Birger lversen

Cohomology
of Sheaves

Springer-Verlag



Birger iversen

Mathematisk institut, Aarhus Universitet
Ny Munkegade, DK-8000 Aarhus C, Denmark

Max-Planck-Institut
fiir Mathematik in den Naturwissenscha®
InselstraBe 22-26
D - 04103 Leipzig

AMS-MOS {1980) Classification numbers:
14C17,18E30,18F20,18G35. 32427, 55N 30, 55U30, 57R20

ISBN 3-540-16389-1 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-16389-1 Springer-Verlag New York Heidelberg Berlin Tokyo

Library of Congress Cataloging in Publication Data. Main entry under title:

iversen, Birger. Cohomology of sheaves. (Universitext). Sibligraphy: p Includes index
1. Sheaves, Theory of 2 Homology theory. | Title QA812.36 193 1986 514224
86-3789

This work is subject te copyright. All rights are reserved, whether the whale or part of
the material is concerned, specifically those of translation reprinting, re-use of
illustrations, broadcasting repreduction by photocopying machine or similar means,
and storage in data banks. Under §54 of the German Copyright Law where copies are

made for other than private use, a fee is payable to “Verwertungsgesellschaft Wort”
Munich

© Springer-Verlag Berlin Heidelberg 1986
Printed in Germany

_- av e . o - B -

' "Introduction

This text exposes the basic features of cochomology of
' .sheaves and its applications. The general thecory of sheaves is
EVBIY limited and no essential result is obtainable without turn-
 ;ing to particular classes of topological spaces. The most satis-
;factory general class is that of locally compact spaces and it
"ig the study of such spaces which occupies the central part of
‘this text.

. The fundamental concepts in the study of locally compact
:gpaces is cohomology with compact suppert and a particular class
be sheaves, the so-called soft sheaves. This class plays a double
.role as the basic vehicle for the internal theory and is the key
wto applications in analysis. The basic example ¢f a soft sheaf
Lis the sheaf of smooth functions on R° or more generally on any
 émooth manifold. A rathexr large effort has been made to demon-
iétrate the relevance of sheaf theory in even the most elementary
ianalysis, This process has been reversed in order to base the
.fundamental calculations in sheaf theory on elementary analysis,
: The central theme of the text is Poincaré duality or rather
Citg generalizations by Borel and Verdier. In its first form this

appears as a duality between cohomology and cohomology with com-
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pact support. A more general Poincaxé duality theory is develop- It remains for me to thank W. Fulton and R. MacPherson for

ed for a continucus map between locally compact spaces. The their encouragement to publish the text, to thank a number of

important special case of a closed imbedding admits generaliz-— 'bolleagues, who read part of the manuscript, H.,H. Andersen,

ation to arbitrary topological spaces and is best undexstood in “3.p. Hansen, A. Kock, 0, Kroll, C.A. Laudal and H.A. Nielsen and

the framework of local cohomology. This theory is used for con-. j{p thank Else ¥ndgaard for excellent typing and cooperation.
struction of characteristic classes of all sorts: Chern classes,
Stiefel-Whitney classes, ...

For further applications to algebraic topology,a homoleogy

aAarhus, Denmark
theory is developed for locally compact spaces and proper maps. Thisg

September 1985 Birger Iversen
allows one to express Poincar® duality as an iscmorphism between
homelogy and cohomelogy. Applications are given to the classical
theory of topological manifolds: fundamental class, diagonal
class, Lefschetz fixed point formula

This homeclogy thecry is particularly suited for the study
of algebraic varieties and a detailed introduction to {(co)homo-
logy classes of algebraic cycles is given, including a topologi-
cal definition of the local intersection symbol. It is a rather
remarkable feature that this homology theory more or less auto-—
matically grinds out algebraic cycles.

A word about homological algebra. The first chapter of the
text gives an intreduction to homological algebra sufficient for
most of the text. The last chapter, or appendix if you wish,
gives an introduction to derived categeries used in the more
advanced parts of the text and in the proofs of the basic cup
product formulas. It is my hope that this will give some readers
metivation for Verdier's rather difficult text {1} on triangulated'

categories.
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1. Homological Algebra

1.1 Exact categoriesg

Consider a category with zero object 0, that is for every
object A there is precisely one morphism A - 0 and precisely
one 0 = A

A zero morphism A - B 1is one which can be factored
A~0-B .

A kernel, Ker f for a morphism f£: 2 - B is a pair (K,i}
where 1i: K » A 1is a monomorphism with £i=0 and such that any morphism
g: X~ A with fg=0 factors through i: K - A

A cokernel, Cok £ fqr f 1is a pair (C,p) where
p: B> C is an epimorphism with pf= 0 such that any morphism

h: B~»Y with hf= 0 factors through bp.

We shall assume that every morphism has kernel and cokernel.

An image, Im £ is a kernel for a cokernel.

A coimage, Coimf is a cokernel for a kernel.

Every morphism £ has a canonical factorization

fl
A - Coimf » Imf -» B



Definition 1.1. An exact category is a category with zero a) Check that Xere— Kerc is a kernel for EKerc- D.

! .
objects, kernels, cokernels and such that Coimfi» Imf always
B.1) Check that cokb—- Coke is an isomorphism (use the
is an isomorphism.
dunal statement to o , if necessary).

In the remaining part cf this section we sheall work in an
8.2) The exacot commutative diagram
exact category.

Af B’ E!' ——— 0

| l |

0 — Cokb —» Coke ——

Definition 1.2. A sequence of morphisms

a=1 £87 1 B n+1

.. B Al - An+'] £

ghows that A' » Imb- Ime is exact: replace A' by a

is called exact if Im(£27 ") = Rer(f), for all n.

kernel for B' - E' and use «).

Proposition 1.3. Consider the exact, commutative diagram 8.3) This gives an exact commutative diagram

A B E - 0
A— DB —C —5D
l 1]3 l fd lal lb' lel
a c
A' Bl s (s Pt A’ Imb Ime —— O
0 0 0

that e' is a cokernel for Kerb' E.
The induced seguence Kerb - Kerxrc -+ Kerd 1is exact. Check * = . -

Q.E.D.

Proof. Break the diagram into two pieces The duazl statement is

Proposition 1.4. Consider the exact, commutative diagram

0 - E —-C— D A —-B ~—~E — 0
O P PO O :
0 - E'— C'— D' A'— B'— E'-— 0 l
l A B c — D
We have to prove that o ‘La \Lb \Lc Jr&
a) 0 » Kere- Kexr c -+ Kerd is exact a' — B! ct - Df

R) Kerb - Kere is surjective )
The induced sequence Coka - Cokb - Cokc is exact.




Corollary 1.5. Consider morphisms f: X - Y and g: Y - 2.

The following sequence is exact

0 - Rer £ »KRergf »Rerg »Cok f -Cokgygf-» Cokg= 0.

Proof. Apply 1.3 and 1.4 to the two diagrams

0 — Ker f -— X —— Y — Cokf

| J e s i

0 — 0 Z Z 0

0 0 0 o]

0 —— X id X 0 o]

I L Joe | J
Kerg ——— ¥ 4 Z Cokg ——— 0

Snake Lemma 1.6. Consider the exact commutative diagram

e

0
A —_— B —_— C —— D _ B
E

There is an exact sequence

Kerb »Kerc »Kerd E)»Cokb -»Cokc ~Cokd.

More precisely

1) Put K = Ker(C»D'). K - Kerd is an epimorphism.
2) Put K' = Cok(B-C'}., Cokb- K' is a monomorphism.

3) There exists a unigue map
g: Kerd~ Cokb
such that the two composites

K—»Cgc'—rK'

K - Xer d —a> Cckb - K'
are the same.

4) The six-term sequence above is exact.

Proof. Let £ dencte the morphism C' - Ker (D' =E'}.

Consider the exact commutative diagram

¢ — D —— E

e e e

Imf — D' —— E'

o — O —
o — O e

It follows from 1.3 applied twice that

E — K —= Kerd —— 0

ig exact, and similar, that

0 — Cokb — K!' — D'



is exact. This proves 1), 2), 3). By 1.3, 1.4 and duality it

suffices to prove that
Kerc — Kerd - Cokb

is exact. It suffices to prove exactness of
Kerc — Kerd — K'.

Consider the diagram

B — K —— Kerd —— 0
b | J
B —— ol KT 0
:

Conclusion by 1.3.

Let us record a much used special case

2. Given an exact commutative diagram

BA-oB -3 C —Dao-sE

e

A'— B'"— C'— D' —, E!

If a,b,d,e are igsomorphism, then ¢ is an isomorphism,

7
1.2 Homology of complexes
We shall discuss the concept, hemology in the framework of
an exact category.
By a complex we understand a seguence C = (C", an)nezz of
objects and morphisms
n-1 n n+1
C:11—1 3 cn 3 Cn+1 3 Cn+2 —
, n+l.n _ ' )
with 3 37 =0 for all n€®Z. The 2d's are called differen-
tials or boundary operators.
A morphism of complexegs f: C'— D' 1is a sequence f = (fn)HEZ
of morphisms % "™ with
7190 = 3"f" for all ne€z.
For a complex C" we define for ne&€#Z the n'th homology object
2.1 g (c") = Ker 3%/Im %7
A morphism £f: C"— D" of complexes will induce a morphism on
homology
2.2 BY(E) = EHC) —HE (D)
Consider a sequence of complexes
§ e P et gt T R 0
which is a chainwise exact, i.e. with
) —— PP Qn UG -1 Y|
exact for all n€ Z. We shall construct the s¢ called connecting

morphism



n 1

2.3 M EMrY) - 1™ (2r)
and derive a long exact sequence
+1
2.4 e O, g el ey (gt ) BT 1

Construction. For a complex C" we put

2.5 7 ey = rer 3771, 78 (c") = cok 377!
The boundary 3% ¢ o Cn+1 induces
a: 'zc) - 2™ e

As is easily seen we have an exact sequence

n

2.6 0 - u(cr) - 'zl S ptt!

(c) » 57y -0

We can now derive a commutative diagram

'EH(P;') s 2O ) s TE(RY) =y 0
0-— 2T e 2™ gy 2™ (g

whose rows are exact as one easily derives from 1.3 and 1.4. We

can now conclude the construction by appealing to the snake lemma

1.6.
The connecting morphism 2.3 has the following functeorial

property. Given

0 —ms P" Q" 0
lu lv lw
0 —U" Ve w" 0

a commutative diagram of complexes whose rows are chainwise exact.

