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Inventiones math. 8, 83 —97 (1969)

On Isometries of Inner Product Spaces

JoHN MILNOR (Cambridge, Mass.)

By an inner product space V will be meant a finite dimensional vector
space V over a field F together with a non-degenerate, bilinear, F-valued
inner product {u, v) which is either symmetric or skew symmetric. The
group of isometries t of V (that is F-linear automorphisms satisfying the
identity <{tu,tv)=<{u,v)) will be denoted by O(V) in the symmetric
case and by Sp(V) in the skew case. (Of course if F has characteristic 2
then this distinction disappears.)

The problem of classifying all conjugate classes in the group O(V)
or Sp(V), or equivalently the problem of classifying, up to isomorphism,
all pairs ¥, ¢t consisting of an inner product space and an isometry, was
solved by Williamson [16], assuming that the field F is perfect of
characteristic 2. (See also Wall [15].) We will present a slightly more
perspicuous version of this classification in §3. Our point of view is
similar to that of Cikunov [3—6].

The first two sections of this paper are concerned with a more
specialized discussion of isometries with irreducible minimal poly-
nomial. If F is a local field of characteristic =2, then it is shown that
O(V) contains at most one conjugate class having a given irreducible
minimal polynomial. This verifies a conjecture of Levine. The proof
involves a study of the behavior of quadratic forms over local fields
under restriction of the field (§ 2.3).

The results of §2 will be applied in a forthcoming paper [11] by
Levine to the study of codimension 2 knots. (See also [10, 12].) I am
indebted to Levine for many useful discussions.

§ 1. The Case of an Irreducible Minimal Polynomial

Let V be a symmetric inner product space (or briefly a quadratic
space') of dimension n over F, and let ¢ be a fixed element of the ortho-
gonal group O(V). We will frequently think of V as a finitely generated
module over the polynomial ring F [t] in one indeterminate. The minimal
polynomial m(t) is defined to be the monic polynomial of lowest degree
in F[t] for which m(t) V=0. If m(t) is irreducible, of degree say k, then

1. In the characteristic 2 case, the term “quadratic space” is usually given a different
meaning.

7 Inventiones math., Vol. 8



84 J. Milnor:

we can also think of V as a vector space of dimension n/k over the field
E=F[t]/m@)F[t].

Clearly E is a finite extension field, of degree k over F.

The image in E of the indeterminate ¢ will be denoted by 7. Thus
E=F(t), and the isometry ¢t of V is just the left multiplication trans-
formation v tv.

Lemma 1.1. There is a unique automorphism e e of E over F which

carries T to 1" If E is separable over F, then the vector space V over E
admits one and only one hermitian inner product

u-v="7o-u,

E-linear in the first variable, which is related to the original F-valued
inner product by the identity

Cu, vy =traceg (u-v). (1)

For fixed m(t), the isomorphism class of this resulting hermitian inner
product space H determines the isomorphism class of V, t completely.

Proof. Note the identity {f(t)u,v)>=<u, f(t~*)v> which holds for
any f(t)eF[t]. Applying this identity to the minimal polynomial, we
see that the linear transformation t*m(¢~!) annihilates V, and therefore
that the polynomial t*m(t~') must be a multiple of m(t). Substituting t
for ¢, this proves that m(z=!)=0. Therefore there is an automorphism,
e ¢, of E over F which carries t to 1~ 1.

Note the identity
Ceu,v)=<u,ev). (2)

We will next show that there is one and only one inner product
u - ve E which satisfies the identity (1) and is E-linear in the first variable.

For fixed u and v consider the F-linear map

e L(e)=<{eu,v)

from E to F. Since E is separable over F there is one and only one
element ¢’ of E such that

trace(ee’)=L(e)

for all e. (Compare [9, p.211].) We define u-v to be this element ¢,
so that the symbol u - v is defined by the equation

trace(e(u - v))=<eu, v) 3)

for all e. In particular, taking e=1 we obtain the required formula (1).
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Proof that u - v is linear in the first variable. The identity
U v+uy o= +u,)- v

is easily verified. Now substitute e, e, for e in Eq.(3), or alternatively
substitute e, for e and e, u for u in (3). Comparing the two results we
obtain
trace(e, e, (u - v)=trace(e, ((e, u) - v))
for all e, and therefore
e,(u-v)=(e,u)-v, 4)

as required.

