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Abstract We construct a function on the orbifold fundamental group of the moduli
space of smooth theta divisors, which we call the Meyer function for smooth theta
divisors. In the construction, we use the adiabatic limits of the η-invariants of the
mapping torus of theta divisors. We shall prove that the Meyer function for smooth
theta divisors cobounds the signature cocycle, and we determine the values of the
Meyer function for the Dehn twists. In particular, we give an analytic construction of
the Meyer function of genus two.
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670 S. Iida

1 Introduction

Let Mg be the mapping class group of a closed orientable surface Σg of genus g. In
[30], Meyer introduced a 2-cocycle τg : Mg×Mg→Z, called the signature cocycle
or the Meyer cocycle. By using the Meyer cocycle τg , he gave the formula for the sig-
natures of surface bundles over surfaces. Since M1 = SL2(Z), H1(SL2(Z),Z) = 0
and 3[τ1] = 0 in H2(M1,Z), there exists a unique function φ1 : SL2(Z) → 1

3Z that
cobounds τ1. The function φ1 is called the Meyer function of genus one, which has the
following property: Let π : Z → X be a Σ1-bundle over a compact oriented surface
with boundary ∂X = c1 � · · · � ck . Let A1, . . . , Ak be the monodromies around each
component of the boundary. Since the Picard–Lefschetz transformation along ci is an
automorphism of H1(Σ1,Z) preserving the intersection form, one has Ai ∈ SL2(Z)

by fixing a symplectic basis of H1(Σ1,Z). Then the signature of Z , which is defined
as the signature of the cup-product pairing on H2(Z , ∂Z ,R), satisfies

Sign(Z) = −
k∑

i

φ1(Ai ). (1)

The explicit formula for φ1 was obtained by Meyer [30].
In [2], Atiyah investigated the Meyer function φ1 from several view points. For an

odd dimensional closed oriented Riemannian manifold M , let η(M) be the η-invari-
ant of M with respect to the signature operator of M [3]. For σ ∈ SL2(Z), let
π : Mσ → S1 be the mapping torus associated with σ , i.e., the Σ1-bundle over S1

with monodromy σ . Then Atiyah showed the following identity, when Mσ is equipped
with a certain metric:

φ1(σ ) = η(Mσ ). (2)

Moreover, he gave several interpretations of φ1 in terms of the following quantities:
(i) Hirzebruch’s signature defect; (ii) the transformation low of the logarithm of the
Dedekind η-function; (iii) the logarithm of the monodromy of the determinant line
bundle; (iv) the value of the Shimizu L-function at the origin.

After Meyer and Atiyah, generalizations of their results to the cases of curves of
higher genus or the case of higher dimensional complex tori were studied by many
authors.

When g = 2 there exists a unique function φ2 : M2 → 1
5Z satisfying (1) for every

Σ2-bundles over compact oriented surfaces. The function φ2 is called the Meyer func-
tion of genus two. While [τg] ∈ H2(Mg,Z) is not a torsion element for g > 2, the
restriction of [τg] to the hyperelliptic mapping class group is known to be a torsion ele-
ment. Therefore the Meyer function for hyperelliptic curves can be defined [20,32].
The relations between η-invariants and the Meyer function for hyperelliptic curves
were studied in [32].

A natural extension of Eq. (2) to mapping torus of higher dimensional torus follows
from the same idea as in Atiyah [2], which we give in Appendix A. The coincidence
of the η-invariants of torus fibrations and the special values of the corresponding
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Adiabatic limits of η-invariants and the Meyer functions 671

L-functions was established by Bismut and Cheeger [11]. In their results, automor-
phic forms seem to play no role.

The purpose of this paper is to give a generalization of Eq. (2) in which an automor-
phic form of higher dimension plays a role similar to the role of Dedekind η-function
in Atiyah’s study. For this reason, we shall consider the signature cocycle of smooth
theta divisors as a higher dimensional analogue of curves of genus two and we shall
prove that the cohomology class of this cocycle vanishes rationally by constructing
the Meyer function for smooth theta divisors explicitly. Let us explain our results in
details.

Let Sg be the Siegel upper half-space of degree g and let Γg be the Siegel modular
group of degree g. Let f : Ag → Sg be the universal family of principally polarized
Abelian varieties. Then Γg acts on Ag and Sg , so that f is Γg-equivariant. Consider
the universal family of theta divisors:

p : Θ → Sg, Θ ⊂ Ag, p = f |Θ.

Here the fiber Θτ = p−1(τ ) is the theta divisor of Aτ := f −1(τ ) for any τ ∈ Sg , i.e.,
the zero divisor of the Riemann theta function. Let Ng := {τ ∈ Sg | SingΘτ �= ∅}
be the Andreotti–Mayer locus. Then there is a Siegel modular form ∆g(τ ) of weight
(g+3)·g!

2 with zero divisor Ng by [33,39]. We put S◦
g = Sg −Ng, Θ◦ = Θ

∣∣
S◦

g
. After

a slight modification of the Γg-action on Ag , we construct a Γg-action on Θ◦ and a
specific Γg-invariant Kähler metric gΘ◦

on Θ◦ such that p : Θ◦ → S◦
g is Γg-equi-

variant. (See Sects. 4 and 5 for the construction of gΘ◦
.) The quotient space Γg\S◦

g
is regarded as the coarse moduli space of smooth theta divisors. Let us consider the
orbifold fundamental group of Γg\S◦

g , which will be one of the main objects in this
paper:

Sg := πorb
1 (Γg\S◦

g).

Since S1 = M1 = SL2(Z) and S2 = M2, Sg is an analogue of the mapping class
group.

Following Atiyah [2], we define a 2-cocycle cg ∈ Z2(Sg,Z) as follows. Let B :=
S2\ �3

i=1 Di be a sphere with three holes and let �3
i=1γi = ∂B ⊂ B be the boundary.

For given σ1, σ2 ∈ Sg , let α : B → Γg\S◦
g be a C∞-map in the sense of orbifolds

(i.e., π1(B)-equivariant C∞-map B̃ → S◦
g from the universal covering space B̃ to S◦

g)
such that its restrictions to γ1 and γ2 are representatives of σ1 and σ2, respectively.
Let X(σ1,σ2) := B ×α Θ◦ be the family of smooth theta divisors on B induced from
p : Θ◦ → S◦

g via α. Then X(σ1,σ2) is a compact 2g-dimensional oriented manifolds
with non-empty boundary. Define the map cg : Sg × Sg → Z by

cg(σ1, σ2) := Sign(X(σ1,σ2)).

By the Novikov additivity for signature, cg is a 2-cocycle of Sg . We call cg the signa-
ture cocycle of smooth theta divisors. By construction, c2 = τ2. When g is odd, cg is
trivial, i.e., cg ≡ 0.
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672 S. Iida

For σ ∈ Sg , we choose a map α : S1 → Γg\S◦
g in the sense of orbifolds (i.e.,

equivariant path S̃1 = R → S◦
g), which is a representative of σ . Let π : Mσ → S1

be the mapping torus of a smooth theta divisor induced by α. Let gMσ /S1
be the met-

ric on the relative tangent bundle T Mσ /S1 induced from the metric gΘ◦
. Using the

connection induced from the Levi–Civita connection on T Ag , we define a family of
metrics on Mσ by

gMσ
ε = gMσ /S1⊕ε−1π∗dt2, ε ∈ R>0.

By Bismut–Cheeger [10], the limit η0(Mσ ) := lim
ε→0

η(Mσ , gMσ
ε ) exists and is called

the adiabatic limit of the η-invariants η(Mσ , gMσ
ε ). Set

Φg(σ ) := η0(Mσ )+ (−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1

∫

S1

α∗dclog‖∆g(τ )‖2, (3)

where dc = 1
4π
√−1

(∂ − ∂̄) and ‖∆2g(τ )‖2 := (detImτ)
(g+3)·(g)!

2 |∆g(τ )|2 denotes the

Petersson norm of the Siegel modular form ∆g(τ ). Here Bk is the kth Bernoulli num-
ber when k ∈ Z and Bk = 0 when k ∈ 1

2 +Z. The main results of this paper are stated
as follows.

Theorem 1 The value Φg(σ ) is independent of the choice of α, and Φg descends to
a real-valued function on Sg cobounding the signature cocycle −cg, i.e.,

−cg(σ1, σ2) = Φg(σ1)+Φg(σ2)−Φg(σ1σ2), σ1, σ2 ∈ Sg.

In particular, [cg] ⊗Q = 0 ∈ H2(Sg,Q).

We call Φg the Meyer function for smooth theta divisors. When g is odd, Φg van-
ishes identically. When g is even, Φg is non-trivial by Theorem 3 below. From the
uniqueness of the Meyer function of genus 2, it follows that φ2 = Φ2.

We next consider the uniqueness of a function on Sg cobounding cg , which is
equivalent to the vanishing of H1(Sg,Z). In general, the uniqueness no longer holds.

Theorem 2 The following equality holds:

H1(Sg,Z) =
{

0 if 0≤g≤3,

Z if g≥4.

To prove the non-triviality of Φg , we compute the value of Φg for the Dehn twists.
The subgroup π1(S

◦
g) of Sg is regarded as an analogue of the Torelli group by the

exact sequence

1 → π1(S
◦
g) → Sg → Γg → 1.
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Adiabatic limits of η-invariants and the Meyer functions 673

Then π1(S
◦
g) is generated by lassoes surrounding the irreducible components of Ng .

By Debarre [19], Ng consists of two Γg-invariant components θg and Jg such that
Γg\θg and Γg\Jg are irreducible divisors on the Siegel modular variety Γg\Sg . Let∑

λ θg,λ and
∑

µ Jg,µ be the irreducible decompositions of θg and Jg , respectively.
Consider lassoes surrounding θg,λ and Jg,µ, and denote their homotopy classes by
Π1

λ and Π2
µ, respectively. Then Π1

λ and Π2
µ are elements of π1(S

◦
g) ⊂ Sg such that

{Π1
λ ,Π

2
µ}λ,µ generates π1(S

◦
g).

Theorem 3 The following equalities hold:

Φg(Π
1
λ) =

{− 4
5 if g = 2,

(−1)
g
2+1 (g+1)2g+2(2g+2−1)

(g+3)! B g
2+1 if g ≥ 3.

Φg(Π
2
µ) = (−1)

g
2+1 (g + 1)2g+3(2g+2 − 1)

(g + 3)! B g
2+1 if g ≥ 4.

When g = 2, the monodromy Π1
λ is the Dehn twist along a separating simple

closed curve on a Riemann surface of genus two. In this case, the formula Φ2(Π
1
λ) =

φ2(Π
1
λ) = − 4

5 confirms a result of Matsumoto [29, Proposition 3.6]. We conjecture
that the function Φg is a homomorphism on π1(S

◦
g). If this conjecture is affirmative,

then the value of Φg on π1(S
◦
g) will be determined by Theorem 3. When g = 2, this

conjecture is affirmative since the cocycle τ2 = c2 is the pull-back of a cocycle of Γ2.
We explain the strategy of the proof of Theorem 1 briefly.
(Step 1) For σ1, σ2 ∈ Sg , consider the the family π : X(σ1,σ2) → B as defined

above. For simplicity, set X = X(σ1,σ2). Endow X with the metric gX/B on the relative
tangent bundle T X/B induced by gΘ◦

via the classifying map α : B → Γg\S◦
g . Let

gB be a metric on T B that is a product metric on a color neighborhood of the boundary.
By using the connection induced from the Levi–Civita connection on T Ag , define a
family of metrics by gX

ε := gX/B⊕ ε−1π∗gB, ε ∈ R>0. The Atiyah–Patodi–Singer
index theorem applied to (X, gX

ε ) yields that

Sign(X) =
∫

B
π∗L(T X, gX

ε )−
3∑

i=1

η(Mσi , gX
ε |Mσi

), σ3 = (σ1σ2)
−1. (4)

(Step 2) Let ∇X/B be the connection on the relative tangent bundle T X/B induced
from the metric gX/B and the connection on the fiber bundle π : X → B (See Sect. 2).
Since limε→0 L(T X, gX

ε ) = L(T X/B,∇X/B) and since the signature is independent
of the choice of a metric, we take the limit ε → 0 in (4) to get

cg(σ1, σ2) =
∫

B
π∗L(T X/B,∇X/B)−

3∑

i=1

η0(Mσi ). (5)

(Step 3) Let ∇H be the holomorphic Hermitian connection on the holomorphic
relative tangent bundle T 1,0Θ◦/S◦

g . In Sect. 5, we shall prove that
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674 S. Iida

(
p∗L(T 1,0Θ◦/S◦

g,∇H )
)(2) = k(g)ddc log ‖∆g(τ )‖2, (6)

where L denotes the multiplicative genus of Chern forms corresponding to the power
series x/tanh(x), ω(p) denotes the p-form component of a differential formω and k(g)
is a certain rational number containing the Bernoulli number B g

2+1 (cf. Theorem 11).

By the functoriality of the connection ∇X/B (Proposition 1) and by the Kählerness of
the metric gΘ◦

(Theorem 8), we shall prove that (cf. Sects. 5 and 7)

(
π∗L(T X/B,∇X/B)

)(2)

= α∗
(

p∗L(T 1,0Θ◦/S◦
g,∇H )

)(2) = d
(

k(g)α∗dc log ‖∆g(τ )‖2
)
. (7)

The assertion follows from (5), (6), (7) and the Stokes Theorem.
The remainder of this paper is organized as follows: In Sect. 2, we recall some

results on the connection of the relative tangent bundle. In Sect. 3, we recall the def-
inition of η-invariants. In Sect. 4, we recall some basic properties of theta divisors.
In Sect. 5, we compute the Hirzebruch’s L-form of the relative tangent bundle for
the family of smooth theta divisors. In Sect. 6, we construct the signature cocycle cg .
In Sect. 7, we construct the Meyer function Φg and prove that Φg cobounds −cg . In
Sect. 8, we consider the uniqueness of a 1-cochain that cobounds cg . In Sect. 9, we
compute the value of Φg for the Dehn twists. In Sect. 10, we give another analytic
expression of Φ2 by using Dai’s result concerning the η-forms [18].

Throughout this paper, we fix the following notation. For a complex manifold M ,
T 1,0 M (resp. T 0,1 M) denotes the holomorphic (resp. anti-holomorphic) tangent bun-
dle and T M denotes the real tangent bundle. We set dc := 1

4π
√−1

(∂ − ∂̄). Hence

ddc =
√−1
2π ∂∂̄ .

2 Preliminaries from Riemannian geometry

In this section, we recall some results of Riemannian geometry which will be used in
the proof of the main theorem. Following [6], we define connections of fiber bundles
and the connection of relative tangent bundles. Let M be a manifold and letπ : Z → B
be a fiber bundle with typical fiber M .

