set.22A Bana
h manifold is de�ned just like a smooth manifold ex
ept that it is lo
allymodelled on a Bana
h spa
e rather than Rn.23If V and W are Bana
h spa
es then a fun
tion f : V !W is di�erentiable at p 2 Vif there exists a bounded linear map dfp : V !W su
h thatlimv!0 kf(p + v) � f(p) � dfp(v)kkvk = 0:If su
h a dfp exists then it is ne
essarily unique. If f is di�erentiable everywhere then dfis a map V ! Hom(V;W ) and one 
an similarly talk about the derivative of df , et
.24The impli
it fun
tion implies that if f : X ! Y is a Ck map between Bana
h manifoldsand if y is a regular value of f , then f�1(y) is a Ck submanifold of X, with Txf�1(y) =Ker(dfx). The proof is a ni
e appli
ation of the 
ontra
tion mapping theorem, and if youhaven't seen this before you should learn it be
ause it's 
ool. This kind of analysis isneeded for gluing theorems in Floer theory.24



Theorem 5.4 (useful) Let Y;Z be separable Bana
h manifolds, E ! Y �Za Bana
h spa
e bundle, and  : Y � Z ! E a smooth se
tion. Suppose thatfor all (y; z) 2  �1(0), the following hold:(a) The di�erential r (y;z) : T(y;z)(Y � Z)! E(y;z) is surje
tive.(b) The restri
ted di�erential r (y;z) : TzZ ! E(y;z) is Fredholm of index l.Then for generi
 y 2 Y , the set fz 2 Zj (y; z) = 0g is an l-dimensionalsubmanifold of Z (and moreover at ea
h point in this set, r is surje
tiveon the tangent spa
e to Z).Proof. Hypothesis (a) and the impli
it fun
tion theorem imply that  �1(0)is a Bana
h manifold. Now let � :  �1(0) ! Y be the proje
tion.Claim: For ea
h (y; z) 2  �1(0), the proje
tion d� : T(y;z) �1(0) ! TyYis Fredholm.Proof of 
laim: The �nite dimensional kernel, �nite dimensional 
okernel,and 
losed range properties follow from the 
orresponding properties for therestri
ted di�erential in (b). First, we have a tautologi
al equalityKer �d� : T(y;z) �1(0)! TyY � = Ker �r : TzZ ! E(y;z)� : (8)Furthermore r : TyY ! E(y;z) indu
es an inje
tion on 
okernels whi
h by(a) is in fa
t an isomorphism,r : Coker �d� : T(y;z) �1(0) ! TyY � '�! Coker �r : TzZ ! E(y;z)� : (9)Finally, d� : T(y;z) �1(0) ! TyY has 
losed range be
aused� �T(y;z) �1(0)� = fy 2 TyY j r (y; 0) 2 r (TzZ)g ;r (TzZ) is 
losed, and the inverse image of a 
losed set under a 
ontinuousmap is 
losed.The 
laim and the Sard-Smale theorem imply that a generi
 y 2 Y is aregular value of � :  �1(0) ! Y . For su
h a y, the set fz 2 Z j  (y; z) = 0gis then a submanifold of Z by the impli
it fun
tion theorem; by (8) this sub-manifold has dimension l, and by (9), for for ea
h (y; z) in this submanifold,the restri
ted di�erential r (y;z) : TzZ ! E(y;z) is surje
tive. 225



5.2 Generi
 fun
tions are MorseHere is a simple example of the appli
ation of Theorem 5.4.Proposition 5.5 Let Z be a 
losed smooth manifold and let k � 2 be aninteger. Then a generi
 Ck fun
tion f : Z ! R is Morse.Proof. Let Y = Ck(Z;R), and let E ! Y �Z be the pullba
k of the 
otangentbundle TZ ! Z via the proje
tion Y �Z ! Z, so that E(f;z) = TzZ. De�nea se
tion  of E by  (f; z) = df(z). Suppose (f; z) 2  �1(0). If f1 is anotherCk fun
tion on Z and v 2 TzZ thenr (f;z)(f1; v) = df1(v) +rv(df):Theorem 5.4 is appli
able be
ause: (a) 
learlyr (f;z) : T (Y �Z)! T �zZis surje
tive, sin
e df1(v) 
an be arbitrary; (b) the restri
ted di�erentialr (f;z) : TzZ ! T �zZ (10)is automati
ally Fredholm sin
e it maps between �nite dimensional ve
torspa
es.So for generi
 f , for ea
h z 2 Z su
h that  (f; z) = 0, i.e. for ea
h
riti
al point z of f , the restri
ted di�erential (10) is surje
tive. But nowwe re
ognize that the operator (10) is just the Hessian, and if it is surje
tivethen the 
riti
al point is nondegenerate. 2This argument does not work for C1 fun
tions be
ause C1(Z;R) is nota Bana
h spa
e. However there is a general te
hnique for passing from Ck-generi
ity to C1-generi
ity. We refer the reader to [44℄ for the details.5.3 Spe
tral 
owOur next goal is to show that if f is a Morse fun
tion, then for a generi
 metri
g, the pair (f; g) is Morse-Smale. Before doing so, we need to introdu
e animportant prin
iple. The dis
ussion here is based on the paper [53℄, whi
hdoes mu
h more stu� in mu
h more detail.Let H be a Hilbert spa
e and let fAs j s 2 Rg be a 
ontinuous familyof operators on H . The operators As may be unbounded. We assume thatAs 
onverges in the norm topology to invertible self-adjoint operators A� as26



s!�1. If the family fAsg is reasonable25, then one 
an make sense of thespe
tral 
ow SFfAsg 2Z;whi
h intuitively is the number of eigenvalues of As whi
h 
ross from negativeto positive as s goes from �1 to +1. If H is �nite dimensional then noadditional assumptions are needed for the family to be \reasonable" and thespe
tral 
ow is simply the dimension of the positive eigenspa
e of A+ minusthe dimension of the positive eigenspa
e of A�.We now 
onsider the operator26�s �As : L21(R;H )! L2(R;H ): (11)A pre
ise statement and proof of the following prin
iple is given in [53℄.Prin
iple 5.6 If fAsg is a reasonable family of operators as above, then�s �As is Fredholm, andind(�s �As) = �SFfAsg:Example 5.7 Here is a sket
h of some of the proof whenH is �nite dimen-sional.Let us �rst try to understand the kernel of �s � A. For ea
h h 2 H ,by the fundamental theorem of ODE's, there exists27 a unique di�erentiablefun
tion fh : R!H solving the equation(�s �As)fh(s) = 0; fh(0) = h:Now this fun
tion may or may not be in L21. To analyze this, we de�nesubspa
es H + := �h 2H j lims!+1 fh(s) = 0� ;H � := �h 2H j lims!�1 fh(s) = 0� :25One set of suÆ
ient te
hni
al assumptions is given in [53℄.26Re
all that if p � 1 and k is a nonnegative integer then the Sobolev spa
e Lpk is the
ompletion of the spa
e of smooth fun
tions f , su
h that f and its �rst k derivatives arein Lp, with respe
t to the sum of the Lp norms of f and its �rst k derivatives.27A
tually, sin
eH is not 
ompa
t, the basi
 existen
e theorem for ODE's only gives usa short-time solution de�ned for s 2 (�Æ; Æ) for some Æ > 0. But in the present situationthe short-time solution 
an be 
ontinued for all time be
ause we have a uniform upperbound on the eigenvalues of A so that the solution 
annot es
ape to in�nity in �nite time.27



Then there is an isomorphismH + \H � '�! Ker(�s �As);h 7�! fh:Namely, one 
an show that if h 2 H + \H �, then fh and hen
e its �rstderivative de
ay exponentially as s ! �1, so fh 2 L21. Conversely, iff 2 Ker(�s�As) then f = fh for some h, and we must have h 2H + \H �,or else one 
an show that f blows up exponentially as f approa
hes one endof R or the other so that f =2 L21.Furthermore, if E�(A+) denotes the negative eigenspa
e of A+, then (ittakes some thought to justify this) we have an isomorphismH + '�! E�(A+);h 7�! jhj lims!+1 fh(s)jfh(s)j : (12)Similarly,H � is isomorphi
 to E+(A�), the positive eigenspa
e of A�.It is shown in [53℄ that �s �As has 
losed range.If we believe this, then the 
okernel of �s � As is just the kernel of itsformal adjoint, i.e. the kernel of �s + A�s. More spe
i�
ally, we 
laim thatthere is an isomorphismKer(�s +A�s) '�! (H +)? \ (H �)?;~f 7�! ~f (0): (13)To see that this map is well-de�ned, suppose ~f 2 Ker(�s + A�s) and leth 2H �. Then �sh ~f ; fhi = h�s ~f; fhi + h ~f ; �sfhi= h�A� ~f; fhi + h ~f;Afhi= 0:On the other hand sin
e lims!�1 ~f (s) = 0 we havelims!�1h ~f(s); fh(s)i = 0:Hen
e h ~f (s); hi = 0. Now the map (13) is inje
tive by the uniqueness of solu-tions to ODE's, and it is surje
tive by an argument similar to the (omitted)proof of (12). 28