Then the following diagram is commutative

n

B (RY) e 7851 (1)
2.7 ™ (37) 1™ )
At w) ——E T (g

The commutativity results from the origin of the connecting
morphism. We shall at once take a stev towards a realization of

the connecting morphism.

Lemma 2.8. Given an exact sequence

0 ERRRE Y S S S
of complexes and a morphism of complexes h: R" - P"[1], — For
neEz# let i: Ln - Qn be a kernel for angn: Qn - Rm'1 and
let n+1: Qn+1 'Ln+? be a cokernel for ann: Pn - Qn+1“

Then

1

B (h) s u™(r") - 5% (e

is equal to the connecting morphism if and only if

pn+1 fn+‘| hn.gn,in - Dn+1 e in

where 3% is the differential from Q.

Proocf. Use I.1.5 to see that the sequences

s it - 2R

'Zn(P”) N Zn+1(Q“) N ,Ln+?



10

are exact. It follows from 1.6 and the diagram below 2.6, that

Im{t® - *2™Rr")) = ER(R")

n+1 . n+1 n+1

Coim(Z (P'y - 'L ") =H (P")
We shall first show that the composite
Ln-~+Hn(R")—EEQBeHn+1{P“)——A'Ln+1

n+l_n+l,.n n.n

equals p f h'g i To see this bring three commutative

diagrams together

n
- T VETRN: il ') H S I
n 121 (h) n+1 n+1
gl rry 22 L gD py g

Next bring three more commutative diagrams together

.n.n n n+1
(h_ig &1 _ h pt1 £ _Qn+1
1 01
gt Rty 2B gt ey R
This proves the promised formula. - The result now follows from

1.5,

Q.E.D.

11

1.3 Additive categories

By an additive category we understand a category in which
the Hom-sets come equipped with abelian group structures making
all compositions bilinear. Besides we require the presence of a
zero object and direct sums, i.e. for objects P and Q,
there exists an object P ® Q0 and morphisms i: P - P & Q and

j: Q - P & Q, such that whenever given

morphisms £ and g as above we can f£ill in the dotted arrow naking

the diagram commutative, and this in a unigque way. - In particulax,

we can find p: P ® Q - P with pi =1 and pj = 0 and in the
gsame way g: P ® Q - Q with gi = 0 and gj = 1. Let us prove

that P ® Q, p,g makes up a direct preduct, i,e. given a diagram

we can fill in the dotted arrow in a unique way making the diagram

commute, - Notice the relation
3.1 1 =1ip + iq

which we can check by composing both sides with i and 3 wusing

the relations

3.2 pi =1, pj=20, gi=20, gj=1

The result will follow from the following
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Consider a diagzram

P\;\S‘Xja/;(P
Q;//;K ‘\%xiQ

which satisfies relation 3.1 and 3.2. Then the arrows i,j form

a direct sum and the arrows p,g form a direct product.

Proof. Let us prove the second statement. Given £: ¥ - P

and g: ¥ - Q. Then

F = if +jg: ¥ - X

satisfies pF = £ and gF = g as it fellows from 3,2, - Converse-
ly, given F with pF = £f and gF =4g. Then using 3.1 we get
F = ipF + jgF = if + ijg

from which uniqueness follows.

Q.E.D.

C'JidD —EnaE

is called a split exact sequence, if for every okject X, the

following segquence of abelian groups is exact

3.5 0 - Hom{X,C) - Hom(X,D) - Hom(X,E} = 0

Let us notice that, ¢f = & as it follows from 3.5 with X = €.

BExample 3.6. With the notation of 3.3

P

i
P —=X —0Q

is a split exact sequence. — It will follow from the proof

of 3.7, that all split exact sequences have this form

Proposition 3.7. Given a split exact sequence

£ .z

C —sD &

Then for every object Y, the induced sequence of abkelian

groups

0 -» Hom(E,¥) - Hom(D,Y) - Hom(C,¥) - 0
is exact.

with E = X shows that we can find & section tc g i.e. a
morphism s: E - D such that gs = 1. Let s be any such

section. Notice that

gli-sg) = 0

By the exactness of 3.5 with X =D we can find r: D=C

such that 1't-sg = fr or

7= sg + frx

Let us prove that

gf =0, gs =1, rf =1, rs =10

13
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We have already accounted for the two first. To prove the third

relation, remark

f{rf} = (i-sq)f = f-sgf = £ = £1

whence rf = 1 since £ is a monomorphism. To prove the fourth

relation notice that

r = risg + fr} = rag % rfr = rsg + r

which shows that rsg = 0 and whence

rs = rs{gs}) = (rsgls = 0

It is now easy to conclude by Lemma 3.3. 0.E.D

Definition 3.8. A morphism £: C » D is called a gplit mono-

morphism if there exists a morphism g: D= E such that £,g9 form a

split exact sequence. The dual notion is split epimorphism,

Additive Functors 3.9. Let A and B be additive categories.

A functor

is called additive, if for every pair of objects X and Y in

A, F induces linear maps

Hom(X,¥) - Hem(F(X},F(Y))

Let us nctice that the additive functor F preserves split exact

sequenceg as it follows from 3.3,

15

Matrix notation

A family of cbjects (X

X )i ep indexed by a finite set T

gives rise to an cbject X and a family of morphisms

i P
xt—tﬂ(——t»xt : tET

such that for all uw and v din T

EteT Lepe =1 Pty =

These data can be constructed by iterating the previous process.

The object X is often written &L enXe and is called the direct
sum of the Xt'sq ~ Given a second finite family of objects
(YS}SES with Y = @sgs Y. To a morphism £: X - ¥ we associate
the matrix

{fst}(S,t)ESXT i fst b psflt
Conversely to such a matrix with

fStE Hom(Xt,YS) : (s,t) € 8xT

corresponds a unigquely determined morphism f£: X - Y. Let there

be given still another finite family (ZI)rER with Z= arERZI”

For morphisms £: X - Y and g: Y - 2 we have
(gf}rt b % grsfst
as it follows from the following calculation

(gf)rt = prgfit = prgtzisps)fit =

1 poip fi, = g .
= S
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I.4 BHomotopy theory of complexes

Throughout this section we shall work in a fixed additive

n gl

category. A complex C" =1{(C,3) is a sequence of objects and
morphisms
n-1 n
5 Cn-—] ] cn g_) CnH R
with anan'1 =0 for all ne#Z.

. . In N
A morphism of complexes f:C" -»D f=(f )nEiN' is a sequence

of morphisms £7:C" D" with

fn+1an - E’Jnfn ; nem
Morphisms of complexes are composed in the cbvious way, i.e.

componentwise.

Definition 4.1. For a complex €' and pe# we find a new

complex C"fp]l given by

(' pn™ =

with boundary operator (_1)pap“ - Given a morphism of complexes

N
£:C" +D". Define £[ni:C[ni-D[n] by the formula f[n]¥=£""P,

Definition 4.2. Let £°,9":C"->D" be morphisms of complexes.

A homctopy s from £ to g is a sequence s° = (s )nezz'
s?:c® 502 of morphisms, such that

£ o gh o T TgR g T ;DETE

i7

Morphisms f and g are said to be homotopic if there exists a
homotopy from f to g, we write f~g, Homotopy is an equivalence relation

compatible with composition. The additive group of homotopy classes

of morphisms from C° to D" is denoted ([C',D’].

We can now form a new additive category by considering the
complexes P°,Q",.. in our category as objects and [P",0"] as
the group of morphisms from P" to Q. The new category is called

the homotopy category.

A morphism of complexes £:P"-Q" 1is called a homotopy
equivalence if it represents an isomorphism in the homotopy category,

i.e. if there exists a morphism of complexes g:Q" =P° such that

fg ~ 1 and gf ~ 1

Definition 4.3. For complexes X' and Y let Hom' (X',Y"}

denote the complex of abelian groups given by

Bom™ (X" ,Y") = N Hom(xP,yP™™
pE7
and boundary ocperator
[37E)P = a™FPEP o (o) PHTgPH TP
Remark the key formula, ne %

4.4 [%7,v" [n]] = HEMHom" (X' ,¥")

The complex Hom'(X",Y¥") 1is obviously functorial, covariant in

¥" and contravariant in X".
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We shall now introduce the main theme of a homotopy theory

of complexes: Consider a chainwise split exact seguence of complexés

p- 59" 9 g

i.e. two morphisms of complexes such that for each n ¢ Z, the

seguence

is a gplit exact sequence. Choose for each nE€% a section sn:R-Q
n z n_n .

to g, i.e. g8 =1 or just gs = 1, where s: R-> Q. We

use the notation that R, which is R" with the dot removed,

denotes the graded object underlying the complex R™.
g(93s-s3) = d{gs} —g(=s3) =0

Thus we can find h:R-P[1] such that

4.5 fh = 9s ~-s3

Using this relation twice, we find

£{hd+3h) = (£h)3+3 (fh) =

(9s-s9)d+0(8s-83) = dsd—-9s0 =0
Using that £ is a monomorphism we find
ha + dh =0
which shows that h:R-P[1] is in fact a morphism of complexes .. -

4.6 h:iR" =P [1]

19

The morphism h is unique up to homotopy:

Let 0:R->Q be an alternative section of g and let

k:R"=P'[1] bhe givern by
fk = %0 -02

Since g(s~-0} =0 we can find +:Q-+P such that s-o=ft. We find

that

f(h-k} =3{(s-0} — (s~0)3 = 3ft - FL3 = £{at-Ld)
Using that £ 1is a monomorphism we find

h-k= 3t~ts=5t+t(-2)
which shows that h ~k.

Definition 4.7. With the notation above, the class of h in

[R",P"[1]] 1is called the homotopy invariant of the chainwise split

exact sequence P" = Q" - R".