The relative tangent bundle T (Z/B) is the subbundle of T Z defined by

T (Z/B) := Ker{π∗ : T Z→π∗T B}.

A vector of T (Z/B) is said to be vertical.

Definition 1 A subbundle TH Z⊂T Z with T Z = T (Z/B) ⊕ TH Z is called a con-
nection of the fiber bundle π : Z → B.

For a connection, one has TH Z∼=π∗T B via the projection π∗ : T Z→π∗T B.
A vector of TH Z is said to be horizontal.
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Adiabatic limits of η-invariants and the Meyer functions 675

When Z is trivial, i.e., Z = M×B, T Z is naturally isomorphic to the direct sum
(pr1)

∗T M ⊕ (pr2)
∗T B. This connection is called the trivial connection of the trivial

fiber bundle.
Given a connection, one can define the projection PZ : T Z→T (Z/B) with kernel

TH Z . We often identify PZ with the corresponding connection TH Z := Ker(PZ ). In
the rest of Sect. 2, we fix a connection TH Z , or equivalently PZ .

One can define the pull-back of a connection as follows: Let B ′ be a manifold and let
h : B ′→B be a C∞-map. The fiber product Z ′ := Z×B B ′ = {(x, b)∈Z×B ′ | π(x) =
h(b)} satisfies the following commutative diagram:

Z ′ h̃−−−−→ Z

π ′
⏐⏐	

⏐⏐	π

B ′ −−−−→
h

B

h̃ = pr1, π
′ = pr2.

Lemma 1 The map PZ◦h̃∗ : T Z ′→h∗T (Z/B) is surjective.

Proof Since h̃∗
∣∣
T(x,b′)(Z ′/B′) : T(x,b′)(Z ′/B ′)→Tx (Z/B) is an isomorphism for all

(x, b′)∈Z ′ and since PZ
∣∣
T (Z/B)

= idT (Z/B), PZ◦h̃∗ is surjective. ��

Since PZ◦h̃∗ is surjective,

dimKer(PZ◦h̃∗)(x,b′) = dimZ ′ − rankT (Z/B)

= dimZ ′ − rankT (Z ′/B ′) = dimTb B ′.

Hence Ker(PZ◦h̃∗) is a subbundle of T Z ′. Since T (Z ′/B ′) is canonically isomorphic
to h̃∗T (Z/B), the map PZ ◦ h̃∗ is identified with a projection from T Z ′ to T (Z ′/B ′).

Definition 2 The connection of π ′ : Z ′→B ′ induced from TH Z by h is defined by

TH Z ′ := Ker
(

PZ◦h̃∗ : T Z ′→T (Z/B)
)

under the identification between T (Z ′/B ′) and h∗T (Z/B) given by (h̃∗)|T (Z ′/B′). The
projection corresponding to TH Z ′ is denoted by h∗PZ .

Lemma 2 (a) For any C∞-map h′ : B ′′→B ′,

(h◦h′)∗PZ = h′∗(h∗PZ ).
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676 S. Iida

(b) The following diagram is commutative:

T Z ′ h̃∗−−−−→ T Z

PZ ′
⏐⏐	

⏐⏐	PZ

T (Z ′/B ′) −−−−−−−→
(h̃∗)|T (Z ′/B′)

T (Z/B).

(c) If h is a constant map, say h(b′) = b for all b′ ∈ B ′, then h∗PZ is the trivial
connection on the trivial fiber bundle Z ′ = Zb × B ′, where Zb := π−1(b).

Proof (a) Set Z ′′ := Z ′ ×B′ B ′′. Let h̃′ : Z ′′ → Z ′ be the lift of the map h′. Under
the isomorphism (h ◦ h′)∗T (Z/B) ∼= h′∗T (Z ′/B ′) ∼= T (Z ′′/B ′′), we have

(h ◦ h′)∗PZ = PZ ◦ (h̃ ◦ h̃
′
)∗ = (PZ ◦ h̃∗) ◦ h̃

′
∗ = h′∗(h∗PZ ).

(b) The assertion follows from Definition 2.
(c) Since

TH Z ′ = Ker
(

PZ ◦ h̃∗ : T Z ′ → T (Z/B)|Zb

)
= Ker

(
(pr1)∗ : T Z ′ → T Zb

)
,

h∗PZ is the trivial connection. ��
Definition 3 Let Z be a manifold and let Diff(Z) be the group of C∞-diffeomor-
phism of Z . For ϕ ∈ Diff(Z), the mapping torus π : Mϕ → S1 = R/Z is defined
by

π : Mϕ := (Z×R)/Z, π := pr2,

where Z acts on Z×R by

m·(x, t) := (ϕm(x), t + m), m∈Z, (x, t)∈Z×R.

If Z is oriented, let Diff+(Z) be the group of orientation-preserving diffeomorphism
of Z . For ϕ ∈ Diff+(Z), Mϕ is endowed with the orientation induced from the one
on M×R. Notice that Mϕ = −Mϕ−1 , which is the same manifold equipped with the
opposite orientation. Since the trivial connection TH (M×R) = pr∗2T R is preserved
by the Z-action, it descends to a connection of Mϕ . This connection is called the
canonical connection of the mapping torus π : Mϕ→S1.

We fix a metric gZ/B on the relative tangent bundle, a Riemannian metric gB on
B, and the connection TH Z and the corresponding projection PZ . We define the Rie-
mannian metric gZ on the total space Z by

gZ := gZ/B⊕π∗gB
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Adiabatic limits of η-invariants and the Meyer functions 677

under the isomorphism T Z∼=T (Z/B)⊕TH Z∼=T (Z/B)⊕π∗T B. Let∇Z be the Levi–
Civita connection of (Z , gZ ). We define the connection ∇Z/B on T (Z/B) by

∇Z/B := PZ◦∇Z .

Then ∇Z/B preserves the metric gZ/B .

Lemma 3 The connection ∇Z/B is independent of the choice of gB.

Proof See [6, Proposition 10.2]. ��
For X ∈ T B, let X H be its horizontal lift, so that π∗X H = X . If X is a smooth

vector field on B, the Lie derivative operator LX acts naturally on the tensor algebra of
T (Z/B). In particular, (gZ/B)−1LX H gZ/B is a self-adjoint endmorphism of T (Z/B).

Theorem 4 The connection ∇Z/B is characterized by the following two properties:

(1) On each fiber of π : Z → B it coincides with the Levi–Civita connection asso-
ciated with the metric gZ/B.

(2) If X ∈ T B, then ∇Z/B
X H

= LX H + 1
2 (g

Z/B)−1LX H gZ/B.

Proof See [7, Theorem 1.1]. ��
Proposition 1 Let B ′ be a manifold and let h : B → B ′ be a C∞-map. Set Z :=
Z ×B′ B with h̃ : Z → Z ′. Let gZ/B = h∗gZ ′/B′ be the metric on T (Z/B) induced
from gZ ′/B′ , and let PZ = h∗PZ ′ be the connection of Z induced from PZ ′ . Then
∇Z/B = h̃∗∇Z ′/B′ .

Proof If X ∈ T Z is vertical, we have directly ∇Z/B
X = (h̃∗∇Z ′/B′)X from Theorem

4 (1).
Let X ∈ T B and set Y := h∗X ∈ T B ′. Let X H (resp. YH ) be the horizontal lift of

X (resp. Y ) so that h̃∗X H = YH . If A ∈ T (Z ′/B ′) be a smooth vertical vector field, or
more generally a tensor algebra of T (Z ′/B ′), it follows that LX H (h̃∗A) = h̃∗(LYH A).
Combined with Theorem 4 (2) and gZ/B = h̃∗gZ ′/B′ , this yields the equality

∇Z/B
X H

(
h̃∗A

)
= h̃∗(∇Z ′/B′

YH
A), A ∈ T (Z ′/B ′),

which completes the proof. ��
With respect to the decomposition T Z = T (Z/B)⊕ TH Z , we put for ε∈R

+

gZ ,ε := gZ/B⊕ε−1π∗gB .

The Levi–Civita connections of (Z , gZ ,ε) and (B, gB) are denoted by ∇Z ,ε and ∇B ,
respectively. Let RZ ,ε and RB be the curvature of ∇Z ,ε and ∇B , respectively. We
define another connection ∇ on Z by

∇ := ∇Z/B⊕π∗∇B,
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678 S. Iida

and we put

S(ε) := ∇Z ,ε − ∇ ∈A1(End(T Z)), S := S(1).

Then ∇ preserves the Riemannian metric gZ ,ε, and PZ is parallel with respect to ∇,
i.e., ∇◦PZ − PZ◦∇ = 0.

Let {e1, . . ., ek} be a local orthogonal framing for (T (Z/B), gZ/B), and let
{ f1, . . ., fl} be a local orthogonal framing for (TH Z , π∗gB).

Proposition 2 With respect to the splitting T Z = T (Z/B)⊕TH B, the following iden-
tity holds:

lim
ε→0

RZ ,ε =
(

RZ/B PZ (∇S)
0 π∗RB

)
.

Proof See [12, Eq. (3.195)]. ��

3 η-Invariants

In this section, we recall the definition and some properties of η-invariants. Let
(M, gM ) be a closed oriented Riemannian manifold of dimension (2l−1). Denote the
space of C∞ k-forms on M by Ak(M). Let ∗ : Ak(M) → A2l−k−1(M) be the Hodge
star operator with respect to gM . The signature operator D : ⊕p≥0A2p(M)→⊕p≥0
A2p(M) of M is defined by

D : ω �−→(
√−1)l(−1)p+1(∗d − d∗)ω, ω∈A2p(M).

Then D is an elliptic self-adjoint differential operator of first order acting on
⊕p≥0A2p(M). Let σ(D) be the spectrum of D. The η-function of M is defined by

η(s) :=
∑

λ∈σ(D)\{0}

signλ

|λ|s

for s∈C with Re(s)�0. Then η(s) extends meromorphically to C and is holomorphic
at s = 0 by [3,12].

Definition 4 The real number η(0) is called the η-invariant of (M, gM ) and is denoted
by η(M, gM ).

Let (X, gX ) be a 4k-dimensional, oriented, compact, Riemannian manifold with
boundary Y . Put gY := gX

∣∣
Y and fix a color neighborhood U⊃Y such that

U ∼= Y×[0, 1). Assume that gX
∣∣
U = gY⊕dt2 under the above isomorphism. Let

∇L be the Levi–Civita connection of (X, gX ) and let RL := (∇L)2 be the curvature.
Let L(T X,∇L) be the Hirzebruch L-form, i.e.,

L(T X,∇L) := det1/2
( −RL/2π

√−1

tanh(−RL/2π
√−1)

)
. (8)
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Denote by Sign(X) the signature of X , i.e., the signature of the cup-product pairing
on H2k(X,Y,Q), which is a homotopy invariant of the pair (X,Y ). Note that one can
also use the compact support cohomology H2k

c (X\Y,Q) ∼= H2k(X,Y,Q) to define
Sign(X).

Theorem 5 (Atiyah–Patodi–Singer [3]) The following equation holds:

Sign(X) =
∫

X

L(T X,∇L)− η(Y, gY ).

Let X , B and M be closed oriented manifolds. Letπ : X → B be a C∞-submersion,
whose fibers are isomorphic to M . Assume that dimX = 4k. Let gX/B be a metric on
T (X/B) and let gB be a metric on T B. Let TH X ⊂ T X be a connection. We identify
TH X with π∗T B via π . With respect to the decomposition T X = T (X/B)⊕π∗T B,
we define the metric on X by gX := gX/B ⊕π∗gB and we consider the one parameter
family of metrics on X defined by

gX
ε := gX/B ⊕ ε−1π∗gB, ε ∈ R+.

Theorem 6 ([10], [18, Corollary 4.1]) The limit limε→0 η(X, gX
ε ) exists.

The limit limε→0 η(X, gX
ε ) is called the adiabatic limit of the η-invariants and is

denoted by η0(X).

4 Family of theta divisors

In this section we construct an action of the Siegel modular group on the universal
family of theta divisors and we also construct a specific invariant Kähler metric on the
total space of this family.

We first fix the notation. Let Sg be the Siegel upper half-space of degree g and let
Γg be the Siegel modular group, i.e.,

Sg := {τ∈M(g,C) | tτ = τ, Imτ > 0}
Γg := {γ ∈ GL(2g,Z) | γ Jg

tγ = Jg},

where Jg =
( 0 1g
−1g 0

)
and 1g denotes the g × g identity matrix. Γg acts on Sg by

γ ·τ := (Aτ + B)(Cτ + D)−1, γ =
(

A B

C D

)
∈ Γg, τ ∈ Sg.

For τ ∈ Sg , write τ = (tτ1, . . . ,
tτg) and set

Λτ := Ze1 ⊕ · · · ⊕ Zeg ⊕ Zτ1 ⊕ · · · ⊕ Zτg ⊂ C
g
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where 1g = (t e1, . . . ,
t eg) and τ = (tτ1, . . . ,

tτg) ∈ Sg . Here all vectors denote row
vectors. Define the Z

2g-action on C
g ×Sg by

(m, n) · (z, τ ) := (z + mτ + n, τ ), (z, τ ) ∈ C
g ×Sg, m, n ∈ Z

2g.

Then

f : Ag := (Cg×Sg)/Z
2g→Sg

is the universal family of principally polarized Abelian varieties over Sg , whose fiber
over τ is Aτ := C

g/Λτ . For (a, b)∈R
2g , z∈C

g and τ∈Sg we define the theta function
with characteristic by

ϑa,b(z, τ ) :=
∑

n∈Zg

e
(

1

2
(n + a)τ t (n + a)+ (n + a)t (z + b)

)
,

where e(t) = exp(2π
√−1t). Let

p : Θa,b := {(z, τ )∈Ag | ϑa,b(z, τ ) = 0}→Sg.

be the universal family of theta divisors. For simplicity we write ϑ for ϑ0,0 and set
Θ = Θ0,0.

For any (a, b)∈R
2g , we define an automorphism t(a,b) : Ag→Ag by

t(a,b) · (z, τ ) := (z + aτ + b, τ ).

Then t(a,b) has no fixed points when (a, b)∈R
2g\Z2g and the subgroup Z

2g⊂R
2g acts

trivially on Ag . One has the Γg-action on Ag defined by

γ ·(z, τ ) := (z(Cτ + D)−1, (Aτ + B)(Cτ + D)−1),

where γ = (A B
C D

) ∈ Γg, z ∈ C
g, τ ∈ Sg, so that f is Γg-equivariant. This action

does not preserve the family p : Θ → Sg. However we can construct a Γg-action
on Θ so that p is Γg-equivariant, after a slight modification of the definition of this
Γg-action.

