
Leture notes on Morse homology (with an eyetowards Floer theory and pseudoholomorphiurves)Mihael HuthingsDeember 15, 2002AbstratThese are informal leture notes for a topis ourse that was taughtat UC Berkeley in Fall 2002. Floer theory (for whih Morse homologyis a prototype) and pseudoholomorphi urves and their appliationsto low dimensional and sympleti topology are urrently the subjetof a lot of ative and exiting researh. The basi goal of this oursewas to introdue some of the fundamental ideas whih should prepareand inspire one to understand what workers in this �eld are doingand why, and perhaps even begin new researh in this area. We gavean introdution to some of the tehnial mahinery whih is needed,while referring to other soures for details of the analysis. We exploredsome of the frontiers of (at least the author's) knowledge.The �rst part of the ourse overed Morse theory as a prototypefor Floer theory. Unfortunately (but not too surprisingly), I onlyhad time to write detailed notes for this part of the ourse. Theseond part of the ourse gave an introdution to pseudoholomorphiurves in sympleti manifolds, and the third part of the ourse gave a(sometimes quite skethy) disussion of Floer theory. The last hapterof these notes gives a brief outline of these last two parts of the ourse,with referenes to some starting points for further reading on thesetopis.I thank all of the partiipants of the ourse for their enthusiasmand omments and questions. 1
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where a 2 R is not a ritial value of f , and study how the topology of Xahanges as a inreases. One an show that if there are no ritial values inthe interval [a; b℄, then Xa is di�eomorphi to Xb. If, say, f�1[a; b℄ ontainsa single ritial point of index i, then up to di�eomorphism, Xb is obtainedfrom Xa by attahing an i-handle. This has three important appliations:1. This leads to the Morse inequalities, whih are lower bounds for thenumbers of ritial points of f of eah index in terms of the ranksof the homology groups of X. Namely, if all ritial points of f arenondegenerate, if i is the number of ritial points of index i, and biis the rank of Hi(X), theni � i�1 + i�2 � � � � + (�1)i0 � bi � bi�1 + bi�2 � � � � + (�1)ib0 (1)for all i. Without the assumption of nondegenerate ritial points,there are tehniques suh as Lusternik-Shnirelman theory to establishweaker inequalities for arbitrary f , and there is also Morse-Bott theoryfor funtions f with \nondegenerate ritial submanifolds" whih wewill disuss later.2. One an generalize this to ertain funtionals on ertain in�nite dimen-sional manifolds, partiularly the energy funtional E on the free loopspae LX := f : S1 ! Xg of a Riemannian manifold X, de�ned byE() := ZS1 j0(t)j2 dt;whose ritial points are the losed geodesis. This leads to existenetheorems for losed geodesis, suh as the famous result that for anymetri on S2 there exist at least three losed geodesis. One an alsoturn this around and determine the topology of the loop spae of amanifold whose geodesis one understands; this approah was used inthe original proof of Bott periodiity [8℄. There are also relations be-tween urvature and Morse theory of geodesis whih lead to relationsbetween urvature and topology.3. Understanding �nite dimensional smooth manifolds in terms of attah-ing handles is the basis for onstrutive methods for proving that man-ifolds are di�eomorphi. 4



(a) This lies at the heart of the h-obordism theorem and the proofof topologial Poinare onjeture in dimensions greater than four[47℄. For example one step is the Smale anellation lemma, whihasserts that if f has ritial points p and q of index i and i + 1with f(p) < f(q), if there are no ritial values in the interval(f(p); f(q)), and if the attahing sphere for the handle orrespond-ing to q goes exatly one over the handle orresponding to p, thenone an modify f to anel the ritial points p and q. If one ananel all ritial points exept the minimum and maximum of f ,then X must be homeomorphi to a sphere.(b) There is also the Kirby alulus [37, 38, 26℄ whih is used to ex-pliitly desribe three and four-dimensional smooth manifolds andshow diretly that di�erent manifolds are di�eomorphi.1.2 A newer approah: gradient ow linesIn these letures we will fous on a seond, newer approah to Morse theory.In this approah one introdues an auxiliary Riemannian metri g on X.One then onsiders the negative1 gradient vetor �eld of f with respet tog, whih we denote by V . One then looks at ow lines of the vetor �eldV whih start at one ritial point and end at another. If the metri isgeneri, then there are �nitely many gradient ow lines from a ritial pointof index i to a ritial point of index i�1. One then de�nes a hain omplexCMorse� (f; g) overZ, the Morse omplex, whose hain group Ci is generated bythe ritial points of index i, and whose di�erential ounts gradient ow linesbetween ritial points of index di�erene one. A fundamental result is thatthe homology of this hain omplex is anonially isomorphi to the singularhomology of X. Roughly speaking, the isomorphism fromMorse homology tosingular homology sends a ritial point to its desending manifold; this hasappeared in various forms in many papers2. One easily dedues the Morse1The negative gradient, as opposed to the positive gradient, �ts in better with thelassial approah above, but sometimes leads to annoying signs.2The Morse omplex has a onfusing history. An essentially equivalent omplex wasdesribed in Milnor's book on the h-obordism theorem [47℄, but not in the language ofgradient ow lines; and there were earlier suggestions by Thom [67℄ and Smale [64℄. Butin the form desribed above, the Morse omplex was introdued to a large audiene byWitten [70℄, who obtained it (over R) from a radial approah inspired by supersymmetry,as a limit of deformed Hodge theory in whih the de Rham di�erential d is replaed by5



inequalities from this: there have to be enough ritial points to generate thehomology.The signi�ane of the language of gradient ow lines is that, as realizedby Floer [16, 18, 17℄, it extends to important in�nite dimensional ases wherethe lassial approah is useless3. These are ases where the ritial pointshave in�nite index, so that passing through a ritial point does not hangethe topology of the manifoldXa. However sometimes the index di�erene be-tween two ritial points is still �nite, in that one an make sense of \gradientow lines" between two ritial points, and these form a �nite dimensionalmoduli spae. One an then de�ne an analogue of Morse homology, alledFloer homology.The relation of the Floer homology to the topology of the in�nite dimen-sional manifold X is somewhat unlear4. However Floer homology is typi-ally assoiated to some �nite dimensional manifold, e.g. as its loop spae, orto some more ompliated �nite dimensional objet, and the Floer homologyhas topologial signi�ane for the �nite dimensional objet. There are manyinteresting examples of Floer theory, but in order not to stray too far fromour urrent topi of Morse homology, we will save these for later.In the �nite dimensional ase, it is possible to desribe topologial notionsother than just homology, suh as Reidemeister torsion and the Leray-Serrespetral sequene, in terms of gradient ow lines, and these then have Floertheoreti analogues. There are also new onstrutions in Floer theory, suhas the \quantum produt" in sympleti Floer theory [51℄, whih do not5have analogues in lassial topology.e�tfdetf and t ! 1. This is a remarkable way to establish the isomorphism betweenMorse homology and singular homology (over R), and was made rigorous by Hel�er andSjostrand. See [9℄ for a nie survey.3The book [56℄ gives a detailed tehnial treatment of Morse homology with an eyetowards Floer-theoreti generalizations.4This matter is disussed in [13℄. Also, for some versions of Floer theory, the analogywith Morse theory of a funtion on a spae begins to break down. For example sympleti�eld theory is like the Morse theory of the sympleti ation funtional on the loop spae,exept that there an be several loops whih fuse and separate in a \gradient ow line" orpseudoholomorphi urve.5It is possible to onstrut the up produt in �nite dimensional Morse theory in a waywhih relates to the quantum produt muh like the way that Feynman diagrams relateto string theory [7℄; but this is not a diret translation as in the preeding sentene, whereone type of \gradient ow line" is replaed by another.6



1.3 Comparison of the two approahesTo summarize, let us briey desribe how the Floer-theoreti approah om-pares with the three basi appliations of the lassial approah from x1.1.1. Both approahes establish the Morse inequalities, and while the newerproof of the Morse inequalities seems more elegant, the two proofs haveroughly the same ontent.2. Roughly speaking, from an analyti point of view, the lassial ap-proah extends to in�nite dimensional settings in whih the gradientow equation is paraboli, while the Floer-theoreti approah extendsto ases where the gradient ow equation is ellipti.3. Floer homology is generally used as an invariant to tell spaes apart.However it is very intereting to ask if it an lead to onstrutive results.For example, is there a Smale anellation lemma in Floer theory? Thisquestion has been onsidered by Fukaya [22℄ and in a di�erent form byTaubes [65℄.2 The de�nition of Morse homology2.1 Morse funtionsLet X be a smooth (�nite dimensional) manifold, say losed for now, andf : X ! R a smooth funtion.A ritial point of f is a point p 2 X suh that dfp = 0 : TpX ! R. Welet Crit(f) denote the set of ritial points of f .If p is a ritial point, we de�ne the Hessian H(f; p) : TpX ! T �pX asfollows. Let r be any onnetion on TX, and if v 2 TpX, de�neH(f; p)(v) := rv(df):This does not depend on the hoie of onnetion r beause df vanishes at pand the di�erene between any two onnetions is a tensor6. If x1; : : : ; xn are6Here is another way to see why if s is a setion of a vetor bundle E ! X and s(x) = 0then the derivative rs : TxX ! Ex is well de�ned, as this is an important point whihwe will need later. Let us write E = f(x; e) j e 2 Exg, and let � : E ! X denote theprojetion. Let � = f(x; s(x))g denote the graph of s. Then at any point (x; s(x)) 2 �,7



loal oordinates for X near p, then with respet to the bases f�=�xig andfdxig for TpX and T �pX, the Hessian is given by the matrix (�2f=�xi�xj).Sine this matrix is symmetri, if we use a Riemannian metri to identifyTpX ' T �pX, the Hessian beomes a symmetri bilinear form on TpX, or aself-adjoint map TpX ! TpX.The ritial point p is nondegenerate if the Hessian does not have zeroas an eigenvalue. In this ase we de�ne the Morse index ind(p) to be thenumber of negative eigenvalues of the Hessian.It is easy to see that a nondegenerate ritial point is isolated. Moreover,although we will not really use this, the Morse lemma asserts that if p isa nondegenerate ritial point of index i, then there exist loal oordinatesx1; : : : ; xn for X near p suh thatf = f(p) � x21 � � � � � x2i + x2i+1 + � � �+ x2n:The funtion f is Morse if all of its ritial points are nondegenerate.One an show that a generi smooth funtion on X is Morse. We will laterdo a systemati study of how to preisely formulate and prove suh generiitystatements.2.2 The gradient owLet g be a metri on X, and let V denote the negative gradient of f withrespet to g. The ow of the vetor �eld V de�nes a one-parameter group ofdi�eomorphisms 	s : X ! X for s 2 R with 	0 = id and d	s=dt = V .If p is a ritial point, we de�ne the desending manifoldD(p) := �x 2 X ���� lims!�1	s(x) = p�and the asending manifoldA (p) := �x 2 X ���� lims!+1	s(x) = p� :the map �� : T(x;s(x))� ! TxX is an isomorphism, beause � Æ s = idX . If s(x) = 0, wede�ne rs : TxX (��)�1�! T(x;0)� � T(x;0)E = TxX �Ex �! Ex:The key point is that there is a anonial identi�ation T(x;0)E = TxX � Ex beauseTxX inludes into T(x;0)E as the tangent spae to the zero setion. A onnetion r is anextension of this (satisfying some restritions) to an identi�ation T(x;e)E ' TxX �Ex forall (x; e) 2 E, but suh an identi�ation is not anonial exept when e = 0.8