For a given complex X" our chainwise split exact seguence

vields ashort exact sequence of complexes of abelian groups

0 - Hom" (X" ,P"}) - Hom" (X",Q0"}) = Hom" (X" ,R"} = 0

:. which in turngives rise to a long exact homology sequence with

connecting morphism

4.8 {1,alnil:[x",R"[n])] > [X",P"[n+1]]
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Procf. With the notation of 4.5 given morphism of complexes fgh

(9s-s3)g = 3sg - sg3

%" >R [n]. Lift this to sx :X-0[n]. The result of applying =3 (1-fr) - (1-£r)3 = f (rd3-sr})
the boundary operator from the complex Hom (X",Q"[n]) is
Let us now consider an element of [P",Y"[n]l represented by a
ase® + (1) T exy = (9s~20) 2™ = Fhe® morphism of complexes y :P" »¥'[n]. Lift this to vy r:0-7Y [n]

and apply the boundary operator from Hom' (Q°,¥")
where we have used the formula 4.5.

oy + (-1 Ty ra = (=1 er + (=1 TyPr -

UM o) = (-1 P

For a complex Y¥'  our split exact sequence yields a short

exact sequence cof complexes of abelian groups which proves the formula 4.9

0 - Hom"{R",¥") » Hom" (Q",Y"} - Hom"(P",Y¥") -» O

Let us consider a commutative diagram

which gives rise to a long exact homclogy sequence with connecting

morphism
P £ > Q" g 3y R
n+1 . N - lu v w
4.9 (-1) [h,1]: Y7 [n]l] = IRy [n+1]]

u’

4
<:
=

of complexes, involvi hai i i
Proof. With the notation of 4.5 let r: Q - P denote the s} e invelving chainwise split exact sequences f,g and

a,b. The resulting homoto i i s
retraction satisfying . g py invariants k and ¢ makes the

following diagram hemotopy commutative

rf=1, rrs=0, 1=sg+fr

e X e

L

Ww—2s 5 g'11]

Let us first prove formula
4.10 hg = r9 = 3r

S Proof. Let X7 i y . i
It suffices to prove the formula after we have applied the mono- _ be an arbitrary complex. The diagram above

‘ ive rise to a commutative di i
morphisn £ on both sides g e diagram of complexes of abelian groups

6 » Hom" (X" ,P")}) - Hom" (X",Q") - Hom {X",R") - 0

o .l o l
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It follows from 2.7 and 4.8 that the following diagram is
commutative

[x",2 ] LKL rx por10)

J’H,w] L[Lu{‘f]]

(X", W ) —pro— [x /07 [1]]

Now specify to X" =R and evaluate the maps on the identity of RY

Q.BE.D.

We shall now introduce a very fundamental terminology, that of

Triangles

o
w/\v
A B

By a triangle is understood three complexes A" ,B',C" and three

morphisms of complexes

AT = B L oot oAt

P £ Q" g’ R

with homotopy invariant h and homotopy equivalences a,b,c making

the following diagram homcotopy commutative

M a)

lc la[1]

c
T Y TR

o5 X

a b

Y
0 ¢t

£
—_

.:;4.‘13 ~uf1] \
: b
N Q‘.
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For complexes X" and ¥  the triangle above gives rise to long

exact seguences

2 (X,A" ] [1,ul [X°,B"] {1,v] [x°,c"] [1,w] [X",A“[1]][1’11“]][)(”,3'[13]—
4.12
NI [ AETANES (S S | LANSELSES FRZATIS SRS JLTARIF SN

The mapping cone. Let u:P’" -Q" dencte a morphism of complexes

we define the mapping cone Con'{u) by

Con(u) = P[1180Q, 3=(_3 aj

Notice that the sequence

5 (1,0
Q" —4—=pP'[1]80" -————— P [1]
: is chainwise split exact., Using the splitting s = (a} we get
_ ,~0 0 T, _ 1 _ _ 0y _ (0,
3s=sd = (L0 4) (g) = () (=8) = () = (5} (=u)

- which shows that the homotopy invariant is

~ul1l: p{1] —m——— 0" [1]

1 as a conseguence we have a triangle

P [1

£ 0}
" ()
0
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The mapping cylindex

Given a morphism u: P'" =+ Q" of complexes. From this we

derive the morphisnm
N L. o e
(_u}.P P @ Q

The cone over this morphism is the mapping cylinder of u,

Cyl"{u). Explicitly

(-3 00
Cyl“{u) = P[1] & P & Q ; \—’I 3 0 )
uo 3

The mapping cylinder Cyl"(u) is homotopy equivalent to ©" in

a canonical way: the two morphisms of complexes

Q" — Cyl" (1) ——— Q"
0 {0, 1)
)
1
composes to the identity of Q. The composite of these iwo

morphisms in the opposite order is homotopic to the identity on

Cyl"(u} as it follows from the formula
[O 180 -3
\0)(0;11;1) - (0 1 0) = (—1
1 001 u

Consider the chainwise split exact sequence
Pl ———— Cyl" (u} ——— Con” {u)

explicitly given by

0 -3 00
(1) (—1 3 0) /-1 00 -3 0
3 0 ul 3 \Loon -u 3
P Plil@® P @ — P11} & Q
-1 0
The second of the two morphisms has the section ( 0 0), which we
01

will use to calculate the homotepy invariant of the segquence, We

have

Thus we have constructed a triangle

£1,0)

P — Cyl"{u) ~—— Con” (u) P[1]

Consider the following diagram

- O

P — 0" con” (w) L1e8)  pep1]

(‘i) ¥ (—‘I 00)
0 001 (1,0)

P'— Cyl” (u)—— Con" (u) P"[11]

0
0) has the
1

The first square is homotopy commutative, since

P

homotopy inverse (0,u,1) and
o

(O,u,‘l)(‘I) = u
G

From this we conclude that a morphism u: P" » Q" of complexes

give rise to a triangle

25
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Con" (u)

(1,0) (1}

- O

In fact, any triangle has this form.

Proposition 4.15. Given a chainwise split exact sequence of

complexes

with homotopy invariant w: R - P°[1]. Then the following
diagram*)
)
P u Q" 1 Con” (u) —LLLQL P"[1]
1 1 l(O,V] 1
P Q" = R —— ¥ L prY]

is homotopy commutative and the columns are homotopy equivalences,
Progf. According to the results preceding 4.14 it suffices
to prove a similar result for the diagram

0
1 (—100)
P”~Jl—» Cyl"(u)——glll—»Con"(u)——iliglﬁ P [1]

1" i(o,um j(o,v) 11

Pl 0 = R® Y P [1]

*) It is the relation wu = 0 which ensures that (0,v): Con® (v} -+ R

is a morphism of complexes.
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The first sguare is obviously commutative. The second square
is commutative since wvu = 0. TFrom the functeoriality of the
homctopy invariant, 4.11 follows that the third sguare is homo-
topy commutative.

Tt remains tec prove that

{(G,v) 1is a homotopy equivalence.

It suffices to prove that (0,v) induces an isomorphism after

transformation by any of the functors of the form [X",-1,
where X’ is a complex. We can apply the five lemma 1.7 to the

diagram

[x",P"] — [X",0"] — [X",Con(u}] — [X",P"[1]] — [X",Q"[1]]

1 1 [1,(0,v)] 1 1
[x",P"] = [X",Q'] = [X",R"] = [X",2"] - 1x",0" (1]
to gonclude the proof.
c.E.D

Turning triangles 4,16. Given a triangle

then the following diagram is a triangle
rd
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A"[1]

—f[1j/f Nu
g

B o _Tc

Proof. According to Lemma 4.15 and 4.14 we can replace the

s

triangle above with a mapping cone triangle. The result of

turning the mapping cone triangle 4£.14 is

P'[1] .

-um/ Nm)
o

——— Con” (1)
0
<

which is a triangle, see 4.13.

Corollary 4.17. For any morphism u: P" » Q° of complexes

there exists a homotopy commutative diagram

P

where £ 1is a chainwise split epimorphism and the vertical

arrows are homotopy equivalences.

Proof. Turn the mapping cone 4.14 twice.

Twisting triangles 4.18. Given a triangle

Then for any ne#Z,

cr
h }’ g

AN
A -— B

f

the diagram

c"{n]

(-1)"in] / \ (-1)"g(n]

is a triangle.

%

morphic to

A'[n} —~—> B[n]
(~1)"£[n]

oof. Note first, that the second triangle zbove is iso-

C"[n]

(-1)hln] / ’\g[n]

via {(-1)%,1, (-1 ",

from formula 4.5.

Kln] ——————=Bln]
flnl

The result now follows rather immediately

29
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Filling in the third arrow 4.19. Consider the diagram

consisting of triangles ABC and RST and arrows f and g
making the bottom sguare homotopy commutative. Then the detted
arrow may be filled in making the remaining two squares homotopy

commutative.

g

roof. We may assume that the triandles are mapping cones, 4.1

Consider a homotopy, realizing that the bottom square is homotopy

commutative
gu — vE = ka3 + 3k
Define h: Con"(u} = Con'{v) to be

(f 0) : a1l @B > R[1] @ &

Notice that

(E00-Qar o am( £

-~k q

3]

Signs

Let there be given a triangle

o
Cuf{f N\\\h
A% - ~—s B"
a
If we replace a by ~a and b by -k we still have a

triangle as it follows by using an isomorphism of the form

(-1,1,-1}. More generally we can change sign on any two of the
arrows and we will still have a triangle. However, if we replace
¢ by =-c¢ we will in general not have a triangle. An example is

given on the basis of the following lemma.

Lemma 4.20. Given a triangle
.C“
c/ \b
A’ s B
a
1f [a"[11,c"]1 = 0, then ¢ is the only morphism from ¢€° to

A'[1] in the homotopy category that makes a,b,c into a triangle.

Proof. Let x€I[C",A"[1]] ke such that a,b,x form a triangle.
Then according to £4.1% we can find 8: C* — C" such that the

following diagram is commutative

A2 S
l1 J1 ie 1
A2, g i X a1
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Notice that (1-9) b= 0 whence we can find he€ [A"[1],C"], such

that hec = 1-8 . 8ince [A"[1]1,C"]1=0 we must have 8 =1

and from the equation =8 = 1c¢, we conclude that x = c.

of abelian groups Z
-3
() l
0 zom L0, 5] A
3 T 3
()
Z TR 77 50
(a,1)
A a B b cr—= AT1]

Notice that [A"[11,B"] = 0 and [B",2"[11] = #/(3) generated
c., In particular ¢ is not homotopic to -c and we conclude

from Lemma 4.20 that a,b,-¢ 1is not a triangle.

