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Preface

Comment 1 (By W.): Here the main preface has to be inserted.

Comment 2 (By W.): Shall we insert a general list of criteria
why it is worthwhile to study a conjecture.

A User’s Guide

Comment 3 (By W.): This paragraph has to be adjusted and completed.

A reader who wants to get specific information or focus on a certain topic
should consult the detailed table of contents, the index and the index of
notation in order to find the right place in the paper. We have tried to write
the text in a way such that one can read small units independently from the
rest. Moreover, a reader who may only be interested in the Baum-Connes
Conjecture or only in the Farrell-Jones Conjecture for K-theory or for L-
theory can ignore the other parts. But we emphasize again that one basic
idea of this paper is to explain the parallel treatment of these conjectures.

A reader without much prior knowledge about the Baum-Connes Con-
jecture or the Farrell-Jones Conjecture should begin with Chapter 1. There,
the special case of a torsionfree group is treated, since the formulation of the
conjectures is less technical in this case and there are already many interest-
ing applications. The applications are not needed later. A more experienced
reader may pass directly to Chapter 2.

Other (survey) articles on the Farrell-Jones Conjecture and the Baum-
Connes Conjecture are [126], [143], [163], [226], [246], [335].

We require that the reader is familiar with basic notions in topology (CW -
complexes, chain complexes, homology, homotopy groups, manifolds, cover-
ings), functional analysis (Hilbert spaces, bounded operators, differential op-
erators, C∗-algebras), and algebra (groups, modules, elementary homological
algebra). Comment 4 (By W.): This list is not yet complete.
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0. Introduction

The Isomorphism Conjectures due to Baum-Connes and Farrell-Jones are
important conjectures which have many interesting applications and conse-
quences. However, they are not easy to formulate and it is a priori not clear
why the actual versions are the most promising ones. They are the final
upshot of a longer process which lead step by step to the final versions. It
has been influenced and steered by the various new results which have been
proven during the last decades and given new insight into the objects, prob-
lems and constructions these conjectures aim at. Next we want to explain how
one can be lead to these conjectures by general considerations and certain
facts.

0.1 Motivation for the Baum-Connes Conjecture

We will start with the easiest and most convenient to handle Isomorphism
Conjecture, the Baum-Connes Conjecture for the topological K-theory of the
reduced group C∗-algebra, and then pass to the more complicated Farrell-
Jones Conjecture for the algebraic K- and L-theory of the group ring.

0.1.1 Topological K-Theory of Reduced Group C∗-Algebras

The target of the Baum-Connes Conjecture is the topological (complex) K-
theory of the reduced C∗-algebra C∗r (G) of a topological group G. We will
only consider discrete groups G. One defines the topological K-groups Kn(A)
for any Banach algebra A to be the abelian group Kn(A) = πn−1(GL(A)) for
n ≥ 1. The famous Bott Periodicity Theorem gives a natural isomorphism
Kn(A)

∼=−→ Kn+2(A) for n ≥ 1. Finally one defines Kn(A) for all n ∈ Z
so that the Bott isomorphism theorem is true for all n ∈ Z. It turns out
that K0(A) is the same as the projective class group of the ring A which
is the Grothendieck group of the abelian monoid of isomorphism classes of
finitely generated projective A-modules with the direct sum as addition. The
topological K-theory of C is trivial in odd dimensions and is isomorphic to Z
in even dimensions. More generally, for a finite group G the topological K-
theory of C∗r (G) is the complex representation ring RC(G) in even dimensions
and is trivial in odd dimensions.
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If P is an appropriate elliptic differential operator (or more generally an
elliptic complex) on a closed n-dimensional Riemannian manifoldM , then one
can consider its index in Kn(C) which is zero for odd n and dimC(ker(P ))−
dimC(coker(P )) ∈ Z for even n. If M comes with an isometric G-action of
a finite group G and P is compatible with the G-action, then ker(P ) and
coker(P ) are complex (finite-dimensional) G-representations and one obtains
an element in Kn(C∗r (G)) = RC(G) by [ker(P )] − [coker(P )] for even n.
Suppose that G is an arbitrary discrete group and thatM is a (not necessarily
compact) n-dimensional smooth manifold without boundary with a proper
cocompact G-action, a G-invariant Riemannian metric and an appropriate
elliptic differential operator P compatible with the G-action. An example is
the universal coveringM = Ñ of a closed n-dimensional Riemannian manifold
N with G = π1(N) and the lift P̃ to Ñ of an appropriate elliptic differential
operator P on N . Then one can define an equivariant index of P which takes
values in Kn(C∗r (G)). Therefore the interest of K∗(C∗r (G)) comes from the
fact that it is the natural recipient for indices of certain equivariant operators.

0.1.2 Homological Aspects

A first basic problem is to compute K∗(C∗r (G)) or to identify it with more
familiar terms. The key idea comes from the observation that K∗(C∗r (G))
has some homological properties. More precisely, if G is the amalgamated
product G = G1 ∗G0 G2 for subgroups Gi ⊆ G, then there is a long exact
sequence

· · · ∂n+1−−−→ Kn(C∗r (G0))
Kn(C∗r (i1))⊕Kn(C∗r (i2))−−−−−−−−−−−−−−−−→ Kn(C∗r (G1))⊕Kn(C∗r (G2))

Kn(C∗r (j1))−Kn(C∗r (j2))−−−−−−−−−−−−−−−−→ Kn(C∗r (G)) ∂n−→ Kn−1(C∗r (G0))
Kn−1(C

∗
r (i1))⊕Kn−1(C

∗
r (i2))−−−−−−−−−−−−−−−−−−−→ Kn−1(C∗r (G2))⊕Kn−1(C∗r (G1))

Kn−1(C
∗
r (j1))−Kn−1(C

∗
r (j2))−−−−−−−−−−−−−−−−−−−→ Kn−1(C∗r (G))

∂n−1−−−→ · · · (0.1)

where i1,i2, j1 and j2 are the obvious inclusions (see [265, Theorem 18 on
page 632]). If φ : G→ G is a group automorphism and Goφ Z the associated
semidirect product, then there is a long exact sequence

· · · ∂n+1−−−→ Kn(C∗r (G))
Kn(C∗r (φ))−id−−−−−−−−−→ Kn(C∗r (G))

Kn(C∗r (k))−−−−−−−→ Kn(C∗r (GoφZ))
∂n−→ Kn−1(C∗r (G))

Kn−1(C
∗
r (φ))−id−−−−−−−−−−−→ Kn−1(C∗r (G))

Kn−1(C
∗
r (k))−−−−−−−−→ · · · (0.2)

where k is the obvious inclusion (see [264, Theorem 3.1 on page 151] or more
generally [265, Theorem 18 on page 632]).

We compare this with group homology in order to explain the analogy
with homology. Recall that the classifying space BG of a group G is an as-
pherical CW -complex whose fundamental group is isomorphic to G and that
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aspherical means that all higher homotopy groups are trivial, or, equivalently,
that its universal covering is contractible. It is unique up to homotopy. If one
has an amalgamated product G = G1 ∗G0 G2, then one can find models
for the classifying spaces such that BGi is a CW -subcomplex of BG and
BG = BG1 ∪ BG2 and BG0 = BG1 ∩ BG2. Thus we obtain a pushout of
inclusions of CW -complexes

BG0
Bi1−−−−→ BG1

Bi2

y Bj1

y
BG2

Bj2−−−−→ BG

It yields a long Mayer-Vietoris sequence for the cellular or singular homology

· · · ∂n+1−−−→ Hn(BG0)
Hn(Bi1)⊕Hn(Bi2)−−−−−−−−−−−−→ Hn(BG1)⊕Hn(BG2)

Hn(Bj1)−Hn(Bj2)−−−−−−−−−−−−→ Hn(BG) ∂n−→ Hn−1(BG0)
Hn−1(Bi1)⊕Hn−1(Bi2)−−−−−−−−−−−−−−−→ Hn−1(BG2)⊕Hn−1(BG1)

Hn−1(Bj1)−Hn−1(Bj2)−−−−−−−−−−−−−−−→ Hn−1(BG)
∂n−1−−−→ · · · . (0.3)

If φ : G → G is a group automorphism, then a model for B(G oφ Z) is the
mapping torus of Bφ : BG→ BG which is obtained from the cylinder BG×
[0, 1] by identifying the bottom and the top with the map Bφ. Associated to
a mapping torus there is the long exact sequence

· · · ∂n+1−−−→ Hn(BG)
Hn(Bφ)−id−−−−−−−→ Hn(BG)

Hn(Bk)−−−−−→ Hn(B(Goφ Z))
∂n−→ Hn−1(BG)

Hn−1(Bφ)−id−−−−−−−−−→ Hn−1(BG)
Hn(Bk)−−−−−→ · · · (0.4)

where k is the obvious inclusion of BG into the mapping torus.

0.1.3 The Baum-Connes Conjecture for Torsionfree Groups

There is an obvious analogy between the sequences (0.1) and (0.3) and the
sequences (0.2) and (0.4). On the other hand we get for the trivial group
G = {1} thatHn(B{1}) = Hn({•}) is Z for n = 0 and trivial for n 6= 0 so that
the group homology of BG cannot be the same as the topological K-theory
of C∗r ({1}). But there is a better candidate, namely take the topological K-
homology of BG instead of the singular homology. Topological K-homology
is a homology theory defined for CW -complexes. At least we mention that
for a topologist its definition is a routine, namely, it is the homology theory
associated to the K-theory spectrum which is in turn the spectrum defining
topological K-theory of CW -complexes, i.e. the cohomology theory which
comes from considering vector bundles over CW -complexes. In contrast to
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singular homology the topological K-homology of a point Kn({•}) is Z for
even n and is trivial for n odd. So we still get exact sequences (0.3) and (0.4)
if we replace H∗ by K∗ everywhere and we have Kn(B{1}) ∼= Kn(C∗r ({1})
for all n ∈ Z. This leads to the following conjecture:

Conjecture 0.5 (Baum-Connes Conjecture for torsionfree groups).
Let G be a torsionfree group. Then there is for n ∈ Z an isomorphism called
assembly map

Kn(BG)
∼=−→ Kn(C∗r (G)).

This is indeed a formulation which is equivalent to the Baum-Connes
Conjecture provided that G is torsionfree. It cannot hold in general as already
the example of a finite group G shows. Namely, if G is finite, then the obvious
inclusion induces an isomorphism Kn(B{1}) ⊗Z Q

∼=−→ Kn(BG) ⊗Z Q for all
n ∈ Z, whereas K0(C∗r ({1}) → K0(C∗r (G)) agrees with the map RC({1}) →
RC(G) which is rationally bijective if and only if G itself is trivial. Hence
Conjecture 0.5 is not true for non-trivial finite groups.

0.1.4 Formulation of the Baum-Connes Conjecture

What is going wrong? The sequences (0.1) and (0.2) do exist regardless
whether the groups are torsionfree or not. More generally, if G acts on a
tree, then they can be combined to compute the K-theory K∗(C∗r (G)) of a
group G by a certain Mayer-Vietoris sequence from the stabilizers of the ver-
tices and edges (see Pimsner [265, Theorem 18 on page 632]). In the special
case, where all stabilizers are finite, one sees that K∗(C∗r (G)) is built by the
topological K-theory of the finite subgroups of G in a homological fashion.
This leads to the idea that K∗(C∗r (G)) can be computed in a homological
way but the building blocks do not only consist of K∗(C∗r ({1})) alone but
of K∗(C∗r (H)) for all finite subgroups H ⊆ G. This suggest to study equi-
variant topological K-theory. It assigns to every proper G-CW -complex X a
sequence of abelian groups KG

n (X) for n ∈ Z such that G-homotopy invari-
ance holds and Mayer-Vietoris sequences exist. A proper G-CW -complex is
a CW -complex with G-action such that for g ∈ G and every open cell e with
e ∩ g · e 6= ∅ we gave gx = x for all x ∈ e and all isotropy groups are finite.
Two interesting features are that KG

n (G/H) agrees with Kn(C∗r (H)) for ev-
ery finite subgroup H ⊆ G and that for a free G-CW -complex X and n ∈ Z
we have a natural isomorphism KG

n (X)
∼=−→ Kn(G\X). Recall that EG is a

free G-CW -complex which is contractible and that EG → G\EG = BG is
the universal covering of BG. We can reformulate Conjecture 0.5 by stating
an isomorphism

KG
n (EG)

∼=−→ Kn(C∗r (G)).

Now suppose that G acts on a tree T with finite stabilizers. Then the com-
putation of Pimsner [265, Theorem 18 on page 632]) mentioned above can be
rephrased that there is an isomorphism



0.1 Motivation for the Baum-Connes Conjecture 5

KG
n (T )

∼=−→ Kn(C∗r (G)).

In particular the left hand side is independent of the tree T on which G
acts by finite stabilizers. This can be explained as follows. It is known that
for every finite subgroup H ⊆ G the H-fixed point set T is again a non-
empty tree and hence contractible. This implies that two trees T1 and T2

on which G acts with finite stabilizers are G-homotopy equivalent and hence
have the same equivariant topological K-theory. The same remark applies to
Kn(BG) and Kn(EG), namely, two models for BG are homotopy equivalent
and to models for EG are G-homotopy equivalent and therefore Kn(BG) and
KG

n (EG) are independent of the choice of a model. This leads to the idea to
look for an appropriate proper G-CW -complex EG which is characterized by
a certain universal property and is unique up to G-homotopy such that for a
torsionfree group G we have EG = EG and for a tree on which G acts with
finite stabilizers we have EG = T and that there is an isomorphism

KG
n (EG)

∼=−→ Kn(C∗r (G)).

In particular for a finite group we would like to have EG = G/G = {•}
and then the desired isomorphism above is true for trivial reasons. Recall
that EG is characterized up to G-homotopy by the property that it is a G-
CW -complex such that EGH is empty for H 6= {1} and is contractible for
H = {1}. Having the case of a tree on which G acts with finite stabilizers
in mind, we define the classifying space for proper G-actions EG to be a
G-CW -complex such that EGH is empty for |H| =∞ and is contractible for
|H| < ∞. Indeed two models for EG are G-homotopy equivalent, a tree on
which G acts with finite stabilizers is a model for EG, we have EG = EG
if (and only if) G is torsionfree and EG = G/G = {•} if (and only if) G is
finite. This leads to

Conjecture 0.6 (Baum-Connes Conjecture). Let G be a group. Then
there is for all n ∈ Z an isomorphism called assembly map

KG
n (EG)

∼=−→ Kn(C∗r (G)).

This conjecture reduces in the torsionfree case to Conjecture 0.5 and is consis-
tent with the results by Pimsner [265, Theorem 18 on page 632]) for G-acting
on a tree with finite stabilizers. It is also true for finite groups G. Pimsner’s
result does hold more generally for groups acting on trees with not neces-
sarily finite stabilizers. So one should get the analogous result for the left
hand side of the isomorphism appearing in the Baum-Connes Conjecture 0.6.
Essentially this boils down to the question, whether the analogues of the long
exact sequences (0.1) and (0.2) holds for the left side of the isomorphism ap-
pearing in the Baum-Connes Conjecture 0.6. This follows for (0.1) from the
fact that for G = G1 ∗G0 G2 one can find appropriate models for the classify-
ing spaces for proper G-actions such that there is a G-pushout of inclusions
of proper G-CW -complexes
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G×G0 EG0 −−−−→ G×G1 EG1y y
G×G2 EG2 −−−−→ EG

and for a subgroup H ⊆ G and a proper H-CW -complex X there is a natural
isomorphism

KH
n (X)

∼=−→ KG
n (G×H X).

Thus the associated long exact Mayer-Vietoris sequence yields the long exact
sequence

· · · ∂n+1−−−→ KG0
n (EG0)→ KG1

n (EG1)⊕KG2
n (EG2)→ KG

n (EG) ∂n−→
KG0

n−1(EG0)→ KG1
n−1(EG1)⊕KG2

n−1(EG2)→ KG0
n−1(EG)→ · · ·

which corresponds to (0.1). For (0.2) one uses fact that for a group automor-
phism φ : G

∼=−→ G the Goφ Z-CW -complex given by the to both sides infinite
mapping telescope of the φ-equivariant map Eφ : EG → EG is a model for
E(Goφ Z).

In general KG
n (EG) is much bigger than KG

n (EG) ∼= Kn(BG) and the
canonical map KG

n (EG)→ KG
n (EG) is rationally injective but not necessar-

ily integrally injective.

0.1.5 Reduced versus Maximal Group C∗-Algebras

All the arguments above do also apply to the maximal group C∗-algebra
which does even have better functorial properties than the reduced group
C∗-algebra. So a priori one may think that one should use the maximal group
C∗-algebra instead of the reduced one. However, the version for the maximal
group C∗-algebra is not true in general and the version for the reduced group
C∗-algebra seems to be the right one. This will be discussed in more detail
in Subsection 2.12.2.

0.1.6 Applications of the Baum-Connes Conjecture

The assembly map appearing in the Baum-Connes Conjecture 0.6 has an
index theoretic interpretation. An element in KG

0 (EG) can be represented
by a pair (M,P ∗) consisting of a cocompact proper smooth n-dimensional
G-manifold M with a G-invariant Riemannian metric together with an el-
liptic G-complex P ∗ of differential operators of order 1 on M and its image
under the assembly map is a certain equivariant index indC∗r (G)(M,P ∗) in
Kn(C∗r (G)). There are many important consequences of the Baum-Connes
Conjecture such as the Kadison Conjecture (see Subsection 1.3.2), the Zero-
Divisor-Conjecture (see Subsection 1.10.1), the stable Gromov-Lawson Con-
jecture (see Subsection 2.11.2) and the Novikov Conjecture (see Section 2.9).
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0.2 Motivation for the Farrell-Jones Conjecture for
K-Theory

Next we want to deal with the algebraic K-groups Kn(RG) of the group ring
RG of a group G with coefficients in an associative ring R with unit.

0.2.1 Algebraic K-Theory of Group Rings

For an associative ring with unit R one defines K0(R) as the projective class
group and K1(R) as the abelianization of GL(R) = colimn→∞GLn(R). One
defines the higher algebraic K-groups Kn(R) for n ≥ 1 as the fundamental
groups of a certain K-theory space associated to the category of finitely gen-
erated projective R-modules. One can define negative K-groups Kn(R) for
n ≤ −1 by a certain contracting procedure applied to K0(R). Finally there
exists a K-theory spectrum K(R) such that πn(K(R)) = Kn(R) for all n ∈ Z.
If Z → R is the obvious ring map sending n to n · 1R, then one defines the
reduced K-groups to be the cokernel of the induced map Kn(Z) → Kn(R).
The Whitehead group Wh(G) of a group G is the quotient of K1(ZG) by
elements given by (1, 1)-matrices of the shape (±g) for g ∈ G.

The reduced projective class group K̃0(ZG) is the recipient for the finite-
ness obstruction of a finitely dominated CW -complex X with fundamental
group G = π1(X). Finitely dominated means that there is a finite CW -
complex Y and maps i : X → Y and r : Y → X such that r ◦ i is homotopic
to the identity on X. The Whitehead group Wh(G) is the recipient of the
Whitehead torsion of a homotopy equivalence of finite CW -complexes and of
a compact h-cobordism over a closed manifold with fundamental group G.
An h-cobordism W over M consists of a manifold W whose boundary is the
disjoint union ∂W = ∂0W

∐
∂1W such that both inclusions ∂iW → W are

homotopy equivalences together with a diffeomorphism M
∼=−→ ∂0W . These

are very important topological obstructions whose vanishing has interesting
geometric consequences. The vanishing of the finiteness obstruction says that
the finitely dominated CW -complex under consideration is homotopy equiv-
alent to a finite CW -complex. The vanishing of the Whitehead torsion of a
compact h-cobordism W over M of dimension ≥ 6 implies that the W is
trivial, i.e. is diffeomorphic to a cylinder M × [0, 1] relative M = M × {0}.
This explains why topologists are interested in Kn(ZG) for groups G.

0.2.2 Appearance of Nil-Terms

The situation for algebraic K-theory of RG is more complicated than the
one for the topological K-theory of C∗r (G). As a special case of the sequence
(0.2) we obtain an isomorphism

Kn(C∗r (G× Z)) = Kn(C∗r (G))⊕Kn−1(C∗r (G)).
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For K-theory the analogue is the Bass-Heller-Swan decomposition

Kn(R[Z]) ∼= Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R),

where certain additional terms, the Nil-terms NKn(R) appear. If one replaces
R by RG, one gets

Kn(R[G× Z]) ∼= Kn(RG)⊕Kn−1(RG)⊕NKn(RG)⊕NKn(RG).

Such correction terms in form of Nil-terms appear also, when one wants to
get analogues of the sequences (0.1) and (0.2) for algebraic K-theory (see
Waldhausen [341] and [342]).

0.2.3 The Farrell-Jones Conjecture for K∗(RG) for Regular Rings
and Torsionfree Groups

Suppose that R is a regular ring, i.e. it is Noetherian and every R-module
possesses a finite-dimensional projective resolution. Any field and Z are reg-
ular rings. Then one can prove in many cases for torsionfree groups that
the analogues of the sequences (0.1) and (0.2) do hold for algebraic K-theory
(see Waldhausen [341] and [342]). The same reasoning as in the Baum-Connes
Conjecture for torsionfree groups leads to

Conjecture 0.7. (Farrell-Jones Conjecture for K∗(RG) for torsion-
free groups and regular rings). Let G be a torsionfree group and let R be
a regular ring. Then there is for n ∈ Z an isomorphism

Hn(BG;K(R))
∼=−→ Kn(RG).

Here H∗(−;K(R)) is the homology theory associated to the K-theory spec-
trum of R. It is a homology theory with the property that Hn({•};K(R)) =
πn(K(R)) = Kn(R) for n ∈ Z.

If one drops the condition that G is torsionfree but requires that the order
of every finite subgroup of G is invertible in R, then one still can prove in
many cases that the analogues of the sequences (0.1) and (0.2) do hold for
algebraic K-theory. The same reasoning as in the Baum-Connes Conjecture
leads to

Conjecture 0.8. (Farrell-Jones Conjecture for K∗(RG) for regular
rings). Let G be a group. Let R be a regular ring such that |H| is invertible
in R for every finite subgroup H ⊆ G. Then there is an isomorphism

HG
n (EG;KR)

∼=−→ Kn(RG).

Here HG
n (−;KR) is an appropriate G-homology theory with the property

that HG
n (G/H;KR) ∼= HH

n ({•};KR) ∼= Kn(RH) for every subgroup H ⊆ G.
Obviously Conjecture 0.8 reduces to Conjecture 0.7 if G is torsionfree.
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0.2.4 Formulation of the Farrell-Jones Conjecture for K∗(RG)

Conjecture 0.7 can be applied in the case R = Z what is not true for Con-
jecture 0.8. So what is the right formulation for arbitrary rings R? The idea
is that one does not only need to take all finite subgroups into account but
also all virtually cyclic subgroups. A group is called virtually cyclic if it is
finite or contains Z as subgroup of finite index. Namely, let EG = EVCY(G)
be the classifying space for the family of virtually cyclic subgroups, i.e. a G-
CW -complex EG such that EGH is contractible for every virtually cyclic
subgroup H ⊆ G and is empty for every subgroup H ⊆ G which is not
virtually cyclic. The G-space EG is unique up to G-homotopy.

Conjecture 0.9. (Farrell-Jones Conjecture for K∗(RG)). Let G be a
group. Let R be an associative ring with unit. Then there is for all n ∈ Z an
isomorphism called assembly map

HG
n (EG;KR)

∼=−→ Kn(RG).

Here HG
n (−;KR) is an appropriate G-homology theory with the property

that HG
n (G/H;KR) ∼= HH

n ({•};KR) ∼= Kn(RH) for every subgroup H ⊆ G
and the assembly map is induced by the map EG→ {•}.

In this formulation we have absorbed all the Nil-phenomena into the
source by replacing EG by EG. There is a certain price we have to pay
since often there are nice small geometric models for EG, whereas the spaces
EG are much harder to analyze and are in general huge. There are up to
G-homotopy unique G-maps EG→ EG and EG→ EG which yield maps

Hn(BG;K(R)) = HG
n (EG;KR)→ HG

n (EG;KR)→ HG
n (EG;KR).

We will later see that there is a splitting (see Bartels [20])

HG
n (EG;KR) ∼= HG

n (EG;KR)⊕HG
n (EG,EG;KR) (0.10)

and HG
n (EG;KR) is the easy homological part and HG

n (EG,EG;KR) con-
tains all Nil-type information. If R is regular and the order of any finite
subgroup of G is invertible in R, then HG

n (EG,EG;KR) is trivial and hence

the natural map HG
n (EG;KR)

∼=−→ HG
n (EG;KR) is bijective. Therefore Con-

jecture 0.9 reduces to Conjecture 0.7 and Conjecture 0.8 when they apply. In
the Baum-Connes setting the natural map KG

n (EG)
∼=−→ KG

n (EG) is always
bijective.

0.2.5 Applications of the Farrell-Jones Conjecture for K∗(RG)

Since Kn(Z) = 0 for n ≤ −1 and the maps Z
∼=−→ K0(Z), which sends n

to the class of Zn, and {±1} → K1(Z), which sends ±1 to the class of the
(1, 1)-matrix (±1), are bijective, an easy spectral sequence argument shows
that Conjecture 0.7 implies



10 0. Introduction

Conjecture 0.11. (Farrell-Jones Conjecture K∗(ZG) in dimension
n ≤ 1). Let G be a torsionfree group. Then K̃n(ZG) = 0 for n ∈ Z, n ≤ 0
and Wh(G) = 0.

In particular the finiteness obstruction and the Whitehead torsion are al-
ways zero for torsionfree fundamental groups. This implies in particular that
every h-cobordism over a simply connected d-dimensional closed manifold
for d ≥ 5 is trivial and thus the Poincaré Conjecture in dimensions ≥ 6 (and
with some extra effort also in dimension d = 5). This will be explained in Sec-
tion 1.5.1. The Farrell-Jones Conjecture for K-theory 0.13 implies the Bass
Conjecture (see Section 2.7). Further applications, e.g. to pseudo-isotopy and
to automorphisms of manifolds will be discussed in Subsection 1.7.1 and Sub-
section 1.9.2.

0.3 Motivation for the Farrell-Jones Conjecture for
L-Theory

Next we want to deal with the algebraic L-groups Lε
n(RG) of the group ring

RG of a group G with coefficients in an associative ring R with unit and
involution.

0.3.1 Algebraic L-Theory of Group Rings

Let R be an associative ring with unit. An involution of rings R→ R, r 7→ r
on R is a map satisfying r + s = r + s, rs = s r, 0 = 0, 1 = 1 and r = r
for all r, s ∈ R. Given a ring with involution, the group ring RG inher-
its an involution by

∑
g∈G rg · g =

∑
g∈G r · g−1. If the coefficient ring R

is commutative, we usually use the trivial involution r = r. Given a ring
with involution, one can associate to it quadratic L-groups Lh

n(R) for n ∈ Z.
The abelian group Lh

0 (R) can be identified with the Witt group of quadratic
forms on finitely generated free R-modules, where every hyperbolic quadratic
forms represent the zero element and the addition is given by the orthogo-
nal sum of quadratic forms. The abelian group Lh

2 (R) is essentially given
by the skew-symmetric versions. One defines Lh

1 (R) and Lh
3 (R) in terms of

automorphism of quadratic forms. The L-groups are four-periodic, i.e. there
is a natural isomorphism Lh

n(R)
∼=−→ Lh

n+4(R) for n ∈ Z. If one uses finitely
generated projective R-modules instead of finitely generated free R-modules,
one obtains the quadratic L-groups Lp

n(RG) for n ∈ Z. If one uses finitely
generated based free RG-modules and takes the Whitehead torsion into ac-
count, then one obtains the quadratic L-groups Ls

n(RG) for n ∈ Z. For every
j ∈ {−∞} q {j ∈ Z | j ≤ 2} there are versions L〈j〉n (RG), where 〈j〉 is called
decoration. The decorations j = 0, 1 correspond to the decorations p, h and
j = 2 is related to the decoration s.
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The relevance of the L-groups comes from the fact that they are the re-
cipients for various surgery obstructions. The fundamental surgery problem is
the following. Consider a map f : M → X from a closed oriented manifold M
to a finite Poincaré complex X. We want to know whether we can change it
by a process called surgery to a map g : N → X with a closed manifold N as
source and the same target such that g is a homotopy equivalence. This can
answer the question whether a finite Poincaré complex X is homotopy equiv-
alent to a closed manifold. Notice that a space which is homotopy equivalent
to a closed oriented manifold must be a finite Poincaré complex but not every
finite Poincaré complex is homotopy equivalent to a closed oriented manifold.
If f comes with additional bundle data and has degree 1, we can find g if and
only if the so called surgery obstruction of f vanishes which takes values in
Lh

n(ZG) for n = dim(X) and G = π1(X). If we want g to be a simple homo-
topy equivalence, the obstruction lives in Ls

n(ZG). We see that analogous to
the finiteness obstruction in K̃0(ZG) and the Whitehead torsion in Wh(G)
the algebraic L-groups are the recipients for important obstructions whose
vanishing has interesting geometric consequences. Also the question whether
two closed manifolds are diffeomorphic or homeomorphic can be decided via
surgery theory of which the L-groups are a part.

0.3.2 The Farrell-Jones Conjecture for L∗(RG)[1/2]

If we invert 2, i.e. if we consider the localization L〈−j〉
n (RG)[1/2], then there

is no difference between the various decorations and the analogues of the
sequences (0.1) and (0.2) are true for L-theory (see Cappell [55]). The same
reasoning as for the Baum-Connes Conjecture leads to

Conjecture 0.12. (Farrell-Jones Conjecture for L∗(RG)[1/2]). Let G
be a group. Let R be an associative ring with unit and involution. Then there
is for all n ∈ Z an isomorphism

HG
n (EG;L〈−∞〉R )[1/2]

∼=−→ L〈−∞〉n (RG)[1/2].

Here HG
n (−;L〈−∞〉R ) is an appropriate G-homology theory with the property

that HG
n (G/H;L〈−∞〉R ) ∼= HH

n ({•};L〈−∞〉R ) ∼= L
〈−∞〉
n (RH) for every subgroup

H ⊆ G.

0.3.3 The Farrell-Jones Conjecture for L∗(RG)

In general the L-groups L〈j〉n (RG) do depend on the decoration and often the
2-torsion carries sophisticated information and is hard to handle. Recall that
as a special case of the sequence (0.2) we obtain an isomorphism

Kn(C∗r (G× Z)) = Kn(C∗r (G))⊕Kn−1(C∗r (G)).
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The L-theory analogues is given by the Shaneson splitting [311]

L〈j〉n (R[Z]) ∼= L
〈j−1〉
n−1 (R)⊕ L〈j〉n (R).

Here for the decoration j = −∞ one has to interpret j − 1 as −∞. Since S1

is a model for BZ, we get an isomorphisms

Hn(BZ;L〈j〉(R)) ∼= L
〈j〉
n−1(R)⊕ L〈j〉n (R).

Therefore the decoration −∞ shows the right homological behavior and is
the right candidate for the formulation of an isomorphism conjecture.

The analogues of the sequences (0.1) and (0.2) do hold not hold for
L
〈j〉
∗ (RG), certain correction terms, the UNil-terms come in, which are in-

dependent of the decoration and are always 2-torsion (see Cappell [54], [55]).
As in the algebraic K-theory case this leads to the following

Conjecture 0.13. (Farrell-Jones Conjecture for L∗(RG)). Let G be a
group. Let R be an associative ring with unit and involution. Then there is
for all n ∈ Z an isomorphism called assembly map

HG
n (EG;L〈−∞〉R )

∼=−→ L〈−∞〉n (RG).

Here HG
n (−;L〈−∞〉R ) is an appropriate G-homology theory with the property

that HG
n (G/H;L〈−∞〉R ) ∼= HH

n ({•};L〈−∞〉R ) ∼= L
〈−∞〉
n (RH) for every subgroup

H ⊆ G and the assembly map is induced by the map EG→ {•}.
After inverting 2 Conjecture 0.13 is equivalent to Conjecture 0.12.
There is an L-theory version of the splitting (0.10).

0.3.4 Applications of the Farrell-Jones Conjecture for L∗(RG)

For applications in geometry the groups Ls
n(ZG) are the interesting ones.

The difference between the various decorations is measured by the so called
Rothenberg sequences and given in terms of the Tate cohomology of Z/2 with
coefficients in K̃n(ZG) for n ≤ 0 and Wh(G) with respect to the involution
coming from the involution on the group ring ZG. Hence the decorations do
not matter if K̃n(ZG) for n ≤ 0 and Wh(G) vanish. This leads in view of
Conjecture 0.11 to the following version of Conjecture 0.13 for torsionfree
groups

Conjecture 0.14. (Farrell-Jones Conjecture for L∗(ZG) for torsion-
free groups). Let G be a torsionfree group. Then there is for n ∈ Z and all
decorations j an isomorphism

Hn(BG;L〈j〉(Z))
∼=−→ L〈j〉n (RG)

and the source, target and the map itself are independent of the decoration j.
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Here Hn(−;L〈j〉(Z)) is the homology theory associated to the L-theory spec-
trum L〈−j〉(Z) and satisfies Hn({•};L〈j〉(Z)) ∼= πn

(
L〈j〉(Z)

) ∼= L
〈j〉
n (Z).

The L-theoretic assembly map appearing in Conjecture 0.14 has a geo-
metric meaning. It appears in the so called long exact surgery sequence. If
N is an aspherical closed oriented manifold with fundamental group G, i.e.
a closed oriented manifold homotopy equivalent to BG, then G is torsion-
free and the source of the assembly map Hn(BG;Ls(Z)〈1〉)

∼=−→ Ls
n(RG)

consists of bordism classes of normal maps M → N with N as target and
the assembly map sends it to its surgery obstruction. Here Ls(Z)〈1〉 is the
1-connected cover Ls(Z)〈1〉 of Ls(Z). This is analogous to the Baum-Connes
setting, where the assembly map assigns to an equivariant index problem its
index. The third term in the surgery sequence is given by the so called struc-
ture set of N . It is the set of equivalence classes of orientation preserving
homotopy equivalences f0 : M0 → N with a closed oriented topological ma-
nifold as source and N as target, where f0 : M0 → N and f1 : M1 → N are
equivalent if there is an orientation preserving homeomorphism g : M0 →M1

such that f1◦g and f0 are homotopic. Conjecture 0.14 implies that this struc-
ture set is trivial provided that the dimension of N is greater or equal to five.
Hence Conjecture 0.14 implies in the orientable case for dimensions ≥ 5 the
famous

Conjecture 0.15 (Borel Conjecture). Let M and N be two closed ori-
entable aspherical topological manifolds whose fundamental groups are iso-
morphic. Then they are homeomorphic and every homotopy equivalence from
M to N is homotopic to a homeomorphism.

The Borel Conjecture is a topological rigidity theorem for aspherical man-
ifolds and analogous to the Mostow Rigidity Theorem which says that two
hyperbolic closed Riemannian manifolds with isomorphic fundamental groups
are isometrically diffeomorphic. The Borel Conjecture is false if one replaces
topological manifold by smooth manifold and homeomorphism by diffeomor-
phism. The connection to the Borel Conjecture is one of the main features of
the Farrell-Jones Conjecture. The Farrell-Jones Conjecture for L-theory 0.13
implies the Novikov Conjecture (see Section 2.9).

0.4 Status of the Baum-Connes and the Farrell-Jones
Conjecture

At the time of writing no counterexamples to the Baum-Connes Conjec-
ture 0.6 and the Farrell-Jones Conjecture 0.9 and 0.13 are known to the
authors. A detailed report on the groups for which these conjectures are
known will be given in Chapter 3. For example the Baum-Connes Conjec-
ture 0.6 is known for a rather large class of groups including amenable groups,
word-hyperbolic groups, knot groups and one-relator groups but is open for
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SL(n,Z) for n ≥ 3. The class of groups for which the Farrell-Jones Conjec-
ture 0.9 and 0.13 is known is much smaller, it contains fundamental groups
of negatively curved closed Riemannian manifolds for K∗(RG) and L〈j〉∗ (ZG).
For Kn(ZG) for n ≤ 1 the Farrell-Jones Conjecture 0.9 holds for every sub-
group G of the group Γ if Γ is a cocompact discrete subgroup of an almost
connected Lie group. Comment 8 (By W.): Are there other classes or
situations which can or shall be mentioned here?

0.5 Methods of Proof

We will present three very different methods of proof for the various conjec-
tures.

The main methods of proof for the Baum-Connes Conjecture 0.6 are of
analytic nature. In particular the Dirac-Dual Dirac method is very important.
The main input will be Kasparov’s equivariant KK-theory and the Kasparov
product. They allow to define maps such as the assembly map appearing in the
Baum-Connes Conjecture 0.6 and its inverse by specifying two elements, the
Dirac element and the dual Dirac element, in the equivariant KK-groups and
showing that the Kasparov products of these elements is 1. The construction
of these elements requires some input from the group G and its geometry.
For instance one needs actions of the groups on Hilbert spaces with certain
properties. This will be explained in more detail in Chapter 5.

For the Farrell-Jones Conjecture 0.9 and 0.13 controlled topology and con-
trolled algebra is one of the main important tools. Here the basic idea is that
geometric objects or algebraic objects come with a reference map to a metric
space so that one can measure sizes. For instance for a h-cobordism one wants
to measure the size of handles. In algebra one considers geometric modules
which assign to each point in a metric space a finitely generated Z-module
with a basis such that the non-trivial modules are distributed in a locally fi-
nite way. A typical transition from geometry to algebra would be to assign to
an h-cobordism the cellular chain complex coming from a handle decomposi-
tion but taking into account, where the handle sits. In the sense the assembly
map can be viewed as a forget control map and to prove the Farrell-Jones
Conjecture one needs to get control for instance in the sense that the sizes of
the handles become arbitrarily small. In order to get control one needs again
some geometric input from the groups, for instance to be the fundamental
group of a closed negative curved Riemannian manifold. Chapter 6 is devoted
to these techniques.

The third method is of pure homotopy theoretic nature and applies to
the Farrell-Jones Conjecture 0.9 for K-theory. The first prototype is the
Dennis-trace map which allows to detect parts of the algebraic K-theory
in Hochschild homology. The Dennis trace map is of linear nature. A much
more advanced tool to detect the algebraic K-theory is the cyclotomic trace
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which takes values in topological cyclic homology. All these constructions are
on the level of spectra and cannot be carried out using chain complexes as in
the case of the Dennis trace map and Hochschild homology or related theories
such as cyclic homology. These methods can be used to get injectivity results
but not surjectivity result about the Farrell-Jones assembly map. In order to
apply these methods, one does not need geometric input but homotopy the-
oretic input from the group G such as certain finiteness conditions about the
classifying space EG for proper G-actions. These methods will be presented
in Chapter 7.

0.6 Structural Aspects

The formulation of the Baum-Connes Conjecture 0.6 and the Farrell-Jones
Conjecture 0.9 and 0.13 is very similar in the homotopy theoretic picture.
It allows a formulation of a kind of Metaconjecture (see 2.1) of which both
conjectures are special cases and which has also other very interesting spe-
cializations. The main idea is the assembly principle which leads to assembly
maps in a canonical and universal way by asking for the best approximation
of a certain functor by an equivariant homology theory. Comment 9 (By
W.): Do we treat this aspect? The basic computational tools and tech-
niques apply to both conjectures. In some sense this parallel treatment of the
Baum-Connes Conjecture 0.6 and the Farrell-Jones Conjecture 0.9 and 0.13
and of other variants is one of the topics of this book.

However, the geometric interpretations of the assembly maps in terms of
indices, surgery obstructions or forget control are quite different and therefore
also the methods of proof use very different input.

0.7 Computational Aspects

In general the targetKn(C∗r (G)) of the assembly map appearing in the Baum-
Connes Conjecture 0.6 is very hard to compute, whereas the source KG

n (EG)
is much more accessible because one can apply standard techniques from
algebraic topology such as spectral sequence and equivariant Chern charac-
ters to it and there are often nice small geometric models for EG. For the
Farrell-Jones Conjecture 0.9 and 0.13 this holds for the part HG

n (EG;KR) or
HG

n (EG;LR) respectively appearing in the splitting (0.10). The other part
HG

n (EG,EG;KR) or HG
n (EG,EG;KR) is harder to handle since it involves

Nil- or UNil-terms respectively and the G-CW -complex E is not proper and
in general huge. Most of the known computations ofKn(C∗r (G)),Kn(RG) and
L
〈−j〉
n (RG) are based on the Baum-Connes Conjecture 0.6 and the Farrell-

Jones Conjecture 0.9 and 0.13. A guide for computations will be given in
Chapter 8.
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0.8 Notations and Conventions

Here is a briefing on our main notational conventions. Details are of course
discussed in the text. The columns in the following table contain our notation
for: the spectra, their associated homology theory, the right hand side of the
corresponding assembly maps, the functor from groupoids to spectra and
finally the G-homology theory associated to these spectra valued functors.

BU Kn(X) Kn(C∗r (G)) Ktop HG
n (X;Ktop)

K(R) Hn(X;K(R)) Kn(RG) KR HG
n (X;KR)

L〈j〉(R) Hn(X;L〈j〉(R)) L
〈j〉
n (RG) L〈j〉R HG

n (X;L〈j〉R )

We would like to stress that K without any further decoration will always
refer to the non-connective K-theory spectrum. L〈j〉 will always refer to
quadratic L-theory with decoration j. For a C∗- or Banach algebra A the
symbol Kn(A) has two possible interpretations but we will mean the topolo-
gical K-theory.

A ring is always an associative ring with unit, and ring homomorphisms
are always unital. Modules are left modules. We will always work in the
category of compactly generated spaces, compare [322] and [360, I.4]. For our
conventions concerning spectra see Section 4.4.4. Spectra are denoted with
boldface letters such as E.

last edited on 28.3.05
last compiled on March 29, 2005



1. Formulation and Relevance of the
Conjectures for Torsionfree Groups

1.1 Introduction

We firstly we discuss the Baum-Connes and Farrell-Jones Conjectures in the
case of a torsionfree group since their formulation is less technical than in
the general case, but already in the torsionfree case there are many interest-
ing and illuminating conclusions. In fact some of the most important conse-
quences of the conjectures, like for example the Borel Conjecture (see Conjec-
ture 1.49) or the Kadison Conjecture (see Conjecture 1.12), refer exclusively
to the torsionfree case. On the other hand in the long run the general case,
involving groups with torsion, cannot be avoided. The general formulation
yields a clearer and more complete picture, and furthermore there are proofs
of the conjectures for torsionfree groups, where in intermediate steps of the
proof it is essential to have the general formulation available (compare Sec-
tion 6.4). Comment 10 (By W.): This reference has to be adjusted
later.

We have put some effort into dealing with coefficient rings R other than
the integers in connection with the Farrell-Jones Conjecture. A topologist
may a priori be interested only in the case R = Z but other cases are inter-
esting for algebraists and also do occur in computations for integral group
rings.

The reader may skip this chapter and may pass immediately to Chapter 2.

1.2 The Baum-Connes Conjecture for Torsionfree
Groups

We have already motivated in Subsection 0.1.3 the following

Conjecture 1.1. (Baum-Connes Conjecture for Torsionfree Groups).
Let G be a torsionfree group. Then the Baum-Connes assembly map

Kn(BG)→ Kn(C∗r (G))

is bijective for all n ∈ Z.
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Recall that complex K-homology K∗(Y ) is the homology theory associated
to the topological (complex) K-theory spectrum Ktop (which is often denoted
BU) and could also be written as K∗(Y ) = H∗(Y ;Ktop). The cohomology
theory associated to the spectrum Ktop is the well known complex K-
theory defined in terms of complex vector bundles. Complex K-homology
is a 2-periodic theory, i.e. Kn(Y ) ∼= Kn+2(Y ). Its coefficients are given by
Kn({•}) ∼= Z for even n and by Kn({•}) ∼= {0} for n odd.

Also the topological K-groups Kn(A) of a (complex) Banach algebra A
are 2-periodic. Whereas K0(A) coincides with the algebraically defined K0-
group, the other groups Kn(A) take the topology of the Banach algebra A
into account, for instance Kn(A) = πn−1(GL(A)) for n ≥ 1.

Let B(l2(G)) denote the bounded C-linear operators on the complex
Hilbert space l2(G) whose orthonormal basis is G. The reduced complex group
C∗-algebra C∗r (G) is the closure in the norm topology of the image of the reg-
ular representation CG → B(l2(G)), which sends an element u ∈ CG to the
(left) G-equivariant bounded operator l2(G) → l2(G) given by right multi-
plication with u. In particular one has natural inclusions

CG ⊆ C∗r (G) ⊆ B(l2(G))G ⊆ B(l2(G)).

For information about C∗-algebras and their topological K-theory we refer
for instance to [43], [79], [90], [170], [206], [249], [305] and [350].

Remark 1.2 (Rational Computation). The right hand side Kn(C∗r (G))
of the Baum-Connes assembly map appearing in the Baum-Connes Conjec-
ture is very hard to compute, also after rationalization and restricting to
torsionfree groups. This is much easier for the left hand side what illustrates
the computational aspect of the Baum-Connes Conjecture. Namely, there is
an Atiyah-Hirzebruch spectral sequence which converges to Kp+q(BG) and
whose E2-term is E2

p,q = Hp(BG;Kq({•})) [328, Theorem 15.7 on page 341].
Rationally this spectral sequence collapses and the homological Chern char-
acter (see [96]) gives an isomorphism for n ∈ Z

ch:
⊕
k∈Z

Hn−2k(BG; Q) =

( ⊕
p+q=n

Hp(BG;Kq({•}))

)
⊗Z Q

∼=−→ Kn(BG)⊗Z Q. (1.3)

Example 1.4 (Knot groups). Let G be a knot group, i.e. the fundamen-
tal group of the complement S3 − K of a (smooth) knot K ⊆ S3. If we
take out the interior or a tubular neighborhood of K, we obtain an ori-
entable compact 3-dimensional M which is homotopy equivalent to S3 −K.
By the Alexander-Schoenflies Theorem the manifold M is irreducible (see
for instance [220, Lemma 4.4 on page 217]). The Sphere Theorem [161, The-
orem 4.3 on page 40] implies that M is a model for BG. In particular G
is torsionfree. By Alexander Duality [97, VIII.8.15 on page 301] there is a
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map f : M → S1 which induces an isomorphism on singular homology. We
conclude from the Atiyah-Hirzebruch spectral sequence that f induces an
isomorphism Kn(f) : Kn(BG) → Kn(S1) for all n ∈ Z. The Baum-Connes
Conjecture 1.1 is known to be true for G and implies that

Kn(Cr
∗(G)) ∼= Kn(S1) ∼= Z

holds for all n ∈ Z. Comment 11 (By W.): Holger should check this
example.

Remark 1.5. (Geometric input is needed). The Example 1.4 illustrates
how geometric input about G can be used in combination with the Baum-
Connes Conjecture to compute Kn(C∗r (G)). Without some specific informa-
tion about G such a computation can be arbitrarily complicated. This is
illustrated by the Kan-Thurston Theorem which implies that for any CW -
complex X there exists a discrete group G such that Kn(X) ∼= Kn(BG) holds
for all n ∈ Z and that dim(BG) ≤ dim(X). A proof of the Kan-Thurston
Theorem is given for instance in [38] and [184].

Remark 1.6 (Torsionfree is Necessary). In the case where G is a finite
group the reduced group C∗-algebra C∗r (G) coincides with the complex group
ring CG and Kn(C∗r (G)) coincides with the complex representation ring
RC(G) of G for all even n ∈ Z. Since the group homology of a finite group
vanishes rationally except in dimension 0, Remark 1.2 shows that we need to
assume the group to be torsionfree in Conjecture 1.1.

Remark 1.7 (Real version of the Baum-Connes Conjecture). There
is an obvious real version of the Baum-Connes Conjecture. It says that for a
torsionfree group the real assembly map

KOn(BG)→ KOn(C∗r (G; R))

is bijective for n ∈ Z. We will discuss in Subsection 2.12.1 below that this
real version of the Baum-Connes Conjecture is implied by the complex version
Conjecture 1.1.

