LOCAL TOPOLOGICAL PROPERTIES OF COMPLEX
ALGEBRAIC SETS

I. N. Iomdin UDC 513.83

Recently many new results have been obtained on the local topological structure of complex algebraic
sets. We cite some of them since they have some relation to the methods of studying complex sets; these
methods are used in this article.

In 1966 E. Brieskorn studied manifolds which arose as the intersection of a hypersurface specified
in C™ by the equation zP1 + ... + Z?nm = 0 and the sphere S¥1~! centered at the origin; in particular, he
showed that the 28 manifolds sz“i vz rzi 2l + 28 =0, It + ... 4z =€ k=1, ..., 28 are 28 Milner
or exotic spheres (they are all homeomorphic to the usual seven-dimensional sphere but they are pairwise
not diffeomorphic).

J. Milner showed in [1] how geometric methods could be used in the study of the local topology of al-
gebraic sets: the construction of vector fields on the manifolds being discussed (where the vector fields had
special properties) and Morse theory., Milner obtained several important new families of singular points on
hypersurfaces. Suppose f(z;, ..., Zy), £(0) = 0 is a polynomial on C™M, Y = £710); let 8¢ and D¢ be the
sphere and the ball in C™ with radius & and center the coordinate origin, with K =Y N §.. Milner showed
that for sufficiently small € the map ¢ = {/If1: Sg\K —~ ! gives a locally trivial fibration over the circle.
Moreover, if zero is an isolated singular point of Y then K is a smooth manifold and the fiber F of the fibra-
tion @ has the homotopy type of a bouquet of spheres s™m-1  Milner also gave a formula which determines
the number g of spheres in the bouquet. It is equal to the degree of the map

grad j/|lgrad fll: S =8

The characteristic map of the fibration ¢ in the homology h,:Hpy 4 (F) — Hy, _1(F) is called the local
Picard —~ Lefshetz monodromy. Milner showed that this monodromy is an important tool in the study of the
topology of singularities.

F. Hirzebruch and K. Mayer, and P. Orlik and F. Wagreich have thoroughly investigated the special
cases of isolated singularities of hypersurfaces Y where Y \{0} admits a natural action of the multiplica-
tive group of nonzero complex numbers.

E. Brieskorn gave a description of the monodromy of an isolated singularity of a hypersurface in al-
gebraic terms in the article "Die Monodromie der Isolierten Singularitiiten von Hyperflidchen," i.e., he
described it in terms of constructions in which the polynomial f played the part only of an algebraic object.

On the other hand H. Hamm [2] generalized the geometric methods proposed by Milner and used them
to study the local topological structure of algebraic sets given by more than one equation. Milner's for-
mula for p is extended to this case in [3]; algebraic expressions for p were obtained not long ago by E.
Brieskorn and H. Gruel as well as by the Vietnamese mathematician Lieh Tung Trongom.

In this article we investigate the structure of complex sets in the neighborhood of nonisolated singular
points. We use geometrical methods similar to those used by Hamm, and we prove that the connectivity of
the fiber F of the Milner fibration ¢ depends, when compared with the case of an isolated singularity, on
the dimension of the set of singular points, When the methods of [3] are used, we can prove a formula
which gives the Euler characteristic of the fiber F as the "degree" of the naturally occurring map of the
intersection of the algebraic set from the sphere S, to a manifold of frames of special form in C™,
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The results of this article can be used to study the structure of algebraic sets in greater detail, if
certain restrictions are imposed on the set of singular points. In particular, if the set of singular points
is one~dimensional, then the formula for the Euler characteristic of the fiber F of the Milner fibration can
be obtained; this formula is much more convenient for actual calculations than the formula of Section 3 be-
low. These resulis will be set out in detail below.

The author wishes to thank V. 1. Kuz'minov for the time he spent on this article,

1. A Lemma on grad h; and grad h,

In this section we prove some relations between gradients of functions which occur in the study of al-
gebraic sets; they are needed to carry out all the constructions which follow.

Let Y20 be a real algebraic set in R", gy, ..., g generators of the ideal I(Y), and let hy = 0 and
h, = 0 be nonnegative polynomial functions on R%, hy(0) = hy(0) = 0. Then on some neighborhood of the co~
ordinate origin and at all simple points x of the set Y such that hy(x) > 0, h,(x) > 0, the vectors gradhx)
and gradh,(x) do not point in exactly opposite directions. Here v is the projection of the vector v on the
tangent space to Y at the point x. This assertion is easily proved from the Curve Selection Lemma (sce
below; also see Corollary 3.4 of [1], Lemma 1 of 4], and Lemma 1.9 of this article).

When Y has an isolated singular point at the coordinate origin, one can easily prove from continuity
arguments that the same assertion holds for x¢G where G is some neighborhood Y \{0} in R (see Lemma
3 of [4]).

The fundamental result of this section is embodied in Lemmas 1.5 and 1.6; these show that in the gen~
eral case in a neighborhood of the set Y \ {0} the vectors gradh, and gradh, do not point in exactly opposite
directions.

Let us now state a lemma on real algebraic sets; we shall use this lemma below.

Let V = RP be a real algebraic set and let U = R® be an open set defined by a finite number of poly-
nomial inequalities:

U={z€R"|g:(z)>0, ..., g(2)>0}.

LEMMA 1.1 (Curve Selection Lemma; Lemma 3.1 of [1)). I U N V contains points arbitrarily
close to the coordinate origin (i.e., if 06U N V), then there is a real analytic curve p: [0, & — R® such
that p(0) = 0 and p(t)¢U 0 Vior all t > 0,

The following two lemmas describe the structure of real semialgebraic sets in a neighborhood of a

proper algebraic subset. ILet V be a real algebraic set, gy, ..., gk generators of (V). Put g = g% + .
+ gf and let Z., = {xlpx) = v}, Z., = {xlg(x) = v}, and Z., = {xlpE) <y}

Let Vj, j=1, ..., r be real algebraic sets, U;, =1, ..., s open sets defined by polynomial inequal~
ities.

LEMMA 1.2. The (r + s + 1) sets
(Z\V, V.NZN\V, ..., V.NZ\V, UNZ\V, ..., Uanv\V)
are homeomorphic to the product
2y ViNZ,y, ...,V N2, UNZy, ..., UNZIX(0,7],
if v > 0 is sufficiently small,

Proof. The lemma follows directly from the general theorem on topological equisingularity (Theorem
6.5 of [5)]).

Again suppose, as we have done above, that V;, j=1, ..., v are real algebraic sets, Ul’ i=1,...,8
open sets defined by polynomial inequalities, and let 0¢Up 1=1,...,s. Justas above, let S, and D¢ be
the sphere and ball of radius e centered at the coordinate origin.

LEMMA 1.3 (Conical Structure; cf. Theorem 2.10 of [1] and Lemma 3.2 of [6]). If € > 0 is suffi-
ciently small, the (r + s + 1) sets

(D., DNVs,...,DAV,, DAU,, ..., DU
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are homeomorphic to the (r + s + 1) sets

(D., cone (S.NV.), ..., cone (S.NV.), cone (S.NU,) \ {0},...
.,cone (S.NU,)\{0})."

Proof. This follows dilrectly from Lemma 1.2,

The following lemma partially generalizes the Curve Selection Lemma. Let V, V, be real algebraic
sets in R, U an open set defined by the polynomial inequalities g4 > 0, ..., g > 0. Let us assume that
Uun V1 = 9.

