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ON THE IMMERSION OF MANIFOLDS IN EUCLIDEAN SPACE

By R. LASHOF AND S. SMALE

{Received June 20, 1957)

By an immersion f: M*— E** of a k dimensional manifold in % + !
dimensional euclidean space, we mean a differentiable map (for conveni-
ence all manifolds and differentiable maps will be assumed C*), of M =
M* into E** which is regular ; i.e., the induced map on the tangent space
at each point of M ig one-one. We will assume M is oriented and con-
nected. We let B, be the tangent sphere bundle of the closed manifold
M, and B, be the normal sphere bundle of M induced by the immersion

f. Welet W, (resp. W,) be the integral Stiefel-Whitney characteristic
classes of B, (resp. B,) of dimension ¢. f induces a map of B, into the
unit sphere S**-! in E** by translating the unit normal vectors to M in
E** to the origin. This map is ealled the normal map (Chern [3]), and
gince dim B, = k& 4+ I — 1, we can define the normal degree of f as the
degree of this map. Similarly, we can define a map by translating unit
tangent vectors to the origin, and if f: M* — E* and hence dim B, =
2k — 1, we can define a trangential degree.

In Section 1 we study the relations between the Gysin homology se-
quence of the Whitney sum of two sphere bundles and Gysin sequences of
the components. In Section 2, we apply this result to the Whitney sum
of B, and B, to show that :

(a) Iff: M* — E™ is an immersion of a closed manifold with orienta-

tion M e H(M*) then the trangential degree of f is W.-M (i.e., the

Kronecker index <M, W.>).

(b) If f: M*— E**' with ! > 1is an immersion of a closed manifold
with orientation M then the normal degree of fis — W,.- M.

Further, if £: M — M’ is an immersion of M in any connected oriented
manifold M’, not necessarily closed, of dimension k¥ + I, { > 1, then
the concept of normal degree may be generalized to be an integer
mod W,, - M’'. Here W,, is the Stiefel-Whitney class of the tangent
bundle of M/, M’ represents the basic class if M’ is closed, and if M’ is
not closed W,,, - M’ is defined to he zero. Then we obtain

(b’) The normal degree of an immersion f: M*— M™**, [>1, is
—W, - Mmod(W7,, - M’). Since — W, - M = Euler characteristic of M,
(a) is the known result that the normal degree is the Euler characteristic

(Chern [3]).
562
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In Section 3 we show that for completely regular immersions (see Sec-
tion 8 for definition), f: M*— E-*, kL even, the tangential degree is
twice the algebraic intergection number of Whitney [13]. Using results
of Whitney, this enables us to prove :

Let M*® be @ cloged oriented manifold of dim k, k even, For uny immer-
sion f: M* = E*, W, - M is even; and for every even integer w there
exists an immarsion f 1 M* — E-* such that W, - M = n.

As a corollary we obtain a theorem of Milnor [8] that there exists an
immersion of real projective 3-space P? in E*,

In Section 4 and 5 we study the tangential map ¢ : M* —» G(k, I) where
Gk, 1) is the Grassmann manifold of oriented %-planes in E**, asgociated
to the immersion f: M*— E*! by asgigning to each point of M* the
tangent plane at that point translated to the origin. If I > &, then it is
well known that ¢* : H*G(k, 1)) - H*(M) is determined by the charac-
teristic classes of M. For the casel < k, we get the following results :

1. Let f and g be immersions of M* in E**t with { > 1 if k i8 odd, and

with the same normal Stiefel-Whitney class W, with integer coefficients.
Then the induced tangential map t*: H*(GE, 1)) - H* (M) of f and g
are the same. Furthermaore, if { is odd or f is an imbedding the condition

that the clagses W, are the same is unnecessary. This theorem is true if
coefficients are the integers, Z, or the rationals,

2. If M* may be imbedded in E*** or immersed in E**, where k is of
the form 4(2" — 1), then in H*M*) we have P, = W ,mod 2. (For k = 4,
this is easentially a theorem of Pontrjagin.) The same result holds, say,
if M* may be immersed in E* with a (¢ — 3)-normal frame.

In general we give a complete review of the results on the character-
istic classes of M* obtainable from the cohomology of G{(k, [) and the fact
that M* may be immersed or imbedded in E***. We obtain a number of
known results, for example, a result of Kervaire (Theorem 5.5).

Unless we gay otherwise, the coefficient group for homology and éoho-
mology will be the integers. All the Stiefel-Whitney clasges in the firat
four sections will have integral coefficients. All manifolds will be con-
nected and oriented.

1. Gysin sequence of a Whitney sum

Let (B, S\, M), n,: B,—~M,+=1,2, be two sphere bundles, S, a
sphere of dim d, — 1, with strueture group E,, the rotation group on the
euclidean space E, of dim d,. We consider R, x E,C R, where R is the
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rotation group on the euclidean space E of dim d, + d,. The Whatney sum
B, 8, M), dimS =4d, +d,— 1 of the two bundles is the sphere bundle
with group R defined by taking as coordinate functions the direct sum of
the coordinate funetion of the two given bundles, considered as having
values in B, Then we have natural fibre preserving inelugions f;: B, — R,
1 =1, 2. f, may be defined by considering the associated vector bundles
with fibres E, and E respectively, then f, is induced by the natural in-
clugion E, -+ E, + E, = FE of the fibres, restricted to the unit sphere.
This gives a global map since by the definition of Whitney sum, the co-
ordinate functions of the sum bundle act on each factor of the fibre
separately in the fashion given by the component bundles.

THEOREM 1.1. [, induces a mayp of the Gysin cohomology sequence of
(B, S, M) inio that of (B, S,, M):

H"‘“l'dn(M) Hr(M) Hr(B) , Hr+l—d1—d2(M) N
Gr I I G
— H"M) — H(M)— H'(B,)— H"""%(M)——>

where I 18 the identity, and letting W, be the Stiefel-Whitney class of
B\{.ﬂ S{.t M) Of dlm di)

GH@) = (-1 W, GHx) = 2U W, .