(These are sometimes also alled the \unstable manifold" and \stable mani-fold", respetively, of the ow V .)If p is a nondegenerate ritial point, then D(p) is an embedded open disin X with dimension dimD(p) = ind(p):In fat, the tangent spae TpD(p) � TpX is just the negative eigenspaeof the Hessian H(f; p). Likewise, A (p) is an embedded open dis with theomplementary dimensiondimA (p) = dim(X)� ind(p):We refer to [1℄ for the proof7.We assume for the rest of this setion that the pair (f; g) is Morse-Smale: namely, f is Morse and for every pair of ritial points p and q, thedesending manifold D(p) is transverse to the asending manifold A (q). Wewill see later (maybe) that this ondition holds generially.If p and q are ritial points, a ow line from p to q is a path  : R! Xwith 0(s) = V ((s)) and lims!�1 (s) = p and lims!+1 (s) = q. Notethat R ats on the set of ow lines from p to q by preomposition withtranslations of R. We letM (p; q) denote the moduli spae of ow lines fromp to q, modulo translation. We an identifyM (p; q) = D(p) \A (q)=R;where R ats on X by the ow f	sg. In partiular, the Morse-Smale ondi-tion implies thatM (p; q) is naturally a manifold withdimM (p; q) = ind(p)� ind(q)� 1 (2)(exept in the ase p = q, when the R ation is trivial, where dimM (p; p) =0). When p 6= q, we orient M (p; q) as follows8. For eah ritial point p,hoose an orientation of the desending manifold D(p). At any point in the7This is more or less obvious if one hooses the metri near the ritial points to beEulidean in a oordinate hart given by the Morse lemma. This assumption is sometimesmade in the literature in order to simplify various tehnial arguments. However thisondition is not generi, as the eigenvalues of the Hessian are all distint for a generimetri.8This onvention follows [54℄. There are other ways to do this whih are more abstratand possibly nier but also more diÆult to work with. We we will see a very slightlymore elegant version when we study Morse-Bott theory.9



image of , we have an isomorphism, anonial at the level of orientations9,TD(p) ' T (D(p) \A (q))� (TX=TA (q))' TM (p; q)� T � TqD(q): (3)The isomorphism in the �rst line omes from the Morse-Smale transversalityassumption; the isomorphism (D(p)\A (q)) ' TM (p; q)�T holds by (2),and the isomorphism TX=TA (q) ' TqD(q) is obtained by translating thesubspae TqD(q) � TqX along  while keeping it omplementary to TA (q).We orientM (p; q) so that the isomorphism (3) is orientation-preserving.2.3 Compati�ation by broken ow linesWhen ind(p)� ind(q) = 1, the moduli spaeM (p; q) has dimension zero, andwe would like to ount the points in it. For this purpose we need to knowthat M (p; q) is ompat. This follows from the following general fat.Reall that a smooth manifold with orners is a seond ountableHausdor� spae10 suh that eah point has a neighborhood with a hosenhomeomorphism with Rn�k � [0;1)k for some k, and the transition mapsare smooth.Theorem 2.1 If X is losed and (f; g) is Morse-Smale, then for any tworitial points p; q, the moduli spae M (p; q) has a natural ompati�ationto a smooth manifold with orners M (p; q) whose odimension k stratum isM (p; q)k = [r1;:::;rk2Crit(f)p; r1; : : : ; rk; q distintM (p; r1)�M (r1; r2)�� � ��M (rk�1; rk)�M (rk; q):When k = 1, as oriented manifolds11 we have�M (p; q) = [r2Crit(f)p; q; r distint(�1)ind(p)+ind(r)+1M (p; r) �M (r; q):9That is, there are lots of hoies involved in de�ning this isomorphism, but any twoisomorphisms that result will di�er by an automorphism of positive determinant.10The \seond ountable" and \Hausdor�" onditions are the same onditions one makesin de�ning an ordinary manifold in order to rule out the long line and other strange beasts.11For now we will omit the alulation of signs like this. Generally the fat that the signbehaves in a uniform way is more important than what the atual sign is. For exampleif equation (4) held with a global minus sign then we would still get �2 = 0 below. Thepaper [19℄ desribes a general proedure for showing that \oherent orientations" exist,where the signs behave in a suÆiently uniform way to give �2 = 0 et.10



For example, if ind(p) = i and ind(q) = i � 1, then M (p; q) is ompat.If ind(q) = i � 2, then M (p; q) has a ompatifation M (p; q) whih is aompat 1-manifold with boundary�M (p; q) = [r2Criti�1(f)M (p; r) �M (r; q): (4)Note that by (2), a ritial point r an arise here only if its index is i � 1;beauseM (p; r) 6= ; and p 6= r implies that ind(r) � i�1, whileM (r; q) 6= ;and r 6= q implies ind(r) � i� 1.Theorem 2.1 and many variants and in�nite dimensional generalizationsthereof omprise the tehnial ornerstone of Floer theory. The proof hastwo main parts. The �rst part is a ompatness result asserting that anysequene of ow lines in M (p; q) has a subsequene that onverges in anappropriate sense to a \broken ow line" in M (p; q)k for some k � 0. Theseond part is a \gluing theorem" whih asserts that any broken ow linein M (p; q)k an be perturbed to an honest ow line in M (p; q), and theseperturbations are parametrized by (R;1)k, suh that taking one of thesegluing parameters to in�nity orresponds to breaking the ow line at one ofthe k intermediate ritial points r1; : : : ; rk. One also has to hek that theorientations work out. We will go into more details of some of this later.The basi idea to remember is that in favorable ases, one an ompatifymoduli spaes of ow lines into ompat manifolds with orners by addingin suitably \broken" ow lines. (In unfavorable ases, there are issues suhas \bubbling" whih make ompati�ation more ompliated.)2.4 The hain omplexWe de�ne theMorse omplex (CMorse� (f; g); �Morse) as follows. Let Criti(f)denote the set of index i ritial points of f . The hain module Ci is the freeZ-module generated by this �nite set:CMorsei (f; g) :=ZCriti(f):The di�erential �Morse : Ci ! Ci�1 ounts gradient ow lines. That is, ifp 2 Criti(f), then �Morse(p) := Xq2Criti�1(f)#M (p; q) � q:11



Here #M (p; q) 2 Zdenotes the number of points inM (p; q), ounted withthe signs given by the orientation onM (p; q).Lemma 2.2 (�Morse)2 = 0.Proof. This follows immediately from (4), beause the boundary of a ompatoriented 1-manifold has zero points ounted with sign. More preisely, ifp 2 Criti(f) and q 2 Criti�2(f), then
(�Morse)2p; q� = Xr2Criti�1(f)
�Morsep; r� 
�Morser; q�= # [r2Criti�1(f)M (p; r) �M (r; q)= #�M (p; q)= 0: 2We de�ne the Morse homology HMorse� (f; g) to be the homology of thehain omplex (CMorse� (f; g); �Morse).Example 2.3 Let X = T 2, let f be the height funtion for an embedding ofT 2 into R3 in whih the torus is \standing on end", and let g be the metriindued by the Eulidean metri. The height funtion f is Morse and thereare four ritial points: one minimum of index 0, two saddles of index 1, andone maximum of index 2. The pair (f; g) is not Morse-Smale, beause thereare two ow lines from the upper saddle to the lower saddle. However thesewill disappear if we perturb g slightly. Then �Morse = 0, beause for eahsaddle, there are two ow lines from the maximumwhih have opposite signsand anel, and two ow lines to the minimumwhih also have opposite signsand anel. Therefore HMorse2 'Z, HMorse1 'Z2, and HMorse0 'Z.Example 2.4 Suppose f is a Morse funtion on S2 with two maxima x1; x2,one saddle y, and one minimum z. Then for any metri g, the pair (f; g) isMorse-Smale, and for suitable orientation hoies we have�Morse(x1) = ��Morse(x2) = y;�Morse(y) = 0:Therefore HMorse2 'Z, HMorse1 = 0, and HMorse0 'Z.12



Exerises for x2.1. Let fng be a sequene of ow lines from p to q, and let ̂ = (̂0; : : : ; ̂k) bea k-times broken ow line from p to q; that is, there exist distint ritialpoints r0; : : : ; rk+1 with r0 = p and rk+1 = q suh that ̂i is a ow line fromri to ri+1 for i = 0; : : : ; k. Let us say that limn!1[n℄ = [̂℄ if for eah nthere exist real numbers sn;0 < sn;1 < � � � < sn;k suh that n(sn;i + �)! ̂iin C1 on ompat sets.Show that any sequene of ow lines fng from p to q has a subsequenewhih onverges to some k-times broken ow line as above for some k � 0.3 Morse homology is isomorphi to singularhomologyWe will now prove the following theorem, whih is one of the most funda-mental fats about �nite-dimensional Morse theory.Theorem 3.1 If X is a losed smooth manifold and (f; g) is a Morse-Smalepair on X, then there is a anonial isomorphismHMorse� (f; g) ' H�(X):3.1 Outline of the proofThe idea of the proof of Theorem 3.1 is simple. We de�ne a hain mapD : CMorse� ! C�(X) by sending a ritial point to its desending manifold.We de�ne a map A : C�(X)! CMorse� by taking a simplex, owing it via V ,and taking the sum of the ritial points that it \hangs on". Then A Æ Dequals the identity on the hain level. On the other hand, D Æ A is hainhomotopi to the identity; the hain homotopy sends a singular hain to itsentire forward orbit under the ow V .To make this rigorous, we will use various ompati�ations by brokenow lines. But �rst, we need to deide what we mean by C�(X), and thereare various approahes to handling the tehnialities. Here we de�ne C�(X)as follows. We say that an i-simplex � : �i ! X is generi if � is smoothand eah fae of � is transverse to the asending manifolds of all the ritialpoints of f . We let Ci(X) denote the subspae of the set of all i-dimensional13



urrents12 on X generated by generi i-simplies. Standard arguments showthat the homology of Ci(X) so de�ned is anonially isomorphi to H�(X)as de�ned say by the Eilenberg-Steenrod axioms.3.2 The hain map via ompati�ed desending mani-foldsTo arry out the program outlined above, we start by de�ning a ompati-�ation of the desending manifold D(p) of a ritial point p. The proof ofthe following proposition is similar to the proof of Theorem 2.1.Proposition 3.2 D(p) has a natural ompati�ation to a smooth manifoldwith orners D(p), whose odimension k stratum isD(p)k = [q1;:::;qk2Crit(f)p; q1; : : : ; qk distintM (p; q1)�M (q1; q2)� � � � �M (qk�1; qk)�D(qk):When k = 1, as oriented manifolds we have�D(p) = [q2Crit(f)p6=q (�1)ind(p)+ind(q)+1M (p; q)�D(q):The maps D(p)k ! X given by projeting to D(qk) � X path together to asmooth13 map e : D(p) �! Xextending the inlusion D(p)! X.Example 3.3 De�ne f : [�1; 1℄n ! R byf(x1; : : : ; xn) := 14 nXi=1 (xi + 1)2(xi � 1)212The approah here is basially taken from [34℄, exept that here we use urrents insteadof modding out by \degenerate singular hains". What we are doing here is di�erent fromthe elegant treatment of Morse theory via urrents in [29℄, whih uses more general urrentsbut makes additional assumptions on the gradient ow.13I think this smoothness laim is OK but I need to hek it, hopefully later.14



and let g be the Eulidean metri. (If you like, inlude X into a losedn-manifold and extend f and g arbitrarily.) Then�rf = � nXi=1 (xi + 1)xi(xi � 1):Thus f has a ritial point of index k at the enter of eah k-fae of the ube,and no other ritial points. The desending manifold of a ritial point isthe interior of the orresponding fae.The ompati�ed desending manifold of a ritial point is di�eomorphito a \fully trunated k-ube". If k = 2, its boundary is an otagon. Ifk = 3, its boundary is a polyhedron whose faes onsist of 6 otagons, 12quadrilaterals, and 8 hexagons.Remark 3.4 One an show in general that D(p) is homeomorphi to alosed ball, of ourse of dimension ind(p). Hene the ompati�ed desendingmanifolds D(p), together with the maps e : D(p)! X, give X the strutureof a CW-omplex, with one i-ell for eah ritial point of index i. There aresofter ways to see that a Morse funtion gives a CW-struture with one ellfor eah ritial point; however the approah above shows that the metrigives a CW-struture more anonially.Now the ompat oriented manifold with orners D(p) has a fundamentalurrent hD(p)i, and we de�neD(p) := e� hD(p)i :Note that D(p) 2 C�(X), beause by the Morse-Smale assumption, we anompatibly triangulate all the desending manifolds using generi simpliesby indution on the dimension.Lemma 3.5 D is a hain map: �D = D�Morse.Proof. Let p 2 Criti(f). By Proposition 3.2 we have�D(p) = [q2Crit(f)p6=q (�1)i+ind(q)+1M (p; q)�D(q):15



Therefore�D(p) = Xq2Crit(f)p6=q (�1)i+ind(q)+1e� hM (p; q)�D(q)i 2 Ci�1(X):Now if ind(q) > i� 1, thenM (p; q) is empty by the Morse-Smale ondition,while if ind(q) < i� 1, then the ontribution on the right hand side is zeroin Ci�1(X), beause e maps M (p; q) �D(q) to the support of D(q), whihis a urrent of dimension � i� 2. Therefore�D(p) = Xq2Criti�1(f)#M (p; q) � e� hD(q)i= D ��Morse(p)� : 23.3 The left inverse hain mapIf � is a generi i-simplex and q is a ritial point, let M (�; q) denote themoduli spae of gradient ow lines from � to q, i.e. maps  : [0;1) ! Xsuh that (0) 2 � and 0(s) = V ((s)) and lims!1 (s) = q. As in (3), wehave an isomorphism T(0)� ' TM (�; q)� TqD(q);and we orientM (�; q) so that this isomorphism is orientation-preserving.As in Theorem 2.1 and Proposition 3.2, M (�; q) has a ompat�ationto a smooth manifold with ornersM (�; p) whose odimension k stratum isM (�; q)k = k[j=0 [p1;:::;pj2Crit(f)p1; : : : ; pj; q distintM (�k�j ; p1)�M (p1; p2)�� � ��M (pj�1; pj)�M (pj; q):Here �j denotes the odimension j stratum of �. When k = 1, as orientedmanifolds we have�M (�; q) =M (��; q)[ [p2Crit(f)p6=q (�1)i+ind(q)M (�; p)�M (p; q):16