Theorem 7 ([22, Chap. II, Sec. 5, Theorem 6]) For γ = (A B
C D

)∈Γg, τ∈Sg, (m, n),
(a, b)∈R

2g,

ϑm,n
(
t(a,b) · (z, τ )

) = e
(
−1

2
aτ t a − at (z + b + n)

)
ϑm+a,n+b(z, τ )

ϑm′,n′ (γ ·(z, τ )) = e
(

1

2
z(Cτ + D)−1Ct z

)
det(Cτ + D)

1
2 ·uϑm,n(z, τ ).
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Here

(m′, n′) = (m, n)·γ−1 + 1

2
((Ct D)0, (At B)0),

where M0 = (mi jδi j ), M = (mi j ) ∈M(g,Z) and u ∈ C
∗ is independent of τ, z.

For γ = (A B
C D

)
, put

γ̃ := t(a,b)◦γ ∈ Aut(Ag), (a, b) := 1

2
((Ct D)0, (At B)0).

Proposition 3 (a) The automorphism γ̃ preserves the family p : Θ → Sg.
(b) For any γ1, γ2∈Γg, the following identity holds in Aut (Θ):

γ̃1◦γ̃2 = γ̃1γ2

Proof (a) We set (m, n) = (0, 0) in the second equality of Theorem 7 to get

ϑ0,0(z, τ ) = e
(
−1

2
z(Cτ + D)Ct z

)
det(Cτ + D)−

1
2 u−1ϑa,b (γ · (z, τ ))

= e
(

1

2
a(γ · τ)t a + at (z(Cτ + D)−1 + b + n)

)

×e
(
−1

2
z(Cτ + D)Ct z

)

× det(Cτ + D)−
1
2 u−1 · ϑ0,0

(
t(a,b) ◦ γ · (z, τ )) ,

where the second equality follows from the first equality of Theorem 7. This
implies that if ϑ(z, τ ) = 0 then ϑ (γ̃ · (z, τ )) = 0.

(b) Since γ ◦t(m,n) = t(m,n)·γ−1◦γ for γ ∈ Γg and (m, n)∈ 1
2 Z

2g , there exists

(m′, n′)∈ 1
2 Z

2g such that

(γ̃1γ2)
−1γ̃1◦γ̃2 = t(m,n)◦(γ1γ2)

−1◦t(m1,n1)◦γ1◦t(m2,n2)◦γ2 = t(m′,n′).

Thus (γ̃1γ2)
−1γ̃1◦γ̃2 is either the identity map or a holomorphic involution on

Θ(γ1γ2τ) without fixed points. By Lemma 4 below, we get γ̃1◦γ̃2 = γ̃1γ2. ��
Lemma 4 If Θτ is smooth, then there is no holomorphic involution on Θτ without
fixed points.

Proof For a compact complex manifold X , let χhol(X) denote the arithmetic genus
of X , i.e.,

χhol(X) :=
∑

k≥0

(−1)khk(X,OX ).
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Assume that ι is a holomorphic involution on Θτ without fixed points. Then

χhol(Θτ ) = 2χhol(Θτ / < ι >). (9)

Let IΘτ be the ideal sheaf ofΘτ . From the exact sequence of sheaves 0→IΘτ→OAτ→
OΘτ→0 and the vanishing χhol(Aτ ) = 0, we get

χhol(Θτ ) = χhol(Aτ )− χhol(IΘτ ) = −χhol(IΘτ ). (10)

Let [Θτ ] be the line bundle on Aτ defined by the divisor Θτ . Then [Θτ ] is ample.
Since Hk(Aτ , IΘτ ) = Hk(Aτ , [Θτ ]−1), we get

χhol(IΘτ ) = (−1)ghg(Aτ , [Θτ ]−1)

= (−1)gh0(Aτ , [Θτ ]⊗K Aτ )

= (−1)gh0(Aτ , [Θτ ]) = (−1)g,

where the first equality follows from the Kodaira vanishing theorem, the second equal-
ity follows from the Serre duality, and the third equality follows from the triviality of
K Aτ . Hence we get χhol(Θτ ) = (−1)g+1, which contradicts (9). ��

We set

gAg/Sg := dz·(Imτ)−1·t d z̄.

Then gAg/Sg is a Γg-invariant Hermitian metric on the relative tangent bundle
T (Ag/Sg). The next purpose of this section is to construct a Γg-invariant Kähler
metric on T Ag whose restriction to T (Ag/Sg) is gAg/Sg .

Put T 2g := R
2g/Z2g . Define a Z

2g-action on R
2g × Sg by (m, n) · (x, y, τ ) :=

(x +m, y+ n, τ ) for (m, n) ∈ Z
2g, (x, y) ∈ R

2g, τ ∈ Sg . Then (R2g ×Sg)/Z
2g is

the trivial T 2g-bundle T 2g ×Sg . We define a C∞-map ρ̃ : R
2g ×Sg → C

g ×Sg by

ρ̃((x, y), τ ) := (xτ + y, τ ), x, y ∈R
g, τ∈Sg.

Since ρ̃ is a Z
2g-equivariant map, ρ̃ induces a C∞-isomorphism ρ : T 2g ×Sg → Ag

as T 2g-bundles over Sg . Define a Γg-action on T 2g×Sg by

γ ·((x, y), τ ) := ((x, y)γ−1, γ ·τ), γ∈Γg.

Lemma 5 For all γ∈Γg, the following diagram is commutative.

T 2g×Sg
ρ−−−−→ Ag

γ

⏐⏐	
⏐⏐	γ

T 2g×Sg −−−−→
ρ

Ag
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Proof Let γ = (A B
C D

)
. Since

γ−1 =
( t D − t B

−t C t A

)
, t B D = t DB, t AC = t C A, t AD − t C B = 1g,

we get

ργ ((x, y), τ ) = ρ((x, y)γ−1, γ τ )

= ((xt D − yt C)(Aτ + B)(Cτ + D)−1

+(−xt B + yt A)(Cτ + D)(Cτ + D)−1, (Aτ + B)(Cτ + D)−1)

= ((xτ + y)(Cτ + D)−1, (Aτ + B)(Cτ + D)−1)

= γρ((x, y), τ ).

��

Since the trivial connection on T 2g×Sg is Γg-invariant, Ag has the induced Γg-
invariant connection TH Ag ⊂ T Ag via the Γg-equivariant isomorphism ρ. We denote
the Γg-equivariant projection corresponding to TH Ag by Pρ . Let PC

ρ : T Ag ⊗ C →
T (Ag/Sg)⊗ C be the complexification of Pρ . Then PC

ρ is also Γg-equivariant.
Let Z and B be complex manifolds and let π : Z → B be a holomorphic sub-

mersion. A connection PZ on Z is said to be compatible with the complex struc-
ture if the horizontal lift of a (1, 0) (resp. (0, 1)) vector is a (1, 0) (resp. (0, 1)) vec-
tor, or equivalently, if P : T Z → T (Z/B) preserves the complex structure. Let
PC

Z : T Z ⊗C → T (Z/B)⊗C be the complexification. If PZ is compatible with the

complex structure, we get the decomposition PC

Z = P1,0
Z ⊕ P0,1

Z with respect to the
decomposition

T Z ⊗ C = T 1,0 Z ⊕ T 0,1 Z , T (Z/B)⊗ C = T 1,0(Z/B)⊕ T 0,1(Z/B),

such that P1,0
Z (T 1,0 Z) = T 1,0(Z/B), P0,1 Z(T 0,1 Z) = T 0,1(Z/B). Hence PC

Z
induces the decomposition

T 1,0 Z ∼= T 1,0(Z/B)⊕ π∗T 1,0 B.

Lemma 6 The Γg-equivariant connection Pρ is compatible with the complex struc-
ture. Hence PC

ρ induces the Γg-equivariant C∞-isomorphism

T 1,0
Ag ∼= T 1,0(Ag/Sg)⊕ f ∗T 1,0Sg.
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Proof Since ρ((x, y), τ ) = (xτ + y, τ ) and zk =∑l xlτlk + yk , we get

ρ∗
(

∂

∂τi j

)
=

g∑

k=1

∂zk

∂τi j

∂

∂zk
+

g∑

k=1

∂ z̄k

∂τi j

∂

∂ z̄k
+ ∂

∂τi j

=
g∑

k,l=1

xl
∂τlk

∂τi j

∂

∂zk
+ ∂

∂τi j

= xi
∂

∂z j
+ x j

∂

∂zi
+ ∂

∂τi j
, (11)

ρ∗
(

∂

∂τ̄i j

)
= xi

∂

∂ z̄ j
+ x j

∂

∂ z̄i
+ ∂

∂τ̄i j
.

Notice that ∂τlk
∂τi j

= δilδ jk + δikδ jl , since τ is a symmetric matrix. From (11), the
assertion follows. ��

Let gSg be the Bergman metric on Sg with Kähler form

ωSg = −2
√−1∂∂̄logdetImτ. (12)

Then gSg is Γg-invariant. With respect to the decomposition in Lemma 6, we define
the Γg-invariant Hermitian metric gAg on T 1,0

Ag by

gAg := gAg/Sg⊕ f ∗gSg .

Then we have

gAg

(
∂

∂zi
,

∂

∂z j

)
= gAg/Sg

(
∂

∂zi
,

∂

∂z j

)

gAg

(
∂

∂zi
, ρ∗

(
∂

∂τkl

))
= 0 (13)

gAg

(
ρ∗
(

∂

∂τi j

)
, ρ∗

(
∂

∂τkl

))
= gSg

(
∂

∂τi j
,

∂

∂τkl

)
.

Theorem 8 The Hermitian metric gAg is Kähler.

Proof Let L be the holomorphic line bundle over Ag defined by the divisor Θ , and
let hL be the Hermitian metric on L defined by

‖ϑ‖2
L(z, τ ) := |ϑ(z, τ )|2exp

(
−2π(Imz)(Imτ)−1t (Imz)

)
.

Then

c1(L|Aτ , hL) =
√−1

2
dz(Imτ)−1t (dz̄). (14)
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Write

gAg/Sg =
∑

hi j dzi d z̄ j , gSg =
∑

h′i jkldτi j d τ̄kl .

By (11) and (13), we get

0 = gAg

(
ρ∗
(

∂

∂τi j

)
,

∂

∂zk

)
= xi h jk + x j hik + gAg

(
∂

∂τi j
,

∂

∂zk

)
,

h′i jkl = gAg

(
ρ∗(

∂

∂τi j
), ρ∗

(
∂

∂τkl

))

= −xi xkh jl − xk x j hil − xi xl h jk − x j xl hik + gAg

(
∂

∂τi j
,

∂

∂τkl

)
.

Therefore

gAg

(
∂

∂zi
,

∂

∂z j

)
= hi j = (Imτ)−1

i j , (15)

gAg

(
∂

∂τi j
,

∂

∂zk

)
= −xi h jk − x j hik, (16)

gAg

(
∂

∂τi j
,

∂

∂τkl

)
= h′i jkl + xi xkh jl + x j xkhil + xi xl h jk + x j xlhik . (17)

By (12) and (14),

hi j = − 1

π

∂2

∂zi∂ z̄ j
log‖ϑ‖2(z, τ ) (18)

h′i jkl = − 1

π

∂2

∂τi j∂τ̄kl
4π logdetImτ. (19)

Since z = xτ + y, we have Imz = x(Imτ), i.e., x = Imz(Imτ)−1. Set Ei j :=
t ei e j + t e j ei . Since Imz = 1

2
√−1

(z − z̄) and Imτ = 1
2
√−1

(τ − τ̄ ), we get

− 1

π

∂2

∂τi j∂ z̄k
log‖ϑ‖2(z, τ )

= 2
∂2

∂τi j∂ z̄k
Imz(Imτ)−1t (Imz)

= 2

( −1

2
√−1

)
∂

∂τi j
{ek(Imτ)−1t (Imz)+ Imz(Imτ)−1t ek}

= −2

( −1

2
√−1

)(
1

2
√−1

)

×{ek(Imτ)−1 Ei j (Imτ)−1t (Imz)+ Imz(Imτ)−1 Ei j (Imτ)−1t ek}
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= −1

2
{ek(Imτ)−1 Ei j

t x + x Ei j (Imτ)−1t ek}
= −x j hik − xi h jk

= gAg

(
∂

∂τi j
,

∂

∂zk

)
, (20)

where the third equality follows from the identity

∂

∂τi j
(Imτ)−1 = −

(
1

2
√−1

)
(Imτ)−1 Ei j (Imτ)−1,

the forth equality follows from the identity x = (Imz)(Imτ)−1 and the last equality
follows from (16). Similarly, we get

− 1

π

∂2

∂τi j∂τ̄kl
log‖ϑ‖2(z, τ )

= 2
∂2

∂τi j∂τ̄kl
Imz(Imτ)−1t Imz

= −2

( −1

2
√−1

)
∂

∂τi j
Imz(Imτ)−1 Ekl(Imτ)−1t Imz

= 2(−1)2
( −1

2
√−1

)(
1

2
√−1

)
{Imz(Imτ)−1 Ei j (Imτ)−1 Ekl(Imτ)−1t Imz

+ Imz(Imτ)−1 Ekl(Imτ)−1 Ei j (Imτ)−1t Imz}
= 1

2
{x Ei j (Imτ)−1 Ekl

t x + x Ekl(Imτ)−1 Ei j
t x}

= xi xkh jl + x j xkhil + xi xlh jk + x j xl hik

= gAg

(
∂

∂τi j
,

∂

∂τkl

)
− h′i jkl , (21)

where the last equality follows from (17).
Let Φ be the fundamental 2-form for gAg . By (15), (18), (20) and (21), we get

Φ = −ddclog‖ϑ‖2
L(z, τ )+ f ∗ωSg .

This completes the proof. ��

Remark 1 By [21, Theorem 7.10], there exists a Γg-invariant Kähler metric gAg on
T Ag such that gAg is a flat metric on each fiber and such that p∗ : T (Ag/Sg)

⊥ → T Sg

is an isometry. Here we gave an explicit construction of such a metric.

123



Adiabatic limits of η-invariants and the Meyer functions 687

5 The L-form of the relative tangent bundle

Following [39, Proposition 5.1], we shall compute the Hirzebruch L-form of the rel-
ative tangent bundle of the family of smooth theta divisors, which will be used in
Sects. 7 and 9.

A holomorphic function f (τ ) ∈ O(Sg) is a Siegel modular form of weight k if

f (γ · τ) = j (τ, γ )kχ(γ ) f (τ ), ∀γ ∈ Γg, ∀τ ∈ Sg,

where j (τ, γ ) := det(Cτ + D) for γ = (A B
C D

)
and χ : Γg → C

∗ is a character. For a
Siegel modular form f (τ ) of weight k, define the Petersson norm by

‖ f (τ )‖2 := (det Imτ)k | f (τ )|2. (22)

By the automorphic property det Im(γ · τ) = | j (τ, γ )|−2 det Im(τ ) and the finiteness
of H1(Γg,Z) = Γg/[Γg, Γg], the norm ‖ f (τ )‖2 is a C∞ Γg-invariant function on
Sg . Set

χg(τ ) :=
∏

a,b∈ 1
2 Zg/Zg, 4t a·b=0∈Z/2Z

ϑa,b(0, τ ).