REMARK. W,, 1 = 1,2, are integral Stiefel-Whitney classes, but we
may use any coefficient group for the terms in the Gysin sequences, then
the cup product is under the natural pairing of the integers with the group.
In particular, we may use real numbers mod 1 and topologize our coho-
mology groups, Then under Pontrjagin duality we get 2 map of the
homology sequence of B, into that of B, both with integer coefficients ;
and cup product goes over into cap product with the class W, under du-
ality.

In proving thiz theorem we use a number of results from Thom’s thesis
[11]. Following Thom we let A be the mapping cylinder of R — M and
let A’ = A — B, then we have the maps

j + H'(M)— H'(A)

A H(A) — H(A)

e*: H(M)— Hr-%"%( A
where 7 is an isomorphism induced by the projection 4 — M, # by the
inelusion A — (A, B), and ¢* is the izsomorphism obtained by Thom by

congidering a earapace on 4’ as a carapace on M by redefining supports,
We have corresponding maps of B,— M. Then for example, f;: (A,, B) —
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(A, B) induces (where we have again used f, for all maps defined by
fi: By~ B)

Hrt-%( M) HT(M) Hr+i-a-ty M)
#* J #*
—— H(4") — HY(A)—— HY(B) — H™(4') —
s e |2 7t
— HI(A)—— H{(A)— H'(B) — H'"(A) —
1 H oF
Hr%(M) H' (M) Hr+1=4(M)

This gives a map of the Gysin sequence of (B, 8, M) into that of (B,, S, M),
it is only necessary to identify the maps. Since

H(A) -i H7(A)
J gt
HA(M) —1 H (M)
commutes, ;7 = I H(M)— H(M). It remains to identify the map
GY = 9t 1o
As shown by Thom {11], if w is a fixed generator of HY(M) and if we let
g*(w) = Ue Hv™(A"), ¢f(w) = U, e H*(A),

we have :
¢*(@) = @)U U, W = 80,
W the Stiefel-Whitney class of dim 4, + d, in (B, S, M) and gimilarly for
(B, 8;, M).
Now fre*(2) = FHA@U U = 5(2) U FFU. Hence if we can prove
(1.2) U = ()4 (W)u b, ,
we have :

[Ee*(x) = (— 1) y(x) U (W)U U=( 1) (U W)y U,
and
GHx) = (=1t U W, .

REMARK 1. The proof for G# is identical except for order of terms in
the cup product in (1.2) (and hence the difference in sign) and will not be
repeated.

REMARK 2. If we use compact coefficient groups for the cohomology
groups of the Gysin sequences, I7 and U, are taken with infeger coeffi-
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cients and the cup products j,(x) U f#T are under the natural pairing of the
integers with the compact coefficient groups. In (1.2) on the other hand,
everything is with integer coefficients.

It remains to prove (1.2):

Let
p: HP(A, B) x He*%(A, B)— Hr+vi4((A,, B, x (4, B.)
be the natural pairing. Note that
H7((4,, B)) x{A,, B)) = H (A, x 4,, A, x B,UB, x A)) = H(A; x A)) .
Let U be the class @*() in H4*(A, x A} of the sphere bundle
(4, % B,UB;x Ay)—~»M »x M corresponding to the generator w e H (M x M)
where W = plw, @ w,), g HAWM) R HY M) — HUvi(M x M). Then
Thom [11] shows that (7, & U,) = U. But the Whitney sum bundle
A’ - Mis induced by the diagonal map d: M- M x M ;ie.,

dr
A A x A

|, |

M—MxM

commutes, where d is the induced map, and hence &’*U7 = .
Consider the sequence of maps

(A, B) -5 (4, B) x 4, 25 (A, B) x M —25 (4, B) x (4, B)
where
4, i8 induced by the inclusion of M in A, (identity on first factor)
p, i8 induced by the projection of 4, on M (identity on first factor)
d, is induced by the diagonal map 4, — A, x A,
Then this sequence of maps is the same as the following :

f

(4uB) L5 (4, 8% (4, B) x (4, B)
since they are both fibre preserving and correspond to the diagonal map
M — M x M in the base, it is sufficient to check them on each fibre. Let
&S be a fibre in B, over x ¢ M and Y, the mapplng eylinder of 8, — z,
then both fibre maps are induced by :

Y— ¥V, x2—Y %Y.
Hence
drptit (U, @ U)) = f1d*U = f7U .
To compute the left hand expression, we compute on each component of
the abave products separately, and we have by “* abuse of notation *’
@:?((UI ® Ua) =U, ®jz_1ﬁ2U2 = Ul ® w,,

since 578, H(A,, B, — H(M) is the same as that given by the inclusions
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M— A, — (4, B)). Further
o0, Q Wy =U,; ®JL(W1)

di* (Ul ® jl( Wz)) =l Ujl( Wz)
i.e., this last map actually is

d#
H%(A,, B)® H(A) — HY%(A,, B) x A;)) — H"%((4,, B)) .
Hence _
U = U, U 5(W,) = (—1)a%5(W,) U U q.e.d.

2. Applications to immersed manifolds

APPLICATION TO NORMAL DEGREE.! Let M be a compact oriented #-
dimensional manifold and f': M— M’ be an immmersion of M in an oriented
manifold of dim» + N, N = 2. Let B, be the normal bundle of M in M’
and B, be the tangent bundle of AM; then dimB,=n+ N—1 and
dim B, = 2n — 1. The map finduces amap f,: B, — T, where T is the
tangent bundle of M’. Then f... H,,y_(B.,) — H,.y-(T). Now consider
the Gysin sequence of 7', Note that the right saquare is commutative.

t
Wﬂ+N/“\

Hn‘l‘N(M’) —_— HG(MF) I Hﬂ.'l-_N-—l(T) I Hm-‘zv—l(M’) E—

Hﬂ+N—I(B1J) —_— Hﬂ‘i’N—l(M) .