Thereforeind(�s �As) = dim(H + \H �)� dim((H +)? \ (H �)?)= dim(H + \H �) + dimspan(H +;H �)� dim(H )= dim(H +) + dim(H �)� dim(H )= dim(E�(A+)) + dim(E+(A�))� dim(H )= �dim(E+(A+)) + dim(E+(A�))= SFfAsg:5.4 Morse-Smale transversality for generi
 metri
sProposition 5.8 Let X be a 
losed smooth manifold, let k be a positiveinteger, and let f : X ! R be a Ck+1 Morse fun
tion on X. Then for ageneri
 Ck metri
 on X, the pair (f; g) is Morse-Smale.Proof. We pro
eed in three steps.Step 1 (setup): Fix distin
t 
riti
al points p; q of f . Let Y be the spa
eof Ck metri
s on X; this is a C1 Bana
h manifold. Let Z be the spa
e oflo
ally L21 (in parti
ular 
ontinuous28) maps 
 : R! X su
h that:� lims!�1 
(s) = p, and for R << 0, so that 
(�1; R℄ is 
ontained in a
oordinate 
hart 
entered at p, the restri
tion of 
 to (�1; R℄, viewedas a map to Rn via the 
oordinate 
hart, is L21.� lims!+1 
(s) = q, and 
 is analogously L21 on [R;1) for R >> 0.Note that Z is a C1 Bana
h manifold29 with T
Z = L21(
�TX), where L21 isde�ned with respe
t to the metri
 on 
�TX obtained by pulling ba
k a �xedmetri
 on X. We de�ne a Bana
h spa
e bundle E ! Y � Z byE(g;
) := L2(
�TX):28The Sobolev embedding theorem asserts that for fun
tions de�ned on an n-dimensionalmanifold, there is an embedding Lpk ! Lp0k0 whenever k > k0 and k�n=p > k0�n=p0, whi
hmoreover is a 
ompa
t embedding when the domain is 
ompa
t. (The number k � n=p isthe \
onformal weight" whi
h measures how the Lpk norm on Rn behaves under s
aling ofRn.) So on a 1-manifold, L21 � L10 = C0, be
ause 1� 1=2 > 0.29One 
an de�ne a 
oordinate 
hart for Z around ea
h smooth 
 using the exponentialmap asso
iated to some �xed smooth metri
 on X.29



We de�ne a se
tion  of E by (g; 
)(s) := 
0(s)� V (
(s))where V denotes the negative gradient of f with respe
t to g as usual30.Thus  (g; 
) = 0 if and only if 
 is a Ck+1 negative gradient 
ow line of ffrom p to q with respe
t to g.Step 2 (applying Theorem 5.4): We 
laim now that the hypotheses ofTheorem 5.4 are satis�ed. If  (g; 
) = 0 thenr ( _g; _
) = r
0 _
 �r _
V � _Vwhere on the right side, r is the Levi-Civita 
onne
tion31 on TX ! Xasso
iated to some �xed smooth metri
 on X, and _V denotes the derivativeof V with respe
t to _g.(a) We 
laim that r is surje
tive. To see this suppose that w 2L2(
�TX) is orthogonal to the image of r . Then for any _g we haveZ h _V ;wids = 0:Now at any given point in the image of 
, it is an exer
ise in linear algebrato 
he
k that there exists _g su
h that _V = W . Sin
e 
 is a 
ow line betweendistin
t 
riti
al points, 
 is inje
tive, so if we 
hoose _g supported near thatpoint then we 
on
lude that w is zero there. Hen
e w = 0.30Note that the se
ond term in  (g; 
) is really in L2, be
ause for instan
e the restri
tionof 
 to (�1; R℄, viewed as a map to Rn where the 
riti
al point p 
orresponds to zero, isL2, and near the 
riti
al point we have an estimate jV (x)j � 
jxj.31To 
larify this 
al
ulation: we 
an extend 
 : R! X to a map ~
 : R� [�1; 1℄ ! Xwith ~
(s; 0) = 
(s) and �~
(s; t)�t ��s=0 = _
:Then r (0; _
) = rt��~
�s � V�= rs �~
�t �rtVwhere in the se
ond line we have used the torsion-free 
ondition. (Of 
ourse r is in-dependent of the 
onne
tion we 
hoose on X, but the torsion-free 
ondition allows us towrite it in this ni
e way.) 30



(b) We 
laim that the restri
ted di�erential_
 7�! r
0 _
 �r _
V (14)is Fredholm. To see this, we 
an 
hoose a trivialization of 
�TX whi
h isparallel with respe
t to our 
hosen 
onne
tion on TX. Then in this trivi-alization, the operator (14) has the form (11), where H = Rn and As isthe 
ovariant derivative rV (
(s)) : T
(s)X ! T
(s)X in this trivialization32.Now we observe that lims!�1As = �H(f; p) and lims!+1 = �H(f; q).Sin
e these are self-adjoint and invertible, Prin
iple 5.6 applies to prove theFredholm property.In 
on
lusion, Theorem 5.4 implies that for generi
 g, the operator (14)is surje
tive for every 
ow line 
.Step 3 (re
overing the Morse-Smale 
ondition): To 
omplete the proof, weneed to show that surje
tivity of (14) implies the Morse-Smale transversality
ondition. This basi
ally follows from the dis
ussion in Example 5.7. Weobserve that if 
 is a 
ow line from p to q, thenH + = T
(0)D(p); H � = T
(0)A (q):Sin
e the operator (11) is surje
tive, its 
okernel (H +)? \ (H �)? is zero,so D(p) and A (q) interse
t transversely at 
(0). 2Note that Example 5.7 shows that the index of (11) here is ind(p)�ind(q),whi
h agrees with our earlier 
al
ulation that the moduli spa
e of 
ow lines(before modding out by the R-a
tion) has dimension dim(D(p) \ A (q)) =ind(p)� ind(q).Exer
ises for x5.1. Verify the isomorphism (9). (This really is tautologi
al if you work throughall the notation.)2. (a) Give a 
omplete proof of Prin
iple 5.6 when dim(H ) = 1.(b) Suppose dim(H ) = 1 and As = 0 for s > s0. Explain why the operator(11) fails to be Fredholm.32Note that the metri
 
ompatibility of the 
onne
tion insures that the metri
 on 
�TXindu
es a well de�ned metri
 on H so that the spa
es L21 and L2 in (11) agree withL21(
�TX) and L2(
�TX). 31



3. Let V be a ve
tor �eld on an n-dimensional smooth manifold X . Let usde�ne a 
losed orbit of V to be an embedding33 
 : S1 ! X su
h that
0(s) = �V (
(s)) for some 
onstant � > 0. Let us say that 
 is \nondegen-erate" if the linearized return map34 does not have 1 as an eigenvalue. Showthat if k is a positive integer, then for a generi
 Ck ve
tor �eld, all 
losedorbits are nondegenerate.4. It was asserted in x4 that if (f0; g0) and (f1; g1) are Morse-Smale, then ageneri
 homotopy � between them is admissible. Prove this.5. Prove some generi
ity statement whi
h you have always wanted to rigorouslyjustify.6 Morse-Bott theoryThe de�nition of Morse homology that we have given requires that the pair(f; g) be generi
, so that the moduli spa
es of gradient 
ow lines are 
utout transversely. However for purposes of 
omputation it is often easierto expli
itly understand the gradient 
ow lines of a parti
ular example ina nongeneri
 
ase, e.g. when there is symmetry. Morse-Bott theory is anextension of Morse theory to 
ertain 
ases where the 
riti
al points of f arenot isolated35.6.1 Morse-Bott fun
tionsDe�nition 6.1 Let X be a 
losed smooth (�nite dimensional) manifold. Afun
tion f : X ! R is Morse-Bott if:(a) The set Crit(f) of 
riti
al points of f is a union of submanifolds of X.(b) If S is a 
riti
al submanifold then for any p 2 S, the kernel of theHessian rdf(p) : TpX ! T �pX 
onsists only of TpS, so that for any33Warning: in the literature \
losed orbits" are sometimes not required to be embedded.34Let p be a point in the image of 
 and let D � X be a small (n � 1)-dis
 transverseto 
. The return map � : D ! D takes a point in D and follows its traje
tory underV until it hits D again. This is a well-de�ned di�eomorphism from a small neighborhoodof p in D to another small neighborhood of p in D. The eigenvalues of the linearizedreturn map d�p : TpD ! TpD do not depend on the 
hoi
e of p or D.35The previous 
hapter had way too many footnotes. So we won't have any footnotesin this 
hapter (ex
ept of 
ourse for this one).32