Here KOn(C∗r (G; R)) is the topological K-theory of the real reduced
group C∗-algebra C∗r (G; R). We use KO instead of K as a reminder that
we work with real C∗-algebras. The topological real K-theory KO∗(Y )
is the homology theory associated to the spectrum BO, whose associated
cohomology theory is given in terms of real vector bundles. Both, topological
K-theory of a real C∗-algebra and KO-homology of a space are 8-periodic
and KOn({•}) = Kn(R) is Z, if n = 0, 4 (8), is Z/2 if n = 1, 2 (8) and is 0 if
n = 3, 5, 6, 7 (8).

More information about the K-theory of real C∗-algebras can be found
in [307].
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1.3 Applications of the Baum-Connes Conjecture for
Torsionfree Groups

We now discuss some consequences of the Baum-Connes Conjecture for Tor-
sionfree Groups 1.1.

1.3.1 The Trace Conjecture for Torsionfree Groups

The assembly map appearing in the Baum-Connes Conjecture has an inter-
pretation in terms of index theory. This is important for geometric applica-
tions. It is of the same significance as the interpretation of the L-theoretic
assembly map as the map σ appearing in the exact surgery sequence discussed
in Section 1.9.1. We proceed to explain this.

An element η ∈ K0(BG) can be represented by a pair (M,P ∗) consisting
of a cocompact free proper smooth G-manifold M with G-invariant Rie-
mannian metric together with an elliptic G-complex P ∗ of differential op-
erators of order 1 on M (see [34]). To such a pair one can assign an index
indC∗r (G)(M,P ∗) in K0(C∗r (G)) (see [244]) which is the image of η under the
assembly map K0(BG)→ K0(C∗r (G)) appearing in Conjecture 1.1. With this
interpretation the surjectivity of the assembly map for a torsionfree group
says that any element in K0(C∗r (G)) can be realized as an index. This allows
to apply index theorems to get interesting information.

Here is a prototype of such an argument. The standard trace

trC∗r (G) : C∗r (G)→ C (1.8)

sends an element f ∈ C∗r (G) ⊆ B(l2(G)) to 〈f(1), 1〉l2(G). Applying the trace
to idempotent matrices yields a homomorphism

trC∗r (G) : K0(C∗r (G))→ R.

Let pr : BG → {•} be the projection. For a group G the following diagram
commutes

K0(BG)

K0(pr)

��

A // K0(C∗r (G))
trC∗r (G)// R

K0({•})
∼= // K0(C)

trC

∼= // Z.

i

OO (1.9)

Here i : Z→ R is the inclusion and A is the Baum-Connes assembly map. This
non-trivial statement follows from Atiyah’s L2-index theorem [13]. Atiyah’s
theorem says that the L2-index trC∗r (G) ◦A(η) of an element η ∈ K0(BG),
which is represented by a pair (M,P ∗), agrees with the ordinary index of
(G\M ;G\P ∗), which is trC ◦K0(pr)(η) ∈ Z.

The following conjecture is taken from [32, page 21].
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Conjecture 1.10. (Trace Conjecture for Torsionfree Groups). For a
torsionfree group G the image of

trC∗r (G) : K0(C∗r (G))→ R

consists of the integers.

The commutativity of diagram (1.9) above implies

Corollary 1.11. The surjectivity of the Baum-Connes assembly map

K0(BG)→ K0(C∗r (G))

implies Conjecture 1.10, the Trace Conjecture for Torsionfree Groups.

1.3.2 The Kadison Conjecture and the Idempotent Conjecture

Conjecture 1.12 (Kadison Conjecture). If G is a torsionfree group, then
the only idempotent elements in C∗r (G) are 0 and 1.

Lemma 1.13. The Trace Conjecture for Torsionfree Groups 1.10 implies
the Kadison Conjecture 1.12.

Proof. Assume that p ∈ C∗r (G) is an idempotent different from 0 or 1.
From p one can construct a non-trivial projection q ∈ C∗r (G), i.e. q2 = q,
q∗ = q, with im(p) = im(q) Comment 12 (By W.): Shall we state the
formula? and hence with 0 < q < 1. Since the standard trace trC∗r (G)

is faithful, we conclude trC∗r (G)(q) ∈ R with 0 < trC∗r (G)(q) < 1. Since
trC∗r (G)(q) is by definition the image of the element [im(q)] ∈ K0(C∗r (G))
under trC∗r (G) : K0(C∗r (G)) → R, we get a contradiction to the assumption
im(trC∗r (G)) ⊆ Z.

Recall that a ring R is called an integral domain if it has no non-trivial
zero-divisors, i.e. if r, s ∈ R satisfy rs = 0, then r or s is 0. Obviously the
Kadison Conjecture 1.12 implies for R ⊆ C the following.

Conjecture 1.14 (Idempotent Conjecture). Let R be an integral do-
main and let G be a torsionfree group. Then the only idempotents in RG
are 0 and 1.

The statement in the conjecture above is a purely algebraic statement. If
R ⊆ C, it is by the arguments above related to questions about operator
algebras, and thus methods from operator algebras can be used to attack it
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1.4 The Farrell-Jones Conjecture for Lower and Middle
K-Theory for Torsionfree Groups

A ring R is always understood to be associative with unit. We denote by
Kn(R) the algebraic K-group of R for n ∈ Z. In particular K0(R) is the
projective class group, i.e. the Grothendieck group of isomorphism classes of
finitely generated projective R-modules with respect to the direct sum, and
elements in K1(R) can be represented by automorphisms of finitely generated
projectiveR-modules. In this section we are mostly interested in theK-groups
Kn(R) with n ≤ 1. For definitions of these groups we refer to [241], [287],
[313], [326], [352] for n = 0, 1 and to [27] and [289] for n ≤ 1.

For a ring R and a group G we denote by

A0 = K0(i) : K0(R)→ K0(RG) (1.15)

the map induced by the natural inclusion i : R → RG. Sending (g, [P ]) ∈
G×K0(R) to the class of the RG-automorphism

R[G]⊗R P → R[G]⊗R P, u⊗ x 7→ ug−1 ⊗ x

defines a map Φ : Gab ⊗Z K0(R)→ K1(RG), where Gab denotes the abelian-
ized group. We set

A1 = Φ⊕K1(i) : Gab ⊗Z K0(R)⊕K1(R)→ K1(RG). (1.16)

We recall the notion of a regular ring. We think of modules as left mod-
ules unless stated explicitly differently. Recall that R is Noetherian if every
submodule of a finitely generated R-module is again finitely generated. It is
called regular if it is Noetherian and every R-module has a finite-dimensional
projective resolution. Any principal ideal domain such as Z or a field is reg-
ular.

Conjecture 1.17. Farrell-Jones Conjecture for Lower and Middle
K-Theory and Torsionfree Groups). Let G be a torsionfree group and
let R be a regular ring. Then

Kn(RG) = 0 for n ≤ −1

and the maps

K0(R) A0−−→ K0(RG) and

Gab ⊗Z K0(R)⊕K1(R) A1−−→ K1(RG)

are both isomorphisms.
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Every regular ring satisfies Kn(R) = 0 for n ≤ −1 [289, 5.3.30 on page 295]
and hence the first statement is equivalent to Kn(i) : Kn(R) → Kn(RG)
being an isomorphism for n ≤ −1. In Remark 1.33 below we explain why we
impose the regularity assumption on the ring R.

For a regular ring R and a group G we define WhR
1 (G) as the cokernel

of the map A1 and WhR
0 (G) as the cokernel of the map A0. In the important

case R = Z the group WhZ
1 (G) coincides with the classical Whitehead group

Wh(G) which is the quotient of K1(ZG) by the subgroup consisting of the
classes of the units ±g ∈ (ZG)inv for g ∈ G. Moreover, for every ring R we
define the reduced algebraic K-groups K̃n(R) as the cokernel of the natural
map Kn(Z)→ Kn(R). Obviously WhZ

0 (G) = K̃0(ZG).

Lemma 1.18. The map A0 is always injective. If R is commutative and the
natural map Z → K0(R), 1 7→ [R] is an isomorphism, then the map A1 is
injective.

Proof. The augmentation ε : RG → R, which maps each group element g
to 1, yields a retraction for the inclusion i : R → RG and hence induces a
retraction for A0. If the map j : Z→ K0(R), 1 7→ [R] induces an isomorphism
and R is commutative, then we have the commutative diagram

Gab ⊗Z K0(R)⊕K1(R)

∼= j⊕idK1(R)

��

A1 // K1(RG)

��
K1(RGab)

(det,K1(ε))

��
Gab ⊕K1(R) // RGinv

ab ⊕K1(R),

The upper vertical arrow on the right is induced from the mapG→ Gab to the
abelianization. The isomorphism j is induced by the isomorphism j above in
the obvious way. Since RGab is a commutative ring we have the determinant
det : K1(RGab)→ (RGab)inv. The lower horizontal arrow is induced from the
obvious inclusion of Gab into the invertible elements of the group ring RGab

and in particular injective.

In the special case R = Z Conjecture 1.17 above is equivalent to the
following conjecture.

Conjecture 1.19. (Vanishing of Lower and Middle K-Theory for
Torsionfree Groups and Integral Coefficients). For every torsionfree
group G we have

Kn(ZG) = 0 for n ≤ −1, K̃0(ZG) = 0 and Wh(G) = 0.
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Remark 1.20 (Torsionfree is Necessary). In general K̃0(ZG) and Wh(G)
do not vanish for finite groups. For example K̃0(Z[Z/23]) ∼= Z/3 [241,
page 29, 30] and Wh(Z/p) ∼= Z

p−3
2 for p an odd prime [78, 11.5 on page 45].

This shows that the assumption that G is torsionfree is crucial in the formu-
lation of Conjecture 1.17 above.

For more information on K̃0(ZG) and Whitehead groups of finite groups
see for instance [27, Chapter XI], [88], [240], [252], [253] and [326].

1.5 Applications of the Farrell-Jones Conjecture for
Lower and Middle K-Theory

1.5.1 The s-Cobordism Theorem and the Poincaré Conjecture

The Whitehead group Wh(G) plays a key role if one studies manifolds because
of the so called s-Cobordism Theorem. In order to state it, we explain the
notion of an h-cobordism.

Manifold always means smooth manifold unless it is explicitly stated dif-
ferently. We say that W or more precisely (W ;M−, f−,M+, f+) is an n-
dimensional cobordism over M− if W is a compact n-dimensional manifold
together with the following: a disjoint decomposition of its boundary ∂W into
two closed (n−1)-dimensional manifolds ∂−W and ∂+W , two closed (n−1)-
dimensional manifolds M− and M+ and diffeomorphisms f− : M− → ∂−W
and f+ : M+ → ∂+W . The cobordism is called an h-cobordism if the inclu-
sions i− : ∂−W → W and i+ : ∂+W → W are both homotopy equivalences.
Two cobordisms (W ;M−, f−,M+, f+) and (W ′;M−, f ′−,M ′+, f ′+) over
M− are diffeomorphic relative M− if there is a diffeomorphism F : W →W ′

with F ◦ f− = f ′−. We call a cobordism over M− trivial , if it is diffeomor-
phic relative M− to the trivial h-cobordism given by the cylinder M−× [0, 1]
together with the obvious inclusions of M− × {0} and M− × {1}. Note that
“trivial” implies in particular that M− and M+ are diffeomorphic.

The question whether a given h-cobordism is trivial is decided by the
Whitehead torsion τ(W ;M−) ∈ Wh(G) where G = π1(M−). For the de-
tails of the definition of τ(W ;M−) the reader should consult [78], [240] or
Chapter 2 in [218]. Compare also [287].

Theorem 1.21 (s-Cobordism Theorem). Let M− be a closed connected
oriented manifold of dimension n ≥ 5 with fundamental group G = π1(M−).
Then

(1) An h-cobordism W over M− is trivial if and only if its Whitehead torsion
τ(W,M−) ∈Wh(G) vanishes;

(2) Assigning to an h-cobordism over M− its Whitehead torsion yields a
bijection from the diffeomorphism classes relative M− of h-cobordisms
over M− to the Whitehead group Wh(G).
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The s-Cobordism Theorem is due to Barden, Mazur and Stallings. There
are also topological and PL-versions. Proofs can be found for instance in
[191], [194, Essay III], [218] and [295, page 87-90].

The s-Cobordism Theorem tells us that the vanishing of the Whitehead
group (as predicted in Conjecture 1.19 for torsionfree groups) has the follow-
ing geometric interpretation.

Corollary 1.22. For a finitely presented group G the vanishing of the White-
head group Wh(G) is equivalent to the statement that each h-cobordism over a
closed connected manifold M− of dimension dim(M−) ≥ 5 with fundamental
group π1(M−) ∼= G is trivial.

Knowing that all h-cobordisms over a given manifold are trivial is a strong
and useful statement. In order to illustrate this we would like to discuss the
case where the fundamental group is trivial.

Since the ring Z has a Gaussian algorithm, the determinant induces an
isomorphism K1(Z)

∼=−→ {±1} (compare [289, Theorem 2.3.2]) and the White-
head group Wh({1}) of the trivial group vanishes. Hence any h-cobordism
over a simply connected closed manifold of dimension ≥ 5 is trivial. As a
consequence one obtains the Poincaré Conjecture for high dimensional man-
ifolds.

Theorem 1.23 (Poincaré Conjecture). Suppose n ≥ 5. If the closed ma-
nifold M is homotopy equivalent to the sphere Sn, then it is homeomorphic
to Sn.

Proof. We only give the proof for dim(M) ≥ 6. Let f : M → Sn be a ho-
motopy equivalence. Let Dn

− ⊂ M and Dn
+ ⊂ M be two disjoint embedded

disks. Let W be the complement of the interior of the two disks in M . Then
W turns out to be a simply connected h-cobordism over ∂Dn

−. Hence we can
find a diffeomorphism

F : (∂Dn
− × [0, 1]; ∂Dn

− × {0}, ∂Dn
− × {1})→ (W ; ∂Dn

−, ∂D
n
+)

which is the identity on ∂Dn
− = ∂Dn

− × {0} and induces some (unknown)
diffeomorphism f+ : ∂Dn

− × {1} → ∂Dn
+. By the Alexander trick one can

extend f+ : ∂Dn
− = ∂Dn

−×{1} → ∂Dn
+ to a homeomorphism f+ : Dn

− → Dn
+.

Namely, any homeomorphism f : Sn−1 → Sn−1 extends to a homeomorphism
f : Dn → Dn by sending t · x for t ∈ [0, 1] and x ∈ Sn−1 to t · f(x). Now
define a homeomorphism h : Dn

− × {0} ∪i− ∂D
n
− × [0, 1] ∪i+ D

n
− × {1} → M

for the canonical inclusions ik : ∂Dn
− × {k} → ∂Dn

− × [0, 1] for k = 0, 1 by
h|Dn

−×{0} = id, h|∂Dn
−×[0,1] = F and h|Dn

−×{1} = f+. Since the source of h is
obviously homeomorphic to Sn, Theorem 1.23 follows.

For n ≤ 2 the Poincaré Conjecture (see Theorem 1.23) follows from
the well-known classification of 1 and 2-dimensional closed manifolds. For
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n > 4 it was proved by Smale and Newman in the sixties of the last cen-
tury. Comment 13 (By W.): Add references. Maybe there is none
for Newman but he was involved. Freedman [146] solved the case in
n = 4 in 1982. Recently Perelman announced a proof for n = 3, but this
proof has still to be checked thoroughly by the experts. Comment 14
(By W.): Later adjust this sentence depending on what the status
of the proof by Perelman is. It is essential in its formulation that one
concludes M to be homeomorphic (as opposed to diffeomorphic) to Sn. The
Alexander trick does not work differentiably. There are exotic spheres, i.e.
smooth manifolds which are homeomorphic but not diffeomorphic to Sn [238].

More information about the Poincaré Conjecture, the Whitehead torsion
and the s-Cobordism Theorem can be found for instance in [56], [78], [98],
[146], [147], [156], [191], [218], [239], [240], [242], [287] and [295].

1.5.2 The Finiteness Obstruction

We now discuss the geometric relevance of K̃0(ZG).
Let X be a CW -complex. It is called finite if it consists of finitely many

cells, or, equivalently, if it is compact. It is called finitely dominated if there
is a finite CW -complex Y together with maps i : X → Y and r : Y → X such
that r ◦ i is homotopic to the identity on X. The fundamental group of a
finitely dominated CW -complex is always finitely presented.

While studying existence problems for spaces with prescribed properties
(like for example group actions), it happens occasionally that it is relatively
easy to construct a finitely dominated CW -complex within a given homotopy
type, whereas it is not at all clear whether one can also find a homotopy equiv-
alent finite CW -complex. Wall’s finiteness obstruction, a certain obstruction
element õ(X) ∈ K̃0(Zπ1(X)), decides the question.

Theorem 1.24 (Properties of the Finiteness Obstruction). Let X be
a finitely dominated CW -complex with fundamental group π = π1(X).

(1) The space X is homotopy equivalent to a finite CW -complex if and only
if õ(X) = 0 in K̃0(Zπ);

(2) Every element in K̃0(ZG) can be realized as the finiteness obstruction
õ(X) of a finitely dominated CW -complex X with G = π1(X), provided
that G is finitely presented;

(3) Let Z be a space such that G = π1(Z) is finitely presented. Then there
is a bijection between K̃0(ZG) and the set of equivalence classes of maps
f : X → Z with X finitely dominated under the equivalence relation ex-
plained below.

The equivalence relation in (iii) is defined as follows: Two maps f : X → Z
and f ′ : X ′ → Z with X and X ′ finitely dominated are equivalent if there
exists a commutative diagram
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X

f
((QQQQQQQQQQQQQQQQ

j // X1

f1

!!CC
CC

CC
CC

h // X2

f2

��

X3

f3

}}{{
{{
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h′oo X ′

f ′
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j′oo

Z

,

where h and h′ are homotopy equivalences and j and j′ are inclusions of
subcomplexes for which X1, respectively X3, is obtained from X, respectively
X ′, by attaching a finite number of cells.

The vanishing of K̃0(ZG) as predicted in Conjecture 1.19 for torsionfree
groups hence has the following interpretation.

Corollary 1.25. For a finitely presented group G the vanishing of K̃0(ZG)
is equivalent to the statement that any finitely dominated CW -complex X
with G ∼= π1(X) is homotopy equivalent to a finite CW -complex.

For more information about the finiteness obstruction we refer for instance
to [140], [141], [214], [245], [278], [287], [336], [346] and [347].

1.5.3 Negative K-Groups and Bounded h-Cobordisms

One possible geometric interpretation of negative K-groups is in terms of
bounded h-cobordisms. Another interpretation in terms of pseudoisotopies
will be explained in Subsection 1.7.2 below.

We consider manifolds W parametrized over Rk, i.e. manifolds which are
equipped with a surjective proper map p : W → Rk. We will always assume
that the fundamental group(oid) is bounded, compare [260, Definition 1.3].
A map f : W →W ′ between two manifolds parametrized over Rk is bounded
if {p′ ◦ f(x)− p(x) | x ∈W} is a bounded subset of Rk.

A bounded cobordism (W ;M−, f−,M+, f+) is defined just as in Subsec-
tion 1.5.1 but compact manifolds are replaced by manifolds parametrized
over Rk and the parametrization for M± is given by pW ◦ f±. If we assume
that the inclusions i± : ∂±W → W are homotopy equivalences, then there
exist deformations r± : W × I →W , (x, t) 7→ r±t (x) such that r±0 = idW and
r±1 (W ) ⊂ ∂±W .

A bounded cobordism is called a bounded h-cobordism if the inclusions i±

are homotopy equivalences and additionally the deformations can be chosen
such that the two sets

S± = {pW ◦ r±t (x)− pW ◦ r±1 (x) | x ∈W, t ∈ [0, 1]}

are bounded subsets of Rk.
The following theorem (compare [260] and [357, Appendix]) contains the

s-Cobordism Theorem 1.21 as a special case, gives another interpretation of
elements in K̃0(Zπ) and explains one aspect of the geometric relevance of
negative K-groups.
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Theorem 1.26 (Bounded h-Cobordism Theorem). Suppose that M−

is parametrized over Rk and satisfies dimM− ≥ 5. Let π be its fundamen-
tal group(oid). Equivalence classes of bounded h-cobordisms over M− modulo
bounded diffeomorphism relative M− correspond bijectively to elements in
κ1−k(π), where

κ1−k(π) =


Wh(π) if k = 0,
K̃0(Zπ) if k = 1,
K1−k(Zπ) if k ≥ 2.

The vanishing of K̃0(ZG) as predicted in Conjecture 1.19 for torsionfree
groups hence has the following interpretation.

Corollary 1.27. For a finitely presented group G the vanishing of K̃1−k(ZG)
for k ≥ 1 is equivalent to the statement that each bounded h-cobordism over
a closed connected manifold M− of dimension dim(M−) ≥ 5 parametrized
over Rk with fundamental group π1(M−) ∼= G is trivial.

More information about negative K-groups can be found for instance
in [9], [27], [63], [64], [128], [232], [259], [260], [273], [280], [289] and [357,
Appendix].

1.6 The Farrell-Jones Conjecture for K-Theory for
Torsionfree Groups

So far we only considered the K-theory groups in dimensions ≤ 1. We now
want to explain how Conjecture 1.17 generalizes to higher algebraicK-theory.
For the definition of higher algebraic K-theory groups and the (connective)
K-theory spectrum see [41], [58], [174], [270], [289], [319], [344] and [352]. We
would like to stress that for us K(R) will always denote the non-connective
algebraic K-theory spectrum for which Kn(R) = πn(K(R)) holds for all n ∈
Z. For its definition see [58], [212] and [258].

The Farrell-Jones Conjecture for algebraic K-theory reduces for a tor-
sionfree group to the following conjecture.

Conjecture 1.28. Farrell-Jones Conjecture for K-Theory and Tor-
sionfree Groups). Let G be a torsionfree group. Let R be a regular ring.
Then the assembly map

Hn(BG;K(R))→ Kn(RG)

is an isomorphism for n ∈ Z.

Here Hn(−;K(R)) denotes the homology theory which is associated to
the spectrum K(R). It has the property that Hn({•};K(R)) is Kn(R) for
n ∈ Z, where here and elsewhere {•} denotes the space consisting of one
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point. The space BG is the classifying space of the group G, which up to
homotopy is characterized by the property that it is a CW -complex with
π1(BG) ∼= G whose universal covering is contractible. The technical details
of the construction of Hn(−;K(R)) and the assembly map will be explained
in a more general setting later. Comment 15 (By W.): Add reference.

The point of Conjecture 1.28 is that on the right-hand side of the assembly
map we have the group Kn(RG) we are interested in, whereas the left-hand
side is a homology theory and hence much easier to compute. For every homol-
ogy theory associated to a spectrum we have the Atiyah-Hirzebruch spectral
sequence, which in our case has E2

p,q = Hp(BG;Kq(R)) and converges to
Hp+q(BG;K(R)).

If R is regular, then the negative K-groups of R vanish and the spectral
sequence lives in the first quadrant. Evaluating the spectral sequence for
n = p+ q ≤ 1 shows that Conjecture 1.28 above implies Conjecture 1.17.

Remark 1.29. (Rational Computation). Rationally an Atiyah-Hirzebruch
spectral sequence collapses always and the homological Chern character gives
an isomorphism

ch:
⊕

p+q=n

Hp(BG; Q)⊗Q (Kq(R)⊗Z Q)
∼=−→ Hn(BG;K(R))⊗Z Q.

The Atiyah-Hirzebruch spectral sequence and the Chern character will be
discussed in a much more general setting in Chapter 8.

Remark 1.30 (Separation of Variables). We see that the left-hand side
of the isomorphism in the previous remark consists of a group homology
part and a part which is the rationalized K-theory of R. (Something similar
happens before we rationalize at the level of spectra: The left hand side of
Conjecture 1.28 can be interpreted as the homotopy groups of the spectrum
BG+∧K(R).) So essentially Conjecture 1.28 predicts that the K-theory of
RG is built up out of two independent parts: the K-theory of R and the group
homology of G. We call this principle separation of variables. This principle
also applies to other theories such as algebraic L-theory or topological K-
theory. See also Remark 8.13.

Remark 1.31. (K-Theory of the Coefficients). Note that Conjecture 1.28
can only help us to explicitly compute the K-groups of RG in cases where we
know enough about the K-groups of R. We obtain no new information about
the K-theory of R itself. However, already for very simple rings the compu-
tation of their algebraic K-theory groups is an extremely hard problem.

It is known that the groups Kn(Z) are finitely generated abelian groups
[269]. Due to Borel [45] we know that

Kn(Z)⊗Z Q ∼=

Q if n = 0;
Q if n = 4k + 1 with k ≥ 1;
0 otherwise.
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Since Z is regular we know that Kn(Z) vanishes for n ≤ −1. Moreover,
K0(Z) ∼= Z and K1(Z) ∼= {±1}, where the isomorphisms are given by the
rank and the determinant. One also knows that K2(Z) ∼= Z/2, K3(Z) ∼= Z/48
[207] and K4(Z) ∼= 0 [285].

Finite fields belong to the few rings where one has a complete and explicit
knowledge of all K-theory groups [268]. We refer the reader for example to
[195], [247], [286], [351] and Soulé’s article in [211] for more information about
the algebraic K-theory of the integers or more generally of rings of integers
in number fields.

Because of Borel’s calculation the left hand side of the isomorphism de-
scribed in Remark 1.29 specializes for R = Z to

Hn(BG; Q)⊕
∞⊕

k=1

Hn−(4k+1)(BG; Q) (1.32)

and Conjecture 1.28 predicts that this group is isomorphic to Kn(ZG)⊗Z Q.

Next we discuss the case where the group G is infinite cyclic.

Remark 1.33 (Bass-Heller-Swan Decomposition). The so called Bass-
Heller-Swan-decomposition, also known as the Fundamental Theorem of al-
gebraic K-theory, computes the algebraic K-groups of R[Z] in terms of the
algebraic K-groups and Nil-groups of R:

Kn(R[Z]) ∼= Kn−1(R)⊕Kn(R)⊕NKn(R)⊕NKn(R).

Here the group NKn(R) is defined as the cokernel of the split injection
Kn(R) → Kn(R[t]). It can be identified with the cokernel of the split in-
jection Kn−1(R) → Kn−1(Nil(R)). Here Kn(Nil(R)) denotes the K-theory
of the exact category of nilpotent endomorphisms of finitely generated pro-
jective R-modules. For negative n it is defined with the help of Bass’ notion of
a contracting functor [27] (see also [63]). The groups are known as Nil-groups
and often denoted Niln−1(R).

For proofs of these facts and more information the reader should consult
[27, Chapter XII], [30], [150, Theorem on page 236], [270, Corollary in §6
on page 38], [289, Theorems 3.3.3 and 5.3.30], [319, Theorem 9.8] and [327,
Theorem 10.1].

If we iterate and use R[Zn] = R[Zn−1][Z] we see that a computation of
Kn(RG) must in general take into account information about Ki(R) for all
i ≤ n. In particular we see that it is important to formulate Conjecture 1.28
with the non-connective K-theory spectrum.

Since S1 is a model for BZ, we get an isomorphism

Hn(BZ;K(R)) ∼= Kn−1(R)⊕Kn(R)

and hence Conjecture 1.28 predicts
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Kn(R[Z]) ∼= Kn−1(R)⊕Kn(R).

This explains why in the formulation of Conjecture 1.28 the condition that
R is regular appears. It guarantees that NKn(R) = 0 [289, Theorem 5.3.30
on page 295]. There are weaker conditions which imply that NKn(R) = 0
but “regular” has the advantage that R regular implies that R[t] and R[Z] =
R[t±1] are again regular, compare the discussion in Section 2 in [28].

The Nil-terms NKn(R) seem to be hard to compute. For instance NK1(R)
either vanishes or is infinitely generated as an abelian group [110]. In Subsec-
tion 2.13.3 we will discuss the Isomorphism Conjecture for NK-groups. For
more information about Nil-groups see for instance [81], [83], [162], [353] and
[354].

In Example 2.14 we will explain what the Farrell-Jones Conjecture pre-
dicts for K∗(RG) if G is a torsionfree word-hyperbolic group and R is a (not
necessary regular) ring.

1.7 Applications of the Farrell-Jones Conjecture for
K-Theory for Torsionfree Groups

1.7.1 The Relation to Pseudoisotopy Theory

Let I denote the unit interval [0, 1]. A topological pseudoisotopy of a compact
manifold M is a homeomorphism h : M × I → M × I, which restricted to
M × {0} ∪ ∂M × I is the obvious inclusion. The space P (M) of pseudoiso-
topies is the (simplicial) group of all such homeomorphisms. Pseudoisotopies
play an important role if one tries to understand the homotopy type of the
space Top(M) of self-homeomorphisms of a manifold M . We will see below
in Subsection 1.9.2 how the results about pseudoisotopies discussed in this
section combined with surgery theory lead to quite explicit results about the
homotopy groups of Top(M).

There is a stabilization map P (M) → P (M × I) given by crossing a
pseudoisotopy with the identity on the interval I and the stable pseudoisotopy
space is defined as P(M) = colimk P (M × Ik). In fact P(−) can be extended
to a functor on all spaces [159]. The natural inclusion P (M)→ P(M) induces
an isomorphism on the i-th homotopy group if the dimension of M is large
compared to i, see [49] and [173].

Waldhausen [343], [344] defines the algebraic K-theory of spaces functor
A(X) and the functor WhPL(X) from spaces to spectra (or infinite loop
spaces) and a fibration sequence

X+∧A({•})→ A(X)→WhPL(X).

Here X+∧A({•}) → A(X) is an assembly map, which can be compared to
the algebraic K-theory assembly map that appears in Conjecture 1.28 via a
commutative diagram
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Hn(X;A({•}))

��

//

��

πn(A(X))

��
Hn(Bπ1(X);K(Z)) // Kn(Zπ1(X)).

In the case where X ' BG is aspherical the vertical maps induce isomor-
phisms after rationalization for n ≥ 1, compare [343, Proposition 2.2]. Since
Ω2 WhPL(X) ' P(X) (a guided tour through the literature concerning this
and related results can be found in [104, Section 9]), Conjecture 1.28 implies
rational vanishing results for the groups πn(P(M)) if M is an aspherical
manifold. Compare also Remark 2.82.

Corollary 1.34. Suppose M is a closed aspherical manifold and Conjec-
ture 1.28 holds for R = Z and G = π1(M), then for all n ≥ 0

πn(P(M))⊗Z Q = 0.

Similarly as above one defines smooth pseudoisotopies and the space
of stable smooth pseudoisotopies PDiff(M). There is also a smooth ver-
sion of the Whitehead space WhDiff(X) and Ω2 WhDiff(M) ' PDiff(M).
Again there is a close relation to A-theory via the natural splitting A(X) '
Σ∞(X+) ∨ WhDiff(X), see [345]. Here Σ∞(X+) denotes the suspension
spectrum associated to X+. Using this one can split off an assembly map
Hn(X;WhDiff({•})) → πn(WhDiff(X)) from the A-theory assembly map.
Since for every space πn(Σ∞(X+)) ⊗Z Q ∼= Hn(X; Q) Conjecture 1.28 com-
bined with the rational computation in (1.32) yields the following result.

Corollary 1.35. Suppose M is a closed aspherical manifold and Conjec-
ture 1.28 holds for R = Z and G = π1(M). Then for n ≥ 0 we have

πn(PDiff(M))⊗Z Q =
∞⊕

k=1

Hn−4k+1(M ; Q).

1.7.2 Negative K-Groups and Bounded Pseudoisotopies

We briefly explain a further geometric interpretation of negative K-groups,
which parallels the discussion of bounded h-cobordisms in Subsection 1.5.3.

Let p : M×Rk → Rk denote the natural projection. The space Pb(M ; Rk)
of bounded pseudoisotopies is the space of all self-homeomorphisms h : M ×
Rk × I →M ×Rk × I such that restricted to M ×Rk ×{0} the map h is the
inclusion and such that h is bounded, i.e. the set {p ◦ h(y) − p(y) | y ∈
M × Rk × I} is a bounded subset of Rk. There is again a stabilization
map Pb(M ; Rk) → Pb(M × I; Rk) and a stable bounded pseudoisotopy
space Pb(M ; Rk) = colimj Pb(M × Ij ; Rk). There is a homotopy equivalence
Pb(M ; Rk) → ΩPb(M ; Rk+1) [159, Appendix II] and hence the sequence of
spaces Pb(M ; Rk) for k = 0, 1, . . . is an Ω-spectrum P(M). Analogously one
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defines the smooth bounded pseudoisotopies Pdiff
b (M ; Rk) and an Ω-spectrum

Pdiff(M). The negative homotopy groups of these spectra have an interpreta-
tion in terms of low and negative dimensional K-groups. In terms of unstable
homotopy groups this is explained in the following theorem which is closely
related to Theorem 1.26 about bounded h-cobordisms.

Theorem 1.36 (Negative Homotopy Groups of Pseudoisotopies). Let
G = π1(M). Suppose n and k are such that n + k ≥ 0, then for k ≥ 1 there
are isomorphisms

πn+k(Pb(M ; Rk)) =


Wh(G) if n = −1,
K̃0(ZG) if n = −2,
Kn+2(ZG) if n < −2

The same result holds in the smooth case.

Note that Conjecture 1.28 predicts that these groups vanish if G is tor-
sionfree. The result above is due to Anderson and Hsiang [9] and is also
discussed in [357, Appendix].

1.8 The Farrell-Jones Conjecture for L-Theory for
Torsionfree Groups

We now move on to the L-theoretic version of the Farrell-Jones Conjecture.
We will still stick to the case where the group is torsionfree. The conjec-
ture is obtained by replacing K-theory and the K-theory spectrum in Con-
jecture 1.28 by 4-periodic L-theory and the L-theory spectrum L〈−∞〉(R).
Explanations will follow below.

Conjecture 1.37. Farrell-Jones Conjecture for L-Theory and Tor-
sionfree Groups). Let G be a torsionfree group and let R be a ring with
involution. Then the assembly map

Hn(BG;L〈−∞〉(R))→ L〈−∞〉n (RG)

is an isomorphism for n ∈ Z.

To a ring with involution one can associate (decorated) symmetric or
quadratic algebraic L-groups, compare [50], [51], [277], [280] and [362]. We
will exclusively deal with the quadratic algebraic L-groups and denote them
by L

〈j〉
n (R). Here n ∈ Z and j ∈ {−∞} q {j ∈ Z | j ≤ 2} is the so called

decoration. The decorations j = 0, 1 correspond to the decorations p, h and
j = 2 is related to the decoration s appearing in the literature. Decorations
will be discussed in Remark 1.39 below. The L-groups L〈j〉n (R) are 4-periodic,
i.e. L〈j〉n (R) ∼= L

〈j〉
n+4(R) for n ∈ Z.
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If we are given an involution r 7→ r on a ring R, we will always equip
RG with the involution that extends the given one and satisfies g = g−1.
On Z, Q and R we always use the trivial involution and on C the complex
conjugation.

One can construct an L-theory spectrum L〈j〉(R) such that πn(L〈j〉(R)) =
L
〈j〉
n (R), compare [279, § 13]. Above and in the sequel Hn(−;L〈j〉(R)) denotes

the homology theory which is associated to this spectrum. In particular we
haveHn({•};L〈j〉(R)) = L

〈j〉
n (R). We postpone the discussion of the assembly

map to where we will construct it in greater generality. Comment 16 (By
W.): Add reference or drop this sentence.

Remark 1.38 (The Coefficients in the L-Theory Case). In contrast to
K-theory (compare Remark 1.31) the L-theory of the most interesting coef-
ficient ring R = Z is well known. The groups L〈j〉n (Z) for fixed n and varying
j ∈ {−∞} q {j ∈ Z | j ≤ 2} are all naturally isomorphic (compare Propo-
sition 1.42 below) and we have L〈j〉0 (Z) ∼= Z and L

〈j〉
2 (Z) ∼= Z/2, where the

isomorphisms are given by the signature divided by 8 and the Arf invariant,
and L

〈j〉
1 (Z) = L

〈j〉
3 (Z) = 0, see [47, Chapter III], [277, Proposition 4.3.1 on

page 419].

Remark 1.39 (Decorations). L-groups are designed as obstruction groups
for surgery problems. The decoration reflects what kind of surgery problem
one is interested in. All L-groups can be described as cobordism classes of
suitable quadratic Poincaré chain complexes. If one works with chain com-
plexes of finitely generated free based R-modules and requires that the tor-
sion of the Poincaré chain homotopy equivalence vanishes in K̃1(R), then
the corresponding L-groups are denoted L

〈2〉
n (R). If one drops the torsion

condition, one obtains L〈1〉n (R), which is usually denoted Lh(R). If one works
with finitely generated projective modules, one obtains L〈0〉(R), which is also
known as Lp(R).

The L-groups with negative decorations can be defined inductively via the
Shaneson splitting, compare Remark 1.47 below. Assuming that the L-groups
with decorations j have already been defined one sets

L<j−1>
n−1 (R) = coker(L<j>

n (R)→ L<j>
n (R[Z])).

Compare [280, Definition 17.1 on page 145]. Alternatively these groups can be
obtained via a process which is in the spirit of Subsection 1.5.3. One can define
them as L-theory groups of suitable categories of modules parametrized over
Rk. For details the reader could consult [61, Section 4]. There are forgetful
maps L〈j+1〉

n (R) → L
〈j〉
n (R). The group L

〈−∞〉
n (R) is defined as the colimit

over these maps. For more information see [275], [280].
For group rings we also define Ls

n(RG) similar to L〈2〉n (RG) but we require
the torsion to lie in imA1 ⊂ K̃1(RG), where A1 is the map defined in (1.16).
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Observe that Ls
n(RG) really depends on the pair (R,G) and differs in general

from L
〈2〉
n (RG).

Remark 1.40 (The Interplay of K- and L-Theory). For j ≤ 1 there
are forgetful maps L〈j+1〉

n (R) → L
〈j〉
n (R) which sit inside the following se-

quence, which is known as the Rothenberg sequence [277, Proposition 1.10.1
on page 104], [280, 17.2]

· · · → L〈j+1〉
n (R)→ L〈j〉n (R)→ Ĥn(Z/2; K̃j(R))

→ L
〈j+1〉
n−1 (R)→ L

〈j〉
n−1(R)→ · · · . (1.41)

Here Ĥn(Z/2; K̃j(R)) is the Tate-cohomology of the group Z/2 with coeffi-
cients in the Z[Z/2]-module K̃j(R). The involution on K̃j(R) comes from the
involution on R. There is a similar sequence relating Ls

n(RG) and Lh
n(RG),

where the third term is the Z/2-Tate-cohomology of WhR
1 (G). Note that Tate-

cohomology groups of the group Z/2 are always annihilated by multiplication
with 2. In particular L〈j〉n (R)[ 12 ] = L

〈j〉
n (R) ⊗Z Z[ 12 ] is always independent of

j.
Let us formulate explicitly what we obtain from the above sequences for

R = ZG.

Proposition 1.42. Let G be a torsionfree group, then Conjecture 1.19 about
the vanishing of Wh(G), K̃0(ZG) and K−i(ZG) for i ≥ 1 implies that for fixed
n and varying j ∈ {−∞} q {j ∈ Z | j ≤ 1} the L-groups L〈j〉n (ZG) are all
naturally isomorphic and moreover L〈1〉n (ZG) = Lh

n(ZG) ∼= Ls
n(ZG).

Remark 1.43 (Rational Computation). As in theK-theory case we have
an Atiyah-Hirzebruch spectral sequence:

E2
p,q = Hp(BG;L〈−∞〉q (R)) ⇒ Hp+q(BG;L〈−∞〉(R)).

Rationally this spectral sequence collapses and the homological Chern char-
acter gives for n ∈ Z an isomorphism

ch:
⊕

p+q=n

Hp(BG; Q)⊗Q

(
L〈−∞〉q (R)⊗Z Q

)
∼=−→ Hn(BG;L〈−∞〉(R))⊗Z Q. (1.44)

In particular we obtain in the case R = Z from Remark 1.38 for all n ∈ Z
and all decorations j an isomorphism

ch:
⊕∞

k=0Hn−4k(BG; Q)
∼= // Hn(BG;L〈j〉(Z))⊗Z Q. (1.45)

This spectral sequence and the Chern character above will be discussed in a
much more general setting in Chapter 8.
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Remark 1.46 (Torsionfree is Necessary). If G is finite, R = Z and n =
0, then the rationalized left hand side of the assembly equals Q, whereas the
right hand side is isomorphic to the rationalization of the real representation
ring. Since the group homology of a finite group vanishes rationally except in
dimension 0, the previous remark shows that we need to assume the group
to be torsionfree in Conjecture 1.37

Remark 1.47 (Shaneson splitting). The Bass-Heller-Swan decomposition
in K-theory (see Remark 1.33) has the following analogue for the algebraic
L-groups, which is known as the Shaneson splitting [311]

L〈j〉n (R[Z]) ∼= L
〈j−1〉
n−1 (R)⊕ L〈j〉n (R). (1.48)

Here for the decoration j = −∞ one has to interpret j − 1 as −∞. Since S1

is a model for BZ, we get an isomorphisms

Hn(BZ;L〈j〉(R)) ∼= L
〈j〉
n−1(R)⊕ L〈j〉n (R).

This explains why in the formulation of the L-theoretic Farrell-Jones Con-
jecture for torsionfree groups (see Conjecture 1.37) we use the decoration
j = −∞.

As long as one deals with torsionfree groups and one believes in the low
dimensional part of the K-theoretic Farrell-Jones Conjecture (predicting the
vanishing of Wh(G), K̃0(ZG) and of the negative K-groups, see Conjec-
ture 1.19) there is no difference between the various decorations j, compare
Proposition 1.42. But as soon as one allows torsion in G, the decorations
make a difference and it indeed turns out that if one replaces the decora-
tion j = −∞ by j = s, h or p there are counterexamples for the L-theoretic
version of Conjecture 2.5 even for R = Z [138].

Even though in the above Shaneson splitting (1.48) there are no terms
analogous to the Nil-terms in Remark 1.33 such Nil-phenomena do also oc-
cur in L-theory, as soon as one considers amalgamated free products. The
corresponding groups are the UNil-groups. They vanish if one inverts 2 [55].
For more information about the UNil-groups we refer to [19] [52], [53], [83],
[86], [111], [281].

1.9 Applications of the Farrell-Jones Conjecture for
L-Theory for Torsionfree Groups

1.9.1 The Borel Conjecture

One of the driving forces for the development of the Farrell-Jones Conjec-
tures is still the following topological rigidity conjecture about closed aspher-
ical manifolds, compare [122]. Recall that a manifold, or more generally a
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CW -complex, is called aspherical if its universal covering is contractible. An
aspherical CW -complex X with π1(X) = G is a model for the classifying
space BG. If X is an aspherical manifold and hence finite dimensional, then
G is necessarily torsionfree.

Conjecture 1.49 (Borel Conjecture). Let f : M → N be a homotopy
equivalence of aspherical closed topological manifolds. Then f is homotopic
to a homeomorphism. In particular two closed aspherical manifolds with iso-
morphic fundamental groups are homeomorphic.

Closely related to the Borel Conjecture is the conjecture that each as-
pherical finitely dominated Poincaré complex is homotopy equivalent to a
closed topological manifold. The Borel Conjecture 1.49 is false in the smooth
category, i.e. if one replaces topological manifold by smooth manifold and
homeomorphism by diffeomorphism [121].

Using surgery theory one can show that in dimensions ≥ 5 and the ori-
entable case the Borel Conjecture is implied by the K-theoretic vanishing
Conjecture 1.19 combined with the L-theoretic Farrell-Jones Conjecture.

Theorem 1.50. The Farrell-Jones Conjecture implies the Borel Con-
jecture). Let G be a torsionfree group. If Wh(G), K̃0(ZG) and all the groups
K−i(ZG) with i ≥ 1 vanish and if the assembly map

Hn(BG;L〈−∞〉(Z))→ L〈−∞〉n (ZG)

is an isomorphism for all n, then the Borel Conjecture holds for all orientable
manifolds of dimension ≥ 5 whose fundamental group is G.

The Borel Conjecture 1.49 can be reformulated in the language of surgery
theory to the statement that the topological structure set Stop(M) of an
aspherical closed oriented topological manifold M consists of a single point.
This set is the set of equivalence classes of orientation preserving homotopy
equivalences f : M ′ → M with a topological closed manifold as source and
M as target under the equivalence relation, for which f0 : M0 → M and
f1 : M1 →M are equivalent if there is a homeomorphism g : M0 →M1 such
that f1 ◦ g and f0 are homotopic.

The surgery sequence of a closed oriented topological manifold M of di-
mension n ≥ 5 is the exact sequence

· · · → Nn+1(M × [0, 1],M × {0, 1}) σ−→ Ls
n+1(Zπ1(M)) ∂−→ Stop(M)

η−→ Nn(M) σ−→ Ls
n(Zπ1(M)),

which extends infinitely to the left. It is the basic tool for the classification
of topological manifolds. (There is also a smooth version of it.) The map σ
appearing in the sequence sends a normal map of degree one to its surgery
obstruction. This map can be identified with the version of the L-theory as-
sembly map where one works with the 1-connected cover Ls(Z)〈1〉 of Ls(Z).
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The map Hk(M ;Ls(Z)〈1〉)→ Hk(M ;Ls(Z)) is injective for k = n and an iso-
morphism for k > n. Because of the K-theoretic assumptions we can replace
the s-decoration with the 〈−∞〉-decoration, compare Proposition 1.42. There-
fore the Farrell-Jones Conjecture 1.37 implies that the maps σ : Nn(M) →
Ls

n(Zπ1(M)) and Nn+1(M × [0, 1],M × {0, 1}) σ−→ Ls
n+1(Zπ1(M)) are injec-

tive respectively bijective and thus by the surgery sequence that Stop(M) is
a point and hence the Borel Conjecture 1.49 holds for M . More details can
be found e.g. in [142, pages 17,18,28], [279, Chapter 18].

For more information about surgery theory we refer for instance to [47],
[50], [51], [136], [137], [185], [196], [274], [321], [320], and [349].

1.9.2 Automorphisms of Manifolds

If one additionally also assumes the Farrell-Jones Conjectures for higher K-
theory, one can combine the surgery theoretic results with the results about
pseudoisotopies from Subsection 1.7.1 to obtain the following results.

Theorem 1.51 (Homotopy Groups of Top(M)). Let M be an orientable
closed aspherical manifold of dimension > 10 with fundamental group G.
Suppose the L-theory assembly map

Hn(BG;L〈−∞〉(Z))→ L〈−∞〉n (ZG)

is an isomorphism for all n and suppose the K-theory assembly map

Hn(BG;K(Z))→ Kn(ZG)

is an isomorphism for n ≤ 1 and a rational isomorphism for n ≥ 2. Then for
1 ≤ i ≤ (dimM − 7)/3 one has

πi(Top(M))⊗Z Q =
{

center(G)⊗Z Q if i = 1,
0 if i > 1

In the smooth case one additionally needs to study involutions on the
higher K-theory groups. The corresponding result reads:

Theorem 1.52 (Homotopy Groups of Diff(M)). Let M be an orientable
closed aspherical smooth manifold of dimension > 10 with fundamental group
G. Then under the same assumptions as in Theorem 1.51 we have for 1 ≤
i ≤ (dimM − 7)/3

πi(Diff(M))⊗Z Q =


center(G)⊗Z Q if i = 1;⊕∞

j=1H(i+1)−4j(M ; Q) if i > 1 and dimM odd ;
0 if i > 1 and dimM even .

See for instance [112], [124, Section 2] and [135, Lecture 5]. For a modern
survey on automorphisms of manifolds we refer to [359].
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1.10 Other Related Conjectures for Torsionfree Groups

We would now like to mention several conjectures which are not directly
implied by the Baum-Connes or Farrell-Jones Conjectures, but which are
closely related to the Kadison Conjecture and the Idempotent Conjecture
mentioned above.