The triangle of two composable moxrphisms

Starting from two composable morphisms of complexes

Con” (v}
ul1] ©
4,22 (? 8) 10 g " )
(0 )

- Con” (vu)

33
. . %)
verification

We shall derive this triangle from the mapping cone triangle
Con' (V) 0 0\

00\
N{\\\\\1 O?
0 1}

(-a 0): Con"{u} ———————= Con"{vu); (-8 0)
(3 )

and the following identfication Con"({v) and Con’ (V)

g0
10
g0
a1
) ¢ 0 0 0
-ad 0 “ P R R u -3 0 O
(-v a), Con" (v}<e———— Con" (V) il 0 -3 o0
0 ~v ~vu 3
{01 u o0\
\o oo/
using the explicit homotopy
00 1Teco0o0 -1 06 00
10 0100y _f(0100 _ 00 u O} _
00 0001 0010 - oc-=-107]"
0 1 00c 01 00 ¢ 90O
a3 0 0 0V\fGC O 1¢C 0010 3 0 00
u-~3 000 O0O0C + 0000 u-3 00
-1 0 -2 0flCc 0 00 0o0Q0O0Ofl-1 0 -30
0 -v=vuad/ \C 0 00 00900 0 -v-vu 3
*) To simplify the notation we write u instead of ul1]l. The

same convention applies whenever uil1] causes notational in-

conveniences.
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I.5 &Abelian categories 2) The morphisms Ker a » Ker b, Ker f - Ker g are

A category which is additive and exact is called an abelian epimorphisms. - These two epimorphisms have iscmorphic
gategory. Throughout this section we shall work in a fixed abelian kernels.

category. A close analysis of the cocartesian diagrams will be

3) Our cocartesian diagram is in addition cartesian if
of great use when it comes to construction of injective resoluticns, and only if

Ker a -+ Ker b and Ker f - Ker g
Definition 5.1. A commutative diagram

are isomorphisms.

A _.____..-...E—.—; B
la lb
Proof. 1) Follows by direct verification. 2) We can express
C __g_-——; D
the assumpiion that the diagram is cocartesian, by saying that the
is called cocartesian if whenever given a pair of morphisms sequence N
; . : )
p: B X and g: C » X with pf = ga there exists a unique A-—f L cep tLuLb) 4 0
moxphism ¥: D = X with rb =p and rg = dg.
Given morphisms a and £ as above we can always find is exact. Let A denote the coimage for (_?) . There results
b and g making the diagram cocartesian: For D take a co- an exact sequence
kernel for the morphism
el —»CHB ———— D —> 0

(a,~f): A ———C & B ( _3) (g,b)
-
which proves that the diagram

The dual notion is cartesian diagram.

Proposition 5.2. Consider a cocartesian diagram

B
1b
D

——— —
r:y _...._____f__.._-_> B . . .
is cartesian., By the statement dual teo 1) we find isomcrphisms
~ o . ~ ~
c S 7 Ker a Ker b, Rer £ 5 Ker g.

It is ea 1 Fy Y i
1} Cok a ¥ Cok b, Cok £ % Cok g. i sy to verify that the morphism

Ker a - Ker 3, Xer f - Ker £
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are epimorphisms, 1.5. The last statement of 2} follows
1.3. - 3) If the diagram is cartesian, it fcllows by a
dual to 1), that the kernels are isomorphic. -~ To prove

converse, one checks that the morphism <“?) :t A-C®B

monomorphism.

from

statement

the

Homology and homotopv 5.3. Let P" and Q" be chain

complexes. Homotopic chainmap £ ,g : P" - 0" will induce the

same map on homology, if.e.

Y (£) = H (g) ; neN.
Progf. Let s = (sn)nem be a homotopy from £ to g,
i.e
+ -
gt - £ n¥lyn 32 Tgn s ne
Notice that the following diagram is commutative
2™ (p")
S n
Z7 (g-f)
n-1
-1 .
SRS TR
where o% is the restriction of s to Zn(P") and dn_1 is

the result of factoring n 1

z2%(g*) - 0", Notice that

from which the result follows.

through the canonical monomorphism
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The connecting morphis 4. Let there be given a chainwise

2

split exact sequence of complexes

0 —p-fho gur o

The homotopy invariant h: R" - P'[1] frem 4.7 will induce a

morphism in homology

which is identical with the connecting morphism introduced in 2.3.

Proof. Let us introduce the chjects

g = Rer (3" g™ ™o cok(aME™)
Kn N
\\f
n n
n £ n o
| In ’ (‘2 Sn ﬁln
ah ‘an )
1 ' 1 1
n+ n+ n+
n+1 aQ n+1 R
£ g
n+?\&
P Cn+1

-According to Lemma 2.8 it must be proved that

pfhgi =pai

Choose a splitting s: R - Q of g We can write £fh = 3s - 89

and whence

pfhgi = p(is-silgl = poasgi
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let now r: Q P be a retraction of £ such that 1 = fr+sg.
Then

pfhgi=po(1-fr})i = p3i - pdfri

Notice that pof =0 by the definition of p.

Corollary 5.5. A triangle of complexes

N
u

will induce a long exact homoleogy seguence

D ()

n
At H“(y")__ﬂm____+ Hn(z") ————

— B (X")

H (w)

-“—-——aHn+1tx") Hn+1(u) Hn+1(Y"} Hn+1(v) .n+l .

B (2"} ———

6. A morphism of complexes £: X'- ¥ is called,

a quasi-isomorphism if B (£) - Hn(x")—>H(Y?) is an iscmorphism for

all neZ,

Notice that f: X" » ¥" 1is a quasi-isomorphism if and only
if H"(Con"(f)) = 0 as it follows by considering the mapping cone
triangle 4.14

Con” (£)
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Truncation. Let K" denote a complex and n€ Z. We form

a new complex

n-2 n—-1 R Keran 5 0

induces an iscomorphism on homolegy in levels < n. Notice also

that homotopic morphisms f,g: K' - L" will induce homotopic

morphisms

Similarly we define the complex

- n+2
0 - coka™ ! L kT Lk > .

which comes equipped with a canonical morphism

5.8 K" —— 1 K"

which induces an isomorphism on homology in levels »n. Notice

again that formation cof < carries over to the hométopy category.

>n
We can establish a relationship between these by noticing that the

composite

T, KN—s K"'—s
<n

r2n+1K

is zexo and induces a guasi-isomorphism

-

5.9 K /t<nK _—T

Zn+1K
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I.6 Injective resolutions Fh
n-1i n Vol gy n+1,.. n+1
In this section we shall work in a fixed abelian category A. > X > ® > BT > ZI (x*) > X
~1 |
We say that an object I of A 1is injective 1if for any mono- - l £ £ l <::> ¢ ¢
- _ n-1 Vv :
morphism f£: X + ¥ and any morphism x: X - I, there exists a > 17 L a—--> b ———>Cok(§11) —_—— Yn+1 -— In+‘l
morphism y: ¥ - I with x = yf.
We shall assume this done in such a way that
Q > X T >, Y
e 0 - HNX") - Cok{a™
x 4
Y
I -_—
is exact, here we identify H'(X") with the kernel of an, 2.6.
Let I be an injective cobject of A, Any short exact seguence in A Now f£ill in the two dotted arrows to make the circled square

cocartesian. It follows from 5.2 that the circled square giwves
0 2 X->Y -2 -0

rise to an exact seguence

give rise toc an exact sequence 1 n+1

0 » HY(X") - Ccok{3™ '} » ¥ -1y s oo

0 -» Hom{(Z,I) - Hom({¥,I) - Hom(X,I} -~ 0
Next, choose a monomorphism Yn+1 - In+1 with In+1 injective
as it follows from the definition.
and £ill in the last dotted arrow at random, Notice that
In the rest of this section we shall assume that A  has

n+1

enough injectives, i.e. that any object of A admits a mono- 0 » Cok(x" - Yn+1) =+ Cok{I™ - 1 }

morphism into an injective cobject. - We shall mostly be concerned

is exact, which concludes the inductive step.
with bounded below complexes, i.e. complexes X" with ¥ =0

for n<<0.

objects. Any guasi-isomorphism c: X" =2 ¥" induces an iso-
morphism £: X" - I° into a bounded below complex of injective
moxrphism
objects (an injective resclution of X")

[e,1}: [¥",271 5 [X",17]

Proof. We shall proceed by increasing induction on n€ @&,
Suppose f has already been constructed up to level n€Z. That

is we have the solid diagram

4

Theorem 6,2. Let I be a bounded below complex of injective
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Proof. Consider the mapping cone triangle 4,14 _ 3n.—3 _ n=2 _ n-1 =N _ .
s 3 S, @2t o B (e Ay o
Ve - -
c* ‘///,i” fn-3 fn--2 fn—1 & /64n+1 o
n-2 n—1 n 7T
kr/f R\\\ 5 5 g M//"‘/// g
. . - - - &«
X' eme— Y > I1’1 3 N In 2 > In 1 —_— In
an—3 Bn—2 an—1
It follows from the long homology sequence I.5.5
The following calculaticon shows that fn_an-1sn 3n~1 ¢
S oEMNRY) - uM vy - R CT) - Hn+1(Xh} s Hn+1{Y") g i ( )
0 . (fn_gn-1sn)an—1 . gP=len-1_.n=1_n.n-1
that H (C") = 0 for &ll n€ Z. Next consider the homotopy
sequence induced by [-,I"] - 3n—1snan—’l + an—1an-25n—1 an—1snan—1 =0
» [Cc",1"] - {¥",2"} - [X°,T"] - [C"[-1],I"] = Let 3% c® 5 ¢™ ' pe factorized
=1 LI
n o n-1 i n+1
to see that it suffices to prove that c > Cok (3 ) > C
We can find Un+1: Cok(and1) —3> I such that
6.3 [Cc*",T*] = 0 whenever C* i1s a complex with en 8n_1 n_ n4l
- s =g 3
H"{(C"} = 0, and I" is a bhounded
. - + 5 .
below complex of injectives. Note, that i%: Cok(Bn 1) - c? ! is a monomorphism. Any extension
s o T e ™ i1l do.

Q.E.D.
We must prove that any morphism of complexes £: C" - I”

is homotopic to zero. We are going to construct a homotopy by We shall now derive some consequences of 6.1 and 6.2 in terms

of the following two categories

induction on n¢g€ #Z. Suppcse we have already constructed
P. P p~1 . ; N
st CF 2l for all p ¢ n with K (A} the homotopy category of bounded
below complexes in A,
sPpP=T 4 pPm2gpT | P ; p<n 6.4
D+(A) the homotopy category of bounded
We shall preoceed to construct sn+?: Cm_’I » 1™ such that the

below complexes of injectives in A
relation above holds with p = n+1,
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+
Let there for each X" in K (Al be chosen a guasi-isomorphism
6.5 o X =—> pX’

where pX' is an object of D (A). For a morphism f: X' - ¥°
in K+(A), there exists one and only one morphism pf: pX* - pY"

making the following diagram commutative

X —— pX”
£ l pf
¥y —C 5 Y

It follows easily from 6.2, that this construction yields a

cancnical isomorphism
6.6 [, T"] = [px"L"]

R . +
where X varies through K+(A) and I" wvaries through D (A).

Otherwise expressed the functor
6.7 p: KT (A) > DT (A)

is a left adjoint to the inclusion i: D+(A} - K+(A)" In this
interpretation the resolution morphism ¢ from 6.5 plays the

role of adjunction morphism.