LEMMA 1.4, Suppose that there are points x €V, arbitrarily close to the coordinate origin which be-
long to the closure of U N V. Then there is a two-dimensional algebraic set V' = Y and a curve s which is
a half-ray at zero of a one-dimensional algebraic set V' < V' N V; such that

1) in some neighborhood of zero s consists wholly of points from the closure of U 0 V;

2) there is an & > 0 and a neighborhood W of the set s \{0} in V' for which D, I W \\s is decomposed
into a finite number of connected components Wi such that s ND; < Wv and at 1east one of these compo-
nents lies wholly in U.

Proof. The proof of this lemma is similar to that of Lemma 3.10f [1]. Firstwe showthatifdim Vv = 3
then one can find a proper algebraic subset V! = V such that, just as before, there are points x €V, arbi-
trarily close to the coordinate origin and lying in the closure of U N vl. By the hypothesis on the break in
the decreasing chains, we can get a two-dimensional set V' with the same property. Put V' = V' | V,.
Then on one of the half-rays of V" there are points x€V' i U arbitrarily close to zero. Denote this half-
ray by s. Then the Conical Structure Lemma eas11y yields the result that V' has the required structure in
a neighborhood of s.

We shall use the following abbreviated notation in what follows: that a certain linear relation holds
between the vectors wy, ..,, W modvy, ..., vg means that this relation holds for forms wy, ..., wi in the
quotient space formed from RI (respectively C™M) by the subspace spanned by the vectors vy, ..., vg, or,
what is the same thing, for the projections of the vectors wy, ..., wi onto the subspace orthogonal (com-
plex orthogonal) to the vectors vy, ..., vg.

Let 06V = Y © Y* be real algebraic sets, gy, ..., g5 generators of the ideal 1(Y*), g, ..., g, {1,
, . generators of 1(Y). Put ¢ =ff+ ... +f2.
Let h; and h, be nonnegative polynomial functions on R where the h; |y, have an isolated zero at zero,
i=1, 2,
LEMMA 1.5. There is an € > 0 and a neighborhood G of the set V \{0} in Y* such that for x¢D_ N G
\Y, if for some B, By 83 + 8% >0,
B1 grad hy(z) B, grad h.(x) =0 mod grad @(z),

grad g, (z), ..., grad g.(z),

then 88, < 0. In other words, for x€D¢ ' G Y the vectors gradh1(x') and gradh,(x) do not point in exact~
ly opposite directions modgrad ¢ (x), gradg;(x), ..., gradgg(x). A similar assertion holds for complex
algebraic sets in C™.

If f is a complex~analytic function on C™, put gradf = (8f/0z;, ..., 8f/9zp). For a real smooth
function ¢ on C™, put
a 7] 17}
grad o= (—EE“H ¢ seiey —F—(f- +i-—(P-), where 2, =2yt iYs.
dx, 3y, 0y, OYnm

If p(t) is a smooth path in C™, then obviously,

YCO) _ s graajio®), LB —Reth, grado (0>

Here {a, b) = Za .b: is the Hermitian scalar-or-inner product. Moreover, it is easy to verify that for t13e
complex~analytic function f, gradf = gradRef, and if hy, ..", by are complex-analytic functions and h =Z
.
=1
lhj 12, then gradh(z) = ZZhj(z)gradhj(z).

=1
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Let 06V = Y =.Y* be complex algebraic sets, gy, ..., g5 generators of the ideal (Y™*), g;, .... g5,
fio ... £y generators of I(Y). Assume that Y*\ Y is regular.

Put ¢ = 2 If; 2 and let hyy and hyjy have isolated zeros at the coordinate origin, where hy = L xhz 2,
hy = Z lh2 2, and where hi and h2 are polynomials in the variables z,, ..., Zpy.

"LEMMA 1.6. There isan € >0 and a neighborhood G of the set V\\{0}in Y* such that for z€D NG
\Y, if
By grad h,(2)+P, grad k2 (z) =0  mod grad ¢(z), grad g.(z), ..., grad g.(z),
where By, B,6R, p] + % = 0, then g4+ 8, < 0.

COROLLARY 1.7. At points z€D, 1 G \Y the vectors gradh,(z) and grad ¢(z) are complex linearly
independent modgradg,(z), ..., gradgg(z), just as are the vectors hy(z) and grad ¢(z).

Proof. Using the Curve Selection Lemma we easily show that at points z€Y*\ Y, sufficiently close
to zero, grad¢(z) * Omodgradg,(z), ..., gradgg(z).

Therefore in the relation
By grad b, (z)+c gred @(z)==0 mod grad g,(z), ..., grad g.{z)
the coefficient 8y, which can obviously be taken to be real, must be different from zero.

The proof of Lemma 1.6 will be given below. Lemma 1.5 is proved in a completely analogous man-
ner.

LEMMA 1.8. For points z€ Y*\ Y sufficiently close to the coordinate origin, if the following holds:
B. grad Iy (z) +5, grad ha(z) =c grad ¢ (z) mod grad :(%), ..., grad g.{z), {1)
where B, f3€6R, By =20, B, =0, c€C, ¢ # 0, then largel = n/4,

Proof (by contradiction). Let us assume that there are points z€Y* \ Y sufficiently close to the co-
ordinate origin such that (1) holds at them where 8; = 0, 8, 2 0, ¢ = 0 but largel > /4.

Consider the set A of points (z, ¢, By, B,) which are such that z€Y*\Y, 5,20, 5, =0, ¢ =9, large}
> n/4, and

B, grad h.(z) 8, grad h.(z) =c grad o(z) mod grad g,(z), ..., grad g,(z). (2)

Since (2) may be multiplied by any positive number, our assumption means that the point (0, 0, 0, 0)
€CM 6 C o R belongs to the closure of A. 1t follows from the Curve Selection Lemma that there is a real-
analytic curve p(t) in C™ @ C ®R? such that p(0) = (0, 0, 0, 0) and p(t)€A for small positive t. In other words,
. there is a real-analytic curve p(t) in C™ guch that p(0) = 0 and for all small positive t, p(t}6Y* N Y, and

B. () grad hy(p(t)) +5a(t) grad ko (p(t))=c(t)grad 9(p(£)) mod grad g, (p(t)), ..., grad g,(p(?)), (3

where f;(t) = 0, By(t) = 0, c(t) = 0, largc(t)! > 1/4, and the coefficients 5 (t), Bs(t), c{t) can be expanded in
power series in t in a neighborhood of zero. :

Take the inner product of (3) with the vector p = dp/dt. We get
B:(2)<p, grad hy(p(£))>+Ba(8)<{p, grad ho(p(2))> =¢(1)<p, grad o(p(%))?, {4

since the path p(t) lies in Y*, and thus the vector p is complex orthogonal to the vectors gipE), ..., grad
gs @ ).

Consider the series for p, gradop®)) = Zl fip ) O, gradf](p(’c)» Z i 3P (E))df; ¢ (pEy/dt. I £ i)
=altMl 4 | then m! > 0, since

1] i
7i(p(0)) =0 and f,(p(t)) df;(p (1)) /dt=m{a; | ™' +. ..

Thus the first coefficient of the series for {p, grad¢(p(t))) is a real positive number if the function p{p{)
is not identically zero. The same holds true for the series for (p, gradh;(p(t))) and (b, grad b, (pit)):

By hypothesis, p(t)6Y*\ Y fort <0, i.e., ¢t} > 0 for small positive t, and therefore the first
coefficient in the series for {p, grad¢(p(t))) must be strictly greater than zero. Since the series for ct)
must be nonzero by hypothesis, on the right side of (4) there is a nonzero series.