Then χg(τ ) is a Siegel modular form of weight 2g−2(2g + 1) and is called the Igusa
modular form.

Let

Ng := {τ ∈ Sg | SingΘτ �= ∅}

be the Andreotti–Mayer locus.

Theorem 9 ([19]) The Andreotti–Mayer locus Ng is a divisor of Sg. There exist two
Γg-invariant divisors θg and Jg on Sg such that

Ng = θg + 2Jg,

where Γg\θg and Γg\Jg are irreducible divisors on Γg\Sg. Here θg is the zero divisor
of χg(τ ) and Jg = ∅ if and only if g = 2, 3. There exist proper subvarieties Z1 ⊂ θg

and Z2 ⊂ Jg with the following properties.

(1) For any τ ∈ θ◦g := θg\Z1, Sing(Θτ ) consists of one ordinary double point.
(2) For any τ ∈ J ◦

g := Jg\Z2, Sing(Θτ ) consists of two ordinary double points
which are mutually interchanged by the involution z →−z.

Theorem 10 ([39]) There exists a Siegel cusp form ∆g(τ ) of weight (g+3)·g!
2 with

zero divisor Ng. In particular, there exists a Siegel modular form Jg(τ ) of weight
(g+3)·g!

4 − 2g−3(2g + 1) with zero divisor Jg such that

∆g := χg(τ )Jg(τ )
2.
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We put

S◦
g := Sg −Ng, Θ◦

g := Θ|S◦
g
.

Then p : Θ◦ → S◦
g is a family of smooth theta divisors. Endow T 1,0(Θ◦/S◦

g) with

the Hermitian metric gΘ◦/S◦
g := gAg/Sg

∣∣
Θ◦ . Let gΘ◦ := gAg |Θ◦ be the Kähler met-

ric on Θ◦ induced from gAg . Regard gΘ◦/S◦
g (resp. gΘ◦

) as a Riemannian metric on
T (Θ◦/S◦

g) (resp. TΘ◦). Let

THΘ◦ := T (Θ◦/S◦
g)
⊥

be the orthogonal complement of T (Θ◦/S◦
g) in TΘ◦ with respect to the metric gΘ◦

,
which induces a connection PΘ : TΘ◦ → TΘ◦/S◦

g .

Lemma 7 One has gΘ◦ = gΘ◦/S◦
g ⊕ p∗(gSg |S◦

g
).

Proof Let N be the normal bundle of Θ◦ in Ag . Endow N with the Hermitian met-
ric induced from gAg via the C∞-isomorphism N ∼= (TΘ◦)⊥ in T Ag|Θ◦ . Then we
have a C∞ orthogonal decompositions T Ag|Θ◦ ∼= TΘ◦ ⊕ N and T (Ag/Sg)|Θ◦ =
T (Θ◦/S◦

g)⊕N . Hence we get the following equality of subvector bundles of T Ag|Θ◦ :

TH Ag|Θ◦ = T (Ag/Sg)
⊥|Θ◦ (in T Ag)

= (T (Θ◦/S◦
g)⊕ N )⊥ (in TΘ◦ ⊕ N )

= T (Θ◦/S◦
g)
⊥ (in TΘ◦)

= THΘ◦.

We thus have p∗(gSg |S◦
g
) = f ∗gSg |Θ◦ , which together with gΘ◦/S◦

g = gAg/Sg |Θ◦ ,
completes the proof. ��
Lemma 8 The connection PΘ is compatible with the complex structure on Θ◦.

Proof Let J ∈ End(TΘ◦) be the complex structure. Then the Riemannian metric gΘ◦

is invariant under the action of J . Therefore the orthogonal complement THΘ◦ =
T (Θ◦/S◦

g)
⊥ is also invariant under the action of J , which yields the assertion. ��

We define the connection ∇Θ◦/S◦
g on T (Θ◦/S◦

g) by using gΘ◦/S◦
g and PΘ as

in Sect. 2. Let ∇h be the holomorphic Hermitian connection on T 1,0(Θ◦/S◦
g) with

respect to the Hermitian metric gΘ◦/S◦
g .

Lemma 9 Under the C∞-isomorphism T (Θ◦/S◦
g) ⊗ C ∼= T 1,0(Θ◦/S◦

g) ⊕
T 0,1(Θ◦/S◦

g), the following equality of connections holds:

∇Θ◦/S◦
g ⊗ C = ∇h ⊕ ∇̄h .
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Proof Let ∇L be the Levi–Civita connection on (TΘ◦, gΘ◦
) and let ∇H be the

holomorphic Hermitian connection on T 1,0Θ◦. Let PC

Θ be the complexification of
PΘ . Since gΘ◦

is Kähler by Theorem 8, we get the decomposition by [25, Chap. I,
Proposition 7.19]

∇L⊗C = ∇H⊕∇̄H

under the decomposition TΘ◦ ⊗ C = T 1,0Θ◦ ⊕ T 0,1Θ◦. By Lemma 8, we also get
the decomposition PC

Θ = P1,0
Θ ⊕ P0,1

Θ . Then

∇Θ◦/S◦
g ⊗ C = (PΘ∇L)⊗ C = PC

Θ (∇L ⊗ C) = P1,0
Θ ∇H ⊕ P0,1

Θ ∇̄H .

Since P1,0
Θ ∇H = ∇h by [25, Chap. I, Proposition 6.4], we get the result. ��

Let Bk be the kth Bernoulli number when k ∈ Z, i.e.,

x

ex − 1
= 1− x

2
+

∞∑

k=1

(−1)k+1 Bk
x2k

(2k)! .

We set Bk = 0 when k ∈ 1
2 + Z.

Theorem 11 Let g be even. The following equality holds:
[

p∗L(T (Θ◦/S◦
g),∇Θ◦/S◦

g )
](2) = (−1)g/22g+1(2g+2 − 1)

(g + 1)(g/2+ 1)
B g

2+1ddc log det Imτ

= (−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1ddc log ‖∆g(τ )‖2,

where f∗ denotes the integration along the fibers and α(p) denotes the p-form part of
a from α.

Remark 2 When g is odd, say 2k + 1, since dimRΘτ = 4k and the L-form has only
components of degree 4n, the left-hand side of Theorem 11 is zero.

Proof The second equality follows from (22) and S◦
g = Sg\div(∆g). We prove the

first equality. Let Rh := (∇h)2 be the curvature, which is a (1, 1)-form with values in
End(T 1,0(Θ◦/S◦

g)). Set

L(x) := x/tanh(x). (23)

For a complex vector bundle E , let L(E) denote the multiplicative genus of Chern
forms associated with L(x). By (8), we get

L
(

T (Θ◦/S◦
g),∇Θ/S◦

g )
)(2g) = det

( −Rh/2π
√−1

tanh(−Rh/2π
√−1)

)(g,g)

= L
(

T 1,0(Θ◦,S◦
g),∇h

)(g,g)
. (24)
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Here the first equality follows from Lemma 9, the equality R̄h = −t Rh and the fact
that x/tanh(x) is an even function.

Let G be a positive definite g×g-Hermitian matrix and let gG := dz G t d̄z be a flat
metric on W := C

g associated to G. Let P(W∨) be the projective space of hyperplanes
of W and let E be the universal vector bundle of rank (g − 1) over P(W∨). Consider
the following exact sequence of vector bundles over P(W∨):

0−→E−→W∨ = C
g−→N = W∨/E−→0. (25)

Notice that N = OP(W∨)(1). Let gE,G := gG |E be the induced metric on E .
Let g1g be the restriction of the Hermitian metric dz · t d z̄ on T Ag/Sg to the rel-

ative tangent bundle TΘ◦/S◦
g . Let R be the curvature of the holomorphic Hermitian

connection of (T 1,0Θ◦/S◦
g, g1g ). Set

L(T 1,0Θ◦/S◦
g, g1g ) := det L

( −R

2π
√−1

)
∈ ⊕p≥0 Ap,p(Θ◦).

Let ν : Θτ −→ P(W∨) be the Gauss map:

ν : Θτ � z �−→ (TΘτ )z ∈ P(W∨),

which induces a finite covering with mapping degree g!. Then

(TΘτ , gΘτ ) = ν∗(E, gE,(Imτ)−1). (26)

By [38, Proposition 2.1], we have

[
L(TΘ◦/S◦

g, g1g )
](g,g) ≡ 0.

Hence we obtain

[
L(T 1,0(Θ◦/S◦

g),∇h)
](g,g) =

[
L(T 1,0(Θ◦/S◦

g),∇h)
](g,g)

−
[
L(T 1,0(Θ◦/S◦

g), g1g )
](g,g)

= −ddc
[
L̃(T 1,0(Θ◦/S◦

g); g1g , gΘ◦/S◦
g )
](g−1,g−1)

,

(27)

where L̃(T 1,0(Θ◦/S◦
g); g1g , gΘ◦/S◦

g )denotes the Bott–Chern secondary form [13,15]
corresponding to L. By (24), (26), and Proposition 7 below, we get
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p∗
[
L̃(TΘτ , g1g , gΘτ )

](g−1,g−1) = p∗
[
ν∗L̃(E; gE,1g , gE,(Imτ)−1)

](g−1,g−1)

= degν
∫

P(W∨)

L̃(E; gE,1g , gE,(Imτ)−1)

= −g!k(L, g) log det Imτ, (28)

where k(L, g) is the constant defined in (72) below. By (27), (28) and the following
Lemma 10, we complete the proof. ��
Lemma 10 The following equality holds:

k(L, 2k) = (−1)g(2k + 1)
4k+1(4k+1 − 1)

(2k + 2)! Bk+1.

Proof By (72) and the relation tanh
′
(x) = 1− tanh(x)2, we get

k(L, 2k) =
(

L
′
(0)

L(0)
·L−1(x)− 1

2k
L
′
(x)·L−2(x)

)∣∣∣
x2k−1

= − 1

2k

(
tanh(x)

x2 − tanh
′
(x)

x

)∣∣∣
x2k−1

, (29)

where h(x)|xg is the coefficient of xg for h(x) ∈ C[[x]]. Combined with (29), the
Taylor expansion

tanh(x) =
∑

n≥1

(−1)n+14n(4n − 1)Bn

(2n)! x2n−1 (30)

yields the assertion. ��
Remark 3 In Sect. 7, it will be crucial that dclog‖∆g(τ )‖2 is Γg-invariant and that
ddclog‖∆g(τ )‖2 is an exact 2-form on Γg\S◦

g .

6 The signature cocycle of smooth theta divisors

Since Γg acts on S◦
g properly discontinuously, the quotient Γg\S◦

g has the structure
of a complex orbifold and Γg\S◦

g is a coarse moduli space of smooth theta divisors.
In this section, following [2], we construct a 2-cocycle of the orbifold fundamental
group of Γg\S◦

g , which is an analogue of the Meyer cocycle [2,37].
We fix a base point ∗ ∈ S◦

g such that {γ ∈ Γg | γ · ∗ = ∗} = {±12g}. Let (B, b)

be a topological space with base point b, and let π : B̃→B be the universal covering.
The fundamental group π1(B, b) acts on B̃ as deck transformations. Fix a point b̃∈B̃
with π(b̃) = b. We define the set [B, Γg\S◦

g]orb by

{(α, ρ) ∈ C0(B̃,S◦
g)× Hom(π1(B, b), Γg) | α(b̃)=∗, α(γ · x)=ρ(γ ) · α(x)}/ ∼ .

123



692 S. Iida

Here (α0, ρ0)∼(α1, ρ1) if and only if ρ0 = ρ1 and there exists a homotopy p̃ :
B̃ × [0, 1] → S◦

g connecting α0 and α1 such that α̃(∗, 0) = α0, α̃(∗, 1) = α1 and

α̃(γ · x, t) = ρ(γ ) · α̃(x, t), γ ∈ Γg, x ∈ B̃, t ∈ [0, 1].

Definition 5 Define the orbifold fundamental group of Γg\S◦
g by

Sg := [S1, Γg\S◦
g]orb

=
{
(α, γ ) ∈ C0(R,S◦

g)× Γg | α(0) = ∗,

α(t + 1) = γ · α(t), ∀t ∈ R

}
/ ∼ .

One has the following equivalent definition:

Sg :=
{
(α, γ ) ∈ C0([0, 1],S◦

g)× Γg | α(0) = γ−1 · α(1) = ∗
}
/ ≈ .

Here (α0, γ0) ≈ (α1, γ1) if and only if γ0 = γ1 and there exists a homotopy α(s, t) :
[0, 1]×[0, 1] → S◦

g connecting α0 and α1 such that α(0, t) = α0(t), α(1, t) = α1(t),

α(s, 0) = γ−1
0 · α(s, 1) = ∗ for s ∈ [0, 1].

The group law of Sg is defined as follows. Let [(α1, γ1)], [(α2, γ2)] ∈ Sg . Then
γ1 · α2 is a path connecting γ1 · ∗ and (γ1γ2) · ∗. Define the new path α : [0, 1] → S◦

g
by

α(t) :=
{
α1(2t) 0 ≤ t ≤ 1

2 ,

γ1 · α2(2t − 1) 1
2 ≤ t ≤ 1.

Then [(α1, γ1)] · [(α2, γ2)] := [(α, γ1γ2)]. For σ = [(l, γ )] ∈ Sg , the inverse is given
by

σ−1 = [(−(γ−1 · l), γ−1)], −l(t) := l(1− t), t ∈ [0, 1]. (31)

Let p : Sg → Γg be the projection to the second factor. Since the kernel of p is
isomorphic to π1(S

◦
g, ∗), we have an exact sequence

1 → π1(S
◦
g, ∗) → Sg → Γg → 1. (32)

Remark 4 When g = 1, Γ1\S◦
1 = SL2(Z)\S1 is the moduli space of curves of genus

1 and S1 = M1. When g = 2, Γ2\S◦
2 is the moduli space of curves of genus 2 by the

Torelli theorem and S2 = M2. By (32), Sg is regarded as an analogue of the mapping
class group.

Recall that a π1(B, b)-equivariant map ( f, ρ) : (B̃, b̃) → (S◦
g, ∗) is a pair ( f, ρ),

where f ∈ C0(B̃,S◦
g) and ρ ∈ Hom(π1(B, b), Γg) satisfies the relations f (b̃) = ∗

123



Adiabatic limits of η-invariants and the Meyer functions 693

and f (γ · x) = ρ(γ ) · f (x) for γ ∈ π1(B, b), x ∈ B̃. Given a π1(B, b)-equivari-
ant map ( f, ρ), one obtains the homomorphism of groups f∗ : π1(B, b) → Sg by
f∗([c]) = [( f ◦ c, ρ([c]))] for [c] ∈ π1(B, b).