Theorem 6.8. The additive functor

o X' (A) » DT (4)

transforms triangles into triangles.

. =+
roof. Let us start with a triangle in K {(A)

g

X" L5¢v 9% Z"I-l) x[1]

We can form the mapping cone triangle in p* (A) based on

pf: oX" = pY"

and f£ill in the dotted arrow in K+{A), making the diagzam
commutative. Writing out the long homology ladder 2.7 we con-
clude from the five Lemma 1.7, that the dotted arrow is a

gquasi-isomorphism. It is now easy to conclude the proof by means

of 6.2,
Q.E.D.

Construction of triangles from short exact sequences of complexes.

Let there be given a short exact seguence of bounded below

complexes in A

0 —> 2* L5 "Ly gr—30

By an injective resolution of this sequence we understand a

commutative, not merely homotopy cormutative diagram

Q =——>» p" T> Q ?> R" =—> 0
6.9 a J b [ o J
0 ——> T" —E—> J —§—> K" w==> 0

where the bottom sequence is exact and consists of bounded below
complexes of injectives, and the vertical arrows are gquasi-iso-

morphisms.
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Proposition 6.10, Any short exact sequence of bhounded below .

complexes h&s an injective resoluticn.

Progf. Let us first choose quasi-isomorphisms b: Q° - J°

and c: R" » K where J° and K are bounded below complexes

of injectives, 6.1. Next, choose wv: J' = K" such that the follow-

ing diagram is homeotopy commutative, 6.2
o R"
J" K"

By 4.17 we may assume that v 1is a chainwise split epimorphism.

—_—d

v

—_—

The diagram is homotopy commutative, so choose a homotopy

s: Q - K[-1] from cg to vb
cg-vb = sd+9ds

Next, choose +: Q - Ji=1] such that s = vt. The formula

above may be rewritten

cg = vh + wvtd + 3vt= w{b+ ts+ 3t)

which shows that we can modify b within its homotbpy class

making the diagram commutative. We can now quite simply put

I" = RKer({v) to obtain a commutative diagram
0 ~—> P =23 Q" ~—=> R" ——> 0
0 ~—> I35 77 L5 8" —> 0
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it remains to prove that a 1is a quasi-isomorphism. To see this

write out the long homoleogy sequences and apply the five lemma.

C.E.D,
A resclution as the one in 6.7 gives rise to a triangle in D+(A)

K
6.11 ;//’ R\Y

I'ﬂu*a——aJ"

this triangle is unique up to homotopy.

Proof. Let X" be an arbitrary bounded below complex of
injective objects, A diagram like 6.9 will give rise to two
exact sequences of complexes of abelian groups and a commutative
diagram

0 - Hom" (K" ,X") - Hom"(J",X") -» Hom"(I",X") - O

0 - Hom" (R",X"}) -+ Hom'(Q",X") -» Hom"(P",X"') - ©

By taking homology we obtain two sets of connecting morphism,

making the following diagram commute

(I"/X"] e — [K",X"[11]
)l[c,n jJia,‘l]
",Xx"] —————— [R",X"[1]]
According to formula 4.9 the hottom homomorphism is -=[w,1],

where w 1s the third side in the triangle. This description

fixes w and thereby shows that the triangle is unigue.

Q.E.D.
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In terms of the resolution functor p we have assigned to

the short exact seguence of complexes a definite triangle

6.12 a(f'i;jJ;r R\\\\\\\

—_————— Q

Given a commutative diagram of complexes in A

f
PR R
u lv lw

V- W ~ 0

- - 0

o

—-+

[P —

lm

0 —

with exact rows. Then the following diagram is commutative

8(£,q9)
pR" pP[1]

6.13 oW pul1]

PW' —— p7[1]

as it follows by a consideration similar to the one made in

the proof of 6.11.

Truncation in the derived category

For an integer n consider the two endofunctors Ten and
+ . . -
t2n+1 of K (A). These give rise to two endofunctors ptSn
+ . . .
and pr2n+1 of D (A) which we shall still denote by tﬁn and

Tone when no confusion is possible. For X" in D+(A) we
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shall construct a triangle in pt (4

an+1X

6.14

which depends functorially on X'. To do so we start with the

short exact segquence of complexes in A

<n

D » 1, X" > X" =>X /tSnX = 0
this we can combine with the guasi-isomorphism 5.9

<n — Tner¥

and apply the previous procedure,
<n >n+1
Let us analyse this a bit closer: Let 7 and ? de-
note the full subcategories of D = DT (A) whose objects are

complexes X~ with

p- . al(xy = o > n

~
|8

T HY (X"} = 0 ; i < n+l

These two categories satisfies

<n >n+1
6.16 fI",3"1 =0 for I"€D and J £ P

Proof. The complex J" 1is a bounded below complex of
injectives with H'(J") = 0 for i < n. It follows easily,
that Cok(3") is an injective object for i £ n, whence the

complex is a complex of injectives, homotopy equi-

[2n+1J

valent to J"., The assumption on I" implies that r<nI" - I
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is & guasi-isomorphism. Whence by 6.2

[z*,3"1 = {r<nI',t2n+1J“j

the last homotopy group is zero for trivial reasons.

Q.E.D,:

>n+1

With J" € D we deduce from 6.14 an exact sequence

[r<nX“[1],J“] » [z

2n+1x",J“] -~ IX*,J"] —»[tsnx".J 1~

Let us notice that quite generally, neEZ

<n sn-1 <n
D [+11 =70 =]
6.17 -
>n+ >n+2 >nt1
[-11 =7 =
Combining this with the sequence above and 6.16 we get
>n+1
6.18 [fSn+1X",J'] = [x",73"1] ; JETD
which shows that r<n+1 ig left adicint to the inclusion of
>+l =
e in D, Tn a sinilar way we deduce from 6.14, 6.16, 6.17 th
<n
6.19 [I",tSnX”] = [17,x"] ; T'ED
which shows that Ten is a right adjcint to the inclusion of_.
<n = .
?° into D, Let us finally remark that the curly arrow in

6.14 is unigue, see 4,20,

Remark 5.20. Given K" in D , such that

>n+1
(k", 3% =0 for all J° in 7P
<n

then K° is in ©  as it follows from 6.18 and 6.16.

: categories A and 3§
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1.7 Right derived functors

We shall first develop the classical part of the theory

. pf derived functors.

Let T: A~ 3 be a covariant additive functor between abelian
of which 4 is assumed to have enough
injectives.

For an object X of A choose ar injective resclution of

0 1

X, 1l.e. a long exact seguence with I ,I ,... injective
o} 1
0-x § 192, ¢V 2, ;2

Consider X as a complex concentrated in degree zero, and let

I" denote the complex

0o . 1
O—aIOE—)I]E—)Iz

We can then interprete the resoluticon above as a gquasi-isomorphism

of complexes g X=»1". Given a second resolution X-J",according

to 6.2 there exists one and up to homotopy cnly cne 6: I =J'
*)

‘making the following diagram homotopy commutative

.
e

X v +o

T

I

In the same way we construct ¢:J" - I". It follows from 6.2,

that 6@ ~ 1 and @8~1. In view of this uniqueness it makes sense

to define for newx

7.1 RM(x) =ar(1")

*} Since the complexes I" and J° are positive and the complex X
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where X-I" is an injective resolution. - Given a morphism where the wvertical arrows are injective resolutions. Remark that

f:Xx-Y in A we shall construct a morphism the bottom sequence is chainwise split, and derive a short exact

sequence of complexes in B
RMT (£F: ROT(X)=> RTT(Y)

0-T(I"}) »T{J") »T(K") -0
Let ¥ = I" and ¥ - J' be injective resolutions. According baﬁ;z

we can choose ¥:I° -+J°, unigue up to homotopy, making the follow By taking homology we obtain a long exact sequence

*
ling diagram homotopy ) commutative: n
7.2 » RMT(R) = RP(v) - ’rqz) & R lrxy - m" Ty
Given a commutative diagram in A  with exact rows
_

0> X=>¥Y¥->42-20

bl

00> V->HW->20

In this way we have for each nex constructed an additive then there results a commutative ladder

covariant functor n
7.3 5> RPT(x) - &My - R (2) S R r o R () -

[ R

» B (U) - &P vy - &Prw) S By - P T rw)

o

RM: A - B

Notice, that T =0 for n<o
this follows from 6.13.

Left exact functors. Let us now assume that our additive

Connecting morphisms. Let there be given a short exact

functor T:A -8 is left exact, i.e. preserve kernels. This means

seguence in A .
that we may identify T and R T.

0-»X->Y->2->0

Definition 7.4. Let T: A~» B be a left exact functor. An

Then according to 6.10 we can find a commutative diagram with
object X of A is called Tracyeclic, if
exact rows ZTeRy

R'T(X) =0 for all i >1

<@
§
4
[=)

Hi
SR
J

R

B e r

o
1
4
(=
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Acyclicity theorem 7.5. Let T: A-B be a left exact

functor, A quasi-isomorphism f: X"-» Y between bounded below
complexes of T-acyclic objects is transformed into a quasi-iso=-

morphism T(f}: T(X") - T(Y¥").

Proof. Consider the mapping cone 4.14 to see that it suffices.
to treat the case where Y° = 0, ZLet us prove that Rer (3™), the
kernel of the m'th differential in X", is T-acyclic. By a trans-—
lation argument it suffices to prove that Ker(ao) is T-acyclic.

Let us prove that

rir(kers?) = r1'P(xer(37P)

i>1, peN
This is done by induction on p&€ N using the exact sequence

0 — Ker (3 27N o x P L ger(37™®) — 0

The formula with p large shows that Kez(ao) is T-acyclic,

Let us now prove the following statement for ail n€ % "any complex

X' of T-acyclic objects with H"(X") = 0 and Xi = 0 for all

i < n has HO(X“) =0 ", This is dore by decreasing induction

on ne€#d,. To see that "n = n-1" consider the short exact se-
quence

Transform this by T tco get an exact seguence
0 - T(tSnX } - T(X") - T(anX } - 0

The inductive step can now be deduced from the segquence
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HO(T{r<nX")) - HO(‘I‘(X")) - HO(T(t>nX"})

We can now conclude the proof by a translation argument.

C.E.D.

Thecrem on unbounded complexes 7.6. Let T: A - B be a

left exact functor with E’T = 0 for some n€ N. Then any
complex E" in A admits guasi-isomorphism E" - X" into a
complex of T-acyclic objects.- Moreover, any guasi-iscmorphism

f: ¥" - ¥" Dbetween complexes of T-acyclic objects is transformed

into a guasi-isomorphism T(£f): T(X') - T(Y").