Clearly dimM (�; p) = i� ind(p). By this and the ompatness result, itmakes sense to de�ne A(�) := Xp2Criti(f)#M (�; p) � p:Lemma 3.6 A is a hain map: A� = �MorseA.Proof. This follows from the ompatness result, sine if q 2 Criti�1(f), then#�M (�; q) = #M (��; q)�# [p2Crit(f)p6=q M (�; p)�M (p; q)= #M (��; q)�# [p2Criti(f)M (�; p)�M (p; q)= hA(��); qi � h�MorseA(�); qi:Here the seond equality holds beause of our transversality assumptions. 2Lemma 3.7 A ÆD = id : CMorsei ! CMorsei .Proof. If p is an index i ritial point, then M (D(p); p) ontains one point,the onstant gradient ow line, oriented positively by our sign onvention;while M (D(p); q) is empty if q is any other index i ritial point, beauseM (p; q) is empty by the Morse-Smale ondition. 23.4 The hain homotopy via ompati�ed forward or-bitsIf � is a generi i-simplex, we de�ne its forward orbit to be the setF (�) := [0;1)� �together with the map e : F (�)! X de�ned bye(s; x) := 	s(�(x)):The forward orbit has a natural ompati�ation to a smooth manifold withorners F (�) whose odimension k stratum for k > 2 isF (�)k = F (�k)[ k[j=1 [r1;:::;rj2Crit(f)r1; : : : ; rj distintM (�k�j; r1)�M (r1; r2)�� � ��M (rj�1; rj)�D(rj):17



When k = 1, as oriented manifolds we have�F (�) = �� [ �F (��)[ [r2Crit(f)M (�; r)�D(r):The map e extends over this ompati�ation as a smooth map whih projetsto D(rj) � X.We now de�ne F : Ci(X)! Ci+1(X) byF (�) := e� hF (�)i :Then the above ompati�ation result implies that F is a hain homotopybetween D ÆA and the identity:Lemma 3.8 �F + F� = D ÆA� id.Lemmas 3.5, 3.6, 3.7 and 3.8 omplete the proof of Theorem 3.1.3.5 Morse obordisms and relative homology.Theorem 3.1 has the following useful generalization. Let X be a ompatsmooth manifold with boundary, whose boundary is partitioned into twounions of onneted omponents X0 and X1. A Morse obordism is asmooth funtion f : X ! [0; 1℄ suh that f�1(i) = Xi for i = 0; 1, and allritial points of f are nondegenerate and in the interior of X.Theorem 3.9 Let f : X ! [0; 1℄ be a Morse obordism and let g be a metrion X suh that (f; g) is Morse-Smale. Then there is a anonial isomorphismHMorse� (f; g) ' H�(X;X0):Exerises for x3.1. Dedue the Morse inequalities (1) from Theorem 3.1.2. Use Theorem 3.1 to prove the K�unneth formula for losed manifolds.3. Use Theorem 3.1 to prove the Poinar`'e-Hopf index theorem: if X is a losedoriented smooth manifold, then RX e(TX), i.e. the signed number of zeroesof a generi vetor �eld, is equal to the Euler harateristi �(X).4. Use Theorem 3.1 to prove Poinar�e duality for losed oriented manifolds.5. Prove Theorem 3.9. Dedue Poinar�e-Lefshetz duality.18



4 A priori invariane of Morse homologyLet X be a losed smooth manifold and (f; g) a Morse-Smale pair. Wewill now give an a priori proof that the Morse homology HMorse� (f; g) is atopologial invariant, i.e. it depends only on X and f and g. Of ourse wealready know this as a orollary of Theorem 3.1. The point of this exerise isthat it provides a model for proofs that various versions of Floer homologyare topologial invariants, where an interpretation in terms of a previouslyknown topologial invariant might not be available or possible14.A natural and enlightening strategy for the proof is \bifuration analy-sis": one deforms the pair (f; g), studies expliitly how the hain omplexhanges, and heks that the homology stays the same, see [17, 41℄. However,bifuration analysis is tehnially diÆult in general, and Floer disoveredan elegant alternative approah [16℄ whih uses the same ideas as the proofthat �2 = 0, and whih we will now explain.4.1 Continuation mapsLet (f0; g0) and (f1; g1) be two Morse-Smale pairs. Let (C0� ; �0) and (C1� ; �1)denote the orresponding Morse omplexes. Let� = f(ft; gt) j t 2 [0; 1℄gbe a path of funtions and metris from (f0; g0) to (f1; g1). Under a generiityassumption to be explained below, we de�ne the ontinuation map�� : C0� �! C1�as follows.De�ne a vetor �eld V on [0; 1℄�X byV := (1� t)t(1 + t)�t + Vt; (5)where t denotes the [0; 1℄ oordinate and Vt denotes the negative gradient offt : X ! R with respet to the metri gt. The vetor �eld V is suÆiently14Perhaps on some other planet, Morse homology was disovered before any other formof homology. Then on that planet, this result proved that Morse homology is a powerfultool for distinguishing losed smooth manifolds; and whoever disovered this probablyreeived that planet's analogue of the Fields medal.19



well behaved that we an de�ne its ritial points, asending and desendingmanifolds, and ow lines just as if it were the negative gradient of a Morsefuntion, and the same transversality and ompatness properties will hold15.The funtion (t+ 1)2(t� 1)2=4 on R has a ritial point of index 1 at t = 0and a ritial point of index 0 at t = 1 with no ritial points in between.Thus Criti(V ) = f0g � Criti�1(f0)[f1g � Criti(f1): (6)We say that the family � is admissible if the asending and desendingmanifolds of the ritial points of V interset transversely. One an show thatif (f0; g0) and (f1; g1) are Morse-Smale, then a generi homotopy � betweenthem is admissible. This is a slight modi�ation of the proof that a generipair (f; g) is Morse-Smale. So assume from now on that � is admissible. Notethat for an admissible �, there might (and often must) be some \bifurationtimes" t for whih the pair (ft; gt) is not Morse-Smale. Generiity of a familydoes not imply generiity of all the individual points in the family.To ontinue, if P and Q are ritial points of V , letM (P;Q) denote themoduli spae of ow lines of V from P to Q, modulo the R ation as usual.The orientation of [0; 1℄ and the orientations of the desending manifolds for(f0; g0) and (f1; g1) indue orientations of the desending manifolds for V andhene of the moduli spaesM (P;Q). Now if p 2 Criti(f0), we de�ne��(p) := Xq2Criti(f1)#M ((0; p); (1; q)) � q:Lemma 4.1 �� is a hain map: �1�� = ���0.Proof. If p 2 Criti(f0) and q 2 Criti�1(f1), then the usual argument showsthatM ((0; p); (1; q)) has a ompati�ation to a ompat oriented 1-manifold15In the �rst draft of this leture I de�ned V to be the negative gradient of the funtionF : [0; 1℄ � X ! R de�ned by F (t; x) := 14(t + 1)2(t � 1)2 + ft(x); with respet to themetri G on [0; 1℄ � X de�ned by G(t; x) = dt2 + gt(x). But this doesn't work in thedisussion below beause I want the [0; 1℄ omponent of the vetor �eld to be positive on(0; 1)� X. Thanks to Tamas Kalman who pointed out this mistake, and also suggested�xing it by multiplying the term 14 (t+1)2(t�1)2 in the de�nition of F by a large onstantand assuming that ft is independent of t for t lose to 0 or 1. That would work �ne here,and also makes onatenation of paths nier. However the vetor �eld (5) is the one Iwanted in the �rst plae beause of generalizations that I have in mind in [33℄.20



M ((0; p); (1; q)) with boundary�M ((0; p); (1; q)) = [r2Criti(f1)M ((0; p); (1; r)) �M ((1; r); (1; q))[ [r2Criti-1(f0)M ((0; p); (0; r)) �M ((0; r); (1; q)):If M0 and M1 denote the moduli spaes for (f0; g0) and (f1; g1), then asoriented manifolds we haveM ((0; p); (0; r)) = (�1)ind(p)+ind(r)M0(p; r);M ((1; r); (1; q)) =M1(r; q):The lemma follows immediately16. 2Thus �� indues a map(��)� : HMorse� (f0; g0)! HMorse� (f1; g1): (7)4.2 Chain homotopiesNow let � and �0 be two di�erent generi paths with the same endpoints(f0; g0) and (f1; g1). Let � and �0 denote the orresponding ontinuationmaps.Lemma 4.2 A generi homotopy between the paths � and �0 indues a hainhomotopy K : C0� �! C1�+1;�1K +K�0 = � � �0:Proof. We regard the homotopy as a family f(fd; gd) j d 2 Dg, where D isa digon (a losed 2-manifold with orners with two edges and two verties).Let ĝ be a metri on D suh that the edges have length 1. Let f̂ : D! R bea funtion with an index 2 ritial point at one vertex and an index 0 ritialpoint at the other vertex and no other ritial points, suh that the negative16Another way to say this is that the Morse di�erential � for the vetor �eld V is well-de�ned and still satis�es �2 = 0. With respet to the deomposition of Crit(V ) given by(6), we have � = ���0 0�� �1� so �2 = � �20 0����0 + �1�� �21�.21



gradient of f̂ with respet to ĝ is tangent to the edges and agrees with thenegative gradient of (t+ 1)2(t� 1)2=4 there. Let V̂ be the negative gradientof f̂ with respet to ĝ. We then de�ne a vetor �eld V on D �X byV := V̂ + Vdwhere Vd denotes the negative gradient of fd with respet to gd. The map Kthen ounts ow lines of the vetor �eld V . We omit the veri�ation of thehain homotopy equation. 2This proves that the map (��)� in (7) depends only on the homotopylass of �. In fat, sine the spae of paths � here is ontratible17, thisimplies that the map (��)� does not depend on anything18. We now wantto prove that it is an isomorphism. If �1 is an admissible path from (f0; g0)to (f1; g1), and �2 is an admissible path from (f1; g1) to (f2; g2), let �2 � �1denote the onatenation of these two paths, reparametrized to be smoothand perturbed if neessary to be admissible.Lemma 4.3 ��2��1 is hain homotopi to ��2 Æ ��1 .Proof. This is similar to the proof of the preeding lemma exept that weuse a triangle instead of a digon. 2The preeding lemma, together with Exerise 1 below, imply that for anytwo Morse-Smale pairs (f0; g0) and (f1; g1), there is a anonial19 isomorphismHMorse� (f0; g0) ' HMorse� (f1; g1).Exerises for x4.1. Show that if � = f(ft; gt)g is a onstant family with (ft; gt) Morse-Smale,then � is admissible and �� = id.2. Find ounterexamples with X = S1 to eah of the following statements.(a) Suppose (ft; gt) is Morse-Smale for all t 2 [0; 1℄, so that there is aanonial identi�ation Crit(f0) ' Crit(f1). Then the family � =17Note that the spae of metris on a manifold is ontratible, beause one an ontratall metris to a given one by averaging.18It is important to note that in Floer theory, there are often di�erent homotopy lassesof paths onneting two objets, and sometimes the indued maps on Floer homology andistinguish them, see [60℄.19In Floer theory the analogous isomorphism might not be anonial, see the preedingfootnote. 22



f(ft; gt)g is admissible, and �� is given by the anonial identi�ationabove.(b) ��2��1 = ��2 Æ ��1 at the hain level.3. Show that the diagramHMorse� (f0; g0) ����! HMorse� (f1; g1)??y ??yH�(X) H�(X)ommutes, where the top arrow is the ontinuation isomorphism, and thevertial arrows are the isomorphisms given by Theorem 3.1.5 Generiity and transversalityWe now explain at least some of how to prove statements suh as \a generifuntion is Morse". We begin with a general de�nition of \generi".De�nition 5.1 Let X be a topologial spae and let P (x) be a statementfor eah x 2 X (whih might be true or false). We say that P (x) is truefor generi x 2 X if the set fx 2 X j P (x)g � X ontains a ountableintersetion of open dense sets.This is a reasonable de�nition of \generi", for example beause the Baireategory theorem asserts that ifX is a ompletemetri spae then a ountableintersetion of open dense sets in X is itself dense.5.1 The Sard-Smale theoremThe basi strategy for proving generiity statements is enapsulated in Theo-rem 5.4 below20. It requires the Sard-Smale theorem, an in�nite dimensionalgeneralization of Sard's theorem. We �rst reall the following de�nition.De�nition 5.2 Let V and W be Banah spaes. A bounded linear operatorF : V !W is Fredholm if:20This theorem is distilled out of [44℄, whih provides tons of details regarding a lotof the analysis we will be disussing (and there will be even more details in the seondedition). 23