Let F be a compact oriented surface with non empty boundary. Fix a base point
b ∈ F . Since F is homotopy equivalent to the n-bouquet Bn := S1∨· · ·∨S1 (n-times)
for some n ∈ Z≥1, π1(F, b) ∼= π1(Bn, ∗) is a free group of rank n. We have

[Bn, Γg\S◦
g]orb ∼= [S1, Γg\S◦

g]orb × · · · × [S1, Γg\S◦
g]orb (n times)

∼= Sg × · · · × Sg (n times). (33)

Fix a set {g1, . . . , gn} of generators of π1(F, b) ∼= π1(Bn, ∗) as a free group of rank
n. Since [F, Γg\S◦

g]orb ≡ [Bn, Γg\S◦
g]orb we obtain the bijection by (33)

[F, Γg\S◦
g]orb ∼= Sg × · · · × Sg (n times), (34)

which is given by [( f, ρ)] �−→ ([ f∗(g1), ρ(g1)], · · · , [ f∗(gn), ρ(gn)]).
From now, we denote by B a pants, i.e.,

B = S2\ �3
k=1 Dk,

where D1, D2, D3 are mutually disjoint open discs. Fix a base point b ∈ B. Since B
is homotopy equivalent to the 2-bouquet B2, π1(B, b) is the free group of rank 2. Let
g1, g2 be the generators of π1(B, b) such that gi is represented by a loop homotopy
equivalent to ∂Di . By (34) we have the bijection

[B, Γg\S◦
g]orb ∼= Sg × Sg. (35)

For [( f, ρ)] ∈ [B, Γg\S◦
g]orb the fiber product π : B̃ × f Θ → B̃ is a π1(B, b)-equi-

variant fiber bundle because f : B̃ → S◦
g is a π1(B, b)-equivariant map. Hence we

get the fiber bundle π : (B̃ × f Θ)/π1(B, b) → B, which is uniquely determined
by [ f ] ∈ [B, Γg\S◦

g]orb up to homotopy and which is a 2g-dimensional compact
oriented manifold with boundary. If [( f, ρ)] corresponds to (σ1, σ2) ∈ Sg × Sg via
the isomorphism (35), we set

X (σ1, σ2) := (B̃ × f Θ)/π1(B, b).

Then π : X (σ1, σ2) → B is a differentiable family of smooth theta divisors whose
monodromy around ∂Di is σi for i = 1, 2.

Recall that for 4k-dimensional compact oriented manifold with boundary the signa-
ture Sign(X) is defined as the signature of the cup-product pairing on H2k(X, ∂X,Q).

Definition 6 Define the map cg : Sg × Sg → Z by

cg(σ1, σ2) := Sign(X (σ1, σ2)), (σ1, σ2) ∈ Sg × Sg.

We call cg the signature cocycle for smooth theta divisors.
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Remark 5 When g is odd, cg ≡ 0 because Sign(X (σ1, σ2)) always vanishes in this
case.

Lemma 11 The following equality holds:
(a) cg(σ1, σ2)+ cg(σ1σ2, σ3) = cg(σ2, σ3)+ cg(σ2σ3, σ1),

(b) If σ1σ2σ3 = I , then cg(σ1, σ2) = cg(σ2, σ3) = cg(σ3, σ1),
(c) cg(σ1, I ) = cg(I, σ1) = 0,
(d) cg(σ1, σ2) = cg(σ2, σ1),
(e) cg(σ

−1
1 , σ−1

2 ) = −cg(σ1, σ2),
(f) cg(σ3σ1σ

−1
3 , σ3σ2σ

−1
3 ) = cg(σ1, σ2),

where σ1, σ2, σ3 ∈ Sg and I is the unit element. In particular, cg is a 2-cocycle of the
group Sg by (a).

Proof By the same argument as in [2, p. 343], we obtain the assertion. ��
Denote by [cg] ∈ H2(Sg,Z) the cohomology class of cg . Then c2 is the Meyer cocycle
of genus two.

Remark 6 Let ρ : Sg → Aut(H g−1(Θ∗,Z),<,>) be the monodromy representa-
tion, where < , > denotes the cup-product pairing. When g is even, < , > is skew-
symmetric and Aut(H g−1(Θ∗,Z),<,>) ∼= Γkg , where kg = 1

2 dimR H g−1(Θ∗,R).
Hence we have the homomorphism ρ : Sg → Γkg . In this case, cg is the pull-back of
the signature cocycle of Γkg via the map ρ by [1, Sect. 4] and [2, Sect. 2]. When g = 2,
ρ is equal to the homomorphism in (32). However this is not the case for general g,
because dimR H g−1(Θ∗,R) > g for g > 2.

7 Construction of the Meyer function for smooth theta divisors

As we explained in Sect. 1, the cohomology class of the Meyer cocycle τg is a torsion
element of H2(Mg,Z) for g = 1, 2 because H2(Mg,Q) = 0. In this section we
shall prove that the cohomology class of the signature cocycle cg is a torsion element
of H2(Sg,Z) by constructing a 1-cochain that cobounds cg explicitly. We don’t know
whether H2(Sg,Q) vanishes or not when g > 2, while we will see that H2(Sg,Z) �= 0
for g ≥ 1 in the next section.

Let σ = [(α, γ )] ∈ Sg . The fiber product R ×α Θ◦ is equipped with the π1(S1)-
action such that m · (t, (z, α(t))) = (t + m, γ m · (z, α(t))). We define the mapping
torus M(α,γ ) by

π : M(α,γ ) := (R×α Θ◦)/π1(S1) → S1, π = pr1.

Since the metric gΘ◦/S◦
g on T (Θ◦/S◦

g) and the connection PΘ on Θ◦ are

Γg-invariant and since the map α : S̃1 = R → S◦
g is π1(S1)-equivariant, the metric

gM(α,γ )/S1
on T (M(α,γ )/S1) (resp. the connection P(α,γ ) on M(α,γ )) is induced from

gΘ◦/S◦
g (resp. PΘ ) via the map α. With respect to the decomposition T M(α,γ ) =
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T (M(α,γ )/S1) ⊕ π∗T S1 associated with P(α,γ ), we define the one-parameter family

of Riemannian metrics g
M(α,γ )
ε on M(α,γ ) by

g
M(α,γ )
ε := gM(α,γ )/S1⊕ε−1π∗dt2, ε∈R>0.

Here we regard S1 as R/Z and t∈R as a local coordinate of S1. By Theorem 6, there
exists the adiabatic limit

η0(M(α,γ )) := lim
ε→0

η(M(α,γ ), g
M(α,γ )
ε ).

Since the 1-form dclog‖∆g(τ )‖2 is Γg-invariant, the pull-back α∗dc log ‖∆g(τ )‖2

can be regarded as a 1-form on S1.

Definition 7 For σ ∈ Sg , let (α, γ ) be a representative of σ , i.e., σ = [(α, γ )] and
set

Φg(α, γ ) := η0(M(α,γ ))+
(−1)g/22g+3(2g+2 − 1)B g

2+1

(g + 3)!
∫

S1

α∗dc log ‖∆g(τ )‖2.

The following theorem is the main result of this paper.

Theorem 12 (a) The value Φg(α, γ ) is independent of the choice of a representative
(α, γ ) of σ∈Sg. In particular Φg is a function on Sg.

(b) The function Φg satisfies
(b1) cg(σ1, σ2) = −Φg(σ1)−Φg(σ2)+Φg(σ1σ2),
(b2) Φg(I ) = 0,
(b3) Φg(σ

−1
1 ) = −Φg(σ1),

(b4) Φg(σ2σ1σ
−1
2 ) = Φg(σ1),

where σ1, σ2, σ3 ∈ Sg. In particular, [cg] ⊗Q = 0 ∈ H2(Sg,Q) by (b1).

Recall that the Meyer function φ2 of genus two cobounds the Meyer cocycle τ2
(cf. Introduction). As a consequence of Theorem 12, we get φ2 = Φ2 by the unique-
ness of the Meyer function of genus 2. Since ∆2(τ ) coincides with the Igusa modular
form χ2(τ ) up to a constant [39], we get the following analytic representation of the
Meyer function φ2.

Corollary 1 ([23]) Let σ = [(α, γ )] be an element of S2 = M2. Then

φ2(σ ) = η0(M(α,γ ))− 2

15

∫

S1

α∗dc log ‖χ2(τ )‖2.

Proof of Theorem 12 (a) Assume that (α0, γ ) and (α1, γ ) represent the same element
σ ∈ Sg . Put I := [0, 1]. There exists a continuous map ᾱ : I × R → S◦

g satisfying

ᾱ(s, 0) = ∗, s ∈ I, ᾱ(s, t) = γ ·ᾱ(s, t + 1), (s, t)∈I×R
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and

ᾱ(s, t) =
{
α0(t) s∈[0, 1

3 )

α1(t) s∈( 2
3 , 1].

(36)

Since ᾱ is π1(I×S1)-equivariant, the fiber product (I×R)×ᾱΘ
◦ is endowed with the

π1(I×S1)-action, and we have the fiber bundle

π̄ : M(ᾱ,γ ) := (I×R)×ᾱΘ
◦/π1(I×S1)−→I × S1.

By the Γg-invariance of gΘ◦/S◦
g and the π1(I×S1)-equivariance of ᾱ, gΘ◦/S◦

g induces

a metric gM(ᾱ,γ )/I×S1
on T (M(ᾱ,γ )/I×S1), and the connection PΘ induces a connec-

tion P(ᾱ,γ ) on M(ᾱ,γ ). With respect to the decomposition T M(ᾱ,γ ) = T (M(ᾱ,γ )/I ×
S1)⊕ π̃∗T (I × S1) associated with P(ᾱ,γ ), we set

g
M(ᾱ,γ )
ε := gM(ᾱ,γ )/I×S1 ⊕ ε−1π∗(ds2⊕dt2), ε ∈ R>0.

Let ∇M(ᾱ,γ )/(S1×I ) be the connection on T (M(ᾱ,γ )/(S1×I )) associated with

gM(ᾱ,γ )/(S1×I ) and P(ᾱ,γ ). By (36) and Lemma 2 (c), g
M(ᾱ,γ )
ε is a product metric on a

color neighborhood of the boundary ∂M(ᾱ,γ ), i.e.,

g
M(ᾱ,γ )
ε

∣∣[0, 1
3 )×S1 = g

M(α0,γ )

ε ⊕ε−1dt2, g
M(ᾱ,γ )
ε

∣∣
( 2

3 ,1]×S1 = g
M(α1,γ )

ε ⊕ ε−1dt2.

The Atiyah–Patodi–Singer index theorem applied to (M(ᾱ,γ ), g
M(ᾱ,γ )
ε ) yields that

Sign(M(ᾱ,γ )) =
∫

I×S1

π̃∗L
(

T M(ᾱ,γ ), g
M(ᾱ,γ )
ε

)

−
(
η(M(ᾱ0,γ ), g

M(α0,γ )

ε )− η(M(ᾱ1,γ ), g
M(α1,γ )

ε )
)
. (37)

Since I is contractible, M(ᾱ,γ ) is diffeomorphic to M(α0,γ )×I . Hence

Sign(M(ᾱ,γ )) = Sign(M(α0,γ ))×Sign(I ) = 0. (38)
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Let pr : M(α,γ ) → Θ◦ be the projection to the second factor. Then we get

lim
ε→0

∫

I×S1

π̄∗L
(

M(ᾱ,γ ), g
M(ᾱ,γ )
ε

)

=
∫

I×S1

π̄∗
(

L
(

T (M(ᾱ,γ )/(I×S1))
)
∧ π̄∗L

(
T (I×S1)

))

=
∫

I×S1

[
π̄∗L

(
T (M(ᾱ,γ )/(I×S1)),∇M(ᾱ,γ )/(I×S1)

)](2)

=
∫

I×S1

[
π̄∗ pr∗L

(
T (Θ◦/S◦

2g),∇Θ◦/S◦
g

)](2)

=
∫

I×S1

ᾱ∗
[

p∗L
(

T (Θ◦/S◦
g),∇Θ◦/S◦

g

)](2)
, (39)

where the first equality follows from Proposition 2, the third equality follows from
Proposition 1 and we used the identity π̄∗ p∗2ω = ᾱ∗ p∗ω for ω ∈ Ak(Θ◦) to get the
last equality. By Theorem 11, we have

∫

I×S1

ᾱ∗
[

p∗L
(

T (Θ◦/S◦
g),∇Θ◦/S◦

g

)](2)

= (−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1

∫

I×S1

ᾱ∗ddclog‖∆g(τ )‖2

= (−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1

×
⎛

⎜⎝
∫

{1}×S1

α∗1dc log ‖∆g(τ )‖2 −
∫

{0}×S1

α∗0dc log ‖∆g(τ )‖2

⎞

⎟⎠ , (40)

where we used the Γg-invariance of the 1-form dc log ‖∆g(τ )‖2 to get the last equality.
We obtain

0 = lim
ε→0

∫

I×S1

π̄∗L
(

T M(ᾱ,γ ), g
M(ᾱ,γ )
ε

)

−
(
η(M(ᾱ0,γ ), g

M(α0,γ )

ε )− η(M(ᾱ1,γ ), g
M(α1,γ )

ε )
)
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=
⎛

⎜⎝
(−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1

∫

S1

α∗1dclog‖∆g(τ )‖2 + η0(M(α1,γ ))

⎞

⎟⎠

−
⎛

⎜⎝
(−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1

∫

S1

α∗0dclog‖∆g(τ )‖2 + η0(M(α0,γ ))

⎞

⎟⎠

= Φg(α1, γ )−Φg(α0, γ ),

where the first equality follows from (37) and (38), the second equality follows from
(39), (40) and Theorem 6, and the last equality follows from Definition 7.