Proof of Uniqueness. Given any inner product u-v satisfying (4)
and (1), it follows that

trace(e(u - v))=trace((eu) - v)=<eu, v).

Thus (4) and (1) imply Eq. (3) which uniquely characterizes the symbol
u-v.

Proof that v-u=u-v. The identity trace e=traceé, together with
(3) and (2), implies that

trace(e - v)=trace(eu - v)=<eu, vy =<u, ev)
=ev, uy =trace(e(v - u)).

Since this holds for all e, we obtain #-v=v-u, which completes the

proof.
The polynomials m(t) which can occur in 1.1 can be easily char-
acterized as follows. A polynomial

m(t)=ayt*+a,t* ' +... +q,
of degree k over F will be called e-symmetric if its coefficients satisfy
a=¢ta,_,;
for some fixed element ¢ of F. Clearly ¢* must be + 1 50 ¢ can only be + 1.

Lemma 1.2. The minimal polynomial m(t) of § 1.1 must be e-symmetric.
Conversely given any monic e-symmetric separable irreducible polynomial
m(t), and any hermitian inner product space H over the field

E=F[t]/m@)F[1],

the inner product tracegu-v with values in F is symmetric and non-
degenerate, and thus makes H into a quadratic space Hy over F. Left
multiplication by t gives rise to an isometry of Hy with minimal polynomial
equal to m(t).

71‘
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The proof is straightforward.

Remark 1.3. In general an e-symmetric polynomial m(t) must have
even degree and must have ¢=+1, the only exceptions being the
polynomials t— 1 and t + 1 and their multiples. Forif e+ + 1 then m(1)=0
so that m(t) must be a multiple of ¢— 1, while if the degree is odd with
&= +1 then m(—1)=0 so that m(¢) must be a multiple of t+ 1.

Remark 1.4. The hypothesis that E is separable over F is needed
only to insure that the trace homomorphism from E to F is non-zero.
If E is inseparable over F we can still choose some fixed non-zero F-
linear homomorphism which satisfies the identity h(¢)=h(e). Using h
in place of the trace, the results of § 1 (and of §§ 2, 3) extend immediately
to the inseparable case. Compare W. Scharlau: Zur Pfisterschen Theorie
der quadratischen Formen. Inventiones math. 6, 327 — 328 (1969).

Remark 1.5. Completely analogous results hold in the case of an
isometry of a skew symmetric inner product space W. In fact the skew
case can be reduced to the symmetric case as follows. Given a fixed
element teSp(W), if t has no eigenvalues of +1, then the operator
A=t—t~! maps W isomorphically onto itself. We introduce a new
inner product u - v on W by the rule

u-v=,4u,v),

thus making W into a symmetric inner product space W¢. Clearly
(tu)-(tv)=u-v, so that t is an isometry of W* also. Thus there is a one-
to-one correspondence between isometries of skew inner product
spaces and isometries of symmetric inner product spaces, providing only
that we avoid eigenvalues of + 1.

In order to exploit Lemmas 1.1 and 1.2 we must be able to classify
hermitian inner product spaces over E. Fortunately these are some-
what easier to classify than quadratic spaces. (Compare Jacobson [7].)
We will assume that E = F so that the involution e ¢ is not the identity.

First recall that any hermitian space H over E possesses an ortho-
gonal basis vy, ..., v,. In other words the inner product matrix of H can
be diagonalized. Clearly the diagonal entries

must belong to the fixed field K of the involution e+>ée of E over F.
If we multiply the basis vector v; by an element of the multiplicative
group E, note that the corresponding diagonal entry v, - v, is multiplied
by an element of normy E.
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Example 1. If E is a finite field then the norm is surjective and it
follows that the rank r of H forms a complete invariant. (Compare
Cikunov [6].)

One easily defined invariant of a hermitian space is the determinant
of a representative inner product matrix, which is well defined as an
element of the quotient group K/normg,, E.

Example 2. If the rank r is 1, then clearly the determinant of H
forms a complete invariant.

Example 3. If F is a local field (that is if F is complete under a dis-
crete valuation with finite residue class field), then K/normE/KE has
precisely two elements ([13, p. 167] or [1, p.222]). In this case it is
easily verified that the rank and determinant form a complete set of
invariants.