� F has losed range, i.e. F (V ) is a losed subspae of W .� dimKer(F ) <1.� dimCoker(F ) <1.If F is Fredholm we de�ne the indexind(F ) := dimKer(F )� dimCoker(F ):The index is a loally onstant funtion on the spae of Fredholm opera-tors with the norm topology.Theorem 5.3 (Sard-Smale) Let X and Y be separable21 Banah mani-folds22. Let f : X ! Y be a Ck map23 suh that dfx : TxX ! Tf(x)Y isFredholm of index l for all x 2 X. Assume k � 1 and k � l + 1.Then a generi y 2 Y is a regular value of f , i.e. dfx is onto for allx 2 f�1(y), so f�1(y) is naturally a manifold24 of dimension l.The idea of the proof is to use the Fredholm assumption to loally redueto Sard's theorem in �nite dimensions, and to use the separability assumptionto get a ountable intersetion of open dense sets.We use the Sard-Smale theorem as follows. Suppose we have an equationof the form  (y; z) = 0, and we want to show that for generi y 2 Y , the setof z suh that  (y; z) = 0 is \ut out transversely".21A topologial spae is separable if it ontains a ountable dense set.22A Banah manifold is de�ned just like a smooth manifold exept that it is loallymodelled on a Banah spae rather than Rn.23If V and W are Banah spaes then a funtion f : V !W is di�erentiable at p 2 Vif there exists a bounded linear map dfp : V !W suh thatlimv!0 kf(p + v) � f(p) � dfp(v)kkvk = 0:If suh a dfp exists then it is neessarily unique. If f is di�erentiable everywhere then dfis a map V ! Hom(V;W ) and one an similarly talk about the derivative of df , et.24The impliit funtion implies that if f : X ! Y is a Ck map between Banah manifoldsand if y is a regular value of f , then f�1(y) is a Ck submanifold of X, with Txf�1(y) =Ker(dfx). The proof is a nie appliation of the ontration mapping theorem, and if youhaven't seen this before you should learn it beause it's ool. This kind of analysis isneeded for gluing theorems in Floer theory.24



Theorem 5.4 (useful) Let Y;Z be separable Banah manifolds, E ! Y �Za Banah spae bundle, and  : Y � Z ! E a smooth setion. Suppose thatfor all (y; z) 2  �1(0), the following hold:(a) The di�erential r (y;z) : T(y;z)(Y � Z)! E(y;z) is surjetive.(b) The restrited di�erential r (y;z) : TzZ ! E(y;z) is Fredholm of index l.Then for generi y 2 Y , the set fz 2 Zj (y; z) = 0g is an l-dimensionalsubmanifold of Z (and moreover at eah point in this set, r is surjetiveon the tangent spae to Z).Proof. Hypothesis (a) and the impliit funtion theorem imply that  �1(0)is a Banah manifold. Now let � :  �1(0) ! Y be the projetion.Claim: For eah (y; z) 2  �1(0), the projetion d� : T(y;z) �1(0) ! TyYis Fredholm.Proof of laim: The �nite dimensional kernel, �nite dimensional okernel,and losed range properties follow from the orresponding properties for therestrited di�erential in (b). First, we have a tautologial equalityKer �d� : T(y;z) �1(0)! TyY � = Ker �r : TzZ ! E(y;z)� : (8)Furthermore r : TyY ! E(y;z) indues an injetion on okernels whih by(a) is in fat an isomorphism,r : Coker �d� : T(y;z) �1(0) ! TyY � '�! Coker �r : TzZ ! E(y;z)� : (9)Finally, d� : T(y;z) �1(0) ! TyY has losed range beaused� �T(y;z) �1(0)� = fy 2 TyY j r (y; 0) 2 r (TzZ)g ;r (TzZ) is losed, and the inverse image of a losed set under a ontinuousmap is losed.The laim and the Sard-Smale theorem imply that a generi y 2 Y is aregular value of � :  �1(0) ! Y . For suh a y, the set fz 2 Z j  (y; z) = 0gis then a submanifold of Z by the impliit funtion theorem; by (8) this sub-manifold has dimension l, and by (9), for for eah (y; z) in this submanifold,the restrited di�erential r (y;z) : TzZ ! E(y;z) is surjetive. 225



5.2 Generi funtions are MorseHere is a simple example of the appliation of Theorem 5.4.Proposition 5.5 Let Z be a losed smooth manifold and let k � 2 be aninteger. Then a generi Ck funtion f : Z ! R is Morse.Proof. Let Y = Ck(Z;R), and let E ! Y �Z be the pullbak of the otangentbundle TZ ! Z via the projetion Y �Z ! Z, so that E(f;z) = TzZ. De�nea setion  of E by  (f; z) = df(z). Suppose (f; z) 2  �1(0). If f1 is anotherCk funtion on Z and v 2 TzZ thenr (f;z)(f1; v) = df1(v) +rv(df):Theorem 5.4 is appliable beause: (a) learlyr (f;z) : T (Y �Z)! T �zZis surjetive, sine df1(v) an be arbitrary; (b) the restrited di�erentialr (f;z) : TzZ ! T �zZ (10)is automatially Fredholm sine it maps between �nite dimensional vetorspaes.So for generi f , for eah z 2 Z suh that  (f; z) = 0, i.e. for eahritial point z of f , the restrited di�erential (10) is surjetive. But nowwe reognize that the operator (10) is just the Hessian, and if it is surjetivethen the ritial point is nondegenerate. 2This argument does not work for C1 funtions beause C1(Z;R) is nota Banah spae. However there is a general tehnique for passing from Ck-generiity to C1-generiity. We refer the reader to [44℄ for the details.5.3 Spetral owOur next goal is to show that if f is a Morse funtion, then for a generi metrig, the pair (f; g) is Morse-Smale. Before doing so, we need to introdue animportant priniple. The disussion here is based on the paper [53℄, whihdoes muh more stu� in muh more detail.Let H be a Hilbert spae and let fAs j s 2 Rg be a ontinuous familyof operators on H . The operators As may be unbounded. We assume thatAs onverges in the norm topology to invertible self-adjoint operators A� as26



s!�1. If the family fAsg is reasonable25, then one an make sense of thespetral ow SFfAsg 2Z;whih intuitively is the number of eigenvalues of As whih ross from negativeto positive as s goes from �1 to +1. If H is �nite dimensional then noadditional assumptions are needed for the family to be \reasonable" and thespetral ow is simply the dimension of the positive eigenspae of A+ minusthe dimension of the positive eigenspae of A�.We now onsider the operator26�s �As : L21(R;H )! L2(R;H ): (11)A preise statement and proof of the following priniple is given in [53℄.Priniple 5.6 If fAsg is a reasonable family of operators as above, then�s �As is Fredholm, andind(�s �As) = �SFfAsg:Example 5.7 Here is a sketh of some of the proof whenH is �nite dimen-sional.Let us �rst try to understand the kernel of �s � A. For eah h 2 H ,by the fundamental theorem of ODE's, there exists27 a unique di�erentiablefuntion fh : R!H solving the equation(�s �As)fh(s) = 0; fh(0) = h:Now this funtion may or may not be in L21. To analyze this, we de�nesubspaes H + := �h 2H j lims!+1 fh(s) = 0� ;H � := �h 2H j lims!�1 fh(s) = 0� :25One set of suÆient tehnial assumptions is given in [53℄.26Reall that if p � 1 and k is a nonnegative integer then the Sobolev spae Lpk is theompletion of the spae of smooth funtions f , suh that f and its �rst k derivatives arein Lp, with respet to the sum of the Lp norms of f and its �rst k derivatives.27Atually, sineH is not ompat, the basi existene theorem for ODE's only gives usa short-time solution de�ned for s 2 (�Æ; Æ) for some Æ > 0. But in the present situationthe short-time solution an be ontinued for all time beause we have a uniform upperbound on the eigenvalues of A so that the solution annot esape to in�nity in �nite time.27



Then there is an isomorphismH + \H � '�! Ker(�s �As);h 7�! fh:Namely, one an show that if h 2 H + \H �, then fh and hene its �rstderivative deay exponentially as s ! �1, so fh 2 L21. Conversely, iff 2 Ker(�s�As) then f = fh for some h, and we must have h 2H + \H �,or else one an show that f blows up exponentially as f approahes one endof R or the other so that f =2 L21.Furthermore, if E�(A+) denotes the negative eigenspae of A+, then (ittakes some thought to justify this) we have an isomorphismH + '�! E�(A+);h 7�! jhj lims!+1 fh(s)jfh(s)j : (12)Similarly,H � is isomorphi to E+(A�), the positive eigenspae of A�.It is shown in [53℄ that �s �As has losed range.If we believe this, then the okernel of �s � As is just the kernel of itsformal adjoint, i.e. the kernel of �s + A�s. More spei�ally, we laim thatthere is an isomorphismKer(�s +A�s) '�! (H +)? \ (H �)?;~f 7�! ~f (0): (13)To see that this map is well-de�ned, suppose ~f 2 Ker(�s + A�s) and leth 2H �. Then �sh ~f ; fhi = h�s ~f; fhi + h ~f ; �sfhi= h�A� ~f; fhi + h ~f;Afhi= 0:On the other hand sine lims!�1 ~f (s) = 0 we havelims!�1h ~f(s); fh(s)i = 0:Hene h ~f (s); hi = 0. Now the map (13) is injetive by the uniqueness of solu-tions to ODE's, and it is surjetive by an argument similar to the (omitted)proof of (12). 28



Thereforeind(�s �As) = dim(H + \H �)� dim((H +)? \ (H �)?)= dim(H + \H �) + dimspan(H +;H �)� dim(H )= dim(H +) + dim(H �)� dim(H )= dim(E�(A+)) + dim(E+(A�))� dim(H )= �dim(E+(A+)) + dim(E+(A�))= SFfAsg:5.4 Morse-Smale transversality for generi metrisProposition 5.8 Let X be a losed smooth manifold, let k be a positiveinteger, and let f : X ! R be a Ck+1 Morse funtion on X. Then for ageneri Ck metri on X, the pair (f; g) is Morse-Smale.Proof. We proeed in three steps.Step 1 (setup): Fix distint ritial points p; q of f . Let Y be the spaeof Ck metris on X; this is a C1 Banah manifold. Let Z be the spae ofloally L21 (in partiular ontinuous28) maps  : R! X suh that:� lims!�1 (s) = p, and for R << 0, so that (�1; R℄ is ontained in aoordinate hart entered at p, the restrition of  to (�1; R℄, viewedas a map to Rn via the oordinate hart, is L21.� lims!+1 (s) = q, and  is analogously L21 on [R;1) for R >> 0.Note that Z is a C1 Banah manifold29 with TZ = L21(�TX), where L21 isde�ned with respet to the metri on �TX obtained by pulling bak a �xedmetri on X. We de�ne a Banah spae bundle E ! Y � Z byE(g;) := L2(�TX):28The Sobolev embedding theorem asserts that for funtions de�ned on an n-dimensionalmanifold, there is an embedding Lpk ! Lp0k0 whenever k > k0 and k�n=p > k0�n=p0, whihmoreover is a ompat embedding when the domain is ompat. (The number k � n=p isthe \onformal weight" whih measures how the Lpk norm on Rn behaves under saling ofRn.) So on a 1-manifold, L21 � L10 = C0, beause 1� 1=2 > 0.29One an de�ne a oordinate hart for Z around eah smooth  using the exponentialmap assoiated to some �xed smooth metri on X.29



We de�ne a setion  of E by (g; )(s) := 0(s)� V ((s))where V denotes the negative gradient of f with respet to g as usual30.Thus  (g; ) = 0 if and only if  is a Ck+1 negative gradient ow line of ffrom p to q with respet to g.Step 2 (applying Theorem 5.4): We laim now that the hypotheses ofTheorem 5.4 are satis�ed. If  (g; ) = 0 thenr ( _g; _) = r0 _ �r _V � _Vwhere on the right side, r is the Levi-Civita onnetion31 on TX ! Xassoiated to some �xed smooth metri on X, and _V denotes the derivativeof V with respet to _g.(a) We laim that r is surjetive. To see this suppose that w 2L2(�TX) is orthogonal to the image of r . Then for any _g we haveZ h _V ;wids = 0:Now at any given point in the image of , it is an exerise in linear algebrato hek that there exists _g suh that _V = W . Sine  is a ow line betweendistint ritial points,  is injetive, so if we hoose _g supported near thatpoint then we onlude that w is zero there. Hene w = 0.30Note that the seond term in  (g; ) is really in L2, beause for instane the restritionof  to (�1; R℄, viewed as a map to Rn where the ritial point p orresponds to zero, isL2, and near the ritial point we have an estimate jV (x)j � jxj.31To larify this alulation: we an extend  : R! X to a map ~ : R� [�1; 1℄ ! Xwith ~(s; 0) = (s) and �~(s; t)�t ��s=0 = _:Then r (0; _) = rt��~�s � V�= rs �~�t �rtVwhere in the seond line we have used the torsion-free ondition. (Of ourse r is in-dependent of the onnetion we hoose on X, but the torsion-free ondition allows us towrite it in this nie way.) 30