(b) Since η(−M, gM ) = −η(M, gM ) for any odd dimensional Riemannian man-
ifold (M, gM ) (cf. [3]), we have (b3). Let σ1 = [(α1, γ1)], σ2 = [(α2, γ2)], σ3 :=
(σ1σ2)

−1 = [(α3, (γ1γ2)
−1)] ∈ Sg . Recall that B = S2\�3

k=1 Dk . By (b3), it suffices
to show that

Sign(X (σ1, σ2)) = −
3∑

i=1

Φg(σi ) (41)

in order to prove (b1). Let Ui be a neighborhood of ∂Di in B such that Ui ∼= [0, 1)×
∂Di . Let βi : Ũi ∼= [0, 1) × R → B̃ be the lift of the map Ui ↪→ B. As before,
g1, g2 ∈ π1(B, b) denote the generators represented by the loops ∂D1, ∂D2, respec-
tively. Let [(α, ρ)] ∈ [B, Γg\S◦

g]orb be the element corresponding to (σ1, σ2) ∈
Sg × Sg under the isomorphism (35). Since the loops ∂D1, ∂D2 and ∂D3 represent
g1, g2 and (g1g2)

−1 ∈ π1(B, b), we can assume that

α ◦ βi
∣∣
Ũi
(si , t) = αi (t), (si , t) ∈ Ũi ∼= [0, 1)× R, i = 1, 2, 3. (42)

Let gX (σ1,σ2)/B (resp. PX (σ1,σ2)) be the metric on T X (σ1, σ2) (resp. the connection
on X (σ1, σ2)) induced from the metric gΘ◦/S◦

g (resp. the connection PΘ ) via the map
α. Let gB be a metric on T B such that gB∣∣

Ui
= ds2

i ⊕dt2. With respect to the decom-
position T X (σ1, σ2) = T (X (σ1, σ2)/B)⊕π∗T B associated with PX (σ1,σ2), we define
the family of metrics on T X (σ1, σ2) by

gX (σ1,σ2)
ε := gX (σ1,σ2)/B ⊕ ε−1π∗gB, ε ∈ R>0.

By (42) and Lemma 2 (c), we have

gX (σ1,σ2)
ε

∣∣
Ui
= g

M(αi ,γ )

ε ⊕ ε−1ds2
i , i = 1, 2, 3. (43)

Let ∇X (σ1,σ2)/B be the connection on T (X (σ1, σ2)) associated to the metric
gX (σ1,σ2)/B and the connection PX (σ1,σ2). Since the metric gX (σ1,σ2)

ε is a product metric
on a color neighborhood of the boundary of X (σ1, σ2) by (43), the Atiyah–Patodi–
Singer index theorem applied to (X (σ1, σ2), gX (σ1,σ2)

ε ) yields that
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Sign (X (σ1, σ2))

= lim
ε→0

⎛

⎜⎝
∫

X (σ1,σ2)

L
(

T X (σ1, σ2), gX (σ1,σ2)
ε

)
−

3∑

i=1

η(M(αi ,γ ), g
M(αi ,γ )

ε )

⎞

⎟⎠

=
∫

B
π∗L

(
T (X (σ1, σ2)/B),∇X (σ1,σ2)/B

)
−

3∑

i=1

η0(M(αi ,γ ))

=
∫

B
α∗
[

p∗L
(

T (Θ◦/S◦
g),∇Θ◦/S◦

g

)](2) −
3∑

i=1

η0(M(αi ,γ ))

=
∫

B

(−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1α

∗ddc log ‖∆g(τ )‖2 −
3∑

i=1

η0(M(αi ,γ ))

=
3∑

i=1

∫

∂Di

− (−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1α

∗
i dc log ‖∆g(τ )‖2

−
3∑

i=1

η0(M(αi ,γ ))

= −
3∑

i=1

Φg(σi ).

This completes the proof of (b1). From (b1) and Lemma 11 (c), (b2) follows. By (b1)
and Lemma 11 (d), we have Φg(σ1σ2) = Φg(σ2σ1) for any σ1, σ2 ∈ Sg , from which
(b4) follows. ��

8 The first cohomology of Sg

The uniqueness of a 1-cochain that cobounds the 2-cocycle cg is equivalent to the
vanishing of H1(Sg,Z). Indeed, if there is another 1-cochain Φ

′
g : Sg → R that

cobounds cg , the difference Φg − Φ
′
g is an element of Hom(Sg,R) ∼= H1(Sg,R).

(See [16] for generalities of cohomology of groups).
Let k1(g) = 2g−2(2g + 1) and k2(g) = (g+3)·g!

4 − 2g−3(2g + 1) denote the
weights of the Siegel modular forms χg(τ ) and Jg(τ ), respectively. Set mi (g) :=
L.C.D(k1(g), k2(g))/ki (g), i = 1, 2. Then χg(τ )

m1(g) Jg(τ )
−m2(g) is a Γg-invariant

holomorphic function on S◦
g .

While H1(S1,Z) = H1(S2,Z) = 0, the uniqueness is no longer valid for g > 3.

Theorem 13 The following holds:

H1(Sg,Z) =
{

0 1≤g≤3,

Z g≥4.

123



700 S. Iida

For g≥4 the generator of H1(Sg,Z) is represented by a homomorphism α ∈
Hom(Sg,Z) defined by

σ �−→ 1

2π
√−1

1∫

0

p∗dlogχg(τ )
m1(g) Jg(τ )

−m2(g) ∈Z, σ = [(p, γ )] ∈ Sg.

In particular, the cochain cobounding the signature cocycle cg is not unique when
g ≥ 2.

The proof of Theorem 13 is divided into several lemmas below. By (32), we have
the 5-term exact sequence (see [16, Chap. VII, Cororally 6.4])

1 → H1(Γg,Z) → H1(Sg,Z) → H1(π1(S
◦
g, ∗),Z)Γg

δ→ H2(Γg,Z) → H2(Sg,Z), (44)

Here H1(π1(S
◦
g, ∗),Z)Γg denotes the Γg-invariant subspace of H1(π1(S

◦
g, ∗),Z).

Lemma 12 The following holds:

H1(Γg,Z) = 0 g ≥ 1, H2(Γg,Z) =

⎧
⎪⎨

⎪⎩

Z/12Z if g = 1

Z⊕ Z/2Z if g = 2

Z if g ≥ 3.

Proof See [14], [27, Corollary 5.2.3, Remark 5.2.4]. ��

By the Hurwitz theorem [36, Chap. 7, Sect. 5, Proposition 2], we obtain

H1(π1(S
◦
g, ∗),Z)Γg ∼= H1(S◦

g,Z)Γg . (45)

Lemma 13 Let X be a connected complex manifold of dimC X≥2. Assume that

H1(X,Z) = H2(X,Z) = 0. (46)

Let D =∑λ∈Λ nλDλ be a divisor on X such that nλ �=0 and Dλ is irreducible for all
λ ∈ Λ. Then

H1(X − D,Z) ∼= Z
Λ.

Here Z
Λ denotes the direct product. The generator of the cohomology H1(X − D,Z)

corresponding to λ∈Λ is represented by the map lλ �→1 and lµ �→0 for µ�=λ∈Λ, where
lµ denotes the loop around a small disk intersection Dµ transversally.
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Proof Since the real codimension of SingD in X is greater than or equal to 4, we
have πk(X, X − SingD, ∗) = 0 for 1≤k≤3. The relative Hurwitz theorem [36,
Chap. 7, Sect. 5, Proposition 1] asserts that Hk(X, X − SingD,Z) = 0 for k≤3.
Hence Hk(X, X − SingD,Z) = 0 for k≤3, which together with the cohomology
exact sequence for the triple (X, X − SingD, X − D), yields that

H2(X, X − D,Z)∼= H2(X − SingD, X − D,Z). (47)

By the cohomology exact sequence for the pair (X, X − D) and (46), we see that

H1(X − D,Z)∼= H2(X, X − D,Z)∼= H2(X − SingD, X − D,Z). (48)

Since D − SingD is a closed submanifold in X − SingD and since X − D = (X −
SingD)− (D − SingD), the Thom isomorphism asserts that

H2(X − SingD, X − D,Z)∼= H0(D − SingD,Z). (49)

By the irreducibility of Dλ, Dλ − SingDλ is path connected so that

H0(D − SingD,Z)∼=Z
Λ. (50)

The result follows from (48), (49) and (50). ��
Lemma 14 The following holds:

H1(S◦
g,Z)Γg =

⎧
⎪⎨

⎪⎩

0 g = 1

Z g = 2, 3

Z
⊕2 g ≥ 4.

By regarding H1(S◦
g,C) as the de Rham cohomology group, the images of the genera-

tors under the natural map H1(S◦
g,Z) → H1(S◦

g,C) are represented by the 1-forms
1

2π
√−1

dlogχg(τ ) and 1
2π
√−1

dlogJg(τ ). Here Jg(τ ) ≡ 1 and hence d log Jg(τ ) ≡ 0

for g ≤ 3.

Proof By Theorems 9 and 10, and Lemma 13, we get the assertion. ��
Remark 7 Notice that the differential forms 1

2π
√−1

dlogχg(τ ) and 1
2π
√−1

dlogJg(τ )

are not Γg-invariant, but their cohomology classes are Γg-invariant.

Let G := Sp(2g,R) be the symplectic group and let Gδ be the same group endowed
with the discrete topology. Consider the universal covering

0 → Z → G̃ → G → 0, (51)

which defines a central extension of Gδ by Z. Let e(G) ∈ H2(Gδ,Z) be the coho-
mology class corresponding to the central extension (51).
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Recall that the automorphic factor j (τ, γ ) is a nowhere vanishing holomorphic
function on Sg . Since Sg is simply connected, the logarithm of j (τ, γ ) makes sense.
Choose a branch of the logarithm of j (τ, γ ) and denote it by logσ j (τ, γ ) for γ∈Gδ .
Define the function λσ : Gδ×Gδ→Z by

(A, B) �−→ 1

2π
√−1

(
logσ j (B·τ, A)+ logσ j (τ, B)− logσ j (τ, AB)

)
(52)

for (A, B)∈Gδ×Gδ .

Lemma 15 The function λσ is a 2-cocycle of Gδ whose cohomology class is e(G).

Proof For g = 1, see [5, Lemma 2.1]. When g ≥ 1, we closely follow [5]. Choose
the branch logσ j (τ, γ ) satisfying

Im logσ j (
√−1·12g, γ ) ∈[0, 2π). (53)

Since the function λσ is measurable, the cohomology class [λσ ] is a constant multiple
of e(G) by [28, Theorem 2]. Therefore it suffices to determine the restriction of the
cohomology class [λσ ] to the maximal compact subgroup of G. We identify the unitary
group U (g) with the maximal compact subgroup of G by the inclusion map defined
by

ι : U (g) � Z �−→
(

Re Z Im Z
−Im Z Re Z

)
∈G.

Since j (
√−1·12g, ι(Z)) = det(Z)−1 for Z∈U (g) and the isotropy subgroup at√−1·12g∈Sg is just U (g), we have

2π
√−1λσ (Z1, Z2) = logσ det(Z1 Z2)− logσ det(Z1)− logσ det(Z2) (54)

for (Z1, Z2)∈U (g)×U (g). By (54), the restriction of the cohomology class [λσ ] to
U (g) is the pull-back of the cohomology class corresponding to the universal covering

0 → Z → Ũ (1) ∼= R → U (1) → 1,

via the map det : U (g)→U (1). Since the induced map (det)∗ : π1(U (g)) →
π1(U (1)) is an isomorphism, we get [λσ ] = e(G). Since the cohomology class is
independent of the choice of a branch of logσ j (τ, γ ), we obtain the assertion. ��
Lemma 16 Let ι : Γg → Gδ be the natural inclusion. For g �= 2 (resp. g = 2),
the cohomology class ι∗e(G) is a generator of H2(Γg,Z) (resp. the free part of
H2(Γ2,Z)).

Proof Let [τg] ∈ H2(Gδ,Z) be the original signature cocycle of G (see [30] for defini-
tion). By [37, Theorem 1], we have [τg] = 4e(G). Letρ : Mg → Γg be the symplectic
representation of the mapping class group obtained by the action on H1(Σg,Z). By
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[30], ρ∗ι∗[τg] is four times the generator of H2(Mg,Z). Hence 4ι∗e(G) is four times
the generator of H2(Γg,Z), which yields the assertion. ��

Lemma 17 Let g ≥ 4. The map δ : H1(π1(S
◦
g, ∗),Z)Γg→H2(Γg,Z) is given by

(m, n) �−→(k1(g)m + k2(g)n) ∈H2(Γg,Z)∼=Z

for (m, n) ∈ H1(π1(S
◦
g, ∗),Z)Γg ∼= Z

⊕2. For g = 2, 3, the map δ is given by
m �→k1(g)m.

Proof Let σ : Γg → Sg be a section and write σ(γ ) = [(lγ , γ )] ∈ Sg for γ ∈ Γg .
Let α be an element of H1(π1(S

◦
g, ∗),Z)Γg∼=Hom(π1(S

◦
g, ∗),Z)Γg . Then δ(α) :

Γg×Γg→Z is given by

(A, B) �−→α
(
σ(A)σ (B)σ (AB)−1

)
∈ Z, (A, B)∈Γg×Γg,

where we identify σ(A)σ (B)σ (AB)−1 with the corresponding preimage under the
inclusion π1(S

◦
g, ∗)→Sg. Write

σ(A)σ (B)σ (AB)−1 = [(l(A,B), 1)]∈π1(S
◦
g, ∗),

where l(A,B) is a loop on S◦
g . By (31), σ(AB)−1 = [(−(AB)−1 · l(AB), (AB)−1)].

Hence l(A,B) is the composition of the paths lA, A · lB and −l(AB). See Fig. 1.

Fig. 1 Loop l(A,B)
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Under the identification in Lemma 14, δ(m, n) for (m, n) ∈H1(π1(S
◦
g, ∗),Z)Γg ∼=

Z
⊕2 is given by

δ(m, n)(A, B) = 1

2π
√−1

∫

l(A,B)

dlogχg(τ )
m Jg(τ )

n ∈Z, (A, B)∈Γg×Γg.

By using the path lγ connecting ∗ and γ · ∗, we define the branch logσ j (τ, γ ) for
γ∈Γg satisfying

logσ j (∗, γ ) := 1

k1(g)

∫

lγ

dlogχg(τ ).

Then we get

2π
√−1δ(1, 0)(A, B) =

∫

l(A,B)

dlogχg(τ )

=
∫

lA

d logχg(τ )+
∫

A·lB

d logχg(τ )+
∫

−l(AB)

d logχg(τ )

= k1(g)
[
logσ j (∗, A)− logσ j (∗, AB)

]+
∫

lB

d logχg(A · τ)

= k1(g)
[
logσ j (∗, A)− logσ j (∗, AB)

]

+
∫

lB

[
d logχg(τ )+ k1(g)d logσ j (τ, A)

]

= k1(g)
[
logσ j (∗, A)− logσ j (∗, AB)

]

+ k1(g)
[
logσ j (∗, B)+ logσ j (B · ∗, A)− logσ j (∗, A)

]

= k1(g)
[
logσ j (B·∗, A)+ logσ j (∗, B)− logσ j (∗, AB)

]
.