1.10.1 Zero-Divisor Conjecture

The next conjecture is also called the Kaplansky Conjecture.

Conjecture 1.53 (Zero-Divisor-Conjecture). Let R be an integral do-
main and G be a torsionfree group. Then RG is an integral domain.

Obviously the Zero-Divisor-Conjecture 1.53 implies the Idempotent Con-
jecture 1.14. The Zero-Divisor-Conjecture for R = Q is implied by the
following version of the Atiyah Conjecture (see [220, Lemma 10.5 and
Lemma 10.15]).

1.10.2 Atiyah Conjecture

Conjecture 1.54. (Atiyah-Conjecture for Torsionfree Groups). Let
G be a torsionfree group and let M be a closed Riemannian manifold. Let
M → M be a regular covering with G as group of deck transformations.
Then all L2-Betti numbers b(2)p (M ;N (G)) are integers.

For the precise definition and more information about L2-Betti numbers
and the group von Neumann algebra N (G) we refer for instance to [220],
[223].

This more geometric formulation of the Atiyah Conjecture is in fact im-
plied by the following more operator theoretic version. (The two would be
equivalent if one would work with rational instead of complex coefficients
below.)

Conjecture 1.55. (Strong Atiyah-Conjecture for Torsionfree Groups).
Let G be a torsionfree group. Then for all (m,n)-matrices A over CG the

von Neumann dimension of the kernel of the induced G-equivariant bounded
operator

r
(2)
A : l2(G)m → l2(G)n

is an integer.

The Strong Atiyah-Conjecture for Torsionfree Groups 1.55 implies both
the Atiyah-Conjecture for Torsionfree Groups 1.54 [220, Lemma 10.5 on
page 371] and the Zero-Divisor-Conjecture 1.53 for R = C [220, Lemma 10.15
on page 376].
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1.10.3 The Embedding Conjecture and the Unit Conjecture

Conjecture 1.56 (Embedding Conjecture). Let G be a torsionfree group.
Then CG admits an embedding into a skewfield.

The Embedding Conjecture implies the Zero-Divisor-Conjecture 1.53 for
R = C. If G is a torsionfree amenable group, then the Strong Atiyah-
Conjecture for Torsionfree Groups 1.55 and the Zero-Divisor-Conjecture 1.53
for R = C are equivalent [220, Lemma 10.16 on page 376]. For more informa-
tion about the Atiyah Conjecture we refer for instance to [210], [220, Chapter
10] and [282].

Finally we would like to mention the Unit Conjecture.

Conjecture 1.57 (Unit-Conjecture). Let R be an integral domain and G
be a torsionfree group. Then every unit in RG is trivial, i.e. of the form r · g
for some unit r ∈ Rinv and g ∈ G.

The Unit Conjecture 1.57 implies the Zero-Divisor-Conjecture 1.53. For a
proof of this fact and for more information we refer to [205, Proposition 6.21
on page 95].

1.10.4 L2-Rho-Invariants and L2-Signatures

Let M be a closed connected orientable Riemannian manifold. Denote by
η(M) ∈ R the eta-invariant of M and by η(2)(M̃) ∈ R the L2-eta-invariant of
the π1(M)-covering given by the universal covering M̃ →M . Let ρ(2)(M) ∈ R
be the L2-rho-invariant which is defined to be the difference η(2)(M̃)−η(M).
These invariants were studied by Cheeger and Gromov [72], [73]. They show
that ρ(2)(M) depends only on the diffeomorphism type ofM and is in contrast
to η(M) and η(2)(M̃) independent of the choice of Riemannian metric on M .
The following conjecture is taken from Mathai [233].

Conjecture 1.58. (Homotopy Invariance of the L2-Rho-Invariant
for Torsionfree Groups). If π1(M) is torsionfree, then ρ(2)(M) is a ho-
motopy invariant.

Chang-Weinberger [69] assign to a closed connected oriented (4k − 1)-
dimensional manifold M a Hirzebruch-type invariant τ (2)(M) ∈ R as follows.
By a result of Hausmann [160] there is a positive integer r and a closed
connected oriented 4k-dimensional manifold W such that r ·M = ∂W holds
for the disjoint union r · M of r copies of M and the inclusion of every
boundary component of ∂W into W induces an injection on the fundamental
groups. Define τ (2)(M) as 1

r · sign(2)(W̃ )− sign(W ), where sign(2)(W̃ ) is the
L2-signature of the π1(W )-covering given by the universal covering W̃ →W
and sign(W ) is the signature ofW . This is indeed independent of the choice of
W . It is reasonable to believe that ρ(2)(M) = τ (2)(M) is always true. Chang-
Weinberger [69] use τ (2) to prove that if π1(M) is not torsionfree there are
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infinitely many diffeomorphically distinct manifolds of dimension 4k−1 with
k ≥ 2, which are tangentially simple homotopy equivalent to M .

Theorem 1.59 (Homotopy Invariance of τ (2)(M) and ρ(2)(M)). Let M
be a closed connected oriented (4k − 1)-dimensional manifold M such that
G = π1(M) is torsionfree.

(1) If the assembly map K0(BG)→ K0(C∗max(G)) for the maximal group C∗-
algebra is surjective (see Subsection 2.12.2), then ρ(2)(M) is a homotopy
invariant;

(2) Suppose that the Farrell-Jones Conjecture for L-theory 1.37 is rationally
true for R = Z, i.e. the rationalized assembly map

Hn(BG;L〈−∞〉(Z))⊗Z Q→ L〈−∞〉n (ZG)⊗Z Q

is an isomorphism for n ∈ Z. Then τ (2)(M) is a homotopy invariant. If
furthermore G is residually finite, then ρ(2)(M) is a homotopy invariant.

Proof. 1 This is proved by Keswani [192], [193]. Comment 17 (By W.):
Shall we also add a reference to the preprint by Piazza-Schick from
2004 if they can repair their gap?

2 This is proved by Chang [68] and Chang-Weinberger [69] using [229].

Remark 1.60. Let X be a 4n-dimensional Poincaré space over Q. Let X →
X be a normal covering with covering group G. Suppose that the assembly
mapK0(BG)→ K0(C∗max(G)) for the maximal group C∗-algebra is surjective
(see Subsection 2.12.2) or suppose that the rationalized assembly map for L-
theory

H4n(BG;L〈−∞〉(Z))⊗Z Q→ L
〈−∞〉
4n (ZG)⊗Z Q

is an isomorphism. Then the following L2-signature theorem is proved in
Lück-Schick [230, Theorem 2.3]

sign(2)(X) = sign(X).

If one drops the condition that G is torsionfree this equality becomes
false. Namely, Wall has constructed a finite Poincaré space X with a finite G
covering X → X for which sign(X) 6= |G| · sign(X) holds (see [279, Example
22.28], [348, Corollary 5.4.1]).

Remark 1.61. Cochran-Orr-Teichner give in [77] new obstructions for a
knot to be slice which are sharper than the Casson-Gordon invariants. They
use L2-signatures and the Baum-Connes Conjecture 2.4. We also refer to the
survey article [76] about non-commutative geometry and knot theory.
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1.10.5 The Zero-in-the-Spectrum Conjecture

The following Conjecture is due to Gromov [151, page 120].

Conjecture 1.62 (Zero-in-the-spectrum Conjecture). Suppose that M̃
is the universal covering of an aspherical closed Riemannian manifold M
(equipped with the lifted Riemannian metric). Then zero is in the spectrum
of the minimal closure

(∆p)min : L2Ωp(M̃) ⊃ dom(∆p)min → L2Ωp(M̃),

for some p ∈ {0, 1, . . . ,dimM}, where ∆p denotes the Laplacian acting on
smooth p-forms on M̃ .

Proposition 1.63. Suppose that M is an aspherical closed Riemannian ma-
nifold with fundamental group G, then the injectivity of the assembly map

K∗(BG)⊗Z Q→ K∗(C∗r (G))⊗Z Q

implies the Zero-in-the-spectrum Conjecture for M̃ .

Proof. We give a sketch of the proof. More details can be found in [213,
Corollary 4]. We only explain that the assumption that in every dimension
zero is not in the spectrum of the Laplacian on M̃ , yields a contradiction in
the case that n = dim(M) is even. Namely, this assumption implies that the
C∗r (G)-valued index of the signature operator twisted with the flat bundle
M̃ ×G C∗r (G) → M in K0(C∗r (G)) is zero, where G = π1(M). This index is
the image of the class [S] defined by the signature operator in K0(BG) under
the assembly map K0(BG)→ K0(C∗r (G)). Since by assumption the assembly
map is rationally injective, this implies [S] = 0 in K0(BG)⊗Z Q. Notice that
M is aspherical by assumption and hence M = BG. The homological Chern
character defines an isomorphism

K0(BG)⊗Z Q = K0(M)⊗Z Q
∼=−→
⊕
p≥0

H2p(M ; Q)

which sends [S] to the Poincaré dual L(M) ∩ [M ] of the Hirzebruch L-
class L(M) ∈

⊕
p≥0H

2p(M ; Q). This implies that L(M) ∩ [M ] = 0 and
hence L(M) = 0. This contradicts the fact that the component of L(M) in
H0(M ; Q) is 1.

More information about the Zero-in-the-spectrum Conjecture 1.62 can be
found for instance in [213] and [220, Section 12].
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1.11 Miscellaneous

A group homomorphism f : G→ H induces a map Bf : BG→ BH uniquely
determined up to homotopy by the property that π1(BF ) is up to conjugation
f . Thus we get well-defined maps

Kn(Bf) : Kn(BG)→ Kn(BH);
Hn(Bf ;K(R)) : Hn(BG;K(R))→ Hn(BH;K(R));

Hn(Bf ;L〈−∞〉(R)) : Hn(BG;L〈−∞〉(R))→ Hn(BH;L〈−∞〉(R)).

The group homomorphism f induces a ring homomorphism Rf : RG→ RH
and thus maps

Kn(Rf) : Kn(RG)→ Kn(RH);
L〈−∞〉(Rf) : L〈−∞〉(RG)→ L〈−∞〉(RH).

We will later see when we have defined the assembly maps in detail that the
assembly maps for K- and L-theory are compatible with these maps.

The situation for the reduced group C∗-algebra is more mysterious. If
f has a finite kernel, it induces a homomorphism of C∗-algebras C∗r (G) →
C∗r (H), but not in general. For instance, the reduced C∗-algebra C∗r (Z ∗ Z)
of the free group on two letters is simple [266] and hence admits no C∗-
homomorphism to the reduced C∗-algebra C of the trivial group. The Baum-
Connes Conjecture predicts that there must always be a map Kn(C∗r (G))→
Kn(C∗r (H)) but it is not clear how to define it directly for all group homo-
morphisms f : G→ H without using the Baum-Connes Conjecture.

The assembly maps appearing in this chapter, for instance in the Baum-
Connes Conjecture for torsionfree groups (see Conjecture 1.1), the Farrell-
Jones Conjecture for K-Theory and Torsionfree Groups (see Conjecture 1.28)
and the Farrell-Jones ConjectureFarrell-Jones Conjecture for L-Theory and
Torsionfree Groups (see Conjecture 1.37, sometimes are called classical as-
sembly maps and are special cases of the assembly maps Chapter 2, namely
for the family T R under the identifications Kn(BG) = HG

n (EG;Ktop),
Hn(BG;K(R)) = HG

n (EG;KR), Hn(BG;〈−∞〉 (R)) = HG
n (EG;L〈−∞〉R ) and

EG = ET R(G) (see Remark 2.8).

Exercises

1.1. Compute Kn(C∗r (G)) for n ∈ Z and Kn(ZG) for n ≤ 1 for G the
fundamental group of a closed orientable surface of genus g using the fact
that for such G both the Baum-Connes Conjecture 1.1 and the version 1.17
of the Farrell-Jones Conjecture are true.
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1.2. Show that the reduced group C∗-algebra C∗(Z) is isomorphic to the C∗-
algebra C(S1) of continuous functions S1 → C with the supremums norm
and that under this identification the standard trace sends f ∈ C(S1) to the
integral

∫
S1 fdµ, where dµ is the S1-invariant Lebesgue measure on S1 with

dµ(S1) = 1. Prove that the Trace Conjecture 1.10 holds for Z.

1.3. Let R be a ring such that for any integer n the element n·1R is invertible
in R. Show that the Idempotent Conjecture 1.14 does not hold for a group
G which is not torsionfree.

1.4. Show that 1 − t − t−1 is a unit in Z[Z/5]. Conclude that Wh(Z/5)
contains an element of infinite order.

1.5. Let P∗ be a finite projective R-chain complex, where finite means that
it is finite dimensional and every module is finitely generated and projec-
tive means that every chain module is projective. Define its finiteness ob-
struction o(P∗) ∈ K0(R) by

∑
n≥0[Pn]. Its reduced finiteness obstruction

õ(P∗) ∈ K̃0(R) is the image of o(P∗) under the canonical projection. Prove

(1) o(P∗) depends only on the R-chain homotopy class of P∗;
(2) Let 0 → P∗ → P ′∗ → P ′′∗ → 0 be an exact sequence of finite projective

R-chain complexes. Then

o(P∗)− o(P ′∗) + o(P ′′∗ ) = 0;

(3) The R-chain complex P∗ is R-chain homotopy equivalent to a finite free
R-chain complex if and only if õ(P∗) = 0.

1.6. Let M and N be two closed oriented n-dimensional manifolds whose
connected sum M]N is aspherical. Show that n ≤ 2 or that one of them is
homotopy equivalent to a sphere and the other is aspherical.

1.7. Let M be a closed aspherical manifold. Suppose that Conjecture 1.28
holds for R = Z and G = π1(M), Show that the obvious map PDiff(M) →
P(M) induces a rational isomorphism on πn if and only ifHn−4k+1(M ; Q) = 0
holds for all k ∈ Z, k ≥ 1.

1.8. Consider the group G given by the presentation 〈xy | x3y2〉. Show that G
is torsionfree. Compute L〈j〉n (ZG) for all j and n provided that Conjecture 1.50
holds for G.

1.9. Let M and N be closed aspherical manifolds. Suppose that the Borel
Conjecture 1.49 holds for π1(M). Show that the following assertions are equiv-
alent for a map f : M → N and positive integer n:
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(1) f is homotopic to a n-sheeted finite covering;
(2) The group homomorphism π1(f) is injective and its image has index n

in π1(N).

1.10. Show that the topological structure set Stop(Sn) consists of precisely
one element in dimensions n 6= 3. Comment 18 (By W.): Later drop the
condition n 6= 3 depending on what the status of the proof by Perelman
is.

1.11. Let G and H be torsionfree groups. Suppose that the K-theoretic
Farrell-Jones Conjecture 1.28 holds for the product G × H. Show that it
then must hold for both G and H. Prove the analogous statement for the
L-theoretic Farrell-Jones Conjecture 1.37.

last edited on 16.1.05
last compiled on March 29, 2005
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2. Formulation and Relevance of the
Conjectures in General

2.1 Introduction

The Baum-Connes and Farrell-Jones Conjectures predict that for every dis-
crete group G the following so called “assembly maps” are isomorphisms:

HG
n (EFIN (G))→ Kn(BG);

HG
n (EVCY(G);KR)→ Kn(RG);

HG
n (EVCY(G);L〈−∞〉R )→ L〈−∞〉n (RG).

Here the targets are the groups one would like to understand, namely the
topological K-groups of the reduced group C∗-algebra in the Baum-Connes
case and the algebraic K- or L-groups of the group ring RG for R an as-
sociative ring with unit. In each case the source is a G-homology theory
evaluated on a certain classifying space. In the Baum-Connes Conjecture the
G-homology theory is equivariant topological K-theory and the classifying
space EFIN (G) is the classifying space of the family of finite subgroups,
which is often called the classifying space for proper G-actions and denoted
EG in the literature. In the Farrell-Jones Conjecture the G-homology theory
is given by a certain K- or L-theory spectrum over the orbit category, and
the classifying space EVCY(G) is the one associated to the family of virtually
cyclic subgroups. We often write EG instead of EVCY(G).

These conjectures were stated in [33, Conjecture 3.15 on page 254] and
[126, 1.6 on page 257]. Our formulations differ from the original ones, but are
equivalent. In the case of the Farrell-Jones Conjecture we slightly generalize
the original conjecture by allowing arbitrary coefficient rings instead of Z. At
the time of writing no counterexample to the Baum-Connes Conjecture 2.4
or the Farrell-Jones Conjecture 2.5 is known to the authors.

In this chapter we will formulate the Baum-Connes and Farrell-Jones
Conjectures. We try to emphasize the unifying principle that underlies these
conjectures. The point of view taken in this chapter is that all three conjec-
tures are conjectures about specific equivariant homology theories. Some of
the technical details concerning the actual construction of these homology
theories are deferred to Section 4.4.
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2.2 Formulation of the Conjectures

2.2.1 The Metaconjecture

Suppose we are given

• A discrete group G;
• A family F of subgroups of G;
• A G-homology theory HG

∗ (−).

Then one can formulate the following Meta-Conjecture.

Metaconjecture 2.1. The assembly map

AF : HG
n (EF (G))→ HG

n ({•})

is an isomorphism for n ∈ Z.

Here are some explanations. A family F of subgroups of G is a set of
subgroups of G closed under conjugation, i.e. H ∈ F , g ∈ G implies g−1Hg ∈
F , and finite intersections, i.e. H,K ∈ F implies H ∩ K ∈ F . Throughout
the text we will use the notations

T R,FCY,FIN , CYC,VCYI ,VCY and ALL

for the families consisting of the trivial, all finite cyclic, all finite, all (pos-
sibly infinite) cyclic, all virtually cyclic of the first kind, all virtually cyclic,
respectively all subgroups of a given group G. Recall that a group is called
virtually cyclic if it is finite or contains an infinite cyclic subgroup of finite
index. A group is virtually cyclic of the first kind if it admits a surjection
onto an infinite cyclic group with finite kernel, compare Lemma 2.18.

We denote by EF (G) the classifying space of the family F . It is a G-CW -
complex such that all its isotropy groups belong to F and EF (G)H is con-
tractible for H ∈ F . Given a G-CW -complex whose isotropy groups belong
to F , then there is up to G-homotopy precisely one G-map X → EF (G). In
particular two models for EF (G) are G-homotopy equivalent. The G-space
ET R(G) agrees with the G-space EG which is by definition the universal
covering of BG. A model for EALL(G) is G/G. We sometimes abbreviate
EFIN (G) by EG and EVCY(G) by EG. If F ⊆ G is an inclusion of fami-
lies, there is up to G-homotopy precisely one G-map EF (G)→ EG(G). More
information about classifying spaces for families will be given in Section 4.2.

A G-homology theory HG
∗ is the “obvious” G-equivariant generalization

of the concept of a homology theory. It assigns to every G-CW -complex X
a Z-graded abelian group HG

∗ (X). It is natural in X, satisfies G-homotopy
invariance and possesses long exact Mayer-Vietoris sequences. An equivariant
homology theory H?

∗ assigns to every discrete group G a G-homology theory
HG
∗ . These are linked by an induction structure. We will mainly need from the

induction structure the following two consequences. Namely, for a subgroup
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H ⊆ G and a H-CW -complex X the G-space G ×H X is a G-CW -complex
and there is a natural isomorphism

HH
n (X)

∼=−→ HG
n (G×H X) (2.2)

and for a free G-CW -complex there is an isomorphism

HG
n (X)

∼=−→ H{1}n (G\X). (2.3)

Equivariant homology theories are explained in detail in Section 4.4.
Given a family F and a G-homology theory HG

∗ , the projection EF (G)→
G/G induces a map of Z-graded abelian groups

AF : HG
∗ (EF (G))→ HG

∗ (G/G).

This is the assembly map appearing in the Metaconjecture 2.1.
Of course the Metaconjecture 2.2.1 is not true for arbitrary G, F and

HG
∗ (−). It is always true for F = ALL for the trivial reason that then

EALL(G)→ G/G is a G-homotopy equivalence. The point is to choose for a
given G-homology theory HG

∗ the family F as small as possible. The Farrell-
Jones and Baum-Connes Conjectures state that for specific G-homology the-
ories there is a natural choice of a family F(G) of subgroups for every group
G such that AF(G) becomes an isomorphism for all groups G.

2.2.2 The Baum-Connes and the Farrell-Jones Conjectures

Let R be a ring (with involution). In Proposition 4.20 we will describe the
construction of G-homology theories which will be denoted

HG
n (−;KR), HG

n (−;L〈−∞〉R ) and HG
n (−;Ktop).

If G is the trivial group, these homology theories specialize to the (non-
equivariant) homology theories with similar names that appeared in Chap-
ter 1, namely to

Hn(−;K(R)), Hn(−;L〈−∞〉(R)) and Kn(−).

Another main feature of these G-homology theories is that evaluated on the
one point space {•} (considered as a trivial G-space) we obtain the K- and
L-theory of the group ring RG, respectively the topological K-theory of the
reduced C∗-algebra (see Proposition 4.20 and Theorem 4.7 (3))

Kn(RG) ∼= HG
n ({•};KR),

L〈−∞〉n (RG) ∼= HG
n ({•};L〈−∞〉R ) and

Kn(C∗r (G)) ∼= HG
n ({•};Ktop).

We are now prepared to formulate in full generality the conjectures around
which this book is centered. Recall that FIN is the family of finite subgroups
and that VCY is the family of virtually cyclic subgroups.
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Conjecture 2.4 (Baum-Connes Conjecture). Let G be a group. Then
for all n ∈ Z the so called assembly map

AFIN : HG
n (EFIN (G);Ktop)→ HG

n ({•};Ktop) ∼= Kn(C∗r (G))

induced by the projection EFIN (G)→ {•} is an isomorphism.

Conjecture 2.5 (Farrell-Jones Conjecture for K- and L-theory). Let
R be a ring (with involution) and let G be a group. Then for all n ∈ Z the so
called assembly maps

AVCY : HG
n (EVCY(G);KR)→ HG

n ({•};KR) ∼= Kn(RG);

AVCY : HG
n (EVCY(G);L〈−∞〉R )→ HG

n ({•};L〈−∞〉R ) ∼= L〈−∞〉n (RG),

which are induced by the projection EVCY(G)→ {•}, are isomorphisms.

The conjecture for the topological K-theory of C∗-algebras is known as
the Baum-Connes Conjecture and reads as follows.

We will explain the analytic assembly map indG : KG
n (X)→ Kn(C∗r (G)),

which can be identified with the assembly map appearing in the Baum-Connes
Conjecture 2.4 in Section 5.3.

Remark 2.6. (Interpretations of the assembly maps). Of course the
conjectures really come to life only if the abstract point of view taken in
this section is connected up with more concrete descriptions of the assembly
maps. We have already discussed a surgery theoretic description in Theo-
rem 1.50 and an interpretation in terms index theory in Subsection 1.3.1
More information about alternative interpretations of assembly maps can be
found in Section 5.3 and 6.3. These concrete interpretations of the assem-
bly maps lead to applications. We already discussed many such applications
in Chapter 1 and we will see further applications, for instance in connection
with the Novikov Conjecture (see Section 2.9) and the Stable Gromov-Lawson
Conjecture (see Section 2.11.2).

Remark 2.7 (The choice of the right family). As explained above the
Baum-Connes Conjecture 2.4 and the Farrell-Jones 2.5 can be considered
as special cases of the Meta-Conjecture 2.1. In all three cases we are inter-
ested in a computation of the right hand side HG

n ({•}) of the assembly map,
which can be identified with Kn(RG), L〈−∞〉n (RG) or Kn(C∗r (G)). The left
hand side HG

n (EF (G)) of such an assembly map is much more accessible and
the smaller F is, the easier it is to compute HG

n (EF (G)) using homological
methods like spectral sequences, Mayer-Vietoris arguments and equivariant
Chern characters. We have already explained in the Introduction (see Chap-
ter 0) why we pick the family FIN or VCY respectively for the Baum-Connes
Conjecture 2.4 and the Farrell-Jones 2.5 respectively.
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Remark 2.8. (Classical assembly maps). If we take the family T R
consisting of the trivial subgroup only, then EG = ET R(G) and hence
BG = G\ET R(G) and we get from the induction structure (see Subsec-
tion 4.4.2) identifications

Kn(BG) = HG
n (ET R(G);Ktop);

Hn(BG;K(R)) = Hn(ET R(G);KR);

Hn(BG;L〈−∞〉)(R)) = Hn(ET R(G);L〈−∞〉R ).

Under these identification the assembly maps of Chapter 1

Kn(BG)→ Kn(C∗r (G));
Hn(BG;K(R))→ Kn(RG);

Hn(BG;L〈−∞〉)(R))→ L〈−∞〉n (RG).

which we will often call the classical assembly maps and have appeared in
the Baum-Connes Conjecture for torsionfree groups (see Conjecture 1.1), the
Farrell-Jones Conjecture for K-Theory and Torsionfree Groups (see Conjec-
ture 1.28) and the Farrell-Jones Conjecture for L-Theory and Torsionfree
Groups (see Conjecture 1.37, correspond to the assembly maps AT R associ-
ated to Ktop, KR and L〈−∞〉.

Example 2.9 (Infinite dihedral group). Let D∞ be the infinite dihedral
group Z/2 ∗ Z/2 ∼= Z o Z/2. Up to conjugation D∞ contains two non-trivial
finite subgroups, namely {1} ∗Z/2 and Z/2 ∗ {1}. There is an obvious action
of D∞ ∼= Z o Z/2 on R, where Z acts by translation and Z/2 by − idR. If we
take {n/2 | n ∈ Z} as the 0-skeleton, R becomes a proper D∞-CW -complex
whoseH-fixed point set consists of a point ifH is a non-trivial finite subgroup
of D∞. Hence R with this operation is a model for EFIN (D∞). There is an
obvious D∞ = Z/2 ∗ Z/2-pushout

D∞ × S0 −−−−→ D∞/({1} ∗ Z/2)
∐
D∞/(Z/2 ∗ {1})y y

D∞ ×D1 −−−−→ EFIN (D∞)

Associated to it is the long Mayer-Vietoris sequence

· · · → KD∞
n (D∞)→ KD∞

n (D∞/({1} ∗ Z/2))⊕KD∞
n (D∞/(Z/2 ∗ {1}))

→ KD∞
n (EFIN (D∞))→ KD∞

n−1(D∞)

→ KD∞
n−1(D∞/({1}∗Z/2))⊕KD∞

n−1(D∞/(Z/2∗{1}))→ KD∞
n−1(EFIN (D∞))→ · · · .

From the Baum-Connes Conjecture 2.4 and general properties of equivariant
topological K-theory we get for every finite subgroup H ⊆ D∞ identifications
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KD∞
n (EFIN (D∞)) = Kn(C∗r (D∞));

KD∞
n (D∞/H) = KH

n (H/H) =
{
RC(H) n even;
{0} n odd.

Thus we obtain the short exact sequence

0→ RC({1}) i1⊕i2−−−→ RC(Z/2)⊕RC(Z/2)
j1⊕j2−−−−→ K0(C∗r (D∞))→ 0,

where i1 and i2 are induced by the inclusion {1} → Z/2 and j1 and j2 are
induced by the two inclusions of Z/2 into D∞ = Z/2 ∗ Z/2, and

K1(C∗r (D∞) = {0}.

(Of course this can also be obtained directly from the long exact sequence (0.1)).
This implies

Kn(C∗r (D∞)) =
{

Z3 n even;
{0} n odd.

The Farrell-Jones Conjecture 2.5 gives no information since D∞ is virtu-
ally cyclic. However, certain variations of it such as the versions 2.17 and 2.21
do give by the same argument

Kn(C[D∞]) ∼= Kn(C)⊕Kn(C)⊕Kn(C)

and in particular

Kn(C[D∞]) = {0} for n ≤ −1; K0(C[D∞]) = Z3;
K0(C[D∞]) = C× × C× × C×,

and after inverting 2

L〈j〉n (Z[D∞])[1/2] =
{

Z[1/2]3 n = 0 mod 4;
{0} otherwise.

One does know that there is for all n ∈ Z an isomorphism (see Wald-
hausen [341] and [342])

K̃n(Z[D∞]) ∼= K̃n(Z[Z/2])⊕ K̃n(Z(Z/2]),

but the groups K̃n(Z[Z/2]) are not known for all n ∈ Z at the time of writing.
At least one concludes that K̃n(Z[D∞]) for n ≤ 0 and Wh(D∞) vanish. This
implies that L〈j〉n (Z[D∞]) is independent of the decoration. There is a splitting

L̃〈j〉n (Z[D∞]) ∼= L̃〈j〉n (Z[Z/2])⊕ L̃〈j〉n (Z[Z/2])⊕UNiln .

The groups L̃〈j〉n (Z[Z/2]) are independent of the decoration and well-known
but the computation of UNiln has been completely only a few years ago (see
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for instance [19], [82], [86]). These groups are always annihilated by 4. They
are zero or unpleasantly large, namely contain (Z/2)∞ as a direct summand.

This illustrates that the computation of algebraic K- and L-groups is
much harder than the one of the topological K-theory of the reduced group
C∗-algebra.

Notice that the classical assembly maps

Kn(BD∞)→ Kn(C∗r (D∞));
Hn(BD∞;K(C))→ Kn(C[D∞]);

Hn(BD∞;L〈−∞〉(Z))→ L〈−∞〉n (Z[D∞]).

are not injective. This follows from a calculation using the fact that H̃∗(D∞) =
H̃∗(Z/2)⊕ H̃∗(Z/2) holds for any homology theory H∗ Since H∗({•}; Q)⊗Z
Q = H∗(BD∞) ⊗Z Q for any homology theory H∗, the classical assembly
maps above are rationally injective but their images agree rationally with
the image of the obvious homomorphisms

Kn({•})→ Kn(C∗r (D∞));
Kn(C)→ Kn(C[D∞]);

L〈−∞〉n (Z)→ L〈−∞〉n (Z[D∞]).

which are not surjective.

2.3 Varying the Family of Subgroups

Suppose we are given a family of subgroups F ′ and a subfamily F ⊂ F ′. Since
all isotropy groups of EF (G) lie in F ′ we know from the universal property
of EF ′(G) (see Section 4.2) that there is a G-map EF (G)→ EF ′(G) which is
unique up to G-homotopy. For every G-homology theory HG

∗ we hence obtain
a relative assembly map

AF→F ′ : HG
n (EF (G))→ HG

n (EF ′(G)).

If F ′ = ALL, then EF ′(G) = {•} and AF→F ′ specializes to the assembly
map AF we discussed in the previous section. If we now gradually increase the
family, we obtain a factorization of the classical assembly AT R into several
relative assembly maps. We obtain for example from the inclusions

T R ⊂ FCY ⊂ FIN ⊂ VCY ⊂ ALL

for every G-homology theory HG
n (−) the following commutative diagram.

HG
n (EG)

ATR //

��

HG
n ({•})

HG
n (EFCY(G)) // HG

n (EFIN (G)) //

AFIN

66mmmmmmmmmmmmm
HG

n (EVCY(G)).

AVCY

OO
(2.10)
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Such a factorization is extremely useful because one can study the relative
assembly map AF→F ′ in terms of absolute assembly maps corresponding to
groups in the bigger family as explained next. For a family F of subgroups
of G and a subgroup H ⊂ G we define a family of subgroups of H

F ∩H = {K ∩H | K ∈ F}.

Theorem 2.11 (Transitivity Principle). Let H?
∗(−) be an equivariant ho-

mology theory in the sense Subsection 4.4.2. Suppose F ⊂ F ′ are two families
of subgroups of G. Suppose that K∩H ∈ F for each K ∈ F and H ∈ F ′ (this
is automatic if F is closed under taking subgroups). Let N be an integer. If
for every H ∈ F ′ and every n ≤ N the assembly map

AF∩H→ALL : HH
n (EF∩H(H))→ HH

n ({•})

is an isomorphism, then for every n ≤ N the relative assembly map

AF→F ′ : HG
n (EF (G))→ HG

n (EF ′(G))

is an isomorphism.

Proof. If we equip EF (G)×EF ′(G) with the diagonal G-action, it is a model
for EF (G). Now apply Lemma 4.16 in the special case Z = EF ′(G).

At the level of spectra this transitivity principle is due to Farrell and
Jones [126, Theorem A.10]. Next we discuss applications of the Transitivity
Principle 2.11.

2.3.1 The General Versions Specialize to the Torsionfree Versions

If G is a torsionfree group, then the family FIN obviously coincides with
the trivial family T R. Since a nontrivial torsionfree virtually cyclic group is
infinite cyclic we also know that the family VCY reduces to the family of all
cyclic subgroups, denoted CYC.

Proposition 2.12. Let G be a torsionfree group.

(1) If R is a regular ring, then the relative assembly map

AT R→CYC : HG
n (ET R(G);KR)→ HG

n (ECYC(G);KR)

is an isomorphism;
(2) For every ring R the relative assembly map

AT R→CYC : HG
n (ET R(G);L〈−∞〉R )→ HG

n (ECYC(G);L〈−∞〉R )

is an isomorphism.
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Proof. Because of the Transitivity Principle 2.11 it suffices in both cases to
prove that the classical assembly map A = AT R→ALL is an isomorphism
in the case where G is an infinite cyclic group. For regular rings in the K-
theory case and with the −∞-decoration in the L-theory case this is true as
we discussed in Remark 1.33 respectively Remark 1.47.

As an immediate consequence from Remark 2.8 and Proposition 2.12 we
obtain

Corollary 2.13. (1) For a torsionfree group the Baum-Connes Conjecture 2.4
is equivalent to its “torsionfree version” Conjecture 1.1;

(2) For a torsionfree group the Farrell-Jones Conjecture 2.5 for algebraic K-
is equivalent to the “torsionfree version” Conjecture 1.28, provided R is
regular;

(3) For a torsionfree group the Farrell-Jones Conjecture 2.5 for algebraic
L-theory is equivalent to the “torsionfree version” Conjecture 1.37.

Example 2.14. (Algebraic K-theory for RG for torsionfree word hy-
perbolic groups and arbitrary rings). In Chapter 1 we have formulated
the Farrell-Jones Conjecture for torsionfree groups and algebraic K-theory
(see Conjecture 1.37) only for regular rings. What does the Farrell-Jones Con-
jecture 2.5 implies if R is not regular. We want to illustrate this in a special
case taken from [224, Remark 8.14].

Let G be a torsionfree group with the property that any infinite cyclic
group has finite index in its centralizer. Examples are torsionfree word-
hyperbolic groups. Then every infinite cyclic subgroups is contained in a
unique maximal infinite cyclic subgroup. Let I be the set of conjugacy classes
of maximal infinite cyclic subgroups. Then the Farrell-Jones Conjecture 2.5
predicts for all n ∈ Z

Kn(RG) ∼= Hn(BG;K(R)⊕

(⊕
I

NKn(R)

)
.

In general the additional term coming from the Nil-terms is even more com-
plicated.

Comment 19 (By W.): Add later reference to the place, where
we deal with Nil-groups and EG explicitly. I think that I can prove
a more general statement.

2.3.2 The Baum-Connes Conjecture and the Families FCY and
VCY

Replacing the family FIN of finite subgroups by the family VCY of virtually
cyclic subgroups would not make any difference in the Baum-Connes Conjec-
ture 2.4. The Transitivity Principle 2.11 and the fact that the Baum-Connes
Conjecture 2.4 is known for virtually cyclic groups implies the following.
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Proposition 2.15. For every group G and every n ∈ Z the relative assembly
map for topological K-theory

AFIN→VCY : HG
n (EFIN (G);Ktop)→ HG

n (EVCY(G);Ktop)

is an isomorphism.

The following result is proven in [234] by considering Euler classes. A dif-
ferent proof using the Atiyah-Segal Completion Theorem for families, which
in contrast to the one in [234] applies also to the real case, is presented in [24,
Theorem 0.4].

Proposition 2.16. For every group G and every n ∈ Z the relative assembly
map for topological K-theory

AFCY→FIN : HG
n (EFCY(G);Ktop)→ HG

n (EFIN (G);Ktop)

is an isomorphism.
In particular the Baum-Connes Conjecture predicts that the FCY-assembly

map
AFCY : HG

n (EFCY(G);Ktop)→ Kn(C∗r (G))

is always an isomorphism.

2.3.3 Algebraic K-Theory for Special Coefficient Rings

In the algebraic K-theory case we can reduce to the family of finite subgroups
if we assume special coefficient rings.

Proposition 2.17. Suppose R is a regular ring in which the orders of all
finite subgroups of G are invertible. Then for every n ∈ Z the relative assembly
map for algebraic K-theory

AFIN→VCY : HG
n (EFIN (G);KR)→ HG

n (EVCY(G);KR)

is an isomorphism.
In particular the Farrell-Jones Conjecture 2.5 for K-theory implies the

Farrell-Jones Conjecture for K∗(RG) for regular rings 0.8.

Proof. We first show that RH is regular for a finite group H. Since R is
Noetherian and H is finite, RH is Noetherian. It remains to show that every
RH-module M has a finite dimensional projective resolution. By assumption
M considered as an R-module has a finite dimensional projective resolution.
If one applies RH ⊗R − this yields a finite dimensional RH-resolution of
RH⊗R resM . Since |H| is invertible, the RH-module M is a direct summand
of RH ⊗R resM and hence has a finite dimensional projective resolution.

Because of the Transitivity Principle 2.11 we need to prove that the FIN -
assembly map AFIN is an isomorphism for virtually cyclic groups V . Because
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of Lemma 2.18 we can assume that either V ∼= H o Z or V ∼= K1 ∗H K2 with
finite groups H, K1 and K2. From [341] we obtain in both cases long exact
sequences involving the algebraic K-theory of the constituents, the algebraic
K-theory of V and also additional Nil-terms. However, in both cases the Nil-
terms vanish if RH is a regular ring (compare Theorem 4 on page 138 and
the Remark on page 216 in [341]). Thus we get long exact sequences

· · · → Kn(RH)→ Kn(RH)→ Kn(RV )→ Kn−1(RH)→ Kn−1(RH)→ · · ·

and

· · · → Kn(RH)→ Kn(RK1)⊕Kn(RK2)→ Kn(RV )
→ Kn−1(RH)→ Kn−1(RK1)⊕Kn−1(RK2)→ · · ·

One obtains analogous exact sequences for the sources of the various assembly
maps from the fact that the sources are equivariant homology theories and
one can find specific models for EFIN (V ). These sequences are compatible
with the assembly maps. The assembly maps for the finite groups H, K1 and
K2 are bijective. Now a Five-Lemma argument shows that also the one for
V is bijective.

In the proof above we used the following important fact about virtually
cyclic groups.

Lemma 2.18. If G is an infinite virtually cyclic group then we have the
following dichotomy.

(I) Either G admits a surjection with finite kernel onto the infinite cyclic
group Z, or

(II) G admits a surjection with finite kernel onto the infinite dihedral group
D∞ = Z/2 ∗ Z/2 = Z o Z/2.

Proof. The proof is not difficult and can be found [128, Lemma 2.5].

2.3.4 Splitting off Nil-Terms and Rationalized Algebraic
K-Theory

Recall that the Nil-terms, which prohibit the classical assembly map from be-
ing an isomorphism, are direct summands of theK-theory of the infinite cyclic
group (see Remark 1.33). Something similar remains true in general [20].

Proposition 2.19. (1) For every group G, every ring R and every n ∈ Z
the relative assembly map

AFIN→VCY : HG
n (EFIN (G);KR)→ HG

n (EVCY(G);KR)

is split-injective;
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(2) Suppose R is such that K−i(RV ) = 0 for all virtually cyclic subgroups
V of G and for sufficiently large i (for example R = Z will do, compare
Proposition 2.28). Then the relative assembly map

AFIN→VCY : HG
n (EFIN (G);L〈−∞〉R )→ HG

n (EVCY(G);L〈−∞〉R )

is split-injective.

Combined with the Farrell-Jones Conjectures we obtain that the homol-
ogy group HG

n (EFIN (G);KR) is a direct summand in Kn(RG). It is much
better understood (compare Chapter 8) than the remaining summand which
is isomorphic to HG

n (EVCY(G), EFIN (G);KR). This remaining summand is
the one which plays the role of the Nil-terms for a general group. It is known
that for R = Z the negative dimensional Nil-groups which are responsible
for virtually cyclic groups vanish [128]. They vanish rationally, in dimension
0 by [85] and in higher dimensions by [200]. For more information see also
[84]. Analogously to the proof of Proposition 2.17 we obtain the following
proposition.

Proposition 2.20. We have

HG
n (EVCY(G), EFIN (G);KZ) = 0 for n < 0 and

HG
n (EVCY(G), EFIN (G);KZ)⊗Z Q = 0 for all n ∈ Z.

In particular the Farrell-Jones Conjecture 2.5 for the algebraic K-theory
of the integral group ring predicts that the map

AFIN : HG
n (EFIN (G);KZ)⊗Z Q→ Kn(ZG)⊗Z Q

is always an isomorphism.

2.3.5 Inverting 2 in L-Theory

Proposition 2.21. For every group G, every ring R with involution, every
decoration j and all n ∈ Z the relative assembly map

AFIN→VCY : HG
n (EFIN (G);L〈j〉R )[1/2]→ HG

n (EVCY(G);L〈j〉R )[1/2]

is an isomorphism.

Proof. According to the Transitivity Principle 2.11 it suffices to prove the
claim for a virtually cyclic group. Now argue analogously to the proof of
Proposition 2.17 using the exact sequences in [54] and the fact that the
UNil-terms appearing there vanish after inverting two [54]. Also recall from
Remark 1.40 that after inverting 2 there are no differences between the dec-
orations.

In particular the L-theoretic Farrell-Jones Conjecture 2.5 implies that for
every decoration j the assembly map

AFIN : HG
n (EFIN (G);L〈j〉R )[1/2]→ L〈j〉n (RG)[1/2]

is an isomorphism.
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2.3.6 L-theory and Virtually Cyclic Subgroups of the First Kind

Recall that a group is virtually cyclic of the first kind if it admits a surjection
with finite kernel onto the infinite cyclic group. The family of these groups
is denoted VCYI .

Proposition 2.22. For all groups G, all rings R and all n ∈ Z the relative
assembly map

AFIN→VCYI
: HG

n (EFIN (G);L〈−∞〉R )→ HG
n (EVCYI

(G);L〈−∞〉R )

is an isomorphism.

Proof. The point is that there are no UNil-terms for infinite virtually cyclic
groups of the first kind. This follows essentially from [275] and [276] as carried
out in [222, Lemma 4.2].

2.3.7 Rationally FIN Reduces to FCY

We will see later (compare Theorem 8.6, 8.7 and 8.12) that in all three cases,
topological K-theory, algebraic K-theory and L-theory, the rationalized left
hand side of the FIN -assembly map can be computed very explicitly us-
ing the equivariant Chern-Character. As a by-product these computations
yield that after rationalizing the family FIN can be reduced to the family
FCY of finite cyclic groups and that the rationalized relative assembly maps
AT R→FCY are injective.

Proposition 2.23. For every ring R, every group G and all n ∈ Z the rel-
ative assembly maps

AFCY→FIN : HG
n (EFCY(G);KR)⊗Z Q→ HG

n (EFIN (G);KR)⊗Z Q

AFCY→FIN : HG
n (EFCY(G);L〈−∞〉R )⊗Z Q→ HG

n (EFIN (G);L〈−∞〉R )⊗Z Q
AFCY→FIN : HG

n (EFCY(G);Ktop)⊗Z Q→ HG
n (EFIN (G);Ktop)⊗Z Q

are isomorphisms and the relative assembly maps AT R→FCY and AT R→FIN
are all rationally injective.

Recall that the statement for topological K-theory is even known integrally,
compare Proposition 2.16. Combining the above with Proposition 2.20 and
Proposition 2.21 we see that the Farrell-Jones Conjecture 2.5 predicts in
particular that the FCY-assembly maps

AFCY : HG
n (EFCY(G);L〈−∞〉R )⊗Z Q→ L〈−∞〉n (RG)⊗Z Q

AFCY : HG
n (EFCY(G);KZ)⊗Z Q→ Kn(ZG)⊗Z Q

are always isomorphisms.
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2.4 Induction Theorems

2.4.1 The Conjectures as Generalized Induction Theorems

The results above illuminate that one may think of the Farrell-Jones Con-
jectures 2.5 and the Baum-Connes Conjecture 2.4 as “generalized induction
theorems”. The prototype of an induction theorem is Artin’s Theorem about
the representation ring RC(G) of a finite group G. Let us recall Artin’s The-
orem. For a proof see for instance [89, 15.4 on page 378] or [309, Theorem 26
in 12.5 on page 97].

For finite groups H and a field F of characteristic zero the representation
ring RF (H) coincides with K0(FH). Let Z[1/|G|] ⊆ Q be the ring obtained
from Z by inverting the order |G| of G.

Theorem 2.24 (Artin’s Theorem). The induction homomorphism

colimH∈SubCYC(G)RC(H)⊗Z Z[1/|G|]
∼=−→ RC(G)⊗Z Z[1/|G|]

is an isomorphism.

Note that this is a very special case of Theorem 8.6 or 8.7, compare Re-
mark 8.11.

Artin’s Theorem 2.24 says that rationally one can compute RC(G) if one
knows all the values RC(C) (including all maps coming from induction with
group homomorphisms induced by conjugation with elements in G) for all
cyclic subgroups C ⊆ G. The idea behind the Farrell-Jones Conjectures 2.5
and the Baum-Connes Conjecture 2.4 is analogous. We want to compute
the functors Kn(RG), Ln(RG) and Kn(C∗r (G)) from their values (including
their functorial properties under induction) on elements of the family FIN
or VCY.

The situation in the Farrell Jones and Baum-Connes Conjectures is more
complicated than in Artin’s Theorem 2.24, since we have already seen in
Subsection 0.2.2 that a computation ofKn(RG), L〈−∞〉n (RG) andKn(C∗r (G))
does involve also the values Kp(RH), L〈−∞〉p (RH) and Kp(C∗r (H)) for p ≤ n.
A degree mixing occurs.

2.4.2 Dress Induction for Infinite Groups

Very important for the computations of K- and L-groups of group rings of
finite groups are the induction theorems due to Dress [100] and [101]. They
reduce the computations for a finite group to certain families of subgroups,
where the family depends on the coefficient ring and the theory one is con-
sidering. Artin’s Theorem 2.24 is a special case. In Bartels-Lück [23] the
induction theorems for finite groups due to Dress have been generalized to
infinite groups. Here is a summary of the main results.
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Let F ⊆ FIN be a subclass of the class of finite groups which is closed
under isomorphism of groups and taking subgroups. Define

F ′ ⊆ VCY

to be the class of groups V for which there exists an extension 1→ Z→ V →
F → 1 for a group F ∈ F or for which V ∈ F holds. With this notion we get
VCY = FIN ′.

Let p be a prime. A finite group G is called p-elementary if it is isomor-
phic to C×P for a cyclic group C and a p-group P such that the order |C| is
prime to p. A finite group G is called p-hyperelementary if it can be written
as an extension 1→ C → G→ P → 1 for a cyclic group C and a p-group P
such that the order |C| is prime to p. A finite group G is called elementary
or hyperelementary respectively if it is p-elementary or p-hyperelementary
respectively for an appropriate prime p. Let Ep and Hp respectively be the
class of groups which are p-elementary groups and p-hyperelementary respec-
tively for a prime p. Let E and H respectively be the class of groups which
are elementary and hyperelementary respectively.

The following results refer to the Farrell-Jones Conjecture 2.5 or to the
fibered version 2.84 (see Subsection 2.13.2 and Section 2.14). The phrase in
the range ≤ N means that the corresponding assembly maps are bijective in
dimensions n ≤ N for some integer N and no statement is made for n > N .