metri
 on X, the Hessian restri
ts to an invertible self-adjoint map onthe normal bundle, H(f; p) : NpS ! NpS: (15)If S is a 
riti
al submanifold, its index is most naturally regarded as an in-terval [i�(S); i+(S)℄, where i�(S) is the dimension of the negative eigenspa
eof the restri
ted Hessian (15), and i+(S) = i�(S) + dim(S).A simple example of a Morse-Bott fun
tion is the height fun
tion on atorus lying on its side. There are two 
riti
al submanifolds: a 
ir
le of minimaof index [0; 1℄, and a 
ir
le of maxima of index [1; 2℄.6.2 The 
hain 
omplex: �rst versionFix a Morse-Bott fun
tion f on X. Let g be a generi
 metri
 on X and letV be the negative gradient of f with respe
t to g. We now want to de�nea 
hain 
omplex 
ounting 
ow lines of the ve
tor �eld V . The treatmenthere is based on [21℄, whi
h explains more details, although we are treatingorientations and 
hains di�erently.6.2.1 Moduli spa
es of 
ow linesIf S1; S2 are two 
riti
al submanifolds, a 
ow line from S1 to S2 is a path 
 :R! X su
h that 
0(s) = V (
(S)) and lims!�1 
(s) 2 S1 and lims!+1 
(s) 2S2. LetM (S1; S2) denote the moduli spa
e of 
ow lines from S1 to S2, mod-ulo the R-a
tion by reparametrization as usual. For a generi
 metri
 g, thedes
ending manifold of S1 and the as
ending manifold of S2 will interse
ttransversely so thatdimM (S1; S2) = i+(S1)� i�(S2)� 1: (16)(On the other hand, for generi
 pi 2 Si, the moduli spa
e of 
ow lines fromp1 to p2 has dimension i�(S1) � i+(S2) � 1.) There are natural endpointmaps e+ :M (S1; S2)! S1; e� :M (S1; S2)! S2sending a 
ow line 
 to lims!�1 
(s) and lims!+1 
(s) respe
tively.Before 
ontinuing, re
all that if A;B;C are sets with given maps i : A!C and j : B ! C, then the �ber produ
t is de�ned byA�C B := f(a; b) j i(a) = j(b)g � A�B:33



If A;B;C are manifolds and the maps i and j are transverse to ea
h other,then A�C B is a manifold withdim(A�C B) = dim(A) + dim(B)� dim(C):For a generi
 metri
, the moduli spa
eM (S1; S2) has a 
ompa
ti�
ationto a manifold with 
orners M (S1; S2), whose boundary (
odimension onestratum) is the �ber produ
t�M (S1; S2) =[S0 M (S1; S0)�S0 M (S0; S2):Here the union is over all 
riti
al submanifolds S0 distin
t from S1 and S2.(The property of the metri
 required here is that e� : M (S1; S0) ! S0 istransverse to e+ : M (S0; S2) ! S0, together with an indu
tively de�nedgeneralization of this whi
h ensures that all iterated �ber produ
ts of modulispa
es of 
ow lines between 
riti
al submanifolds are 
ut out transversely.This holds for a generi
 metri
. Some papers make stronger assumptions,su
h as that e� :M (S1; S2)! S1 is a submersion; while this holds for someimportant examples and makes 
ertain te
hni
alities ni
er, there are manyMorse-Bott fun
tions, even on surfa
es, for whi
h no metri
 exists satisfyingthis assumption.)6.2.2 Slightly in
orre
t de�nition of the 
hain 
omplexThe rough idea of the 
hain 
omplex is to de�ne the 
hain groupCk := MS Ck�i�(S)(S)and the di�erentialD� := �� + XS0 6=S e� h� �SM (S; S0)i ;where � is the ordinary di�erential on singular 
hains. However this isn'tquite right; in order to get the signs to work out one has to modify this alittle. We will now be a little more 
areful and give a 
orre
t de�nition.34



6.2.3 OrientationsThe signs in Morse-Bott theory are a bit subtle, be
ause the moduli spa
eM (S1; S2) might not be orientable, even when S1, S2, and X are all ori-entable. (It is not hard to 
ook up an example where S1 and S2 are 
ir
lesandM (S1; S2) is a Klein bottle.) However we 
an still orient it lo
ally givensome 
hoi
es. More generally, let � be a generi
 simplex in S1 and de�neM (�; S2) := � �S1 M (S1; S2): (17)On the open stratum, if 
 2 M (�; S2) represents a 
ow line from p1 top2, then we have a natural isomorphism (up to automorphisms of positivedeterminant)Tp1� � Tp1D(p1) ' T
M (�; S2)� T
 � Tp2D(p2): (18)Hen
e orientations of �, D(p1), and D(p2) determine a lo
al orientation ofM (�; S2).It is then natural to introdu
e 
hains on the 
riti
al submanifolds withtwisted 
oeÆ
ients, so that they have lo
al orientations of the des
endingmanifolds built into them. Namely, there is a lo
ally 
onstant sheaf O onS, whose stalk at a point p 2 S is isomorphi
 to Z, where an orientation ofD(p) determines su
h an isomorphism with Z, and the opposite orientationdetermines the opposite isomorphism. If i�(S) > 1, then one 
an equivalentlydes
ribe the stalk at p asOp = Hi�(S)�1(D(p) n p) 'Z:We let Csing� (S;O) denote the spa
e of singular 
hains with 
oeÆ
ients in O.More 
on
retely, Csing� (S;O) is theZ-module generated by pairs (�; o), where� is a simplex in S and o is a 
ontinuously varying orientation of TD(p) forea
h p in the image of �, modulo the relation(�;�o) = �(�; o): (19)For te
hni
al reasons as in x3, we a
tually want to 
onsider only a sub-spa
e of 
urrents (with 
oeÆ
ients in O) spanned by pairs (�; o) where � issuitably generi
. We let C�(S;O) denote the resulting 
hain 
omplex. (Asimplex � is suitably generi
 if it is smooth and if ea
h fa
e of � is transverseto e+ of all moduli spa
es of 
ow lines between 
riti
al submanifolds and alliterated �ber produ
ts thereof.) 35



6.2.4 The 
hain 
omplexWe now de�ne a 
hain 
omplex as follows. The kth 
hain group isCBottk := MS Ck�i�(S)(S;O):We de�ne D : CBottk ! CBottk�1 as follows. If � 2 C�(S;O) is a generi
 simplexwith lo
ally oriented des
ending manifolds, and if S0 6= S, then we have awell-de�ned 
urrent e� hM (�; S0)i 2 C�(S0;O):Thanks to (18) and (19), we have just enough orientation data for this to bewell-de�ned. Furthermore if dim(�) = k � i�(S) thendim(M (�; S0)) = (k � i�(S)) + (i+(S)� i�(S0)� 1)� dim(S)= k � 1 � i�(S0):So it makes sense to de�neD� := �� + XS0 6=S e� hM (�; S0)i :Lemma 6.2 D2 = 0.Proof. We omit the signs. For the proof we use the �ber produ
t interpreta-tion (17). We note that� �� �SM (S; S0)� = �� �SM (S; S0)[ � �S �M (S; S0):We then haveD2� = �2� + �XS0 6=S e� h� �SM (S; S0)i+ XS0 6=S e� h�� �S M (S; S0)i+ XS00 6=S0 6=S e� h�� �S M (S; S0)��S0 M (S0; S00)i :The �rst term is zero, the sum of the se
ond and third terms isXS0 6=S e� h� �S �M (S; S0)i(up to sign), and this equals the fourth term. 2We de�ne the Morse-Bott homology HBott� (f; g) to be the homologyof the 
hain 
omplex (CBott� ;D). 36



Example 6.3 Consider again our example of a Morse-Bott fun
tion on thetorus with two 
riti
al submanifolds, one a 
ir
le S0 of minima and the othera 
ir
le S1 of maxima. ThenCBott� = C�(S0;O)�C�(S1;O)[1℄:Here the notation [1℄ indi
ates that the grading is shifted upward by 1. Inthis example all simpli
es in the 
riti
al submanifolds are generi
.(a) If we 
hoose a symmetri
 metri
, then for ea
h point in S1 there are two
ow lines to the same point in S0. Then the di�erential is given simplyby D((�0; o); (�1; o)) = ((��0; o); (��1; o)):Note that D(0; (�1; o)) has no 
omponent in C�(S0), be
auseM (�1; S0)
onsists of two 
opies of �1 whi
h 
ontribute with opposite signs. Hen
eHBott� = H�(S0;O)�H�(S1;O)[1℄: (20)Sin
e the orientation sheaf O is trivial here, H�(Si;O) ' H�(S1).(b) If the metri
 on the torus is not symmetri
 then the two 
ow lines froma given point in S1 may have di�erent lower endpoints in S0. But witha bit more work one 
an see that (20) still holds.Example 6.4 Starting with the previous example, do surgery on a horizon-tal 
ir
le of the torus to obtain a Morse-Bott fun
tion on S2 with a 
ir
le S0of minima, a 
ir
le S1 of maxima, an isolated minimum m0, and an isolatedmaximum m2. In this example again, all simpli
es in the 
riti
al submani-folds are generi
, and all orientation sheaves are trivial. Up to orientations,if p is any point in S1 then we haveDp = �m0 � �(p)where � : S1 ! S0 is a di�eomorphism. We also haveDm1 = �[S0℄:These are the only 
omponents of D that relate di�erent 
riti
al submani-folds. It follows fairly readily thatHBott� ' H0(S0;O)�H1(S1;O)[1℄:37