(b) We laim that the restrited di�erential_ 7�! r0 _ �r _V (14)is Fredholm. To see this, we an hoose a trivialization of �TX whih isparallel with respet to our hosen onnetion on TX. Then in this trivi-alization, the operator (14) has the form (11), where H = Rn and As isthe ovariant derivative rV ((s)) : T(s)X ! T(s)X in this trivialization32.Now we observe that lims!�1As = �H(f; p) and lims!+1 = �H(f; q).Sine these are self-adjoint and invertible, Priniple 5.6 applies to prove theFredholm property.In onlusion, Theorem 5.4 implies that for generi g, the operator (14)is surjetive for every ow line .Step 3 (reovering the Morse-Smale ondition): To omplete the proof, weneed to show that surjetivity of (14) implies the Morse-Smale transversalityondition. This basially follows from the disussion in Example 5.7. Weobserve that if  is a ow line from p to q, thenH + = T(0)D(p); H � = T(0)A (q):Sine the operator (11) is surjetive, its okernel (H +)? \ (H �)? is zero,so D(p) and A (q) interset transversely at (0). 2Note that Example 5.7 shows that the index of (11) here is ind(p)�ind(q),whih agrees with our earlier alulation that the moduli spae of ow lines(before modding out by the R-ation) has dimension dim(D(p) \ A (q)) =ind(p)� ind(q).Exerises for x5.1. Verify the isomorphism (9). (This really is tautologial if you work throughall the notation.)2. (a) Give a omplete proof of Priniple 5.6 when dim(H ) = 1.(b) Suppose dim(H ) = 1 and As = 0 for s > s0. Explain why the operator(11) fails to be Fredholm.32Note that the metri ompatibility of the onnetion insures that the metri on �TXindues a well de�ned metri on H so that the spaes L21 and L2 in (11) agree withL21(�TX) and L2(�TX). 31



3. Let V be a vetor �eld on an n-dimensional smooth manifold X . Let usde�ne a losed orbit of V to be an embedding33  : S1 ! X suh that0(s) = �V ((s)) for some onstant � > 0. Let us say that  is \nondegen-erate" if the linearized return map34 does not have 1 as an eigenvalue. Showthat if k is a positive integer, then for a generi Ck vetor �eld, all losedorbits are nondegenerate.4. It was asserted in x4 that if (f0; g0) and (f1; g1) are Morse-Smale, then ageneri homotopy � between them is admissible. Prove this.5. Prove some generiity statement whih you have always wanted to rigorouslyjustify.6 Morse-Bott theoryThe de�nition of Morse homology that we have given requires that the pair(f; g) be generi, so that the moduli spaes of gradient ow lines are utout transversely. However for purposes of omputation it is often easierto expliitly understand the gradient ow lines of a partiular example ina nongeneri ase, e.g. when there is symmetry. Morse-Bott theory is anextension of Morse theory to ertain ases where the ritial points of f arenot isolated35.6.1 Morse-Bott funtionsDe�nition 6.1 Let X be a losed smooth (�nite dimensional) manifold. Afuntion f : X ! R is Morse-Bott if:(a) The set Crit(f) of ritial points of f is a union of submanifolds of X.(b) If S is a ritial submanifold then for any p 2 S, the kernel of theHessian rdf(p) : TpX ! T �pX onsists only of TpS, so that for any33Warning: in the literature \losed orbits" are sometimes not required to be embedded.34Let p be a point in the image of  and let D � X be a small (n � 1)-dis transverseto . The return map � : D ! D takes a point in D and follows its trajetory underV until it hits D again. This is a well-de�ned di�eomorphism from a small neighborhoodof p in D to another small neighborhood of p in D. The eigenvalues of the linearizedreturn map d�p : TpD ! TpD do not depend on the hoie of p or D.35The previous hapter had way too many footnotes. So we won't have any footnotesin this hapter (exept of ourse for this one).32



metri on X, the Hessian restrits to an invertible self-adjoint map onthe normal bundle, H(f; p) : NpS ! NpS: (15)If S is a ritial submanifold, its index is most naturally regarded as an in-terval [i�(S); i+(S)℄, where i�(S) is the dimension of the negative eigenspaeof the restrited Hessian (15), and i+(S) = i�(S) + dim(S).A simple example of a Morse-Bott funtion is the height funtion on atorus lying on its side. There are two ritial submanifolds: a irle of minimaof index [0; 1℄, and a irle of maxima of index [1; 2℄.6.2 The hain omplex: �rst versionFix a Morse-Bott funtion f on X. Let g be a generi metri on X and letV be the negative gradient of f with respet to g. We now want to de�nea hain omplex ounting ow lines of the vetor �eld V . The treatmenthere is based on [21℄, whih explains more details, although we are treatingorientations and hains di�erently.6.2.1 Moduli spaes of ow linesIf S1; S2 are two ritial submanifolds, a ow line from S1 to S2 is a path  :R! X suh that 0(s) = V ((S)) and lims!�1 (s) 2 S1 and lims!+1 (s) 2S2. LetM (S1; S2) denote the moduli spae of ow lines from S1 to S2, mod-ulo the R-ation by reparametrization as usual. For a generi metri g, thedesending manifold of S1 and the asending manifold of S2 will intersettransversely so thatdimM (S1; S2) = i+(S1)� i�(S2)� 1: (16)(On the other hand, for generi pi 2 Si, the moduli spae of ow lines fromp1 to p2 has dimension i�(S1) � i+(S2) � 1.) There are natural endpointmaps e+ :M (S1; S2)! S1; e� :M (S1; S2)! S2sending a ow line  to lims!�1 (s) and lims!+1 (s) respetively.Before ontinuing, reall that if A;B;C are sets with given maps i : A!C and j : B ! C, then the �ber produt is de�ned byA�C B := f(a; b) j i(a) = j(b)g � A�B:33



If A;B;C are manifolds and the maps i and j are transverse to eah other,then A�C B is a manifold withdim(A�C B) = dim(A) + dim(B)� dim(C):For a generi metri, the moduli spaeM (S1; S2) has a ompati�ationto a manifold with orners M (S1; S2), whose boundary (odimension onestratum) is the �ber produt�M (S1; S2) =[S0 M (S1; S0)�S0 M (S0; S2):Here the union is over all ritial submanifolds S0 distint from S1 and S2.(The property of the metri required here is that e� : M (S1; S0) ! S0 istransverse to e+ : M (S0; S2) ! S0, together with an indutively de�nedgeneralization of this whih ensures that all iterated �ber produts of modulispaes of ow lines between ritial submanifolds are ut out transversely.This holds for a generi metri. Some papers make stronger assumptions,suh as that e� :M (S1; S2)! S1 is a submersion; while this holds for someimportant examples and makes ertain tehnialities nier, there are manyMorse-Bott funtions, even on surfaes, for whih no metri exists satisfyingthis assumption.)6.2.2 Slightly inorret de�nition of the hain omplexThe rough idea of the hain omplex is to de�ne the hain groupCk := MS Ck�i�(S)(S)and the di�erentialD� := �� + XS0 6=S e� h� �SM (S; S0)i ;where � is the ordinary di�erential on singular hains. However this isn'tquite right; in order to get the signs to work out one has to modify this alittle. We will now be a little more areful and give a orret de�nition.34



6.2.3 OrientationsThe signs in Morse-Bott theory are a bit subtle, beause the moduli spaeM (S1; S2) might not be orientable, even when S1, S2, and X are all ori-entable. (It is not hard to ook up an example where S1 and S2 are irlesandM (S1; S2) is a Klein bottle.) However we an still orient it loally givensome hoies. More generally, let � be a generi simplex in S1 and de�neM (�; S2) := � �S1 M (S1; S2): (17)On the open stratum, if  2 M (�; S2) represents a ow line from p1 top2, then we have a natural isomorphism (up to automorphisms of positivedeterminant)Tp1� � Tp1D(p1) ' TM (�; S2)� T � Tp2D(p2): (18)Hene orientations of �, D(p1), and D(p2) determine a loal orientation ofM (�; S2).It is then natural to introdue hains on the ritial submanifolds withtwisted oeÆients, so that they have loal orientations of the desendingmanifolds built into them. Namely, there is a loally onstant sheaf O onS, whose stalk at a point p 2 S is isomorphi to Z, where an orientation ofD(p) determines suh an isomorphism with Z, and the opposite orientationdetermines the opposite isomorphism. If i�(S) > 1, then one an equivalentlydesribe the stalk at p asOp = Hi�(S)�1(D(p) n p) 'Z:We let Csing� (S;O) denote the spae of singular hains with oeÆients in O.More onretely, Csing� (S;O) is theZ-module generated by pairs (�; o), where� is a simplex in S and o is a ontinuously varying orientation of TD(p) foreah p in the image of �, modulo the relation(�;�o) = �(�; o): (19)For tehnial reasons as in x3, we atually want to onsider only a sub-spae of urrents (with oeÆients in O) spanned by pairs (�; o) where � issuitably generi. We let C�(S;O) denote the resulting hain omplex. (Asimplex � is suitably generi if it is smooth and if eah fae of � is transverseto e+ of all moduli spaes of ow lines between ritial submanifolds and alliterated �ber produts thereof.) 35



6.2.4 The hain omplexWe now de�ne a hain omplex as follows. The kth hain group isCBottk := MS Ck�i�(S)(S;O):We de�ne D : CBottk ! CBottk�1 as follows. If � 2 C�(S;O) is a generi simplexwith loally oriented desending manifolds, and if S0 6= S, then we have awell-de�ned urrent e� hM (�; S0)i 2 C�(S0;O):Thanks to (18) and (19), we have just enough orientation data for this to bewell-de�ned. Furthermore if dim(�) = k � i�(S) thendim(M (�; S0)) = (k � i�(S)) + (i+(S)� i�(S0)� 1)� dim(S)= k � 1 � i�(S0):So it makes sense to de�neD� := �� + XS0 6=S e� hM (�; S0)i :Lemma 6.2 D2 = 0.Proof. We omit the signs. For the proof we use the �ber produt interpreta-tion (17). We note that� �� �SM (S; S0)� = �� �SM (S; S0)[ � �S �M (S; S0):We then haveD2� = �2� + �XS0 6=S e� h� �SM (S; S0)i+ XS0 6=S e� h�� �S M (S; S0)i+ XS00 6=S0 6=S e� h�� �S M (S; S0)��S0 M (S0; S00)i :The �rst term is zero, the sum of the seond and third terms isXS0 6=S e� h� �S �M (S; S0)i(up to sign), and this equals the fourth term. 2We de�ne the Morse-Bott homology HBott� (f; g) to be the homologyof the hain omplex (CBott� ;D). 36



Example 6.3 Consider again our example of a Morse-Bott funtion on thetorus with two ritial submanifolds, one a irle S0 of minima and the othera irle S1 of maxima. ThenCBott� = C�(S0;O)�C�(S1;O)[1℄:Here the notation [1℄ indiates that the grading is shifted upward by 1. Inthis example all simplies in the ritial submanifolds are generi.(a) If we hoose a symmetri metri, then for eah point in S1 there are twoow lines to the same point in S0. Then the di�erential is given simplyby D((�0; o); (�1; o)) = ((��0; o); (��1; o)):Note that D(0; (�1; o)) has no omponent in C�(S0), beauseM (�1; S0)onsists of two opies of �1 whih ontribute with opposite signs. HeneHBott� = H�(S0;O)�H�(S1;O)[1℄: (20)Sine the orientation sheaf O is trivial here, H�(Si;O) ' H�(S1).(b) If the metri on the torus is not symmetri then the two ow lines froma given point in S1 may have di�erent lower endpoints in S0. But witha bit more work one an see that (20) still holds.Example 6.4 Starting with the previous example, do surgery on a horizon-tal irle of the torus to obtain a Morse-Bott funtion on S2 with a irle S0of minima, a irle S1 of maxima, an isolated minimum m0, and an isolatedmaximum m2. In this example again, all simplies in the ritial submani-folds are generi, and all orientation sheaves are trivial. Up to orientations,if p is any point in S1 then we haveDp = �m0 � �(p)where � : S1 ! S0 is a di�eomorphism. We also haveDm1 = �[S0℄:These are the only omponents of D that relate di�erent ritial submani-folds. It follows fairly readily thatHBott� ' H0(S0;O)�H1(S1;O)[1℄:37



6.2.5 The homologyTheorem 6.5 If f0 and f1 are two Morse-Bott funtions with generi met-ris g0 and g1, then there is a anonial isomorphismHBott� (f0; g0)) ' HBott� (f1; g1):Proof. This is an extension of the arguments in x4, de�ning Morse-Bottversions of the ontinuation maps and hain homotopies by analogy with thede�nition of the Morse-Bott di�erential. 2Corollary 6.6 For any Morse-Bott funtion f0 and generi metri g0, thereis a anonial isomorphismHBott� (f0; g0) ' H�(X):Proof. Let f1 = 0 and let g1 be any metri. Then by de�nition,HBott� (f1; g1) =H�(X). 2Remark 6.7 In partiular any Morse funtion is Morse-Bott, and the Morse-Bott omplex then agrees with the Morse omplex, so this gives another proofof Theorem 3.1. This may make x3 appear retrospetively superuous, butin fat the work needed to esh out the details of the proof of Theorem 6.5 issimilar to the work done in x3; and for natural hoies of homotopies one ansee that the two proofs of Theorem 3.1 have essentially the same ontent.6.3 An example from sympleti geometryWe now present, following [6℄, a quik appliation of Corollary 6.6. Thisexample requires some basi sympleti geometry as in [45℄.Let (M;!) be a losed sympleti manifold, and suppose there is Hamil-tonian S1 ation on M with moment map f : M ! R. Then the ritialpoints of f are the �xed points of the ation. It is known from sympleti ge-ometry that f is a Morse-Bott funtion; the S1 representation on the normalbundle to a ritial submanifold has no trivial omponents and thus splitsas a sum of 2-dimensional omponents. In partiular, a ritial submanifoldis even dimensional, and its index is also even, namely twie the number ofomponents on whih the S1 ation has positive weights. The orientationsheaf O over a ritial submanifold is naturally trivialized by the sympletiform. 38