Proof. Choose a short exact seguence of complexes

0oE Lrrb g g

where F" is a complex of T-acyclic objects. This can for example

be done by choosing for sach n €N a moncmorphism FREFI L o
into an injective object. Put AR S In+1, 5% = (8 8) and

-1
vl o= = \ and let (u,G") be a cokernel for wv. The morphism

\;n+1.n/

(8"): E"'—— Con” (u) [-1]

is a quasi-isomorphism as it follows from the proof of 4.15,

where the dual statement is treated, see also XT7.3.5. Put

X{1) = Con" (u)[-1] and notice that this is a complex of objects

with vanishing R 'T. TIterate this construction to obtain a

sequence of quasi-isomorphisms
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{2)

- X -+ ... = X

{1} (n}

E" » X

The conmposite of these is a resolution of E" by T-acyclic
objects.

To prove the second part of the theorem we may assume that
Y* = 0, It follows from the proof of 7.5, that any truncation
1., X" consists of T-acyclic obhjects. Notice that

2P

EP(T(x*)) = BP(T(c ))

>p-2%

and deduce the result from 7.5.

Corellary 7.7. Suppose every object of the abelian category
A  admits an injective resolution of length n, where n is a
fixed integer. Then any complex E* admits a guasi-isomorphism

E" - I" into a complex of injective objects.

Broof. We shall use the notaticn of the proof above and the
theory of Ext from I.8. — For any objects R of A of the
functer Extn+1(R,—) is zero by assumption. It follows that
all functors of the form Extn(R,—) vanish on the chain objects

of X(1)h

More generally, all functors of the form Extn+1-p(R,-
vanish on the chain objects of X(P)h Take p = n +to see

that X(n) is a complex of injectives,

Q.E.D,
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Corollary 7.8. Let T=A-3 and U:B-( bhe left exact addive

functors between abelian categories with enough injectives. If T

is exact and transforms injectives into U-acyclics

rRM (uoT) = (R%UjoT

Proof. Given an object X of A with injective resolution

r

X-1I". Choose an injective resolution T(X)-»J" in B  According
to 6.2, we can find £:T(I") -J" making the following deagram

commutative

T(I")

(<' [ s

J

Acceording to 7.5, U(f) 1is a quasi-isomorphism.

0.E.D.

We shall now introduce the derived functor in the sense of
verdier. - We can first extend our functor T in the obvious way

to a functor

7o kT4 - kT (B)

We define the derived functor RT: D (A) » DT (B)

by RT = pT+i as displayed in the diagram, 1 denote the in=-

clusion.

i

D' (A} K" (A}

7.9 lRT LT+

vy £ xT@®)
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. +
10. The derived functor Notice that (UoT)’ = U or” and consequently

Theorem

7.

+ +
RT :D" (A) > D (B) R(UoT) = pu' T%i , RU o RT = U ip?" i

transforms triangles inte triangles. The adjunction meorphism 1 +ip relative to B will induce the

natural transformation 7.12.

. : The adjunction 1 - ip is always a gquasi-isomorphism, from
Procf. By the formula RT=pT i we need to check that each
= ; which we conclude

of these three functors transforms triangles into triangles. This i

is trivial for i, the reference for " is 3.9 and the reference 7.13 R(UoT) 3 RU o RT if U is exact

for p 1is 6.8. .
Ancother simple case is the following

7.14 R(Uo T) > RU o RT if T preserves injectives

Given additive functors U,Vv: A -+ 5 and a natural trans- The all important case is the folllowing

formaticon v: U - V o¢of additive functors. We can in

+ + +

an obviocus way extend Y to a transformation Y: U -V Theorem 7.15%, Let T: A - B and U: B - ( be additive func-

and finally to a natural transformation, compare 7.9 tors between abelian categories with enough injectives. If T

transforms injectives into U-acyclics and U is left exact, then
Fa11 Ry: RU ——— RV
R{Uo6T) > RU 0 RT

Consider additive functors T: A - B and U: B - C. Let us

establish a natural transformaticn + . .
Proof. Consider an object I° of D (A) and an injective

7.12 R{(UoT) - RU o RT resolution ¢: T{(I") - J': We must prove that

Ulc): UT(I") = U(J"}
To do sc consider the commutative diagram

is a quasi-isomorphism. This is a consequence of 7.5.

o4 B, ptigy BY, pty
N A FAe

+ +
k 4y Lo ks 2 kT
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We shall now relate the composition product to the connecting

I8 Composition products

Let A Dbe an abelian category with encugh injective objects, morphism arizing from a short exact sequence in A

For okjects M and N in A, choose an injective resolution j
’ 0 - M, - M, > M, » 0

of N and define for each g€ L 2 3
q consider a resolution of this seguence 1"
8.1 Extd(M,8) =89 (Hom(M,J7)) 3
9/! N\
_ by a triangle 6.11 in D (A). The element i« )
This amounts to consider ExtZ(M,-) as the q'th dsrived functor ° 1 )
of the Bom-functor a.4 8 E[IB,IH[1]] :Ext1(M3,M1}

Hom{M,-}: A > Ap is called the characteristic class of the short exact sequence

above. - Let J° be an injective resolution of N. The short

If I" 1is an injective resolution of M we can use Theorem 6.2
: exact seqguence of complexes

to write Ext as a homotopy group in D (A)

0~ Hom(M3,J") -3 Hom(Mz,J") -5 Hom(M1,J") - 0
8,2 ExtTM,N) = [T°,3"[q]]

) give rise to a connecting morphism, ne€ N
This representation reveals that composition in the dexived category.

giveg rise to a pairing SRL Eth(Mq'N) - Extn+1(M3,N)

+
2xt? (8, P) x Extd (M,N) » 2xtP I (m, ) which is related to 6 by the formula

Let namely K" Dbe an injective resolution of P and let o denot 8.5 " (@) =(—1)n+1aue s oo EExtn(M1,N)
composition in the derived category.
Proof. Consider the commutative, exact diagram
(77,8 {pllx{z", 7" (gl] - [L",K" ip+gl]
0 » Hom" (I;,J"} -» Hom" (I.,J") - Hom" (I,i,J") - 0

b { |

0 - Hom(M3,J") - Hom”(Mz,J") - Hom"(M1,J") -+ 0

8.3 (¢,B) = alglop

The result aUf of pairing o with B is called the composition:’

product. From the categorical origin of the product follows reczll that the vertical arrows are quasi-isomorphisms. The result

immediately that it is associative and bilinear, and that the follows from 2.7 and 4.9,

pairing for p=qg = 0 is composition in the categorv A,
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Let us now consider a covariant additive functor T: A-=B fronm

the abelian category A to the abelian category B. Given objecté:

M and N in A and p,g€ %, let us introduce a pairing
ExtP (M,8) * 9T (1) - RP T (1)

With the notation from 8.2 we can represent u,€Extp(M,N) as a
morphism of complexes a:I" ->J [pl]. This will induce a morphism

of complexes

T(a):T(I") = T{(I")Ip]
and conseguently a morphism on homology

BT (a) %7 (17) ~» HPT9T(R")
which we can evaluate on 8¢ HIT(I'):

8.6 ' aUR = HET ()R

From the categorical origin follows that the pairing is associative.

8.7 al(BYY) = (cUBIVUY

v € RPo() , B € ExtT(M,N) , o € ExtF (N, P)

In particular this makes R'T(M} a graded left Ext” (M,M)-module.

We shall now proceede to investigate the relationship between

the product and the connecting morphism arizing from an exact

sequence in A
0 s D>E»F =20

1
The connecting homomorphism, 7.3 PR (F) - RPT T (D)

1
is related to the characteristic class 8 € Ext  (F,D)
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of the segquence through the formula
8.8 3% (a) = 0ua 7 a €RVT(F)
roof. Consider a resolution of the sequence above

VAN

e

by a triangle in DY IA).

1t follows from 4.8 that 3% = 5PT(0)

which proves the result.

Let us assume that the category A has enough injectiwves
*
and enough Erojectives“)with the notation of 8.2 let K" -M and

." =N be projective resolutions. We can represent Extq(M,N) by

8.9 ExtT(M,N) = [X",L"[ql]

Proof. According to 8.1 we can write
Ext(M,8) 3 (M, [q]]
By Theorem 6.2, the resoluticn K* -M will induce an isomorphism
(M,5"[gl] 5 [R",3"[q]]

By the dual of 6.2 the resolutions L"-+N and N-J" will induce

isomorphisms
[E",L"[q]] » [K',N[q]}] » [K",J [g]]

Compose these isomorphisms to get the result.

*) Combpare the following zection I.9.
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I.9 Resum® of the projective case We shall mostly be concerned with bounded apove complexes,

Throughout this chapter we shall work in an abelian i.e. complexes C. with cn =0 for n<<ag.

category A. We say that an object P is projective, if for

any epimorphism £: X - Y and any morphism y: P -+ Y, there For any bounded above complex X., there

exists a morphism =x: P - X, such that v = £x exists a bounded above complex P, of projectives and a quasi-

isomorphism P. - X,
P

/
x,,/ v
e V¥

X—s ¥ —

Theorem 6.2°, Let P. be a bounded above complex of

projectives. Any quasi-isomorphism ¢: X. - Y. induces an iso-

morphism

We shall assume that the category A has enough projectives, i.e. [1,cl: [P.,%X.] < [P.,Y¥.]

that there for every okject X of A exists an epimorphism

P » X where P 1is projective. The derived category. On the basis of 6.1° and 6.2° we shall

The notion of projective is dual to that of injective in introduce the categories

the sense of category theory. We shall list a number of propo-
the homotopy category of bounded above

sitions obtained by applving duality to previous results. The K {4)

complexes in A
duality is maintained in the notation. Thus for example Theorem §.4°
6.2° is dual to Theorem 6.2, _ the homotopy category of bounded

D (A) , . .
abo 1 tis A
Let us now turn to complexes. In this context it is standard ve complexes of projectives in
to change the notation such that a complex "= (Cn,an)nE;Z is
i i f th bcat v D in XK (A) i =
rewritten C. = (Cn,an)neZZ according to the convention The inclusion o © Supcategory (A) in (A)  is denoted
_ .-n _ .-n it D7 (4) —— K (A)
Cp = c 7, an = 3

For each X. in X(A)} choose a quasi-isomorphism

6.5 p: AX. — X,

1 3 Wh.e a2 A " i " H g n
. 3 3 o £ . 1 . : X X is an object of D (A) For a morphlsm £ X Y
1 1 g i Y ' d A H v “
- s £ 1 f £ in K (A) there exists one and onl Oone mox phlsm £f: AX, — )\.Y

making the following diagram commutative
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Propositicn 6.10°., There exists a commutative, not mere-

ly homotopy commutative diagram of complexes in A

0w Pom— Q,—— R, — 0

This construction yields a cancnical isomorphism

O a—
£ <
o

[P.,X.] = [P., AX.]
where the top row is a short exact seguence of bounded above

complexes of projectives and the vertical arrows are quasi-
where X, varies through K (A) and P. varies through D {4).
isomorphism.
Otherwise expressed the functor

The short exact sequence of projectives constructed in

6.7° At K {A) > DT (A) 6,10° gives rise to a triangle

is a right adjoint te the inclusion i: D {A) = K (A). In this 6.11° R
interpretation the resolution morphism p from §.5° plays the g}f’

role of adjunction morphism. PU e Q'

Theorem 6.2:" The resolution functor which is unique up to homotopy.