Example 4. If K is the field of real numbers, so that E is the field of
complex numbers, then again K/norm E has two elements. In this case
it is well known that the rank and index form a complete set of invariants.
(Following Marston Morse, the index of a hermitian space means the
number of negative entries in a diagonalized inner product matrix.)
Thus the rank and determinant do not suffice in this case.

Example 5. If E is a finite extension of the field of rational numbers,
then for each embedding p of K in the field R of real numbers which
does not extend to an embedding of E in R one can define an index I »
of the hermitian space H over E. These indices, together with the rank r
and determinant d, form a complete set of invariants. (See Landherr
[8].) They are subject only to the relations 0< I ,<rand

(=1e=p@d/p@).

§ 2. Local Fields: A Conjecture of Levine

Suppose that F is either the field of real numbers or a local field of
characteristic #2. (Compare Example 3 of § 1.) Then we will prove:

Theorem 2.1. If two isometries t and t' of a quadratic space V over F
have the same irreducible minimal polynomial, then t is conjugate to t'
in the orthogonal group O(V).

In other words the minimal polynomial, together with the invariants
needed to characterize V, form a complete set of invariants for the
pair V, t.

This verifies a conjecture which was formulated, and proved in a
number of special cases, by Levine (unpublished).

Note that the corresponding statement for an arbitrary field would
definitely be false (e.g. for the field of rational numbers).
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Proof of 2.1 for the Real Field. If we exclude the uninteresting case
m(t)=t+1, then a complete set of invariants for the pair (¥, t) is pro-
vided by the rank and index of the associated Hermitian inner product
space H over C. (Compare Example4 of § 1) But clearly 2 rank. H =
ranky ¥, 2index. H=index, V, so that these invariants are completely
determined by the invariants of V.

The proof of 2.1 for local fields is more difficult, and will occupy
the rest of § 2.

First consider a finite separable extension K of an arbitrary field F.
Choosing a basis k,, ..., k, for K over F, the discrim{nant, discr (K/F),
is defined to be the element of the quotient group F/F? which is repre-
sented by the determinant of the matrix (tracey  (k; k;)).

Any quadratic space W of rank s over K can be made into a quadratic
space of rank ps over F by introducing the F-valued inner product
trace,p v, w).

Lemma 2.2. The determinant of the resulting quadratic space Wy
over F is related to the original determinant in K/K? by the equation
det W= (discr K/F)’ normy,;(det W),

which holds in F/F2.
Proof. First suppose that W has rank 1, with basis vector w. Let

w,w=ceK.
Then Wy has basis k, w, ..., k,w, and inner product matrix (trace (ck; kj)).
Setti
cting ck=Y a,k,

with a;,€ F, this inner product matrix can be considered as the product
of the matrix (a;,), with determinant equal to

norm(c)=norm det W mod F?

(see [14, p. 130]), and the matrix (trace(k, kj)) with determinant equal to
discr(K/F).

The proof when rank W> 1 is similar. It is only necessary to express
W as an orthogonal sum of one dimensional spaces?, and then to use
the fact that the determinant of an orthogonal sum equals the product
of the determinants. This proves 2.2.

Now suppose that F is a local field of characteristic 2. Then a
complete set of invariants for a quadratic space V over F is provided
by the rank n>1, the determinant det Ve F/F2, and the Hasse symbol

2. In characteristic 2 this may not be possible, but the lemma can then easily be proved
by an alternative argument.
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S(V)e{+1}. (Compare O’Meara [13, § 63B]. These are subject only to
the relation that S(7) must be equal to the Hilbert symbol (det ¥, —1)
whenever either n=1, or n=2 and det V= —F2)

Theorem 2.3. Let V and W be two quadratic spaces over a separable
extension K of the local field F. If V and W have the same rank and
determinant but are not isomorphic, then the corresponding quadratic
spaces V. and Wy, over F also have the same rank and determinant but are
not isomorphic.

(For the definition of V} see 2.2.)

In other words, if rank V=rank W, and det V=det W, but S(V)+
S(W), then it follows that S(V;) =+ S (W;).

The proof of 2.3 will be interrupted by three lemmas.