)]
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Since Bi(t) = 0 and B,(t) = 0, it follows that the first coefficient in the series on the left of (4) is a real
positive number; this implies, in turn, that the first coefficient in the series for c¢(t) must be strictly
greater than zero. Thus large(t)l — 0 when t — 0, which contradicts the assumption we made.

LEMMA 1.9. For points z€Y* sufficiently close to the coordinate origin such that h;(z) > 0, hy(z)
> 0, the vectors gradh,(z) and gradh,(z) cannot point in exactly opposite directions modgradgj(z). In other
words, the relation

Bigrad h,(z)+B.grad h,(z) =0 mod grad g,(2), ..., grad g.(z), (5)
where 8;, 8,€R, g+ p3 > 0, implies that 8;°8, < 0.

Proof. Let us suppose that there are points z€¢Y* arbitrarily close to zero for which (5) holds but
B1*8; = 0. The Curve Selection Lemma implies that there is a real-analytic path p(t) such that p{0) = 0,
and that for small t > 0, p(t)6Y*\ {0}, and

Bi(t)grad hi(p(t))+B.(t)grad hy(p(t)) =0 mod grad £:(p(?)), ...
(6)
-, grad g.(p(t)), Bs(£) =0, B-(#) =0, B (1) +5." (1) >0.
Arguments similar to those given in the proof of Lemma 1.8 show that the coefficients f;(t) and B,(t) can be
assumed to be functions of t which are analytic at zero. Take the inner product of (6) with p. We get

8:(t) {p, grad k,(p(t)) >+pa(t) < p,grad h.(p(t))>=0. (7)

However, from the assumptions we have made, for small t > 0 we get h;(p(t)) > 0, hyp®)) >0, B4(t) = 0,
Bs(t) = 0, Bit) + B%(t) > 0, and so the first coefficient on the left of (7) must be strictly positive.

Proof of Lemma 1.6. This also is done by contradiction. Let us assume that for the requisite ¢ > 0
there is no neighborhood G. Then there are points in V arbitrarily close to the coordinate origin which are
limit points for the set D consisting of points z€Y*\(Y at which, for g4, B,€R, Bi+BE>0, BBy =0

B, grad h,(z)+p, grad h.(2) =0 mod grad g,(z),. . ., grad g,(z), grad ¢(z). (8)

It is obvious that D= Dy n U) U D, N U") U (D3 N U!). Here D1 is the algebraic set consisting of points z€Y*
at which, for some B;, 8,€R, (8) holds; D, and Dj are algebraic subsets of D;, where §; (respectively 8,)

can be made zero. The set U' = C™ 'Y, U is a closed subset consisting of points z€U' for which Re {grad
“hy(z), gradhy(z)) <0 (v is the projection of the vector v on the subspace complex-orthogonal to the vectors

grad¢(z), gradg(z), ..., gradgg(z)).

From the assumption we have made, there are limit points arbitrarily close to the coordinate origin
in V for at least one of the sets D; N U, D, N.U', or D3 NU', and since Lemma 1.4 applies to each of these
sets we get: there is a real-algebraic two-dimensional set V' and a curve s which is a half-ray at zero for
the one-dimensional set V"= V' NV, and these are such that in some neighborhood of zero all the points of
s lie in D and for some neighborhood W of the set s\{O} in V' at least one of the connected components of
W \\ s lies wholly in D.

Choose an analytic parametrization s{) of the curve s in a neighborhood of zero, with s(0) = 0. Since
the curve s lies in V, and since hy|y and hle have isolated zeros at the coordinate origin, hy(s(t)) > 0 and
hy(s(t)) > 0 for small t > 0. Since hy(s(t)) and hy(s(t)) are analytic functions of t, which take zero to zero,
it follows that dhi/dt > 0 and dhz/dt > 0 for small t > 0, i.e., both the functions h; and h, increase along s
for some neighborhood of the coordinate origin.

Let ZL = {z€Y*hj(z) < p}, ZL = {z€Y*hi(z) = p}, i =1,2. Put zh=vn zL, i=1,2. 1t is obvious
that Z;), for sufficiently small p > 6), intersects the curve s in the unique point x;), i=1, 2,

Now choose Wy, as one of the components of W\ s which lie wholly in D, and denote by U}) that half-

ray of the curve 2;) which lies in Wi, i =1, 2.

LEMMA 1.10. At least one of the two following possibilities holds: either there are arbitrarily small
6 > 0for which the functionh, decreases (not necessarily strictly monotonically) along the curve 03 in some
neighborhood of x}s, or there are arbitrarily small &' > 0 for which the function h, decreases (not neces-
sarily strictly monotonically) along the curve c%, in some neighborhood of x%, .

Proof. Assume, for example, that for every sufficiently small 6 > 0 the function h, is strictly in-
creasing along the curve 0(15 in some neighborhood of x}s. Since the curves 0(13 admit analytic parametrization
and h, is a polynomial, this is the unique alternative to the first of the possibilities listed in the lemma.
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Now fix a sufficiently small § > 0 and we shall now show that there are points xé, arbitrarily close to
x5 such that the function h, is strictly decreasing along 05| in some neighborhood of Xév

Choose a real-analytic change of coordinates on a neighborhood of x5 such that in the new coordmates
Y1s «++» Yam-1» Yom the curve s is specified by equations yy =0, ..., yym-1 = 0 in a neighborhood of x}§ while
the function h; equals y,m. This change of coordinates is possible since it has been shown that the deriva~
tive of hy along the curve s is greater than zero at the point x%.

Let us define the function ¥ in a neighborhood of xé by the equation:

\p(yh ceey yZm) =h2(y17 caey yﬁm) '—h2(01 01 sy 07 yzm)-

It is obvious that §lg = 0. On the other hand, by assumption ¥(y) > 0 for points y@ag sufficiently close to
x% Therefore ¥ is not identically zero on V'. (More precisely, this is true on the analytically irreducible
component of V' in a neighborhood of x} which contains Wx.) Therefore V' n y71(0) is a real-analytic curve,
one of whose components is s. It is obvious that s intersects the remaining components of the curve v

N y~1(0) on a zero-dimensional analytic set consisting of isolated points. Therefore at each point Xév dis~
tinct from X5 and sufficiently close to it there is a nelghborhood U in the set V' in which there is no point

of $™1(0) except the points of s. Now fix the point xé. The function # is nonzero on the set U N Wy, which
can be assumed connected.

By the hypothesis we have made, ¥(x) > 0 for points x lying on the curve 035" which starts at the point
xg, and goes sufficiently close to xg, Therefore zp!U "Wy > 0.

Let the pointy = (y¢, ..., yzm)éoé, 1U. Then hy(y) = hz(”a') = ¢'. On the other hand, hy{y) =y
=h;(y"), where y' = (0, 0, s 0, Yor).  Since () > 0, hy(y) > hy(y'), we get hZ(XﬁY} >hy(y'). But, as has
been remarked earlier, the functlons h; and h, mcrease along the curve s in the same direction. There-
fore, hi(X y) > hy(¥') = by(y). Since the curve 06‘ admits an analytlc parametrization, this last inequality
gives: hiqy) < }11(x2,) for all points yﬁoé, sufficiently close to xé,, and this implies that the function h; de-
creases strictly along the curve ag, in some smaller neighborhood of xg.