6.2.5 The homologyTheorem 6.5 If f0 and f1 are two Morse-Bott fun
tions with generi
 met-ri
s g0 and g1, then there is a 
anoni
al isomorphismHBott� (f0; g0)) ' HBott� (f1; g1):Proof. This is an extension of the arguments in x4, de�ning Morse-Bottversions of the 
ontinuation maps and 
hain homotopies by analogy with thede�nition of the Morse-Bott di�erential. 2Corollary 6.6 For any Morse-Bott fun
tion f0 and generi
 metri
 g0, thereis a 
anoni
al isomorphismHBott� (f0; g0) ' H�(X):Proof. Let f1 = 0 and let g1 be any metri
. Then by de�nition,HBott� (f1; g1) =H�(X). 2Remark 6.7 In parti
ular any Morse fun
tion is Morse-Bott, and the Morse-Bott 
omplex then agrees with the Morse 
omplex, so this gives another proofof Theorem 3.1. This may make x3 appear retrospe
tively super
uous, butin fa
t the work needed to 
esh out the details of the proof of Theorem 6.5 issimilar to the work done in x3; and for natural 
hoi
es of homotopies one 
ansee that the two proofs of Theorem 3.1 have essentially the same 
ontent.6.3 An example from symple
ti
 geometryWe now present, following [6℄, a qui
k appli
ation of Corollary 6.6. Thisexample requires some basi
 symple
ti
 geometry as in [45℄.Let (M;!) be a 
losed symple
ti
 manifold, and suppose there is Hamil-tonian S1 a
tion on M with moment map f : M ! R. Then the 
riti
alpoints of f are the �xed points of the a
tion. It is known from symple
ti
 ge-ometry that f is a Morse-Bott fun
tion; the S1 representation on the normalbundle to a 
riti
al submanifold has no trivial 
omponents and thus splitsas a sum of 2-dimensional 
omponents. In parti
ular, a 
riti
al submanifoldis even dimensional, and its index is also even, namely twi
e the number of
omponents on whi
h the S1 a
tion has positive weights. The orientationsheaf O over a 
riti
al submanifold is naturally trivialized by the symple
ti
form. 38



We 
laim now that f is a perfe
t Morse-Bott fun
tion, i.e.H�(M) =MS H�(S;O)[i�(S)℄'MS H�(S)[i�(S)℄:Equivalently D = �, i.e. the Morse-Bott di�erential D sends a 
urrent in a
riti
al submanifold to another 
urrent in the same 
riti
al submanifold.The idea of the proof is simple. We need to 
hoose a generi
 metri
 gwhi
h is also S1-invariant, and this 
an be done (I think). Then if S1; S2 aretwo distin
t 
riti
al submanifolds, S1 a
ts nontrivially on M (S1; S2), while�xing S1 and S2. This means that the endpoint mape+ � e� :M (S1; S2)! S1 � S2fa
tors throughM (S1; S2)=S1, and so its image has dimension one less thanexpe
ted. Hen
e if � 2 Ck�i�(S1)(S1) is a generi
 simplex, then e�(� �S1M (S1; S2)) is supported in a 
urrent of dimension k� i�(S2)� 2, and hen
eis zero when regarded as a 
urrent of dimension k � i�(S2)� 1.In fa
t, general results of [4, 39℄ imply that f is equivariantly perfe
t, i.e.the S1-equivariant 
ohomology of M is the sum of the equivariant 
ohomolo-gies of the �xed point sets. For a treatment of equivariant 
ohomology viaMorse-Bott theory, see [6℄.6.4 The Morse-Bott spe
tral sequen
e(s)We 
laimed that Morse-Bott theory would simplify 
omputations, but it mayappear that we have taken a step ba
kward by repla
ing the �nite dimen-sional Morse 
omplex with the the in�nite dimensional Morse-Bott 
omplex.However it is possible to 
ompute the homology of the Morse-Bott 
omplexby �rst passing to the homology of the 
riti
al submanifolds, and then de�n-ing di�erentials on the homology of the 
riti
al submanifolds. To do this weneed to use the spe
tral sequen
e asso
iated to a �ltered 
omplex, see e.g.[10, 27℄.6.4.1 The weakly self-indexing 
aseLet f be a Morse-Bott fun
tion and let g be a generi
 metri
. The pair (f; g)is weakly self-indexing if M (S; S0) = ; whenever i�(S) < i�(S0). In this39




ase i� de�nes a �ltration on the 
omplex (CBott� ;D), namelyFiCBott� = Mi�(S)�iC�(S;O)[i�(S)℄:We then obtain a spe
tral sequen
e whi
h 
onverges to the Morse-Bott ho-mology, with E1p;q = Mi�(S)=pHq(S;O):The �rst di�erential �1 : E1p;q ! E1p�1;qis de�ned as follows. Given � 2 Hq(S;O), we 
hoose a 
y
leC representing it.For ea
h S0 with i�(S0) = p� 1, the weakly self-indexing assumption impliesthat M (S; S0) is a 
ompa
t manifold with no boundary. Thus e�1+ (C) =C �S M (S; S0) is a 
y
le in M (S; S0), and its pushforward by e� is a 
y
lein S0. Then up to orientations,�1(�) = Xi�(S0)=p�1� [e�(C �SM (S; S0))℄ :The higher di�erentials in the spe
tral sequen
e are more subtle. Howeverthey are given by a formula similar to the formula for �1 in the simple 
asewhen there are no broken 
ow lines involved. If we are lu
ky the otherdi�erentials will vanish due to the bigrading on the spe
tral sequen
e so thatwe 
an 
ompute the Morse-Bott homology by 
omputing the homology of �1.6.4.2 The general 
aseAlthough the weakly self-indexing 
ase is ni
e, there is always (at least whenf is real-valued!) an obvious �ltration given by f itself. Namely one 
anorder the 
riti
al submanifolds as S1; S2; � � � with f(Si) � f(Sj) for i < j.Then we have the �ltrationFiCBott� =Mj�i C�(Sj ;O)[i�(j)℄with an asso
iated spe
tral sequen
e, whose E1 term is the sum of the(twisted, grading-shifted) homologies of the 
riti
al submanifolds. For an40



appli
ation of this spe
tral sequen
e where the weakly self-indexing 
ondi-tion does not hold, see [66℄.This spe
tral sequen
e is essentially what we used (without expli
itlysaying so) to work out Examples 6.3 and 6.4, whi
h might now be worthrevisiting.6.5 Another Morse-Bott 
omplexWe now sket
h another approa
h to Morse-Bott theory whi
h we learnedabout from [11℄. The idea is as follows.First, we 
an always perturb a Morse-Bott fun
tion f to obtain a Morsefun
tion. Expli
itly, for ea
h 
riti
al submanifold Si, 
hoose a Morse fun
tionfi : Si ! R. We extend this to some smooth fun
tion efi : X ! R. For � 2 R,de�ne f� := f + �Xi efi : X ! R:If � > 0 is small, then f� is a Morse fun
tion and we have a one-to-one
orresponden
e Crit(f�) =[i Crit(fi):Moreover, if p 2 Crit(fi), then the index of the 
orresponding 
riti
al pointof f� is ind(p) + i�(Si). In parti
ular, the indi
es of the 
riti
al points of f�on Si lie in the interval [i�(Si); i+(Si)℄.If g is a generi
 metri
 on X, then (f�; g) will be Morse-Smale. Now thekey point is that we 
an read o� the Morse di�erential �Morse� for (f�; g) fromthe Morse-Bott setup (f; g), without a
tually 
arrying out the perturbation.In this way we obtain a �nite-dimensional 
omplex from the Morse-Bott data.Here is how it works. If p; q are 
riti
al points of fi on the same Si, thenh�Morse� p; qi is determined by our 
hoi
e of fi in a way whi
h we already inprin
iple understand. And more interestingly, if p 2 Crit(fi) and q 2 Crit(fj)with i 6= j, then for � suÆ
iently small, up to sign we have
�Morse� p; q� = #M (D(p);A (q)): (21)Here D(p) is the des
ending manifold of fi in Si, A (q) is the as
endingmanifold of fj in Sj, and M (D(p);A (q)) is the set of 
ow lines 
 for (f; g)with lims!�1 
(s) 2 D(p) and lims!+1 
(s) 2 A (q).We leave it to the reader to ponder why (21) might be true.41