Lemma 2.4. In order to prove Theorem 2.3 for a given field extension
KoSF it is sufficient to produce one example of a pair of quadratic
spaces V° and W° over K with the same rank and determinant, but with
S(VR)ES (W)

Proof. Since V is not isomorphic to W2, it follows that ¥° is not
isomorphic to W° and hence S(V°)+S(W°).

Now given V and W, as in 2.3, note that the orthogonal sum V@ V°
is isomorphic to W@ WP. This is true since both sums have the same
rank, determinant, and Hasse symbol, using the identity

S(VeV%=S(V)S(V°(det V, det V°).

Hence V, @ VY= W, @® W_. Now using the corresponding formula for
the Hasse symbol of an orthogonal sum over F, and using 2.2, we see
that S(Vp) =+ S(W;) as required.

The proof of 2.3 will be divided into five cases, of which the first is
crucial.

Case 1. Suppose that K contains an element k, whose norm in F is
not a square. Then we can choose beF so that the Hilbert symbol
(b, norm k) equals — 1. (Compare [13, p. 166].) Let V(k, —bk) be the
quadratic space of rank 2 over K whose inner product matrix is

kK 0 )
0 —bk/"
Lemma 2.5. The Hasse symbol of V(k, —b k) is equal to (b, norm k)

times a factor (b, discr K/F)(—b, —b)P®»*V'2 which does not depend on
the choice of k.
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Thus choosing either k=1 or k=k, we will obtain two quadratic
spaces over K with the same rank 2 and the same determinant —b, but
so that the corresponding quadratic spaces over F have different Hasse
symbols. This will complete the proof in Case 1.

Proof of 2.5. The space V(k, —bk) splits as an orthogonal sum
V'® V" where V' has determinant k& and V" has determinant —bk.
Choose an orthogonal basis for the quadratic space V;, and let a;, ..., a,
be the diagonal entries for the resulting diagonal inner product matrix.
Then a corresponding diagonal matrix for V' has diagonal entries
—bay,..., —ba,. By definition the Hasse symbol §" of Vj is equal to
[, a;), and the Hasse symbol S” of ¥} is equal to
i<j

[[(=ba;, —ba)=[]((a:a)(=b,a)(a;, —b)(=b, —b))

i< isj

=S'(=b,a, ... a,*' (—b, —bppP*V12,
Hence the Hasse symbol

5'S"(ay ... a,,(=bya, ... a,)
of Ve ® Vi’ = V(k, —bk)g is equal to
(=b,a, ...a,"*" (1,4, ...a,)(—b, —b)yrr*V2

=(b,a, ... a,)(—b, —by®+I2
using [13, p. 166]. Substituting

a, ... a,=det Vy=discr (K/F)norm k
we obtain the required formula. This completes the proof of 2.5, and
hence of Case 1 of Theorem 2.3.

Case 2. Suppose that K has degree p=2 over F. Then norm K has
index 2 in F while F? has index =4 in F. (Compare [13, pp. 163, 167].)
So the hypothesis of Case 1 is certainly satisfied.

Case 3. Suppose that K has odd degree p over F. Choosing any
element ce F which is not a square, the p-th power c’enorm K will not
be a square either. So the hypothesis of Case 1 is again satisfied.

Case 4. Suppose that the extension K of F is such that no intermediate
field (other than F itself) is abelian over F.

Lemma 2.6. In this case the image normK/FK is equal to the entire
multiplicative group F.

So in this case again the hypothesis of Case 1 is satisfied.

The proof of 2.6 will be based on the norm residue isomorphism of
local class field theory. First suppose that K is a Galois extension of F
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with group G. Then we have the isomorphism
F/norm K ~G/[G, G].

(See [1, pp. 222, xv, xxii].) But G is equal to its commutator subgroup,
since no intermediate field is abelian over F.

If K is not a Galois extension then we can embed K in a Galois field
Q over F. Let G be the group of Q over F and H the group of Q over K.
Then we have the commutative diagram

H/[H, H—G/[G, G]

K/normg; Q —"XF, F/normg,; Q — F/normg s K— 1.
(See [1, pp. 217, 224], together with [2, p.255].) But the top homo-
morphism is surjective, since otherwise H and [G, G] would generate
a proper subgroup of G, corresponding to an abelian intermediate field.
Hence every element in F is a norm from K. This completes the proof
in Case 4.