Suppose, for example, that the first of the possibilities listed in Lemma 1. 10 holds. Fix 6 >0 w1th
the required properties, and choose an analytic parametrization p(t) of the curve 05 such that p(0) = *{5
Since 0(13 = Wi = D, the following holds for small t > 0:

B(2) grad hy(p(2))+a(t) grad ha(p(t)) =c(t) grad g(p(t))
(9
mod grad g,(p(2)), ..., grad g.(p{1}).
Moreover f(t) - 3,(t) = 0, since we may assume that g;{t) = 0, ,¢) = 0, and B%(t) + B%(t) > 0. Bo once again,
just as in the proof of Iemma 1.8, we can assume that Bi(t), By(), and c ) can be expanded as power se-
ries in t in a neighborhood of zero,

Since x5Cs <V, we have h (Xé) > 0 and hz(xé) > 0. Therefore hy(p(t)) and hy(p(t)) are greater than
zero for small t. Lemma 1.9 now implies that c(t) = 0 for small t.

Now take the inner product of (9) with . We get:
Bi(2)<p, grad h,(p(£)) >+8:(t) (P, grad ho(p(8)) >=2(1)<p, grad (p(£))>. (16

From p(0)€s =V =Y we get £(p(0)) = 0, and since p)6¢Y* Y for small t > 0 we get, just as we did
above, that the first coefficient of the series for ®, grad ¢(p(t)) is a positive real number. Further,

Re {p, grad h>=dh,/dt, Re{p, grad h,>=dh,/dt.

But h(p(t)) = 6, and h,(p(t)) decreases for small t. Therefore Re ay =0, Rea, = 0, where g and 4, are

the first coefficients, respectively, in the series for (p, gradhy) and {p, gradhy). Since g;({t) = 0 and Ba(t)
= 0, it follows from this that Rea; < 0, where a5 is the first coefficient in the series for the left side of
(10); in turn, this implies that Rec < 0, where c is the first coefficient in the series for c(t). Thus

large )| > 1r/4 for sufficiently small t. But since 6 can be chosen arbitrarily small, we can assume that
the point xé and therefore the point p(t) for small t lie in any a priori assigned neighborhood of the coor-
dinate origin. But then the inequality large(t)i > 7/4 contradicts Lemma 1.8. Hence Lemma 1.6 is proved.

2. A Theorem on the Connectivity of the Fiber

First of all we make precise the concepts of "a nonsingular manifold close to Y" and the intersection
of V with a sphere of "sufficiently small radius;" these will be frequently used below.
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Suppose we are given a complex algebraic manifold Vaz, or the pair Y* = Y sz, of complex algebraic
manifolds in C™,

Let I(V) be generated by the polynomials ry, ..., rg, I(Y*) be generated by the polynomials gy, ...,
gg, and I(Y) be generated by the polynomials g, ..., gs, f.

For V we shall assume that the point z, is either an isolated singular point or a simple point of this
set; for the pair Y = Y* we shall assume that Y*\Y is regular in a neighborhood of z,.

Suppose, as in Section 1, that Z Ih}lz, hy = Z Ih%lz, hy(zg) = hye(zg) = 0, and that z; is an isolated zero
of the functions hj |y or hyjy for i = 1, 2. Let us define, just as we did above,
Z ={z6Y"|hi(2) <e}, Z,'={z6Y"| h;(z) =¢},
Zi={26Y" | hy(3) <e}, i=1,2.

Corollary 2.8 of [1]provesthat for sufficiently small g, Zi8 intersects Vtransversely along a smooth mani-
fold L, i=1, 2
E’ E .

t» 1 =1, 2 with boundary, as follows: fix an &€ >0
sufficiently small (small enough that Corollary 2.8 of [1] implies that Y*\Y intersects ZIE transversely along
a smooth manifold, i = 1, 2) and consider X5 = Y5 N Z}, where Y5 = Y* 0 {7!(5). Once again Corollary 2.8
of [1] implies that for sufficiently small 6 = 0, Y is a smooth manigqld in a neighborhood of z,. Corollary
1.7 now implies that if 6 is sufficiently small then at points z€Y,s N Zé the vectors gradh;(z) and gradi(z)

= (1/2f(z)) grad If(z)I? are complex linearly independent modgradg(z), ..., gradgg(z), and therefore Y5 and

Zfé intersect transversely, i = 1, 2. Therefore Xi:é is a smooth manifold with boundary.

For pairs Y < Y* we define a smooth manifold XL

It is easy to show that for sufficiently small 6; # 0 and 6, # 0 the manifolds Xieé and Xieé are dif-
feomorphic; therefore the manifold Xéé will simply be dewoted by Xls', i=1, 2for suf%iciently $mall 6.

LEMMA 2.1. Let &; and &, be sufficiently small. Then
1) the manifolds 2191 and 2332 are diffeomorphic;
2) the manifolds with boundary X‘s'1 and Xz,;.'2 are diffeomorphic.

Proof. 1) Lemma 1.9 implies that for z €V sufficiently close to z,, the vectors gradh,(z) and gradh,
* (z) do not point in exactly opposite directions modgradr,(z), ..., gradrk(z). Therefore, if we use the con-
struction of Lemma 11.3 of [1] we can construct a tangent vector field w on a neighborhood of z; in V, and
along the trajectories of thisfield the functions h; and h, both increase. Thus the trajectories of w inter-
sect the manifolds Eéi and 222 at a single point in each, and so we can establish the required diffeomor-
phism.

2) Choose g3 < ¢ such that Zis Ny = 2282 We now prove that X%'z is diffeomorphic to ng. The dif-
1
feomorphism between X181 and ngg is established in a similar way.

Lemma 1.6 implies that we can find a neighborhood G of the set Y\{zo} in Y* such that for z€G\Y
sufficiently close to z, the vectors gradh,(z) and gradh,(z) do not point in exactly opposite directions mod
-gradg,(2), ..., gradgg(z), gradf(z) = (1/2f(z)) grad Ifz)%

Choose § = 0sosmall that Y5 (ZZS AN 2%,3) = G. Then in Y there is a tangent field w on a neighbor-
hood of Y§ N <Z%z\ 215 ) such that the functions h; and hy in'crease along the trajectories o_f this field. Just
as above, the trajectories of the field w intersect both ax}ssé =Yg N Zg, and 8X% 5= Y5 1 z%, transversely

in a single point in each. Tt is easy to construct a diffeomorphism of the manifolds Xéz s\ Xéa 5 and XLS 5
. 1
x [0, 1] with the help of these trajectories. It obviously follows from this that the manifolds Xzﬁ2 5 and Xe3 5

are diffeomorphic. But 6 can be chosen so small that Xfegé is diffeomorphic to Xg3 and X2526 is diffeomor-

phic to Xza'2

In what now follows, all the manifolds described above will be denoted simply as Z and X', or Zg,
Xy if it becomes necessary to emphasize that all the constructions are carried out on a neighborhood of
the point z,. The manifold obtained for the case h(z) = llz —-_zoll2 will be taken as the standard model.

Remark. Suppose V has an isolated singular point at zero and is a complete intersection, i.e., gen-
erators ry, ..., rx can be chosen for the ideal I(V) such that V=m —k. Then the construction carried out
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above correctly defines a smooth manifold with boundary X', X' = Z; 0 r;1(6 gn...n rgi(ék), where Oy,
, 0% are sufficiently small complex numbers, not all zero.

Suppose, just as before, that Y* and Y, 0€Y < Y*, are complex algebraic sets, where gy, ..., gg
are generators of the ideal I(Y*), while I(Y) is generated by gy, ..., gs, f. We shall assume from nhow on
that all the singular points of Y* are contained in 2 neighborhood of the coordinate origin in Y, t.e,, Y*\Y
is regular in a neighborhood of zero.

Let 2* =Y* N8., Z =Y N8, The Conical Structure Lemma implies that the algebraic sets Z* and
Z are independent (up to homeomorphism) of the choice of the sufficiently small number € and that Z*\ Z
is a smooth manifold for all sufficiently small .