Since H,.y-,(M)is zero, the image f..(B.) of the basic clasg B, of H,, 5 ,(B.)
ig contained in the kernel of H,,» T) = H,.x_1(M’) and hence in the
image of H(M'). Let W,., - M’ be the value of W, on the basic class
M’ of H,.,(M').* The image of H(M') is isomorphic to the integers
mod (W,.y - M'); if M’ is compact W,y M =— Q,,, where 0,, is the
Euler eharacteristic of M’. Hence the immeraion defines a normal degree
mod (W, + M'). We use the homology version of Theorem 1.1 (see re-
mark following theorem) to compute this degree. Consider

0 0

H,.n(B,)— H‘I’.L"'N—l(Bf ® B,) —> Hni—N—l(T)

(M) 25 HyM) H(M’)

0

1 The definition of normal degree given below is due to 8.5, Chern who suggested the pro-
hlem solved here.
2 If Mis not closed let Whay - M! = 0.
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The vertical maps are part of the respective Gysin homology sequences.
For the tangent bundle on M’ we use singular homology theory and
spectral sequences to define the Gysin homology sequence. (The Gysin
sequences for non-triangulable space using compact supports are in gen-
eral distinet from those using singular theory : e.g., if M’ is a euclidean
space. For a sphere bundle over the compact manifold M, the two Gysin
sequences coincide.) The top line of horizontal maps are induced by in-
clusions. The left hand square is commutative by Theorem 1.1. Since
B.®B,— Mand T —+ M’ are sphere bundles of the same dimension, we
have a map of their spectral sequences and hence of their Gysin sequenc-
es using stngular homology theory. Hence we see that if we choase the
arientation of B properly, we have the degree of the normal map is
— W, M=, modulo W, y-M', where 0, is the Euler characteristic
of M. Hence we have proved :

THEOREM 2.1, The degree of the normal map induced by the immersion
of & compact orientable manifold M into an orientable manifold M',
dim M=gn,dimM =n + N, N=2, is Q,mod W.,,- M. If M'is
compuact, the degree of the normal map is Oy mod Oy

REMARK. If M’ is euclidean space, the degree of the normal map is
simply the integer Qy (since W,,, = 0), which agrees with previous
known results.

APPLICATION TO TANGENTIAL DEGREE. Let f: M — E* he an immersion
of a oriented manifold of dim % into 2%-dim euclidean space. Then f in-
duces a map ¢: B, — §*-! of the tangent bundle of M into the unit
sphere of E*, by translating the unit tangent vectors of M in E*™ to the
origin of E*™. Since B, is of dim 2k — 1 we can talk about the degree of
#. This degree is called the fangential degree of the immersion f.

THEOREM 2.2. If W, e H¥M)is the normal characteristic class of dim k
of the immersion f, then the tangential degree of fis W, - M.

PROOF. Let B, be the normal bundle of M induced by f, and let BPB,
be the Whitney sum. Then B, B, is the bundle induced by f over M
by the tangent bundle 7" of E®. The natural injection B, » B, @ B, (see
Section 1) and the induced map B, @ R, — T are bundle maps and induce
maps of the corresponding Gysin sequences. We again use singular theory
for the Gysin sequences of T. ¢* is the composite map H, (B, —
Hy (B, DB, — H,.(T) = H, (S*1). Hence consider the following
diagram, the commutativity of which follows as in the proof of Theorem

2.1. The vertical sequences are the Gysin sequences for the correspond-
ing hundles.
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0 = Hy (M) —> Hy (M)~ Hy (E™) = 0

Hy (B,) — sz—l(B'r@Bv) - Hmk—lET) = H,,, (8%

= =

BN B = HEY

0 = (M) —— H(M)———— H(E*) =0

It follows immediately that deg ¢ = W, M.

REMARK 1. As in Theorem 2.1, we could use any other oriented mani-
fold M’ of dim 2k in place of E* and obtain results modulo the character-
igtic class of the tangent bundle of M".

REMARK 2. In the general case of an immersion f: M* — E¥*, ¢ = 2,
one may obtain a generalization of Theorem 2.2. In fact, let ¢: B, —
S%+¢=* be the map obtained by translating unit tangent vectors to the
origin. Then the following diagram (this is the dual of the diagram used
in the proof of Theorem 2.2, see also Theorem 1.1)

Hé+k—l(Br) ‘ He+k—l(Bf® B\’) " He+!c—1(T) 2 He+!c—l(Se+k-1)
¢ = sz
HY(M) “f——We HY{M) +—————— H'(E*%)
shows that «*(S) = gb“lwg, where S is the generator of He+*-(§e+k-1),
Hence if we knew which homomorphisms ¢* : H+5 -3 (Se+*- 1) He (B )
were realizable from immersions we would know which normal classes are

realizable. However, we are able to obtain information on this only in
the case ¢ = k (see Section 3).

3. The intersection number of an immersion

Unless otherwise stated, all manifolds in this section will be even di-
mensional, closed and oriented. In the firgt part of this section we recall
gome of the theory of Whitney [13] related to the intersection number I,

An immersion f: M* — E* of a k-dim manifold M = M*, has a regular
self-intersection at f(p,) = f(p,) if the tangent plane of (M) at f(p,) and
S(p,) have only the point f{m) = f(p,) in common. If f has only regular
self-intersections and no triple points then f is completely reguiar.

Consgider M imbedded in E*+*' and let B, be the unit tangent bundle of
the manifold M in E*+'. Then a manifold with boundary, &, is defined
as follows. 7~ is the disjoint union of B, and all pairs (p, ¢) ¢ M x M with
p #+ q. If ¢, = pin M in the direction of a unit vector # at p then we let
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(p, ¢.)—{p, ). This defines the topology on %, and defining the differen-
tiable structure in the obvious fashion makes & into a manifold with
boundary B..

Still considering M in E*+*' let |¢ — p| be the distance from p to ¢ in
E#*+1, Returning to the immersion f above and considering E* to he
oriented with origin O, we define a map F: & —» E* ag follows :

F(p, Q) — f(Q) _"f(p) .
lg — »l
F(p! ?.b) = ‘P(pr u)! (pm ?.L) e-B'r '

where ¢ : B, —» E* is the map induced by f taking the tangent vector to
an are through p into the tangent vector to the image of the are in E*
at f(p), and translating this last vector to the origin. It is easily shown
that F is continuous [13]. Furthermore F maps no point of B, into O and
maps a point (v, ¢) of .7~ — B, into O if and only if f(p) = f(q).