General Case. For any finite separable extension F<K we can
choose a tower of intermediate fields

F=F0CF1C---CE1:K

so that each F,_, is either an abelian extension of F, with prime degree,
or else an extension with no abelian intermediate field. Starting with
non-isomorphic quadratic spaces ¥ and W over F, with the same rank
and determinant, we see by induction on i that V . is not isomorphic
to W _; using Cases 2, 3, 4. This completes the proof of Theorem 2.3.

Now con51der a quadratic extension E of K and a hermitian inner
product space H over E. We continue to assume that K is finite and
separable over a local field F of characteristic #2. Recall that the
determinant of H is an element of a group K/norm E with precisely
two elements. Recall also that the inner product traceg,, (u - v) makes H
into a quadratic space Hy over F.

Theorem 2.7. If two hermitian spaces H and H' over E have the same
rank but different determinants, then the corresponding quadratic spaces
Hy and Hy have the same rank and determinant but different Hasse
symbols.

Proof. Clearly it suffices to consider the case where H has rank 1
over E. Let (k) be the inner product matrix of H. If E =K[y/b], then
using 1 and 1/b as basis for E over K we see that Hy has inner product



92 J. Milnor:

(2k 0 )
0 —-2bk/)’
Thus the determinant of Hy is — b, which is independent of the choice
of k. But S(Hg)=(2k,2k)(2k, —2bk)(—2bk, —2bk)
=(2k,b)(—b, —b).

Since b is not a square in K, this clearly does depend on the choice of k.

Now in order to pass from Hy to H; we need only apply 2.2 and
2.3. This completes the proof of 2.7.

We are now ready to prove Theorem 2.1 in the separable case.
Given two isometries ¢t and ¢’ of V with the same irreducible minimal
polynomial, form the corresponding hermitian spaces H and H’, using
§ 1.1. If ¢ isnot conjugate to ¢" in O(V), then the pair (¥, t) is not isomorphic
to (¥, t'), hence H is not isomorphic to H'. But clearly rank H =rank H',
so it follows that det H+det H'. Therefore H is not isomorphic to Hj
by 2.7. But H;=Hp=V. This contradiction completes the proof, as-
suming that K is separable over F.

The proof in the inseparable case is completely analogous. It is only
necessary to make use of Remark 1.4, and the fact that a purely in-
separable extension has odd degree. (Recall that we exclude the char-
acteristic 2 case.) Details will be left to the reader.

matrix

Remark 2.8. Given a fixed quadratic space V of dimension n over F,
how can we decide whether or not a given irreducible polynomial m(t)
actually occurs as the minimal polynomial for some isometry of V?
We exclude the trivial case m(t)=t+ 1. If F is a local field of character-
istic &2 then necessary and sufficient conditions are that m(t) be monic,
symmetric (compare 1.3), with even degree k dividing n, and with
det V=(m(1)m(—1))"* F2. The proof is not difficult.

§ 3. The Classification of Arbitrary Isometries

Let ¢ be an isometry of the inner product space V. For each monic
irreducible factor p(t) of the characteristic polynomial of ¢, let Vo
denote the p(t)-primary subspace, consisting of all v with p(t)'v=0 for
large i. Thus the vector space V is the direct sum of the sub vector
spaces V.

Define the “dual” of the monic irreducible polynomial

pt)=t"+a, t* '+ +a,
to be the monic irreducible polynomial

p*O)=(a,t*+a,_ "'+ +1)a,.
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Lemma 3.1. The p(t)-primary subspace V,,, is orthogonal to the q(t)-
primary subspace unless the polynomial p(t) is “dual” to q(t).

In particular, V,, is orthogonal to itself unless p(t)=p*(t). In other
words, in the terminology of § 1.2 and § 1.3, the space V,,, is orthogonal
to itself unless the polynomial p(t) is e-symmetric, where ¢ can be either
+lor —1.

Proof. If i is sufficiently large then the identity
Cu, p(t= Y vy =<{p(tf u, v)=<0,v)
for ueV,, shows that v, is orthogonal to p(t=')' V. But if q(t)==p* (1)
then the correspondence
v p(tYv=a, t ¥ p*(t)v
maps the subspace V,,
asserted.