Theorem 2.25 (Induction theorem for algebraic K-theory). Let G be
a group and let N be an integer. Then

(1) The group G satisfies the (Fibered) Farrell-Jones Conjecture (in the range
≤ N) for algebraic K-theory with coefficients in R for the family VCY
if and only if G satisfies the (Fibered) Farrell-Jones Conjecture (in the
range ≤ N) for algebraic K-theory with coefficients in R for the family
H′;

(2) Let p be a prime. Then G satisfies the (Fibered) Farrell-Jones Conjecture
(in the range ≤ N) for algebraic K-theory with coefficients in R for the
family VCY after applying Z(p)⊗Z− if and only if G satisfies the (Fibered)
Farrell-Jones Conjecture (in the range ≤ N) for algebraic K-theory with
coefficients in R for the family H′p after applying Z(p) ⊗Z −;

(3) Suppose that R is regular and Q ⊆ R. Then the group G satisfies the
Farrell-Jones Conjecture (in the range ≤ N) for algebraic K-theory with
coefficients in R for the family VCY if and only if G satisfies the Farrell-
Jones Conjecture (in the range ≤ N) for algebraic K-theory with coeffi-
cients in R for the family H.
If we assume that R is regular and C ⊆ R, then we can replace H by E;

(4) Suppose that R is regular and Q ⊆ R. Let p be a prime. Then G satisfies
the Farrell-Jones Conjecture (in the range ≤ N) for algebraic K-theory
with coefficients in R for the family VCY after applying Z(p)⊗Z− if and
only if G satisfies the Farrell-Jones Conjecture (in the range ≤ N) for
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algebraic K-theory with coefficients in R for the family Hp after applying
Z(p) ⊗Z −.
If we assume that R is regular and C ⊆ R, then we can replace Hp by Ep.

Theorem 2.26 (Induction theorem for algebraic L-theory). Let G be
a group. Then

(1) The group G satisfies the (Fibered) Farrell-Jones Conjecture (in the range
≤ N) for algebraic L-theory with coefficients in R for the family VCY if
and only if G satisfies the (Fibered) Farrell-Jones Conjecture for algebraic

L-theory with coefficients in R for the family
(
H2 ∪

⋃
p prime,p 6=2 Ep

)′
;

(2) The group G satisfies the (Fibered) Farrell-Jones Conjecture (in the range
≤ N) for algebraic L-theory with coefficients in R for the family VCY
after applying Z[1/2]⊗Z− if and only if G satisfies the (Fibered) Farrell-
Jones Conjecture for algebraic L-theory with coefficients in R for the
family

⋃
p prime,p 6=2 Ep after applying Z[1/2]⊗Z −.

2.5 Specializations of the Farrell-Jones Conjecture for
Lower and Middle K-Theory

As opposed to topological K-theory and L-theory, which are periodic, the
algebraic K-theory groups of coefficient rings such as Z, Q or C are known
to be bounded below. Using the spectral sequences for the left hand side
of an assembly map that will be discussed in Subsection 8.5.1 this leads to
vanishing results in negative dimensions and a concrete description of the
groups in the first non-vanishing dimension.

We begin with the following conjecture. Explanations about the colimit
that appears follow below.

Conjecture 2.27. (The Farrell-Jones Conjecture for Kn(ZG) for n ≤
−1). For every group G we have

K−n(ZG) = 0 for n ≥ 2,

and the map
colimH∈SubF (G)K−1(ZH)

∼=−→ K−1(ZG)

is an isomorphism, where F can be chosen as the family FIN of finite sub-
groups or as the family H of hyperelementary finite subgroups.

Given a family F of subgroups of G define the category SubF (G)
as follows. Objects are subgroups H with H ∈ F . For H,K ∈ F let
conhomG(H,K) be the set of all group homomorphisms f : H → K, for
which there exists a group element g ∈ G such that f is given by conju-
gation with g. The group of inner automorphism inn(K) consists of those
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automorphisms K → K, which are given by conjugation with an element
k ∈ K. It acts on conhom(H,K) from the left by composition. Define the
set of morphisms in SubF (G) from H to K to be inn(K)\ conhom(H,K).
Composition of group homomorphisms defines the composition of morphisms
in SubF (G). We mention that SubF (G) is a quotient category of the orbit
category OrF (G) which we will introduce in Section 4.4.5. Note that there
is a morphism from H to K only if H is conjugate to a subgroup of K.
Clearly Kn(R(−)) yields a functor from SubF (G) to abelian groups since
inner automorphisms on a group G induce the identity on Kn(RG). Using
the inclusions into G, one obtains a map

i : colimH∈SubF (G)Kn(RH)→ Kn(RG).

The colimit can be interpreted as the 0-th Bredon homology group

HG
0 (EF (G);Kn(R(?)))

(compare Example 4.12) and the map i is the edge homomorphism in the equi-
variant Atiyah-Hirzebruch spectral sequence discussed in Subsection 8.5.1.
In Conjecture 2.27 we consider the first non-vanishing entry in the lower left
hand corner of the E2-term because of the following vanishing result [128,
Theorem 2.1] which generalizes vanishing results for finite groups from [63].

Proposition 2.28. If V is a virtually cyclic group, then K−n(ZV ) = 0 for
n ≥ 2.

Therefore Conjecture 2.27 is a consequence of the K-theoretic Farrell-
Jones Conjecture 2.5 in the case R = Z. Note that by the results discussed
in Subsection 2.3.4 we know that in negative dimensions we can replace VCY
by FIN and then by Theorem 2.25 (1) by H (see also [23, Section 7]).

If our coefficient ring R is a regular ring in which the orders of all finite
subgroups of G are invertible, then we know already from Proposition 2.17
that we can reduce to the family of finite subgroups. In the proof of Propo-
sition 2.17 we have seen that then RH is again regular if H ⊂ G is finite.
Since negative K-groups vanish for regular rings [289, 5.3.30 on page 295],
the following is implied by the Farrell-Jones Conjecture 2.5 (see also [23,
Section 7]).

Conjecture 2.29. (Farrell-Jones Conjecture for K0(RG) for regular
rings R). Suppose R is a regular ring in which the orders of all finite
subgroups of G are invertible (for example a field of characteristic 0), then

K−n(RG) = 0 for n ≥ 1

and the map
colimH∈SubF (G)K0(RH)

∼=−→ K0(RG)

is an isomorphism, where F can be chosen to be FIN or H. If we assume
that R is regular and C ⊆ R, then F can be chosen to be the family E of
elementary subgroups.
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The conjecture above holds if G is virtually poly-cyclic. Surjectivity is
proven in [248] (see also [75] and Chapter 8 in [256]), injectivity in [293]. We
will show in Lemma 2.38 (1) that the map appearing in the conjecture is
always rationally injective for R = C.

The conjectures above describe the first non-vanishing term in the equi-
variant Atiyah-Hirzebruch spectral sequence (see Subsection 8.5.1). Already
the next step is much harder to analyze in general because there are poten-
tially non-vanishing differentials. We know however that after rationalizing
the equivariant Atiyah-Hirzebruch spectral sequence for the left hand side
of the FIN -assembly map collapses. Comment 20 (By W.): Add later
reference? As a consequence we obtain that the following conjecture follows
from the K-theoretic Farrell-Jones Conjecture 2.5.

Conjecture 2.30. For every group G, every ring R and every n ∈ Z the
map

colimH∈SubFIN (G)Kn(RH)⊗Z Q→ Kn(RG)⊗Z Q

is injective.

Note that for K0(ZG) ⊗Z Q the conjecture above is always true but not
very interesting, because for a finite group H it is known that K̃0(ZH)⊗ZQ =
0, compare [325, Proposition 9.1], and hence the left hand side reduces to
K0(Z)⊗Z Q. However, the full answer for K0(ZG) should involve the negative
K-groups, compare Example 8.10.

Analogously to Conjecture 2.30 the following can be derived from the
K-theoretic Farrell-Jones Conjecture 2.5, compare [227].

Conjecture 2.31. The map

colimH∈SubFIN (G) Wh(H)⊗Z Q→Wh(G)⊗Z Q

is always injective.

In general one does not expect this map to be an isomorphism. There
should be additional contributions coming from negative K-groups. Conjec-
ture 2.31 is true for groups satisfying a mild homological finiteness condition,
see Theorem 3.28.

2.6 G-Theory

Instead of considering finitely generated projective modules one may ap-
ply the standard K-theory machinery to the category of finitely gener-
ated modules. This leads to the definition of the groups Gn(R) for n ≥ 0.
For instance G0(R) is the abelian group whose generators are isomorphism
classes [M ] of finitely generated R-modules and whose relations are given by
[M0] − [M1] + [M2] for any exact sequence 0 → M0 → M1 → M2 → 0 of
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finitely generated modules. One may ask whether versions of the Farrell-Jones
Conjectures for G-theory instead of K-theory might be true. The answer is
negative as the following discussion explains.

For a finite group H the ring CH is semisimple. Hence any finitely gener-
ated CH-module is automatically projective and K0(CH) = G0(CH). Recall
that a group G is called virtually poly-cyclic if there exists a subgroup of
finite index H ⊆ G together with a filtration {1} = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆
Hr = H such that Hi−1 is normal in Hi and the quotient Hi/Hi−1 is cyclic.
More generally for all n ∈ Z the forgetful map

f : Kn(CG)→ Gn(CG)

is an isomorphism if G is virtually poly-cyclic, since then CG is regular [298,
Theorem 8.2.2 and Theorem 8.2.20] and the forgetful map f is an isomor-
phism for regular rings, compare [289, Corollary 53.26 on page 293]. In par-
ticular this applies to virtually cyclic groups and so the left hand side of
the Farrell-Jones assembly map does not see the difference between K- and
G-theory if we work with complex coefficients. We obtain a commutative
diagram

colimH∈SubFIN (G)K0(CH)

∼=
��

// K0(CG)

f

��
colimH∈SubFIN (G)G0(CH) // G0(CG)

where, as indicated, the left hand vertical map is an isomorphism. Conjec-
ture 2.29, which is implied by the Farrell-Jones Conjecture, says that the
upper horizontal arrow is an isomorphism. A G-theoretic analogue of the
Farrell-Jones Conjecture would say that the lower horizontal map is an iso-
morphism. However, there are cases where the upper horizontal arrow is
known to be an isomorphism, but the forgetful map f on the right is not
injective or not surjective:

If G contains a non-abelian free subgroup, then the class [CG] ∈ G0(CG)
vanishes [220, Theorem 9.66 on page 364] and hence the map f : K0(CG)→
G0(CG) has an infinite kernel ([CG] generates an infinite cyclic subgroup in
K0(CG)). The Farrell-Jones Conjecture for K0(CG) (see Conjecture 2.29) is
known for non-abelian free groups.

The Farrell-Jones Conjecture is also known for A =
⊕

n∈Z Z/2 and hence
K0(CA) is countable, whereas G0(CA) is not countable [220, Example 10.13
on page 375]. Hence the map f cannot be surjective.

At the time of writing we do not know a counterexample to the statement
that for an amenable group G, for which there is an upper bound on the
orders of its finite subgroups, the forgetful map f : K0(CG) → G0(CG) is
an isomorphism. We do not know a counterexample to the statement that
for a group G, which is not amenable, G0(CG) = {0}. We also do not know
whether G0(CG) = {0} is true for G = Z ∗ Z.
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For more information about G0(CG) we refer for instance to [220, Sub-
section 9.5.3].

2.7 Bass Conjectures

Complex representations of a finite group can be studied using characters.
We now want to define the Hattori-Stallings rank of a finitely generated
projective CG-module which should be seen as a generalization of characters
to infinite groups.

Let con(G) be the set of conjugacy classes (g) of elements g ∈ G. Denote
by con(G)f the subset of con(G) consisting of those conjugacy classes (g) for
which each representative g has finite order. Let class0(G) and class0(G)f

be the C-vector space with the set con(G) and con(G)f as basis. This is the
same as the C-vector space of C-valued functions on con(G) and con(G)f

with finite support. Define the universal C-trace as

tru
CG : CG→ class0(G),

∑
g∈G

λg · g 7→
∑
g∈G

λg · (g). (2.32)

It extends to a function tru
CG : Mn(CG) → class0(G) on (n, n)-matrices over

CG by taking the sum of the traces of the diagonal entries. Let P be a finitely
generated projective CG-module. Choose a matrix A ∈ Mn(CG) such that
A2 = A and the image of the CG-map rA : CGn → CGn given by right
multiplication with A is CG-isomorphic to P . Define the Hattori-Stallings
rank of P as

HSCG(P ) = tru
CG(A) ∈ class0(G). (2.33)

The Hattori-Stallings rank depends only on the isomorphism class of the
CG-module P and induces a homomorphism HSCG : K0(CG)→ class0(G).

Conjecture 2.34 (Strong Bass Conjecture for K0(CG)). The C-vector
space spanned by the image of the map

HSCG : K0(CG)→ class0(G)

is class0(G)f .

This conjecture is implied by the surjectivity of the map

colimH∈SubFIN (G)K0(CH)⊗Z C→ K0(CG)⊗Z C, (2.35)

and hence by the Farrell-Jones Conjecture for K0(CG) (see Conjecture 2.29).
We will see below that the surjectivity of the map (2.35) also implies that the
map K0(CG) ⊗Z C → class0(G), which is induced by the Hattori-Stallings
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rank, is injective. Hence we do expect that the Hattori-Stallings rank induces
an isomorphism

K0(CG)⊗Z C ∼= class0(G)f .

There are also versions of the Bass conjecture for other coefficients than
C. It follows from results of Linnell [209, Theorem 4.1 on page 96] that the
following version is implied by the Strong Bass Conjecture for K0(CG) (see
Conjecture 2.34).

Conjecture 2.36 (The Strong Bass Conjecture for K0(ZG)). The im-
age of the composition

K0(ZG)→ K0(CG) HSCG−−−→ class0(G)

is contained in the C-vector space of those functions f : con(G) → C which
vanish for (g) ∈ con(g) with g 6= 1.

Finally we mention the following variant of the Bass Conjecture.

Conjecture 2.37 (The Weak Bass Conjecture). Let P be a finitely gen-
erated projective ZG-module. The value of the Hattori-Stallings rank of
CG⊗ZG P at the conjugacy class of the identity element is given by

HSCG(CG⊗ZG P )((1)) = dimZ(Z⊗ZG P ).

Here Z is considered as a ZG-module by the trivial G-action.

TheK-theoretic Farrell-Jones Conjecture implies the Conjectures 2.34, 2.36
and 2.37 above. More precisely we have the following proposition.

Proposition 2.38. (1) The map

colimH∈SubFIN (G)K0(CH)⊗Z Q→ K0(CG)⊗Z Q

is always injective. If the map is also surjective (compare Conjecture 2.29)
then the Hattori-Stallings rank induces an isomorphism

K0(CG)⊗Z C ∼= class0(G)f

and in particular the Strong Bass Conjecture for K0(CG) (see Conjec-
ture 2.34) and hence also the Strong Bass Conjecture for K0(ZG) (see
Conjecture 2.36) hold;

(2) The surjectivity of the assembly map appearing in the Farrell-Jones Con-
jecture 2.5

AVCY : HG
0 (EVCY(G);KZ)⊗Z Q→ K0(ZG)⊗Z Q

implies the Rational K̃0(ZG)-to-K̃0(QG) Conjecture 2.44 and hence also
the Strong Bass Conjecture for K0(ZG) (see Conjecture 2.36);
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(3) The Strong Bass Conjecture for K0(CG)(see Conjecture 2.34) implies
the Strong Bass Conjecture for K0(ZG). The Strong Bass Conjecture for
K0(ZG) (see Conjecture 2.36) implies the Weak Bass Conjecture 2.37.

Proof. (1) follows from the following commutative diagram, compare [216,
Lemma 2.15 on page 220]

colimH∈SubFIN (G)K0(CH)⊗Z C

∼=
��

// K0(CG)⊗Z C

��
colimH∈SubFIN (G) class0(H)

∼= // class0(G)f
i // class0(G).

Here the vertical maps are induced by the Hattori-Stallings rank, the map i
is the natural inclusion and in particular injective and we have the indicated
isomorphisms.
(2) According to Proposition 2.20 the surjectivity of the map AVCY appear-
ing in (2) implies the surjectivity of the corresponding assembly map AFIN
(rationalized and with Z as coefficient ring) for the family of finite subgroups.
The map AFIN is natural with respect to the change of the coefficient ring
from Z to Q. By Theorem 8.7 we know that for every coefficient ring R there
is an isomorphism from⊕

p,q,p+q=0

⊕
(C)∈(FCY)

Hp(BZGC; Q)⊗Q[WGC] ΘC ·Kq(RC)⊗Z Q

to the 0-dimensional part of the left hand side of the rationalized FIN -
assembly map AFIN . The isomorphism is natural with respect to a change
of coefficient rings. To see that the Rational K̃0(ZG)-to-K̃0(QG) Conjec-
ture 2.44 follows, it hence suffices to show that the summand corresponding
to C = {1} and p = q = 0 is the only one where the map induced from Z→ Q
is possibly non-trivial. But Kq(QC) = 0 if q < 0, because QC is semisimple
and hence regular, and for a finite cyclic group C 6= {1} we have by [216,
Lemma 7.4]

ΘC ·K0(ZC)⊗Z Q = coker

⊕
D(C

K0(ZD)⊗Z Q → K0(ZC)⊗Z Q

 = 0,

since by a result of Swan K0(Z)⊗Z Q→ K0(ZH)⊗Z Q is an isomorphism for
a finite group H, see [325, Proposition 9.1].
(3) As already mentioned the first statement follows from [209, Theorem 4.1
on page 96]. The second statement follows from the formula∑

(g)∈con(G)

HSCG(C⊗Z P )(g) = dimZ(Z⊗ZG P ).
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The next result is due to Berrick, Chatterji and Mislin [42, Theorem 5.2].
The Bost Conjecture is a variant of the Baum-Connes Conjecture and is
explained in Subsection 2.12.3.

Theorem 2.39. If the assembly map appearing in the Bost Conjecture 2.72
is rationally surjective, then the Strong Bass Conjecture for K0(CG) (com-
pare 2.34) is true.

Remark 2.40. (The Strong Bass Conjecture for fields of character-
istic zero). Let F be a field of characteristic zero. Fix an integer m ≥ 1. Let
F ⊆ F (ζm) be the Galois extension given by adjoining the primitive m-th
root of unity ζm to F . Denote by Gal(F ⊂ F (ζm)) the Galois group of this ex-
tension of fields, i.e. the group of automorphisms of fields σ : F (ζm)→ F (ζm)
which induce the identity on F . It can be identified with a subgroup of Z/m∗

by sending σ to the unique element u(σ) ∈ Z/m∗ for which σ(ζm) = ζ
u(σ)
m

holds.
Let G be a group. Let g1 and g2 be two elements of G of finite order.

We call them F -conjugate if for some (and hence all) positive integers m
with gm

1 = gm
2 = 1 there exists an element σ in the Galois group Gal(F ⊂

F (ζm)) with the property (gu(σ)
1 ) = (g2). Denote by con(G,F )f the set of

F -conjugacy classes (g)F of elements g ∈ G of finite order. Let class0(G,F )f

be the F -vector space with the set con(G,F )f as basis, or, equivalently, the
F -vector space of functions con(G,F )f → F with finite support. Recall that
for a finite group H taking characters yields an isomorphism [310, Corollary
1 on page 96]

χ : F ⊗Z RF (H) = F ⊗Z K0(FH)
∼=−→ class0(H,F )f . (2.41)

By [219, Theorem 0.4] and(2.41) the map appearing in the version of the
Farrell-Jones Conjecture 2.29 for K0(FG) can be identified with a map

class0(G,F )f → F ⊗Z K0(FG).

Using the Hattori-Stallings rank one can show that this map is always injec-
tive. If the version of the Farrell-Jones Conjecture 2.29 is true, this map is
an isomorphism. This generalizes (2.41) for finite groups to infinite groups.

More information and further references about the Bass Conjecture can
be found for instance in [29], [42, Section 7], [48], [106], [107], [133], [209]
[220, Subsection 9.5.2], and [246, page 66ff].

2.8 Change of Rings for ZG, QG, C∗
r (G) and N (G) for

K0

We now discuss some further questions and facts that seem to be relevant in
the context of the Bass Conjectures.
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Conjecture 2.42. (Integral K̃0(ZG)-to-K̃0(QG)-Conjecture). The change
of coefficient map

K̃0(ZG)→ K̃0(QG)

is trivial.

Note that the Integral K̃0(ZG)-to-K̃0(QG)-Conjecture above would imply
that the following diagram commutes.

K0(ZG) −−−−→ K0(QG)

p∗

y i

x
K0(Z) dimZ−−−−→∼= Z.

Here p∗ is induced by the projection G→ {1} and i sends 1 ∈ Z to the class
of QG.

We do not know a proof which shows that the K-theoretic Farrell-Jones
Conjecture 2.5 implies the conjecture above although both conjectures are
linked. We can only conclude from it a factorization

K̃0(ZG)→ HG
1 (EFIN (G);KZ)→ K̃0(QG) (2.43)

This follows from the equivariant Atiyah-Hirzebruch spectral sequence and
Proposition 2.19 since for finite H the change of rings map K̃0(ZH) →
K̃0(QH) is trivial, Kn(ZH) = 0 for n ≤ −2 and |H| < ∞ and Kn(QV ) = 0
for virtually cyclic V and n ≤ −1. Comment 21 (By W.): Shall
we elaborate on this or put this as an exercise? At least the K-
theoretic Farrell-Jones Conjecture 2.5 implies the following rational version

Conjecture 2.44 (Rational K̃0(ZG)-to-K̃0(QG)-Conjecture). For every
group G the map

K̃0(ZG)⊗Z Q→ K̃0(QG)⊗Z Q

induced by the change of coefficients is trivial.

Recall that the Strong Bass Conjecture for K0(ZG) (see Conjecture 2.36)
says that for every finitely generated projective ZG-module P the Hattori-
Stallings rank of CG ⊗ZG P looks like the Hattori-Stallings rank of a
free CG-module. Clearly it follows from the Rational K̃0(ZG)-to-K̃0(QG)-
Conjecture 2.44

Remark 2.45. The passage from K̃0(ZG) to K̃0(N (G))). Let N (G) de-
note the group von Neumann algebra of G. It is known that for every group
G the composition

K̃0(ZG)→ K̃0(QG)→ K̃0(CG)→ K̃0(C∗r (G))→ K̃0(N (G))
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is the zero-map (see for instance [220, Theorem 9.62 on page 362] or [302]).
Since the group von Neumann algebra N (G) is not functorial under arbi-
trary group homomorphisms such as G→ {1}, this does not imply that the
diagram

K0(ZG) −−−−→ K0(N (G))

p∗

y i

x
K0(Z) dimZ−−−−→∼= Z

commutes. However, commutativity is equivalent to the Weak Bass Conjec-
ture 2.37. For a discussion of these questions see [107].

Finally we mention the following result. Denote by ΛG the subring of Q
which is obtained from Z by inverting all orders |H| of finite subgroups H of
G, i.e.

ΛG = Z
[
|H|−1 | H ⊂ G, |H| <∞

]
. (2.46)

Theorem 2.47. (Passage from K0(C∗r (G)) to K0(N (G))). Let G be a
group which satisfies the Baum-Connes Conjecture 2.4. Then the image of
the map

ΛG ⊗Z K0(C∗r (G))→ ΛG ⊗Z K0(N (G))

is contained in the image of the map

colimC∈Sub(G;FCY)

(
ΛG ⊗Z RC(C)

)
→ ΛG ⊗Z K0(N (G))

which comes from the induction homomorphisms RC(C) = K0(N (C)) →
K0(N (G)) for the finite cyclic subgroups C ⊆ G.

Proof. This follows from [220, Theorem 5.4].

In particular we see that for a torsionfree group G which satisfies the Baum-
Connes Conjecture 2.4 the map K̃0(C∗r (G))→ K̃0(N (G)) is trivial. This has
also been proved by Chatterji-Mislin [70].

If G is finite, then Theorem 2.47 agrees with Artin’s Theorem 2.24.

2.9 The Novikov Conjecture

The Novikov Conjecture which we will explain below has been one of the
main motivation to formulate and to study the Baum-Connes Conjecture 2.4
and the Farrell-Jones Conjecture 2.5.



72 2. Formulation and Relevance of the Conjectures in General

2.9.1 The Original Novikov Conjecture

We now explain the Novikov Conjecture in its original formulation.
Let G be a (not necessarily torsionfree) group and u : M → BG be

a map from a closed oriented smooth manifold M to BG. Let L(M) ∈∏
k≥0H

k(M ; Q) be the L-class of M , which is a certain polynomial in the
Pontrjagin classes and hence depends a priori on the tangent bundle and
hence on the smooth structure of M . For x ∈

∏
k≥0H

k(BG; Q) define the
higher signature of M associated to x and u to be

signx(M,u) := 〈L(M) ∪ u∗x, [M ]〉 ∈ Q. (2.48)

The Hirzebruch signature formula says that for x = 1 the signature sign1(M,u)
coincides with the ordinary signature sign(M) of M , if dim(M) = 4n, and
is zero, if dim(M) is not divisible by four. Recall that for dim(M) = 4n
the signature sign(M) of M is the signature of the non-degenerate bilinear
symmetric pairing on the middle cohomology H2n(M ; R) given by the in-
tersection pairing (a, b) 7→ 〈a ∪ b, [M ]〉. Obviously sign(M) depends only on
the oriented homotopy type of M . We say that signx for x ∈ H∗(BG; Q) is
homotopy invariant if for two closed oriented smooth manifolds M and N
with reference maps u : M → BG and v : N → BG we have

signx(M,u) = signx(N, v)

if there is an orientation preserving homotopy equivalence f : M → N such
that v ◦ f and u are homotopic.

Conjecture 2.49 (Novikov Conjecture). Let G be a group. Then signx

is homotopy invariant for all x ∈
∏

k≥0H
k(BG; Q).

By Hirzebruch’s signature formula the Novikov Conjecture 2.49 is true
for x = 1.

2.9.2 The Novikov Conjecture Follows from the Farrell-Jones
Conjecture or from the Baum-Connes Conjecture

There is the following version of the Novikov Conjecture 2.49.

Conjecture 2.50 (K- and L-theoretic Novikov Conjectures). For ev-
ery group G the classical assembly maps

H∗(BG;K(Z))⊗Z Q→ K∗(ZG)⊗Z Q
H∗(BG;Lp(Z))⊗Z Q→ Lp

∗(ZG)⊗Z Q
K∗(BG)⊗Z Q→ K∗(C∗r (G))⊗Z Q

are injective.
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Observe that, since the Z/2-Tate cohomology groups vanish rationally,
there is no difference between the various decorations in L-theory because of
the Rothenberg sequence. We have chosen the p-decoration above.

Using surgery theory one can show [281, Proposition 6.6 on page 300] the
following Comment 22 (By W.): Add reference or explanation?

Proposition 2.51. For a group G the original Novikov Conjecture 2.49 is
equivalent to the L-theoretic Novikov Conjecture 2.50, i.e. the injectivity of
the classical assembly maps

H∗(BG;Lp(Z))⊗Z Q→ Lp
∗(ZG)⊗Z Q.

Later in Proposition 2.55 we will prove in particular the following state-
ment.

Proposition 2.52. The Novikov Conjecture 2.50 for topological K-theory,
i.e. the injectivity of the classical assembly map

K∗(BG)⊗Z Q→ K∗(C∗r (G))⊗Z Q

implies the L-theoretic Novikov Conjecture 2.50 and hence the original Novikov
Conjecture 2.49.

We conclude from Proposition 2.19 and Proposition 2.23 together with
Proposition 2.51 and Proposition 2.52

Proposition 2.53. (1) The rational injectivity of the assembly map appear-
ing in L-theoretic Farrell-Jones Conjecture (Conjecture 2.5) implies the
L-theoretic Novikov Conjecture (Conjecture 2.50) and hence the original
Novikov Conjecture 2.49;

(2) The rational injectivity of the assembly map appearing the Baum-Connes
Conjecture 2.4 implies the injectivity of the rationalized classical assembly
map

Kn(BG)⊗Z Q→ Kn(C∗r (G))⊗Z Q.

and hence the L-theoretic Novikov Conjecture 2.50 and the original
Novikov Conjecture 2.49;

(3) The rational injectivity of the assembly map appearing in the Farrell-
Jones Conjecture for algebraic K-theory (Conjecture 2.5) implies the K-
theoretic Novikov Conjecture for R as coefficients, i.e. the injectivity of
the classical assembly map

Hn(BG;K(R))⊗Z Q→ Kn(RG)⊗Z Q.

Remark 2.54 (Integral Injectivity Fails). In general the classical as-
sembly maps A = AT R themselves, i.e. without rationalizing, are not in-
jective. For example one can use the Atiyah-Hirzebruch spectral sequence
(see Subsection 8.5.1) to see that for G = Z/5
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H1(BG;Ktop) and H1(BG;L〈−∞〉(Z))

contain 5-torsion, whereas for every finite group G the topological K-theory
of CG is torsionfree and the torsion in the L-theory of ZG is always 2-torsion,
compare Proposition 8.1 1 and Proposition 8.3 1.

For more information about the Novikov Conjectures we refer for instance
to [44], [58], [61], [91], [135], [142], [197], [279] and [290].

2.10 Relating Topological K-Theory and L-Theory

For every real C∗-algebraA there is an isomorphism Lp
n(A)[1/2]

∼=−→ Kn(A)[1/2]
(see [290]). This can be used to compare L-theory to topological K-theory
and leads to the following result.

Proposition 2.55. Let F be a family of subgroups of G with F ⊆ FIN . If
the topological K-theory assembly map

AF : HG
n (EF (G);Ktop)[1/2]→ Kn(C∗r (G))[1/2]

is injective, then for an arbitrary decoration j also the map

AF : HG
n (EF (G);L〈j〉Z )[1/2]→ L〈j〉n (ZG)[1/2]

is injective.

Proof. First recall from Remark 1.40 that after inverting 2 there is no dif-
ference between the different decorations and we can hence work with the
p-decoration. One can construct for any subfamily F ⊆ FIN the following
commutative diagram [218, Section 7.5]
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HG
n (EF (G);Lp

Z[1/2])
A1
F−−−−→ Lp

n(ZG)[1/2]

i1

y∼= j1

y∼=
HG

n (EF (G);Lp
Q[1/2])

A2
F−−−−→ Lp

n(QG)[1/2]

i2

y∼= j2

y
HG

n (EF (G);Lp
R[1/2])

A3
F−−−−→ Lp

n(RG)[1/2]

i3

y∼= j3

y
HG

n (EF (G);Lp
C∗r (?;R)[1/2])

A4
F−−−−→ Lp

n(C∗r (G; R))[1/2]

i4

y∼= j4

y∼=
HG

n (EF (G);Ktop
R [1/2])

A5
F−−−−→ Kn(C∗r (G; R))[1/2]

i5

y j5

y
HG

n (EF (G);Ktop
C [1/2])

A6
F−−−−→ Kn(C∗r (G))[1/2]

Here

Lp
Z[1/2], Lp

Q[1/2], Lp
R[1/2], LC∗r (?;R)[1/2],

Ktop
R [1/2] and Ktop

C [1/2]

are covariant Or(G)-spectra (compare Section 4.4.4 and in particular Propo-
sition 4.20) such that the n-th homotopy group of their evaluations at G/H
are given by

Lp
n(ZH)[1/2], Lp

n(QH)[1/2], Lp
n(RH)[1/2], Lp

n(C∗r (H; R))[1/2],
Kn(C∗r (H; R))[1/2] respectively Kn(C∗r (H)[1/2].

All horizontal maps are assembly maps induced by the projection pr : EF (G)→
{•}. The maps ik and jk for k = 1, 2, 3 are induced from a change of rings.
The isomorphisms i4 and j4 come from the general isomorphism for any real
C∗-algebra A

Lp
n(A)[1/2]

∼=−→ Kn(A)[1/2]

and its spectrum version [290, Theorem 1.11 on page 350]. The maps i1, j1, i2
are isomorphisms by [277, page 376] and [279, Proposition 22.34 on page 252].
The map i3 is bijective since for a finite group H we have RH = C∗r (H; R).
The maps i5 and j5 are given by extending the scalars from R to C by
induction. For every real C∗-algebra A the composition

Kn(A)[1/2]→ Kn(A⊗R C)[1/2]→ Kn(M2(A))[1/2]
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is an isomorphism and hence j5 is split injective. An Or(G)-spectrum version
of this argument yields that also i5 is split injective.

Remark 2.56. One may conjecture that the right vertical maps j2 and j3
are isomorphisms and try to prove this directly. Then if we invert 2 ev-
erywhere the Baum-Connes Conjecture 2.4 for the real reduced group C∗-
algebra, would be equivalent to the Farrell-Jones Farrell-Jones Conjecture
for L∗(ZG)[1/2].

2.11 Further Applications of the Baum-Connes
Conjecture

Next we discuss some further applications of the Baum-Connes Conjec-
ture 2.4.

2.11.1 The Modified Trace Conjecture

The following conjecture generalizes Conjecture 1.10 to the case where the
group need no longer be torsionfree. For the standard trace compare (1.8).

Conjecture 2.57 (Modified Trace Conjecture for a group G). Let G
be a group. Let ΛG be the ring introduced in (2.46). Then the image of the
homomorphism induced by the standard trace

trC∗r (G) : K0(C∗r (G))→ R (2.58)

is contained in ΛG.

The following result is proved in [221, Theorem 0.3]. It follows from The-
orem 2.47.

Theorem 2.59. Let G be a group. Then the image of the composition

KG
0 (EFIN (G))⊗Z Λ

G AFIN⊗Zid−−−−−−−→ K0(C∗r (G))⊗Z Λ
G

trC∗r (G)−−−−−→ R

is ΛG. Here AFIN is the map appearing in the Baum-Connes Conjecture 2.4.
In particular the Baum-Connes Conjecture 2.4 implies the Modified Trace
Conjecture.

The original version of the Trace Conjecture which is due to Baum
and Connes [32, page 21] makes the stronger statement that the image of
trC∗r (G) : K0(C∗r (G))→ R is the additive subgroup of Q generated by all num-
bers 1

|H| , where H ⊂ G runs though all finite subgroups of G. Roy has con-
structed a counterexample to this version in [299] based on her article [300].
The examples of Roy do not contradict the Modified Trace Conjecture 2.57
or the Baum-Connes Conjecture 2.4.
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2.11.2 The Stable Gromov-Lawson-Rosenberg Conjecture

The Stable Gromov-Lawson-Rosenberg Conjecture is a typical conjecture re-
lating Riemannian geometry to topology. It is concerned with the question
when a given manifold admits a metric of positive scalar curvature. To discuss
its relation with the Baum-Connes Conjecture we will need the real version
of the Baum-Connes Conjecture, compare Subsection 2.12.1.

Let ΩSpin
n (BG) be the bordism group of closed Spin-manifolds M of di-

mension n with a reference map to BG. Let C∗r (G; R) be the real reduced
group C∗-algebra and let KOn(C∗r (G; R)) = Kn(C∗r (G; R)) be its topological
K-theory. We use KO instead of K as a reminder that we here use the real
reduced group C∗-algebra. Given an element [u : M → BG] ∈ ΩSpin

n (BG),
we can take the C∗r (G; R)-valued index of the equivariant Dirac operator
associated to the G-covering M → M determined by u. Thus we get a ho-
momorphism

indC∗r (G;R) : ΩSpin
n (BG)→ KOn(C∗r (G; R)). (2.60)

A Bott manifold is any simply connected closed Spin-manifold B of dimension
8 whose Â-genus Â(B) is 8. We fix such a choice, the particular choice does
not matter for the sequel. Notice that indC∗r ({1};R)(B) ∈ KO8(R) ∼= Z is a
generator and the product with this element induces the Bott periodicity
isomorphisms KOn(C∗r (G; R))

∼=−→ KOn+8(C∗r (G; R)). In particular

indC∗r (G;R)(M) = indC∗r (G;R)(M ×B), (2.61)

if we identify KOn(C∗r (G; R)) = KOn+8(C∗r (G; R)) via Bott periodicity.

Conjecture 2.62. (Stable Gromov-Lawson-Rosenberg Conjecture).
Let M be a closed connected Spin-manifold of dimension n ≥ 5. Let
uM : M → Bπ1(M) be the classifying map of its universal covering. Then
M × Bk carries for some integer k ≥ 0 a Riemannian metric with positive
scalar curvature if and only if

indC∗r (π1(M);R)([M,uM ]) = 0 ∈ KOn(C∗r (π1(M); R)).

If M carries a Riemannian metric with positive scalar curvature, then
the index of the Dirac operator must vanish by the Bochner-Lichnerowicz
formula [288]. The converse statement that the vanishing of the index implies
the existence of a Riemannian metric with positive scalar curvature is the
hard part of the conjecture. The following result is due to Stolz. A sketch of
the proof can be found in [324, Section 3], details are announced to appear
in a different paper.

Theorem 2.63. If the assembly map for the real version of the Baum-
Connes Conjecture (compare Subsection 2.12.1) is injective for the group
G, then the Stable Gromov-Lawson-Rosenberg Conjecture 2.62 is true for all
closed Spin-manifolds of dimension ≥ 5 with π1(M) ∼= G.
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The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-
Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-
Witten invariants, occur. The unstable version of this conjecture says that
M carries a Riemannian metric with positive scalar curvature if and only
if indC∗r (π1(M);R)([M,uM ]) = 0. Schick [304] constructs counterexamples to
the unstable version using minimal hypersurface methods due to Schoen and
Yau (see also [105]). It is not known at the time of writing whether the
unstable version is true for finite fundamental groups. Since the Baum-Connes
Conjecture 2.4 is true for finite groups (for the trivial reason that EFIN (G) =
{•} for finite groups G), Theorem 2.63 implies that the Stable Gromov-
Lawson Conjecture 2.62 holds for finite fundamental groups (see also [291]).

The index map appearing in (2.60) can be factorized as a composition

indC∗r (G;R) : ΩSpin
n (BG) D−→ KOn(BG) A−→ KOn(C∗r (G; R)), (2.64)

where D sends [M,u] to the class of the G-equivariant Dirac operator of the
G-manifold M given by u and A = AT R is the real version of the classical
assembly map. The homological Chern character defines an isomorphism

KOn(BG)⊗Z Q
∼=−→
⊕
p∈Z

Hn+4p(BG; Q).

Recall that associated to M there is the Â-class

Â(M) ∈
∏
p≥0

Hp(M ; Q) (2.65)

which is a certain polynomial in the Pontrjagin classes. The map D appear-
ing in (2.64) sends the class of u : M → BG to u∗(Â(M) ∩ [M ]), i.e. the
image of the Poincaré dual of Â(M) under the map induced by u in rational
homology. Hence D([M,u]) = 0 if and only if u∗(Â(M) ∩ [M ]) vanishes. For
x ∈

∏
k≥0H

k(BG; Q) define the higher Â-genus of (M,u) associated to x to
be

Âx(M,u) = 〈Â(M) ∪ u∗x, [M ]〉 = 〈x, u∗(Â(M) ∩ [M ])〉 ∈ Q. (2.66)

The vanishing of Â(M) is equivalent to the vanishing of all higher Â-genera
Âx(M,u).

2.11.3 The Homological Gromov-Lawson-Rosenberg Conjecture

The following conjecture is a weak version of the Stable Gromov-Lawson-
Rosenberg Conjecture 2.62

Conjecture 2.67. (Homological Gromov-Lawson-Rosenberg Conjec-
ture). Let G be a group. Then for any closed Spin-manifold M , which admits
a Riemannian metric with positive scalar curvature, the Â-genus Âx(M,u)
vanishes for all maps u : M → BG and elements x ∈

∏
k≥0H

k(BG; Q).
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From the discussion above we obtain the following result.

Proposition 2.68. If the classical assembly map

KOn(BG)⊗Z Q→ KOn(C∗r (G; R))⊗Z Q

is injective for all n ∈ Z, then the Homological Gromov-Lawson-Rosenberg
Conjecture holds for G.

Remark 2.69. (Aspherical manifolds and positive scalar curvature).
The Homological Gromov-Lawson-Rosenberg Conjecture 2.67 implies that an
aspherical closed Spin-manifold M cannot carry a Riemannian metric with
positive scalar curvature. Namely, we can take G = π1(M), M = BG, u = id
and x ∈ Hdim(M)(M ; Q) to be the class uniquely determined by 〈x, [M ]〉 = 1.
Since the component of Â(M) in dimension zero is 1, we get

Âx(M, id) = 〈x, [M ]〉 = 1.

2.12 Variants of the Baum-Connes Conjecture

In this section we discuss variants of the Baum-Connes Conjecture 2.4.

2.12.1 The Real Version of the Baum-Connes Conjecture

There is an obvious real version of the Baum-Connes Conjecture, which pre-
dicts that for all n ∈ Z and groups G the assembly map

AR
FIN : HG

n (EF (G);Ktop
R )→ KOn(C∗r (G; R))

is an isomorphism. Here HG
n (−;Ktop

R ) is an equivariant homology theory
whose distinctive feature is that HG

n (G/H;Ktop
R ) ∼= KOn(C∗r (H; R)). Recall

that we write KOn(−) only to remind ourselves that the C∗-algebra we apply
it to is a real C∗-algebra, like for example the real reduced group C∗-algebra
C∗r (G; R). The following result appears in [36].

Proposition 2.70. The Baum-Connes Conjecture 2.4 implies the real ver-
sion of the Baum-Connes Conjecture.

In the proof of Proposition 2.55 we have already seen that after invert-
ing 2 the “real assembly map” is a retract of the complex assembly map.
In particular with 2-inverted or after rationalizing also injectivity results or
surjectivity results about the complex Baum-Connes assembly map yield the
corresponding results for the real Baum-Connes assembly map.
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2.12.2 The Version of the Baum-Connes Conjecture for Maximal
Group C∗-Algebras

For a groupG let C∗m(G) be its maximal group C∗-algebra, compare [263, 7.1.5
on page 229]. The maximal group C∗-algebra has the advantage that every
homomorphism of groups φ : G → H induces a homomorphism C∗m(G) →
C∗m(H) of C∗-algebras. This is not true for the reduced group C∗-algebra
C∗r (G). Here is a counterexample: since C∗r (F ) is a simple algebra if F is
a non-abelian free group [266], there is no unital algebra homomorphism
C∗r (F )→ C∗r ({1}) = C.

One can construct a version of the Baum-Connes assembly map using an
equivariant homology theory HG

n (−;Ktop
m ) which evaluated on G/H yields

the K-theory of C∗m(H) (use Proposition 4.20 and a suitable modification of
Ktop, compare Section 4.3.1).

Since on the left hand side of a FIN -assembly map only the maximal
group C∗-algebras for finite groups H matter, and clearly C∗m(H) = CH =
C∗r (H) for such H, this left hand side coincides with the left hand side of
the usual Baum-Connes Conjecture. There is always a C∗-homomorphism
p : C∗m(G)→ C∗r (G) (it is an isomorphism if and only if G is amenable [263,
Theorem 7.3.9 on page 243]) and hence we obtain the following factorization
of the usual Baum-Connes assembly map

Kn(C∗m(G))

Kn(p)

��
HG

n (EFIN (G);Ktop)
AFIN

//

Am
FIN

44iiiiiiiiiiiiiiiii
Kn(C∗r (G))

(2.71)

The maximal C∗-algebra version of the Baum-Connes Conjecture says that
map Am

FIN is bijective. However, it is known that the map Am
FIN is in general

not surjective. The Baum-Connes Conjecture would imply that the map is
Am
FIN is always injective, and that it is surjective if and only if the vertical

map Kn(p) is injective.
A countable group G is called K-amenable if the map p : C∗m(G)→ C∗r (G)

induces a KK-equivalence (compare [87]). This implies in particular that the
vertical mapKn(p) is an isomorphism for all n ∈ Z. Note that forK-amenable
groups the Baum-Connes Conjecture holds if and only if the “maximal” ver-
sion of the assembly map Am

FIN is an isomorphism for all n ∈ Z. A-T-menable
groups are K-amenable, compare Theorem 3.1. But K0(p) is not injective for
every infinite group which has property (T) such as for example SLn(Z)
for n ≥ 3, compare for instance the discussion in [180]. There are groups
with property (T) for which the Baum-Connes Conjecture is known (com-
pare Subsection 3.2.2 and hence there are counterexamples to the conjecture
that Am

FIN is an isomorphism.
In Theorem 1.59 and Remark 1.60 we have discussed applications of the

maximal C∗-algebra version of the Baum-Connes Conjecture.
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The left hand side of the assembly map appearing in the Baum-Connes
Conjecture 0.6 is natural with respect to arbitrary group homomorphisms
φ : G → K. Namely, such a group homomorphism induces a φ-equivariant
map EG→ EK and thus a G-map f : K×φEG→ EK. Since EG is proper,
there is a canonical map KG

n (EG) → KK
n (K ×φ EG). Its composition with

the map induced by f yields a homomorphism

φ∗ : KG
n (EG)→ KK

n (EK).

Thus the Baum-Connes Conjecture 0.6 predicts that φ induces a natural map

φ∗ : Kn(C∗r (G))→ Kn(C∗r (K)).

Such a map has not been constructed in general without using the Baum-
Connes Conjecture for the reduced group C∗-algebra. Notice that such a
map obviously exists for the maximal group C∗-algebra and that assembly
map for the maximal group C∗-algebra is compatible with these maps. This
will follow in our setup from the constructions Comment 23 (By W.):
Add reference. and has been proved in the KK-picture by Valette [335,
Theorem 1.1]. Comment 24 (By W.): We have discussed this in the
torsionfree case already in Section 1.11. Shall we add somewhere
a systematically discussion of the naturality of the source of the
assembly map and its target. If yes, we should add references accordingly
and possibly cut the discussion at other places.

2.12.3 The Bost Conjecture

Some of the strongest results about the Baum-Connes Conjecture are proven
using the so called Bost Conjecture (see [204]). The Bost Conjecture is the
version of the Baum-Connes Conjecture, where one replaces the reduced
group C∗-algebra C∗r (G) by the Banach algebra l1(G) of absolutely summable
functions on G. Again one can use the spectra approach (compare Subsec-
tion 4.4.4 and 4.3.1 and in particular Proposition 4.20) to produce a variant
of equivariant K-homology denoted HG

n (−;Ktop
l1 ) which this time evaluated

on G/H yields Kn(l1(H)), the topological K-theory of the Banach algebra
l1(H). Analogously as in Subsection 2.2.2 we obtain an associated assembly
map and we believe that it coincides with the one defined using a Banach-
algebra version of KK-theory in [204]. Comment 25 (By W.): Do Mislin
or someone else elaborates on this?

Conjecture 2.72 (Bost Conjecture). Let G be a countable group. Then
the assembly map

Al1

FIN : HG
n (EFIN (G);Ktop

l1 )→ Kn(l1(G))

is an isomorphism.
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Again the left hand side coincides with the left hand side of the Baum-
Connes assembly map because for finite groups H we have l1(H) = CH =
C∗r (H) as topological complex algebras. There is always an injective norm de-
creasing ∗-homomorphism q : l1(G)→ C∗r (G) and one obtains a factorization
of the usual Baum-Connes assembly map

Kn(l1(G))

Kn(q)

��
HG

n (EFIN (G);Ktop)

Al1
FIN

44iiiiiiiiiiiiiiiii
AFIN // Kn(C∗r (G)).

Every group homomorphism G → H induces a homomorphism of Banach
algebras l1(G) → l1(H). So similar as in the maximal group C∗-algebra
case this approach repairs the lack of functoriality for the reduced group
C∗-algebra.

The disadvantage of l1(G) is however that indices of operators tend to
take values in the topological K-theory of the group C∗-algebras, not in
Kn(l1(G)). Moreover the representation theory of G is closely related to the
group C∗-algebra, whereas the relation to l1(G) is not well understood.

For more information about the Bost Conjecture 2.72 see [204], [315].

2.12.4 The Baum-Connes Conjecture with Coefficients

The Baum-Connes Conjecture 2.4 can be generalized to the Baum-Connes
Conjecture with Coefficients. Let A be a separable C∗-algebra with an action
of the countable group G. Then there is an assembly map

KKG
n (EFIN (G);A)→ Kn(AoG) (2.73)

defined in terms of equivariant KK-theory, compare Sections 5.4 and 5.5.

Conjecture 2.74. (Baum-Connes Conjecture with Coefficients).
For every separable C∗-algebra A with an action of a countable group G and
every n ∈ Z the assembly map (2.73) is an isomorphism.