Suppose f(p) = f(q). Let u,, ---,u, be k independent unit tangent
vectors of M at o, v, «+ -, ¥, at ¢, each determining the positive orienta-
tion of M. Then the system of 2k vectorg, A = {¢(p, w,), *+ -, @(P, Uy}, -,
(g, v,)} will be independent at O ; and the orientation determined by A
will not depend on whether we write the vectors at p or the vectors at ¢
first, since k£ is even. The self-intersection f(») = f(g) is positive or
negative according to whether A determines the positive or negative
orientation of E*, The intersectzon number I, is the algebraic number of
self-intersections.

PFq

TuroreM 3.1. If f: M*— E* is o completely reqular immersion of &
closed oriented manifold, k even, then the tangential degree of f is twice I,.

Proor. Let 5™-' be the sphere of unit vectors of E** at the origin,
then S*-! iz the boundary of the unit dizge D of E™. Let ¢=
max {|F(») |z e 7} and ¢ = min {|F(¢)|xe B,}. Since B, and & are
compact, e and ¢ are well defined positive real numbers. Let A: E** — E*
be map which sends vectors » in the ring &' = [v| < ¢ into S™* radially
by their direction, and stretches the rest of E* in an ohvious fashion such
that 4 is 2 homeomorphism on the complement of this ring and is contin-
uous on all of E**, Thus AF': (7, B,)—{D, §*). It is clear that AF cut
down to B, is just the tangential map defined in Section 2, and the degree
of this map is the tangential degree of f.

Let % be the space obtained from %~ by identifying B, to a point b in
7", and D by identifying S to a point sin D. Then AF induces a map
8: (7 ,b) > (D,s). Consider the commutative diagram :
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Hﬂk(j_! B«-) - Hzru(j_: b)
i(kF s B
H, (D, 8% 1) — H,(D, 2)
The horizontal homomorphisms, being induced by relative homeomor-
phisms, are isomorphisms onto. All the groups in the diagram are infinite

cyclic. Further, using the exact sequences of the pairs we obtain the
commutative diagram

H (5 )— H(Z , )
o By
H, (D) — H,(D, s)

where again the horizontal maps are isomorphisms. Finally we have the
following commutative diagram

Hﬂc(j s B,) - Hfuc—l(Br)
(hF) l(hf"}*
ij(D’ Si‘-ﬁ:—l) — HBE_I(S':UL-I)
where again the horizontal maps are isomorphisms and the group are all
infinite cyelic. From these diagrams it follows that the tangential degree
is the same as the degree of 4, : H,(.F ) — H,(D).
Since the map F is a homeomorphism on the components of F-(V) for
a sufficiently small neighborhood V of O, AF and hence 4 is 2 homeomor-
phism on the components of ¢ %(1V). According to the Hopf theory (e.g.,
Whitney [12]) the degree of @ is the sum of the degrees of 6/V,, where
the V,,p=1, .-+, 7, are the oriented components of #-(V}). By the
definition of F' we get one component for each pair (p, ¢) such that
F(p, ¢)=0 i.e., f{p)= f(g). But this differs from the definition of the in-
tersection number, I,, only in the fact that (p, ¢) and (¢, p), F(p) = f(q),
give two distinet components (both with the same orientation) and hence
a given self-intersection is counted twice in the degree of #; i.e., we
have : tangential degree of ' = degree of ¢ = 21,.
From Theorems 3.1 and 2.2 we get :*

COROLLARY 3.2. If f: M* — E™ is g completely reqular immersion of

a closed oviented manifold, & even, and W,c H (M) is the normal chardae-
teristic elass of dim k of the immersion [, then

W, -M=2I,.
Further, from the result of Whitney [18, Theorem 3] on the existence of

$ This result is essentially due to Whitney (see note at end of bibliography).
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completely regular immersions with given I,, and from the fact that W,=
0 (mod 2) (Chern, [2, Theorem 2, p. 94]) we have :

THEOREM 3.3. Let M* be a closed oriented manifold of dim k, & even.
For any immersion f: M* — E*, W, - M is even ; and for cvery even in-
teger n there exists an immersion f 1 M* — E* such that W, - M = n.

THEOREM 3.4, (Milnor [8]). There exists an immersion of real projective
3-space P in E1.

Proor. By Theorem 3.3, there is an immersion f: S*— E* with
W, M = 2. By the bundle classification theory (Steenrod [9, Sections
26.2, 35.11]) there is only one bundle space over 8* whose characteristic
class is 2, and that is P°, Consider a small tubular neighborhood (a tubu-
lar neighborhood may bhe defined in the case of an immersion as it usual-
ly is for an imbedding, e.g., Thom [10]) about f(S?) in B The boundary
(for an immersion the boundary of a tubular neighborhood will have self-
intersections of course) of this tube ig an immersion of P2.

4. On the homology of Grassman manifolds

Let G(k, [) be the Grassman manifold of oriented k-planes in E**:. For
% >> m, the inclusion E=+* — E»** induces & map i: Gk, m) — G(k, n).
One may take the limit of these spaces in a certain sense to obtain the
clagsifying space G(k, o) for the rotation group E, for all manifolds.
There are natural maps i : G(k, n) - Gk, =) for all n. As usual W, de-
notes the Stiefel-Whitney class of H{G(k, «)), I=<k and I odd, or I = k.
We shall use the same symbol to denote ¢* W, in HYG(k, n)) when there
is no ambiguity.