A: K (A} = D (A)

transforms triangles into triangles.

We shall next refine theorem 6.8° by performing a construction
which assigns a triangle in D (A} to a short exact sequence
of bounded above complexes in A,

0 -C. »D. »E. - 0

The key result is
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1.10 Complexes of free abelian groups Coroliary 10.3. For a complex L. of free abelian groups

We shall be concerned with complexes L. of free abelian and a complex X. of abelian groups X. with H.(X.}) =20

groups. we have
L.,x.] =0

10.1, Structure theorem. Any complex of free abelian groups

is isomorphic to a complex of the form roof. According to 10.1 it suffices to treat the case

where L. has only two non vanishing terms. This case follows

o 1!V o
i€ from 6.2,
Q.E.D
where for each 1€ %, the complex Lfl) can be written
Corollary 10.4. Two complexes L. and N. of free abelian
PRI SR & SR £ B with u, ({1 - . ~
- : i+1 i : i+ Le77) = 0. groups are homotopy equivalent if and only if H.(N.} = H.(L.}).

Proof. Choose morphisms as in 10.2
Proof. Let L. be a complex of free abelian groups. -

For i fixed let us notice that Kex Bi is a direct summand
hi N. - H.(N.) a: L. = H.{L.})
of Li as it follows from the fact that Im Bi is a free

abelian group, in fact any subgroup of a free abelian group is

and let w©: H.(L.)->H.{N.) be an isomorphism.

free. Choose for each 1€ 2 a direct summand Ni to Kerx Bi con(b)
in L, and let L_(l) denote the complex d.+1: N, ~» Ker 3, .

L i i+1 i Considexr the triangle
where di+1 is the restriction of Bi+1 to Wy 4. Quite obvious- N. — H.{N.}

~ (i) ' P and the resulting long exact sequence
ly L.=» & L, .

Q.E.D.
[L.,N.] = [L.,H.(§.)] ~» [L.,Con.(b)]

Corollary 10.2. For any complex L. of free abelian groups

there is a morphism of complexes L. » H.{(L.) Since H.{Con.(b)) =0 it follows from 10.3 that [L.,Con.{(b}] = 0.

. . . Consequently we can find f: L. » N. such that bf -~ ea.
inducing the indentity in homclogy.

Notice that f is a gquasi-isomorphism and consequently has a
, . . ) contractible mapping cone by 10,3 It follows that £ 1is a homo-
Let us remark that neither this morphism nor its homotopy

. . topy equivalence.
class is canonical as one sees from example 10.6 below.
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Corollary 10.5. Let £: L. - N. be a morphism of complexes.

If all homology groups of L. are free, then
H. (Con. (£)) = H.(Con, (H(£))
Proof. Choose morphisms of complexes
a: L. » H.{L.,) b: N. - H.(N.)

It follows from 10.3 that a is a homotopy equivalence. Thus

we can find a homotopy commutative diagram

L. --—-E----—b N.

al lb

H,(L.) s B (N.)

Since H(a) =1 and H(b) =1 we find g = H(f). According
to 4.19 we can choose a morphism c¢: Con.{f) - Con.(H(f}) such
that a,b,c 1is a morphism of triangles. It follows from the
long exact homolegy ladder and the five lemma 1.7, that ¢ is

a gquasi-isomorphism,

li=

zample 10.6. Consider the two complexes

and the morphism £: L. - N. induced by multiplication by 3.

Notice that E.{(Con.(f)) = = H.(Con.(H(f))) = Z® @m/2

which shows that the assumption "H. (L.} free" is impcrtant in 10.5.

71
.11 Sign rules
Let us consider a fixed additive category (. By a double
complex we understand data c"" = (C,B1,62) where
= P.gq = P - P:g
€= paemaz 4= D ,qemz 27 P2 ) pgemz
ig a family of objects and two families of morphisms
5, Brd: cPrd cPtleg p Prd: cPrd ckratl
subjected to the following conditions
11.1 8181 =0 5282 =0 8182 = 3281
Let us assume that for all n€Z the direct sum
11,2 Tot™C" " = @ cPrd
p+g=n
is finite. Then we define a%: Tot®c'" - Tot™ '¢c"' by the formuia
11.3 e e 3,779+ (-1)Fa Prd
prg=n
This defines the total complex associated to the double complex
v s n
Tot"'C™" = ((Tot7C™ ") oo # (37 ep)
By a morphism £: C°" = D"" of couble complexes we understand

an indexed family of morphisms P19 cPr9 L, pPrY yhich commutes

with 81 and 3d,. Such a morphism will in the cobvious manner in-

duce a morphism Tot £f: Tot"'C"" - Tot'D""
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Given a second morphism of double complexes g¢: C"" - D"°. By The total complex asscciated to this double complex is denoted
a homotopy from £ to g we understand a pair (s,,s,) where T"(B",A"). If we apply these conventions to the Hom-functor we
5 is a family of morphisms s1p'q; cPra Cp*1,q and 5, recover the complex 4.3.
a family of morphism szp’q: cPr9 5 cPr91 gueh that
.-q.-.']
Contravariant functeor 11.%. Let T: A-=C T(C )
11.4 8251 = 5182 3152 = 3231 be a contravariant additive functor. Toc a complex (_1’q+1 T(B_qm1)
C* we associate the complex T(C") given by
11.5 f-g = 5.8, + 3.8, + 3,5, + 5.3 -q
171 171 272 272 - - T(C
T(c') = (r(cY, (=1 T ez (=
To these data we can associate §%: Tot’C'" - TotP™Tp-- by
Translation with m€Z gives rise to an isomorphism whose
effect on 7(ch) 1s (-1
11.6 a = ® S1p,q + (_T)PSZP;q
pta=n
11.10 v i T(C"[-m}) 5 T(C")[m]
We leave it to the reader to show that m
1.7 Tot £ -~ Tot g = s + s3 71.11 A triangle in the category G
£ e
A ig transformed by the E K\F
Bivariant functor 11.8. Let T: AxB8 - ¢ be a biadditive contravariant functor g
functor contravariant in the first variable and covariant in the T: A-C into a triangle T(E)
second variable. To a complex A in A and a complex B in in ¢ T(f[—T])ova/ RR\\T(g)
B we associate a double complex T(A",B") in C given by T(G) - T(F)
T(e)
"By = g 4P Py oy @t Tn a1
T(A",B") (T(a =,B%)},T(1,3%), (-1} T(3 '1))(p,q)EZZxﬂ

If U: C - P is a second covariant functor then the automorphism

-g-1 .p -g-1 _p+1
T(a B} T(1,3P) T(a B } of u{T{cPh) given by (-1}P gives a canonical isomorphism
[
M
(-T2 ) (-1 3 e~ ) 11.12 o: U(T(C") 3 UoT(CY)
T(2"9,5P) T(a™,8P*)

T(1,3")




II. Sheaf Theory i.e. the guotient group of the direct sum with respect to
the subgroup generated by the elements written under the
bar. — The composite of ia and the projection of EBFa

onte lim F is denoted
-3 a

II.C. Direct limits of abelian groups

By a directed set we understand a non-empty set I equipped '
with a preorder, i.e. a relation satisfving

a a for all =z€I

| Fa

a and that we have the followirg universal

1A

b and b £ ¢ implies a £ ¢

subject to the condition that for any a€ I and bel X . .
0.2 Mapping property of l_J’.m Fa . Let there be given an

there exists c¢c€I with a < c¢c and b < c. .
- - abelian group G and for each a€ I a linear map gyt Fa->G

By a direct system of abeli . s
Vi i syste abelian groups over I we understand . subject to the conditions

data (Fa,f consisting of an abelian group Fa for each

ba) _
a€l and a linear map f_ba: B2 Fy for each pair a,b with a'_< g, f =g
b “ha a

o
A
o

subject to the conditions

£ f = f i a<b, bh<c

cbiha ca then there exists a unigue g: lim F -G with

faa = 1, the identity on ¥, i atl

aclk

~

gf, = g9,

Wwe shall now construct the direct 1imit lim F of our gdirect -
. -

system: We form the direct sum of the groups Fa’
& F Proposition 0.3. 1} Any element of lg‘.}m Fa has the form
a
acl
fu(xu) for some w€I and some quF

For each a€I we let i, denote the canonical map from ¥, u’
2) For u€I and x_€F we have £ (x )} =0 if and
to the direct sum. We put u u u-"u
only if there exists v > u with fvu(xu) = 0.
0.1 lim F = k)
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Proof. 1} According to the construction of 1im F_r its

typical element is a finite sum
} £, (x,) ; X_EF

Choose u€I larger than all indices occurring in this .sum,

Then the following relation will justify 1)

E fa(xa, =E’ fufua(xa} = f'l.].(z fuaxa’
a a a

2} Let us assume that fu(xu) = 0, Then we can write

iu{xu) as a finite sum of the form

ix = i f -]
u’u E b baxa a%a

Chocse vEI larger than any of the indices occurzing in the

sum above. We can write

i f x =i f x - 3ix + i, £ x - i
vovuu v vu o u u'u 2 b bha"a aa

The typical element under I can be rewritten

Bha®a ~ Tafa T Noha¥a T Raa T LR ey T A hgRa)

A moment's reflection shows that we can write

i f o ox = 3

z, = i
vova
aza<sv

i f z
v va'a a“a
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with za,EFa zero except for finitely many a€I. According
to the basic character of @ Fu this implies z = 0 for

all a€I and consequently fvuxu = 0.