By Lemmas 15 and 16, we see that δ(1, 0) = k1(g)∈H2(Γg,Z)∼=Z. Similarly we get
δ(0, 1) = k2(g), which completes the proof. ��
Proof of Theorem 13 Since H1(Γg,Z) = 0 in the exact sequence (44), we get
H1(Sg,Z) = Ker(δ). By Lemma 17, we get Ker(δ) = 0, for 1 ≤ g ≤ 3 and
Ker(δ) ∼= Z for g ≥ 4. This completes the proof. ��

In the proof of Theorem 13, we also obtain

Proposition 4 One has H2(Sg,Z) �= 0 for g ≥ 1.

Proof Since k1(g) > 1 for g = 2, 3 and G.C.D(k1(g), k2(g)) > 1 for g≥4, δ is not
surjective by Lemma 17. By the exact sequence (44), we obtain the assertion. ��
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9 The value for the Dehn twists

In this section, we compute the value of Φg for the generators of the subgroup
π1(S

◦
g, ∗) ⊂ Sg (cf. (32)) and we prove the rationality of Φg .

By Theorem 9, the Andreotti–Mayer locus Ng has two components θg and Jg such
that Γg\θg and Γg\Jg are irreducible divisors on Γg\Sg . Let

∑
λ θg,λ and

∑
µ Jg,µ

be the irreducible decompositions of θg and Jg , respectively. Consider a lasso in Sg

surrounding θg,λ (resp.Jg,µ) and denote its homotopy class by Π1
λ (resp.Π2

µ). Then
Π1

λ and Π2
µ define elements of π1(S

◦
g, ∗) ⊂ Sg up to conjugacy classes. After [24],

we call Π1
λ and Π2

µ the Dehn twists.

Theorem 14 The following equalities hold:

Φg(Π
1
λ) =

{− 4
5 if g = 2,

(−1)
g
2+1 (g+1)2g+2(2g+2−1)

(g+3)! B g
2+1 if g ≥ 3.

Φg(Π
2
µ) = (−1)

g
2+1 (g + 1)2g+3(2g+2 − 1)

(g + 3)! B g
2+1 if g ≥ 4.

Proof Let ∆ := {z ∈ C | |z| ≤ 1} be the unit disc and set ∆r = {z ∈ ∆; |z| ≤ r} and
∆∗ := ∆\{0}. Let αi : S1 → S◦

g be a representative of Π i
λ. Recall that the Zariski

open subset θ◦g ⊂ θg and J ◦
g ⊂ Jg were defined in Theorem 9. Let ρi : ∆ → Sg be

a C∞-map with the following properties:

(a) ρi |∂∆ = αi and ρi (∆
∗) ⊂ S◦

g.

(b) ρi |∆ 1
3
: ∆ 1

3
→ ρi (∆ 1

3
) ⊂ Sg is a holomorphic embedding with

ρi (re
√−1θ ) = ρi

(
2

3
e
√−1θ

)
,

2

3
≤ r≤1, 0≤θ < 2π.

(c) ρ1(∆) intersects θg at ρ1(0) ∈ θ◦g transversally, and ρ2(∆) intersects Jg at
ρ2(0) ∈ J ◦

g transversally.

Let

� : Xi := ∆×ρi Θ −→ ∆,

be the family of theta divisors over ∆ induced from the universal family p : Θ → Sg

by ρi . Let pr : Xi → Θ be the projection to the second factor. By Condition (c), Xi is
a C∞-manifold. By Conditions (a), (c) and Theorem 9, Sing

(
�−1(0)

)
consists of one

ordinary double point (resp. two ordinary double points) and �−1(z) is a smooth theta
divisor for z ∈ ∆∗. Notice that ∂Xi endowed with the orientation induced from Xi

is diffeomorphic to the mapping torus M(Π i
λ)
−1 endowed with the natural orientation

(cf. Definition 3), i.e., ∂Xi = −MΠ i
λ
. For simplicity, set Mi := MΠ i

λ
.
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Let g∆ be a metric on T∆ such that

g∆ =
{

dr2 + dθ2 (|r | > 2
3 ),

p∗gSg (|r | < 1
3 ).

(55)

Let D be the set of singular points of the central fiber �−1(0). Let gXi /∆ be the metric
on T (Xi/∆)

∣∣
Xi−D induced from the metric gΘ◦/S◦

g via the map ρi . Let Pi be the con-
nection induced from the connection PΘ on Θ◦ via the map ρi . Using Pi , define the
metric on T Xi

∣∣
Xi−D by g̃Xi := gXi /∆⊕� ∗g∆. Since pr

∣∣
�−1(∆1/3)

: �−1(∆1/3) →
Θ is a holomorphic embedding and preserves the metric outside D by Lemma 7 and
since the metric gΘ := gAg |Θ is defined on the total space Θ , the metric g̃Xi

extends
to a metric gXi

on T Xi . Set

gXi

ε := gXi⊕ε−1� ∗g∆, ε∈R>0.

By Condition (b), ρi is constant in the radial direction when 2
3 ≤ r ≤ 1. Hence gXi

ε is
a product metric on a color neighborhood of the boundary ∂Xi by Lemma 2 (c) and
(55). The Atiyah–Patodi–Singer index theorem applied to (Xi , gXi

ε ) yields that

Sign(Xi
g) =

∫

Xi

L(T Xi , gXi

ε )+ η(Mi , gMi
ε ). (56)

Here, ∂Xi is identified with −Mi , and gMi
ε is the restriction of gXi

ε to the boundary
∂Xi∼=− Mi .

Lemma 18 The following equality holds:

lim
ε→0

L(T Xi , gXi

ε )(2g) = L(T (Xi/∆),∇Xi /∆)(2g)

+P(−t, . . ., (−t)g)|t g ·
∑

p∈D
µ(p)δp.

Here the differential form L(T (Xi/∆),∇Xi /∆) on Xi\D extends to a C∞-differential
form on Xi . The constant µ(p) is the Milnor number of the singular point p ∈ D,
δp is the Dirac delta current supported at p, and P(x1, . . . , xg) ∈ C[[x1, . . . , xg]] is
defined by

g∏

k=1

L(xk) = P(σ1, . . ., σg),

where σ1 =∑k xk, σ2 =∑i> j xi x j , . . ., σg = ∏k xk are the elementary symmetric
polynomials.
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Proof On Xi\D, the assertion follows from Proposition 2. Let U ⊂ Xi be an open
neighborhood of D contained in �−1(∆ 1

3
). By Condition (b) and the equality (24),

we have

L(T Xi , gXi

ε )|U = (pr |U )∗L(TΘ, gΘ
ε ) = (pr |U )∗L(T 1,0Θ, gΘ

ε ), (57)

where gΘ
ε := gΘ ⊕ ε−1 p∗gSg . By [40, Main Theorem 2.2], we get

lim
ε→0

L(T 1,0Θ, gΘ
ε )(2g)|pr(U ) = L(T 1,0(Θ/Sg),∇h)(2g)|pr(U )

+P(−t, . . . , (−t)g)|t g ·
∑

p∈pr(D)

µ(p)δp,

which together with (57), yields the assertion. ��

Lemma 19 The following equality holds:

P(−t, . . ., (−t)g)|t g = L−1(t)|t g = (−1)g/22g+2(2g+2 − 1)

(g + 2)! B g
2+1

Proof Consider the exact sequence of vector bundles over P
g:

0 → O(−1) → C
g+1 → E := C

g+1/O(−1) → 0.

For a complex vector bundle F over P
g , recall that L(F) ∈ H∗(Pg,Q) denote the

multiplicative genus of F associated with L(x) (cf. (24)) and let c(F) denote the total
Chern class of F . Set t := c1(O(−1)). Since c(O(−1)) · c(E) = c(Cg+1) = 1 and
c(O(−1)) = 1+ t , we have c(E) =∑g

k=0(−t)k , which together with L(O(−1)) =
L(t), L(E) = P(c1(E), . . . , cg(E)) and L(O(−1)) · L(E) = L(Cg+1) = 1, yields
that

P((−t), . . . , (−t)g) = L(E) = L(O(−1))−1

= L−1(t) ∈ H∗(Pg,Q) ∼= Q[t]/(t g+1).

This proves the first equality. Since L−1(t) = tanh(t)/t by (23), the second equality
follows from (30). ��

Since p ∈ D is a non-degenerate critical point of � : Xi → ∆, we get µ(p) = 1.
Taking the limit ε → 0 in (56), we get by Lemma 18, Theorem 11 and Lemma 19
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Sign(Xi ) =
∫

∆

�∗ pr∗L(T (Θ◦/Sg),∇Θ◦/Sg )+ L−1(t)|t g + η0(Mi )

=
∫

∆

ρ∗i p∗L(T (Θ◦/Sg),∇Θ◦/Sg )

+i
(−1)g/22g+2(2g+2 − 1)

(g + 2)! B g
2+1 + η0(Mi )

= (−1)g/22g+1(2g+2 − 1)

(g/2+ 1)(g + 1)
B g

2+1

∫

∆

ρ∗ddclogdetImτ

+i
(−1)g/22g+2(2g+2 − 1)

(g + 2)! B g
2+1 + η0(Mi ). (58)

By (58) and Definition 7, we get

Φg(Π
i
λ) =

(−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1

×
∫

∂∆

ρ∗dc
(

log|∆g(τ )|2(detImτ)
(g+3)·(g)!

2

)
+ η0(Mi )

= −i
(−1)g/22g+2(2g+2 − 1)

(g + 2)! B g
2+1 + Sign(Xi )

+ (−1)g/22g+3(2g+2 − 1)

(g + 3)! B g
2+1

∫

∆

ρ∗ddclog|∆g(τ )|2

= i
(−1)

g
2+1(g + 1)2g+2(2g+2 − 1)

(g + 3)! B g
2+1 + Sign(Xi ), (59)

where we used the Poincaré–Lelong formula and Theorem 10 to get the last equality.
When g = 2 and i = 1, since the singular fiber has two irreducible components

and hence Sign(X1) = −1, the assertion follows. We complete the computation in
the case g ≥ 3 and i = 1, 2 by Lemma 20 below. ��
Lemma 20 Let π : X → ∆ be a proper surjective holomorphic map from a complex
manifold X of dimension 2n to the unit disk ∆. Assume that π has only finitely many
critical points which are non-degenerate and lie in the central fiber X0. If n > 1, then
Sign(X) = 0.

Proof By the assumption, there are points p1, . . . , pl ∈ X0 and open neighborhoods
U k of pk in X such that

π(zk
1, . . . , zk

2n) = (zk
1)

2 + · · · + (zk
2n)

2, (zk
1, . . . , zk

2n) ∈ U k,

and such that the induced map π∗ : T X → T∆ has maximal rank on X\{p1, . . . , pl}.
Let ε ∈ R>0 be a small number. We may assume that each V k := {(zk

1, . . . , zk
2n) ∈
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C
2n | |zk

1|2 + · · · + |zk
2n|2 < ε2} is contained in U k . Fix a ρ ∈ R>0 with ρ < ε2. Set

D := ∆ρ, X := π−1(D), X◦ := X\ ∪l
k=1 V k, F := π−1(0), F◦ := F ∩ X◦.

Since X is diffeomorphic to X , it suffices to show Sign(X) = 0. Consider the following
commutative diagram of the homologies induced from natural inclusions:

H2n(X◦,Z)
( f )−−−−→ H2n(X\{p1, . . . , pl},Z)

(a)−−−−→∼= H2n(X,Z)

(e)

#⏐⏐∼= ∼=
#⏐⏐(b)

H2n(F◦,Z)
∼=−−−−→
(d)

H2n(F\{p1, . . . , pl},Z)
∼=−−−−→
(c)

H2n(F,Z).

(60)

Here the isomorphisms (a) and (c) follow from the fact that the submanifold
{p1, . . . , pl} of X (resp. F) has real codimension 4n (resp. 4n−2), (b) and (d) follow
from the fact that F (resp. F◦) is a deformation retraction of X (resp. F\{p1, . . . , pl}).
By Ehresmann’s fibration theorem for manifolds with boundary [26, p. 23], there is an
isomorphism of C∞-fiber bundles X◦ ∼= F◦ ×∆. Since ∆ is contractible, we obtain
the isomorphism (e).

By (60), the map ( f ) is an isomorphism. Hence we get the commutative diagram

H2n(Xt ∩ X◦,Z)
∼=−−−−→ H2n(X◦,Z)

⏐⏐	
⏐⏐	∼=

H2n(Xt ,Z) −−−−→ H2n(X,Z)

(61)

for any t ∈ ∆. By (61), the map H2n(Xt ,Z) → H2n(X,Z) is surjective for any t ∈ ∆.
Therefore every c ∈ H2n(X,Z) can be represented by a 2n-cycle contained in the
fiber Xt for any t ∈ ∆. Since the intersection number of any two 2n-cycles contained
in different fibers is zero, the intersection matrix of the lattice H2n(X,Z) is the zero
matrix, from which the assertion follows. ��
Remark 8 When g = 2, σ2∈M2 is the Dehn twist along a separating simple closed
curve on a Riemann surface of genus two. Since Sign(X2) = −1 and B2 = 1

30 , we
obtain φ2(σ2) = Φ2(σ2) = − 4

5 , which confirms [29, Proposition 3.6].

As a consequence, we obtained the following:

Theorem 15 The value Φg(σ ) is a rational number for any σ ∈ Sg.

Proof We keep the notation in Sect. 8. By Theorem 12, there exists a function Φ ′
g :

Sg → Q which cobounds the signature cocycle cg . By Theorem 13, there exits a
constant a ∈ R such that

Φg = Φ ′
g + aG,
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where G is a generator of Hom(Sg,Z) ∼= H1(Sg,Z). Let σ := Π1
λ be a generator

of π1(S
◦
g, ∗). Since Φg(σ ) ∈ Q by Theorem 14 and since G(σ ) = m1(g) �= 0 by

Theorem 13, we have a ∈ Q, which yields the assertion. ��

10 An interpretation of Φ2 in terms of η-forms

In this final section, following Dai’s results [18], we study the Meyer function Φ2 of
genus two from the view point of the Bismut–Cheeger η-forms and we give another
analytic representation of Φ2.

We first recall one of the main results in [18] briefly. Let π : X → B be a fiber
bundle with typical compact fiber M such that dimR X = 4k − 1 and dimRM = 2m.
Assume that X , B and M are oriented and the orientations are compatible. Give a
metric gB on T B, a metric gX/B on T (X/B) and a connection PX on X . Define the
one parameter family of metrics on X by

gX
ε := gX/B ⊕ ε−1π∗gB, ε ∈ R>0.