Let V... be the Stiefel manifold of I-frames in E*** and p: Vi —
G(l, k) send a I-frame into the [-plane which is spanned by it, We will
prove the following :

THEOREM 4.1. For keven and ¢+ < k

0 — H(V,uur) -2 HAG(, K) —2 H(G( k+ 1)) — 0

is ewact. For i = k and k even, the image of v, is generated by the Schubert
cycle (e.g., see [2]) @ = — (0 —— k). Theeycle ® i3 ¢ genera-
tor, or twice a generator of HJLG(I, k)) mod torsion according to whether
Wee tn HG(ke + 1, 1)) is zero or not. If kisodd, I > landi <k, 1, :
HAG(, kY > H(G(, k + 1)) i8 an isomorphism onto.

For cohomology we have

THEOREM 4.2, If i <k, k odd or even
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H(V,., ) & HH(G (L, k) <— HYG(, & + 1)) —0

i exact. If kis odd and [>1 or i<<le, H(V,,,)=0. Ifi=k, k even, then
p* s onto when W, in H**' (G(k+1, 1)) is zero. If this class is not zero,
the image of p* is generated by twice a generator of HYV,.,,). Since
HYV,.,.,) 18 free cyclic HYG(I, k)) = HYG(, k + 1)) + Z when k is even.
The class W, together with the gemerators of HHG(l, k + 1)) generate
HYG(, k) when W,,, + 0 in H*NG(k + 1, ).

Far the above theorem it is important to know, for k even, when W,

is zero.

THEOREM 4.3, Let k bhe even. The Stiefel-Whitney class W,.,, in
Ho Gk + 1,1) s not zeroif k= 2mod 4 and [ > 2 or k = 0 mod 4 and
>4 Ifl=10rl=2 W,.=0. Ifl=8or I —4and k = 0mod 4,
Weer = 0 when kb = 4(27 — 1), v any positive integer ; otherwise W, + 0.

To prove these theorems we introduce certain auxiliary spaces and
maps as follows. The rotation group E, of E* may be thought of as the
space of n-frames of E*, Let V? = R /R, ® > r = 2 where R, is con-
gidered as acting on the first »-vectors of an n-frame. Then V?* is the
Stiefel manifold of (n — ») frames in E*, V, ,_,. Wherever maps in the
rest of this section are not mentioned explicitly, they refer to the maps
defined in these paragraphs.

For 2 = s = n — 7, let K, acting on the last s vectors of a frame define
an action of R, on V7. We denote the quotient space R*/R, x R, = V3R,
by Vi, If ¥ + 8 = n, V7, may be considered as the Grassman manifold
of oriented s-planes in E*, G(s, v), and V;— V*, the map which gends an
s-frame into the s-plane spanned by it. In this way V* is a prineipal
bundle over V7, with groups K,. We define inclugions ¥V? — T2+ and
Vie— Vit by adding a fixed orthogonal vector to the (» 4 1)st place.
From the definitions one can cheek that the following diagram commutes,

Vi— Vit

L

V:-l,s m— Vﬁ;l

A map from V3, to V7, . is defined by sending the (» + 1)st vector
together with the first +-plane into the (¢ 4- 1)-plane which they deter-
mine. In this way V7, becomes an r-gphere bundle over V7, ..

Similarly, a map from V72, to V7., is defined by sending the (n — g)th
vector together with the last s-space into the (s + 1)-plane which they
span. Then V7, is an r-sphere bundle over V2, , and (for » + s < n) the
following diagram commutes
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V?.s - V:-l,sﬂ

V:”.;I — Vf',;h-l

LEMMA 4.4. The maps Vi — Vi*tand V7, — V2% nduce isomomor-
phisms in homology through dimension r for any s. Thus by the naturality
of the unsversal coefficient theorem the induced homomorphismas in eohomol-
ogy are isomorphiems for the same dimension.

PrRoOF. First observe that H(V?)— H(V?,) is an isomorphism for
2 < r because the groups vanish. For ¢ =+ the maps S = V"' V72 >
Vit generate z{V?) and = (V2*) [9, p. 132]. Thus (V7)) — z(V?*Y is
an isomorphism and by the naturality of the Hurewicz Theorem H(V?) —
HLV ) iz also.

Now congider the sequence of sphere bundles :

Ve » Ve, > eae » Ve, » Ve — eee — V2

| L |

yas 2434 > aas > Yt 3 Veto— cee — Vit

Carresponding to the {-dimensional sphere hundles in the above diagram,
we have the Gysin sequences,

- :;-J.(V?,H-l) - HE(V;},:) i Ha(V?‘m) - H‘-—L-—l(V:‘l,H-l) d Hi—l( V?,;)

— i—!.( V?,:}I‘L) - Hi( V?.tl) —r Hn( Vfﬂl) = H,_, V?,ﬂr.) —* Hi-—L( V:,tl
By induction assume (we have proved the case [ = 0)
H(V2) = H(Vi P=0,
H(Viu) = H(VIiL o 3=0,--, ¢ —1.
then by the 5-leama, H(V?,,,) = H (V1) and the lemma follows.
Theorem 4.1 for 4 < k follows immediately from the Gygin sequence of

VEs+l ayer Vil and the preceding lemma. To prove the theorem for
% = k, write down a portion of this sequence.

zZ A
Il f I
—— H(Vity s BV —— 0
T T
Hoo (Vi) =2 BV =S (Vi) 20, gy 0

Il

Z

The map ¢’ is induced by the projection of VEir*+! into Vit which takes
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the I + 1 frame into the [ frame consisting of the last [-vectors of the
{ + 1 frame. Then the middle square of the previous diagram commutes.

For all &, ¢, is onto. We consider now only k even. From exactness
¥ must be an isomorphism onto and certainly r is also. This implies that
the image of 7 is the image of p,. The image of 7 is zero since 7 is de-
fined by cap produet with an order two class. Hence y and p, are1-1,
We have proved that in the following diagram the bottom horizontal
sequence is exact,

H (Vi 2o gyvey

00— Hk(VtHH) E‘_, H;c(VEj.HI) ﬁ‘_} Hﬁ:(V::‘f":,L) - 0

The vertical maps are isomorphisms onto by 4.4. This proves the first
gentence of Theorem 4.1 where we have lot Ty = it

We will now compute the kernel of i, : HJ(G(I, k)) » HAGU, % + 1)).
Let C(G(m, n)) be the group of Schubert k-chains (e.g., see Chern [2])
of G(m, n), Z(G(m, n)), the Schubert k-cycles, ete.