Following Cikunov, we divide the primary subspaces into three
classes, of which the first two are more interesting.

y isomorphically onto itsell. Hence V,, LV, as

Case 1. The polynomial p(¢) is self dual, p(t)=p*(t), of degree = 2.

Case 2. p(t) is self dual of degree 1, and hence is equal to t+1. In
Case 2 we will always assume that F has characteristic 2. (Compare

[15,§3])
Case 3. p(t) is not self-dual.

In Cases 1 and 2 note that the primary summand V,, splits off as
an orthogonal direct summand of V. Furthermore:

Theorem 3.2. In Cases1 and 2 the space V,,, itself splits as an
orthogonal direct sum V'@ V2@ V3@ --- where each V' is annihilated
by p(t), but is free when considered as a module over the quotient ring
F[t]1/p(t) F[t]. This splitting is unique up to isomorphism (assuming that
the characteristic is £2 in Case2).

In order to proceed further in Casel we note by §1.3 that the
polynomial p(t) must be symmetric and of even degree 2d. We will make
use of the rational function s(t)=p(t)/t which satisfies the identity
s(t)=s(t'), and hence defines a self-adjoint transformation of V:

s(u, vy =<u, s(t)v).
Assume that the inner product <u, v) is symmetric. (Compare § 1.5.)

Theorem 3.3. In Case 1, if the polynomial p(t) is separable, then for
each V' the associated vector space

Hi=Vip@t)V'
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over the field E=F [t]/p(t)F [t] admits one and only one hermitian inner
product (u) - (v) which satisfies the identity

<s(8) ™ u, v) =traceg (u) - (v)

for all u and v in V'. The sequence consisting of the isomorphism classes
of these hermitian inner product spaces H',H?,... forms a complete
invariant for the pair V,q, t|V, .

Of course the hypothesis of separability is not really essential.
(Compare §1.4.)

Remark. If we ignore the isometry ¢, and think of V' only as a quad-
ratic space over F, then its structure can be described quite simply as
follows. If i is even then V* contains a totally isotropic subspace s (1)’ V'
of half the dimension; hence V' splits as an orthogonal sum of hyper-
bolic planes ([13, p. 99]). If i is odd then a similar argument shows that
Vi splits as an orthogonal sum of a quadratic space isomorphic to
(H')p (notation as in §1.2) and a number of hyperbolic planes.

The situation in Case 2 is similar. Let 4 denote the operator t—¢~!
which is skew self-adjoint,

{du,vy=—{u, Av).

Let ¢ stand for +1 or —1 according as the inner product {u,v) is
symmetric or skew.

Theorem 3.4. In Case 2 the associated vector space V'/p(t)V' over F
admits an inner product

) @)=<{4"""u,v)

which is well defined, non-degenerate, and (—1)'~'e-symmetric. The
sequence consisting of the tsomorphtsm classes of these inner product
spaces Vip(t)V', i=1,2,3,..., forms a complete invariant for the
isomorphism class of V,,q, t|V,,.

Thus for half of the values of i we obtain a nontrivial invariant:
namely a symmetric inner product space over F. For the remaining
values of i we obtain only a skew inner product space, which is com-
pletely characterized by its rank.

Finally we come to Case 3. If p(t)#p*(t) then V, @ 18 orthogonal to
itself, but V, ,, @ V.., splits off from V as an orthogonal direct summand.
Choosing a basis for V,,, and a dual basis for V, Ve, the inner product
matrix and the matrix of the linear transformation t|V, o) D Vouy take

the forms (0 I . (T 0 )
+I10 0 (T)-?
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respectively. Hence the similarity class of t|V,, forms a complete
invariant in this case.

Thus Case 3 is uninteresting. We return to Case 1. The proofs will
be given in outline only.

Proof that there exists an orthogonal splitting

V(;)=V1@ V2 ---@vm

p

with each V@ free over F[t]/(p(t)?). First choose a not necessarily
orthogonal splitting V,,,, =W, @ --- ® W, with W, free over F[t]/(p(t)).
Then it is not difficult to verify that the inner product restricted to- W,
must be non-singular. Hence W, splits off from ¥V, as an orthogonal
direct summand. Since the complementary summand W} is clearly

closed under the action of ¢, an easy induction completes the argument.