Then one obtains the adiabatic limit η0(X) as in Sect. 3.
Let (Er , dr ), r ≥ 2 be the Er -term of the Leray spectral sequence of the fiber

bundle π : X → B. The orientations of B and M give a natural basis ξ2 of E4k−1
2 ,

which induces a basis ξr of E4k−1
r for r > 2. (See [17, Sect. 4.3] for details.) Consider

the symmetric bilinear product E2k−1
r × E2k−1

r → R defined by

(ω1, ω2) �→ (ω1 · drω2, ξr ), ω1, ω2 ∈ E2k−1
r ,

and denote its signature by τr . Set τ :=∑r≥2 τr .
Let Rπ∗C := ⊕Rkπ∗C be the direct image sheaf, which is a locally constant

sheaf. We identify Rπ∗C with the corresponding flat vector bundle on B. Since the
fiber of (Rπ∗C)b is isomorphic to the space of harmonic forms on the fiber Xb :=
π−1(b), the vector bundle Rπ∗C carries the L2-metric gRπ∗C and also carries the
Hodge star operator ∗M ∈ C∞ (B,End(Rπ∗C)). Let ∗B be the Hodge star opera-
tor on the base space B. Define the involution τ acting on A∗(B, Rπ∗C) by τ :=
(−1)k+p(p−1)/2+q(q−1)/2 ∗B ⊗∗M on Ap(B, Rqπ∗C). Let d Rπ∗C be the exterior dif-
ferential acting on A∗(B, Rπ∗C). Set

DB ⊗ Rπ∗C := τd Rπ∗C + d Rπ∗Cτ,

which is a differential operator acting on A∗(B, Rπ∗C).
Let η̂(X) ∈ Aodd(B) be the η-form of the family π : X → B associated with the

metric gX/B and the connection PX , introduced in [10].

Theorem 16 ([18, Theorem 0.3]) The following equality holds:

η0(X) = 2
∫

B

L(T B, gB) ∧ η̂ + η(DB ⊗ Rπ∗C)+ 2τ,
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where η(DB⊗Rπ∗C) denotes the η-invariant of the differential operator DB⊗Rπ∗C
(See [18, Sect. 4] for the precise definition).

We keep the notation in Sect. 7.

Theorem 17 For σ ∈ M2, let (α, γ ) be a representative of σ . Let p : M(α,γ ) → S1

be the mapping torus associated with σ . Then

φ2(σ ) = η(DS1 ⊗ Rp∗C)− 4

5

∫

S1

α∗dc log ‖χ2(τ )‖2.

Proof By Theorem 16, we have

η0(M(α,γ )) = 2
∫

S1

L(S1, dt2) ∧ η̂(M(α,γ ))+ η(DS1 ⊗ Rp∗C)+ 2τ. (62)

Since dimRS1 = 1, all the differential dr in the Leray spectral sequence (Er , dr ) is
the zero map and hence τ = 0. Since L(S1, dt2) = 1, we get by Corollary 1 and (62),

φ2(σ ) = 2
∫

S1

η̂(M(α,γ ))+ η(DS1 ⊗ Rp∗C)− 2

15

∫

S1

α∗dc log ‖χ2(τ )‖2. (63)

Let f : C := Θ◦ → S◦
2 be the universal family of curves of genus two. Recall that

the Kähler metric gC := gΘ◦
and the connection PC := PΘ were defined in Sect. 5.

Denote by η̂1(C) the 1-form component of the η-form of the family f : C → S◦
2

associated with gC and PC . By the functorial property of the Bismut superconnection
[6, Proposition 10.15] and the definition [10, Definition 4.33], the η-form has the
functorial property η̂(M(α,γ )) = α∗η̂1(C), which together with (62) and Theorem 18
below, yields the result. ��
Theorem 18 The following equality holds:

η̂1(C) = −1

3
dc log ‖χ2(τ )‖2.

Proof We recall the relation of the signature operator and the Dolbeault operator on
Riemann surfaces. Let C be a compact Riemann surface. Let ι be the involution acting
on A∗(C) defined by

ι(ω) := (
√−1)p(p−1)+1 ∗ ω, ω ∈ Ap(C).

Denote by A±(C) the ±1 eigenspaces of the involution ι. Let D be the signature
operator d + d∗ : A±(C) → A∓(C). Then the following diagram is commutative
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and the vertical arrows preserve the L2-metrics.

A+(C)
D−−−−→ A−(C)

f+
#⏐⏐

#⏐⏐ f−

A0,0(C)⊕A1,0(C) −−−−→√
2∂̄

A0,1(C)⊕A1,1(C)

(64)

Here, for ωi, j ∈ Ai, j (C),

f+(ω0,0, ω1,0) := 1√
2

(
ω0,0 + ι(ω0,0)

)
+ ω1,0,

f−(ω0,1, ω1,1) := ω0,1 + 1√
2

(
ω1,1 − ι(ω1,1)

)
.

The diagram (64), together with [8, p. 153], yields that

η̂1(C2) = −dc log
(

det′�0,1
τ det′�1,1

τ

)
, (65)

where det′�i, j
τ is the regularized determinant of the ∂̄-Laplacian 2(∂̄∂̄∗ + ∂̄∗∂̄) acting

on Ai, j (Cτ ). By [39, Theorem 5.1], we have

det′�0,1
τ = det′�1,1

τ = ‖χ(τ)‖ 1
3 ,

from which and (65) the assertion follows. ��
Acknowledgements The author would like to thank Professor Nariya Kawazumi for giving the proof of
Lemma 13 and Theorem 15 and thank Professor Tomohide Terasoma for suggesting the idea of the proof
of Lemma 20. He also would like to thank the referee for the valuable comments. Special thanks are due
to his advisor Professor Ken-ichi Yoshikawa for various comments and suggestions and the interests in his
studies.

Appendix A: The Meyer function for tori

In this appendix, we investigate the signature cocycle for torus fibrations associated
with SL(4g−2,Z)-vector bundles and relate it to η-invariants. We closely follow [2].
We refer to [11] for further studies of η-invariants of torus fibrations.

Recall that B is a sphere with three holes and let g1 and g2 be the generators
of π1(B) as in Sect. 6. For σ1, σ2 ∈ SL(4g − 2,Z), we define the homomorphism
ρ : π1(B) → SL(4g − 2,Z) by

ρ(gk) = σk, k = 1, 2. (66)

Let p : Eρ := B̃×ρ R
4g−2 → B be the flat real vector bundle of rank 2g − 2 associ-

ated with ρ and let Λρ := B̃×ρ Z
4g−2 ⊂ Eρ be the corresponding family of lattices.
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Adiabatic limits of η-invariants and the Meyer functions 713

Then the fiberwise quotient Eρ/Λρ is a torus fibration over B, which is a compact
oriented 4g-dimensional manifold with boundary. We call Eρ/Λρ the torus fibration
associated with Eρ . We define

tg : SL(4g − 2,Z)× SL(4g − 2,Z) −→ Z, (σ1, σ2) �→ Sign(Eρ/Λρ).

By the same argument as in [2, p. 343], tg is a 2-cocycle of SL(4g−2,Z). In particular,
t1 ≡ τ1. Since H1(SL(n,Z),Z) = 0 for n ≥ 1 and H2(SL(n,Z),Z) = 0 for n ≥ 3
by [31, Sect. 10], there exists a unique function ψg : SL(4g − 2,Z) → Z for g ≥ 2
which cobounds −tg , i.e.,

tg(σ1, σ2) = −ψg(σ1)− ψg(σ2)+ ψg(σ1σ2), σ1, σ2 ∈ SL(4g − 2,Z). (67)

We call ψg the Meyer function for tori. The Novikov additivity for signatures yields

Proposition 5 Let S be a compact oriented 2-dimensional manifold with boundary
∂S = c1 � · · · � cn. Let E be a flat SL(4g − 2,Z) real vector bundle over S with
monodromies σk ∈ SL(4g − 2,Z) on ck, 1 ≤ k ≤ n. Let π : M → S be the torus
fibration associated with E. Assume that g ≥ 2. Then

Sign(M) = −
n∑

k=1

ψg(σk).

Proof By the same argument as in [2, p. 357], we obtain the assertion. ��
For σ ∈ SL(4g− 2,Z), let p : E → S1 be the flat real vector bundle over S1 with

monodromy σ . Let p : Mσ → S1 be the corresponding torus fibration. Fix a metric gE

and a connection∇E on E . Then gE induces the metric gMσ /S1
on the relative tangent

bundle T (Mσ /S1) and ∇E induces the connection T Mσ
∼= TH Mσ ⊕ T (Mσ /S1) of

the torus fibration Mσ (see [6, Sect. 1.1]). Define the one parameter family of metrics
on Mσ by

gMσ
ε := gMσ /S1 ⊕ ε−1π∗dt2, ε ∈ R>0.

Recall that η0(Mσ ) := limε→0 η(Mσ , gMσ
ε ) as in Sect. 3.

Proposition 6 For any σ ∈ SL(4g − 2,Z), ψg(σ ) = η0(Mσ ).

Proof By [11, Theorem 3.8], η0(Mσ ) does not depend on gE and ∇E . Hence the map
η0 : SL(4g−2,Z) → Z defined by σ �→ η0(Mσ ) is well-defined. By the uniqueness
of the function that cobounds −tg , it is enough to show that the function η0 satisfies
(67).

For σ1, σ2 ∈ SL(4g−2,Z), let ρ : π1(B) → SL(4g−2,Z) be the homomorphism
defined by (66). Let Eρ be the flat vector bundle associated with ρ and denote the torus
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fibration associated with Eρ by p : Xρ → B. Notice that ∂Xρ = Mσ1�Mσ2�−Mσ1σ2 .
Let ∇Eρ be a connection on Eρ . Then we have the splitting (cf. [11, p. 353])

T Xρ
∼= p∗Eρ ⊕ p∗T B. (68)

Let gEρ and gB be metrics on the vector bundles Eρ and T B, which are product met-
rics on a color neighborhood of the boundary. Using the splitting (68), we define the
one parameter family of metrics on T Xρ by

g
Xρ
ε := p∗gEρ ⊕ ε−1 p∗gB, ε ∈ R>0.

Since g
Xρ
ε is a product metric on a color neighborhood of the boundary, we get by the

Atiyah–Patodi–Singer index theorem

Sign(Xρ) =
∫

Xρ

L(T Xρ, g
Xρ
ε )− η(∂Xρ, g

Xρ
ε |∂Xρ ). (69)

By Proposition 2 and (68), we get

lim
ε→0

L(T Xρ, g
Xρ
ε )(4g) =

(
p∗L(Eρ, gEρ )p∗L(T B, gB)

)(4g) = 0, (70)

because dimRB = 2 and rankEρ = 4g − 2. Moreover,

lim
ε→0

η(∂Xρ, g
Xρ
ε |∂Xρ ) = −η0(Mσ1)− η0(Mσ1)+ η0(Mσ1σ2). (71)

Since Sign(Xρ) = tg(σ1, σ2), the assertion follows from (69), (70) and (71). ��
Remark 9 By Proposition 6, we have η0(Mσ ) ∈ Z, which confirms [11, Proposition
5.4]. By [34, Theorem 5.7], η0(Mσ ) �= 0 for some torsion element σ ∈ SL(4g−2,Z).
Hence ψ is a non-trivial function on SL(4g − 2,Z).

Appendix B: An integration of the Bott–Chern secondary form

In this appendix, we prove the last equality in Eq. (28). We keep the notation in Sect. 5.

Proposition 7 Let F(x)∈C[[x]] be a formal power series with F(0) �= 0. For a com-
plex vector bundle E, let F(E) be the multiplicative genus associated with F(x). Let
F̃(E; gE,1g , gE,G) be the corresponding Bott–Chern secondary form. Then

∫

P(W∨)

F̃(E; gE,1g , gE,G) = k(F, g)logdetG.
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Here k(F, g) is the constant defined by

k(F, g) :=
(

F
′
(0)

F(0)
·F−1(x)− 1

g
F
′
(x)·F−2(x)

) ∣∣∣
xg−1

, (72)

where f (x)
∣∣
xk denotes the coefficient of xk in a formal power series f (x).

Proof We follow [39, Proposition 5.1]. Put H = log G and gt := gexp(t H). Then
{gt }0≤t≤1 is a one-parameter family of metrics connecting g1g and gG . Its restriction
to E is denoted by gE,t . Let W∨ = E ⊕t E⊥

t be the orthogonal decomposition of W∨
relative to gt . Let gN ,t be the metric on N via the C∞-identification N ∼= E⊥

t . With
respect to this splitting, H ∈ End(W∨) can be written as follows:

H =
(

H11(t) H12(t)
H21(t) H22(t)

)
, H11(t) ∈ End(E). (73)

Let RE,t be the curvature of (E, gE,t ), and put c1(Et ) :=
√−1
2π Tr RE,t . Let RN ,t

be the curvature of (N , gN ,t ) and put c1(Nt ) :=
√−1
2π RN ,t . Since Nt = OP(W∨)(1),

the 2-form c1(Nt ) represents c1
(OP(W∨)(1)

)
. By [39, Eq. (5.12)], we have

[
F̃(E; gE,0, gE,1)

](g−1,g−1)

= 1

g − 1
TrH

1∫

0

Ḟ(RE,t )
(g−1,g−1)dt − 1

g − 1

1∫

0

H22(t)Ḟ(RE,t )
(g−1,g−1)dt,

(74)

where Ḟ(RE,t ) := d
dε |ε=0 det F(ε1g−1 +

√−1
2π RE,t ). By [38, Eq. (2.8)], we get

det F

(√−1

2π
RE,t

)
· F(c1(Nt )) = 1,

and

Tr

[(
F
′
(√−1

2π
RE,t

))
F−1

(√−1

2π
RE,t

)]
+ F

′
(c1(Nt ))F−1(c1(Nt ))

= TrF
′
(0g)F−1(0g) = F

′
(0)F−1(0)g,

where 0g is the g×g zero matrix. These, together with the definition of k(F, g), yields
that
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Ḟ(RE,t )
(g−1,g−1)

=
[

detF

(√−1

2π
RE,t

)
Tr

(
F
′
(√−1

2π
RE,t

)
F−1

(√−1

2π
RE,t

))](g−1,g−1)

=
[

F−1(c1(Nt )){g · F ′(0)F−1(0)− F ′(c1(Nt ))F−1(c1(Nt ))}
](g−1,g−1)

= g·k(F, g) c1(Nt )
g−1. (75)

Comparing (74) and (75), we get

∫

P(W∨)

F̃(E; gE,0, gE,1)

= g

g − 1
k(F, g)×

⎛

⎜⎝Tr H −
1∫

0

dt
∫

P(W∨)

H22(t)c1(Nt )
g−1

⎞

⎟⎠ , (76)

where we used the identity
∫
P(W∨) c1(Nt )

g−1 = 1. By [39, pp. 91 l.12–92 l.5], we
have

TrH −
1∫

0

dt
∫

P(W∨)

H22(t)c1(Nt )
g−1 = g − 1

g
TrH,

which together with (76), yields that

∫

P(V∨)

F̃(E; gE,0, gE,1). = k(F, g)Tr H.

This, combined with Tr H = log det G, yields the assertion. ��
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