It follows from the definition of the Schubert cells that C,(G(, k)) =
CAG(, & + 1)) (under identification of map induced by inclusion), and
that C..(G(l, k + 1)) contains exactly the linear combinations of the cells
{0 E+ 1) and (0 —— k& + 1)~ in addition to the eells of C,,,(G(, k)).

Now let 2, belong to both Z(G(l, k)) and B(G(l, k + 1)). Then 2, = dc,.,
where ¢,., € C, (G, k + 1)). From the above observations we can write
Ceny = Gy + M0——Fk + 1)* + n(0——F + 1)~ where ¢’ ,, € Cour(G{, ).
Hence

2, — 8¢k, = mBO ——Fk + 1)* + nd(0 — k + 1)-

By the boundary formulas for Schubert chains (e.g., Chern [2]) one ob-
tains k even:

2y — 06, = NO, & = (0 —k)* — (0 — &), N=m-—n
kodd :

2, — 8y, = N'(0— B)* + N'(0——k)-, N=—-m—an.
Thus for k even, @ generates the kernel of <,.

Furthermore if & is odd, I > 1 and

ar) = +1if r = lor2mod 4
a(r)= —1ifr=1or3mod 4

it may be checked that 9z = (0 kEy* +(0——% + 1)-. Thus for %
odd, I > 1, the kernel of ¢, is zero in H(G(, k)).

o= 0" ar)0 ——r, k —r + 1)*
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To finish the proof of 4.1 consider the Gysin sequences in cohomology,
k even,

0 y Hﬁ:( Vﬁi—l-{‘l) y HU(V%t%-&l) N HJL-FI(V:;:{.-{-L)
p*
0— HHVERE)— HA(VE) — H(VE) -~ H (Vi

Here Q= H¥(VEtth) is the order two characteristic class of the S*-
bundle Vi4i+! aver Viiist, If Q = 0 it follows that p* is onto (see the
previous discussion for homology) or in homology if ¢ is a generator of
H(V%+1) then p,{(g) is a generator of H(Vi%)mod torsion. If & = 0,
v,(g) is twice a generator of H, (V') mod torsion.

To identify £, consider the following diagram where » is larger than
max (2k + 3, I).

Vt:{-tl.-l-l__ﬁ___) V!fl'il'fl__z_) V::};ﬁki-l
q lg , lg’
Vg -2 Vi o vy

Here « is the homeomorphism which takes an l-plane [eg.s, -+, €srsil
into the orthogonal %k + 1 plane (e, «--, €] such that e, «--, €.y,
@y es ***, €yeres has the given orientation of E***!. Then § can be defined
so as to make the diagram commute. The maps » and ¥ are compositions
of maps Vit+t — Veiier — Vit which were defined previously. It can
be checked that this diagram commutes and furthermore that V335t over
Vit is the associated S* bundle of Vi+*+over VAT This implies that
if W,.,, is the Stiefel-Whitney class of H**{G(k+1,n)), then Q=™ "Wt
Since «* is an isomorphism we have @ =0 if and only if W, in
H*Y{G(k + 1, 1)) is zero. This finishes the proof of Theorem 4.1.

The proof of 4.2 follows from arguments dual to those used in proving
4.1. We merely add that since W, = (0 —k&)* — (0 —— k)~ has the
value of 2 on ¢, it has the value 1 on 2 homology generator, hence the
last statement of 4.2,

The proof of 4.3 proceeds as follows. Since k+1 is odd, Wy, is defined
with integer coefficients and is of order two. Generally if H*(X) has only
arder two torsion an element of HYX) is zero if and only if its rational
and Z, reduction are zero. Since H*(G(m, n)) has only order 2 torsion, aly
m, n: We., is zero if and only if its Z, reduction is zero. Thus for the
proof of 4.3 we use coefficients Z, for all Stiefel-Whitney classes. A
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formula of Chern [2] takes the following form,?

WHI: Ws 2 1 00"'0

aaaaaaaaaaaaaaaa

In Gk + 1,1)), W, =0fors > and W, = 0 ; there are no relations be-
tween the other W,’s.

This determinant is symmetric with respect to the 45° axis. Hence all
non-symmetrie terms appear twice and drop out.

Now suppose k=4n+2 and {>2. It is clearly sufficient to show W, =0
in G(k + 1, 8) for this case. But from the above determinant one notes

that the symmetric term W(W,)»+0, hence W,,,#0, in H**Y{(G(k+1, 8)).
On the other hand, if & = 4n and I > 4 it is sufficient to show that
Wi # 0in G(k 4 1, 5). There the symmetric term Wy(W,)**? # 0 hence
in this case W,,, = 0.

For i = 2, W,,, is a polynomial in W,, but % is even so W,., = 0. The
last sentence of the theorem also follows from the properties of the above

determinant but it involves a long computational argument that does not
seem worthwhile here.

5. The tangential map of an immersion

Let f be an immersion of an orientable manifold M* = M In E**.
Then f defines a tangential map ¢ : M — G(k, {) by translating a tangent
plane at a point of f(M) to the origin of E**'. The purpose of this section
is to investigate the indueed homomorphism in cohomology. If I > %,
then it is well known that t*: H*(G(k, I)) - H*(M), the characteristic
homomorphism, is determined by the eharacteristic classes of M. There-
fore we confine ourselves to the case I < k.

THEOREM 5.1. Let f: M*-— E**' be an immersion of an orientable
momifold M = M*® with &k even ond with | and k such that W.., = 0 in
HEYGE + 1, 1) (see 4.3).

Case 1. If 1 = 1, one can choose a generator A, of H¥G(k,1)) = Z so
that W, = 2 A,.