There are counterexamples to the Baum-Connes Conjecture with Coeffi-
cients, compare Remark 3.3. If we take A = C with the trivial action, the
map (2.73) can be identified with the assembly map appearing in the ordinary
Baum-Connes Conjecture 2.4.

Remark 2.75 (A Spectrum Level Description). There is a formulation
of the Baum-Connes Conjecture with Coefficients in the framework explained
in Section 4.4.4. Namely, construct an appropriate covariant functor Ktop(Ao
GG(−)) : Or(G)→ SPECTRA such that

πn(Ktop(Ao GG(G/H)) ∼= Kn(AoH)
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holds for all subgroups H ⊆ G and all n ∈ Z, and consider the associated
G-homology theory HG

∗ (−;Ktop(A o GG(−))). Then the map (2.73) can be
identified with the map which the projection pr: EFIN (G) → {•} induces
for this homology theory.

Remark 2.76 (Farrell-Jones Conjectures with Coefficients). One can
also formulate a “Farrell-Jones Conjecture with Coefficients”. (This should
not be confused with the Fibered Farrell-Jones Conjecture discussed in Sub-
section 2.13.2.) Fix a ring S and an action of G on it by isomorphisms of
rings. Construct an appropriate covariant functor K(S o GG(−)) : Or(G)→
SPECTRA such that

πn(K(S o GG(G/H))) ∼= Kn(S oH)

holds for all subgroups H ⊆ G and n ∈ Z, where S o H is the associ-
ated twisted group ring. Now consider the associated G-homology theory
HG
∗ (−;K(S o GG(−))). There is an analogous construction for L-theory. A

Farrell-Jones Conjecture with Coefficients would say that the map induced
on these homology theories by the projection pr : EVCY(G) → {•} is always
an isomorphism. We do not know whether there are counterexamples to the
Farrell-Jones Conjectures with Coefficients, compare Remark 3.3.

2.12.5 The Coarse Baum Connes Conjecture

We briefly explain the Coarse Baum-Connes Conjecture, a variant of the
Baum-Connes Conjecture, which applies to metric spaces. Its importance lies
in the fact that isomorphism results about the Coarse Baum-Connes Con-
jecture can be used to prove injectivity results about the classical assembly
map for topological K-theory. Compare also Section 6.5.

Let X be a proper (closed balls are compact) metric space and HX a sepa-
rable Hilbert space with a faithful nondegenerate ∗-representation of C0(X),
the algebra of complex valued continuous functions which vanish at infinity.
A bounded linear operator T has a support suppT ⊂ X×X, which is defined
as the complement of the set of all pairs (x, x′), for which there exist functions
φ and φ′ ∈ C0(X) such that φ(x) 6= 0, φ′(x′) 6= 0 and φ′Tφ = 0. The operator
T is said to be a finite propagation operator if there exists a constant α such
that d(x, x′) ≤ α for all pairs in the support of T . The operator is said to be
locally compact if φT and Tφ are compact for every φ ∈ C0(X). An operator
is called pseudolocal if φTψ is a compact operator for all pairs of continuous
functions φ and ψ with compact and disjoint supports.

The Roe algebra C∗(X) = C(X,HX) is the operator-norm closure of the
∗-algebra of all locally compact finite propagation operators on HX . The al-
gebra D∗(X) = D∗(X,HX) is the operator-norm closure of the pseudolocal
finite propagation operators. One can show that the topological K-theory
of the quotient algebra D∗(X)/C∗(X) coincides up to an index shift with
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the analytically defined (non-equivariant) K-homology K∗(X), compare Sec-
tion 5.2. For a uniformly contractible proper metric space the coarse assembly
map Kn(X)→ Kn(C∗(X)) is the boundary map in the long exact sequence
associated to the short exact sequence of C∗-algebras

0→ C∗(X)→ D∗(X)→ D∗(X)/C∗(X)→ 0.

For general metric spaces one first approximates the metric space by spaces
with nice local behaviour, compare [284]. For simplicity we only explain the
case, where X is a discrete metric space. Let Pd(X) the Rips complex for
a fixed distance d, i.e. the simplicial complex with vertex set X, where a
simplex is spanned by every collection of points in which every two points
are a distance less than d apart. Equip Pd(X) with the spherical metric,
compare [365].

A discrete metric space has bounded geometry if for each r > 0 there exists
a N(r) such that for all x the ball of radius r centered at x ∈ X contains at
most N(r) elements.

Conjecture 2.77. (Coarse Baum-Connes Conjecture). Let X be a
proper discrete metric space of bounded geometry. Then for n = 0, 1 the
coarse assembly map

colimdKn(Pd(X))→ colimdKn(C∗(Pd(X))) ∼= Kn(C∗(X))

is an isomorphism.

The conjecture is false if one drops the bounded geometry hypothesis. A
counterexample can be found in [366, Section 8]. Our interest in the conjec-
ture stems from the following fact, compare [284, Chapter 8].

Proposition 2.78. Suppose the finitely generated group G admits a classi-
fying space BG of finite type. If G considered as a metric space via a word
length metric satisfies the Coarse Baum-Connes Conjecture 2.77, then the
classical assembly map A : K∗(BG) → K∗(C∗rG) which appears in Conjec-
ture 1.1 is injective.

The Coarse Baum-Connes Conjecture for a discrete group G (considered as
a metric space) can be interpreted as a case of the Baum-Connes Conjec-
ture with Coefficients 2.74 for the group G with a certain specific choice of
coefficients, compare [370].

Further information about the coarse Baum-Connes Conjecture can be
found for instance in [167], [168], [170], [284], [364], [371], [365], [367], and
[368].

2.12.6 The Baum-Connes Conjecture for Non-Discrete Groups

Throughout this subsection let T be a locally compact second countable
topological Hausdorff group. There is a notion of a classifying space for proper
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T -actions ET (see [33, Section 1 and 2] [332, Section I.6], [225, Section 1]) and
one can define its equivariant topologicalK-theoryKT

n (ET ). The definition of
a reduced C∗-algebra C∗r (T ) and its topological K-theory Kn(C∗r (T )) makes
sense also for T . There is an assembly map defined in terms of equivariant
index theory

AK : KT
n (ET )→ Kn(C∗r (T )). (2.79)

The Baum-Connes Conjecture for T says that this map is bijective for all
n ∈ Z [33, Conjecture 3.15 on page 254].

Now consider the special case where T is a connected Lie group. Let K be
the family of compact subgroups of T . There is a notion of a T -CW -complex
and of a classifying space EK(T ) Comment 26 (By W.): Add reference to
the literature or to a section in the book depending on whether we
treat topological groups. The classifying space EK(T ) yields a model
for ET . Let K ⊂ T be a maximal compact subgroup. It is unique up to con-
jugation. The space T/K is contractible and in fact a model for ET (see [1,
Appendix, Theorem A.5], [2, Corollary 4.14], [225, Section 1]). One knows
(see [33, Proposition 4.22], [188])

KT
n (ET ) = KT

n (T/K) =
{
RC(K) n = dim(T/K) mod 2,
0 n = 1 + dim(T/K) mod 2,

where RC(K) is the complex representation ring of K.
Next we consider the special case where T is a totally disconnected group.

Let KO be the family of compact-open subgroups of T . A T -CW -complex
and a classifying space EKO(T ) for T and KO are defined. Comment 27 (By
W.): Add reference to the literature or to a section in the book
depending on whether we treat topological groups. Then EKO(T ) is
a model for ET since any compact subgroup is contained in a compact-open
subgroup, and the Baum-Connes Conjecture says that the assembly map
yields for n ∈ Z an isomorphism

AKO : KT
n (EKO(T ))→ Kn(C∗r (T )). (2.80)

For more information see [35].

2.13 Variants of the Farrell-Jones Conjecture

In this section we discuss variants of the Baum-Connes Conjecture 2.5.

2.13.1 Pseudoisotopy Theory

An important variant of the Farrell-Jones Conjecture deals with the pseu-
doisotopy spectrum functor P, which we already discussed briefly in Subsec-
tion 1.7.1. In fact it is this variant of the Farrell-Jones Conjecture (and its
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fibered version which will be explained in the next subsection) for which the
strongest results are known at the time of writing.

In Proposition 4.22 we will explain that every functor E : GROUPOIDS→
SPECTRA, which sends equivalences of groupoids to weak equivalences of
spectra, yields a corresponding equivariant homology theory HG

n (−;E). Now
whenever we have a functor F : SPACES→ SPECTRA, we can precompose it
with the functor “classifying space” which sends a groupoid G to its classifying
space BG. (Here BG is simply the realization of the nerve of G considered as
a category.) In particular this applies to the pseudoisotopy functor P. Thus
we obtain a homology theory HG

n (−;P ◦B) whose essential feature is that

HG
n (G/H;P ◦B) ∼= πn(P(BH)),

i.e. evaluated at G/H one obtains the homotopy groups of the pseudoisotopy
spectrum of the classifying space BH of the group H. As the reader may
guess there is the following conjecture.

Conjecture 2.81. (Farrell-Jones Conjecture for Pseudoisotopies of
Aspherical Spaces). For every group G and all n ∈ Z the assembly map

HG
n (EVCY(G);P ◦B)→ HG

n ({•};P ◦B) ∼= πn(P(BG))

is an isomorphism. Similarly for Pdiff , the pseudoisotopy functor which is
defined using smooth pseudoisotopies.

A formulation of a conjecture for spaces which are not necessarily aspherical
will be given in the next subsection, see in particular Remark 2.86.

Remark 2.82. (Relating K-Theory and Pseudoisotopy Theory). We
already outlined in Subsection 1.7.2 the relationship between K-theory and
pseudoisotopies. The comparison in positive dimensions described there can
be extended to all dimensions. Vogell constructs in [337] a version of A-
theory using retractive spaces that are bounded over Rk (compare Subsec-
tion 1.5.3 and Subsection 1.7.1). This leads to a functor A−∞ from spaces to
non-connective spectra. Compare also [62], [338], [339] and [356]. We define
Wh−∞PL via the fibration sequence

X+∧A−∞({•})→ A−∞(X)→Wh−∞PL (X),

where the first map is the assembly map. The natural equivalence

Ω2Wh−∞PL (X) ' P(X)

seems to be hard to trace down in the literature but should be true. We will
assume it in the following discussion.

Precompose the functors above with the classifying space functor B to
obtain functors from groupoids to spectra. The pseudoisotopy assembly map
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which appears in Conjecture 2.81 is an isomorphism if and only if the A-
theory assembly map

HG
n+2(EVCY(G);A−∞ ◦B)→ HG

n+2({•};A−∞ ◦B) ∼= πn+2(A−∞(BG))

is an isomorphism. This uses a 5-lemma argument and the fact that for a
fixed spectrum E the assembly map

HG
n (EF (G);BGG(−)+∧E)→ HG

n ({•};BGG(−)+∧E)

is always bijective. There is a linearization map A−∞(X) → K(ZΠ(X)⊕)
(see the next subsection for the notation) which is always 2-connected and
a rational equivalence if X is aspherical (recall that K denotes the non-
connective K-theory spectrum). For finer statements about the linearization
map, compare also [251].

The above discussion yields in particular the following, compare [126,
1.6.7 on page 261].

Proposition 2.83. The rational version of the K-theoretic Farrell-Jones
Conjecture 2.5 is equivalent to the rational version of the Farrell-Jones Con-
jecture for Pseudoisotopies of Aspherical Spaces 2.81. If the assembly map in
the conjecture for pseudoisotopies is (integrally) an isomorphism for n ≤ −1,
then so is the assembly map in the K-theoretic Farrell-Jones Conjecture for
n ≤ 1.

2.13.2 The Fibered Version of the Farrell-Jones Conjecture

Next we present the more general fibered versions of the Farrell-Jones Con-
jectures. These fibered versions have better inheritance properties, compare
Section 3.5.

In the previous section we considered functors F : SPACES→ SPECTRA,
like P, Pdiff and A−∞, and the associated equivariant homology theories
HG

n (−;F ◦ B) (compare Proposition 4.22). Here B denotes the classifying
space functor, which sends a groupoid G to its classifying space BG. In fact
all equivariant homology theories we considered so far can be obtained in this
fashion for special choices of F. Namely, let F be one of the functors

K(RΠ(−)⊕), L〈−∞〉(RΠ(−)⊕) or Ktop(C∗rΠ(−)⊕),

where Π(X) denotes the fundamental groupoid of a space, RG⊕ respectively
C∗rG⊕ is the R-linear respectively the C∗-category associated to a groupoid
G and K, L〈−∞〉 and Ktop are suitable functors which send additive respec-
tively C∗-categories to spectra, compare the proof of Theorem 4.7. There is a
natural equivalence G → ΠBG. Hence, if we precompose the functors above
with the classifying space functor B, we obtain functors which are equivalent
to the functors we have so far been calling
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KR, L〈−∞〉R and Ktop,

compare Theorem 4.7. Note that in contrast to these three cases the pseu-
doisotopy functor P depends on more than just the fundamental groupoid.
However Conjecture 2.81 above only deals with aspherical spaces.

Given a G-CW-complex Z and a functor F from spaces to spectra we ob-
tain a functor X 7→ F(Z×GX) which digests G-CW-complexes. In particular
we can restrict it to the orbit category to obtain a functor

F(Z ×G −) : Or(G)→ SPECTRA.

According to Proposition 4.20 we obtain a corresponding G-homology theory

HG
n (−;F(Z ×G −))

and associated assembly maps. Note that restricted to the orbit category the
functor EG ×G − is equivalent to the classifying space functor B and so
HG

n (−;F ◦B) can be considered as a special case of this construction.

Conjecture 2.84 (Fibered Farrell-Jones Conjectures). Let R be a ring
(with involution). Let F : SPACES→ SPECTRA be one of the functors

K(RΠ(−)⊕), L〈−∞〉(RΠ(−)⊕), P(−), Pdiff(−) or A−∞(−).

Then for every free G-CW-complex Z and all n ∈ Z the associated assembly
map

HG
n (EVCY(G);F(Z ×G −))→ HG

n ({•};F(Z ×G −)) ∼= πn(F(Z/G))

is an isomorphism.

Remark 2.85 (A Fibered Baum-Connes Conjecture). With the fam-
ily FIN instead of VCY and the functor F = Ktop(C∗rΠ(−)⊕) one obtains
a Fibered Baum-Connes Conjecture.

Remark 2.86 (The Special Case Z = X̃). Suppose Z = X̃ is the uni-
versal covering of a space X equipped with the action of its fundamental
group G = π1(X). Then in the algebraic K- and L-theory case the con-
jecture above specializes to the “ordinary” Farrell-Jones Conjecture 2.5. In
the pseudoisotopy and A-theory case one obtains a formulation of an (un-
fibered) conjecture about πn(P(X)) or πn(A−∞(X)) for spaces X which are
not necessarily aspherical.

Remark 2.87 (Relation to the Original Formulation). In [126] Farrell
and Jones formulate a fibered version of their conjectures for every (Serre)
fibration Y → X over a connected CW-complex X. In our set-up this cor-
responds to choosing Z to be the total space of the fibration obtained from
Y → X by pulling back along the universal covering projection X̃ → X. This
space is a free G-space for G = π1(X). Note that an arbitrary free G-CW -
complex Z can always be obtained in this fashion from a map Z/G → BG,
compare [126, Corollary 2.2.1 on page 264].
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Remark 2.88. (Relating K-Theory and Pseudoisotopy Theory in
the Fibered Case). The linearization map πn(A−∞(X))→ Kn(ZΠ(X)) is
always 2-connected, but for spaces which are not aspherical it need not be a
rational equivalence. Hence the comparison results discussed in Remark 2.82
apply for the fibered versions only in dimensions n ≤ 1.

2.13.3 The Isomorphism Conjecture for NK-Groups

In Remark 1.33 we defined the groups NKn(R) for a ring R. They are the
simplest kind of Nil-groups responsible for the infinite cyclic group. Since the
functor KR is natural with respect to ring homomorphism we can define NKR

as the (objectwise) homotopy cofiber of KR → KR[t]. There is an associated
assembly map.

Conjecture 2.89 (Isomorphism Conjecture for NK-groups). The as-
sembly map

HG
n (EVCY(G);NKR)→ HG

n ({•};NKR) ∼= NKn(RG)

is always an isomorphism.

There is a weak equivalence KR[t] ' KR∨NKR of functors from GROUPOIDS

to SPECTRA. This implies for a fixed family F of subgroups of G and n ∈ Z
that whenever two of the three assembly maps

AF : HG
n (EF (G);KR[t])→ Kn(R[t][G]),

AF : HG
n (EF (G);KR)→ Kn(R[G]),

AF : HG
n (EF (G);NKR)→ NKn(RG)

are bijective, then so is the third (compare [22, Section 7]). Similarly one can
define a functor ER from the category GROUPOIDS to SPECTRA and weak
equivalences

KR[t,t−1] → ER ←− KR ∨ΣKR ∨NKR ∨NKR,

which on homotopy groups corresponds to the Bass-Heller-Swan decomposi-
tion (see Remark 1.33). One obtains a two-out-of-three statement as above
with the KR[t]-assembly map replaced by the KR[t,t−1]-assembly map.

2.13.4 Homotopy K-Theory

Homotopy K-Theory KH∗(R) is a variant of algebraic K-theory and was
defined by Weibel [355], building on the definition of Karoubi-Villamayor K-
theory. The homotopy algebraic K-theory groups of a ring R are denoted
by KHn(R). Their crucial property is homotopy invariance: KHn(R) ∼=
KHn(R[t]). In particular, homotopy algebraic K-theory does not contain
Nil-groups and we get
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KHn(R[Z]) ∼= KHn(R)⊕KHn−1(R).

One can construct corresponding spectra KH(R) with πn(KH(R)) = KHn(R)
and functors KHR : GROUPOIDS→ SPECTRA yielding equivariant homol-
ogy theories H∗(−;KH) which satisfy HG

n (G/H;KHR) = KHn(RH). This
suggests the following conjecture (see Bartels-Lück [24]).

Conjecture 2.90. (Farrell-Jones Conjecture for KH∗(RG)). Let G be
a group and let R be a ring. Then for all n ∈ Z the map

AFIN : HG
n (EFIN (G);KHR)→ HG

n ({•};KHR) ∼= HKn(RG);

induced by the projection EFIN (G)→ {•} are isomorphisms.

We think about Conjecture 2.90 as an Isomorphism Conjecture for alge-
braic K-theory modulo Nil-groups.

There is a natural map K(R) → KH(R). Similarly we obtain a natural
transformation KR → KHR of functors from GROUPOIDS to SPECTRA.
Thus we obtain a natural transformation of equivariant homology theories
H?
∗(−;KR) → H?

∗(−;KHR) and a commutative diagram between assembly
maps

HG
n (EFIN (G);KR) −−−−→ Kn(RG)y y

HG
n (EFIN (G);KHR) −−−−→ KHn(RG)

(2.91)

Thus Conjecture 2.90 for KH∗(RG) is related to the Farrell-Jones Conjec-
ture 2.5 for K∗(RG).

The status and consequences of the Farrell-Jones Conjecture forKH∗(RG)
(see Conjecture 2.90) will be discussed in Subsection 3.3.3.

2.13.5 Algebraic K-Theory of the Hecke Algebra

In Subsection 2.12.6 we mentioned the classifying space EKO(G) for the fam-
ily of compact-open subgroups and the Baum-Connes Conjecture for a totally
disconnected group T . There is an analogous conjecture dealing with the al-
gebraic K-theory of the Hecke algebra.

Let H(T ) denote the Hecke algebra of T which consists of locally constant
functions G→ C with compact support and inherits its multiplicative struc-
ture from the convolution product. The Hecke algebra H(T ) plays the same
role for T as the complex group ring CG for a discrete group G and reduces
to this notion if T happens to be discrete. There is a T -homology theory HT

∗
with the property that for any open and closed subgroup H ⊆ T and all
n ∈ Z we have HT

n (T/H) = Kn(H(H)), where Kn(H(H)) is the algebraic
K-group of the Hecke algebra H(H).



2.14 Miscellaneous 91

Conjecture 2.92 (Isomorphism Conjecture for the Hecke-Algebra).
For a totally disconnected group T the assembly map

AKO : HT
n (EKO(T ))→ HT ({•}) = Kn(H(T )) (2.93)

induced by the projection pr: EKO(T )→ {•} is an isomorphism for all n ∈ Z.

In the case n = 0 this reduces to the statement that

colimT/H∈OrKO(T )K0(H(H))→ K0(H(T )) (2.94)

is an isomorphism. For n ≤ −1 one obtains the statement that Kn(H(G)) =
0. The group K0(H(T )) has an interpretation in terms of the smooth re-
presentations of T . The G-homology theory can be constructed using an
appropriate functor E : OrKO(T ) → SPECTRA and the recipe explained in
Section 4.4.4. The desired functor E is given in [301].

2.14 Miscellaneous

The formulations of the Baum-Connes Conjecture 2.4 and the Farrell-Jones
Conjecture 2.5 agree with the original formulations in [33, Conjecture 3.15
on page 254] and [126, 1.6 on page 257]. This is indicated in [92, p.239,
p.247-248], a detailed proof can be found in [157, Corollary 9.2].

One can also formulate a fibered Meta-Conjecture for a discrete group G,
a family F of subgroups of G which is closed under taking subgroups, i.e.
H ⊆ K,K ∈ F ⇒ H ∈ F , and an equivariant homology theory H?

∗(−).

Metaconjecture 2.95 (Fibered Meta Conjecture). For each group ho-
momorphism φ : K → G the assembly map

Aφ∗F : HK
n (Eφ∗F (K))→ HK

n ({•})

is an isomorphism for n ∈ Z, where φ∗F is the family of subgroups of K
given by {H ⊆ K | φ(H) ∈ F}.

The Fibered Meta Conjecture 2.95 for F = VCY andH?
∗(−) = H?

∗(−;KR)
agrees with the Fibered Farrell-Jones Conjecture 2.84 (see [24, Remark 6.6]
and [226, Remark 4.14]. Comment 28 (By W.): This is true in general
if the functor E factorizes through GROUPOIDS. It is not true
for pseudo-isotopy in general. Shall we elaborate on this? The
Fibered Meta Conjecture 2.95 satisfies the obvious version of the Transitivity
Principle 2.11 (see [24, Theorem 2.4]).

Comment 29 (By W.): Add here or later references to the recent
work of Emerson and Meyer [108], and maybe also to Meyer and Nest [237].

Comment 30 (By W.): Add here or later a reference to the papers
by Balmer and Matthey [16], [17], [18]?
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Exercises

2.1. Compute Kn(C∗r (SL(2,Z)).

2.2. Let G be a group such that there is a model for EFIN (G) such that the
quotient G\EFIN (G) is compact. Show that Kn(Cr(G)) is finitely generated
as abelian group for all n ∈ Z, if G satisfies the Baum-Connes Conjecture 2.4.

2.3. Show that a virtually cyclic group G is of the first kind if and only if
H1(G; Z) is infinite.

2.4. Let G be a group which contains a torsionfree normal subgroup T of
finite index [G : T ]. Suppose that [G : T ] is odd. Show that for all rings R
and all n ∈ Z the relative assembly map

AFIN→VCY : HG
n (EFIN (G);L〈−∞〉R )→ HG

n (EVCY(G);L〈−∞〉R )

is an isomorphism.

2.5. Let S3 be the symmetric groups of permutations of {1, 2, 3} and let F be
a field of characteristic zero. Show that the induction map

⊕
C∈CYC RF (C)→

RF (S3) has a cokernel of order 2 if F does not contain a non-trivial third
root of unity and is surjective otherwise.

2.6. Let G be a group. Let A(G) be the Grothendieck group associated to
the abelian monoid of G-isomorphisms classes of G-sets S which are proper
and cofinite, i.e. which are finite unions of homogeneous spaces G/H for finite
subgroups H. Let PG : A(G)→ K0(QG) be the homomorphisms sending the
class of a cofinite proper G-set to the class of the finitely generated projective
QG-module Q(S) whose underlying Q-vector space has S as basis. Suppose
that the Farrell-Jones Conjecture for K0(RG) for regular rings R holds for
R = Q (see Conjecture 2.29) holds for G. Using the fact that φC ⊗Z idQ is
surjective for every finite cyclic group C (see [331, Exercise 1 on page 12 and
Theorem 4.4.1 on page 80]) prove that

φG ⊗Z idQ : A(G)⊗Z Q→ K0(QG)⊗Z Q

is surjective.

2.7. Let G be a group. Suppose that for every finitely generated projective
CG-module P there exists positive integers m and n such that Pm ⊕ (CG)n

is free where Pm denotes the m-fold direct sum of copies of P . Show that G
must be torsionfree.

2.8. Let G be a finite group. Show that the homomorphism
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j : G0(ZG)→ K0(QG), [M ] 7→ [QG⊗ZG M ]

is well-defined and surjective. Show that the map

k : K0(ZG)→ K0(QG), [M ] 7→ [QG⊗ZG M ]

is rationally surjective if and only if G is trivial.

2.9. Let G be a group which satisfies the version 2.29 of the Farrell-Jones
Conjecture for R = C and the Baum-Connes Conjecture 2.4.

(1) Show that the two change of rings homomorphisms

K0(CG)⊗Z Λ
G → K0(N (G))⊗Z Λ

G;
K0(C∗r (G))⊗Z Λ

G → K0(N (G))⊗Z Λ
G

have the same image. (The ring ΛG has been introduced in (2.46).)
(2) Explain that the counterexample of Roy mentioned in Subsection 2.11

shows that assertion (1) is not true in general without applying −⊗ZΛ
G.

2.10. Let R be a regular ring and let G be a group such that the order of
any finite subgroup of G is invertible in R. Show that then the Isomorphism
Conjecture 2.89 for NK-groups for RG is equivalent to the statement that
NKn(RG) = 0 is zero for all n ∈ Z.

2.11. Let G be a group. Let F ⊂ G be families of subgroups of G which
are closed under taking subgroups. Let H?

∗ an equivariant homology theory.
Suppose that G satisfies the Fibered Meta Conjecture 2.95 for the family F .
Show that then G satisfies the Fibered Meta Conjecture 2.95 for the family
G.

last edited on 23.1.05
last compiled on March 29, 2005
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3. Status of the Conjectures

3.1 Introduction

In this chapter we give a report on the status of the conjectures as it is known
to the authors at the time of writing.

3.2 Status of the Baum-Connes-Conjecture

3.2.1 Status of the Baum-Connes Conjecture with Coefficients

We begin with the Baum-Connes Conjecture with Coefficients 2.74. It has
better inheritance properties than the Baum-Connes Conjecture 2.4 itself and
contains it as a special case.

Comment 31 (By W.): This theorem has to be replaced by the
results announced by Yu and Kasparov.

Theorem 3.1. (Baum-Connes Conjecture with Coefficients and a-
T-menable Groups). The discrete group G satisfies the Baum-Connes
Conjecture with Coefficients 2.74 and is K-amenable provided that G is a-T-
menable.

This theorem is proved in Higson-Kasparov [165, Theorem 1.1], where
more generally second countable locally compact topological groups are
treated (see also [181]).

A group G is a-T-menable, or, equivalently, has the Haagerup property
if G admits a metrically proper isometric action on some affine Hilbert
space. Metrically proper means that for any bounded subset B the set
{g ∈ G | gB ∩ B 6= ∅} is finite. An extensive treatment of such groups
is presented in [74]. Any a-T-menable group is countable. The class of a-
T-menable groups is closed under taking subgroups, under extensions with
finite quotients and under finite products. It is not closed under semidirect
products. Examples of a-T-menable groups are countable amenable groups,
countable free groups, discrete subgroups of SO(n, 1) and SU(n, 1), Coxeter
groups, countable groups acting properly on trees, products of trees, or sim-
ply connected CAT(0) cubical complexes. A group G has Kazhdan’s property
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(T) if, whenever it acts isometrically on some affine Hilbert space, it has a
fixed point. An infinite a-T-menable group does not have property (T). Since
SL(n,Z) for n ≥ 3 has property (T), it cannot be a-T-menable.

Using the Higson-Kasparov result Theorem 3.1 and known inheritance
properties of the Baum-Connes Conjecture with Coefficients (compare Sec-
tion 3.5 and [254],[255]) Mislin describes an even larger class of groups for
which the conjecture is known [246, Theorem 5.23].

Theorem 3.2. (The Baum-Connes Conjecture with Coefficients and
the Class of Groups LHET H). The discrete group G satisfies the Baum-
Connes Conjecture with Coefficients 2.74 provided that G belongs to the class
LHET H.

The class LHET H is defined as follows. Let HT H be the smallest class
of groups which contains all a-T-menable groups and contains a group G if
there is a 1-dimensional contractible G-CW -complex whose stabilizers belong
already to HT H. Let HET H be the smallest class of groups containing HT H
and containing a group G if either G is countable and admits a surjective
map p : G → Q with Q and p−1(F ) in HET H for every finite subgroup
F ⊆ Q or if G admits a 1-dimensional contractible G-CW -complex whose
stabilizers belong already to HET H. Let LHET H be the class of groups G
whose finitely generated subgroups belong to HET H.

The class LHET H is closed under passing to subgroups, under extensions
with torsionfree quotients and under finite products. It contains in particular
one-relator groups and Haken 3-manifold groups (and hence all knot groups).
All these facts of the class LHET H and more information can be found in
Mislin [246, Section 5].

Vincent Lafforgue has an unpublished proof of the Baum-Connes Conjec-
ture with Coefficients 2.74 for word-hyperbolic groups. Comment 32 (By
W.): This sentence has to be dropped or adapted when the results
by Kasparov-Yu have been published.

Remark 3.3. There are counterexamples to the Baum-Connes Conjecture
with (commutative) Coefficients 2.74 as soon as the existence of finitely gen-
erated groups containing arbitrary large expanders in their Cayley graph is
shown [166, Section 7]. The existence of such groups has been claimed by Gro-
mov [153], [154]. Details of the construction are described by Ghys in [149]. At
the time of writing no counterexample to the Baum-Connes Conjecture 2.4
(without coefficients) is known to the authors.

Comment 33 (By W.): Shall we include a mini-survey on groups
such as word hyperbolic groups with property T and a-T-menable groups?
These mini-surveys can be quite useful.
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3.2.2 Status of Baum-Connes Conjecture (Without Coefficients)

Next we deal with the Baum-Connes Conjecture 2.4 itself. Recall that all
groups which satisfy the Baum-Connes Conjecture with Coefficients 2.74 do
in particular satisfy the Baum-Connes Conjecture 2.4.

Theorem 3.4 (Status of the Baum-Connes Conjecture). A group G
satisfies the Baum-Connes Conjecture 2.4 if it satisfies one of the following
conditions.

(1) It is a discrete subgroup of a connected Lie groups L, whose Levi-Malcev
decomposition L = RS into the radical R and semisimple part S is such
that S is locally of the form

S = K × SO(n1, 1)× . . .× SO(nk, 1)× SU(m1, 1)× . . .× SU(ml, 1)

for a compact group K;
(2) The group G has property (RD) and admits a proper isometric action on

a strongly bolic weakly geodesic uniformly locally finite metric space;
(3) G is a subgroup of a word hyperbolic group; Comment 34 (By W.): When

Kasparov-Yu have proven it with coefficients, we shall discard

this item and add a reference at another appropriate place.

(4) G is a discrete subgroup of Sp(n, 1).

Proof. The proof under condition (1) is due to Julg-Kasparov [183]. The proof
under condition (2) is due to Lafforgue [201] (see also [315]). Word hyperbolic
groups have property (RD) [94]. Any subgroup of a word hyperbolic group
satisfies the conditions appearing in the result of Lafforgue and hence sat-
isfies the Baum-Connes Conjecture 2.4 [243, Theorem 20]. The proof under
condition (4) is due to Julg [182].

Lafforgue’s result about groups satisfying condition (2) yielded the first
examples of infinite groups which have Kazhdan’s property (T) and satisfy the
Baum-Connes Conjecture 2.4. Here are some explanations about condition 2.

A length function on G is a function L : G → R≥0 such that L(1) = 0,
L(g) = L(g−1) for g ∈ G and L(g1g2) ≤ L(g1) + L(g2) for g1, g2 ∈ G holds.
The word length metric LS associated to a finite set S of generators is an
example. A length function L on G has property (RD) (“rapid decay”) if
there exist C, s > 0 such that for any u =

∑
g∈G λg · g ∈ CG we have

||ρG(u)||∞ ≤ C ·

∑
g∈G

|λg|2 · (1 + L(g))2s

1/2

,

where ||ρG(u)||∞ is the operator norm of the bounded G-equivariant operator
l2(G) → l2(G) coming from right multiplication with u. A group G has
property (RD) if there is a length function which has property (RD). More
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information about property (RD) can be found for instance in [71], [202]
and [335, Chapter 8]. Bolicity generalizes Gromov’s notion of hyperbolicity
for metric spaces. We refer to [187] for a precise definition.

Remark 3.5. We do not know whether all groups appearing in Theorem 3.4
satisfy also the Baum-Connes Conjecture with Coefficients 2.74.

Remark 3.6 (SLn(Z)). It is not known at the time of writing whether the
Baum-Connes Conjecture is true for SLn(Z) for n ≥ 3.

Remark 3.7 (The Status for Topological Groups). We only dealt with
the Baum-Connes Conjecture for discrete groups. We already mentioned that
Higson-Kasparov [165] treat second countable locally compact topological
groups. The Baum-Connes Conjecture for second countable almost connected
groups G has been proven by Chabert-Echterhoff-Nest [67] based on the work
of Higson-Kasparov [165] and Lafforgue [204]. The Baum-Connes Conjecture
with Coefficients 2.74 has been proven for the connected Lie groups L ap-
pearing in Theorem 3.4 1 by [183] and for Sp(n, 1) by Julg [182].

3.2.3 The Injectivity Part of the Baum-Connes Conjecture

In this subsection we deal with injectivity results about the assembly map
appearing in the Baum-Connes Conjecture 2.4. Recall that rational injec-
tivity already implies the Novikov Conjecture 2.49 (see Proposition 2.53)
and the Homological Stable Gromov-Lawson-Rosenberg Conjecture 2.67 (see
Proposition 2.68 and 2.23).

Theorem 3.8. (Rational Injectivity of the Baum-Connes Assembly
Map). The assembly map appearing in the Baum-Connes Conjecture 2.4 is
rationally injective if G belongs to one of the classes of groups below.

(1) Groups acting properly isometrically on complete manifolds with non-
positive sectional curvature;

(2) Discrete subgroups of Lie groups with finitely many path components;
(3) Discrete subgroups of p-adic groups.

Proof. The proof of assertions (1) and (2) is due to Kasparov [189], the one
of assertion (3) to Kasparov-Skandalis [190].

A metric space (X, d) admits a uniform embedding into Hilbert space if
there exist a separable Hilbert spaceH, a map f : X → H and non-decreasing
functions ρ1 and ρ2 from [0,∞)→ R such that ρ1(d(x, y)) ≤ ||f(x)−f(y)|| ≤
ρ2(d(x, y)) for x, y ∈ X and limr→∞ ρi(r) = ∞ for i = 1, 2. A metric is
proper if for each r > 0 and x ∈ X the closed ball of radius r centered at x is
compact. The question whether a discrete group G equipped with a proper
left G-invariant metric d admits a uniform embedding into Hilbert space is
independent of the choice of d, since the induced coarse structure does not
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depend on d [316, page 808]. For more information about groups admitting
a uniform embedding into Hilbert space we refer to [99], [155].

The class of finitely generated groups, which embed uniformly into Hilbert
space, contains a subclass A, which contains all word hyperbolic groups,
finitely generated discrete subgroups of connected Lie groups and finitely
generated amenable groups and is closed under semidirect products [368,
Definition 2.1, Theorem 2.2 and Proposition 2.6]. Gromov [153], [154] has
announced examples of finitely generated groups which do not admit a uni-
form embedding into Hilbert space. Details of the construction are described
in Ghys [149].

The next theorem is proven by Skandalis-Tu-Yu [316, Theorem 6.1] using
ideas of Higson [164].

Theorem 3.9 (Injectivity of the Baum-Connes Assembly Map). X Let
G be a countable group. Suppose that G admits a G-invariant metric for which
G admits a uniform embedding into Hilbert space. Then the assembly map ap-
pearing in the Baum-Connes Conjecture with Coefficients 2.74 is injective.

We now discuss conditions which can be used to verify the assumption in
Theorem 3.9.

Remark 3.10 (Linear Groups). A group G is called linear if it is a sub-
group ofGLn(F ) for some n and some field F . Guentner-Higson-Weinberger [155]
show that every countable linear group admits a uniform embedding into
Hilbert space and hence Theorem 3.9 applies.

Remark 3.11. (Groups Acting Amenably on a Compact Space). A
continuous action of a discrete group G on a compact space X is called
amenable if there exists a sequence

pn : X →M1(G) = {f : G→ [0, 1] |
∑
g∈G

f(g) = 1}

of weak-∗-continuous maps such that for each g ∈ G one has

lim
n→∞

sup
x∈X
||g ∗ (pn(x)− pn(g · x))||1 = 0.

Note that a group G is amenable if and only if its action on the one-point-
space is amenable. More information about this notion can be found for
instance in [6], [7].

Higson-Roe [169, Theorem 1.1 and Proposition 2.3] show that a finitely
generated group equipped with its word length metric admits an amenable
action on a compact metric space, if and only if it belongs to the class A
defined in [368, Definition 2.1], and hence admits a uniform embedding into
Hilbert space. Hence Theorem 3.9 implies the result of Higson [164, Theo-
rem 1.1] that the assembly map appearing in the Baum-Connes Conjecture
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with Coefficients 2.74 is injective if G admits an amenable action on some
compact space.

Word hyperbolic groups and the class of groups mentioned in Theo-
rem 3.8(2) fall under the class of groups admitting an amenable action on
some compact space [169, Section 4].

Remark 3.12. Higson [164, Theorem 5.2] shows that the assembly map ap-
pearing in the Baum-Connes Conjecture with Coefficients 2.74 is injective if
EG admits an appropriate compactification. This is a C∗-version of the result
for K-and L-theory due to Carlsson-Pedersen [61], compare Theorem 3.29.

Remark 3.13. We do not know whether the groups appearing in Theo-
rem 3.8 and Theorem 3.9 satisfy the Baum-Connes Conjecture 2.4.

Next we discuss injectivity results about the classical assembly map for
topological K-theory.

The asymptotic dimension of a proper metric space X is the infimum over
all integers n such that for any R > 0 there exists a cover U of X with the
property that the diameter of the members of U is uniformly bounded and
every ball of radius R intersects at most (n + 1) elements of U (see [152,
page 28]).

The next result is due to Yu [367].

Theorem 3.14. (The C∗-Theoretic Novikov Conjecture and Groups
of Finite Asymptotic Dimension). Let G be a group which possesses a
finite model for BG and has finite asymptotic dimension. Then the assembly
map in the Baum-Connes Conjecture 1.1

Kn(BG)→ Kn(C∗r (G))

is injective for all n ∈ Z.

3.2.4 The Coarse Baum-Connes Conjecture

The coarse Baum-Connes Conjecture was explained in Section 2.12.5. Recall
the descent principle (Proposition 2.78): if a countable group can be equipped
with a G-invariant metric such that the resulting metric space satisfies the
Coarse Baum-Connes Conjecture, then the classical assembly map for topo-
logical K-theory is injective.

Recall that a discrete metric space has bounded geometry if for each r > 0
there exists a N(r) such that for all x the ball of radius N(r) centered at
x ∈ X contains at most N(r) elements.

The next result is due to Yu [368, Theorem 2.2 and Proposition 2.6].

Theorem 3.15. (Status of the Coarse Baum-Connes Conjecture).
The Coarse Baum-Connes Conjecture 2.77 is true for a discrete metric space
X of bounded geometry if X admits a uniform embedding into Hilbert space.
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In particular a countable group G satisfies the Coarse Baum-Connes Conjec-
ture 2.77 if G equipped with a proper left G-invariant metric admits a uniform
embedding into Hilbert space.

Also Yu’s Theorem 3.14 is proven via a corresponding result about the
Coarse Baum-Connes Conjecture.

3.3 Status of the Farrell-Jones Conjecture

Next we deal with the Farrell-Jones Conjecture.

3.3.1 The Fibered Farrell-Jones Conjecture

The Fibered Farrell-Jones Conjecture 2.84 was discussed in Subsection 2.13.2.
Recall that it has better inheritance properties (compare Section 3.5) and
contains the ordinary Farrell-Jones Conjecture 2.5 as a special case.

Theorem 3.16. (Status of the Fibered Farrell-Jones Conjecture).

(1) Let G be a discrete group which satisfies one of the following conditions.
(a) There is a Lie group L with finitely many path components and G is

a cocompact discrete subgroup of L;
(b) The group G is virtually torsionfree and acts properly discontinu-

ously, cocompactly and via isometries on a simply connected complete
nonpositively curved Riemannian manifold.

Then
(1) The version of the Fibered Farrell-Jones Conjecture 2.84 for the to-

pological and the smooth pseudoisotopy functor is true for G;
(2) The version of the Fibered Farrell-Jones Conjecture 2.84 for K-

theory and R = Z is true for G in the range n ≤ 1, i.e. the assembly
map is bijective for n ≤ 1.

Moreover we have the following statements.

(ii) The version of the Fibered Farrell-Jones Conjecture 2.84 for K-theory
and R = Z is true in the range n ≤ 1 for braid groups;

(iii) The L-theoretic version of the Fibered Farrell-Jones Conjecture 2.84 with
R = Z holds after inverting 2 for elementary amenable groups.

Proof. (i) For assertion (1) see [126, Theorem 2.1 on page 263], [126, Proposi-
tion 2.3] and [134, Theorem A]. Assertion (2) follows from (1) by Remark 2.88.
(ii) See [134].
(iii) is proven in [132, Theorem 5.2]. For crystallographic groups see also [363].
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A surjectivity result about the Fibered Farrell-Jones Conjecture for Pseu-
doisotopies appears as the last statement in Theorem 3.20.

The rational comparison result between the K-theory and the pseudoiso-
topy version (see Proposition 2.83) does not work in the fibered case, compare
Remark 2.88. However, in order to exploit the good inheritance properties
one can first use the pseudoisotopy functor in the fibered set-up, then spe-
cialize to the unfibered situation and finally do the rational comparison to
K-theory.

Remark 3.17. The version of the Fibered Farrell-Jones Conjecture 2.84 for
L-theory and R = Z seems to be true if G satisfies the condition (a) appearing
in Theorem 3.16. Farrell and Jones [126, Remark 2.1.3 on page 263] say that
they can also prove this version without giving the details.

Remark 3.18. Let G be a virtually poly-cyclic group. Then it contains a
maximal normal finite subgroup N such that the quotient G/N is a discrete
cocompact subgroup of a Lie group with finitely many path components
[361, Theorem 3, Remark 4 on page 200]. Hence by Subsection 3.5.3 and
Theorem 3.16 the version of the Fibered Farrell-Jones Conjecture 2.84 for
the topological and the smooth pseudoisotopy functor, and for K-theory and
R = Z in the range n ≤ 1, is true for G. Earlier results of this type were
treated for example in [115], [120].

3.3.2 Status of the (Unfibered) Farrell-Jones Conjecture

Here is a sample of some results one can deduce from Theorem 3.16.

Theorem 3.19. (The Farrell-Jones Conjecture and Subgroups of Lie
groups). Suppose H is a subgroup of G, where G is a discrete cocompact
subgroup of a Lie group L with finitely many path components. Then

(1) The version of the Farrell-Jones Conjecture for K-theory and R = Z is
true for H rationally, i.e. the assembly map appearing in Conjecture 2.5
is an isomorphism after applying −⊗Z Q;

(2) The version of the Farrell-Jones Conjecture for K-theory and R = Z
is true for H in the range n ≤ 1, i.e. the assembly map appearing in
Conjecture 2.5 is an isomorphism for n ≤ 1.

Proof. The results follow from Theorem 3.16, since the Fibered Farrell-Jones
Conjecture 2.84 passes to subgroups [126, Theorem A.8 on page 289] (com-
pare Section 3.5.2) and implies the Farrell-Jones Conjecture 2.5.

We now discuss results for torsionfree groups. Recall that for R = Z the
K-theoretic Farrell-Jones Conjecture in dimensions ≤ 1 together with the
L-theoretic version implies already the Borel Conjecture 1.49 in dimension
≥ 5 (see Theorem (1.50)).
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A complete Riemannian manifold M is called A-regular if there exists a
sequence of positive real numbers A0, A1, A2, . . . such that ||∇nK|| ≤ An,
where ||∇nK|| is the supremum-norm of the n-th covariant derivative of the
curvature tensor K. Every locally symmetric space is A-regular since ∇K is
identically zero. Obviously every closed Riemannian manifold is A-regular.

Theorem 3.20. (Status of the Farrell-Jones Conjecture for Torsion-
free Groups). Consider the following conditions for the group G.

(1) G = π1(M) for a complete Riemannian manifold M with non-positive
sectional curvature which is A-regular.

(2) G = π1(M) for a closed Riemannian manifold M with non-positive sec-
tional curvature.

(3) G = π1(M) for a complete Riemannian manifold with negatively pinched
sectional curvature.

(4) G is a torsionfree discrete subgroup of GL(n,R).
(5) G is a torsionfree solvable discrete subgroup of GL(n,C).
(6) G = π1(X) for a non-positively curved finite simplicial complex X.
(7) G is a strongly poly-free group in the sense of Aravinda-Farrell-Roushon

[11, Definition 1.1]. The pure braid group satisfies this hypothesis.

Then

(a) Suppose that G satisfies one of the conditions (1) to (7). Then the K-
theoretic Farrell-Jones Conjecture is true for R = Z in dimensions n ≤ 1.
In particular Conjecture 1.19 holds for G.

(b) Suppose that G satisfies one of the conditions (1), (2), (3) or (4). Then
G satisfies the Farrell-Jones Conjecture for Torsionfree Groups and L-
Theory 1.37 for R = Z.

(c) Suppose that G satisfies (2). Then the Farrell-Jones Conjecture for Pseu-
doisotopies of Aspherical Spaces 2.81 holds for G.

(d) Suppose that G satisfies one of the conditions (1), (3) or (4). Then the
assembly map appearing in the version of the Fibered Farrell-Jones Con-
jecture for Pseudoisotopies 2.84 is surjective, provided that the G-space
Z appearing in Conjecture 2.84 is connected.

Proof. Note that condition (2) is a special case of condition (1) because every
closed Riemannian manifold is A-regular. If M is a pinched negatively curved
complete Riemannian manifold, then there is another Riemannian metric for
which M is negatively curved complete and A-regular. This fact is mentioned
in [130, page 216] and attributed there to Abresch [3] and Shi [312]. Hence
also condition (3) can be considered as a special case of condition (1). The
manifold M = G\GL(n,R)/O(n) is a non-positively curved complete locally
symmetric space and hence in particular A-regular. So condition (4) is a
special case of condition (1).
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Assertion (a) under the condition (1) is proven by Farrell-Jones in [130,
Proposition 0.10 and Lemma 0.12]. The earlier work [125] treated the condi-
tion (2). Under condition (5) assertion (a) is proven by Farrell-Linnell [132,
Theorem 1.1]. The result under condition (6) is proven by Hu [172], under
condition (7) it is proven by Aravinda-Farrell-Roushon [11, Theorem 1.3].

Assertion (b) under condition (1) is proven by Farrell-Jones in [130]. The
condition (2) was treated earlier in [127].

Assertion (c) is proven by Farrell-Jones in [125] and assertion (d) by Jones
in [178].

Remark 3.21. As soon as certain collapsing results (compare [129], [131])
are extended to orbifolds, the results under (4) above would also apply to
groups with torsion and in particular to SLn(Z) for arbitrary n.

3.3.3 The Farrell-Jones Conjecture for Arbitrary Coefficients

So far all positive results about the Farrell-Jones Conjecture dealt only with
the case R = Z. The following result due to Bartels-Reich [25] deals with
algebraicK-theory for arbitrary coefficient ringsR. It extends Bartels-Farrell-
Jones-Reich [22].