Exer
ises for x6.1. Justify equation (16).2. Justify equation (18).3. Work out Example 6.3 expli
itly (without using a spe
tral sequen
e).4. Find an example of a Morse-Bott fun
tion su
h that for at least one of the
riti
al submanifolds, the orientation sheaf O is nontrivial. Compute theMorse-Bott homology for your example.5. Let � : Z ! B be a �ber bundle of 
losed smooth manifolds. Let f : B ! Rbe a Morse fun
tion.(a) Show that ��f : Z ! R is a Morse-Bott fun
tion. Show that for ea
h
riti
al submanifold the orientation sheaf O is trivial. Show that forany generi
 metri
 on Z, the pair (f; g) is weakly self-indexing.(b) Now that you are warmed up, see if you 
an show that the Morse-Bottspe
tral sequen
e for ��f using the i� �ltration agrees, from the E2term on, with the Leray-Serre spe
tral sequen
e for the �ber bundleZ ! B. (I have seen this last point asserted many times, but I havenever seen the proof.)6. If you haven't seen spe
tral sequen
es before, do some examples until youget the hang of it.7 Morse theory for 
ir
le-valued fun
tions and
losed 1-formsMany fun
tionals that arise in Floer theory are not R-valued but rather R=Z-valued. Thus it is important to understand Morse theory for su
h fun
tions.In fa
t, if f is a real-valued or 
ir
le-valued fun
tion on X, then after a metri
is 
hosen, the gradient 
ow depends only on the 
losed 1-form df . Whenf is a real-valued or 
ir
le-valued fun
tion, the 
ohomology 
lass of df inH1(X;R) is zero or the image of an integral 
ohomology 
lass, respe
tively36;36Re
all that there is a natural bije
tion [X;S1℄ = H1(X;Z), whi
h sends a homotopy
lass of map f : X ! S1 to the pullba
k by f of the fundamental 
lass in H1(S1;Z). Iff is smooth then the 
ohomology 
lass [df ℄ 2 H1(X;R) is the image of the 
orrespondingelement of H1(X;Z) under the map H1(X;Z)! H1(X;R).42



but in fa
t one 
an set up Morse theory for an arbitrary 
losed one-form andthis is important as well. Morse theory for 
ir
le-valued fun
tions and moregenerally for 
losed 1-forms was �rst 
onsidered by Novikov [48℄, and therehave been many subsequent papers on the subje
t. The style of this 
hapteris 
losest to [31℄.7.1 Compa
tnessIn some respe
ts, the Morse theory of 
losed 1-forms is not mu
h di�erentfrom the Morse theory of real-valued fun
tions. Let X be a 
losed smoothmanifold and let � be a 
losed 1-form on X. Lo
ally any 
losed 1-formis d of a real-valued fun
tion so it makes sense to de�ne \Morse 
losed 1-forms". Namely, a \
riti
al point" of � is a zero of �; the 
riti
al point pis \nondegenerate" if r� : TpX ! T �pX is invertible; and � is \Morse" ifall 
riti
al points are nondegenerate. The index of a 
riti
al point is de�nedas before. We 
hoose a metri
 g on X and let V denote the ve
tor �elddual to �� via g. It then makes sense to speak of 
ow lines of V between
riti
al points. We say the pair (�; g) is \Morse-Smale" if the as
endingand des
ending manifolds of all 
riti
al points interse
t transversely; if � isMorse, then this 
ondition holds for a generi
 metri
. We letM (p; q) denotethe moduli spa
e of 
ow lines from p to q as before.We want to de�ne a 
hain 
omplex 
ounting gradient 
ow lines between
riti
al points of index di�eren
e one. An important di�eren
e with thereal-valued 
ase is that 
ompa
tness does not always hold as before. Whenind(p) � ind(q) = 1 and (�; g) is Morse-Smale, the moduli spa
e M (p; q),although zero-dimensional, might not be �nite. The idea is that there 
anbe a sequen
e of 
ow lines whi
h wrap around the manifold more and moretimes, so that the sequen
e has no 
onvergent subsequen
e.Fortunately, we 
an still get 
ompa
tness and �nite 
ounts if we 
lassify
ow lines a

ording to their some information about their (relative) homology
lasses. To prepare for this and to 
larify the issues with 
ompa
tness, we willnow prove a 
ompa
tness result. The argument here is pretty standard, 
f.[52℄, and is written in su
h a way that it generalizes to in�nite dimensionalsettings (although a number of additional issues have to be dealt with toprove 
ompa
tness in Floer theory).In the following we regard a 
ow line as a map 
 : R ! X; we do notmod out by the R a
tion. Let p and q be 
riti
al points of �43



De�nition 7.1 A (k-times) broken 
ow line from p to q is a set of 
owlines b
 = (b
0; : : : ;b
k) where k is a nonnegative integer and there exist 
riti
alpoints r0; : : : ; rk+1 with r0 = p and rk+1 = q su
h that b
i is a 
ow line fromri to ri+1.De�nition 7.2 A sequen
e of 
ow lines 
n : R! X from p to q 
onvergesto a broken 
ow line b
 = (b
0; : : : ;b
k) from p to q if:� There exist real numberssn;0 < sn;1 < � � � < sn;ksu
h that 
n(sn;i + �) �! b
iin C1 on 
ompa
t sets.� For n suÆ
iently large, 
n �Pki=0 b
i is homologous to zero37.De�nition 7.3 If 
 : R ! X is a map with 
0(s) = V (
(s)), de�ne theenergy E(
) := Z 1s=�1 jV (
(s))j2ds = Z
(��) 2 [0;1℄: (22)Lemma 7.4 (a) E(
) � 0, with equality if and only if 
 is a 
onstant mapto a 
riti
al point.(b) If E(
) <1 then 
 is a 
ow line between two 
riti
al points.(
) There exists Æ > 0 su
h that any non
onstant 
ow line 
 between two
riti
al points satis�es E(
) > Æ.(Parts (b) and (
) require our assumption that X is 
ompa
t and � is Morse.)Proof. (a) is obvious, as the lo
al 
ontribution to the integral (22) is non-negative, and zero only at 
riti
al points.(b) We need to show that 
(s) 
onverges to a 
riti
al point as s! +1.We 
an �nd � > 0 su
h that the �-balls around the 
riti
al points are disjoint.37This already follows from the �rst 
ondition if the Morse-Smale 
ondition holds. With-out the Morse-Smale 
ondition, or in 
ertain in�nite dimensional settings, the limitingbroken 
ow line 
ould in
lude a 
ow line from a 
riti
al point to itself, and we want tokeep tra
k of this. 44



It is then enough to show that there exists s0 su
h that dist(
(s);Crit(�)) < �for all s > s0. If no su
h s0 exists, then we 
an �nd a sequen
e sn !1 withdist(
(sn);Crit(�)) � � (23)for all n. We 
an pass to a subsequen
e so that the points 
(sn) 
onverge inX. Then, be
ause the solution to an ODE depends smoothly on the initial
ondition, the reparametrized maps 
(sn+�) 
onverge in C1 on 
ompa
t setsto a map e
 : X ! R with e
0(s) = V (e
(s)). Sin
e sn ! 1 and E(
) < 1,it follows that E(e
) = 0, so e
 is a 
onstant map to a 
riti
al point, but this
ontradi
ts (23) sin
e e
(0) = limn!1 
(sn). Likewise, 
(s) also 
onverges toa 
riti
al point as s! �1.(
) If not, then we 
an �nd a sequen
e 
n of non
onstant 
ow lines betweentwo �xed 
riti
al points with E(
n) ! 0. For ea
h n there exists a realnumber sn satisfying (23) (or else 
n would be supported in a neighborhood ofa 
riti
al point, in whi
h 
ase for homologi
al reasons E(
n) = 0 so 
n wouldbe 
onstant). We 
an pass to a subsequen
e so that 
n(sn + �) 
onverges, inC1 on 
ompa
t sets, to a 
ow line 
, whi
h must have energy zero and thusmust be a 
onstant map to a 
riti
al point; but (23) implies that 
(0) hasdistan
e at least � from all 
riti
al points, a 
ontradi
tion. 2Proposition 7.5 Let � be a Morse 
losed 1-form and g a metri
 on a 
losedsmooth manifold X. Let p and q be 
riti
al points of �, and let 
n : R! Xbe a sequen
e of 
ow lines from p to q. Assume (this is 
ru
ial) that� There exists a 
onstant C su
h that E(
n) < C for all n.Then after passing to a subsequen
e, 
n 
onverges to a broken 
ow line b
.Proof. Before starting, we pass to a subsequen
e so that E(
n) ! C0. Asbefore there exists � > 0 su
h that the �-balls around the 
riti
al points aredisjoint.We 
an assume that the 
ow lines 
n are non
onstant for suÆ
iently largen, as otherwise the proposition is trivially true. It then makes sense to de�nesn;0 := inffs 2 R j dist(
n(s); p) � �g:We 
an pass to a subsequen
e so that 
n(sn;0+�) 
onverges in C1 on 
ompa
tsets to a map b
0 with b
00(s) = V (b
0(s)). By the C1 
onvergen
e on 
ompa
tsets, E(b
0) � 0, and in parti
ular b
0 is a 
ow line from p to some 
riti
alpoint r1 by Lemma 7.4. 45



If E(b
0) = C0, then 
n ! b
 = (b
0) and we are done.Suppose E(b
0) < C0. Sin
e lims!1 b
0(s) = r1, there exists  0 2 R su
hthat dist(b
0(s); r1) < �=2 whenever s >  0. For large n, the 
ow line 
n
annot be in the same relative homology 
lass as b
0, so 
n((sn;0 +  0;1)) 6�B(r1; �). We then de�nesn;1 := inffs > sn;0 +  0 j dist(
n(s); r1) � �g:We 
an pass to a subsequen
e so that 
n(sn;1+�) 
onverges in C1 on 
ompa
tsets to a 
ow line b
1, from r1 to some 
riti
al point r2, with E(b
0)+E(b
1) �C0.If E(b
0) + E(b
1) = C0, then 
n ! b
 = (b
0;b
1) and we are done. If not,we 
ontinue this pro
ess, indu
tively de�ningsn;j := inffs > sn;j�1 +  j�1 j dist(
n(s); rj) � �g:By Lemma 7.4, this pro
ess must terminate in at most bC0=Æ
 steps. 27.2 Novikov ringsWe now need to introdu
e the Novikov ring, 
f. [30℄, whi
h is basi
ally analgebrai
 bookkeeping devi
e. It is a simple generalization of the group ringof a group and the ring of Laurent series.De�nition 7.6 Let G be an abelian group and let N : G ! R be a homo-morphism. De�ne the Novikov ring Nov(G;N) as follows. An element ofNov(G;N) is a formal (possibly in�nite) linear 
ombination38.a =Xg2G aggwhere the ag's are integers, su
h that38More pre
isely, a Novikov ring element is a fun
tion a : G!Zsatisfying the �niteness
ondition (*). Writing these as formal linear 
ombinations 
an be 
onfusing be
ause theexpression g1+ g2 has two possible meanings: it 
ould be the fun
tion sending g1; g2 7! 1,whi
h is ususally what we mean, or the fun
tion sending g1+g2 7! 1 (and all other elementsto zero in both 
ases). To avoid this ambiguity, some people write elements of the Novikovring as Pg2G ageg, with eg regarded as a formal symbol. Then also the multipli
ationrule has the ni
e form egeg0 = eg+g0 . 46