3 See also: 8. S. Chern, On the multiplication in the characteristic ring of o sphere
bundle, Ann. of Math., 49 (1948), 362-372.
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Case I11. If I = 2, one can choose a A, such that A, and (Tr_Vz)"“ genevrate
HYG(k,2) =2+ Z, Wo=2 A, + (W) and if k=0 mod 4, P, = (W)

Case II1. If 1 = 8,k = 4(2* — 1), HYG(k, 3)) mod torsion is generated
by a cocycle A, and P, and W, = 2A, + P, mod torsion.

Case IV, Ifl=4, k= 42" — 1), HYG(k, 4)) mod torsion is generated
by a cocycle A, and all possible cup products of W, and P, with total degree
k. W,= W&GW, P)+ P, + 2 A, mod torsion, where G(W,, P) is o
polynomial.

Let a: Gk, 1) —> G, k) be the homeomorphism defined in §4 and
a*  H¥G, k), G)— H¥G(k, 1), G) the induced isomorphism where G =27,
or Z. Then if W, and P, are Stiefel-Whitney or Pontriagin classes of
G, k), W, = a*W, and P, = a*P, are the dual classes of Gk, 1).*

From 5,1., we obtain -

Case [ vields Hopf’s theorem on the curvatura integra of an immersion
of an even dimensional manifold.

Case I is essentially a generalization of the Chern-Spanier result [4]
on immersions of 2-manifolds in E*.

Case IV yields :

COROLLARY 5.2. Suppose @ closed orientable manifold M* may be imbed-
ded in E*** (or immersed in E***) where k is the form 42" — 1). Then in
HYM*), we have P, = W, mod 2,

For k = 4 this is essentially a theorem of Pontrjagin (see [2]). Corol-
lary 5.2 follows from Case IV, since H*(M*) = Z has no torsion and
W, = 0in M*, and thus W, = P, + 2A, or W, = P, mod 2.

Theorem 5.1 is proved as follows., We first prove Case II. The coho-
mology ring H*(G(2, «)) is generated by W,, so (W,)** is a generator of
H%G(2, «)). Applying 4.1 and 4.2, since the cycle ® = (1 ~—-1)* —
(1——1)"is a free generator of H(G(2, k)), (W,)*"* and a cocycle A}, with
value 1 on ® generate HYG(2, k)). Therefore the corresponding classes
A} = a*Al and (W,)*? = a*(W,)** generate HXG(k, 2)).

Let W, =mA; + n{W,)*%. From 4.1 and 4.2 it follows that (W,)*?
must have the value 0 on a*® =® =(1——1)* —(1——1)", Then
since W, has the value 2 on @ and A, has the value 1 on @, m must be
equal to 2. From the Whitney duality theorem one obtains W, =

1 Our a: Gik, 1) » G, &) corresponds to Wu's d%. Wu shows that a*W; = Wimod 2 and
a*(Py) = (~ 1}tPy with rational coefficients. In general for any class Z, (a*)2Z= +Z
with rational coefficients and {(«*P2Z = Zmod 2. Hence {(a¥)2Z = £Z with integer coef-
ficients. In our work the sign does not matter.
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(W.)*" mod 2, so = must be odd. Let A, = AY 4 (1/2)(n — 1)(W,)**. Then
W, = 2A, + (W)*2. Sinece (W,)*"* has the value 0 on @, A, will have the
value 1.

We will now show that (W,)*? = P, in H¥G(k, 2)) if & = 0 mod 4. Since
P, = 0in HYG(k, 2)), © > 4 (e.g., [2]) by the duality Pontrjagin classes
mod torsion (e.g., [6]) we can write P, = (P,)*". But P, = Wior P, = W¢,
henee P, = (W,)**. This prove Case II of 5.2. Case I is proved the same
way.

* To prove Case [V, note by the previous arguments that H*G(k, 4)) mod
torsion is generated by cup products of W, and P, with total degree %
and a cocyle A}, which has value 1on @ = (L — 1)* — (1—— 1)~. Then
W, = W.G(W,, P,)+ (P)* + 2A, mod torsion exactly as in Case II, where
G(W,, P,) is a polynomial in W, and P,. By the duality theorem for Pon-
trjagin classes mod torsion, P, = (W_,)ZF(W?;, P,) + u,(P)** mod torsion
(since (W,)* = P,). By pulling P, into H¥G(k, 2)) we see that P, =
ud P = u(W,)¥* so u, = 1. Therefore we obtain W, = 2A, + P, +

W.G(W., P,) mod torsion proving Case IV. Case III is immediate from
the preceding. This proves 5.1.
In the following theorem integer coefficients are meant.

THEOREM 5.3, Let f and g be immersions of M* in E** with 1 > 1if k
is odd, and with the same normal Stiefel- Whitney class W,. Then the in-
diced homomorphisms of the tangential maps t* : H*(G(k, D)) — H*(M) of
F and g are same.

The exceptional case referred to in Theorem 5.8, k odd and I = 1, has
been studied by Milnor [8]. We will not consider it here.

COROLLARY b.4. Let f and g be immersions of M*im E** with I > 14f
k is odd, and suppose that f and ¢ are imbeddings or that I is odd. Then
the conclusion of 5.3 holds (i.e., without any assumption on W,).

That the corollary follows from the theorem may be seen as follows.
First, if I is odd then W, = 3*W,_, where §* is the Bockstein operator
and W,_, does not depend on the immersion, hence W, also does not depend
on the immersion. On the other hand, if f is an imbedding W, = 0 (e.g.,
see Chern-Spanier [4]).

REMARK. All the results obtained in this section for immersions of M*
in E'**! ecan be generalized to the case where M*® is immersed in E¥*+i+?
with a field of normal p-frames. Here the induced map is from M* to
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Vitier (gee Section 4). By 4.4, HY(V:i'*®) is naturally isomorphic to
HY Gk, D)) fori = k.
We now prove 5.3. We need the following well known lemma.

TL.EMMA 5.5. Let X be o space such that H*(X ; Z) has only order 2 tor-
sion. The torsion subgroup of HYX; Z) is 0*(H* (X ; Z,)) where & is
the Bockstein operator.