Theorem 3.22. Suppose that G is the fundamental group of a closed Rie-
mannian manifold with negative sectional curvature. Then the K-theoretic
part of the Farrell-Jones Conjecture 2.5 is true for any ring R, i.e. the as-
sembly map

AVCY : HG
n (EVCY(G);KR) → Kn(RG)

is an isomorphism for all n ∈ Z.

Theorem 2.14 can be restated because of Example 2.14 in the following
way since G is word-hyperbolic. Let I be the set of conjugacy classes of
maximal infinite cyclic subgroups. Then we get for all n ∈ Z an isomorphism

Kn(RG) ∼= Hn(BG;K(R)⊕

(⊕
I

NKn(R)

)
.

Suppose additionally that R is regular. Then NKn(R) = {0} for all n ∈ Z
and Kn(R) = 0 for n ≤ −1. Thus we get (see also Conjecture 1.17)

Kn(RG) ∼=


{0} n ≤ −1;
K0(R) n = 0;
Gab ⊗Z K1(R)⊕K1(R) n = 1;
Hn(BG;K(R) n ∈ Z.

Certain classes of groups C0 and CL are defined by Bartels-Lück [24] and by
Waldhausen [342, Definition 19.2]. The class C0 is the smallest class of groups
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which contains all virtually cyclic groups, is closed under taking directed
unions of subgroups and if G acts on a tree such that all stabilizers belong
to C0, then G belongs to C0.

Groups in C0 may contain torsion, whereas groups appearing in CL are
always torsionfree.

Theorem 3.23. (1) The class C0 contains one-relator groups and poly-free
groups. The class CL is contained in C0. The class CL contains torsionfree
one-relator groups. The group G = π1(M) belongs to CL and hence to
C0, if M is a finite connected sum of irreducible Haken 3-manifolds with
infinite fundamental groups or if M is a compact 2-dimensional manifold
or if M is a submanifold of S3.

(2) The Fibered Version of the Farrell-Jones Conjecture 2.90 for KH∗(RG)
holds for groups G in the class C0 for all rings R;

(3) If R is a regular ring with Q ⊂ R, then for every group G ∈ C0 the injec-
tivity part of Farrell-Jones Conjecture for K∗(RG) for regular rings 0.8
is true, i.e. for every n ∈ Z the assembly map for algebraic K-theory

AFIN : HG
n (EFIN (G);KR)→ HG

n ({•};KR) = Kn(RG)

is injective;
(4) If G belongs to C0, then the injectivity part of the Farrell-Jones Conjec-

ture 2.5 for K∗(ZG) is true rationally, or, by Proposition 2.20 equiva-
lently, the assembly map

AFIN : HG
n (EFIN (G);KZ)→ HG

n ({•};KZ) = Kn(ZG)

is rationally injective;
(5) For every group G in C0 the L-theoretic Farrell-Jones Conjecture 2.5 is

true after inverting 2, or equivalently (see Proposition 2.21), for every
ring R with involution, every decoration j and all n ∈ Z the relative
assembly map

HG
n (EFIN (G);L〈j〉R )[1/2]→ L

〈j〉
R (ZG)[1/2]

is an isomorphism;
(6) If G belongs to CL, then the K-theoretic part of the Farrell-Jones Con-

jecture 2.5 is true for any regular ring R, i.e. the classical assembly map

HG
n (BG;K(R)) → Kn(RG)

is an isomorphism for all n ∈ Z

Proof. (1) is proved in [24, Proposition 0.9] and [342, Theorem 17.5 on page 250].
(2) is proved in [24, Theorem 0.5]. The same is true for CL if G is additionally
torsionfree;
(3) see [24, Theorem 0.8].
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(4) see [24, Theorem 0.8].
(5) see [24, Theorem 0.13].
(6) is proven in the fundamental papers by Waldhausen [341] and [342, The-
orem 19.4 on page 249].

Results related to Theorem 3.23 can be found in [179] and [296].

3.3.4 Injectivity Part of the Farrell-Jones Conjecture

The next result about the classical K-theoretic assembly map is due to
Bökstedt-Hsiang-Madsen [44].

Theorem 3.24. (Rational Injectivity of the Classical K-Theoretic
Assembly Map). Let G be a group such that the integral homology
Hj(BG; Z) is finitely generated for each j ∈ Z. Then the rationalized as-
sembly map

A : Hn(BG;K(Z))⊗Z Q ∼= HG
n (ET R(G);KZ)⊗Z Q→ Kn(ZG)⊗Z Q

is injective for all n ∈ Z.

Because of the homological Chern character (see Remark 1.29 we obtain for
the groups treated in Theorem 3.24 an injection⊕

s+t=n

Hs(BG; Q)⊗Q (Kt(Z)⊗Z Q)→ Kn(ZG)⊗Z Q. (3.25)

Next we describe a generalization of Theorem 3.24 above from the trivial
family T R to the family FIN of finite subgroups due to Lück-Reich-Rognes-
Varisco [227]. Let Kcon

Z : GROUPOIDS → SPECTRA be the connective ver-
sion of the functor KZ of (4.8). In particular Hn(G/H;Kcon

Z ) is isomorphic
to Kn(ZH) for n ≥ 0 and vanishes in negative dimensions. For a prime p we
denote by Zp the p-adic integers. Let Kn(R; Zp) denote the homotopy groups
πn(Kcon(R)p̂) of the p-completion of the connective K-theory spectrum of
the ring R.

Theorem 3.26. (Rational Injectivity of the Farrell-Jones Assembly
Map for Connective K-Theory). Suppose that the group G satisfies the
following two conditions:

(H) For each finite cyclic subgroup C ⊆ G and all j ≥ 0 the integral ho-
mology group Hj(BZGC; Z) of the centralizer ZGC of C in G is finitely
generated;

(K) There exists a prime p such that for each finite cyclic subgroup C ⊆ G and
each j ≥ 1 the map induced by the change of coefficients homomorphism

Kj(ZC; Zp)⊗Z Q→ Kj(ZpC; Zp)⊗Z Q

is injective.
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Then the rationalized assembly map

AVCY : HG
n (EVCY(G);Kcon

Z )⊗Z Q→ Kn(ZG)⊗Z Q

is an injection for all n ∈ Z.

Remark 3.27. The methods of Chapter 8 apply also to Kcon
Z and yield

under assumption (H) and (K) an injection⊕
s+t=n, t≥0

⊕
(C)∈(FCY)

Hs(BZGC; Q)⊗Q[WGC] θC ·Kt(ZC)⊗Z Q

−→ Kn(ZG)⊗Z Q.

Notice that in the index set for the direct sum appearing in the source we
require t ≥ 0. This reflects the fact that the result deals only with the connec-
tive K-theory spectrum. If one drops the restriction t ≥ 0 the Farrell-Jones
Conjecture 2.5 predicts that the map is an isomorphism, compare Proposi-
tion 2.19 and Theorem 8.7. If we restrict the injection to the direct sum given
by C = 1, we rediscover the map (3.25) whose injectivity follows already from
Theorem 3.24.

The condition (K) appearing in Theorem 3.26 is conjectured to be true
for all primes p (compare [306], [317] and [318]) but no proof is known. The
weaker version of condition (K), where C is the trivial group is also needed in
Theorem 3.24. But that case is known to be true and hence does not appear
in its formulation. The special case of condition (K), where j = 1 is implied
by the Leopoldt Conjecture for abelian fields (compare [250, IX, § 3]), which
is known to be true [250, Theorem 10.3.16]. This leads to the following result.

Theorem 3.28. (Rational Contribution of Finite Subgroups to Wh(G)).
Let G be a group. Suppose that for each finite cyclic subgroup C ⊆ G and

each j ≤ 4 the integral homology group Hj(BZGC) of the centralizer ZGC of
C in G is finitely generated. Then the map

colimH∈SubFIN (G) Wh(H)⊗Z Q → Wh(G)⊗Z Q.

is injective, compare Conjecture 2.31.

The result above should be compared to the result which is proven using
Fuglede-Kadison determinants in [228, Section 5], [220, Theorem 9.38 on
page 354]: for every (discrete) group G and every finite normal subgroup
H ⊆ G the map Wh(H) ⊗ZG Z → Wh(G) induced by the inclusion H → G
is rationally injective.

The next result is taken from Rosenthal [293] and [292], where the tech-
niques and results of Carlsson-Pedersen [61] are extended from the trivial
family T R to the family of finite subgroups FIN . The statement about
word hyperbolic groups is proven by Rosenthal-Schütz[294].
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Theorem 3.29. Let G be a group. Suppose there exists a model E for the
classifying space EFIN (G) which admits a metrizable compactification E to
which the group action extends. Suppose E

H
is contractible and EH is dense

in E
H

for every finite subgroup H ⊂ G. Suppose compact subsets of E become
small near E − E. Then

(1) For every ring R the assembly map

AFIN : HG
n (EFIN (G);KR) → Kn(RG)

is split injective;
(2) Let R be a ring with involution such that there exists i ∈ Z for which

Kn(R) = {0} holds for all n ≤ i. Then the assembly map

AFIN : HG
n (EFIN (G);L〈−∞R ) → L〈−∞〉n (RG)

is split injective;
(3) Word hyperbolic groups satisfy the assumptions about EFIN (G).

A compact subset K ⊂ E is said to become small near E − E if for every
neighbourhood U ⊂ E of a point x ∈ E − E there exists a neighbourhood
V ⊂ E such that g ∈ G and gK ∩ V 6= ∅ implies gK ⊂ U .

We finally discuss injectivity results about assembly maps for the trivial
family. The following result is due to Ferry-Weinberger [144, Corollary 2.3]
extending earlier work of Farrell-Hsiang [114].

Theorem 3.30. Suppose G = π1(M) for a complete Riemannian manifold
of non-positive sectional curvature. Then the L-theory assembly map

A : Hn(BG;Lε
Z)→ Lε

n(ZG)

is injective for ε = h, s.

In fact Ferry-Weinberger also prove a corresponding splitting result for the
classical A-theory assembly map. In [171] Hu shows that a finite complex of
non-positive curvature is a retract of a non-positively curved PL-manifold
and concludes split injectivity of the classical L-theoretic assembly map for
R = Z.

The next result due to Bartels [26] is the algebraic K- and L-theory
analogue of Theorem 3.14.

Theorem 3.31. (The K-and L-Theoretic Novikov Conjecture and
Groups of Finite Asymptotic Dimension). Let G be a group which ad-
mits a finite model for BG. Suppose that G has finite asymptotic dimension.
Then

(1) The assembly maps appearing in the Farrell-Jones Conjecture 1.28

A : Hn(BG;K(R))→ Kn(RG)

is injective for all n ∈ Z;
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(2) If furthermore R carries an involution and K−j(R) vanishes for suffi-
ciently large j, then the assembly maps appearing in the Farrell-Jones
Conjecture 1.37

A : Hn(BG;L〈−∞〉(R))→ L〈−∞〉n (RG)

is injective for all n ∈ Z;

We have already mentioned some further injectivity results about the
Farrell-Jones Conjecture 2.5 in Theorem 3.23 (3) and (4)

Further results related to the Farrell-Jones Conjecture 2.5 can be found
for instance in [10], [39]. Comment 35 (By W.): Complete and update
list.

3.4 List of Groups Satisfying the Conjectures

In the following table we list prominent classes of groups and state whether
they are known to satisfy the Baum-Connes Conjecture 2.4 (with coeffi-
cients 2.74) or the Farrell-Jones Conjecture 2.5 (fibered 2.84). Some of the
classes are redundant. A question mark means that the authors do not know
about a corresponding result. The reader should keep in mind that there may
exist results of which the authors are not aware.
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type of group Baum-Connes
Conjecture 2.4
(with coeffi-
cients 2.74)

Farrell-Jones
Conjecture 2.5
for K-theory
for R = Z
(fibered 2.84)

Farrell-Jones
Conjecture 2.5
for L-theory
for R = Z
(fibered 2.84)

a-T-menable
groups

true with coeffi-
cients (see The-
orem 3.1)

? injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

amenable groups true with coeffi-
cients (see The-
orem 3.1)

? injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

elementary
amenable groups

true with coeffi-
cients (see The-
orem 3.1)

? true fibered
after invert-
ing 2 (see
Theorem 3.16)

virtually poly-
cyclic

true with coeffi-
cients (see The-
orem 3.1)

true rationally,
true fibered in
the range n ≤
1 (compare Re-
mark 3.18)

true fibered
after invert-
ing 2 (see
Theorem 3.16)

torsionfree vir-
tually solvable
subgroups of
GL(n,C)

true with coeffi-
cients (see The-
orem 3.1)

true in the
range ≤ 1 [132,
Theorem 1.1]

true fibered
after invert-
ing 2 [132,
Corollary 5.3]
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type of group Baum-Connes
Conjecture 2.4
(with coeffi-
cients 2.74)

Farrell-Jones
Conjecture 2.5
for K-theory
for R = Z
(fibered 2.84)

Farrell-Jones
Conjecture 2.5
for L-theory
for R = Z
(fibered 2.84)

discrete subgroups
of Lie groups with
finitely many path
components

injectivity true
(see Theo-
rem 3.9 and
Remark 3.11)

? injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

subgroups of
groups which are
discrete cocom-
pact subgroups of
Lie groups with
finitely many path
components

injectivity true
(see Theo-
rem 3.9 and
Remark 3.11)

true rationally,
true fibered in
the range n ≤
1 (see Theo-
rem 3.16)

probably true
fibered (see
Remark 3.17).
Injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

linear groups injectivity is
true (see The-
orem 3.9 and
Remark 3.10)

? injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

arithmetic groups injectivity is
true (see The-
orem 3.9 and
Remark 3.10)

? injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

torsionfree dis-
crete subgroups of
GL(n,R)

injectivity is
true (see The-
orem 3.9 and
Remark 3.11)

true in the
range n ≤ 1
(see Theo-
rem 3.20)

true (see Theo-
rem 3.20)
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type of group Baum-Connes
Conjecture 2.4
(with coeffi-
cients 2.74)

Farrell-Jones
Conjecture 2.5
for K-theory
for R = Z
(fibered 2.84)

Farrell-Jones
Conjecture 2.5
for L-theory
for R = Z
(fibered 2.84)

Groups with finite
BG and finite
asymptotic dimen-
sion

injectivity
is true (see
Theorem 3.14)

injectivity is
true for all
R (see Theo-
rem 3.31)

injectivity is
true for reg-
ular R (see
Theorem 3.31)

G acts properly and
isometrically on a
complete Rieman-
nian manifold M
with non-positive
sectional curvature

rational injec-
tivity is true
(see Theo-
rem 3.8)

? rational injec-
tivity is true
(see Propo-
sitions 2.21
and 2.55)

π1(M) for a com-
plete Riemannian
manifold M with
non-positive sec-
tional curvature

rationally injec-
tive (see Theo-
rem 3.8)

? injectivity true
(see Theo-
rem 3.30)

π1(M) for a com-
plete Riemannian
manifold M with
non-positive sec-
tional curvature
which is A-regular

rationally injec-
tive (see Theo-
rem 3.8)

true in the
range n ≤ 1,
rationally sur-
jective (see
Theorem 3.20)

true (see Theo-
rem 3.20)

π1(M) for a com-
plete Riemannian
manifold M with
pinched negative
sectional curvature

rational injec-
tivity is true
(see Theorem
3.9)

true in the
range n ≤ 1,
rationally sur-
jective (see
Theorem 3.20)

true (see Theo-
rem 3.20)

π1(M) for a closed
Riemannian ma-
nifold M with
non-positive sec-
tional curvature

rationally injec-
tive (see Theo-
rem 3.8)

true fibered in
the range n ≤
1, true ratio-
nally (see The-
orem 3.20)

true (see Theo-
rem 3.20)

π1(M) for a closed
Riemannian mani-
fold M with neg-
ative sectional cur-
vature

true for all
subgroups (see
Theorem 3.4)

true for all co-
efficients R (see
Theorem 3.22)

true (see Theo-
rem 3.20)

word hyperbolic
groups

true for all
subgroups (see
Theorem 3.4).
Comment 36
(By W.): Add
reference to
Kasparov-Yu
for the
version with
coefficients

injectivity is
true for AFIN
and all R (see
Theorem 3.29)

injectivity is
true for AFIN
and all R with
Kn(R) = 0
for sufficiently
small n (see
Theorem 3.29)
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type of group Baum-Connes
Conjecture 2.4
(with coeffi-
cients 2.74)

Farrell-Jones
Conjecture 2.5
for K-theory
and R = Z
(fibered 2.84)

Farrell-Jones
Conjecture 2.5
for L-theory
for R = Z
(fibered 2.84)

one-relator groups true with coeffi-
cients (see The-
orem 3.2)

rational injec-
tivity is true
for R = Z and
injectivity is
true for reg-
ular R with
Q ⊆ R (see
Theorem 3.23)

true for all R
after inverting
2 (see Theo-
rem 3.23)

torsionfree one-
relator groups

true with coeffi-
cients (see The-
orem 3.2)

true for regu-
lar R (see The-
orem 3.23)

true for all R
after inverting
2 (see Theo-
rem 3.23)

Haken 3-manifold
groups (in particu-
lar knot groups)

true with coeffi-
cients (see The-
orem 3.2)

true for regu-
lar R (see The-
orem 3.23)

true for all
R after in-
verting 2(see
Theorem 3.23)

π1(M) for compact
connected ori-
entable 3-manifold

true with coef-
ficients Com-
ment 37 (By
W.): I think
that I have
an argument
using the
Geometrization
Conjecture

true rationally,
true fibered
in the range
n ≤ 1 [297,
Corollary 1.1.6]
Comment
38 (By W.):
Assuming the
Geometrization
Conjecture

injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)
Comment 39
(By W.): Maybe
we can say
more.

SL(n,Z), n ≥ 3 injectivity is
true

compare Re-
mark 3.21

injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

Artin’s braid group
Bn

true with co-
efficients [246,
Theo-
rem 5.25], [303]

true fibered in
the range n ≤
1, true ratio-
nally [134]

injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

pure braid group
Cn

true with coeffi-
cients

true in the
range n ≤ 1
(see Theo-
rem 3.20)

injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)

Thompson’s group
F

true with coeffi-
cients [109]

? injectivity
is true after
inverting 2
(see Propo-
sitions 2.21
and 2.55)
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Comment 40 (By W.): Shall we mention [297], where virtually
weak strongly poly-surface groups and the fibered Farrell-Jones Conjecture
for pseudoisotopies are treated?

Remark 3.32. The authors have no information about the status of these
conjectures for mapping class groups of higher genus or the group of outer
automorphisms of free groups. Since all of these spaces have finite models
for EFIN (G) Theorem 3.26 applies in these cases. Comment 41 (By W.):
Emerson-Meyer will prove some results for the Novikov Conjecture.

3.5 Inheritance Properties

In this section we list some inheritance properties of the various conjectures.

3.5.1 Directed Colimits

Let {Gi | i ∈ I} be a directed system of groups. Let G = colimi∈I Gi be
the colimit. We do not require that the structure maps are injective. If the
Fibered Farrell-Jones Conjecture 2.84 is true for each Gi, then it is true for
G [132, Theorem 6.1]. Comment 42 (By W.): What is known for the
Baum-Connes Conjecture with coefficients?

Suppose that {Gi | i ∈ I} is a system of subgroups of G directed by inclu-
sion such that G = colimi∈I Gi. If each Gi satisfies the Farrell-Jones Conjec-
ture 2.5, the Baum-Connes Conjecture 2.4 or the Baum-Connes Conjecture
with Coefficients 2.74, then the same is true for G [37, Theorem 1.1], [246,
Lemma 5.3]. We do not know a reference in Farrell-Jones case. An argument
in that case uses Lemma 4.11, the fact that Kn(RG) = colimi∈I Kn(RGi)
and that for suitable models we have EF (G) =

⋃
i∈I G×Gi

EF∩Gi
(Gi).

3.5.2 Passing to Subgroups

The Baum-Connes Conjecture with Coefficients 2.74 and the Fibered Farrell-
Jones Conjecture 2.84 pass to subgroups, i.e. if they hold for G, then also
for any subgroup H ⊆ G. This claim for the Baum-Connes Conjecture with
Coefficients 2.74 has been stated in [33], a proof can be found for instance
in [65, Theorem 2.5]. For the Fibered Farrell-Jones Conjecture this is proven
in [126, Theorem A.8 on page 289] for the special case R = Z, but the proof
also works for arbitrary rings R.

It is not known whether the Baum-Connes Conjecture 2.4 or the Farrell-
Jones Conjecture 2.5 itself passes to subgroups.
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3.5.3 Extensions of Groups

Let p : G→ K be a surjective group homomorphism. Suppose that the Baum-
Connes Conjecture with Coefficients 2.74 or the Fibered Farrell-Jones Con-
jecture 2.84 respectively holds for K and for p−1(H) for any subgroup H ⊂ K
which is finite or virtually cyclic respectively. Then the Baum-Connes Con-
jecture with Coefficients 2.74 or the Fibered Farrell-Jones Conjecture 2.84
respectively holds for G. This is proven in [254, Theorem 3.1] for the Baum-
Connes Conjecture with Coefficients 2.74, and in [126, Proposition 2.2 on
page 263] for the Fibered Farrell-Jones Conjecture 2.84 in the case R = Z.
The same proof works for arbitrary coefficient rings.

It is not known whether the corresponding statement holds for the Baum-
Connes Conjecture 2.4 or the Farrell-Jones Conjecture 2.5 itself.

Let H ⊆ G be a normal subgroup of G. Suppose that H is a-T-menable.
Then G satisfies the Baum-Connes Conjecture with Coefficients 2.74 if and
only if G/H does [65, Corollary 3.14]. The corresponding statement is not
known for the Baum-Connes Conjecture 2.4.

3.5.4 Products of Groups

The group G1 ×G2 satisfies the Baum-Connes Conjecture with Coefficients
2.74 if and only if both G1 and G2 do [65, Theorem 3.17], [254, Corollary
7.12]. The corresponding statement is not known for the Baum-Connes Con-
jecture 2.4.

Let D∞ = Z/2 ∗ Z/2 denote the infinite dihedral group. Whenever a
version of the Fibered Farrell-Jones Conjecture 2.84 is known for G = Z×Z,
G = Z×D∞ and D∞ ×D∞, then that version of the Fibered Farrell-Jones
Conjecture is true for G1 ×G2 if and only if it is true for G1 and G2.

3.5.5 Subgroups of Finite Index

It is not known whether the Baum-Connes Conjecture 2.4, the Baum-Connes
Conjecture with Coefficients 2.74, the Farrell-Jones Conjecture 2.5 or the
Fibered Farrell-Jones Conjecture 2.84 is true for a group G if it is true for a
subgroup H ⊆ G of finite index.

3.5.6 Groups Acting on Trees

Comment 43 (By W.): This subsection is not yet in a satisfactory
form.

Let G be a countable discrete group acting without inversion on a tree T .
Then the Baum-Connes Conjecture with Coefficients 2.74 is true for G if and
only if it holds for all stabilizers of the vertices of T . This is proven by Oyono-
Oyono [255, Theorem 1.1]. This implies that Baum-Connes Conjecture with
Coefficients 2.74 is stable under amalgamated products and HNN-extensions.
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In Bartels-Lück [24] (see also Roushon [296]) certain inheritance proper-
ties, in particular for actions in trees, for the class of groups which satisfy the
Fibered Version (see Fibered Meta Conjecture 2.95) of the Farrell-Jones Con-
jecture 2.90 for homotopy K-theory KH∗(RG) and the Fibered Farrell-Jones
Conjecture 2.84 are proven. For instance for a group G acting on a tree T the
Farrell-Jones Conjecture 2.90 for homotopy K-theory KH∗(RG) folds for G
if it is true for all stabilizers [24, Theorem 0.5]. The same statement is true for
the Fibered Version (see Fibered Meta Conjecture 2.95) of the Farrell-Jones
Conjecture 2.90 for homotopy K-theory KH∗(RG) (see [24, Theorem 0.5])
and for the L-theoretic version of the Farrell-Jones Conjecture 2.5 after in-
verting two (see [24, Theorem 0.5]).

A ring R is called regular coherent if every finitely presented R-module
possesses a finite-dimensional resolution by finitely generated projective R-
modules. A ring R is regular if and only if it is regular coherent and Noethe-
rian. A group G is called regular or regular coherent respectively if for any
regular ring R the group ring RG is regular respectively regular coherent. Ev-
ery regular coherent group is torsionfree. The trivial group and free groups
are regular coherent. Fundamental groups of closed 2-dimensional manifolds
with the exception of Z/2 are regular coherent. For more information about
these notions we refer to [341, Theorem 19.1].

For a regular ring R and a group G acting on a tree T the K-theoretic
Farrell-Jones Conjecture 2.5 for holds for G if it is true for the stabilizers of
every vertex and every edge and the stabilizer of each edge is regular coherent
[24, Theorem 0.11])

3.6 Miscellaneous

Comment 44 (By W.): Add reference to Mathai’s result that the
Novikov Conjecture is true for groups of cohomological dimension
≤ 2

Comment 45 (By W.): Add remark that the counterexamples (groups
with expanders) to the Baum-Connes Conjecture with coefficients are
not counterexamples to the Novikov Conjectures. I think the argument
is that they are limits of hyperbolic groups.

Comment 46 (By W.): Kasparov and Yu have announced a proof
that hyperbolic groups satisfy the Baum-Connes Conjecture with coefficients.
This involves the paper [369]. Later when this has appeared and is
confirmed we have to make some changes.
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Exercises

3.1. LetG be group having Kazhdan’s property (T). Show that every quotient
group of G has property (T) and that G cannot be a free group or the
fundamental group of a compact connected 2-manifold.

3.2. Let 1 → H → G → Q → 1 be an extension of groups. Suppose that H
is word-hyperbolic or a-T-menable and the same for Q. Show that G satisfies
the Baum-Connes Conjecture with Coefficients 2.74.

3.3. The lamplighter group L is defined as the semi-direct product
(⊕

n∈Z Z/2
)
o

Z with respect to the Z-action on
⊕

n∈Z Z/2 given by shifting. Does it satisfy
the Baum-Connes Conjecture 2.4 or the Farrell-Jones Conjecture 2.5 or some
of their versions?

3.4. Suppose that there exists a group G for which the Baum-Connes Con-
jecture 2.4 or the Farrell-Jones Conjecture 2.5 is not true. Show that then G
contains a finitely generated subgroup G′ with the same property.

3.5. Show that the Fibered Farrell-Jones Conjecture 2.84 holds for all groups
if and only if it holds for the fundamental groups of all closed connected
orientable 4-manifolds M . Comment 47 (By W.): What can we say for
Baum-Connes?

3.6. Let M be a compact connected 4-manifold which can be written as a
fiber bundle F →M → B for compact connected orientable manifolds B and
F which are different from {•}. Show that π1(M) satisfies the Baum-Connes
Conjecture with Coefficients 2.74. Comment 48 (By W.): This exercise
works only if we know the Baum-Connes Conjecture with Coefficients 2.74
for closed connected 3-manifolds.

3.7. Show that the Fibered Farrell-Jones Conjecture 2.84 holds for the group
Z and every ring R. Suppose that the K-theoretic Fibered Farrell-Jones Con-
jecture 2.84 holds for the group Z and the ring R but with the family VCY
replaced by the family FIN . Show that this implies that NKn(RG) = 0
holds for all groups G and n ∈ Z. (This is for instance not true for R = Z.)

3.8. Fix an equivariant homology theory. In the sequel we will consider the
family of virtually cyclic subgroups. Suppose that the Fibered Meta Conjec-
ture 2.95 holds for the groups Z× Z, Z×D∞ and D∞ ×D∞. Show for two
groups G and H that the Fibered Meta Conjecture 2.95 holds for G ×H if
and only if it holds for both G and H.

3.9. Fix an equivariant homology theory. In the sequel we will consider the
family of virtually cyclic subgroups. Suppose that the Fibered Meta Con-
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jecture 2.95 holds for the groups Z × Z, Z × D∞ and D∞ × D∞ and every
virtually finitely generated free group. Show for two groups G and H that
the Fibered Meta Conjecture 2.95 holds for G ∗H if and only if it holds for
both G and H using the fact that for any infinite cyclic subgroup C ⊆ G×H
its preimage under the projection p : G ∗H → G×H is free.

last edited on 8.2.05
last compiled on March 29, 2005



4. Basic Technicalities

4.1 Introduction

4.2 Classifying Spaces for Families

4.2.1 G-CW-Complexes

A G-CW -complex X is a G-space X together with a filtration X−1 = ∅ ⊆
X0 ⊆ X1 ⊆ . . . ⊆ X such that X = colimn→∞Xn and for each n there is a
G-pushout ∐

i∈In
G/Hi × Sn−1

‘
i∈In

qn
i−−−−−−→ Xn−1y y∐

i∈In
G/Hi ×Dn

‘
i∈In

Qn
i−−−−−−→ Xn

.

This definition makes also sense for topological groups. The following al-
ternative definition only applies to discrete groups. A G-CW -complex is a
CW -complex with a G-action by cellular maps such that for each open cell
e and each g ∈ G with ge ∩ e 6= ∅ we have gx = x for all x ∈ e. There is an
obvious notion of a G-CW -pair.

A G-CW -complex X is called finite if it is built out of finitely many
G-cells G/Hi × Dn. This is the case if and only if it is cocompact, i.e. the
quotient space G\X is compact. More information about G-CW -complexes
can be found for instance in [215, Sections 1 and 2], [332, Sections II.1 and
II.2].

4.2.2 Families of Subgroups

A family F of subgroups of G is a set of subgroups of G closed under con-
jugation, i.e. H ∈ F , g ∈ G implies g−1Hg ∈ F , and finite intersections, i.e.
H,K ∈ F implies H ∩K ∈ F . Throughout the text we will use the notations

T R, FCY, FIN , CYC, VCYI , VCY and ALL

for the families consisting of the trivial, all finite cyclic, all finite, all (pos-
sibly infinite) cyclic, all virtually cyclic of the first kind, all virtually cyclic,



120 4. Basic Technicalities

respectively all subgroups of a given group G. Recall that a group is called
virtually cyclic if it is finite or contains an infinite cyclic subgroup of finite
index. A group is virtually cyclic of the first kind if it admits a surjection
onto an infinite cyclic group with finite kernel, compare Lemma 2.18.

4.2.3 The Definition of the Classifying Spaces for Families of
Subgroups

Let F be a family of subgroups of G. A G-CW-complex, all whose isotropy
groups belong to F and whose H-fixed point sets are contractible for all
H ∈ F , is called a classifying space for the family F and will be denoted
EF (G). Such a space is unique up to G-homotopy because it is characterized
by the property that for any G-CW -complex X, all whose isotropy groups
belong to F , there is up to G-homotopy precisely one G-map from X to
EF (G). These spaces were introduced by tom Dieck [330], [332, I.6].

A functorial “bar-type” construction is given in [92, section 7].
If F ⊂ G are families of subgroups for G, then by the universal property

there is up to G-homotopy precisely one G-map EF (G)→ EG(G).
The space ET R(G) is the same as the space EG which is by definition

the total space of the universal G-principal bundle G → EG → BG, or,
equivalently, the universal covering of BG. A model for EALL(G) is given by
the space G/G = {•} consisting of one point.

The space EFIN (G) is also known as the classifying space for proper G-
actions and denoted by EG in the literature. Recall that a G-CW -complex
X is proper if and only if all its isotropy groups are finite (see for instance
[215, Theorem 1.23 on page 18]). We often abbreviate EFIN (G) by EG.EG

4.2.4 Specific Models for the Classifying Spaces for Families

There are often nice models for EFIN (G). If G is word hyperbolic in the
sense of Gromov, then the Rips-complex is a finite model [235], [236].

If G is a discrete subgroup of a Lie group L with finitely many path
components, then for any maximal compact subgroup K ⊆ L the space
L/K with its left G-action is a model for EFIN (G) [2, Corollary 4.14]. More
information about EFIN (G) can be found for instance in [33, section 2], [198],
[217], [224], [225] and [308].

4.3 Spectra

4.3.1 K- and L-Theory Spectra over Groupoids

Let RINGS be the category of associative rings with unit. An involution on
a R is a map R→ R, r 7→ r satisfying 1 = 1, x+ y = x+ y and x · y = y · x
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for all x, y ∈ R. Let RINGSinv be the category of rings with involution. Let
C∗-ALGEBRAS be the category of C∗-algebras. There are classical functors
for j ∈ −∞q {j ∈ Z | j ≤ 2}

K : RINGS → SPECTRA; (4.1)
L〈j〉 : RINGSinv → SPECTRA; (4.2)

Ktop : C∗-ALGEBRAS → SPECTRA. (4.3)

The construction of such a non-connective algebraic K-theory functor goes
back to Gersten [148] and Wagoner [340]. The spectrum for quadratic al-
gebraic L-theory is constructed by Ranicki in [279]. In a more geometric
formulation it goes back to Quinn [271]. In the topological K-theory case a
construction using Bott periodicity for C∗-algebras can easily be derived from
the Kuiper-Mingo Theorem (see [307, Section 2.2]). The homotopy groups of
these spectra give the algebraic K-groups of Quillen (in high dimensions) and
of Bass (in negative dimensions), the decorated quadratic L-theory groups,
and the topological K-groups of C∗-algebras.

We emphasize again that in all three cases we need the non-connective
versions of the spectra, i.e. the homotopy groups in negative dimensions are
non-trivial in general. For example the version of the Farrell-Jones Conjecture
where one uses connective K-theory spectra is definitely false in general,
compare Remark 1.33.

Now let us fix a coefficient ring R (with involution). Then sending a group
G to the group ring RG yields functors R(−) : GROUPS → RINGS, respec-
tively R(−) : GROUPS → RINGSinv, where GROUPS denotes the category
of groups. Let GROUPSinj be the category of groups with injective group ho-
momorphisms as morphisms. Taking the reduced group C∗-algebra defines a
functor C∗r : GROUPSinj → C∗-ALGEBRAS. The composition of these func-
tors with the functors (4.1), (4.2) and (4.3) above yields functors

KR(−) : GROUPS → SPECTRA; (4.4)
L〈j〉R(−) : GROUPS → SPECTRA; (4.5)

KtopC∗r (−) : GROUPSinj → SPECTRA. (4.6)

They satisfy

πn(KR(G)) = Kn(RG);
πn(L〈j〉R(G)) = L〈j〉n (RG);

πn(KtopC∗r (G)) = Kn(C∗r (G)),

for all groupsG and n ∈ Z. The next result essentially says that these functors
can be extended to groupoids.

Theorem 4.7 (K- and L-Theory Spectra over Groupoids). Let R be
a ring (with involution). There exist covariant functors
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KR : GROUPOIDS→ SPECTRA; (4.8)

L〈j〉R : GROUPOIDS→ SPECTRA; (4.9)

Ktop : GROUPOIDSinj → SPECTRA (4.10)

with the following properties:

(1) If F : G0 → G1 is an equivalence of (small) groupoids, then the induced
maps KR(F ), L〈j〉R (F ) and Ktop(F ) are weak equivalences of spectra.

(2) Let I : GROUPS→ GROUPOIDS be the functor sending G to G consid-
ered as a groupoid, i.e. to GG(G/G). This functor restricts to a functor
GROUPSinj → GROUPOIDSinj.
There are natural transformations from KR(−) to KR◦I, from L〈j〉R(−)
to L〈j〉R ◦ I and from KC∗r (−) to Ktop ◦ I such that the evaluation of each
of these natural transformations at a given group is an equivalence of
spectra.

(3) For every group G and all n ∈ Z we have

πn(KR ◦ I(G)) ∼= Kn(RG);

πn(L〈j〉R ◦ I
inv(G)) ∼= L〈j〉n (RG);

πn(Ktop ◦ I(G)) ∼= Kn(C∗r (G)).

Proof. We only sketch the strategy of the proof. More details can be found
in [92, Section 2].

Let G be a groupoid. Similar to the group ring RG one can define an
R-linear category RG by taking the free R-modules over the morphism sets
of G. Composition of morphisms is extended R-linearly. By formally adding
finite direct sums one obtains an additive category RG⊕. Pedersen-Weibel
[258] (compare also [57]) define a non-connective algebraic K-theory functor
which digests additive categories and can hence be applied to RG⊕. For the
comparison result one uses that for every ring R (in particular for RG) the
Pedersen-Weibel functor applied to R⊕ (a small model for the category of
finitely generated free R-modules) yields the non-connective K-theory of the
ring R and that it sends equivalences of additive categories to equivalences
of spectra. In the L-theory case RG⊕ inherits an involution and one applies
the construction of [279, Example 13.6 on page 139] to obtain the L〈1〉 = Lh-
version. The versions for j ≤ 1 can be obtained by a construction which is
analogous to the Pedersen-Weibel construction for K-theory, compare [61,
Section 4]. In the C∗-case one obtains from G a C∗-category C∗r (G) and
assigns to it its topological K-theory spectrum. There is a construction of the
topological K-theory spectrum of a C∗-category in [92, Section 2]. However,
the construction given there depends on two statements, which appeared in
[145, Proposition 1 and Proposition 3], and those statements are incorrect, as
already pointed out by Thomason in [329]. The construction in [92, Section
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2] can easily be fixed but instead we recommend the reader to look at the
more recent construction of Joachim [175].

4.4 Equivariant Homology Theories

A G-homology theory HG
∗ is the “obvious” G-equivariant generalization of

the concept of a homology theory. It assigns to every G-CW -complex X a
Z-graded abelian group HG

∗ (X). It is natural in X, satisfies G-homotopy
invariance and possesses long exact Mayer-Vietoris sequences. An equiva-
riant homology theory H?

∗ assigns to every discrete group G a G-homology
theory HG

∗ . These are linked by an induction structure. We explain how a
functor from the orbit category Or(G) to the category of spectra leads to a
G-homology theory (see Proposition 4.20) and how more generally a functor
from the category of groupoids leads to an equivariant homology theory (see
Proposition 4.22). We then describe the main examples of such spectra val-
ued functors which were already used in order to formulate the Farrell-Jones
and the Baum-Connes Conjectures in Section 2.2.

4.4.1 G-Homology Theories

Fix a group G and an associative commutative ring Λ with unit. A G-
homology theory HG

∗ with values in Λ-modules is a collection of covariant
functors HG

n from the category of G-CW -pairs to the category of Λ-modules
indexed by n ∈ Z together with natural transformations

∂G
n (X,A) : HG

n (X,A)→ HG
n−1(A) := HG

n−1(A, ∅)

for n ∈ Z such that the following axioms are satisfied:

(1) G-homotopy invariance
If f0 and f1 are G-homotopic maps (X,A)→ (Y,B) of G-CW -pairs, then
HG

n (f0) = HG
n (f1) for n ∈ Z.

(2) Long exact sequence of a pair
Given a pair (X,A) of G-CW -complexes, there is a long exact sequence

· · ·
HG

n+1(j)−−−−−→ HG
n+1(X,A)

∂G
n+1−−−→ HG

n (A)
HG

n (i)−−−−→ HG
n (X)

HG
n (j)−−−−→ HG

n (X,A)
∂G

n−−→ HG
n−1(A)

HG
n−1(i)−−−−−→ · · · ,

where i : A→ X and j : X → (X,A) are the inclusions.
(3) Excision

Let (X,A) be a G-CW -pair and let f : A → B be a cellular G-map of
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G-CW -complexes. Equip (X ∪f B,B) with the induced structure of a G-
CW -pair. Then the canonical map (F, f) : (X,A)→ (X ∪f B,B) induces
for each n ∈ Z an isomorphism

HG
n (F, f) : HG

n (X,A)
∼=−→ HG

n (X ∪f B,B).

(4) Disjoint union axiom
Let {Xi | i ∈ I} be a family of G-CW -complexes. Denote by ji : Xi →∐

i∈I Xi the canonical inclusion. Then the map

⊕
i∈I

HG
n (ji) :

⊕
i∈I

HG
n (Xi)

∼=−→ HG
n

(∐
i∈I

Xi

)

is bijective for each n ∈ Z.

Of course a G-homology theory for the trivial group G = {1} is a ho-
mology theory (satisfying the disjoint union axiom) in the classical non-
equivariant sense.

The disjoint union axiom ensures that we can pass from finite G-CW-
complexes to arbitrary ones using the following lemma.

Lemma 4.11. Let HG
∗ be a G-homology theory. Let X be a G-CW -complex

and {Xi | i ∈ I} be a directed system of G-CW -subcomplexes directed by
inclusion such that X = ∪i∈IXi. Then for all n ∈ Z the natural map

colimi∈I HG
n (Xi)

∼=−→ HG
n (X)

is bijective.

Proof. Compare for example with [328, Proposition 7.53 on page 121], where
the non-equivariant case for I = N is treated.

Example 4.12 (Bredon Homology). The most basic G-homology theory
is Bredon homology. The orbit category Or(G) has as objects the homoge-
neous spaces G/H and as morphisms G-maps. Let X be a G-CW -complex. It
defines a contravariant functor from the orbit category Or(G) to the category
of CW -complexes by sending G/H to mapG(G/H,X) = XH . Composing it
with the functor cellular chain complex yields a contravariant functor

Cc
∗(X) : Or(G)→ Z-CHCOM

into the category of Z-chain complexes. Let Λ be a commutative ring and let

M : Or(G)→ Λ-MODULES

be a covariant functor. Then one can form the tensor product over the orbit
category (see for instance [215, 9.12 on page 166]) and obtains the Λ-chain
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complex Cc
∗(X)⊗ZOr(G)M . Its homology is the Bredon homology of X with

coefficients in M

HG
∗ (X;M) = H∗(Cc

∗(X)⊗ZOr(G) M).

Thus we get a G-homology theory HG
∗ with values in Λ-modules. For a trivial

group G this reduces to the cellular homology of X with coefficients in the
Λ-module M .

4.4.2 The Axioms of an Equivariant Homology Theory

The notion of a G-homology theory HG
∗ with values in Λ-modules for a com-

mutative ring Λ was defined in Subsection 4.4.1. We now recall the axioms
of an equivariant homology theory from [219, Section 1]. We will see in Sec-
tion 4.3.1 that the G-homology theories we used in the formulation of the
Baum-Connes and the Farrell-Jones Conjectures in Subsection 2.2.2 are in
fact the values at G of suitable equivariant homology theories.

Let α : H → G be a group homomorphism. Given a H-space X, define
the induction of X with α to be the G-space indαX which is the quotient
of G × X by the right H-action (g, x) · h := (gα(h), h−1x) for h ∈ H and
(g, x) ∈ G ×X. If α : H → G is an inclusion, we also write indG

H instead of
indα.

An equivariant homology theory H?
∗ with values in Λ-modules consists of a

G-homology theory HG
∗ with values in Λ-modules for each group G together

with the following so called induction structure: given a group homomorphism
α : H → G and a H-CW -pair (X,A) such that ker(α) acts freely on X, there
are for each n ∈ Z natural isomorphisms

indα : HH
n (X,A)

∼=−→ HG
n (indα(X,A))

satisfying the following conditions.

(1) Compatibility with the boundary homomorphisms
∂G

n ◦ indα = indα ◦∂H
n .

(2) Functoriality
Let β : G → K be another group homomorphism such that ker(β ◦ α)
acts freely on X. Then we have for n ∈ Z

indβ◦α = HK
n (f1) ◦ indβ ◦ indα : HH

n (X,A)→ HK
n (indβ◦α(X,A)),

where f1 : indβ indα(X,A)
∼=−→ indβ◦α(X,A), (k, g, x) 7→ (kβ(g), x) is

the natural K-homeomorphism.
(3) Compatibility with conjugation

For n ∈ Z, g ∈ G and a G-CW -pair (X,A) the homomorphism

indc(g) : G→G : HG
n (X,A)→ HG

n (indc(g) : G→G(X,A))
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agrees with HG
n (f2), where the G-homeomorphism

f2 : (X,A)→ indc(g) : G→G(X,A)

sends x to (1, g−1x) and c(g) : G→ G sends g′ to gg′g−1.

If the G-homology theory HG
∗ is defined or considered only for proper

G-CW -pairs (X,A), we call it a proper G-homology theory HG
∗ with values

in Λ-modules.

4.4.3 Basic Properties and Examples of Equivariant Homology
Theories

Example 4.13. Let K∗ be a homology theory for (non-equivariant) CW -
pairs with values in Λ-modules. Examples are singular homology, oriented
bordism theory or topological K-homology. Then we obtain two equivariant
homology theories with values in Λ-modules, whose underlying G-homology
theories for a group G are given by the following constructions

HG
n (X,A) = Kn(G\X,G\A);
HG

n (X,A) = Kn(EG×G (X,A)).

Example 4.14. Given a proper G-CW -pair (X,A), one can define the G-
bordism group ΩG

n (X,A) as the abelian group of G-bordism classes of maps
f : (M,∂M) → (X,A) whose sources are oriented smooth manifolds with
cocompact orientation preserving proper smooth G-actions. The definition
is analogous to the one in the non-equivariant case. This is also true for
the proof that this defines a proper G-homology theory. There is an obvious
induction structure coming from induction of equivariant spaces. Thus we
obtain an equivariant proper homology theory Ω?

∗.

Example 4.15. Let Λ be a commutative ring and let

M : GROUPOIDS→ Λ-MODULES

be a contravariant functor. For a group G we obtain a covariant functor

MG : Or(G)→ Λ-MODULES

by its composition with the transport groupoid functor GG defined in (4.21).
Let HG

∗ (−;M) be the G-homology theory given by the Bredon homology
with coefficients in MG as defined in Example 4.12. There is an induction
structure such that the collection of the HG(−;M) defines an equivariant
homology theory H?

∗(−;M). This can be interpreted as the special case of
Proposition 4.22, where the covariant functor GROUPOIDS→ Ω-SPECTRA

is the composition of M with the functor sending a Λ-module to the as-
sociated Eilenberg-MacLane spectrum. But there is also a purely algebraic
construction.
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The next lemma was used in the proof of the Transitivity Principle 2.11.

Lemma 4.16. Let H?
∗ be an equivariant homology theory with values in Λ-

modules. Let G be a group and let F a family of subgroups of G. Let Z be a
G-CW -complex. Consider N ∈ Z∪{∞}. For H ⊆ G let F ∩H be the family
of subgroups of H given by {K ∩ H | K ∈ F}. Suppose for each H ⊂ G,
which occurs as isotropy group in Z, that the map induced by the projection
pr: EF∩H(H)→ {•}

HH
n (pr) : HH

n (EF∩H(H))→ HH
n ({•})

is bijective for all n ∈ Z, n ≤ N .
Then the map induced by the projection pr2 : EF (G)× Z → Z

HG
n (pr2) : HG

n (EF (G)× Z)→ HG
n (Z)

is bijective for n ∈ Z, n ≤ N .

Proof. We first prove the claim for finite-dimensional G-CW -complexes by
induction over d = dim(Z). The induction beginning dim(Z) = −1, i.e.
Z = ∅, is trivial. In the induction step from (d − 1) to d we choose a G-
pushout ∐

i∈Id
G/Hi × Sd−1 −−−−→ Zd−1y y∐

i∈Id
G/Hi ×Dd −−−−→ Zd

If we cross it with EF (G), we obtain another G-pushout of G-CW -complexes.
The various projections induce a map from the Mayer-Vietoris sequence of
the latter G-pushout to the Mayer-Vietoris sequence of the first G-pushout.
By the Five-Lemma it suffices to prove that the following maps

HG
n (pr2) : HG

n

(
EF (G)×

∐
i∈Id

G/Hi × Sd−1

)
→ HG

n

(∐
i∈Id

G/Hi × Sd−1

)
;

HG
n (pr2) : HG

n (EF (G)× Zd−1)→ HG
n (Zd−1);

HG
n (pr2) : HG

n

(
EF (G)×

∐
i∈Id

G/Hi ×Dd

)
→ HG

n

(∐
i∈Id

G/Hi ×Dd

)

are bijective for n ∈ Z, n ≤ N . This follows from the induction hypothesis
for the first two maps. Because of the disjoint union axiom and G-homotopy
invariance of H?