(*) For all R 2 R, there are only �nitely many g 2 G with ag 6= 0 andN(g) < R.If b =Pg2G bgg we de�ne a+ b := Pg2G(ag + bg)g andab := Xg2G Xg02G ag0bg�g0! g:It is an exer
ise in logi
 to 
he
k that the �niteness 
ondition (*) impliesthat the 
oeÆ
ient of g in ab is a sum of only �nitely many nonzero terms,and that ab again satis�es the �niteness 
ondition (*).Note that there is an in
lusion of the group ring into the Novikov ring,Z[G℄! Nov(G;N), whi
h is an isomorphism if and only if N � 0.Example 7.7 The simplest example is when G = Z and N : Z! R isthe in
lusion. Then we 
an identify Nov(G;N) with the ringZ((t)) of formalinteger Laurent seriesP1m=m0 amtm wherem0 and the am's are integers. (Theidenti�
ation sends an integer m 2Zto the symbol t�m.)7.3 The Novikov 
omplexNow let � be a Morse 
losed 1-form on a 
losed 
onne
ted smooth manifoldX and let g be a metri
 su
h that the pair (�; g) is Morse-Smale.Choose a 
onne
ted abelian 
overing � : ~X ! X su
h that ��� is exa
t.We 
an always do this; for example, we 
an take ~X to be the universalabelian 
overing of X, whi
h has H1( ~X) = 0. For a general abelian 
overing,the group H of 
overing transformations is the quotient of H1(X) by thesubgroup 
onsisting of homology 
lasses of loops that lift to ~X. That is, wehave a short exa
t sequen
e0 �! H1( ~X) �! H1(X) �! H �! 0:Sin
e ��� is assumed exa
t, the pairing with [�℄ from H1(X)! R des
endsto a map H ! R.We now de�ne the Novikov 
omplex (CNov� ; �Nov) as follows. (Thisdepends on �, g, and the 
hoi
e of 
overing �.) Choose ~f : X ! R withd ~f = ���:47



Let CNovi be the set of formal linear 
ombinationsX~p2Criti( ~f) a~p~pwhere the a~p's are integers, su
h that(**) for all R 2 R, there are only �nitely many ~p with ~f(~p) > R and a~p 6= 0.It is another exer
ise in logi
 to 
he
k that CNovi is a module over theNovikov ring � := Nov(H; [��℄);where the module stru
ture is indu
ed by the a
tion of H on ~X by 
overingtransformations. Moreover, this module is free: one 
an obtain a basis by
hoosing a lift of ea
h index i 
riti
al point in X to ~X.We now de�ne the di�erential �Nov : CNovi ! CNovi�1 by 
ounting 
ow linesas usual: if ~p 2 Criti( ~f ) then�~p := X~q2Criti�1( ~f)#M (~p; ~q) � ~q:Here M denotes the moduli spa
e of 
ow lines of ~f with respe
t to thepullba
k to ~X of our 
hosen metri
 g on X. The signs are determined as inthe Morse 
omplex; one 
hooses orientations of the des
ending manifolds ofthe 
riti
al points in X, and pulls these ba
k to orientations of the des
endingmanifolds in ~X. It is a third exer
ise in logi
 to 
he
k that the �niteness
ondition (**) and the 
ompa
tness proposition 7.5 imply that � is wellde�ned.Note that if p and q are 
riti
al points in X and ~p and ~q are lifts to ~Xthen a 
ow line from ~p to ~q proje
ts to a 
ow line from p to q, although a
ow line from p to q might not lift to a 
ow line from ~p to ~q; the obstru
tionto �nding su
h a lift is an element of H. Although there may be in�nitelymany 
ow lines from p to q, the point is that by working in a 
overing su
hthat ��� is exa
t, we 
lassify 
ow lines by enough homotopy information toensure that the 
oeÆ
ients in the di�erential are �nite.The usual argument shows that (�Nov)2 = 0. We denote the homology ofthe 
omplex (CNov� ; �Nov) by HNov� . 48



7.4 The Novikov homologyLemma 7.8 The Novikov homology HNov� depends only on the 
ohomology
lass [�℄ 2 H1(X;R) and the 
hoi
e of 
onne
ted abelian 
over � : ~X ! X.The proof of this lemma follows the usual 
ontinuation argument. Theonly subtlety is that one has to restri
t to families f(�t; gt)g in whi
h allof the forms �t are in the same 
ohomology 
lass (or at least in the sameray emanating from the origin in H1(X;R)). This is ne
essary so that one
an apply a version of the 
ompa
tness proposition 7.5 to insure that the
ontinuation maps involve �nite 
ounting and so are well-de�ned.Note that if [�0℄ and [�1℄ are in di�erent rays inH1(X;R), then in generalit is diÆ
ult to 
ompare the Novikov homologies for �0 and �1, sin
e theyare modules over di�erent Novikov rings. (We will see one situation wherethis 
an be done in the proof of Theorem 7.11 below.)Remark 7.9 One might guess that HNov� ' H�(X) 
 �. But in fa
t thatis hardly ever true ex
ept in some trivial 
ases. For example, if [�℄ 6= 0 anddim(X) = n, then HNovn always vanishes, see eg. example 7.10(b) below.Example 7.10 We now 
onsider three examples with X = S1.(a) Let � = df where f : S1 ! S1 is the identity. We use the 
overing� : R! S1 with 
overing group Zso that � ' Z((t)). Sin
e f has no
riti
al points the Novikov homology is trivial.(b) Now perturb f above so that it has a lo
al maximum p and a lo
alminimum q. By the above lemma, the Novikov homology is still trivial;let us try to understand this expli
itly. There are two 
ow lines fromp to q but they are not in the same relative homology 
lass. We 
an
hoose lifts ~p and ~q of p and q su
h that�Nov~p = �(1 � t)~q: (24)Now (1� t) is invertible in Z((t)):(1� t)�1 = 1 + t+ t2 + � � � :Hen
e HNov0 = 0 be
ause~q = ��Nov(1� t)�1~p:49



Also, HNov1 = 0 be
ause there are no 
y
les sin
e �~p 6= 0. (The ringZ((t)) has no zero divisors, although Novikov rings of abelian groupswith torsion do.) It is tempting to try to de�ne a 1-
y
le as Pn2Ztn~p,but this expression is not in CNov1 be
ause it does not satisfy the �nite-ness 
ondition (**).(
) Let � = df where f : S1 ! R is a real-valued fun
tion with two 
riti
alpoints. We 
ould 
hoose the 
overing ~X = X, but that would be boringbe
ause then the Novikov ring � =Zand we would be redu
ed to theusual Morse 
omplex. So let us 
hoose the 
overing ~X = R so that theNovikov ring is the group ring� =Z[H1(X)℄ 'Z[t; t�1℄:Then (24) still holds so that HNov1 = 0 as before, but now HNov0 6= 0be
ause (1 � t) is not invertible in the group ring. All we 
an say isthat HNov0 is a Z[t; t�1℄ module with one generator whi
h is annihilatedby 1� t.The Novikov 
omplex does have a topologi
al 
ounterpart. Choose a 
ellde
omposition of X. We 
an lift the 
ells to obtain a 
ell de
omposition of~X. The 
ell-
hain 
omplex C
ell� ( ~X) is then a module over Z[H℄, where Ha
ts by 
overing transformations. We then haveTheorem 7.11 We have an isomorphismHNov� ' H� �C
ell� ( ~X)
Z[H℄�� :By standard arguments, the homology of the 
omplex on the right handside is isomorphi
 to the homology of the 
omplex of \half-in�nite singular
hains", namely lo
ally �nite singular 
hains in ~X su
h that for ea
h realnumber R, only �nitely many simpli
es hit ~f�1((R;1)). Example 7.10(b)now makes sense: HNov0 = 0 be
ause a point is the boundary of half the line,and HNov1 = 0 be
ause there are no 1-
y
les be
ause a 1-
hain 
an only bein�nite in the downward dire
tion.One 
an prove Theorem 7.11 along the lines of the proof of Theorem 3.1,and in fa
t su
h a proof shows that the isomorphism is 
anoni
al. Theisomorphism sends a 
riti
al point in ~X to its des
ending manifold in ~X,viewed as a half-in�nite 
hain. However, in order to introdu
e some usefulideas in �nite-dimensional Morse theory, we will give a di�erent proof here.50