ProoF. Let u e C*(X) be an integral cochain which is a cycle mod 2,
i.e., du = 2¢ where ce C*(X). Then since ddu = 0 = 2dc, éc = 0, and ¢ is
a cycle representing an order 2 cohomology class.

Conversely, let ¢ be any chain representing an order 2 cohomology
class. Then 2 = du for some u € C*(X). But then u is a cycle mod 2.

We consider for the proof of 5.3 the following diagram :

H(GE, 1) ; G) « H'(G(R, ) ; G)
D) .

(G #); G) —— H'(G, =) ; G)
Here i* and ¢'* are induced by the inclusions < and ¢’

LEMMA 5.6. If G = Z,, then i* 18 onto for r < k.

ProoF. For » < k, by 4.2, '* is an isomorphism onto (this is also a
well known fact). Thus, cup products of W, mod 2, j=1, - -+, [, generate
HYG(L K) ; Z) for r < k. Then cup products of a*W, = W, generate
H"(G(k, 1} : Z,). By the Chern cup product formula (see the end of Sec-
tion 4) these W, can be written as polynomials in the classes W, of
Gk, 1). Since H¥G(k, «); Z,) is generated by such classes, this proves
5.6.

L.EMMA 5.7. For r < k, H(G(k, 1) ; Z) mod torsion is generated by the
image of % and the class W, = o* W, where W, is the Ith Stiefel-Whitney
class of G(1, k).

The proof is similar to 5.6 and uses the diagram (D). For r <k,
H'(G(, k); Z) mod torsion is generated by W, and Pontrjagin classes P,.
Then one uses the theorem that a*P, = P, mod torsion can be expressed
ag polynomials in the Pontrjagin classes P, mod torsion of G(k, o) (see
[6, Bemerkung p. 68]). Then since H*(G(k, o) ; Z) mod torsion is gen-
erated by these Pontrjagin clagses and W,, this proves 5.7.

LEMMA 5.8. For v<k, W,and the image of i* generates H'(G(k, 1); Z).
PROOF. Let ¢y, <+, Gy Buy ** +y Py generate H(G(k, [} ; Z) where the ¢,
are free and the %, are of order two. Then by 5.5 and 5.6 », = dh) =



ON THE IMMERSION OF MANIFOLDS 581

%ok, where 2, e H" NGk, 1) ; Z,) and k,e H~(G(k, «); Z,). Hence A,
is in the image of ¢* for each 7. On the other hand, from 5.7 it follows
that the g, are generated by W, and the image of i*, proving 5.8.

Until this point in the proof of 5.3 we have not significantly used our
previous results.

For the proof of 5.3 we have only to consider the case » = k.

If kis odd and I > 1, by 4.2 and using the diagram (D)), the same argu-
ments as above go through to yield 5.8 for this case.

We now suppose k is even. Since M*® is oriented we can assume
H¥M) = Z (otherwise H“(M) = 0 and there is nothing to prove).

From 5.1 one obtaing immediately

LEMMA 5.9. If k is even and Wy in H¥YG(E + 1,1)) is zero, then
HYG(k, 1)) mod torsion is generated by the image of i* and W,. Then in
this case we have 5.3.

Lastly we prove 5.8 when k is even and W,,, + 0. Since HY{M) = Z,
we ignore torsion. By 4.2 we obtain that HXG(k, [), Z) mod torsion is
generated by W, = a*W,, W, = a*W, and P, = «*P,. Then by the rea-
soning of Lemma 5.7 we obtain 5.3.

Lastly, we prove a theorem of Kervaire 17].

Let M* = M be a closed oriented mawifold, &k even, and let f: M — E¥+1
be an immersion with o cross-section in the bundle of normal I-frames.
Then [ induces a map ¢ : M — Vi, of M into the Stiefel manifold [1].
Let the induced homomorphism be denoted ¢+ HAM) — HAV, ir.).

THEOREM 5.10. There is a generator v of H(V,.)) = Z sueh that
¢ (M) = 1/2Q,v where O, is the Euler characteristic and M the fundo-
mental eyele of M.

Proor. Consider the commutative diagram

Hk(MM) _ﬂﬁ_) Hx(vuru.&)
z* P,

H(Glk, D)= HAG(L k)
where £ and « are the tangential map and dual homeomorphism respec-
tively, both defined earlier. Choose v by Theorem 4.1 so that P,(v) can
be represented by (0 —— k)t — (0 ——%)~. Let ¢ (M) = nv and let W*
be the Stiefel-Whitney class in HYG(k, 1)). Then

WHa, P (nv)] = WHa, P (M)] = W5, (M) = *WH M) .

On the other hand
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W a P (nv)] = nWha P, (v) = na*W*P,(v)
= nWH{0 By — (0 —k)]=2n.

Thus » = Q,/2 and the theorem is proved.

REMARK 1. By similar techniques one may prove Theorem 5.8 for
coefficients modulo 2. We do not include a complete proof, but simply
remark that it is well known that the cohomology ring of the Grassmann

manifold G(k, 1) of non-oriented k-planes in k -+ I space is generated by
the classes W, ---, W, modulo 2 (see {2]). Since the manifold G(k, 1) of

oriented planes double covers G(k, 1), one may use the Gysin sequences
modulo 2 of this zero sphere bundle to obtain that HYG(k, 1), Z,)
is onto, <k, if and only if W,,,#0 in H*G(k+1, 1), Z,). It then follows
that H*(G(k, 1), Z,) is generated by W,, --., W, for dimensions =< & ex-
cept for the special cases already considered for integral coefficients. We
thus obtain 5.3 for coefficients modulo 2.

REMARK 2. We have shown that the only invariant able to distinguish
immersions of M* in E*! obtainable from the homomorphism

£ H¥G(k, ) H*(M*) is W,, except for % odd and {=1. Furthermore by

duality W, is determined mod 2 by the Stiefel-Whitney classes of M. We
have the problem, given a class y of HY(M?), when is there an immersion

of M*in E*' with W' = y? If [ = k, Theorem 3.3 says this is possible
for all eohomology classes of H*(M) not excluded by duality.
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