∗ the claim follows for the third map if we can show for any
H ⊆ G which occurs as isotropy group in Z that the map

HG
n (pr2) : HG

n (EF (G)×G/H)→ HG(G/H) (4.17)

is bijective for n ∈ Z, n ≤ N . The G-map
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G×H resH
G EF (G)→ G/H × EF (G) (g, x) 7→ (gH, gx)

is a G-homeomorphism where resH
G denotes the restriction of the G-action to

an H-action. Obviously resH
G EF (G) is a model for EF∩H(H). We conclude

from the induction structure that the map (4.17) can be identified with the
map

HG
n (pr) : HH

n (EF∩H(H))→ HH({•})

which is bijective for all n ∈ Z, n ≤ N by assumption. This finishes the proof
in the case that Z is finite-dimensional. The general case follows by a colimit
argument using Lemma 4.11.

4.4.4 Constructing Equivariant Homology Theories

Recall that a (non-equivariant) spectrum yields an associated (non-equivariant)
homology theory. In this section we explain how a spectrum over the or-
bit category of a group G defines a G-homology theory. We would like to
stress that our approach using spectra over the orbit category should be dis-
tinguished from approaches to equivariant homology theories using spectra
with G-action or the more complicated notion of G-equivariant spectra in the
sense of [208], see for example [59] for a survey. The latter approach leads to
a much richer structure but only works for compact Lie groups.

We briefly fix some conventions concerning spectra. We always work
in the very convenient category SPACES of compactly generated spaces
(see [322], [360, I.4]). In that category the adjunction homeomorphism
map(X × Y, Z)

∼=−→ map(X,map(Y,Z)) holds without any further assump-
tions such as local compactness and the product of two CW -complexes is
again a CW -complex. Let SPACES+ be the category of pointed compactly
generated spaces. Here the objects are (compactly generated) spaces X with
base points for which the inclusion of the base point is a cofibration. Mor-
phisms are pointed maps. If X is a space, denote by X+ the pointed space
obtained from X by adding a disjoint base point. For two pointed spaces
X = (X,x) and Y = (Y, y) define their smash product as the pointed space

X ∧ Y = X × Y/({x} × Y ∪X × {y}),

and the reduced cone as

cone(X) = X × [0, 1]/(X × {1} ∪ {x} × [0, 1]).

A spectrum E = {(E(n), σ(n)) | n ∈ Z} is a sequence of pointed
spaces {E(n) | n ∈ Z} together with pointed maps called structure maps
σ(n) : E(n) ∧ S1 −→ E(n + 1). A map of spectra f : E → E′ is a sequence
of maps f(n) : E(n)→ E′(n) which are compatible with the structure maps
σ(n), i.e. we have f(n + 1) ◦ σ(n) = σ′(n) ◦ (f(n) ∧ idS1) for all n ∈ Z.
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Maps of spectra are sometimes called functions in the literature, they should
not be confused with the notion of a map of spectra in the stable category
(see [4, III.2.]). The category of spectra and maps will be denoted SPECTRA.
Recall that the homotopy groups of a spectrum are defined by

πi(E) = colimk→∞ πi+k(E(k)),

where the system πi+k(E(k)) is given by the composition

πi+k(E(k)) S−→ πi+k+1(E(k) ∧ S1)
σ(k)∗−−−→ πi+k+1(E(k + 1))

of the suspension homomorphism S and the homomorphism induced by the
structure map. A weak equivalence of spectra is a map f : E → F of spectra
inducing an isomorphism on all homotopy groups.

Given a spectrum E and a pointed space X, we can define their smash
product X ∧E by (X ∧E)(n) := X ∧E(n) with the obvious structure maps.
It is a classical result that a spectrum E defines a homology theory by setting

Hn(X,A;E) = πn

(
(X+ ∪A+ cone(A+)) ∧E

)
.

We want to extend this to G-homology theories. This requires the consider-
ation of spaces and spectra over the orbit category. Our presentation follows
[92], where more details can be found.

In the sequel C is a small category. Our main example is the orbit category
Or(G), whose objects are homogeneous G-spaces G/H and whose morphisms
are G-maps.

Definition 4.18. A covariant (contravariant) C-spaceX is a covariant (con-
travariant) functor

X : C → SPACES.

A map between C-spaces is a natural transformation of such functors. Analo-
gously a pointed C-space is a functor from C to SPACES+ and a C-spectrum
a functor to SPECTRA.

Example 4.19. Let Y be a left G-space. Define the associated contravariant
Or(G)-space mapG(−, Y ) by

mapG(−, Y ) : Or(G)→ SPACES, G/H 7→ mapG(G/H, Y ) = Y H .

If Y is pointed then mapG(−, Y ) takes values in pointed spaces.

Let X be a contravariant and Y be a covariant C-space. Define their
balanced product to be the space

X ×C Y :=
∐

c∈ob(C)

X(c)× Y (c)/ ∼
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where ∼ is the equivalence relation generated by (xφ, y) ∼ (x, φy) for all
morphisms φ : c→ d in C and points x ∈ X(d) and y ∈ Y (c). Here xφ stands
for X(φ)(x) and φy for Y (φ)(y). If X and Y are pointed, then one defines
analogously their balanced smash product to be the pointed space

X ∧C Y =
∨

c∈ob(C)

X(c) ∧ Y (c)/ ∼ .

In [92] the notation X ⊗C Y was used for this space. Doing the same con-
struction level-wise one defines the balanced smash product X ∧C E of a con-
travariant pointed C-space and a covariant C-spectrum E.

The proof of the next result is analogous to the non-equivariant case.
Details can be found in [92, Lemma 4.4], where also cohomology theories are
treated.

Proposition 4.20 (Constructing G-Homology Theories). Let E be a
covariant Or(G)-spectrum. It defines a G-homology theory HG

∗ (−;E) by

HG
n (X,A;E) = πn

(
mapG

(
−, (X+ ∪A+ cone(A+))

)
∧Or(G) E

)
.

In particular we have

HG
n (G/H;E) = πn(E(G/H)).

Recall that we seek an equivariant homology theory and not only a G-
homology theory. If the Or(G)-spectrum in Proposition 4.20 is obtained from
a GROUPOIDS-spectrum in a way we will now describe, then automatically
we obtain the desired induction structure.

Let GROUPOIDS be the category of small groupoids with covariant func-
tors as morphisms. Recall that a groupoid is a category in which all mor-
phisms are isomorphisms. A covariant functor f : G0 → G1 of groupoids is
called injective, if for any two objects x, y in G0 the induced map morG0(x, y)→
morG1(f(x), f(y)) is injective. Let GROUPOIDSinj be the subcategory of
GROUPOIDS with the same objects and injective functors as morphisms.
For a G-set S we denote by GG(S) its associated transport groupoid. Its ob-
jects are the elements of S. The set of morphisms from s0 to s1 consists of
those elements g ∈ G which satisfy gs0 = s1. Composition in GG(S) comes
from the multiplication in G. Thus we obtain for a group G a covariant
functor

GG : Or(G)→ GROUPOIDSinj, G/H 7→ GG(G/H). (4.21)

A functor of small categories F : C → D is called an equivalence if there
exists a functor G : D → C such that both F ◦ G and G ◦ F are naturally
equivalent to the identity functor. This is equivalent to the condition that F
induces a bijection on the set of isomorphisms classes of objects and for any
objects x, y ∈ C the map morC(x, y) → morD(F (x), F (y)) induced by F is
bijective.
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Proposition 4.22 (Constructing Equivariant Homology Theories). Consider
a covariant GROUPOIDSinj-spectrum

E : GROUPOIDSinj → SPECTRA.

Suppose that E respects equivalences, i.e. it sends an equivalence of groupoids
to a weak equivalence of spectra. Then E defines an equivariant homol-
ogy theory H?

∗(−;E), whose underlying G-homology theory for a group G
is the G-homology theory associated to the covariant Or(G)-spectrum E ◦
GG : Or(G)→ SPECTRA in the previous Proposition 4.20, i.e.

HG
∗ (X,A;E) = HG

∗ (X,A;E ◦ GG).

In particular we have

HG
n (G/H;E) ∼= HH

n ({•};E) ∼= πn(E(I(H))),

where I(H) denotes H considered as a groupoid with one object. The whole
construction is natural in E.

Proof. We have to specify the induction structure for a homomorphism
α : H → G. We only sketch the construction in the special case where α
is injective and A = ∅. The details of the full proof can be found in [301,
Theorem 2.10 on page 21].

The functor induced by α on the orbit categories is denoted in the same
way

α : Or(H)→ Or(G), H/L 7→ indα(H/L) = G/α(L).

There is an obvious natural equivalence of functors Or(H)→ GROUPOIDSinj

T : GH → GG ◦ α.

Its evaluation atH/L is the equivalence of groupoids GH(H/L)→ GG(G/α(L))
which sends an object hL to the object α(h)α(L) and a morphism given by
h ∈ H to the morphism α(h) ∈ G. The desired isomorphism

indα : HH
n (X;E ◦ GH)→ HG

n (indαX;E ◦ GG)

is induced by the following map of spectra

mapH(−, X+) ∧Or(H) E ◦ GH id∧E(T )−−−−−→ mapH(−, X+) ∧Or(H) E ◦ GG ◦ α
'←− (α∗mapH(−, X+))∧Or(G)E◦GG '←− mapG(−, indαX+)∧Or(G)E◦GG.

Here α∗mapH(−, X+) is the pointed Or(G)-space which is obtained from the
pointed Or(H)-space mapH(−, X+) by induction, i.e. by taking the balanced
product over Or(H) with the Or(H)-Or(G) bimodule morOr(G)(??, α(?)) [92,
Definition 1.8]. Notice that E ◦ GG ◦ α is the same as the restriction of the
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Or(G)-spectrum E ◦ GG along α which is often denoted by α∗(E ◦ GG) in
the literature [92, Definition 1.8]. The second map is given by the adjunction
homeomorphism of induction α∗ and restriction α∗ (see [92, Lemma 1.9]).
The third map is the homeomorphism of Or(G)-spaces which is the adjoint
of the obvious map of Or(H)-spaces mapH(−, X+)→ α∗mapG(−, indαX+)
whose evaluation at H/L is given by indα.

4.4.5 Assembly Maps in Terms of Homotopy Colimits

In this section we describe a homotopy-theoretic formulation of the Baum-
Connes and Farrell-Jones Conjectures. For the classical assembly maps which
in our set-up correspond to the trivial family such formulations were described
in [358].

For a group G and a family F of subgroups we denote by OrF (G) the
restricted orbit category. Its objects are homogeneous spaces G/H with H ∈
F . Morphisms are G-maps. If F = ALL we get back the (full) orbit category,
i.e. Or(G) = OrALL(G).

Metaconjecture 4.23 (Homotopy-Theoretic Isomorphism Conjecture).
Let G be a group and F a family of subgroups. Let E : Or(G) → SPECTRA

be a covariant functor. Then

AF : hocolimOrF (G) E|OrF (G) → hocolimOr(G) E ' E(G/G)

is a weak equivalence of spectra.

Here hocolim is the homotopy colimit of a covariant functor to spectra,
which is itself a spectrum. The map AF is induced by the obvious functor
OrF (G) → Or(G). The equivalence hocolimOr(G) E ' E(G/G) comes from
the fact thatG/G is a final object in Or(G). For information about homotopy-
colimits we refer to [46], [92, Section 3] and [102].

Remark 4.24. If we consider the map on homotopy groups that is induced
by the map AF which appears in the Homotopy-Theoretic Isomorphism Con-
jecture above, then we obtain precisely the map with the same name in
Meta-Conjecture 2.1 for the homology theory HG

∗ (−;E) associated with E
in Proposition 4.20, compare [92, Section 5]. In particular the Baum-Connes
Conjecture 2.4 and the Farrell-Jones Conjecture 2.5 can be seen as special
cases of Meta-Conjecture 4.23.

4.4.6 Universal Property of the Homotopy-Theoretic Assembly
Map

The Homotopy-Theoretic Isomorphism Conjecture 4.23 is in some sense the
most conceptual formulation of an Isomorphism Conjecture because it has a
universal property as the universal approximation from the left by a (weakly)
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excisive F-homotopy invariant functor. This is explained in detail in [92, Sec-
tion 6]. This universal property is important if one wants to identify different
models for the assembly map, compare e.g. [22, Section 6] and [157].

4.4.7 Naturality under Induction

Consider a covariant functor E : GROUPOIDS → SPECTRA which respects
equivalences. Let H?

∗(−;E) be the associated equivariant homology theory
(see Proposition 4.22). Then for a group homomorphism α : H → G and
H-CW -pair (X,A) we obtain a homomorphism

indα : HH
n (X,A;E)→ HG

n (indα(X,A);E)

which is natural in (X,A). Note that we did not assume that ker(α) acts freely
on X. In fact the construction sketched in the proof of Proposition 4.22 still
works even though indα may not be an isomorphism as it is the case if ker(α)
acts freely. We still have functoriality as described in 2 in Subection 4.4.2.

Now suppose thatH and G are families of subgroups forH andG such that
α(K) ∈ G holds for all K ∈ H. Then we obtain a G-map f : indαEH(H)→
EG(G) from the universal property of EG(G). Let p : indα{•} = G/α(H) →
{•} be the projection. Let I : GROUPS→ GROUPOIDS be the functor send-
ing G to GG(G/G). Then the following diagram, where the horizontal arrows
are induced from the projections to the one point space, commutes for all
n ∈ Z.

HH
n (EH(H);E) AH−−−−→ HH

n ({•};E) = πn(E(I(H)))

HG
n (f)◦indα

y HG
n (p)◦indα=πn(E(I(α)))

y
HG

n (EG(G);E)
AG−−−−→ HG

n ({•};E) = πn(E(I(G))).

If we take the special case E = KR and H = G = VCY, we get the following
commutative diagram, where the horizontal maps are the assembly maps
appearing in the Farrell-Jones Conjecture 2.5 and α∗ is the change of rings
homomorphism (induction) associated to α.

HH
n (EVCY(H);KR)

AVCY−−−−→ Kn(RH)

HG
n (f)◦indα

y α∗

y
HG

n (EVCY(G);KR)
AVCY−−−−→ Kn(RG).

We see that we can define a kind of induction homomorphism on the source
of the assembly maps which is compatible with the induction structure given
on their target. We get analogous diagrams for the L-theoretic version of the
Farrell-Jones-Isomorphism Conjecture 2.5, for the Bost Conjecture 2.72 and
for the Baum-Connes Conjecture for maximal group C∗-algebras (see (2.71)
in Subsection 2.12.2).
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Remark 4.25. The situation for the Baum-Connes Conjecture 2.4 itself,
where one has to work with reduced C∗-algebras, is more complicated. Recall
that not every group homomorphism α : H → G induces a homomorphisms
of C∗-algebras C∗r (H)→ C∗r (G). (It does if ker(α) is finite.) But it turns out
that the source HH

n (EFIN (H);Ktop) always admits such a homomorphism.
The point is that the isotropy groups of EFIN (H) are all finite and the
spectra-valued functor Ktop extends from GROUPOIDSinj to the category
GROUPOIDSfinker, which has small groupoids as objects but as morphisms
only those functors f : G0 → G1 with finite kernels (in the sense that for each
object x ∈ G0 the group homomorphism autG0(x) → autG1(f(x)) has finite
kernel). This is enough to get for any group homomorphism α : H → G an
induced map indα : HH

n (X,A;Ktop)→ HG
n (indα(X,A);Ktop) provided that

X is proper. Hence one can define an induction homomorphism for the source
of the assembly map as above.

In particular the Baum-Connes Conjecture 2.4 predicts that for any group
homomorphism α : H → G there is an induced induction homomorphism
α∗ : Kn(C∗r (H))→ Kn(C∗r (G)) on the targets of the assembly maps although
there is no induced homomorphism of C∗-algebras C∗r (H) → C∗r (G) in gen-
eral.

4.5 Miscellaneous

Exercises

4.1. Test
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5. Analytic Methods

5.1 Introduction

In Section 2.2.2 we formulated the Baum-Connes Conjecture 2.5 and the
Farrell-Jones Conjecture 2.4 in abstract homological terms. We have seen
that this formulation was very useful in order to understand formal properties
of assembly maps. But in order to actually prove cases of the conjectures one
needs to interpret the assembly maps in a way that is more directly related
to geometry or analysis. In this section we wish to explain such approaches
to the assembly maps. We briefly survey some of the methods of proof that
are used to attack the Baum-Connes Conjecture 2.4 and the Farrell-Jones
Conjecture 2.5.

5.2 Analytic Equivariant K-Homology

Recall that the covariant functor Ktop : GROUPOIDSinj → SPECTRA intro-
duced in (4.10) defines an equivariant homology theory H?

∗(−;Ktop) in the
sense of Subection 4.4.2 such that

HG
n (G/H;Ktop) = HH

n ({•};Ktop) =
{
R(H) for even n;
0 for odd n,

holds for all groups G and subgroups H ⊆ G (see Proposition 4.22). Next
we want to give for a proper G-CW -complex X an analytic definition of
HG

n (X;Ktop).
Consider a locally compact proper G-space X. Recall that a G-space

X is called proper if for each pair of points x and y in X there are open
neighborhoods Vx of x and Wy of y in X such that the subset {g ∈ G |
gVx ∩ Wy 6= ∅} of G is finite. A G-CW -complex X is proper if and only
if all its isotropy groups are finite [215, Theorem 1.23]. Let C0(X) be the
C∗-algebra of continuous functions f : X → C which vanish at infinity. The
C∗-norm is the supremum norm. A generalized elliptic G-operator is a triple
(U, ρ, F ), which consists of a unitary representation U : G → B(H) of G on
a Hilbert space H, a ∗-representation ρ : C0(X) → B(H) such that ρ(f ◦
lg−1) = U(g) ◦ ρ(f) ◦ U(g)−1 holds for g ∈ G, and a bounded selfadjoint
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G-operator F : H → H such that the operators ρ(f)(F 2 − 1) and [ρ(f), F ]
are compact for all f ∈ C0(X). Here B(H) is the C∗-algebra of bounded
operators H → H, lg−1 : H → H is given by multiplication with g−1, and
[ρ(f), F ] = ρ(f) ◦ F − F ◦ ρ(f). We also call such a triple (U, ρ, F ) an odd
cycle. If we additionally assume that H comes with a Z/2-grading such that
ρ preserves the grading if we equip C0(X) with the trivial grading, and F
reverses it, then we call (U, ρ, F ) an even cycle. This means that we have an
orthogonal decomposition H = H0 ⊕H1 such that U , ρ and F look like

U =
(
U0 0
0 U1

)
ρ =

(
ρ0 0
0 ρ1

)
F =

(
0 P ∗

P 0

)
. (5.1)

An important example of an even cocycle is described in Section 5.6. A cycle
(U, ρ, f) is called degenerate, if for each f ∈ C0(X) we have [ρ(f), F ] =
ρ(f)(F 2 − 1) = 0. Two cycles (U0, ρ0, F0) and (U1, ρ1, F1) of the same parity
are called homotopic, if U0 = U1, ρ0 = ρ1 and there exists a norm continuous
path Ft, t ∈ [0, 1] in B(H) such that for each t ∈ [0, 1] the triple (U0, ρ0, Ft) is
again a cycle of the same parity. Two cycles (U0, ρ0, F0) and (U1, ρ1, F1) are
called equivalent, if they become homotopic after taking the direct sum with
degenerate cycles of the same parity. Let KG

n (C0(X)) for even n be the set
of equivalence classes of even cycles and KG

n (C0(X)) for odd n be the set of
equivalence classes of odd cycles. These become abelian groups by the direct
sum. The neutral element is represented by any degenerate cycle. The inverse
of an even cycle is represented by the cycle obtained by reversing the grading
of H. The inverse of an odd cycle (U, ρ, F ) is represented by (U, ρ,−F ).

A properG-map f : X → Y induces a map of C∗-algebras C0(f) : C0(Y )→
C0(X) by composition and thus in the obvious way a homomorphism of
abelian groups KG

0 (f) : KG
0 (C0(X)) → KG

0 (C0(Y )). It depends only on the
proper G-homotopy class of f . One can show that this construction defines
a G-homology theory on the category of finite proper G-CW -complexes. It
extends to a G-homology theory KG

∗ for all proper G-CW -complexes by

KG
n (X) = colimY ∈I(X)K

G
n (C0(Y )) (5.2)

where I(X) is the set of proper finite G-CW -subcomplexes Y ⊆ X directed
by inclusion. This definition is forced upon us by Lemma 4.11. The groups
KG

n (X) and KG
n (C0(X)) agree for finite proper G-CW -complexes, in general

they are different.
The cycles were introduced by Atiyah [12]. The equivalence relation, the

group structure and the homological properties ofKG
n (X) were established by

Kasparov [186]. More information about analytic K-homology can be found
in Higson-Roe [170].

5.3 Analytic Assembly Map

For for every G-CW-complex X the projection pr : X → {•} induces a map
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HG
n (X;Ktop)→ HG

n ({•};Ktop) = Kn(C∗r (G)). (5.3)

In the case where X is the proper G-space EFIN (G) we obtain the assembly
map appearing in the Baum-Connes Conjecture 2.4. We explain its analytic
analogue

indG : KG
n (X)→ Kn(C∗r (G)). (5.4)

Note that we need to assume that X is a proper G-space since KG
n (X) was

only defined for such spaces. It suffices to define the map for a finite proper G-
CW -complex X. In this case it assigns to the class in KG

n (X) = KG
n (C0(X))

represented by a cycle (U, ρ, F ) its G-index in Kn(C∗r (G)) in the sense of
Mishencko-Fomenko [244]. At least in the simple case, where G is finite, we
can give its precise definition. The odd K-groups vanish in this case and
K0(C∗r (G)) reduces to the complex representation ring R(G). If we write
F in matrix form as in (5.1) then P : H → H is a G-equivariant Fredholm
operator. Hence its kernel and cokernel areG-representations and theG-index
of F is defined as [ker(P )]−[coker(P )] ∈ R(G). In the case of an infinite group
the kernel and cokernel are a priori not finitely generated projective modules
over C∗r (G), but they are after a certain pertubation. Moreover the choice of
the pertubation does not affect [ker(P )]− [coker(P )] ∈ K0(C∗r (G)).

The identification of the two assembly maps (5.3) and (5.4) has been
carried out in Hambleton-Pedersen [157] using the universal characterization
of the assembly map explained in [92, Section 6]. In particular for a proper
G-CW -complex X we have an identification HG

n (X;Ktop) ∼= KG
n (X). Notice

that HG
n (X;Ktop) is defined for all G-CW -complexes, whereas KG

n (X) has
only been introduced for proper G-CW -complexes.

Thus the Baum-Connes Conjecture 2.4 gives an index-theoretic interpre-
tations of elements in K0(C∗r (G)) as generalized elliptic operators or cycles
(U, ρ, F ). We have explained already in Subsection 1.3.1 an application of this
interpretation to the Trace Conjecture for Torsionfree Groups 1.10 and in
Subsection 2.11.2 to the Stable Gromov-Lawson-Rosenberg Conjecture 2.62.

5.4 Equivariant KK-Theory

Kasparov [188] developed equivariant KK-theory, which we will briefly ex-
plain next. It is one of the basic tools in the proofs of theorems about the
Baum-Connes Conjecture 2.4.

A G-C∗-algebra A is a C∗-algebra with a G-action by ∗-automorphisms.
To any pair of separable G-C∗-algebras (A,B) Kasparov assigns abelian
groups KKG

n (A,B). If G is trivial, we write briefly KKn(A,B). We do not
give the rather complicated definition but state the main properties.

If we equip C with the trivial G-action, then KKG
n (C0(X),C) reduces

to the abelian group KG
n (C0(X)) introduced in Section 5.2. The topological
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K-theory Kn(A) of a C∗-algebra coincides with KKn(C, A). The equivariant
KK-groups are covariant in the second and contravariant in the first variable
under homomorphism of C∗-algebras. One of the main features is the bilinear
Kasparov product

KKG
i (A,B)×KKG

j (B,C)→ KKi+j(A,C), (α, β) 7→ α⊗B β. (5.5)

It is associative and natural. A homomorphism α : A→ B defines an element
in KK0(A,B). There are natural descent homomorphisms

jG : KKG
n (A,B)→ KKn(Aor G,B or G), (5.6)

where Aor G and B or G denote the reduced crossed product C∗-algebras.

5.5 Dirac-Dual Dirac Method

A G-C∗-algebra A is called proper if there exists a locally compact proper
G-space X and a G-homomorphism σ : C0(X) → B(A), f 7→ σf satisfying
σf (ab) = aσf (b) = σf (a)b for f ∈ C0(X), a, b ∈ A and for every net {fi |
i ∈ I}, which converges to 1 uniformly on compact subsets of X, we have
limi∈I ‖ σfi

(a) − a ‖ = 0 for all a ∈ A. A locally compact G-space X is
proper if and only if C0(X) is proper as a G-C∗-algebra.

Given a proper G-CW -complex X and a G-C∗-algebra A, we put

KKG
n (X;A) = colimY ∈I(X)KK

G
n (C0(Y ), A), (5.7)

where I(Y ) is the set of proper finite G-CW -subcomplexes Y ⊆ X directed
by inclusion. We have KKG

n (X; C) = KG
n (X). There is an analytic index

map

indA
G : KKG

n (X;A)→ Kn(Aor G), (5.8)

which can be identified with the assembly map appearing in the Baum-Connes
Conjecture with Coefficients 2.74 The following result is proved in Tu [333]
extending results of Kasparov-Skandalis [187], [190].

Theorem 5.9. The Baum-Connes Conjecture with coefficients 2.74
holds for a proper G-C∗-algebra A, i.e. indA

G : KKG
n (EFIN (G);A) →

Kn(AoG) is bijective.

Now we are ready to state the Dirac-dual Dirac method which is the key
strategy in many of the proofs of the Baum-Connes Conjecture 2.4 or the
Baum-Connes Conjecture with coefficients 2.74.

Theorem 5.10 (Dirac-Dual Dirac Method). Let G be a countable (dis-
crete) group. Suppose that there exist a proper G-C∗-algebra A, elements
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α ∈ KKG
i (A,C), called the Dirac element, and β ∈ KKG

i (C, A), called the
dual Dirac element, satisfying

β ⊗A α = 1 ∈ KKG
0 (C,C).

Then the Baum-Connes Conjecture 2.4 is true, or, equivalently, the analytic
index map

indG : KG
n (X)→ Kn(C∗r (G))

of 5.4 is bijective.

Proof. The index map indG is a retract of the bijective index map indA
G from

Theorem 5.9. This follows from the following commutative diagram

KG
n (EFIN (G))

indG

��

−⊗Cβ // KKG
n (EFIN (G);A)

indA
G

��

−⊗Aα // KG
n (EFIN (G))

indG

��
Kn(C∗r (G))

−⊗C∗r (G)jG(β)
// Kn(Aor G)

−⊗Aor jG(α) // Kn(C∗r (G))

and the fact that the composition of both the top upper horizontal arrows
and lower upper horizontal arrows are bijective.

5.6 An Example of a Dirac Element

In order to give a glimpse of the basic ideas from operator theory we briefly
describe how to define the Dirac element α in the case where G acts by
isometries on a complete Riemannian manifold M . Let TCM be the complex-
ified tangent bundle and let Cliff(TCM) be the associated Clifford bundle.
Let A be the proper G-C∗-algebra given by the sections of Cliff(TCM) which
vanish at infinity. Let H be the Hilbert space L2(∧T ∗CM) of L2-integrable
differential forms on TCM with the obvious Z/2-grading coming from even
and odd forms. Let U be the obvious G-representation on H coming from the
G-action on M . For a 1-form ω on M and u ∈ H define a ∗-homomorphism
ρ : A→ B(H) by

ρω(u) := ω ∧ u+ iω(u).

Now D = (d + d∗) is a symmetric densely defined operator H → H and
defines a bounded selfadjoint operator F : H → H by putting F = D√

1+D2 .
Then (U, ρ, F ) is an even cocycle and defines an element α ∈ KG

0 (M) =
KKG

0 (C0(M),C). More details of this construction and the construction of
the dual Dirac element β under the assumption that M has non-positive
curvature and is simply connected, can be found for instance in [335, Chapter
9].
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5.7 Banach KK-Theory

Skandalis showed that the Dirac-dual Dirac method cannot work for all
groups [314] as long as one works with KK-theory in the unitary setting.
The problem is that for a group with property (T) the trivial and the regu-
lar unitary representation cannot be connected by a continuous path in the
space of unitary representations, compare also the discussion in [180]. This
problem can be circumvented if one drops the condition unitary and works
with a variant of KK-theory for Banach algebras as worked out by Lafforgue
[201], [203], [204].

5.8 Comparing to Other Theories

Every natural transformation of G-homology theories leads to a comparison
between the associated assembly maps. For example one can compare topolo-
gical K-theory to periodic cyclic homology [80], i.e. for every Banach algebra
completion A(G) of CG inside C∗r (G) there exists a commutative diagram

K∗(BG)

��

// K∗(A(G))

��
H∗(BG;HP∗(C)) // HP∗(A(G)).

This is used in [80] to prove injectivity results for word hyperbolic groups.
Similar diagrams exist for other cyclic theories (compare for example [267]).

A suitable model for the cyclotomic trace trc : Kn(RG)→ TCn(RG) from
(connective) algebraic K-theory to topological cyclic homology [44] leads for
every family F to a commutative diagram

Hn(EF (G);Kcon
Z )

��

// Kcon
n (ZG)

��
Hn(EF (G);TCZ) // TCn(ZG).

Injectivity results about the left hand and the lower horizontal map lead
to injectivity results about the upper horizontal map. This is the principle
behind Theorem 3.24 and 3.26.

5.9 Miscellaneous

Exercises

5.1. Test
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6. Controlled Methods

6.1 Introduction

6.2 Controlled Topology and Algebra

To a topological problem one can often associate a notion of “size”. We de-
scribe a prototypical example. Let M be a Riemannian manifold. Recall that
an h-cobordism W over M = ∂−W admits retractions r± : W × I → W ,
(x, t) 7→ r±t (x, t) which retract W to ∂±W , i.e. which satisfy r±0 = idW and
r±1 (W ) ⊂ ∂±W . Given ε > 0 we say that W is ε-controlled if the retrac-
tions can be chosen in such a way that for every x ∈ W the paths (called
tracks of the h-cobordism) p±x : I → M , t 7→ r−1 ◦ r

±
t (x) both lie within an

ε-neighbourhood of their starting point. The usefulness of this concept is
illustrated by the following theorem [139].

Theorem 6.1. Let M be a compact Riemannian manifold of dimension ≥ 5.
Then there exists an ε = εM > 0, such that every ε-controlled h-cobordism
over M is trivial.

If one studies the s-Cobordism Theorem 1.21 and its proof one is naturally
lead to algebraic analogues of the notions above. A (geometric)R-module over
the spaceX is by definition a familyM = (Mx)x∈X of free R-modules indexed
by points of X with the property that for every compact subset K ⊂ X the
module ⊕x∈KMx is a finitely generated R-module. A morphism φ from M to
N is an R-linear map φ = (φy,x) : ⊕x∈XMx → ⊕y∈XNy. Instead of specifying
fundamental group data by paths (analogues of the tracks of the h-cobordism)
one can work with modules and morphisms over the universal covering X̃,
which are invariant under the operation of the fundamental group G = π1(X)
via deck transformations, i.e. we require that Mgx = Mx and φgy,gx = φy,x.
Such modules and morphisms form an additive category which we denote
by CG(X̃;R). In particular one can apply to it the non-connective K-theory
functor K (compare [258]). In the case where X is compact the category is
equivalent to the category of finitely generated free RG-modules and hence
π∗KCG(X̃;R) ∼= K∗(RG). Now suppose X̃ is equipped with a G-invariant
metric, then we will say that a morphism φ = (φy,x) is ε-controlled if φy,x = 0,
whenever x and y are further than ε apart. (Note that ε-controlled morphisms
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do not form a category because the composition of two such morphisms will
in general be 2ε-controlled.)

Theorem 6.1 has the following algebraic analogue [272] (see also Section 4
in [261]).

Theorem 6.2. Let M be a compact Riemannian manifold with fundamental
group G. There exists an ε = εM > 0 with the following property. The K1-
class of every G-invariant automorphism of modules over M̃ which together
with its inverse is ε-controlled lies in the image of the classical assembly map

H1(BG;KR)→ K1(RG) ∼= K1(CG(M̃ ;R)).

To understand the relation to Theorem 6.1 note that for R = Z such an
ε-controlled automorphism represents the trivial element in the Whitehead
group which is in bijection with the h-cobordisms over M , compare Theo-
rem 1.21.

There are many variants to the simple concept of “metric ε-control” we
used above. In particular it is very useful to not measure size directly in M
but instead use a map p : M → X to measure size in some auxiliary space
X. (For example we have seen in Subsection 1.5.3 and Subsection 1.7.2 that
“bounded” control over Rk may be used in order to define or describe negative
K-groups.)

Before we proceed we would like to mention that there are analogous
control-notions for pseudoisotopies and homotopy equivalences. The tracks
of a pseudoisotopy f : M × I →M × I are defined as the paths in M which
are given by the composition

px : I = {x} × I ⊂M × I
f // M × I

p // M

for each x ∈ M , where the last map is the projection onto the M -factor.
Suppose f : N → M is a homotopy equivalence, g : M → N its inverse and
ht and h′t are homotopies from f ◦ g to idM respectively from g ◦ f to idN

then the tracks are defined to be the paths in M that are given by t 7→ ht(x)
for x ∈ M and t 7→ f ◦ h′t(y) for y ∈ N . In both cases, for pseudoisotopies
and for homotopy equivalences, the tracks can be used to define ε-control.

6.3 Assembly as Forget Control

If instead of a single problem over M one defines a family of problems over
M × [1,∞) and requires the control to tend to zero for t →∞ in a suitable
sense, then one obtains something which is a homology theory in M . Relax-
ing the control to just bounded families yields the classical assembly map.
This idea appears in [273] in the context of pseudoisotopies and in a more
categorical fashion suitable for higher algebraic K-theory in [61] and [262].
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We spell out some details in the case of algebraic K-theory, i.e. for geometric
modules.

Let M be a Riemannian manifold with fundamental group G and let
S(1/t) be the space of all functions [1,∞)→ [0,∞), t 7→ δt such that t 7→ t·δt
is bounded. Similarly let S(1) be the space of all functions t 7→ δt which are
bounded. Note that S(1/t) ⊂ S(1). AG-invariant morphism φ over M̃×[1,∞)
is S-controlled for S = S(1) or S(1/t) if there exists an α > 0 and a δt ∈ S
(both depending on the morphism) such that φ(x,t),(x′,t′) 6= 0 implies that
|t− t′| ≤ α and dfM (x, x′) ≤ δmin{t,t′}. We denote by CG(M̃× [1,∞),S;R) the
category of all S-controlled morphisms. Furthermore CG(M̃ × [1,∞),S;R)∞

denotes the quotient category which has the same objects, but where two
morphisms are identified, if their difference factorizes over an object which
lives over M̃ × [1, N ] for some large but finite number N . This passage to the
quotient category is called “taking germs at infinity”. It is a special case of a
Karoubi quotient, compare [57].

Theorem 6.3 (Classical Assembly as Forget Control). Suppose M is
aspherical, i.e. M is a model for BG, then for all n ∈ Z the map

πn(KCG(M̃ × [1,∞),S(1/t);R)∞)→ πn(KCG(M̃ × [1,∞),S(1);R)∞)

can be identified up to an index shift with the classical assembly map that
appears in Conjecture 1.28, i.e. with

Hn−1(BG;K(R))→ Kn−1(RG).

Note that the only difference between the left and the right hand side is
that on the left morphism are required to become smaller in a 1/t-fashion,
whereas on the right hand side they are only required to stay bounded in the
[1,∞)-direction.

Using so called equivariant continuous control (see [8] and [22, Section 2]
for the equivariant version) one can define an equivariant homology theory
which applies to arbitrary G-CW-complexes. This leads to a “forget-control
description” for the generalized assembly maps that appear in the Farrell-
Jones Conjecture 2.5. Alternatively one can use stratified spaces and stratified
Riemannian manifolds in order to describe generalized assembly maps in
terms of metric control. Compare [126, 3.6 on p.270] and [273, Appendix].

6.4 Methods to Improve Control

From the above description of assembly maps we learn that the problem
of proving surjectivity results translates into the problem of improving con-
trol. A combination of many different techniques is used in order to achieve
such control-improvements. We discuss some prototypical arguments which
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go back to [113] and [117] and again restrict attention to K-theory. Of course
this can only give a very incomplete impression of the whole program which
is mainly due to Farrell-Hsiang and Farrell-Jones. The reader should consult
[135] and [177] for a more detailed survey.

We restrict to the basic case, where M is a compact Riemannian manifold
with negative sectional curvature. In order to explain a contracting property
of the geodesic flow Φ : R × SM̃ → SM̃ on the unit sphere bundle SM̃ ,
we introduce the notion of foliated control. We think of SM̃ as a manifold
equipped with the one-dimensional foliation by the flow lines of Φ and equip
it with its natural Riemannian metric. Two vectors v and w in SM̃ are called
foliated (α, δ)-controlled if there exists a path of length α inside one flow line
such that v lies within distance δ/2 of the starting point of that path and w
lies within distance δ/2 of its endpoint.

Two vectors v and w ∈ SM̃ are called asymptotic if the distance between
their associated geodesic rays is bounded. These rays will then determine the
same point on the sphere at infinity which can be introduced to compactify M̃
to a disk. Recall that the universal covering of a negatively curved manifold
is diffeomorphic to Rn. Suppose v and w are α-controlled asymptotic vectors,
i.e. their distance is smaller than α > 0. As a consequence of negative sectional
curvature the vectors Φt(v) and Φt(w) are foliated (Cα, δt)-controlled, where
C > 1 is a constant and δt > 0 tends to zero when t tends to ∞. So roughly
speaking the flow contracts the directions transverse to the flow lines and
leaves the flow direction as it is, at least if we only apply it to asymptotic
vectors.

This property can be used in order to find foliated (α, δ)-controlled repre-
sentatives of K-theory classes with arbitrary small δ if one is able to define a
suitable transfer from M to SM̃ , which yields representatives whose support
is in an asymptotic starting position for the flow. Here one needs to take care
of the additional problem that in general such a transfer may not induce an
isomorphism in K-theory.

Finally one is left with the problem of improving foliated control to or-
dinary control. Corresponding statements are called “Foliated Control The-
orems”. Compare [21], [116], [118], [119] and [123].

If such an improvement were possible without further hypothesis, we could
prove that the classical assembly map, i.e. the assembly map with respect to
the trivial family is surjective. We know however that this is not true in
general. It fails for example in the case of topological pseudoisotopies or
for algebraic K-theory with arbitrary coefficients. In fact the geometric argu-
ments that are involved in a “Foliated Control Theorem” need to exclude flow
lines in SM̃ which correspond to “short” closed geodesic loops in SM . But
the techniques mentioned above can be used in order to achieve ε-control for
arbitrary small ε > 0 outside of a suitably chosen neighbourhood of “short”
closed geodesics. This is the right kind of control for the source of the assem-
bly map which involves the family of cyclic subgroups. (Note that a closed
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a loop in M determines the conjugacy class of a maximal infinite cyclic sub-
group inside G = π1(M).) We see that even in the torsionfree case the class
of cyclic subgroups of G naturally appears during the proof of a surjectivity
result.

Another source for processes which improve control are expanding self-
maps. Think for example of an n-torus Rn/Zn and the self-map fs which
is induced by ms : Rn → Rn, x → sx for a large positive integer s. If one
pulls an automorphism back along such a map one can improve control, but
unfortunately the new automorphism describes a different K-theory class.
Additional algebraic arguments nevertheless make this technique very suc-
cessful. Compare for example [113]. Sometimes a clever mixture between flows
and expanding self-maps is needed in order to achieve the goal, compare [120].
Recent work of Farrell-Jones (see [129], [130], [131] and [176]) makes use of
a variant of the Cheeger-Fukaya-Gromov collapsing theory.

Remark 6.4 (Algebraicizing the Farrell-Jones Approach). In this Sub-
section we sketched some of the geometric ideas which are used in order to
obtain control over an h-cobordism, a pseudisotopy or an automorphism of a
geometric module representing a single class in K1. In Subsection 6.3 we used
families over the cone M × [1,∞) in order to described the whole algebraic
K-theory assembly map at once in categorical terms without ever referring
to a single K-theory element. The recent work [25] shows that the geometric
ideas can be adapted to this more categorical set-up, at least in the case
where the group is the fundamental group of a Riemannian manifold with
strictly negative curvature. However serious difficulties had to be overcome
in order to achieve this. One needs to formulate and prove a Foliated Con-
trol Theorem in this context and also construct a transfer map to the sphere
bundle for higher K-theory which is in a suitable sense compatible with the
control structures.

6.5 The Descent Principle

In Theorem 6.3 we described the classical assembly map as a forget control
map using G-invariant geometric modules over M̃ × [1,∞). If in that context
one does not require the modules and morphisms to be invariant under the
G-action one nevertheless obtains a forget control functor between additive
categories for which we introduce the notation

D(1/t) = C(M̃ × [1,∞),S(1/t);R)∞ → D(1) = C(M̃ × [1,∞),S(1);R)∞.

Applying K-theory yields a version of a “coarse” assembly map which is the
algebraic K-theory analogue of the map described in Section 2.12.5. A crucial
feature of such a construction is that the left hand side can be interpreted as
a locally finite homology theory evaluated on M̃ . It is hence an invariant of
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the proper homotopy type of M̃ . Compare [8] and [356]. It is usually a lot
easier to prove that this coarse assembly map is an equivalence. Suppose for
example that M has non-positive curvature, choose a point x0 ∈M (this will
destroy the G-invariance) and with increasing t ∈ [1,∞) move the modules
along geodesics towards x0. In this way one can show that the coarse assembly
map is an isomorphism. Such coarse assembly maps exist also in the context
of algebraic L-theory and topological K-theory, compare [167], [284].

Results about these maps (compare e.g. [26], [61], [366], [368]) lead to
injectivity results for the classical assembly map by the “descent principle”
(compare [58], [61], [284]) which we will now briefly describe in the context of
algebraic K-theory. (We already stated an analytic version in Section 2.12.5.)
For a spectrum E withG-action we denote by EhG the homotopy fixed points.
Since there is a natural map from fixed points to homotopy fixed points we
obtain a commutative diagram

K(D(1/t))G //

��

K(D(1))G

��
K(D(1/t))hG // K(D(1))hG.

If one uses a suitable model K-theory commutes with taking fixed points
and hence the upper horizontal map can be identified with the classical as-
sembly map by Theorem 6.3. Using that K-theory commutes with infinite
products [60], one can show by an induction over equivariant cells, that the
vertical map on the left is an equivalence. Since we assume that the map
K(D(1/t)) → K(D(1)) is an equivalence, a standard property of the homo-
topy fixed point construction implies that the lower horizontal map is an
equivalence. It follows that the upper horizontal map and hence the classical
assembly map is split injective. A version of this argument which involves the
assembly map for the family of finite subgroups can be found in [293].

6.6 Miscellaneous

Exercises

6.1. Test
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8. Guide for Computations

8.1 Introduction

Our ultimate goal is to computeK- and L-groups such asKn(RG), L〈−∞〉n (RG)
and Kn(C∗r (G)). Assuming that the Baum-Connes Conjecture 2.4 or the
Farrell-Jones Conjecture 2.5 is true, this reduces to the computation of the left
hand side of the corresponding assembly map, i.e. to HG

n (EFIN (G);Ktop),
HG

n (EVCY(G);KR) and HG
n (EVCY(G);L〈−∞〉R ). This is much easier since here

we can use standard methods from algebraic topology such as spectral se-
quences, Mayer-Vietoris sequences and Chern characters. Nevertheless such
computations can be pretty hard. Roughly speaking, one can obtain a general
reasonable answer after rationalization, but integral computations have only
been done case by case and no general pattern is known.

8.2 K- and L- Groups for Finite Groups

In all these computations the answer is given in terms of the values of
Kn(RG), L〈−∞〉n (RG) and Kn(C∗r (G)) for finite groups G. Therefore we
briefly recall some of the results known for finite groups focusing on the
case R = Z

8.2.1 Topological K-Theory for Finite Groups

Let G be a finite group. By rF (G), we denote the number of isomorphism
classes of irreducible representations of G over the field F . By rR(G; R),
rR(G; C), respectively rR(G; H) we denote the number of isomorphism classes
of irreducible real G-representations V , which are of real, complex respec-
tively of quaternionic type, i.e. autRG(V ) is isomorphic to the field of real
numbers R, complex numbers C or quaternions H. Let RO(G) respectively
R(G) be the real respectively the complex representation ring.

Notice that CG = l1(G) = C∗r (G) = C∗max(G) holds for a finite group,
and analogous for the real versions.

Proposition 8.1. Let G be a finite group.
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(1) We have

Kn(C∗r (G)) ∼=
{
R(G) ∼= ZrC(G) for n even;
0 for n odd;

(2) There is an isomorphism of topological K-groups

Kn(C∗r (G; R)) ∼= Kn(R)rR(G;R) ×Kn(C)rR(G;C) ×Kn(H)rR(G;H).

Moreover Kn(C) is 2-periodic with values Z, 0 for n = 0, 1, Kn(R) is
8-periodic with values Z, Z/2, Z/2, 0, Z, 0, 0, 0 for n = 0, 1, . . . , 7 and
Kn(H) = Kn+4(R) for n ∈ Z;

Proof. One gets isomorphisms of C∗-algebras

C∗r (G) ∼=
rC(G)∏
j=1

Mni(C)

and

C∗r (G; R) ∼=
rR(G;R)∏

i=1

Mmi
(R)×

rR(G;C)∏
i=1

Mni
(C)×

rR(G;H)∏
i=1

Mpi
(H)

from [309, Theorem 7 on page 19, Corollary 2 on page 96, page 102, page 106].
Now the claim follows from Morita invariance and the well-known values for
Kn(R), Kn(C) and Kn(H) (see for instance [328, page 216]).

To summarize, the values of Kn(C∗r (G)) and Kn(C∗r (G; R)) are explicitly
known for finite groups G and are in the complex case in contrast to the real
case always torsion free.

8.2.2 Algebraic K-Theory for Finite Groups

Here are some facts about the algebraic K-theory of integral group rings of
finite groups.

Proposition 8.2. Let G be a finite group.

(1) Kn(ZG) = 0 for n ≤ −2;
(2) We have

K−1(ZG) ∼= Zr ⊕ (Z/2)s,

where
r = 1− rQ(G) +

∑
p | |G|

rQp(G)− rFp(G)

and the sum runs over all primes dividing the order of G. (Recall that
rF (G) denotes the number of isomorphism classes of irreducible repre-
sentations of G over the field F .) There is an explicit description of the
integer s in terms of global and local Schur indices [64]. If G contains a
normal abelian subgroup of odd index, then s = 0;



8.2 K- and L- Groups for Finite Groups 153

(3) The group K̃0(ZG) is finite;
(4) The group Wh(G) is a finitely generated abelian group and its rank is

rR(G)− rQ(G);
(5) The groups Kn(ZG) are finitely generated for all n ∈ Z;
(6) We have K−1(ZG) = 0, K̃0(ZG) = 0 and Wh(G) = 0 for the following

finite groups G = {1}, Z/2, Z/3, Z/4, Z/2×Z/2, D6, D8, where Dm is
the dihedral group of order m.
If p is a prime, then K−1(Z[Z/p]) = K−1(Z[Z/p× Z/p]) = 0.
We have

K−1(Z[Z/6]) ∼= Z, K̃0(Z[Z/6]) = 0, Wh(Z/6) = 0

K−1(Z[D12]) ∼= Z, K̃0(Z[D12]) = 0, Wh(D12) = 0.

(7) Let Wh2(G) denote the cokernel of the assembly map

H2(BG;K(Z))→ K2(ZG).