Proof that the hermitian space H? does not depend on the choice
of V% Let V(q) denote the set of all ve V with p(¢)?v=0. Then clearly
V4/p(¢) V1 is isomorphic to the quotient

V@/(Vg—1)+p®OV(g+1)

which is invariantly associated with (V, t). Also it is clear that the inner
product <v, s(¢)?~*w) for v and w in V(q) is symmetric and depends only
on the residue classes of v and w modulo V(g — 1)+ p(t) V(g + 1). Denoting
these residue classes by (v) and (w), and proceeding just as in §1.1 we
construct the required hermitian inner product (v) - (w).

Proof that the structure of H? determines the isomorphism class of
V4 and of t|V9. Choose an orthogonal basis (v;), ..., (v,) for H, and
choose some representative v, €(v, ). As basis for the subspace F [t]v, = V*
we will use the vectors t's(t)f v, with 0<i<2d and 0< j<q. We wish to
choose the representative vector v; so that the matrix of inner products

(Es@Y oy, t"s @) vy = s@+ v, 0

takes on as simple a form as possible. In fact, if the characteristic is +2,
we will choose v; so that this inner product is zero whenever

li—i'l<d and j+j'+q—1.
The remaining inner products can then be computed as follows (setting
i'=j'=0 to simplify the notation). If j=qg—1 we have
(Es(t) v, v, y=trace(t'k,),  where k, =(v,) (v,);

while if i>d then the element t'+t~' in the ring F[t+t~'] can be
expressed as a multiple of s(t) plus a remainder. The inner product
{t's(ty v, v, can then be computed by induction on i.
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Choice of a preferred representative in (v,) assuming that F has
characteristic +2. Starting with some arbitrarily chosen representative

v,, first set
! vi=v,+a(t)s(t)v,

where a(t) is a polynomial to be selected later. Note that the inner
product <t's(t)4~2 v}, v} is equal to {t's(t)?~ 2 v,, v, > plus the correction
term

s~ (a@)+a ), v,> =traceg (7' (a(1)+a(@)k,)
=traceg ;- ((t'+7) (a(r)+a(@))k,).

Since the elements (t'+7')k, with 0<i<d form a basis for K over F R
there exists one and only one element a(t)+a(7) of K so that this trace
is equal to —{t's(¢)"~2v,, v,» for each such i. Now choosing a corre-
sponding polynomial a(t), we have constructed a representative v, e(v;)
so that
st 20,0, >=0
for 0<i<d.
Next we can choose a polynomial b(t) so that the vector

vy =vy+b(t)s(t)* v}
satisfies the identity
sty vf,v{>=0

for 0<i<d and for j=g—2,9—3. Then add a multiple of s(t)* to v/
and so on, continuing inductively until we obtain the required repre-
sentative for (v,).

Thus the entire inner product structure and F[t]-module structure
of the space F[t]v, is completely determined by the single field element

I ol _Natadurasticrlon that tha innow nendwant weotm'atod e Tlel,., ‘

orthogonal complement. Choosing a representative for (v,) in the
orthogonal complement and continuing inductively, this proves that
the structure of V7 and t|V? is completely determined by the field
elements k,, ..., k,; and hence is completely determined by the hermitian
space HY.

This proves Theorem 3.3 (except in characteristic 2), and also proves
that the splitting in Theorem 3.2 is unique up to isomorphism.

In characteristic 2, only a slight modification of this argument is
needed. It turns out that the inner products {s(t)'v,,v,) are auto-
matically zero in the characteristic 2 case, so the appropriate nor-
malization is to choose v, so that {ts(t} v,,v,> =0 for |i| <d (instead of
li| <d) whenever j=q— 1. Further details will be omitted.
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Conversely, given any separable symmetric irreducible polynomial

p(t) and any hermitian space H? over F[t]/p(t)F[t], it can be verified
that the matrices constructed in this way do indeed yield a quadratic
space V1?1 with an isometry ¢t so that V7 is free when considered as a
module over F[t]/p(t)? F [t]. This completes the discussion of Case 1.

The proofs in Case2 are similar, and will be omitted. (Compare

Cikunov [5].)

14.
15.

16.
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