We laim now that f is a perfet Morse-Bott funtion, i.e.H�(M) =MS H�(S;O)[i�(S)℄'MS H�(S)[i�(S)℄:Equivalently D = �, i.e. the Morse-Bott di�erential D sends a urrent in aritial submanifold to another urrent in the same ritial submanifold.The idea of the proof is simple. We need to hoose a generi metri gwhih is also S1-invariant, and this an be done (I think). Then if S1; S2 aretwo distint ritial submanifolds, S1 ats nontrivially on M (S1; S2), while�xing S1 and S2. This means that the endpoint mape+ � e� :M (S1; S2)! S1 � S2fators throughM (S1; S2)=S1, and so its image has dimension one less thanexpeted. Hene if � 2 Ck�i�(S1)(S1) is a generi simplex, then e�(� �S1M (S1; S2)) is supported in a urrent of dimension k� i�(S2)� 2, and heneis zero when regarded as a urrent of dimension k � i�(S2)� 1.In fat, general results of [4, 39℄ imply that f is equivariantly perfet, i.e.the S1-equivariant ohomology of M is the sum of the equivariant ohomolo-gies of the �xed point sets. For a treatment of equivariant ohomology viaMorse-Bott theory, see [6℄.6.4 The Morse-Bott spetral sequene(s)We laimed that Morse-Bott theory would simplify omputations, but it mayappear that we have taken a step bakward by replaing the �nite dimen-sional Morse omplex with the the in�nite dimensional Morse-Bott omplex.However it is possible to ompute the homology of the Morse-Bott omplexby �rst passing to the homology of the ritial submanifolds, and then de�n-ing di�erentials on the homology of the ritial submanifolds. To do this weneed to use the spetral sequene assoiated to a �ltered omplex, see e.g.[10, 27℄.6.4.1 The weakly self-indexing aseLet f be a Morse-Bott funtion and let g be a generi metri. The pair (f; g)is weakly self-indexing if M (S; S0) = ; whenever i�(S) < i�(S0). In this39



ase i� de�nes a �ltration on the omplex (CBott� ;D), namelyFiCBott� = Mi�(S)�iC�(S;O)[i�(S)℄:We then obtain a spetral sequene whih onverges to the Morse-Bott ho-mology, with E1p;q = Mi�(S)=pHq(S;O):The �rst di�erential �1 : E1p;q ! E1p�1;qis de�ned as follows. Given � 2 Hq(S;O), we hoose a yleC representing it.For eah S0 with i�(S0) = p� 1, the weakly self-indexing assumption impliesthat M (S; S0) is a ompat manifold with no boundary. Thus e�1+ (C) =C �S M (S; S0) is a yle in M (S; S0), and its pushforward by e� is a ylein S0. Then up to orientations,�1(�) = Xi�(S0)=p�1� [e�(C �SM (S; S0))℄ :The higher di�erentials in the spetral sequene are more subtle. Howeverthey are given by a formula similar to the formula for �1 in the simple asewhen there are no broken ow lines involved. If we are luky the otherdi�erentials will vanish due to the bigrading on the spetral sequene so thatwe an ompute the Morse-Bott homology by omputing the homology of �1.6.4.2 The general aseAlthough the weakly self-indexing ase is nie, there is always (at least whenf is real-valued!) an obvious �ltration given by f itself. Namely one anorder the ritial submanifolds as S1; S2; � � � with f(Si) � f(Sj) for i < j.Then we have the �ltrationFiCBott� =Mj�i C�(Sj ;O)[i�(j)℄with an assoiated spetral sequene, whose E1 term is the sum of the(twisted, grading-shifted) homologies of the ritial submanifolds. For an40



appliation of this spetral sequene where the weakly self-indexing ondi-tion does not hold, see [66℄.This spetral sequene is essentially what we used (without expliitlysaying so) to work out Examples 6.3 and 6.4, whih might now be worthrevisiting.6.5 Another Morse-Bott omplexWe now sketh another approah to Morse-Bott theory whih we learnedabout from [11℄. The idea is as follows.First, we an always perturb a Morse-Bott funtion f to obtain a Morsefuntion. Expliitly, for eah ritial submanifold Si, hoose a Morse funtionfi : Si ! R. We extend this to some smooth funtion efi : X ! R. For � 2 R,de�ne f� := f + �Xi efi : X ! R:If � > 0 is small, then f� is a Morse funtion and we have a one-to-oneorrespondene Crit(f�) =[i Crit(fi):Moreover, if p 2 Crit(fi), then the index of the orresponding ritial pointof f� is ind(p) + i�(Si). In partiular, the indies of the ritial points of f�on Si lie in the interval [i�(Si); i+(Si)℄.If g is a generi metri on X, then (f�; g) will be Morse-Smale. Now thekey point is that we an read o� the Morse di�erential �Morse� for (f�; g) fromthe Morse-Bott setup (f; g), without atually arrying out the perturbation.In this way we obtain a �nite-dimensional omplex from the Morse-Bott data.Here is how it works. If p; q are ritial points of fi on the same Si, thenh�Morse� p; qi is determined by our hoie of fi in a way whih we already inpriniple understand. And more interestingly, if p 2 Crit(fi) and q 2 Crit(fj)with i 6= j, then for � suÆiently small, up to sign we have
�Morse� p; q� = #M (D(p);A (q)): (21)Here D(p) is the desending manifold of fi in Si, A (q) is the asendingmanifold of fj in Sj, and M (D(p);A (q)) is the set of ow lines  for (f; g)with lims!�1 (s) 2 D(p) and lims!+1 (s) 2 A (q).We leave it to the reader to ponder why (21) might be true.41



Exerises for x6.1. Justify equation (16).2. Justify equation (18).3. Work out Example 6.3 expliitly (without using a spetral sequene).4. Find an example of a Morse-Bott funtion suh that for at least one of theritial submanifolds, the orientation sheaf O is nontrivial. Compute theMorse-Bott homology for your example.5. Let � : Z ! B be a �ber bundle of losed smooth manifolds. Let f : B ! Rbe a Morse funtion.(a) Show that ��f : Z ! R is a Morse-Bott funtion. Show that for eahritial submanifold the orientation sheaf O is trivial. Show that forany generi metri on Z, the pair (f; g) is weakly self-indexing.(b) Now that you are warmed up, see if you an show that the Morse-Bottspetral sequene for ��f using the i� �ltration agrees, from the E2term on, with the Leray-Serre spetral sequene for the �ber bundleZ ! B. (I have seen this last point asserted many times, but I havenever seen the proof.)6. If you haven't seen spetral sequenes before, do some examples until youget the hang of it.7 Morse theory for irle-valued funtions andlosed 1-formsMany funtionals that arise in Floer theory are not R-valued but rather R=Z-valued. Thus it is important to understand Morse theory for suh funtions.In fat, if f is a real-valued or irle-valued funtion on X, then after a metriis hosen, the gradient ow depends only on the losed 1-form df . Whenf is a real-valued or irle-valued funtion, the ohomology lass of df inH1(X;R) is zero or the image of an integral ohomology lass, respetively36;36Reall that there is a natural bijetion [X;S1℄ = H1(X;Z), whih sends a homotopylass of map f : X ! S1 to the pullbak by f of the fundamental lass in H1(S1;Z). Iff is smooth then the ohomology lass [df ℄ 2 H1(X;R) is the image of the orrespondingelement of H1(X;Z) under the map H1(X;Z)! H1(X;R).42



but in fat one an set up Morse theory for an arbitrary losed one-form andthis is important as well. Morse theory for irle-valued funtions and moregenerally for losed 1-forms was �rst onsidered by Novikov [48℄, and therehave been many subsequent papers on the subjet. The style of this hapteris losest to [31℄.7.1 CompatnessIn some respets, the Morse theory of losed 1-forms is not muh di�erentfrom the Morse theory of real-valued funtions. Let X be a losed smoothmanifold and let � be a losed 1-form on X. Loally any losed 1-formis d of a real-valued funtion so it makes sense to de�ne \Morse losed 1-forms". Namely, a \ritial point" of � is a zero of �; the ritial point pis \nondegenerate" if r� : TpX ! T �pX is invertible; and � is \Morse" ifall ritial points are nondegenerate. The index of a ritial point is de�nedas before. We hoose a metri g on X and let V denote the vetor �elddual to �� via g. It then makes sense to speak of ow lines of V betweenritial points. We say the pair (�; g) is \Morse-Smale" if the asendingand desending manifolds of all ritial points interset transversely; if � isMorse, then this ondition holds for a generi metri. We letM (p; q) denotethe moduli spae of ow lines from p to q as before.We want to de�ne a hain omplex ounting gradient ow lines betweenritial points of index di�erene one. An important di�erene with thereal-valued ase is that ompatness does not always hold as before. Whenind(p) � ind(q) = 1 and (�; g) is Morse-Smale, the moduli spae M (p; q),although zero-dimensional, might not be �nite. The idea is that there anbe a sequene of ow lines whih wrap around the manifold more and moretimes, so that the sequene has no onvergent subsequene.Fortunately, we an still get ompatness and �nite ounts if we lassifyow lines aording to their some information about their (relative) homologylasses. To prepare for this and to larify the issues with ompatness, we willnow prove a ompatness result. The argument here is pretty standard, f.[52℄, and is written in suh a way that it generalizes to in�nite dimensionalsettings (although a number of additional issues have to be dealt with toprove ompatness in Floer theory).In the following we regard a ow line as a map  : R ! X; we do notmod out by the R ation. Let p and q be ritial points of �43



De�nition 7.1 A (k-times) broken ow line from p to q is a set of owlines b = (b0; : : : ;bk) where k is a nonnegative integer and there exist ritialpoints r0; : : : ; rk+1 with r0 = p and rk+1 = q suh that bi is a ow line fromri to ri+1.De�nition 7.2 A sequene of ow lines n : R! X from p to q onvergesto a broken ow line b = (b0; : : : ;bk) from p to q if:� There exist real numberssn;0 < sn;1 < � � � < sn;ksuh that n(sn;i + �) �! biin C1 on ompat sets.� For n suÆiently large, n �Pki=0 bi is homologous to zero37.De�nition 7.3 If  : R ! X is a map with 0(s) = V ((s)), de�ne theenergy E() := Z 1s=�1 jV ((s))j2ds = Z(��) 2 [0;1℄: (22)Lemma 7.4 (a) E() � 0, with equality if and only if  is a onstant mapto a ritial point.(b) If E() <1 then  is a ow line between two ritial points.() There exists Æ > 0 suh that any nononstant ow line  between tworitial points satis�es E() > Æ.(Parts (b) and () require our assumption that X is ompat and � is Morse.)Proof. (a) is obvious, as the loal ontribution to the integral (22) is non-negative, and zero only at ritial points.(b) We need to show that (s) onverges to a ritial point as s! +1.We an �nd � > 0 suh that the �-balls around the ritial points are disjoint.37This already follows from the �rst ondition if the Morse-Smale ondition holds. With-out the Morse-Smale ondition, or in ertain in�nite dimensional settings, the limitingbroken ow line ould inlude a ow line from a ritial point to itself, and we want tokeep trak of this. 44



It is then enough to show that there exists s0 suh that dist((s);Crit(�)) < �for all s > s0. If no suh s0 exists, then we an �nd a sequene sn !1 withdist((sn);Crit(�)) � � (23)for all n. We an pass to a subsequene so that the points (sn) onverge inX. Then, beause the solution to an ODE depends smoothly on the initialondition, the reparametrized maps (sn+�) onverge in C1 on ompat setsto a map e : X ! R with e0(s) = V (e(s)). Sine sn ! 1 and E() < 1,it follows that E(e) = 0, so e is a onstant map to a ritial point, but thisontradits (23) sine e(0) = limn!1 (sn). Likewise, (s) also onverges toa ritial point as s! �1.() If not, then we an �nd a sequene n of nononstant ow lines betweentwo �xed ritial points with E(n) ! 0. For eah n there exists a realnumber sn satisfying (23) (or else n would be supported in a neighborhood ofa ritial point, in whih ase for homologial reasons E(n) = 0 so n wouldbe onstant). We an pass to a subsequene so that n(sn + �) onverges, inC1 on ompat sets, to a ow line , whih must have energy zero and thusmust be a onstant map to a ritial point; but (23) implies that (0) hasdistane at least � from all ritial points, a ontradition. 2Proposition 7.5 Let � be a Morse losed 1-form and g a metri on a losedsmooth manifold X. Let p and q be ritial points of �, and let n : R! Xbe a sequene of ow lines from p to q. Assume (this is ruial) that� There exists a onstant C suh that E(n) < C for all n.Then after passing to a subsequene, n onverges to a broken ow line b.Proof. Before starting, we pass to a subsequene so that E(n) ! C0. Asbefore there exists � > 0 suh that the �-balls around the ritial points aredisjoint.We an assume that the ow lines n are nononstant for suÆiently largen, as otherwise the proposition is trivially true. It then makes sense to de�nesn;0 := inffs 2 R j dist(n(s); p) � �g:We an pass to a subsequene so that n(sn;0+�) onverges in C1 on ompatsets to a map b0 with b00(s) = V (b0(s)). By the C1 onvergene on ompatsets, E(b0) � 0, and in partiular b0 is a ow line from p to some ritialpoint r1 by Lemma 7.4. 45