We have Wh2(G) = 0 for G = {1}, Z/2, Z/3 and Z/4. Moreover
|Wh2(Z/6)| ≤ 2, |Wh2(Z/2× Z/2)| ≥ 2 and Wh2(D6) = Z/2.

Proof. 1 and 2 are proved in [64].
3 is proved in [325, Proposition 9.1 on page 573].
4 This is proved for instance in [253].
5 See [199], [269].
6 and 7 The computation K−1(ZG) = 0 for G = Z/p or Z/p × Z/p can be
found in [27, Theorem 10.6, p. 695] and is a special case of [64].

The vanishing of K̃0(ZG) is proven for G = D6 in [283, Theorem 8.2]
and for G = D8 in [283, Theorem 6.4]. The cases G = Z/2,Z/3,Z/4,Z/6,
and (Z/2)2 are treated in [88, Corollary 5.17]. Finally, K̃0(ZD12) = 0 follows
from [88, Theorem 50.29 on page 266] and the fact that QD12 as a Q-algebra
splits into copies of Q and matrix algebras over Q, so its maximal order has
vanishing class group by Morita equivalence.

The claims about Wh2(Z/n) for n = 2, 3, 4, 6 and for Wh2((Z/2)2) are
taken from [95, Proposition 5], [103, p.482] and [323, p. 218 and 221].

We get K2(ZD6) ∼= (Z/2)3 from [323, Theorem 3.1]. The assembly map
H2(BZ/2;K(Z)) → K2(Z[Z/2]) is an isomorphism by [103, Theorem on p.
482]. Now construct a commutative diagram

H2(BZ/2;K(Z))
∼=−−−−→ H2(BD6;K(Z))

∼=
y y

K2(Z[Z/2]) −−−−→ K2(ZD6)

whose lower horizontal arrow is split injective and whose upper horizontal
arrow is an isomorphism by the Atiyah-Hirzebruch spectral sequence. Hence
the right vertical arrow is split injective and Wh2(D6) = Z/2.
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Let us summarize. We already mentioned that a complete computation of
Kn(Z) is not known. Also a complete computation of K̃0(Z[Z/p]) for arbitrary
primes p is out of reach (see [241, page 29,30]). There is a complete formula for
K−1(ZG) and Kn(ZG) = 0 for n ≤ −2 and one has a good understanding of
Wh(G) (see [253]). We have already mentioned Borel’s formula forKn(Z)⊗ZQ
for all n ∈ Z (see Remark 1.31). For more rational information see also 8.11.

8.2.3 Algebraic L-Theory for Finite Groups

Here are some facts about L-groups of finite groups.

Proposition 8.3. Let G be a finite group. Then

(1) For each j ≤ 1 the groups L〈j〉n (ZG) are finitely generated as abelian
groups and contain no p-torsion for odd primes p. Moreover, they are
finite for odd n.

(2) For every decoration 〈j〉 we have

L〈j〉n (ZG)[1/2] ∼= L〈j〉n (RG)[1/2] ∼=

Z[1/2]rR(G) n ≡ 0 (4);
Z[1/2]rC(G) n ≡ 2 (4);
0 n ≡ 1, 3 (4);

(3) If G has odd order and n is odd, then Lε
n(ZG) = 0 for ε = p, h, s.

Proof. 1 See for instance [158].
2 See [279, Proposition 22.34 on page 253].
3 See [14] or [158].

The L-groups of ZG are pretty well understood for finite groups G. More
information about them can be found in [158].

8.3 Rational Computations for Infinite Groups

Next we state what is known rationally about the K- and L-groups of an
infinite (discrete) group, provided the Baum-Connes Conjecture 2.4 or the
relevant version of the Farrell-Jones Conjecture 2.5 is known.

In the sequel let (FCY) be the set of conjugacy classes (C) for finite
cyclic subgroups C ⊆ G. For H ⊆ G let NGH = {g ∈ G | gHg−1 = H} be
its normalizer, let ZGH = {g ∈ G | ghg−1 = h for h ∈ H} be its centralizer,
and put

WGH := NGH/(H · ZGH),

where H ·ZGH is the normal subgroup of NGH consisting of elements of the
form hu for h ∈ H and u ∈ ZGH. Notice that WGH is finite if H is finite.



8.3 Rational Computations for Infinite Groups 155

Recall that the Burnside ring A(G) of a finite group is the Grothendieck
group associated to the abelian monoid of isomorphism classes of finite G-
sets with respect to the disjoint union. The ring multiplication comes from
the cartesian product. The zero element is represented by the empty set, the
unit is represented by G/G = {•}. For a finite group G the abelian groups
Kq(C∗r (G)), Kq(RG) and L〈−∞〉(RG) become modules over A(G) because
these functors come with a Mackey structure and [G/H] acts by indG

H ◦ resH
G .

We obtain a ring homomorphism

χG : A(G)→
∏

(H)∈FIN

Z, [S] 7→ (|SH |)(H)∈FIN

which sends the class of a finite G-set S to the element given by the cardinal-
ities of the H-fixed point sets. This is an injection with finite cokernel. This
leads to an isomorphism of Q-algebras

χG
Q := χG ⊗Z idQ : A(G)⊗Z Q

∼=−→
∏

(H)∈(FIN )

Q. (8.4)

For a finite cyclic group C let

θC ∈ A(C)⊗Z Z[1/|C|] (8.5)

be the element which is sent under the isomorphism χC
Q : A(C) ⊗Z Q

∼=−→∏
(H)∈FIN Q of (8.4) to the element, whose entry is one if (H) = (C) and is

zero if (H) 6= (C). Notice that θC is an idempotent. In particular we get a
direct summand θC ·Kq(C∗r (C)) ⊗Z Q in Kq(C∗r (C)) ⊗Z Q and analogously
for Kq(RC)⊗Z Q and L〈−∞〉(RG)⊗Z Q.

8.3.1 Rationalized Topological K-Theory for Infinite Groups

The next result is taken from [221, Theorem 0.4 and page 127]. Recall that
ΛG is the ring Z ⊆ ΛG ⊆ Q which is obtained from Z by inverting the orders
of the finite subgroups of G.

Theorem 8.6 (Rational Computation of Topological K-Theory for Infinite Groups).
Suppose that the group G satisfies the Baum-Connes Conjecture 2.4. Then
there is an isomorphism⊕

p+q=n

⊕
(C)∈(FCY)

Kp(BZGC)⊗Z[WGC] θC ·Kq(C∗r (C))⊗Z Λ
G

∼=−→ Kn(C∗r (G))⊗Z Λ
G.

If we tensor with Q, we get an isomorphism⊕
p+q=n

⊕
(C)∈(FCY)

Hp(BZGC; Q)⊗Q[WGC] θC ·Kq(C∗r (C))⊗Z Q.

∼=−→ Kn(C∗r (G))⊗Z Q.



156 8. Guide for Computations

8.3.2 Rationalized Algebraic K-Theory for Infinite Groups

Recall that for algebraic K-theory of the integral group ring we know because
of Proposition 2.20 that in the Farrell-Jones Conjecture we can reduce to the
family of finite subgroups. A reduction to the family of finite subgroups also
works if the coefficient ring is a regular Q-algebra, compare 2.17. The next
result is a variation of [219, Theorem 0.4].

Theorem 8.7 (Rational Computation of Algebraic K-Theory). Suppose
that the group G satisfies the Farrell-Jones Conjecture 2.5 for the algebraic
K-theory of RG, where either R = Z or R is a regular ring with Q ⊂ R.
Then we get an isomorphism⊕

p+q=n

⊕
(C)∈(FCY)

Hp(BZGC; Q)⊗Q[WGC] θC ·Kq(RC)⊗Z Q

∼=−→ Kn(RG)⊗Z Q.

Remark 8.8. If in Theorem 8.7 we assume the Farrell-Jones Conjecture for
the algebraic K-theory of RG but make no assumption on the coefficient ring
R, then we still obtain that the map appearing there is split injective.

Example 8.9 (The Comparison Map from Algebraic to Topological K-theory).
If we consider R = C as coefficient ring and apply −⊗Z C instead of −⊗Z Q ,
the formulas simplify. Suppose that G satisfies the Baum-Connes Conjecture
2.4 and the Farrell-Jones Conjecture 2.5 for algebraic K-theory with C as
coefficient ring. Recall that con(G)f is the set of conjugacy classes (g) of ele-
ments g ∈ G of finite order. We denote for g ∈ G by 〈g〉 the cyclic subgroup
generated by g.

Then we get the following commutative square, whose horizontal maps are
isomorphisms and whose vertical maps are induced by the obvious change of
theory homomorphism (see [219, Theorem 0.5])⊕

p+q=n

⊕
(g)∈con(G)f

Hp(ZG〈g〉; C)⊗Z Kq(C)
∼=−−−−→ Kn(CG)⊗Z Cy y⊕

p+q=n

⊕
(g)∈con(G)f

Hp(ZG〈g〉; C)⊗Z K
top
q (C)

∼=−−−−→ Kn(C∗r (G))⊗Z C

The Chern character appearing in the lower row of the commutative square
above has already been constructed by different methods in [31]. The con-
struction in [219] works also for Q (and even smaller rings) and other theories
like algebraic K- and L-theory. This is important for the proof of Theo-
rem 2.59 and to get the commutative square above.

Example 8.10 (A Formula for K0(ZG)⊗Z Q). Suppose that the Farrell-
Jones Conjecture is true rationally for K0(ZG), i.e. the assembly map
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AVCY : HG
0 (EVCY(G);KZ)⊗Z Q→ K0(ZG)⊗Z Q

is an isomorphism. Then we obtain

K0(ZG)⊗Z Q ∼=
K0(Z)⊗Z Q⊕

⊕
(C)∈(FCY)H1(BZGC; Q)⊗Q[WGC] θC ·K−1(RC)⊗Z Q .

Notice that K̃0(ZG)⊗ZQ contains only contributions from K−1(ZC)⊗ZQ
for finite cyclic subgroups C ⊆ G.

Remark 8.11. Note that these statements are interesting already for finite
groups. For instance Theorem 8.6 yields for a finite group G and R = C an
isomorphism⊕

(C)∈(FCY)

ΛG ⊗ΛG[WGC] θC ·R(C)⊗Z ΛG
∼= R(G)⊗Z ΛG.

which in turn implies Artin’s Theorem 2.24.

8.3.3 Rationalized Algebraic L-Theory for Infinite Groups

Here is the L-theory analogue of the results above. Compare [219, Theorem
0.4].

Theorem 8.12 (Rational Computation of Algebraic L-Theory for Infinite Groups).
Suppose that the group G satisfies the Farrell-Jones Conjecture 2.5 for L-
theory. Then we get for all j ∈ Z, j ≤ 1 an isomorphism⊕

p+q=n

⊕
(C)∈(FCY)

Hp(BZGC; Q)⊗Q[WGC] θC · L〈j〉q (RC)⊗Z Q

∼=−→ L〈j〉n (RG)⊗Z Q.

Remark 8.13 (Separation of Variables). Notice that in Theorem 8.6,
8.7 and 8.12 we see again the principle we called separation of variables
in Remark 1.30. There is a group homology part which is independent of the
coefficient ring R and the K- or L-theory under consideration and a part
depending only on the values of the theory under consideration on RC or
C∗r (C) for all finite cyclic subgroups C ⊆ G.

8.4 Integral Computations for Infinite Groups

As mentioned above, no general pattern for integral calculations is known or
expected. We mention at least one situation where a certain class of groups
can be treated simultaneously. Let MFI be the subset of FIN consisting
of elements in FIN which are maximal in FIN . Consider the following as-
sertions on the group G.
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(M) M1,M1 ∈MFI,M1 ∩M2 6= 1 ⇒ M1 = M2;
(NM) M ∈MFI ⇒ NGM = M ;
(VCLI) If V is an infinite virtually cyclic subgroup of G, then V is of type

I (see Lemma 2.18);
(FJKN ) The Isomorphism Conjecture of Farrell-Jones for algebraicK-theory

2.5 is true for ZG in the range n ≤ N for a fixed element N ∈ Zq {∞},
i.e. the assembly map A : HG

n (EVCY(G);KR)
∼=−→ Kn(RG) is bijective

for n ∈ Z with n ≤ N .

Let K̃n(C∗r (H)) be the cokernel of the map Kn(C∗r ({1}))→ Kn(C∗r (H))
and L

〈j〉
n (RG) be the cokernel of the map L〈j〉n (R)→ L

〈j〉
n (RG). This coincides

with L̃
〈j〉
n (R), which is the cokernel of the map L

〈j〉
n (Z) → L

〈j〉
n (R) if R = Z

but not in general. Denote by WhR
n (G) the n-th Whitehead group of RG

which is the (n−1)-th homotopy group of the homotopy fiber of the assembly
map BG+ ∧K(R) → K(RG). It agrees with the previous defined notions if
R = Z. The next result is taken from [93, Theorem 4.1].

Theorem 8.14. Let Z ⊆ Λ ⊆ Q be a ring such that the order of any finite
subgroup of G is invertible in Λ. Let (MFI) be the set of conjugacy classes
(H) of subgroups of G such that H belongs to MFI. Then:

(1) If G satisfies (M), (NM) and the Baum-Connes Conjecture 2.4, then for
n ∈ Z there is an exact sequence of topological K-groups

0→
⊕

(H)∈(MFI)

K̃n(C∗r (H))→ Kn(C∗r (G))→ Kn(G\EFIN (G))→ 0,

which splits after applying −⊗Z Λ;
(2) If G satisfies (M), (NM), (VCLI) and the L-theory part of the Farrell-

Jones Conjecture 2.5, then for all n ∈ Z there is an exact sequence

· · · → Hn+1(G\EFIN (G);L〈−∞〉(R))→
⊕

(H)∈(MFI)

L
〈−∞〉
n (RH)

→ L〈−∞〉n (RG)→ Hn(G\EFIN (G);L〈−∞〉(R))→ · · ·

It splits after applying −⊗Z Λ, more precisely

L〈−∞〉n (RG)⊗Z Λ→ Hn(G\EFIN (G);L〈−∞〉(R))⊗Z Λ

is a split-surjective map of Λ-modules;
(3) If G satisfies (M), (NM) and the Farrell-Jones Conjecture 2.5 for Ln(RG)[1/2],

then the conclusion of assertion 2 still holds if we invert 2 everywhere.
Moreover, in the case R = Z the sequence reduces to a short exact se-
quence
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0→
⊕

(H)∈(MFI)

L̃〈j〉n (ZH)[1/2]→ L〈j〉n (ZG)[1/2]

→ Hn(G\EFIN (G);L(Z)[1/2]→ 0,

which splits after applying −⊗Z[1/2] Λ[1/2].
(4) If G satisfies (M), (NM), and (FJKN ), then there is for n ∈ Z, n ≤ N

an isomorphism

Hn(EVCY(G), EFIN (G);KR)⊕
⊕

(H)∈(MFI)

WhR
n (H)

∼=−→WhR
n (G),

where WhR
n (H)→WhR

n (G) is induced by the inclusion H → G.

Remark 8.15 (Role of G\EFIN (G)). Theorem 8.14 illustrates that for
such computations a good understanding of the geometry of the orbit space
G\EFIN (G) is necessary.

Remark 8.16. In [93] it is explained that the following classes of groups do
satisfy the assumption appearing in Theorem 8.14 and what the conclusions
are in the case R = Z. Some of these cases have been treated earlier in [40],
[231].

• Extensions 1 → Zn → G → F → 1 for finite F such that the conjugation
action of F on Zn is free outside 0 ∈ Zn;

• Fuchsian groups F ;
• One-relator groups G.

Theorem 8.14 is generalized in [222] in order to treat for instance the
semidirect product of the discrete three-dimensional Heisenberg group by
Z/4. For this group G\EFIN (G) is S3.

A calculation for 2-dimensional crystallographic groups and more general
cocompact NEC-groups is presented in [231] (see also [257]). For these groups
the orbit spaces G\EFIN (G) are compact surfaces possibly with boundary.

Example 8.17. Let F be a cocompact Fuchsian group with presentation

F = 〈a1, b1, . . . , ag, bg, c1, . . . , ct |
cγ1
1 = . . . = cγt

t = c−1
1 · · · c

−1
t [a1, b1] · · · [ag, bg] = 1〉

for integers g, t ≥ 0 and γi > 1. Then G\EFIN (G) is a closed orientable
surface of genus g. The following is a consequence of Theorem 8.14 (see [231]
for more details).

• There are isomorphisms

Kn(C∗r (F )) ∼=

{(
2 +

∑t
i=1(γi − 1)

)
· Z n = 0;

(2g) · Z n = 1 :
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• The inclusions of the maximal subgroups Z/γi = 〈ci〉 induce an isomor-
phism

t⊕
i=1

Whn(Z/γi)
∼=−→Whn(F )

for n ≤ 1;
• There are isomorphisms

Ln(ZF )[1/2] ∼=



(
1 +

∑t
i=1

[
γi

2

])
· Z[1/2] n ≡ 0 (4);

(2g) · Z[1/2] n ≡ 1 (4);(
1 +

∑t
i=1

[
γi−1

2

])
· Z[1/2] n ≡ 2 (4);

0 n ≡ 3 (4),

where [r] for r ∈ R denotes the largest integer less than or equal to r.
From now on suppose that each γi is odd. Then the number m above is
odd and we get for ε = p and s

Lε
n(ZF ) ∼=


Z/2

⊕(
1 +

∑t
i=1

γi−1
2

)
· Z n ≡ 0 (4);

(2g) · Z n ≡ 1 (4);
Z/2

⊕(
1 +

∑t
i=1

γi−1
2

)
· Z q ≡ 2 (4);

(2g) · Z/2 n ≡ 3 (4).

For ε = h we do not know an explicit formula. The problem is that no
general formula is known for the 2-torsion contained in L̃h

2q(Z[Z/m]), for
m odd, since it is given by the term Ĥ2(Z/2; K̃0(Z[Z/m])), see [15, Theo-
rem 2].

Information about the left hand side of the Farrell-Jones assembly map
for algebraic K-theory in the case where G is SL3(Z) can be found in [334].

8.5 Techniques for Computations

We briefly outline some methods that are fundamental for computations and
for the proofs of some of the theorems above.

8.5.1 The Equivariant Atiyah-Hirzebruch Spectral Sequence

Let HG
∗ be a G-homology theory with values in Λ-modules. Then there are

two spectral sequences which can be used to compute it. The first one is the
rather obvious equivariant version of the Atiyah-Hirzebuch spectral sequence.
It converges to HG

n (X) and its E2-term is given in terms of Bredon homology

E2
p,q = HG

p (X;HG
q (G/H))

of X with respect to the coefficient system, which is given by the covariant
functor Or(G) → Λ-MODULES, G/H 7→ HG

q (G/H). More details can be
found for instance in [92, Theorem 4.7].
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8.5.2 The p-Chain Spectral Sequence

There is another spectral sequence, the p-chain spectral sequence [93]. Con-
sider a covariant functor E : Or(G) → SPECTRA. It defines a G-homology
theory HG

∗ (−;E) (see Proposition 4.20). The p-chain spectral sequence con-
verges to HG

n (X) but has a different setup and in particular a different E2-
term than the equivariant Atiyah-Hirzebruch spectral sequence. We describe
the E1-term for simplicity only for a proper G-CW -complex.

A p-chain is a sequence of conjugacy classes of finite subgroups

(H0) < . . . < (Hp)

where (Hi−1) < (Hi) means that Hi−1 is subconjugate, but not conjugate
to (Hi). Notice for the sequel that the group of automorphism of G/H in
Or(G) is isomorphic to NH/H. To such a p-chain there is associated the
NHp/Hp-NH0/H0-set

S((H0) < . . . < (Hp)) = map(G/Hp−1, G/Hp)G×NHp−1/Hp−1

. . .×NH1/H1 map(G/H0, G/H1)G.

The E1-term E1
p,q of the p-chain spectral sequence is⊕

(H0)<...<(Hp)

πq

((
XHp ×NHp/Hp

S((H0) < . . . < (Hp))
)
+
∧NH0/H0 E(G/H0)

)
where Y+ means the pointed space obtained from Y by adjoining an extra
base point. There are many situations where the p-chain spectral sequence is
much more useful than the equivariant Atiyah-Hirzebruch spectral sequence.
Sometimes a combination of both is necessary to carry through the desired
calculation.

8.5.3 Equivariant Chern Characters

Equivariant Chern characters have been studied in [219] and [221] and al-
low to compute equivariant homology theories for proper G-CW -complexes.
The existence of the equivariant Chern character says that under certain
conditions the Atiyah-Hirzebruch spectral sequence collapses and, indeed,
the source of the equivariant Chern character is canonically isomorphic to⊕

p+q E
2
p,q, where E2

p,q is the E2-term of the equivariant Atiyah-Hirzebruch
spectral sequence.

The results of Section 8.3 are essentially proved by applying the equiva-
riant Chern character to the source of the assembly map for the family of
finite subgroups.
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9. Solutions of the Exercises

Chapter 1

1.1. By the Baum-Connes Conjecture 1.1 and the the version 1.17 of
the Farrell-Jones Conjecture we have to compute Kn(BG) for n ∈ Z and
H1(BG; Z) and use the facts K0(Z) ∼= Z and K1(Z) = {±1}. Recall that
Kq({•}) is Z for even q and 0 for odd q and that Kn(Z) is 0 for n ≤ −1, Z
for n = 0 and Z/2 for n = 1. Since the homology of BG is concentrated in
dimensions ≤ 2 and the composition of the inclusion {•} → BG with the pro-
jection BG → {•} is the identity, the Atiyah-Hirzebruch spectral sequence
collapses completely. So we get

Kn(C∗r (G)) =

Z2g if n is odd;
Z2 if n is even and g ≥ 1;
Z if n is even and g = 0;

Kn(ZG) =

{0} if n ≤ −1;
Z if n = 0;
Z2g × {±1} if n = 1.

1.2. The Fourier transform yields an isometric isomorphism of Hilbert spaces
l2(Z)→ L2(S1). We can view C(S1) as a closed ∗-subalgebra of B(L2(S1)) by
sending f ∈ C(S1) to the operator L2(S1)→ L2(S1) which sends g ∈ L2(S1)
to the element f ·g ∈ L2(S1) given by f ·g(z) = f(z)·g(z). Since the functions
S1 → C given by finite Laurent series

∑b
n=a λn ·zn build a dense ∗-subalgebra

of C(S1), we conclude C∗r (Z) = C(S1).
Since

∫
S1 z

ndµ is the same as the integral 1
2πi ·

∫
γ
zn−1dz over the curve

γ : [0, 1] → C, t 7→ exp(2πit), we conclude from the Residue Theorem that∫
S1 z

ndµ is 1 for n = 0 and is 0 for n 6= 0. This implies by the continuity of
the trace that the standard trace sends f ∈ C(S1) to

∫
S1 fdµ.

Let A ∈ M(n, n,C(S1)) be an (n, n)-matrix over C(S1). It can also be
viewed as a continuous function A : S1 →M(n, n,C). Then trC∗r (Z)(A) agrees
with

∫
S1 trC(A(z)) dµ. Now suppose that A2 = A. Then A(z)2 = A(z) for all

z ∈ S1. This implies that trC(A(z)) = dimC(im(A(z)) lies in Z. Since A and
hence trC(A(z)) are continuous, the function trC(A(z)) is constant with an
integer as value. Therefore trC∗r (Z)(A) is an integer.

1.3. Let g ∈ G be an element of finite order n ≥ 2. Then n−1 ·
∑n

i=1 g
i is a

non-trivial idempotent in RG.

1.4. The inverse is 1−t2−t3. The map Z[Z/5]→ C sending t to exp(2πi/5),
the determinant over C and the map Cinv → (0,∞), z 7→ |z| together induce
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a map Wh(Z/5)→ (0,∞) of abelian groups, where we equip the target with
the group structure given by multiplying positive real numbers. It sends the
element given by the unit above to |1− cos(2π/5)|, which is different from 1.

1.5. (1) If f : P∗ → Q∗ is a R-chain homotopy equivalence, then its algebraic
mapping cone cone(f∗) is contractible. This implies cone(f)odd

∼= cone(f)ev,
where cone(f)odd and cone(f)ev respectively is the direct sum over all
odd-dimensional and even-dimensional chain modules respectively. Hence
o(P∗) = o(Q∗).
(2) is obvious.

(3) Suppose that õ(P∗) = 0. By adding elementary finite projective R-chain
complexes . . . 0 → 0 → Q

id−→ Q → 0 → 0 → . . . to P∗ one can change P∗
within its R-chain homotopy class such that all R-chain modules are finitely
generated free except the top-dimensional one. But this top dimensional one
must be stably free because of õ(P∗) = 0. Now add another appropriate ele-
mentary finite free R-chain complex to turn also this top-dimensional module
into a finitely generated free one.

If P∗ is up to homotopy finite free, õ(P∗) = 0 follows from assertion (1).

1.6. If n ≤ 2, every closed oriented manifold is aspherical or a sphere.
Suppose that n ≥ 3. The collapse map M]N →M ∨N is (n− 1)-connected
since up to homotopy the one-point union M ∨N is obtained from M]N by
attaching a n-cell Dn. Hence π1(M]N) is isomorphic to the free amalgamated
product π1(M) ∗ π1(N). Since all higher homotopy groups of M]N vanish,
πk(M ∨ N) = 0 for 2 ≤ k ≤ n − 1. Since M]N is aspherical, π1(M]N) is
torsionfree. Hence πk(M) and πk(N) vanish for 2 ≤ k ≤ n − 1 and both
π1(M) and π1(N) are torsionfree. If π1(M) is finite, then it must be trivial
and hence M is homotopy equivalent to Sn. By the Hurewicz Theorem a
CW -complex X is aspherical if and only if H̃n(X̃; Z) vanishes for all n ∈ Z.
If π1(M) is infinite, the universal covering M̃ is a non-compact manifold and
hence satisfies Hn(M̃) = 0. Hence M is aspherical. It remains to rule out
the case that both M and N are aspherical. Suppose they are aspherical.
By elementary covering theory and Mayer-Vietoris arguments, one checks
that H̃n(M̃ ∨N ; Z) vanishes for all n ∈ Z. Hence M ∨N is aspherical. This
implies that the collapse map M]N → M ∨ N is a homotopy equivalence.
This leads to a contradiction since Hn(M) ∼= Hn(M) ∼= Hn(M]N) ∼= Z and
Hn(M ∨N) ∼= Hn(M)⊕Hn(N) holds.

1.7. We conclude from Corollary 1.34 and Corollary 1.35 that PDiff(M)→
P(M) induces a rational isomorphism on πn if and only if
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0 = πn(PDiff(M))⊗Z Q ∼=
∞⊕

k=1

Hn−4k+1(M ; Q)

holds.

1.8. The group G is the knot groups associated to the trefoil knot. Now the
same argument as in Example 1.4 shows that G is torsionfree and

L〈−j〉
n (ZG) ∼= Hn(S1;L〈j〉(Z))

∼= L〈j〉n (Z)⊕ L〈j〉n−1(Z) ∼=
{

Z n = 0, 1 mod 4;
Z/2 n = 2, 3 mod 4.

1.9. The implication (1) ⇒ (2) follows from elementary covering theory.
Suppose (2) holds. By elementary covering theory there is a covering p : N →
N and a map f : M → N such that the image of π1(p) and π1(f) agree and p◦
f = f . The map π1(f) is bijective. Hence f is homotopic to a homeomorphism
by the Borel Conjecture 1.49.

1.10. Let f : M → Sn be a representative for an element in Stop(Sn). Since
the Poincaré Conjecture 1.23 is known in dimensions n 6= 3, Comment
49 (By W.): Later drop the condition n 6= 3 depending on what the
status of the proof by Perelman is. there exists a homeomorphism
g : Sn → M . We can assume without loss of generality that f ◦ g : Sn → Sn

has degree one, otherwise compose g with a homeomorphism Sn → Sn of
degree −1. This implies that f ◦g is homotopic to id: Sn → Sn. Hence f and
idSn define the same class in S(Sn).

1.11. From the discussion in Section 1.11 applied to the obvious group
homomorphisms G → G ×H and G ×H → G it follows that the assembly
map for G is a retract of the one for G×H.

Chapter 2

2.1. We can write SL2(Z) as the free amalgamated product Z/4 ∗Z/2

Z/6. Now apply the sequence (0.1) and the fact Kn(C∗r (H)) is RC(H) for
even n and is trivial for odd n if H is a finite group. The result is that
Kn(C∗r (SDL2(Z)) is Z8 for even n and {0} for odd n.

2.2. Because of the Baum-Connes Conjecture 2.4 it suffices to prove that
KG

n (EFIN (G)) is finitely generated for all n ∈ Z. Since G\EFIN (G) is com-
pact, EFIN (G) is built by finitely many equivariant cells G/H × Dn. We
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show that for every G-CW -complex X which is built of finitely many equi-
variant cells G/Hi ×Dni for finite Hi ⊆ G that KG

n (X) is finitely generated
for all n ∈ Z. We do this by induction over the number of equivariant cells.
In the induction step we consider X which is obtained from Y by attaching
the cell G/H ×D. Then the associated long exact Mayer-Vietoris sequence
together with the induction hypothesis that KG

n (Y ) is finitely generated for
all n ∈ Z and the fact that KG

n (G/H) is zero or RC(H) yield the induction
step.

2.3. Let G be of the first kind. Then there is an epimorphism f : G → Z
which induces an epimorphism H1(G; Z)→ H1(Z; Z) ∼= Z. Hence H1(G; Z) is
infinite. Suppose thatH1(G; Z) is infinite. Then the obvious compositionG→
H1(G; Z) → H1(G; Z)/ tors(H1(G; Z)) is an epimorphism onto an infinite
cyclic group.

2.4. Because of Proposition 2.22 it suffices to show that any virtually cyclic
subgroup V of G is of the first kind. The intersection V ∩ T is a torsionfree
virtually cyclic group and hence isomorphic to Z. Since V/(V ∩ T ) is a sub-
group of G/T , the finite group T/(V ∩T ) has odd order. Since aut(Z) = {±1}
has order 2, V ∩ T is central in V . Since D∞ has a trivial center, V cannot
map surjectively to D∞.

2.5. Up to conjugacy S3 has two non-trivial cyclic subgroups, one of or-
der two and one of order three. Denote in the sequel by F the trivial re-
presentation. Let F− be the Z/2-representation given by − id : F → F .
Using the canonical epimorphism S3 → Z2, we consider F− also as S3-
representation. Let V be the irreducible 2-dimensional S3-representation
which is obtained from F 3 with the S3-permutation action by dividing out
the diagonal {(x, x, x) | x ∈ F}. Denote by W the analogously defined 2-
dimensional Z/3-representation. Then RF (Z/2) is the free abelian group with
{F, F−} as bases and RF (S3) is the free abelian group with {F, F−, V } as
bases. The induction homomorphism induced by the inclusion Z/2→ S3 is

i2 : RF (Z/2)→ RF (S3),

µF · [F ] + µF− · [F−] 7→ µF · [F ] + µF− · [F−] + (µF + µF−) · [V ].

Suppose F does not contain a non-trivial third root of unity. Then W is
irreducible and RF (Z/3) is a free abelian group with {F,W} as basis. The
induction homomorphism induced by the inclusion Z/3→ S3 is

i3 : RF (Z/3)→ RF (S3)

µF · [F ] + µW · [W ] 7→ µF · [F ] + µF · [F−] + 2µW · [V ].

The following sequence is exact

RF (Z/2)⊕RF (Z/3) i2⊕i3−−−→ RF (S3)
δ−→ Z/2→ 0,
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if we define δ by

δ
(
λF · [F ] + λF− · [F−] + λV · [V ]

)
= λF + λF− + λV .

Suppose F contains a third root of unity. Then W is reducible and de-
composes into W = W1 ⊕ W2 for two non-isomorphic 1-dimensional Z/3-
representations and RF (Z/3) is the free abelian group with {F,W1,W2} as
basis. The induction homomorphism induced by the inclusion Z/3→ S3 is

i3 : RF (Z/3)→ RF (S3)µF · [F ] + µW1 · [W1] + µW2 · [W2]

7→ µF · [F ] + µF · [F−] + (µW1 + µW2) · [V ].

Hence i2 ⊕ i3 : RF (Z/2)⊕RF (Z/3)→ RF (S3) is surjective.

2.6. Since by assumption Conjecture 2.29 holds for G and R = Q, it suffices
to treat the case, where G is finite. By Artin’s Theorem 2.24 the proof can
be reduced further to finite cyclic groups G.

2.7. Consider an element x in K0(CG). It can be written as x = [P ] − [Q]
for finitely generated projective CG-modules P and Q. The assumptions on
P and Q imply that there are positive integers m(P ),n(p),m(Q), and m(Q)
such that

m(P ) · [P ] = n(P ) · [CG];
m(P ) · [Q] = n(Q) · [CG],

holds in K0(CG). This implies that the induction map

K0(C)⊗C Q→ K0(CG)⊗C Q

is surjective. Proposition 2.38 (1) implies that class0(G)f is isomorphic to C.
Hence G is torsionfree.

2.8. SinceG is finite, QG is semisimple and hence any finitely generated QG-
module is finitely generated projective. The functor sending a ZG-module M
to the QG-module QG⊗ZGM ∼=QG Q⊗ZM is exact. Hence j is well-defined.

Consider a finitely generated projective QG-module P . Choose an idem-
potent matrix A ∈Mn(QG) such that the image of the map rA : QGn → QGn

given by right multiplication with A is QG-isomorphic to P . Choose an in-
teger l ≥ 1 such that B := l · A is a matrix over ZG. Let M be the cokernel
of the map rB : ZGn → ZGn. Then G0(ZG) → K0(QG) maps [M ] to [P ].
Hence j : G0(ZG)→ K0(QG) is surjective.

We have already mentioned that K0(Z) → K0(ZG) is rationally an iso-
morphism. The map K0(Q) → K0(QG) is rationally an isomorphism if and
only if G is trivial.
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2.9. (1) This follows from Theorem 2.47
(2) The statement without applying −⊗Z Λ

G together with the version 2.29
of the Farrell-Jones Conjecture for R = C would imply the original Trace
Conjecture due to Baum and Connes for which Roy constructed a counterex-
ample.

2.10. Let V ⊆ G be a virtually cyclic subgroup. The order of any finite
subgroup of V is invertible in R. Using Lemma 2.18 one can show that V
contains an infinite cyclic subgroup C such that [V : C] is invertible in R.
Since R is regular, R[Z] is regular and [V : C] is invertible in R[Z]. Hence
RV is regular and NKn(RV ) is trivial for all n ∈ Z and all virtually cyclic
subgroups of G. The equivariant Atyiah-Hirzebruch spectral sequence implies
that Hn(EVCY(G);NKR) = 0 for all n ∈ Z.

2.11. We have to show for any group homomorphism φ : K → G that the
assembly map

Aφ∗G : HK
n (Eφ∗G(K))→ HK

n ({•})
is bijective for all n ∈ Z. Since by assumption about F this is true for Aφ∗F ,
it suffices to show the bijectivity of the relative assembly map

Aφ∗F→φ∗G : HK
n (Eφ∗F (K))→ HK

n (Eφ∗G(K)).

By the Transitivity Principle 2.11 it remains to show for any L ∈ φ∗G that
the assembly map

AL∩φ∗F : HL
n(EL∩φ∗F (L))→ HL

n({•})

is bijectivive. This follows from the assumption about F because of L∩φ∗F =
(φ|L)∗F .

Chapter 3

3.1. If a quotient group of G acts isometrically on some affine Hilbert space
without a fixed point, the same is true for G. Obviously Z acts freely on R
and hence does not have property (T). A free group maps surjectively onto
Z. The fundamental group of a compact connected surface maps surjectively
onto Z or is finite.

3.2. The class of word hyperbolic groups and the class of a-T-menable
groups is closed under extensions with finite quotients. Hence for any finite
subgroup K ⊆ Q the group p−1(K) for p : G → Q the projection is again
word hyperbolic or a-T-menable. Any word hyperbolic and any a-T-menable
group satisfies the Baum-Connes Conjecture with Coefficients 2.74 (see The-
orem 3.1). Comment 50 (By W.): Add reference for word hyperbolic
groups. Now apply the results of Subsection 3.5.3.
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3.3. The groups
⊕

n∈Z Z/2 and Z are abelian. Hence L is elementary-
amenable and in particular amenable. Hence L satisfies the Baum-Connes
Conjecture with Coefficients 2.74 and in particular the Baum-Connes Con-
jecture 2.4 by Theorem 3.1.

The lamplighter group L satisfies the L-theoretic version of the Fibered
Farrell-Jones Conjecture 2.84 with R = Z and in particular the L-theoretic
version Farrell-Jones Conjecture 2.5 after inverting two by Theorem 3.16.

Since L belongs to the class C0, the Fibered Version of the Farrell-Jones
Conjecture 2.90 for KH∗(RL) for all rings R, the injectivity part of Farrell-
Jones Conjecture 0.8 for K∗(RL) for all regular rings R with Q ⊂ R is true
and for R = Z the injectivity part of the Farrell-Jones Conjecture 2.5 for
K∗(ZG) is true rationally (see Theorem 3.23).

Let R is a regular ring such that 2 is invertible in R. For a finite group
H the ring RH and R[H × Z] are regular coherent. Any finitely presented
R[
⊕

n∈Z Z/2]-module or R[(
⊕

n∈Z Z/2) × Z]-module respectively is the in-
duction of a finitely presented RH-module or R[H × Z]-module respectively
for some finite subgroup H ⊂

⊕
n∈Z Z/2. Hence the rings R[

⊕
n∈Z Z/2] and

R[(
⊕

n∈Z Z/2)× Z] are regular coherent.
This is enough to using the Mayer-Vietoris sequences forHNN -extensions

that the Farrell-Jones Conjecture 0.8 for K∗(RL) for all regular rings R with
1/2 ∈ R is true. Comment 51 (By W.): This should be checked in
detail.

3.4. Obviously G is the directed union of its finitely generated subgroups.
Now apply the results mentioned in Subsection 3.5.1.

3.5. A group G is finitely presented if and only if it is the fundamental group
of a closed connected orientable 4-manifold.

Every group G is the directed union of its finitely generated subgroups.
Any finitely generated group G can be written as the colimit of a system

of finitely presented groups. Namely fix a presentation with a finite set of
generators S and some set of relations R. Let I be the set of finite subsets
of R directed by inclusion. Now consider the system {Gi | J ∈ I}, where GJ

has is the finitely presented group with S as set of generators and J as set
of relations. The structure maps are given by the obvious projections. The
colimit of this system is G.

Now apply the results mentioned in Subsection 3.5.1.

3.6. Obviously dim(B) and dim(F ) are 1, 2 or 3. Hence they satisfy the
Baum-Connes Conjecture with Coefficients 2.74. Comment 52 (By W.):
Add reference.

Suppose dim(B) is 3. Then F is S1 or D1 and we get an exact sequence
1 → C → π1(E) → π1(B) → 1 for some cyclic group C. Since the Baum-
Connes Conjecture with Coefficients 2.74 is true for any virtually cylic group,
the claim follows from the results of Subsection 3.5.3.
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Suppose dim(B) is 2. Then dim(F ) is also 2. If B is aspherical, then
we have the exact sequence 1 → π1(F ) → π1(E) → π1(B) → 1 and all
finite subgroups of π1(B) are trivial, and the claim follows from the results
of Subsection 3.5.3. If B is not aspherical, B must be S2 or D2. In this case
we get an extension 1 → C → π1(F ) → π1(E) → 1 for a cyclic group C.
Since F is aspherical or S2, C must be trivial or infinite cyclic. If C is trivial,
the claim is true. If C is infinite cylic, then π1(F ) contains a normal cyclic
subgroup and hence F must be T 2. Therefore π1(E) is virtually cylic and
satisfies Baum-Connes Conjecture with Coefficients 2.74.

Suppose dim(B) = 1. Then B = D1 or B = S1. If B = D1, then π1(E) ∼=
π1(F ) and the claim follows. Suppose B = S1. Then we obtain an exact
sequence 1 → π1(F ) → π1(E) → Z → 1. Since very finite subgroup of Z is
trivial, the claim follows from the results of Subsection 3.5.3.

3.7. Since Z is virtually cyclic, the Fibered Meta Conjecture 2.95 is always
true for G = Z. Suppose that the K-theoretic Fibered Farrell-Jones Con-
jecture 2.84 holds for the group Z and the ring R but with the family VCY
replaced by the family FIN . Obviously FIN = T R since Z is torsionfree.
Let φ : G× Z→ Z be the projection. By assumption the assembly map

HG×Z
n (Ep∗T R(G× Z);KR)

∼=−→ HG×Z
n ({•};KR) = Kn(R[G× Z])

is bijective for all n ∈ Z. Obviously a model for Ep∗T R(G × Z);KR) is R
with the G× Z-action for which G acts trivially and Z by translation. Then
the source of the assembly map can be identified with Kn(RG)⊕Kn−1(RG)
and the assembly map above is the restriction to Kn(RG) ⊕ Kn−1(RG) of
the isomorphism appearing in the Bass-Heller-Swan decomposition

Kn(RG)⊕Kn−1(RG)⊕NKn(RG)⊕NKn(RG)
∼=−→ Kn(R[G× Z]).

This implies NKn(RG) = 0.

3.8. Since the Fibered Meta Conjecture 2.95 passes to subgroups, it holds
for both G and H if it is true for G×H.

Suppose that the Fibered Meta Conjecture 2.95 holds for G, H, Z × Z,
Z × D∞ and D∞ × D∞. Recall from Section 2.14 that the Fibered Meta
Conjecture 2.95 satisfies the obvious version of the Transitivity Principle 2.11.
This implies for a group extensions 1 → G0 → G1

p−→ G2 → 1 that the
Fibered Meta Conjecture 2.95 holds for G1 if it holds for G2 and the group
p−1(V ) for every virtually cyclic subgroup V ⊆ G. Hence the Fibered Meta
Conjecture 2.95 holds for V ×W for any two virtually cyclic groups V ×W
since V ×W maps surjectively with finite kernel to one of the groups Z×Z,
Z × D∞ and D∞ × D∞. Now use the projection G × V → V to show that
G × V satisfies the Fibered Meta Conjecture 2.95 for every virtually cyclic
group V . The Fibered Meta Conjecture 2.95 follows for G × H using the
projection G×H → H.
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3.9. Since the Fibered Meta Conjecture 2.95 passes to subgroups, it holds
for both G and H if it is true for G ∗H.

Suppose that the Fibered Meta Conjecture 2.95 holds for G and H. By an
exercise above we can assume that the Fibered Meta Conjecture 2.95 holds
for G×H. Let p : G ∗H → G×H be the obvious group homomorphism. We
have already explained in the solution of an exercise above that the Fibered
Meta Conjecture 2.95 holds for G∗H if it holds for p−1(V ) for every virtually
cyclic subgroup V ⊆ G.

Since every virtually free group is a colimit of virtually finitely generated
free subgroups and the Fibered Meta Conjecture 2.95 holds for every virtually
finitely generated free subgroups it holds for every virtually free group.

Let C ⊆ G × H be infinite cyclic. Then p−1(C) is free. Hence p−1(V )
is virtually free for any virtually cyclic group V ⊆ G. This implies by as-
sumption that the Fibered Meta Conjecture 2.95 holds for p−1(V ) for every
virtually cyclic subgroup V ⊆ G.

Chapter 4

4.1. Test

Chapter 5

5.1. Test

Chapter 6

6.1. Test

Chapter 7

7.1. Test

Chapter 8

8.1. Test

Chapter 9
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9.1. Test
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[136] T. Farrell, L. Göttsche, and W. Lück, editors. High dimen-
sional manifold theory. Number 9 in ICTP Lecture Notes.
Abdus Salam International Centre for Theoretical Physics, Tri-
este, 2002. Proceedings of the summer school “High dimen-
sional manifold theory” in Trieste May/June 2001, Number 1.
http://www.ictp.trieste.it/˜pub off/lectures/vol9.html.
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10. Comments by Lück (temporary chapter)

Comment 54 (By W.): This chapter has to be taken out in the final
version)

10.1 Mathematical Comments and Problems

10.2 Mathematical Items which have to be Added

10.3 Comments about Latex

(1) 22.12.04: In labels never let blanks or $-signs appear. Moreover, use sec:
the:, pro:, lem:, def:, con: or rem: and so on to indicate whether it is a
Theorem, Proposition, Lemma, Definition, Conjecture or Remark and so
on. For instance
\ label{con:BCC torsionfree intro};

10.4 Comments about the Layout

(1) 22.12.204: Except in the main Introduction (Chapter 0) or in environ-
ments like Definition I emphasize a notion if and only if it appears in the
index. For instance

. . . \emph{Whitehead group}%
\index{Whitehead group}
$Wh(G)$%
\indexnotation{Wh(G)} . . . ;

(2) 22.12.04: In itemize or enumerate descriptions I use semicolons at the
end of an item except for the last which ends with a point. I have done
this also in enumerate envirinments appearing in Theorems or Lemmas.;

(3) 22.12.04: After commutative squares or other diagrams do not insert a
point or comma in contrast to equations or other displayments;

(4) 22.12.04: Theorems, Conjectures, Questions and Problems are cited in
the index. For instance
\index{Theorem!Dirac-Dual Dirac Method}



202 10. Comments by Lück (temporary chapter)

This is not done for Definitions as new notions regardless whether they
appear in the text or in an definitions have their own entry in the index.
This is also not done for Lemmas, Corollaries and Remarks;

(5) 27.12.04: I sometimes have used EG and EG for EFIN (G) andEVCY(G).
There are macros \eub{# 1} and \edub{# 1} to generate EG and EG;

(6) 29.12.04: There two commands for inserting comments, namely \commenth
and \commentw depending on whether Holger or Wolfgang are inserting
it;

(7) 31.12.04 Denote the complex or real representation ring by RC(G) and
RR(G);

(8) 31.12.04 Use always the proof environment. However, it does not seem
to produce the qed-sign. This must be fixed;

(9) 3.1.05 Assembly maps are denote by the letter A with possible subscripts
indicating the family, e.g. AFIN or AFIN→VCY . We do not write the
group G or the dimension n in connection with the assembly map. For
instance, we write AFIN→VCY : KG

n (EFIN (G))→ KG
n (EVCY(G));

(10) 4.1.05 Notation for matrix algebras: Sln(R), GLn(R), Mn(R), Mm,n(R);
(11) 8.1.05 I use . . . except for the beginning or ends or long exact sequence,

where I use · · · . For instance

· · · ∂n+1−−−→ KG0
n (EG0)→ KG1

n (EG1)⊕KG2
n (EG2)→ KG

n (EG) ∂n−→
KG0

n−1(EG0)→ KG1
n−1(EG1)⊕KG2

n−1(EG2)→ KG0
n−1(EG)→ · · ·

and i = 1, 2, . . . , n;
(12) 9.1.05: Use everywhere the macro \pt for the one point space{•}. Then

we can change it later if we want to;
(13) 9.1.05: I have used smooth everywhere and replaced differentiable by

smooth;

10.5 Comments about the Spelling

(1) 22.12.04: I use analogue (British) instead of analog (American);
(2) 27.12.04: torsionfree (One word);
(3) 27.12.04: semisimple (One word);
(4) 28.12.04: pseudoisotopy (One word);
(5) 29.12.04: prove, proved proven;
(6) 29.12.04: choose, chosed, chosen;
(7) 9.1.05: We should agree on a unified use of the words any, each and every.

I am not certain about the rules;

10.6 Further Reminders and Comments

(1) 9.1.05: We have to make a principle decision what we will present in the
Chapter 4 about Basic Technicalities. In particular we have to decide
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whether we present the definitions of the middle, lower and higher al-
gebraic K-groups at one place and do not give partial but incomplete
explanations at several places in the text. Of course some repetition is
okay. The same question arises for algebraic L-theory and topological K-
theory although there it seems to be less significant because the definition
is easier in these cases;

(2) 16.1.05: At some place we should explain where the name assembly map
commes from;

10.7 Additional References

These references may have not yet appeared in the text but we should later
decide whether they should be incoporated:

[5], [16], [17], [18], [66], [179], [108], [237], [369],
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