Proof of Theorem 7.11. We 
onsider two 
ases.Case A: suppose [�℄ = 0 so that � = df where f : X ! R. Then� =Z[H℄, and we need to show thatHNov� ' H�( ~X)as Z[H℄-modules. This 
an be proved almost the same way as Theorem 3.1,where one just does everything in ~X. Sin
e ~f is the pullba
k of a real-valuedfun
tion on X, there are no 
ompa
tness diÆ
ulties, even though ~X neednot be 
ompa
t.Just for fun, here is a sket
h of another proof of Case A. By Lemma 7.8 itis suÆ
ient to prove the theorem for a single Morse-Smale pair (f; g) of our
hoi
e. Choose a smooth triangulation of X. One 
an apparently39 �nd aMorse-Smale pair (f; g) su
h that f has a 
riti
al point of index i at the 
enterof ea
h i-simplex and one gradient 
ow line from the 
enter of a simplex tothe 
enter of ea
h fa
e, so that there is an isomorphism of 
hain 
omplexes(and di�erentials omitted from the notation) over Z[H℄,CNov� = C
ell� ( ~X):Case B: Now suppose � is an arbitrary Morse 
losed 1-form. We use aneat tri
k due by Latour and Sikorav to approximate � by an exa
t 1-form(!) and redu
e to 
ase A. We 
an �nd a Morse fun
tion f : X ! R su
h thatthe pair (f; g) is Morse-Smale for our given metri
 g. Now let � > 0 be smalland 
onsider the 
losed 1-form� := � + ��1df:Sin
e � is 
ohomologous to �, Lemma 7.8 givesHNov� (�) ' HNov� (�):(Here we are �xing the 
overing ~X ! X throughout the dis
ussion.) Nows
aling a 1-form does not 
hange the Novikov 
omplex sin
e the 
ow lines arethe same up to reparametrization. Thus we have an isomorphism of 
hain
omplexes indu
ing an isomorphism on homologyHNov� (�) = HNov� (df + ��):39I don't know if there is a rigorous proof of this in the literature, but it is widely a

eptedfolklore and I think it is doable. One would like the gradient in an i-simplex to be tangentto the i-simplex, but to do this one will generally have to modify the triangulation a bit�rst due to smoothness issues. 51



If � is suÆ
iently small, then the 
ow lines for df + �� are just perturbationsof the 
ow lines for df (exer
ise), so that we have an isomorphism of 
hain
omplexes CNov� (df + ��) = CNov� (df)
Z[H℄�: (25)By homologi
al algebra, tensoring a 
hain 
omplex by a ring 
hanges thehomology in a manner whi
h depends only on the homology of the original
hain 
omplex. So Case A and the above equation imply thatHNov� (df + ��) ' H� �C
ell� ( ~X)
Z[H℄�� :Applying the previous two isomorphisms on homology 
ompletes the proof.27.5 Reidemeister torsionWhen �(X) = 0, the Novikov homology often vanishes, at least after tensor-ing with a �eld. This is true, for example, if X is a 3-manifold obtained byzero-surgery on a knot in S3, and � = df where f : X ! S1 is in a nontrivialhomotopy 
lass. In this 
ase we 
an still extra
t some interesting topologi
alinformation out of the Morse theoreti
 data, su
h as the Alexander polyno-mial of the knot K in the above example.We begin with an algebrai
 digression on how to de�ne the \determinantof a 
hain 
omplex", otherwise known as \Reidemeister torsion". (A goodreferen
e on this topi
 is [68℄.) Let (C�; �) be a bounded40 
omplex over a�eld F , and letH� denote its homology. Also let Z� and B� denote the spa
esof 
y
les and boundaries respe
tively. The short exa
t sequen
e0 �! Zi �! Ci �! Bi�1 �! 0indu
es an isomorphism on top exterior powers,det(Ci) '�! det(Zi)
 det(Bi�1):The short exa
t sequen
e0 �! Bi �! Zi �! Hi �! 040\Bounded" means that Pi dim(Ci) <1.52



indu
es an isomorphismdet(Zi) '�! det(Bi)
 det(Hi):Putting this isomorphism into the previous one and taking the alternatingprodu
t over i, we obtain an isomorphismOi det(Ci)(�1)i '�!Oi det(Hi)(�1)i: (26)Now suppose that (C�; �) is a
y
li
, i.e. H� � 0, and suppose further thatwe have a 
hosen (unordered) basis for ea
h Ci. Then the right hand side of(26) is 
anoni
ally isomorphi
 to F , and the 
hosen bases give an element ofthe left hand side of (26) up to sign, and hen
e an element of F=� 1. Thiselement is 
alled the Reidemeister torsionT (C�) 2 F=� 1:If C� is not a
y
li
, we de�ne T (C�) := 0.For example, the torsion of a 2-term a
y
li
 
omplex with 
hosen basesis given by T �0! Ci �! Ci�1 ! 0� = �det(�)(�1)i:In general the torsion is an alternating produ
t of determinants of squaresubmatri
es of �. Namely:Proposition 7.12 Let (C�; �) be a bounded a
y
li
 
omplex over F with
hosen bases bi of Ci. Then we 
an �nd a de
omposition of the 
hains C� =D� � E� su
h that:(a) Di and Ei are spanned by subbases of bi.(b) The map b�i := �Ei�1 Æ �jDi : Di ! Ei�1 is an isomorphism.For any su
h de
omposition we haveT (C�) = �Yi det�b�i�(�1)iwhere the determinants are 
omputed with respe
t to the subbases of b�.53



Now 
onsider a Morse 
losed 1-form � and a metri
 g su
h that the pair(�; g) is Morse-Smale. For simpli
ity, let us assume that the automorphismgroup H of our 
overing ~X ! X has no torsion. Then the Novikov ring� has no zero divisors, so its quotient ring Q(�) is a �eld. We de�ne theMorse-theoreti
 torsionTMorse := T �CNov� 
� Q(�)� 2 Q(�)=�H:To explain this, the 
omplex CNov� has a preferred set of bases obtained bylifting ea
h 
riti
al point in X to ~X. Choosing di�erent lifts will multiplythe torsion of the 
hain 
omplex by some element of H, whi
h is why TMorseis well-de�ned41 only in Q(�)=�H.The Morse-theoreti
 torsion has a topologi
al 
ounterpart whi
h we 
antry to 
ompare it to. Namely, let C
ell� ( ~X) be the 
hain 
omplex over Z[H℄obtained by lifting the simpli
es of a triangulation of X. This has a preferredset of bases 
onsisting of a lift of ea
h simplex from X to ~X, and so we 
ande�ne the topologi
al Reidemeister torsionT top := T �C
ell� ( ~X)
Z[H℄Q(Z[H℄)� 2 Q(Z[H℄)=�H:This is known to be a topologi
al invariant depending only on X and the
hoi
e of 
overing. For example, if X = S1 and ~X = R then T top = (1� t)�1,as we 
an easily see by 
hoosing a triangulation of S1 with one 0-simplex andone 1-simplex. If X is the three-manifold obtained by zero-surgery on a knotK � S3, so that H1(X) ' Z, and if ~X is the in�nite 
y
li
 
over of X withH 'Z, then it is a result of Milnor thatT top = �K(t)(1 � t)2 ;where �K(t) 2Z[t℄ is the Alexander polynomial of K.The in
lusion Z[H℄ ! � indu
es a map { : Q(Z[H℄) ! Q(�), and we
ould ask: is { �T top� = TMorse?The answer is no; TMorse is not even a topologi
al invariant, as we 
an see byX = S1 in Examples 7.10(a) and (b). In the �rst example, TMorse = 1 be
ausethere are no 
riti
al points, and in the se
ond example TMorse = (1� t)�1.It is then natural to ask: what is the error TMorse=T top?41One 
an get a well-de�ned element of Q(�)=�1 by 
hoosing an \Euler stru
ture" onX,and one 
an apparently remove the sign ambiguity by 
hoosing a \homology orientation"of X. 54