Lemma 1.6 of [2] implies that the Milner fibration construction (Theorem 4.8 of [1]) carries over to
this case, i.e., the map ¢:Z*\ T — 8!, 0(z) = f(z)/1f(2)l defines a smooth fibration of £* \ T over the cir~
cle. Moreover, the fiber Fy (more simply F) of the fibration ¢ is diffeomorphic to the interior of the mani-
fold X' defined above.

We shall assume from now on that all irreducible components of Y*, as well as all the irreducible
components of Y, have the same dimension, withn = dimY = dim Y*~1. Lemma 2.2 of [2] proves that in
this case each singular point in a neighborhood of zero in Y* is also a singular point of Y.

Lemma 1.7 of {2] states that the fiber F of the fibration ¢ has the homotopy type of a finite CW-com-
plex of dimension n when Y* and Y are complete intersections, i.e., h =m~s~1; and, moreover, when
Y* and Y have an isolated singular point at zero, the fiber F has the homotopy type of a bouguet of spheres
S, (This is equivalent to the fiber being (n — 1)-connected. )

The fundamental result of the section is Theorem 2.2, which strengthens the previous assertion.

Let V be the set of singular points of Y. Let d be the maximal dimension dim{V of the irreducible
components of V at zero.

THEOREM 2.2. Iet Y* and Y be complete intersections. Then the fiber F of the fibration ¢ is
(n —d—1)~connected,

In fact we prove the following somewhat more precise assertion.
LEMMA 2.3. The fiber F of the fibration ¢ is (m — s —~d -~ 2)~connected.

COROLLARY 2.4. The manifold 8X' = Z* n f"i(é), where 6 = 0 is sufficiently smail, is m—~s—~d
— 2)~-connected if d = dimBLV >0orm-—s <dimY*. When dim?,LV =0and m—s =dimY?*, the manifold 3X"
is (m — s~ 3)-connected,

Proof of the Corollary. Consider the Morse function}/) on the manifeld X', which function is obtained
by removing the degeneratecritical points of the function Iizl2. The index of each critical point of ¥ is less
than or equal to n (see, for example, [7]).

Therefore ¥ allows us to represent the manifold X' as a tubular neighborhood of the boundary 8X'
with calls of dlmensmn zn glued on. Therefore the homotopy groups of X' and 8X' coincide up to dimen-
sion n—2. But since X' and F are diffeomorphic, X' is homotopy equivalent to F. We need only remark
that m—-g~d~2=n-~2whend>0orm-~s <dimY*=n+ 1.

When Y* and Y have an isolated singular point at zero, the manifolds 8X! and T are diffeomorphic,
and therefore Corollary 2.4 makes Corollary 1.3 of [2] somewhat more precise.

Before we prove Lemma 2.3 in its general form, we prove it for the case where Y, and therefore
Y*, has an isolated singularity at zero. In this case, F, the closure of F in Z*, is a manifold with bound-
ary which is diffeomorphic with X' (Theorem 1.7, 3 of [2]), and the Morse function i is the means by which
we can get F from the disk D& by adjoining handles of index =n. All these rearrangements can bs carried
out inside the manifold £*. But £*, and therefore *\ D®, is (m —s — 2)-connected, by Theorem 2.5 of
2], and the adjunction of handles of index =n does not change the first S*—n -2 = n —1 homotopy groups
of the addition. Therefore Z*\ T is (m — 8 — 2)~connected,

Since Z*\ F = (z* \ Z) \ F, the map ¢ defines a fibration of Z*\_ F above the interval, with fiber
F. Therefore Z*\ F and F are homotopy equivalent, and so F is (m —s — 2)~connected. (See Lemma 6.4
and Corollary 6.2 of [1].)
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The proof of Lemma 2.3 in the case where dim}V > 0 is quite similar to that of Theorem 1.5 of [2].

Let qy, ..., qz be generators of the ideal I(V). Putq = Zlqil"‘ and let N,={(z€Y"|g(z)<a}, N.={28Y"|q(2)
=a}, No={26Y"|q(z)<a}. For sufficiently small o >0, N, and N, 1 Y are smooth manifolds. (From Lem-
ma 2.7 of [2], or from Corollary 2.8 of [1].)

Now fix & > 0 sufficiently small, and then fix o > 0 sufficiently small with respect to €.

LEMMA 2.5. The manifold X' is homotopy equivalent to X' N N,. More precisely, if 6 = 0 is suf-
ficiently small, then X5 =Dg 0 Y*0 £71(5) is homotopy equivalent to X5 N Ng.

Proof. Lemma 1.9 implies that for z€D. N Y \ V the vectors z = (1/2) grad lzll2 and gradq(z) can be
assumed not to point in exactly opposite directions modgradg;(z), ..., gradgg(z), gradf(z). Since the points
of Y\ Vare simple points of Y, we have that, for z€Y \(V, the system of vectors gradg,(z), ..., gradgg
- (z), gradf(z) has rank p + 1, the maximum possible rank at thepoints of Y*, p =m—dimY* Therefore it
is easy to see from continuity arguments that the vectors z and gradaq(z) do not point in exactly opposite di-
rections modgradg;(z), ..., gradgg(z), gradf(z), for z€W, where W is some neighborhood of Y\ Vin Y*
(see Lemma 3 of @4]).

Now choose 6 = 0 so small that X5\ Na = W. Then in Y4 = Y*nf1(5) one can construct a tangent
vector field w on a neighborhood of X5\ N , such that along the trajectories of this field both [zl and q(z)
decrease. So by moving along the tra]eetorles of the field w we can push Xz onto Xg N Ngy.

In order to study the topology of X5 NN, we construct [2] the auxiliary manifolds Y and Yy, 0€Y,
Y¢ which lie in Y* and Y, respectively, and which have an isolated singular point at the coordinate ori-
gin,
Let P denote the space of all polynomials of degree =2, which have a zero at the coordinate origin.
Consider sets of h = (hy, ..., hd)FPd, where d, as ?bove, equals dimf{V. Let Y§ = {z€Y*Ihy(z) = hy(z)

=... =hgz) =0}, Y, = Y¢ Y for hePd Puth= Y Iyl

i=1
LEMMA 2.6. (See Lemma 1.12 of [2]). There is a set of hepd with the following properties:
1) Y§\ V is regular;
1') Yo\ V is regular;
2) 0 is an isolated point of Y¢f N'V;
3) if ¢ # 0 is chosen sufflclently small, then at each critical point of the function hiy ay\y, the re-
striction of the Hessian H of the function h is nondegenerate on the subspace of vectors v tangent to
Y and such that (v, gradh]) =0, j=1,...,4d, &, gradgy) =0, i=1, ..., I
3') if 6 = 0 is chosen sufficiently small, then at each critical point of the function hy S\YE the restric-
tion of the Hessian H of the functlon h is nondegenerate on the subspace of vectors v tangent to Y
and such that (v, gradh D= =1, ..., 4d.
Proof. We note that statements 1') and 3) coincide with statements 1) and 3) of Lemma 2.12 of 2], if
we replace the Y* of that lemma by our Y, and the Y there by our V. Statements 1) and 2) coincide with
statements 1) and 2) of Lemma 2.12 of [2] if we let Y* and Y* coincide and replace the Y of that lemma by
our V. In fact it is proved in [2] that each of the properties 1), 2), and 3) of Lemma 2.12 holds for almost
all sets of hé¢Pd, Therefore to prove Lemma 2.6 we need only show that statement 3') holds for almost all
sets of hePd,

This is proved in the same way as statement 3) of Lemma 2.12 of [2]. Consider the real analytic
manifold M,in pd x (Y *\ V) which consists of pairs (h, z) such that

a) gradh(z) = 0modgradg,(z), ..., gradgg(z), gradf(z), i.e., the point z is a critical point of the re-
striction of h to the surface Yg passing through z;

b) the restriction of the Hessian H of the function h to the subspace of the vectors v orthogonal to
gradg(z), ..., gradgg(z), gradf(z), and grad hy(z), ..., gradhg(z) is degenerate. '

The real codimension of M in Pd x (Y*\ V)is 2n + 2. 1In fact, the equality a) locally defines n com~
plex or 2n real relations.