If E(b0) = C0, then n ! b = (b0) and we are done.Suppose E(b0) < C0. Sine lims!1 b0(s) = r1, there exists  0 2 R suhthat dist(b0(s); r1) < �=2 whenever s >  0. For large n, the ow line nannot be in the same relative homology lass as b0, so n((sn;0 +  0;1)) 6�B(r1; �). We then de�nesn;1 := inffs > sn;0 +  0 j dist(n(s); r1) � �g:We an pass to a subsequene so that n(sn;1+�) onverges in C1 on ompatsets to a ow line b1, from r1 to some ritial point r2, with E(b0)+E(b1) �C0.If E(b0) + E(b1) = C0, then n ! b = (b0;b1) and we are done. If not,we ontinue this proess, indutively de�ningsn;j := inffs > sn;j�1 +  j�1 j dist(n(s); rj) � �g:By Lemma 7.4, this proess must terminate in at most bC0=Æ steps. 27.2 Novikov ringsWe now need to introdue the Novikov ring, f. [30℄, whih is basially analgebrai bookkeeping devie. It is a simple generalization of the group ringof a group and the ring of Laurent series.De�nition 7.6 Let G be an abelian group and let N : G ! R be a homo-morphism. De�ne the Novikov ring Nov(G;N) as follows. An element ofNov(G;N) is a formal (possibly in�nite) linear ombination38.a =Xg2G aggwhere the ag's are integers, suh that38More preisely, a Novikov ring element is a funtion a : G!Zsatisfying the �nitenessondition (*). Writing these as formal linear ombinations an be onfusing beause theexpression g1+ g2 has two possible meanings: it ould be the funtion sending g1; g2 7! 1,whih is ususally what we mean, or the funtion sending g1+g2 7! 1 (and all other elementsto zero in both ases). To avoid this ambiguity, some people write elements of the Novikovring as Pg2G ageg, with eg regarded as a formal symbol. Then also the multipliationrule has the nie form egeg0 = eg+g0 . 46



(*) For all R 2 R, there are only �nitely many g 2 G with ag 6= 0 andN(g) < R.If b =Pg2G bgg we de�ne a+ b := Pg2G(ag + bg)g andab := Xg2G Xg02G ag0bg�g0! g:It is an exerise in logi to hek that the �niteness ondition (*) impliesthat the oeÆient of g in ab is a sum of only �nitely many nonzero terms,and that ab again satis�es the �niteness ondition (*).Note that there is an inlusion of the group ring into the Novikov ring,Z[G℄! Nov(G;N), whih is an isomorphism if and only if N � 0.Example 7.7 The simplest example is when G = Z and N : Z! R isthe inlusion. Then we an identify Nov(G;N) with the ringZ((t)) of formalinteger Laurent seriesP1m=m0 amtm wherem0 and the am's are integers. (Theidenti�ation sends an integer m 2Zto the symbol t�m.)7.3 The Novikov omplexNow let � be a Morse losed 1-form on a losed onneted smooth manifoldX and let g be a metri suh that the pair (�; g) is Morse-Smale.Choose a onneted abelian overing � : ~X ! X suh that ��� is exat.We an always do this; for example, we an take ~X to be the universalabelian overing of X, whih has H1( ~X) = 0. For a general abelian overing,the group H of overing transformations is the quotient of H1(X) by thesubgroup onsisting of homology lasses of loops that lift to ~X. That is, wehave a short exat sequene0 �! H1( ~X) �! H1(X) �! H �! 0:Sine ��� is assumed exat, the pairing with [�℄ from H1(X)! R desendsto a map H ! R.We now de�ne the Novikov omplex (CNov� ; �Nov) as follows. (Thisdepends on �, g, and the hoie of overing �.) Choose ~f : X ! R withd ~f = ���:47



Let CNovi be the set of formal linear ombinationsX~p2Criti( ~f) a~p~pwhere the a~p's are integers, suh that(**) for all R 2 R, there are only �nitely many ~p with ~f(~p) > R and a~p 6= 0.It is another exerise in logi to hek that CNovi is a module over theNovikov ring � := Nov(H; [��℄);where the module struture is indued by the ation of H on ~X by overingtransformations. Moreover, this module is free: one an obtain a basis byhoosing a lift of eah index i ritial point in X to ~X.We now de�ne the di�erential �Nov : CNovi ! CNovi�1 by ounting ow linesas usual: if ~p 2 Criti( ~f ) then�~p := X~q2Criti�1( ~f)#M (~p; ~q) � ~q:Here M denotes the moduli spae of ow lines of ~f with respet to thepullbak to ~X of our hosen metri g on X. The signs are determined as inthe Morse omplex; one hooses orientations of the desending manifolds ofthe ritial points in X, and pulls these bak to orientations of the desendingmanifolds in ~X. It is a third exerise in logi to hek that the �nitenessondition (**) and the ompatness proposition 7.5 imply that � is wellde�ned.Note that if p and q are ritial points in X and ~p and ~q are lifts to ~Xthen a ow line from ~p to ~q projets to a ow line from p to q, although aow line from p to q might not lift to a ow line from ~p to ~q; the obstrutionto �nding suh a lift is an element of H. Although there may be in�nitelymany ow lines from p to q, the point is that by working in a overing suhthat ��� is exat, we lassify ow lines by enough homotopy information toensure that the oeÆients in the di�erential are �nite.The usual argument shows that (�Nov)2 = 0. We denote the homology ofthe omplex (CNov� ; �Nov) by HNov� . 48



7.4 The Novikov homologyLemma 7.8 The Novikov homology HNov� depends only on the ohomologylass [�℄ 2 H1(X;R) and the hoie of onneted abelian over � : ~X ! X.The proof of this lemma follows the usual ontinuation argument. Theonly subtlety is that one has to restrit to families f(�t; gt)g in whih allof the forms �t are in the same ohomology lass (or at least in the sameray emanating from the origin in H1(X;R)). This is neessary so that onean apply a version of the ompatness proposition 7.5 to insure that theontinuation maps involve �nite ounting and so are well-de�ned.Note that if [�0℄ and [�1℄ are in di�erent rays inH1(X;R), then in generalit is diÆult to ompare the Novikov homologies for �0 and �1, sine theyare modules over di�erent Novikov rings. (We will see one situation wherethis an be done in the proof of Theorem 7.11 below.)Remark 7.9 One might guess that HNov� ' H�(X) 
 �. But in fat thatis hardly ever true exept in some trivial ases. For example, if [�℄ 6= 0 anddim(X) = n, then HNovn always vanishes, see eg. example 7.10(b) below.Example 7.10 We now onsider three examples with X = S1.(a) Let � = df where f : S1 ! S1 is the identity. We use the overing� : R! S1 with overing group Zso that � ' Z((t)). Sine f has noritial points the Novikov homology is trivial.(b) Now perturb f above so that it has a loal maximum p and a loalminimum q. By the above lemma, the Novikov homology is still trivial;let us try to understand this expliitly. There are two ow lines fromp to q but they are not in the same relative homology lass. We anhoose lifts ~p and ~q of p and q suh that�Nov~p = �(1 � t)~q: (24)Now (1� t) is invertible in Z((t)):(1� t)�1 = 1 + t+ t2 + � � � :Hene HNov0 = 0 beause~q = ��Nov(1� t)�1~p:49



Also, HNov1 = 0 beause there are no yles sine �~p 6= 0. (The ringZ((t)) has no zero divisors, although Novikov rings of abelian groupswith torsion do.) It is tempting to try to de�ne a 1-yle as Pn2Ztn~p,but this expression is not in CNov1 beause it does not satisfy the �nite-ness ondition (**).() Let � = df where f : S1 ! R is a real-valued funtion with two ritialpoints. We ould hoose the overing ~X = X, but that would be boringbeause then the Novikov ring � =Zand we would be redued to theusual Morse omplex. So let us hoose the overing ~X = R so that theNovikov ring is the group ring� =Z[H1(X)℄ 'Z[t; t�1℄:Then (24) still holds so that HNov1 = 0 as before, but now HNov0 6= 0beause (1 � t) is not invertible in the group ring. All we an say isthat HNov0 is a Z[t; t�1℄ module with one generator whih is annihilatedby 1� t.The Novikov omplex does have a topologial ounterpart. Choose a elldeomposition of X. We an lift the ells to obtain a ell deomposition of~X. The ell-hain omplex Cell� ( ~X) is then a module over Z[H℄, where Hats by overing transformations. We then haveTheorem 7.11 We have an isomorphismHNov� ' H� �Cell� ( ~X)
Z[H℄�� :By standard arguments, the homology of the omplex on the right handside is isomorphi to the homology of the omplex of \half-in�nite singularhains", namely loally �nite singular hains in ~X suh that for eah realnumber R, only �nitely many simplies hit ~f�1((R;1)). Example 7.10(b)now makes sense: HNov0 = 0 beause a point is the boundary of half the line,and HNov1 = 0 beause there are no 1-yles beause a 1-hain an only bein�nite in the downward diretion.One an prove Theorem 7.11 along the lines of the proof of Theorem 3.1,and in fat suh a proof shows that the isomorphism is anonial. Theisomorphism sends a ritial point in ~X to its desending manifold in ~X,viewed as a half-in�nite hain. However, in order to introdue some usefulideas in �nite-dimensional Morse theory, we will give a di�erent proof here.50



Proof of Theorem 7.11. We onsider two ases.Case A: suppose [�℄ = 0 so that � = df where f : X ! R. Then� =Z[H℄, and we need to show thatHNov� ' H�( ~X)as Z[H℄-modules. This an be proved almost the same way as Theorem 3.1,where one just does everything in ~X. Sine ~f is the pullbak of a real-valuedfuntion on X, there are no ompatness diÆulties, even though ~X neednot be ompat.Just for fun, here is a sketh of another proof of Case A. By Lemma 7.8 itis suÆient to prove the theorem for a single Morse-Smale pair (f; g) of ourhoie. Choose a smooth triangulation of X. One an apparently39 �nd aMorse-Smale pair (f; g) suh that f has a ritial point of index i at the enterof eah i-simplex and one gradient ow line from the enter of a simplex tothe enter of eah fae, so that there is an isomorphism of hain omplexes(and di�erentials omitted from the notation) over Z[H℄,CNov� = Cell� ( ~X):Case B: Now suppose � is an arbitrary Morse losed 1-form. We use aneat trik due by Latour and Sikorav to approximate � by an exat 1-form(!) and redue to ase A. We an �nd a Morse funtion f : X ! R suh thatthe pair (f; g) is Morse-Smale for our given metri g. Now let � > 0 be smalland onsider the losed 1-form� := � + ��1df:Sine � is ohomologous to �, Lemma 7.8 givesHNov� (�) ' HNov� (�):(Here we are �xing the overing ~X ! X throughout the disussion.) Nowsaling a 1-form does not hange the Novikov omplex sine the ow lines arethe same up to reparametrization. Thus we have an isomorphism of hainomplexes induing an isomorphism on homologyHNov� (�) = HNov� (df + ��):39I don't know if there is a rigorous proof of this in the literature, but it is widely aeptedfolklore and I think it is doable. One would like the gradient in an i-simplex to be tangentto the i-simplex, but to do this one will generally have to modify the triangulation a bit�rst due to smoothness issues. 51