7.6 Periodi
 orbits and the zeta fun
tionIn the Morse theory of 
ir
le-valued fun
tions and 
losed 1-forms, there is anew dynami
al feature whi
h does not exist in the real-valued 
ase. Namely,we 
an 
onsider periodi
 orbits of the 
ow V .A periodi
 orbit of V is a non
onstant map 
 : S1 ! X su
h that
0(s) = �(V (s)) for some 
onstant � > 0. Here we are not requiring 
 to bean embedding. Any periodi
 orbit fa
tors through an embedding via a p-fold
overing map S1 ! S1; the positive integer p is 
alled the period of 
. Wede
lare two periodi
 orbits to be equivalent if they di�er by reparametriza-tion.For 
ounting purposes, we atta
h a sign to a generi
 periodi
 orbit asfollows. For x 2 
(S1), let U be a hypersurfa
e interse
ting 
 transverselyat x, and let � : U ! U be the return map (de�ned near x) whi
h followsthe 
ow p times around 
(S1). The linearized return map indu
es a mapd�x : TxX=Tx
(S1) �! TxX=Tx
(S1)whi
h does not depend on U , and whose eigenvalues do not depend on x. Wesay that 
 is nondegenerate if d�x does not have 1 as an eigenvalue, and ifso we de�ne the Lefs
hetz sign(�1)�(
) := sign det(1 � d�x) 2 f�1g:It is not hard to see that if a periodi
 orbit is nondegenerate then it is isolated.De�nition 7.13 The pair (�; g) is admissible if it is Morse-Smale and ifall periodi
 orbits are nondegenerate.One 
an show that for a �xed 
ohomology 
lass [�℄, a generi
 pair (�; g)is admissible. If (�; g) is admissible, we 
ount the periodi
 orbits using thezeta fun
tion42 � := expX
2O (�1)�(
)p(
) [
℄ 2 �:Here O denotes the set of periodi
 orbits modulo reparametrization, and if 
is a periodi
 orbit then [
℄ denotes the image of its homology 
lass under theproje
tion H1(X)! H. Also exp denotes the formal power series operationexp(t) := P1n=0 tn=n!.42As we are de�ning it, the zeta fun
tion is not a fun
tion, just an element of �. Whensay � 'Z((t)), if one is lu
ky the power series might 
onverge when one substitutes some
omplex numbers for t, thus giving an a
tual fun
tion.55



Lemma 7.14 � is a well-de�ned element of the Novikov ring �.Proof. We �rst show thatX
2O (�1)�(
)p(
) [
℄ 2 �
Q:It is enough to show that for any 
onstant C there are only �nitely manyperiodi
 orbits 
 with energy E(
) < C. If there are in�nitely many, then a
ompa
tness argument as in Proposition 7.5 shows that there is a subsequen
e
onverging to either (i) a non-isolated periodi
 orbit, or (ii) a 
ow line froma 
riti
al point to itself. Both 
ases violate admissibility: in the former 
ase,the limiting periodi
 orbit is not isolated and hen
e degenerate, and in thelatter 
ase the broken 
ow line must in
lude a 
ow line in a moduli spa
e ofnegative expe
ted dimension, violating the Morse-Smale 
ondition.It is easy to see that exp sends the Novikov ring to itself so we have� 2 �
Q.To see that � is a
tually in �, we note that there is a produ
t formula� =Y
2E �1 � (�1)i�(
)[
℄�(�1)�i0(
) : (27)Here E denotes the set of embedded periodi
 orbits; i�(
) is the number ofreal eigenvalues of the linearized return map in the interval (�1;�1), andi0(
) is the number of eigenvalues in (�1; 1). One 
an verify the produ
tformula (27) by taking the formal logarithm of both sides. Clearly the rightside of equation (27) has integer 
oeÆ
ients. 2Example 7.15 Let X = S1. In Example 7.10(a),� = exp 1Xn=1 tnn = (1� t)�1:In Example 7.10(b), there are no periodi
 orbits so � = 1.Now de�ne I := TMorse � � 2 ��H :We then have: 56



Theorem 7.16 If (�; g) is admissible then:(a) I is a topologi
al invariant depending only on X, the 
ohomology 
lass[�℄, and the 
hoi
e of 
over.(b) Moreover I = {(T top):For a proof, see [31℄; for an earlier version and a 
onne
tion with Seiberg-Witten invariants of 3-manifolds see [34℄; for more on the 
onne
tion withSeiberg-Witten theory see [43℄. Of 
ourse part (a) implies part (b), but one
an prove (a) �rst whi
h leads to an easy proof of (b) similar to our proof ofTheorem 7.11 above. There are many other papers on Reidemeister torsionin 
ir
le-valued Morse theory; for example, an algebrai
 re�nement of (b)above is given in [50℄. Part (a) 
an be generalized to de�ne a notion ofReidemeister torsion in Floer theory, see [42℄, where one does not ne
essarilyhave an interpretation of the invariant in terms of 
lassi
al topology.Exer
ises for x7.1. Do the three \exer
ises in logi
" in x7.2 and x7.3.2. Verify equation (25).3. Prove Proposition 7.12.4. Fill in the details in the proof of Lemma 7.14.5. Let f : Xn ! S1 be a 
ir
le-valued fun
tion with no 
riti
al points. Assumethat the �ber is a 
onne
ted manifold �. Choose a generi
 metri
 on X andlet � : � ! � be the di�eomorphism de�ned by following the 
ow V from� ba
k to itself. There is a natural 
overing ~X ' R� � with H ' Zand� 'Z((t)). Formally, ~X is the �ber produ
t of X and R over S1.(a) Che
k that � = exp 1Xk=1#Fix(�k) tkk :(This is analogous to the zeta fun
tion introdu
ed in number theoryby Weil [69℄, whi
h is an an
estor of dynami
al zeta fun
tions su
h asthe one 
onsidered here.)(b) Use the Lefs
hetz �xed point theorem to dedu
e that� = n�1Yi=0 det(1� tHi(�))(�1)i+1 :57



8 What we did in the rest of the 
ourse, withreferen
es8.1 Pseudoholomorphi
 
urves in symple
ti
 manifolds(A referen
e for mu
h of the following is Gromov's seminal paper [28℄, to-gether with the expository arti
les in [5℄ and the se
ond edition of the essen-tial text [44℄.)!-tame and !-
ompatible almost 
omplex stru
tures, and 
ontra
tibilityof the spa
e of these. Pseudoholomorphi
 
urves.Energy and symple
ti
 area; 
alibration argument for !-
ompatible al-most 
omplex stru
tures.Trivial examples of pseudoholomorphi
 
urves: nullhomologous 
urvesand 
urves in produ
ts.Transversality of somewhere inje
tive 
urves for a generi
 almost 
omplexstru
ture. Spe
ial 
ases where transversality is automati
. Dimension of themoduli spa
e.Introdu
tion to Gromov 
ompa
tness.Gromov's nonsqueezing theorem; Gromov-Witten invariants in a spe
ial
ase, monotoni
ity lemma for minimal surfa
es.Adjun
tion formula and interse
tion positivity for pseudoholomorphi

urves in symple
ti
 4-manifolds.Foliation of S2�S2 by pseudoholomorphi
 spheres. Gromov's theorem onthe re
ognition of R4. Gromov's theorem on the symple
tomorphism groupof S2 � S2 and introdu
tion to Abreu's generalization of this [2℄.8.2 Floer homologyIntrodu
tion to the Arnold 
onje
ture. Introdu
tion to Floer theory of Hamil-tonian symple
tomorphisms, regarded as homology of the symple
ti
 a
tionfun
tional. Rough des
ription of Floer homology of more general symple
-tomorphisms (see e.g. some of Seidel's papers) and de�nition of the 
uxhomomorphism (see [45℄).Index of Cau
hy-Riemann operators on pun
tured Riemann surfa
es:Conley-Zehnder index and index formula for Cau
hy-Riemann operators onthe 
ylinder via spe
tral 
ow (see various papers by Salamon and 
oauthorssu
h as [55℄), relative �rst Chern 
lass [32℄, additivity of the index under58



gluing, axiomati
 determination of the index formula for Cau
hy-Riemannoperators on a pun
tured Riemann surfa
e (see S
hwarz's thesis [57℄ and these
ond edition of [44℄).Proof of the Arnold 
onje
ture for monotone symple
ti
manifolds: de�ni-tion of Floer homology of Hamiltonian symple
tomorphisms (gluing analysisomitted), isomorphism of this Floer homology with Morse homology. (Foran ex
ellent introdu
tion to this and mu
h more than we did in the 
ourse,see [54℄. For transversality details see [20℄.)Floer homology with Novikov rings and the Piunikhin-Salamon-S
hwarzisomorphism [51℄. Introdu
tion to quantum 
ohomology and its relation tothe more general quantum produ
t on Floer theory of symple
tomorphisms[14℄.Remarks on the 
lassi�
ation of surfa
e di�eomorphisms [12℄. Floer ho-mology and the mapping 
lass group [63℄. Floer homology of �nite ordersymple
tomorphisms (not just on surfa
es). Computation of the Floer ho-mology of a Dehn twist on a surfa
e [59, 24, 35℄. Introdu
tion to Seidel'swork on generalized Dehn twists (see Seidel's thesis [61℄ and more re
entpapers su
h as [62℄).Introdu
tion to Floer theory for Lagrangian interse
tions [17℄ and theFukaya 
ategory. Floer theory for (non
ontra
tible, nonisotopi
) Lagrangiansin a surfa
e; 
ombinatorial formula for the di�erental, proof that the numberof generators of the Floer homology equals the geometri
 interse
tion number(see [25℄). Remarks on Massey produ
ts and A1 
ategory stru
ture, see e.g.[23℄.Introdu
tion to TQFT [3, 58℄. Introdu
tion to Seiberg-Witten Floer ho-mology; see [40℄ and the re
ent series of papers by Ozsv�ath and Szab�o [49℄.Introdu
tion to \introdu
tion to symple
ti
 �eld theory" [15℄.8.3 What we would have also liked to do in the 
ourseCoherent orientations [19℄.Gluing analysis.Khovanov's 
ategori�
ation of the Jones polynomial [36℄.|||||||||||||||||{The literature on this subje
t is very large. The following list is nowhere near 
om-prehensive but is merely intended to provide some useful starting points.59
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