566



Direct calculations show that the Hessian H(v, v} is given by the following formula at the criﬁeal point
z of the function leﬁ;

d

d ]
H(v,v)= 22 [<v, grad h;> 1*+2Re ! Z RD*h;(v, v)— WD (v, v)— Z &D%g;(v,v) ) . {11y
: =1

=1 j=1
Here the complex quadratic form D% of the complex-analytic function u is defined by the formula
Dzus(v, v) = E (Szu/aziazi)vivj, and A, ¢y, ..., ¢g€C are the coefficients of the identity gradhiz) = rgradf(z)
+ Z cjgradg;i{z) which holds at the point z.

"' Thus the restriction of H to the subspace of vectors v tangent to Y and such that {v, gradhj>: 0,
j=1,..., dis given by the formula H(v, v) = Re G(v, v) where G is some complex quadratic form. It is
easy to see that the degeneracy of Re G is equivalent to the degeneracy of G as a complex quadratic form,
and therefore condition b} is given by one complex relation or two real ones.

Direct calculations show that the rank of the Jacobian of the system of 2n + 2 functions locally defining
the set M isequal to2n + 2atalmostall points of M, and so codim M= 2n + 2. Rut the real codimension of
Pdin Pd x (Y*\ V) also equals 2dim Y* = 2n + 2, and so the fiber of the prejection w: M~ pd, where
is the restriction to M of the projection of P x (Y* V)ontoitsfirst factor, is zero-dimensional above al-
most every point hGPd._ But this means that, for almost every set of héPd and for all sufficiently small
0 # 0, at the critical points of h‘Yﬁ the restriction of the Hessian to the subspace given above is nondegen-
erafe.

Now fix a set of h€P9d which has all the properties listed in Lemma 2.6.

LEMMA 2.7, Let o > 0 be chosen sufficiently small and let § # 0 be chosen sufficiently small with
respect to . Then

1) the function hIX5 does not have critical points in Xg N I:Ja\ Y
2} at any critical point of h;X\YSk the index of the Hessian of h is greater than or equal to o ~d), and

3) at any critical point of h . x the index of the Hessian of h, g 1S greater than or equal to
o) X5 NN Y IX50N, a
n—d).

Proof. 1) As Corollary 2.8 of [1] shows, the function hiy VUY,) does not have any critical points in
a neighborhood of zero. But continuity arguments imply that for some neighborhood W, of the set YN\ (V
UYg) in Y* the point z€W; Nl D¢ is not a critical point of the restriction of h to the manifold Y5 passing
through z. Onthe other hand, hypothesis 1') of Lemma 2.6 implies that the vectors gradh(z), ..., gradhgiz)are
complex linearly independent modgradg,(z), ..., gradgg(z), gradf(z) for z€Y,\| V, and this means that
this holds for all z€Y,\ {0} sufficiently close to zero. Continuity arguments also show that this holds for
z€W,, where W, is some neighborhood of Y,\ {0}in Y*

If for fixed @ we choose 6 sufficiently small then it is obvious that we may assume that X@ﬂN a & W
U'W, are neighborhoods of Y\ Vin Y* Now we need only note that the vector gradh(z) =E hi(z)gradhj {z)
is not zero modgradg,(z), ..., gradgg(z), gradf(z) for zEW,\_ Y. ;

2) Let us choose 6 # 0 so small that hypothesis 3') of Lemma 1.6 holds, and let z€Xs5\ Y§ be a criti-
cal point of hyy .. Consider the restriction of the Hessian H to the subspace T of tangent vectors v such
that (v, gradhj> =0,j=1,...,d Formula (11) implies that on T, H(v, v} = ReG(v, v), where G is a non-

dim 7

degenerate quadratic form. Since G can be reduced to the form G(z, z) = Z z%, ReG = Z xf - Zy%, in

N

{=

some basis, it follows that the index of H = dim T = n —4d.

3) I o is so small that hypothesis 3) of Lemma 1.6 holds, then Lemma 2.18 of [2] implies that the in-
dex of the Hessian of the function hiyn No\ Y, is not less than (n—d). Since the property we are consider-
ing is stable under small C’~deformations of the function, the property holds for hyy AN\ Y if 6 is suf~
ficiently small. 6 Mat to

Now fix & and 6 so small that Lemma 2.7 holds. Just as above, Zg = {z€Y*h(z) =B}. Choose 8 so
that N, 0 Z; =D, ‘

LEMMA 2.8. The pair (X5 0Ny, 0 Zg, X5 NN, 0 Y@ is (0~ d~ 1)-connected.



Proof. Corollary 2.8 of [1] shows that sufficiently small y > 0 are not critical values of tha and
hixsnN,- Therefore if g' is suificiently small, X5 NN, NY is a strong deformation retract of X5 N N,
N. Zp. We now quote the form of Morse's theorem on manifolds with boundary we need (see, for example,
[8], p. 60).

Suppose the function ¢ on the differentiable manifold M with boundary 8M has only nondegenerate
critical points, and that none of them lie on 8M. Let us also assume that all the critical points of ¢ g
are nondegenerate. Suppose, moreover, that ¢~ [a b] is compact, where a and b are noncritical values of
@ and ?19M- Then ¢~!(—=, b] has the homotopy type of ¢~ (==, a] with adjoined cells, where the num-
ber of adjoined cells of dimension i is equal to the sum of the number of critical points of @ of index i
and of those critical points of ¢|gp of index i at which the derivative of ¢ along the external normal to M
is negative.

Take as the Morse function on X5 N N, the function  obtained from h by removing the degenerate
critical points of hIX NNy and h|x.. Then Lemma 2.7 and the theorem we have quoted imply that X5 0 Ny
N Z, has the homotopy type of Xg NNy N ZB' with adjoined cells of dimension greater than or equal to
@ —d.

COROLIARY 2.9. X5 0 Ny N Zg is (m — s —d —2)-connected.

Proof. The manifolds Y§ and Y, = Y¢ nf~1(0) have an isolated singularity at zero, because of 1), 1'),
and 2) of Lemma 2.6. As we have shown, Lemma 2.3 holds in this case and therefore the fiber F;, homotopy
equivalent to it and the manifold X(') are (m —s—d—2)-connected, since I(Y{) is generated by the s + d poly~
nomials gy, ..., gg, hy, ..., hg. :

But the function djy, has an isolated zero at zero by 2) of Lemma 2.6, and therefore Lemma 2.1 im-
plies that for sufficiently small 6 the manifold X5 A N, NY§ ~16) n N is diffeomorphic to p:e¥
Sincem—-s—-d—-2 =n-d-1, the required connectivity of Xé nAN ,n ZB follows from Lemma 2.8.

LEMMA 2.10. The manifolds X5 1 N, and X5 NNy N ZB are homeomorphic.