If � is suÆiently small, then the ow lines for df + �� are just perturbationsof the ow lines for df (exerise), so that we have an isomorphism of hainomplexes CNov� (df + ��) = CNov� (df)
Z[H℄�: (25)By homologial algebra, tensoring a hain omplex by a ring hanges thehomology in a manner whih depends only on the homology of the originalhain omplex. So Case A and the above equation imply thatHNov� (df + ��) ' H� �Cell� ( ~X)
Z[H℄�� :Applying the previous two isomorphisms on homology ompletes the proof.27.5 Reidemeister torsionWhen �(X) = 0, the Novikov homology often vanishes, at least after tensor-ing with a �eld. This is true, for example, if X is a 3-manifold obtained byzero-surgery on a knot in S3, and � = df where f : X ! S1 is in a nontrivialhomotopy lass. In this ase we an still extrat some interesting topologialinformation out of the Morse theoreti data, suh as the Alexander polyno-mial of the knot K in the above example.We begin with an algebrai digression on how to de�ne the \determinantof a hain omplex", otherwise known as \Reidemeister torsion". (A goodreferene on this topi is [68℄.) Let (C�; �) be a bounded40 omplex over a�eld F , and letH� denote its homology. Also let Z� and B� denote the spaesof yles and boundaries respetively. The short exat sequene0 �! Zi �! Ci �! Bi�1 �! 0indues an isomorphism on top exterior powers,det(Ci) '�! det(Zi)
 det(Bi�1):The short exat sequene0 �! Bi �! Zi �! Hi �! 040\Bounded" means that Pi dim(Ci) <1.52



indues an isomorphismdet(Zi) '�! det(Bi)
 det(Hi):Putting this isomorphism into the previous one and taking the alternatingprodut over i, we obtain an isomorphismOi det(Ci)(�1)i '�!Oi det(Hi)(�1)i: (26)Now suppose that (C�; �) is ayli, i.e. H� � 0, and suppose further thatwe have a hosen (unordered) basis for eah Ci. Then the right hand side of(26) is anonially isomorphi to F , and the hosen bases give an element ofthe left hand side of (26) up to sign, and hene an element of F=� 1. Thiselement is alled the Reidemeister torsionT (C�) 2 F=� 1:If C� is not ayli, we de�ne T (C�) := 0.For example, the torsion of a 2-term ayli omplex with hosen basesis given by T �0! Ci �! Ci�1 ! 0� = �det(�)(�1)i:In general the torsion is an alternating produt of determinants of squaresubmatries of �. Namely:Proposition 7.12 Let (C�; �) be a bounded ayli omplex over F withhosen bases bi of Ci. Then we an �nd a deomposition of the hains C� =D� � E� suh that:(a) Di and Ei are spanned by subbases of bi.(b) The map b�i := �Ei�1 Æ �jDi : Di ! Ei�1 is an isomorphism.For any suh deomposition we haveT (C�) = �Yi det�b�i�(�1)iwhere the determinants are omputed with respet to the subbases of b�.53



Now onsider a Morse losed 1-form � and a metri g suh that the pair(�; g) is Morse-Smale. For simpliity, let us assume that the automorphismgroup H of our overing ~X ! X has no torsion. Then the Novikov ring� has no zero divisors, so its quotient ring Q(�) is a �eld. We de�ne theMorse-theoreti torsionTMorse := T �CNov� 
� Q(�)� 2 Q(�)=�H:To explain this, the omplex CNov� has a preferred set of bases obtained bylifting eah ritial point in X to ~X. Choosing di�erent lifts will multiplythe torsion of the hain omplex by some element of H, whih is why TMorseis well-de�ned41 only in Q(�)=�H.The Morse-theoreti torsion has a topologial ounterpart whih we antry to ompare it to. Namely, let Cell� ( ~X) be the hain omplex over Z[H℄obtained by lifting the simplies of a triangulation of X. This has a preferredset of bases onsisting of a lift of eah simplex from X to ~X, and so we ande�ne the topologial Reidemeister torsionT top := T �Cell� ( ~X)
Z[H℄Q(Z[H℄)� 2 Q(Z[H℄)=�H:This is known to be a topologial invariant depending only on X and thehoie of overing. For example, if X = S1 and ~X = R then T top = (1� t)�1,as we an easily see by hoosing a triangulation of S1 with one 0-simplex andone 1-simplex. If X is the three-manifold obtained by zero-surgery on a knotK � S3, so that H1(X) ' Z, and if ~X is the in�nite yli over of X withH 'Z, then it is a result of Milnor thatT top = �K(t)(1 � t)2 ;where �K(t) 2Z[t℄ is the Alexander polynomial of K.The inlusion Z[H℄ ! � indues a map { : Q(Z[H℄) ! Q(�), and weould ask: is { �T top� = TMorse?The answer is no; TMorse is not even a topologial invariant, as we an see byX = S1 in Examples 7.10(a) and (b). In the �rst example, TMorse = 1 beausethere are no ritial points, and in the seond example TMorse = (1� t)�1.It is then natural to ask: what is the error TMorse=T top?41One an get a well-de�ned element of Q(�)=�1 by hoosing an \Euler struture" onX,and one an apparently remove the sign ambiguity by hoosing a \homology orientation"of X. 54



7.6 Periodi orbits and the zeta funtionIn the Morse theory of irle-valued funtions and losed 1-forms, there is anew dynamial feature whih does not exist in the real-valued ase. Namely,we an onsider periodi orbits of the ow V .A periodi orbit of V is a nononstant map  : S1 ! X suh that0(s) = �(V (s)) for some onstant � > 0. Here we are not requiring  to bean embedding. Any periodi orbit fators through an embedding via a p-foldovering map S1 ! S1; the positive integer p is alled the period of . Wedelare two periodi orbits to be equivalent if they di�er by reparametriza-tion.For ounting purposes, we attah a sign to a generi periodi orbit asfollows. For x 2 (S1), let U be a hypersurfae interseting  transverselyat x, and let � : U ! U be the return map (de�ned near x) whih followsthe ow p times around (S1). The linearized return map indues a mapd�x : TxX=Tx(S1) �! TxX=Tx(S1)whih does not depend on U , and whose eigenvalues do not depend on x. Wesay that  is nondegenerate if d�x does not have 1 as an eigenvalue, and ifso we de�ne the Lefshetz sign(�1)�() := sign det(1 � d�x) 2 f�1g:It is not hard to see that if a periodi orbit is nondegenerate then it is isolated.De�nition 7.13 The pair (�; g) is admissible if it is Morse-Smale and ifall periodi orbits are nondegenerate.One an show that for a �xed ohomology lass [�℄, a generi pair (�; g)is admissible. If (�; g) is admissible, we ount the periodi orbits using thezeta funtion42 � := expX2O (�1)�()p() [℄ 2 �:Here O denotes the set of periodi orbits modulo reparametrization, and if is a periodi orbit then [℄ denotes the image of its homology lass under theprojetion H1(X)! H. Also exp denotes the formal power series operationexp(t) := P1n=0 tn=n!.42As we are de�ning it, the zeta funtion is not a funtion, just an element of �. Whensay � 'Z((t)), if one is luky the power series might onverge when one substitutes someomplex numbers for t, thus giving an atual funtion.55



Lemma 7.14 � is a well-de�ned element of the Novikov ring �.Proof. We �rst show thatX2O (�1)�()p() [℄ 2 �
Q:It is enough to show that for any onstant C there are only �nitely manyperiodi orbits  with energy E() < C. If there are in�nitely many, then aompatness argument as in Proposition 7.5 shows that there is a subsequeneonverging to either (i) a non-isolated periodi orbit, or (ii) a ow line froma ritial point to itself. Both ases violate admissibility: in the former ase,the limiting periodi orbit is not isolated and hene degenerate, and in thelatter ase the broken ow line must inlude a ow line in a moduli spae ofnegative expeted dimension, violating the Morse-Smale ondition.It is easy to see that exp sends the Novikov ring to itself so we have� 2 �
Q.To see that � is atually in �, we note that there is a produt formula� =Y2E �1 � (�1)i�()[℄�(�1)�i0() : (27)Here E denotes the set of embedded periodi orbits; i�() is the number ofreal eigenvalues of the linearized return map in the interval (�1;�1), andi0() is the number of eigenvalues in (�1; 1). One an verify the produtformula (27) by taking the formal logarithm of both sides. Clearly the rightside of equation (27) has integer oeÆients. 2Example 7.15 Let X = S1. In Example 7.10(a),� = exp 1Xn=1 tnn = (1� t)�1:In Example 7.10(b), there are no periodi orbits so � = 1.Now de�ne I := TMorse � � 2 ��H :We then have: 56



Theorem 7.16 If (�; g) is admissible then:(a) I is a topologial invariant depending only on X, the ohomology lass[�℄, and the hoie of over.(b) Moreover I = {(T top):For a proof, see [31℄; for an earlier version and a onnetion with Seiberg-Witten invariants of 3-manifolds see [34℄; for more on the onnetion withSeiberg-Witten theory see [43℄. Of ourse part (a) implies part (b), but onean prove (a) �rst whih leads to an easy proof of (b) similar to our proof ofTheorem 7.11 above. There are many other papers on Reidemeister torsionin irle-valued Morse theory; for example, an algebrai re�nement of (b)above is given in [50℄. Part (a) an be generalized to de�ne a notion ofReidemeister torsion in Floer theory, see [42℄, where one does not neessarilyhave an interpretation of the invariant in terms of lassial topology.Exerises for x7.1. Do the three \exerises in logi" in x7.2 and x7.3.2. Verify equation (25).3. Prove Proposition 7.12.4. Fill in the details in the proof of Lemma 7.14.5. Let f : Xn ! S1 be a irle-valued funtion with no ritial points. Assumethat the �ber is a onneted manifold �. Choose a generi metri on X andlet � : � ! � be the di�eomorphism de�ned by following the ow V from� bak to itself. There is a natural overing ~X ' R� � with H ' Zand� 'Z((t)). Formally, ~X is the �ber produt of X and R over S1.(a) Chek that � = exp 1Xk=1#Fix(�k) tkk :(This is analogous to the zeta funtion introdued in number theoryby Weil [69℄, whih is an anestor of dynamial zeta funtions suh asthe one onsidered here.)(b) Use the Lefshetz �xed point theorem to dedue that� = n�1Yi=0 det(1� tHi(�))(�1)i+1 :57



8 What we did in the rest of the ourse, withreferenes8.1 Pseudoholomorphi urves in sympleti manifolds(A referene for muh of the following is Gromov's seminal paper [28℄, to-gether with the expository artiles in [5℄ and the seond edition of the essen-tial text [44℄.)!-tame and !-ompatible almost omplex strutures, and ontratibilityof the spae of these. Pseudoholomorphi urves.Energy and sympleti area; alibration argument for !-ompatible al-most omplex strutures.Trivial examples of pseudoholomorphi urves: nullhomologous urvesand urves in produts.Transversality of somewhere injetive urves for a generi almost omplexstruture. Speial ases where transversality is automati. Dimension of themoduli spae.Introdution to Gromov ompatness.Gromov's nonsqueezing theorem; Gromov-Witten invariants in a speialase, monotoniity lemma for minimal surfaes.Adjuntion formula and intersetion positivity for pseudoholomorphiurves in sympleti 4-manifolds.Foliation of S2�S2 by pseudoholomorphi spheres. Gromov's theorem onthe reognition of R4. Gromov's theorem on the sympletomorphism groupof S2 � S2 and introdution to Abreu's generalization of this [2℄.8.2 Floer homologyIntrodution to the Arnold onjeture. Introdution to Floer theory of Hamil-tonian sympletomorphisms, regarded as homology of the sympleti ationfuntional. Rough desription of Floer homology of more general symple-tomorphisms (see e.g. some of Seidel's papers) and de�nition of the uxhomomorphism (see [45℄).Index of Cauhy-Riemann operators on puntured Riemann surfaes:Conley-Zehnder index and index formula for Cauhy-Riemann operators onthe ylinder via spetral ow (see various papers by Salamon and oauthorssuh as [55℄), relative �rst Chern lass [32℄, additivity of the index under58



gluing, axiomati determination of the index formula for Cauhy-Riemannoperators on a puntured Riemann surfae (see Shwarz's thesis [57℄ and theseond edition of [44℄).Proof of the Arnold onjeture for monotone sympletimanifolds: de�ni-tion of Floer homology of Hamiltonian sympletomorphisms (gluing analysisomitted), isomorphism of this Floer homology with Morse homology. (Foran exellent introdution to this and muh more than we did in the ourse,see [54℄. For transversality details see [20℄.)Floer homology with Novikov rings and the Piunikhin-Salamon-Shwarzisomorphism [51℄. Introdution to quantum ohomology and its relation tothe more general quantum produt on Floer theory of sympletomorphisms[14℄.Remarks on the lassi�ation of surfae di�eomorphisms [12℄. Floer ho-mology and the mapping lass group [63℄. Floer homology of �nite ordersympletomorphisms (not just on surfaes). Computation of the Floer ho-mology of a Dehn twist on a surfae [59, 24, 35℄. Introdution to Seidel'swork on generalized Dehn twists (see Seidel's thesis [61℄ and more reentpapers suh as [62℄).Introdution to Floer theory for Lagrangian intersetions [17℄ and theFukaya ategory. Floer theory for (nonontratible, nonisotopi) Lagrangiansin a surfae; ombinatorial formula for the di�erental, proof that the numberof generators of the Floer homology equals the geometri intersetion number(see [25℄). Remarks on Massey produts and A1 ategory struture, see e.g.[23℄.Introdution to TQFT [3, 58℄. Introdution to Seiberg-Witten Floer ho-mology; see [40℄ and the reent series of papers by Ozsv�ath and Szab�o [49℄.Introdution to \introdution to sympleti �eld theory" [15℄.8.3 What we would have also liked to do in the ourseCoherent orientations [19℄.Gluing analysis.Khovanov's ategori�ation of the Jones polynomial [36℄.|||||||||||||||||{The literature on this subjet is very large. The following list is nowhere near om-prehensive but is merely intended to provide some useful starting points.59
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