Proof, Since hjy has an isolated zero at zero, 2) of Lemma 2.6 and Lemma 1.6 imply that there are
g, > 0 and a neighborhood G, of the set V\\{0} in Y* such that for z€D, 0 G,\ Y the vectors gradh(z) and
z do not point in exactly opposite directions modgradg(z), ..., gradgs( ), gradf(z) = (1/2f(z))gradif(z)%
The same Lemma 1.6 states that there are €, > 0 and a neighborhood G, of the set V'\{ {0} in Y such that
for z€D; N G, V the vectors gradh(z) and z do not point in exactly opposite directions modgradg,(z),

, gradgg(z), gradf(z), gradq(z). Continuity arguments imply that this last property holds for z€D_
NGs, where Gj is a neighborhood of G,\ Vin Y* We can assume that after the set of hFPd has been
chosen & is chosen smaller than min(gy, &); then a is chosen such that Y N N, N (D e\ Zﬁ) =Gy N Gy and
finally, 6 is chosen so that Y5 NN, 0N D\ Zﬁ) =Gy, Y5 N nm \ Z )y < G3 Then we can construct
a tangent vector field w on Ygin a nelghborhood of Y5 NN, ﬂ D\ Z ) such that along this field both fzll?
and h increase, while at the points of Y6 n N this field can be assumed to be tangent to Y5 N N With the
help of the trajectories of the field w it is easy to establish that Y50 N, N(Dg \ Zﬁ) = X5 N Na)\ X5 01 Ny
n ZB) is homeomorphic to X5 NN, N ZB) % [0, 1], and the assertion of the lemma follows from this direct-
ly.

Lemma 2.3 now follows from Lemma 2.5, Lemma 2.10, and Corollary 2.9.

3. Euler Characteristic of the Fiber

Let us assume that Y* and Y are complete intersections, i.e., n +1=dimY* = m~s, where g;,
.., gg are generators of I(Y*), g;, ..., 8s, [ are generators of I(Y). Just as before, suppose that Vis
the set of singular points of Y, and put Z* = Y*N S, =Y NSy put Z;=V NS for sufficiently small e.

There is a formula which expresses the Euler characteristic of the fiber F of the fibration ¢: Z*\( Z
— 8! in terms of the mapping of £*\ T into a manifold of the type of the Stiefel manifold, and this formula
is close to that of Theorem 2 of [3] which holds under the assumption that the singularity at zero in Y* and
Y are isolated. The notation below is that of [3].

Let Ry, be the space of k-frames (vy, ..., Vg1, Vi) in C™ such that i VJ> = 51] for d, j) = k—1,k),
while no constraints are imposed on \ N vi). Let Vik,m <Bk,m be the space of frames (vy, ..., Vg_y, Vk)
such that vj_; and vy are complex linearly independent. It is obvious that Vk m can be deformed into Ry y,
in Vi m> the Stiefel manifold of complex orthogonal k-frames in C™,



Since Y* is a complete intersection, at all simple peints of Y* the vectors gradg,(z), ..., gradgg{z)
are complex linearly independent. Further, Corollary 2.8 of [1] shows that, for some & > 0, at all points
z€D, N (Y*\ Y) the vector gradf(z) = 0, modgradg;(z), ..., gradgg(z) and the vector z = 0, modgradg,(z),

., gradgg(z), i.e., the frames gradg,(z), ..., gradgg(z), gradf(z) and gradg,(z), ..., gradgg(z), z are
complex linearly independent. Therefore the formula
a(z)y={[grad g:(z),..., grad g.(z) ], grad f(z) /ligrad f(2) ||, Z/iZI}}

defines the map A: Z*\ T — Rg+a,m- Here [vy, ..., vk] denotes the frame obtained from the frame (v,
.» Vk) by orthonormalization, and v is the projection of the vecter v on the subspace complex-orthogonal
to the vectors gradg;(z), ..., gradgg(z).

For X and for the other mappings defined below in a similar way, the frame A(z) will be written simply
as (gradgy(z), ..., gradgg(z), gradf(z), z), with the exception of those cases where the order of orthonor-
malization is important.

Remark. It is not difficult to see that the map A is in fact defined for z€2 *\ 3.

As Corollary 1.7 shows (or Corollary 3.8 of [2] shows), at points z€Z* T sufficiently close to Z,
the vectors gradf(z) = (1/2f(z))gradlf(z)? are complex linearly independent modgradg;(z}, ..., gradgg(z).
Therefore if we put My, = {z6Y* @)® = a}, M, = {z6Y* @2’ = o}, My = {z6Y* £@)P < o}, then for
sufficiently small «

A (Z‘\Z Z‘HME\Z>—>(BE+2 my 12 542, m)

For sufficiently small o, M N 2* is a smooth manifold and will be taken below as the pau‘ (£*, 95 *) in-~
stead of the pair (Z *\ z, Z % n M \ $), where £* is the manifold with boundary T *\ Ma, and its bound~
ary is 05* = % N Mg,

Let r' €Hyp g1 (%, 92*) be the fundamental relative cycle of the manifold £*. (The orientation of
$* is defined b y the orientation of the complex manifold Y* and its external normal.) As will be shown be-
low, Hyp_2g-1@®s+e,ms Vs+2,m) = Z, and in this group there is a natural generator s'. Let the integer
n(2) be defined by A, (r') = n(A)s'.

THEOREM 3.1. x(F) = »(}).

To prove Theorem 3.1, we first describe the homology of the pair ®i 1, Vk m) and the tripie ®Ri m,
cbk ,m> Vk m) more precisely; here @k m 18 the subspace of frames (v, ..., vg_q, Vk)GRk m Ssuch that vi..4
and. vk are real linearly independent. It is obvious that ‘I’k m contracts to &k i in Rk, where &y is
the space of frames in Ry m such that Re (Vg-1» Vi = 0.

LEMMA 3.2. Hym-ok+3®k,m> Vk,m) = Z. In this group the generator s' can be chosen so that
1) in the exact sequence

= 4 Je -
Hzm—zk+s (Vh,m) - Hzm—2h+a (Rk,'m) i‘* H2m-zk+3 (Bk,m, Vh,m) Je (SZ) =] (Ss) ”-=S’;
we have

2) in the exact sequence of the triple
5t — ¢ .
Hzm—m.s (Ra,m, Vk,m) -+ H am~2h 4§ (Rk,m, ‘th,m) = Hymnsz (@k,m, V!z,m)
we have
j () =s"+s", O(s)=—38(s)=5"+s%
3) in the exact sequence of the pair

- . a8 _
Hoponp2 (@, oy Vo, m)>Hom—2:1(Va, m)
we have

a(s’ =~—z9(sg =g,

Here s Eﬂzm_21;+1(vk m): 8%, 8 6Hzm—2k+3(Rk m): st s EHzm-zkﬂLS(Rk m* q’k m)» and s, 386H2m~2k+2(5’k,mf
Vk m) are the homology classes defined in Lemmas 8, 9, and 12 of i3]



Proof, Some simple calculations show that Hym-sk+s®y ms Vk m) = Z and that the class j, (s %)
==y (s3) generates this group. The other relations follow dlrectly from the appropriate lemmas of [31.

We now prove several properties of the pair Ry m, Vk,mk these properties are not required in this
article.

LEMMA 3.3. Let's be the generator of the group H2m'2k+3(Rk,m, X-lk m) 8uch that {s','s) = 1.
Let 1sGHzm‘zk*"l(\7'k,m) be the generator of this group such that (s!, Is) = 1.

We identify the groups H* Rk m, Vk,m) and H* Bk,m\ Vk,m’ ﬁk,m\ Vi m) via the excision isomor-
phism. ’

Finally, let the map 7:Rgm\ Vi, m — S! be defined by 7(vy, ..., Vk=g» Vk) = Vk-1» Vk)/MVk-1s VIO1,
and let c€H!(S!) be the fundamental cocycle of the circle. Then 6('s) wr*(g) = —'s, where

6: HZm—Zh+( (vk m) <_H2m—2k+2 (Rk, m\Vk, my Vk, m\Vh- m) .

Proof. Let Wiy < Rk m Pe the submanifold consisting of the frames &y, ..., vk-y, vk)GRk m Such
that vy = e‘(ka It is obvious that Vk m = Bk,m\ Wi,m- On the other hand, Ry m\ Vi,m isa tubular
neighborhood of W m,.

In fact, suppose that the vector bundle £ on Wik, m has fiber, above the point (vy, ..., Vj_q, V) €WK m>
a subspace of C™ consisting of those vectors w such that (w, vj) =0, i=1, , k. The map 7:E; — Rk, m
N Vi,ms T((Ves - vos Vk=ts Vi) @) = (Vg5 oo oy Vg (Vg + @) )/ Nlvk-1 + wll, v) deflnes a diffeomorphism of the
space E; of the bundle £ and the space Rk,m\ Vk,m» Wwhich takes W, < E; into Wik m =Rk,m.

Therefore, as the Thom isomorphism theorem 1mE11es the generator 's €™ 2k"’:"(Rk m\ Vi,m»
Vi, m\ Vk,m) is the product of the Thom class u€H™ 2 2®y 1\ Viem, Vi, m\ Vi, ) and the generator
v of the group H1(Rk m\ Vk m) = Hi(Wk m)- But it is easy to see thatu = 6( 8) and v = —7¥(0),

Let us now return to the proof of Theorem 3.1. The fiber F of the fibration ¢ is diffeomorphic to the
interior of the manifold X', and so the Euler characteristic of the manifold X' can be calculated from
Theorem 1 of [3]. As this theorem asserts, x(X') = n(n), where 1:8X' — Vg1, 1. Here 8X' =Z5=2%*
n£-1(6) for sufficiently small 6 = 0 and for z€zg, N0(z) = (gradg,(z), ..., gradgg(z), gradf(z), z). To prove
Theorem 3.1 we must equate n(\) and ®(n).

Consider the auxiliary manifold ng = Y*‘ﬂ. Ref)"1(£). I & = 0 is sufficiently small, then Corollary
2.8 of [1] implies that Y'g is a smooth manifold, as well as T} = Y'g nE*

LEMMA 3.4. £ >0 can be chosen so small that
1) the vectors gradf(z) and z are real linearly independent for z€X *\ T such that [Ref(z)l = &;

2) the vectors igradf(z) and 2 are real linearly independent for zGZ z such that [Imf(z)l = 10-£{. Here
v is the projection of the vector v onto the tangent space to Vg at the point z, i.e., onto the sub-
space of C™ which is complex-orthogonal to the vectors gradg,(z), ..., gradgg(z) and real-or-
thogonal to the vector gradf(z).

Proof. Corollary 1.7 shows that, at points z€U;\ Z where U is some neighborhood of £ in T*, the
vectors gradf(z) and z are complex lmearly independent. On the other hand, since in Y\ Y there are no
singular points of the real algebraic set Yo, then Corollary 2.8 of [1] allows us to assume that the vectors
gradf(z) = gradRe f(z) and z are real linearly independent for z€Z;\ Z, and therefore for z€U,, a neigh-
borhood of =)\ = in T*, Since U U U, is a neighborhood of Zj in T* for sufficiently small £ the points
z€Z* such that IRef(z)l < £ lie in U; U Us.

For 2), it is obvious that for sufficiently small ¢ > 0, =, N jmmflt [0, 10:£] = Uy \ Z, and therefore
the vectors gradf(z) an_d z are complex linearly independent for z€Z}, Imfz) < 10 £. But then the vec-
tors igradf(z) and z = z —y gradf(z) are complex and real linearly independent.

Now fix £ > 0 so small that Lemma 3.4 holds; then fix @ >0 so small that Mg nz:g ¢. Thus 25
a smooth manifold of codimension 1 in the manifold £*, Moreover I ¢ divides $* into two parts: £, «
= $*nRef ![¢, ©) and S_x = S*NRef~1(-w, £].

Further =, < Z! 5 is defined in Z} £ by the equation Imf = 0, and therefore X; also divides by ¢ into
two parts: Z§+ and Zg .
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Consider the following sequence:
Homozes (T 85> Hamgsn (5, 9% Ze)
2 iy 0T UZe's 03 UZ0 2 Hamnooa (B, 30— Hamenas (B (12)
LEMMA 3.5. In the sequence (12)
J{ry =t 8 () =0 () =11
Ir*y=—8(")=r",
Here r? and r EHZm—Zs-i(E §L*UZ.) are the fundamental relative cycles of the manifolds with bmmdary

E* and %%, 15 and r¥€Hym - 25_2{2 g» Ly)are the fundemental relative cycles of the manifolds T ¢+ and z £
and r! is the fundamental cycle of = g- (Notation as in {21.)

Proof. All the relations of Lemma 3.5 flow from the fact that 9 applied to the fundamental relative
cycle of the manifold with boundary is the fundamental cycle of the boundary. Agreement of the orienta-
tious is verified by direct calculation.

Now consider the diagram

H(R,7) —’Hz (&, <D)‘*HH((D —)—’HH(’}
T e fre=m. (13)
r\* N [aR ‘ , ]
Hy (&', 0Z)—H, (¥, 8% UZE)-—)HI—-l(ZE7 Zg) —>Hl«2(2_z)~
Here I = 2m — 2s — 1 and the relations of Lemma 3,4 on linear independence imply that the map A: T*

\Z =~ Rgty,m defined above induces the pair of maps denoted by this letter in the diagram (13). 1t is ob~

vious that the maps A and n of = ¢ lnto Vs+z m 4re homotopic, and therefore A, =1,

LEMMA 3.6. 1) The matrix of the map
b HAZY, 57US Y~ Br( Rz, my Brsn, m)

is diagonal m the bases r?, r®and si, s5 (More precisely, the matrix of the restriction of A, to the sub-~
group of Hl(E* 8Z*UZ,§ generated by r? and )

2) The matrix of the map

;\n: Hz..i (Zg’, 2&) ~>'Iil-i (6&}2, ms vs+2, m)

is diagonal in the bases r®, rfands’, s,

Proof. The proof of this lemma is completely similar to that of Lemamas 10 and i3 in {8). The sin-
gle difference is that the manifolds 3! : and Eé are "moved by &," and this turns out to be unimportant in
virtue of Lemma 3.4.

Proof of Theorem 3.1. Lemmas 3.2 and 3.5 imply that j A, (r") = j, (mNs") = n(s! + 8% = A, (2
+1°). Lemma 3.6 implies that A, (r?) = n(d)s’. Lemmas 3.2 and 3.5 imply that A, (r® + r®) = w(A)s’ + &b).
Lemma 3.6 implies that A, (rf) = nms and Lemmas 3.2 and 3.5 imply that A, (r!) = w(is!. But A, =1,
1Hpa(Zg) — Hyo 2(Vs+2 m)- Therefore n(A) = w(n).

3).

Remark 1. Since the map A is defined on £*\ L;, we can congider the neighborhood N, of the set
Z, instead of the neighborhood M, of the set =. The proof of Theorem 3.1 is unchanged for this variation.

Remark 2. The proof given does not extend to the case where s =m —1, i.e,, where 0 is an isolated
point of Y and the manifolds T and X ¢ are empty. However Theorem 3.1 is true in this case too.
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