The following Corollary is the key tec practical evaluaticn

of the symbol lim Fa"

Corollary 0.4. With the notation from 0.2 suppose that

1) every element of G has the form gu(xu) for
some u€l and some X, EF,

2) g {x)) =0 = 3 v2u fvuxu = 0.

Then lim Fa is iscomorphic to G, through g.

Excactness. Given direct systems of zbelian groups (Ea,e

ba)

and (Fa,fba) over I. By a morphism from the first system
to the second we understand a family of linear maps (wa)
where for each a€l ug: E -, subject to the condition
that

fbatpa = Pp Sha ;oafh

By the mapping property of direct limits 0.2, we can find one

and only one ¢: lgm Ea - lgm Fa such that

poe_ = f 0w, r ac€cl
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This map is the direct limit of the mcrphism and is denoted

l%m Pyt l%m Ea - lim Fa "

Proposition 0.5. Given morphisms of direct systems over I

wa) _ )
{Ea’Eba}—___Q(Fa'Fba)""""Q(Ga'Gba)

such that the seguence

is exact for all a€I. Then the following sequence is exact

Lynw Timy
lim B, ———— lim FP_ ——— 1im G

Frocf. Straightforward application of the previous pro-

position.

General categories p.6. Let C be an arbitrary category.

By a direct system in C we understand datz (Fa,fba) con-
sisting of an object F of € for each a €I and morphism

for each pair a < b subjected to the conditions

i F_ - F

ba® “a b

th
h
|
Y
A
o
A
[¢]

cb ba fca

£ = 1, the identity on F ac€l.

aa a

-~
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By a direct limit of the system we understand data (fa,F)

consisting of an object F and morphisms fa: Fa - F such

that

and which has a universal mapping property similar to 0.2,

Propogition 0.7 Let € Dbe an additive category in which

arbitrary direct limits exist. Then arbitrary direct sums.

exist, i.e. systems with a mapping property generalizing I.3,

Proof. Let (C.) be a family of objects in €. For

== s’ 5€8

any finite subset A of S we put CA = @SEACS, and for

BAC CA - CB in a rather

obvious way. In this manner we have created a direct system

finite subsets A c B we define f

in € over the directed set of finite subsets of 5. It is
easy to see that the direct limit of this system is a direct

sum.
Q.E.D.

Remark 0.8. To a preorered set I we can associate the
category I whose objects are the points of I. The morphisns

from a to b are given by

{(bfa)} for a<hb

Hom(a,b) = {
@ otherwise

With this notation a direct system in € over I may be inter-
preted as a covariant functor F: I-C, and a morphism F = G

of direct systems as a natural transformation of functors.
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II.1 Presheaves and sheaves

Let X denote a topological space. By a presheaf F on
X we understand a collection of data as follows
1) For each cpen subset U of X an abelian group F(U),

the (group) of sections of F over TU.

2} Foxr each pair U 2>V of open subsets of X a linear

map x F{U} » F(V), the restriciion from U to V.

et

These data are subject to the conditions that for copen

sets U 2V 2 W we have

wvvu T wu Ty

This definition can be rephrased if we organize the ordered set

of open subsets of X into a category. A presheaf is contravariant

functor F from this category to the category of abelian groups.

A morphism £f: F - G of presheaves on X is a natural
transformation of functors, i.e. for each open set U we have
given a linear map £{U): F(U) -» G(U} such that whenever

U >V are open subsets, the following diagram is commutative

F (U) VU, F (V)
1.2 £{U) £(V)

v r v

G(U) ko G{V)

Two morphisms of presheaves f: F - G and g: G - K can be

composed to gof: F - K according to the convention

1.3 {gof) (U} = g(U} o £(U)
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Let us define the sum f+g of two morphisms f,g: F - G

by the convention

1.4 (L+g) (U) = £(U) + g{U)

with this convention the category of presheaves on X is an

additive category, as the reader easily verifies by construct-

ing the direct sum F ® G of two presheaves by the formula

1.5 (Fa&G){Uu) = F(U) & G(U)

In fact the category of presheaves on X is an abelian cate-

gory as one sees by constructing kernel and cokernel for a

merphism of sheaves £: F -» G by the rules

Ker {f) (U)

Rer (£(U))
1.6
cok (£} {U)

Cok(£(U))

The section functor. Given a presheaf F on X and an

open set U of X, Put

1.7 I(u,r) = F()

the (group of} sections of F over U. - The elements of

I(X,F) are called the globkal sections of F,

Definition 1.8. A presheaf F on X 1is called a sheaf

if for any family (Ui)iEI of open subsets of X and any
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)

family of sections (si ieT’ si.EF(Ui)’ with

r {s.) =z {s.) ; 1,J€I
u;nuy, Uy L CPUVE RS
there exists one and only one s€F(U), where U = U Ui' With:
ieT1
rUi’g {s) = S5 ;7 1€T

.9. For an open set U of X let C(U) denote

Examole
the set of R-valued continuous functions on X. For open sub-
sets U 2 V, restriction of functions in the ordinary sense

of the word defines a linear map ¢ C(U) -C(V). 1In fact

VU:

we have defined a sheaf C on X.

Example 1,10, An abelian group D gives rise to a sheaf

D on the topological space X: For an open set U we let
D(U) dencte the group of locally constant functions on U
with values in D, Restriction maps in the presheaf D is

ordinary restriction of functions. D is a sheaf on X.

Example 1.11. Let us describe the sheaf (¢ of analytic
functions of the complex plane £: T1{(U,0) is the group of
analytic functions £: U - €. Restriction in the presheaf ¢
ig that of restriction of functions. This defines the sheaf of
analytic functions. Consider the morphisms of sheaves

j D
0 o} 0 0 ¢

where j is the inclusion of the sheaf of locally constant
functions intc the sheaf of analytic functions. The morphism
D assigns to an open set U and sE€ 1(U,?) the complex

derivative of s, Ds€lI{U,d).

IT.2 Localization

In this section we shall study the process of lecalizing
a problem formulated in terms of sheaves. This technique will
be applied to show that the category of sheaves on a topological
space X 1is an abelian category.

Let us fix a point x of X. The set of cpen neighbour-
hoods U of =x in X ordered by inclusion form a directed
set. A presheaf F on X will induce a direct system of

abelian groups on this set. We define the stalk of F at x by

2.1 F, = lim F(U)
A morphism of £: F - G of presheaves on X will induce a
morphism of direct systems and consegquently give rise to a

map

In this way we have for sach x€X constructed a functor
from the category of presheaves to the category of abelian
groups. The following lemma allows us to pass information from

local teo global.

Lemma 5.2" Let F and G be sheaves on X.

i) If two morphisms of sheaves £,g: F - G are such that

£ for all =x¢€X, then f = g,

x ~ Ix

ii} A morphism of sheaves f: F - G satisfies the conditicon

fX: Fx - Gx is injective for all xe¢X
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if and only if, the map £(U}: F(U) = G{U} is injective for
all open subsets U of X.

iii} A morphism of sheaves £: F - G such that
fx: Fx—-eGX is an isomorphism for all x€X

is an isomorphism of sheaves on X.

Proof. i) We shall prove that £({U)} = g{U) for any

open subset of X. Consider the commutative diagram

F(U) —— > T F
xeU
£{m m fx
xE€U
v v
G{U) —— > T G
x€U x

Note that the horizontal arrows are injective by the fact that
F and G are sheaves. Since fX = d, for all =x €U, the
diagram remains commutative if we replace £{U) with g{U}.
Thus £(U) = g(U}.

ii} Assume fX injective for all =x€X. From the

commutative diagram above we conclude that £(U) is injective.

The opposite implication follows from exactness of 1im IT.0.5.

iii) Let us first prove that for a given open subset U
of X, f(u): F(U) - G(U} is an Isomorphism. It follows from
ii that f£(U) is injective. S0 let us prove that any t € G{U)
belongs to the image of £{(U): F(U) - G(U}. For any =x€X

b4 - .
choose an open subset U containing x€X and a section
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rx:€F(Ux) such that f(rx) and t has the same stalk of =x.
Next, choogse an open neighbourhood v of x in ™ such
that if we let s* denote the restriction of r* to VX,

then

£VH(sT) =« (t)
U

Notice, that for x,v €U, s¥  and sy have the same restriction

to v¥nvY as it follows from the formula above and the in-
jectivity of £(VEnvY). Thus we can find s€F(U) with
restriction s to V&, Cleaxly, f(U}s) = t.

Let us finally notice that f£: F - G 1is an isomorphism:
The inverse is given by f(U)“1, as U varies throeugh the

open subsets of X.

Sheafification of a presheaf. Let F be a presheaf

on ¥X. We shall associate a sheaf E to the presheaf F.

The secticons of F over the open set U is the set of those

s e€nm F
zey
which for every x €U satisfies the following condition:
"there exists an open neighbourhood W of x in U and a
section t of ¥ over W such that pr s = tW for all wew?™,
In order to define restriction maps in the presheaf E

notice that for open subsets U >V of X the natural maps
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will map [(U,F} into TI{V,F). It is left to the reader
to show that E is a sheaf, Given a section s of F over
an open set U of X, the cocllection of its stalks at the

points of U will define a section of F over U. We have

in fact established a morphism of presheaves

Proposition 2.4. Let F be a presheaf on the space X.

~

i} The cancnical morphism iF: F - ¥ induces an iso-

morphism on all stalks.
ii) Given a morphism f: F - G from F into a sheaf G.
Then there exists one and only one morphism [OH F oo G, such

that £ = @(DiF"

Progf. i) Given x€X and an open neighbourhood U of

%x. Projection induces a map

I(,f) —— F,

compatible with restriction maps in F. Passing to the direct

~

limit we define a map FX - EX which is easily seen to be a

}

left inverse to { Thus it remains to prove that (iF)

Tptye b4
is surjective, which is left to the reader.

ii) Let us first notice that f: F -+ G will induce a
morphism £: F » G which for each open subset U of X will

yield a commutative diagram

F(U) meomee——s ¥ (U}
ig (0)
£(0) £(U)
v Y
G(U) ——rmm—— G (U)
ig(0)

It follows from i and 2.2.iii that iG(U) is an isomorphism.

Thus we can define @(U): E(U) -+ G(U) by putting

YR

]

¢ (U} iG(U)

This defines a morphism 3 F -+ G with f = @oi Unigueness

B
of ¢ follows from 2.2.

The category Sh(X) of sheaves on X is the full sub-
category of presheaves whose objects are the sheaves on X.
Notice that the direct sum of two sheaves, calculated in the
category of presheaves, is a sheaf. Thus Sh(X) is an additive

category.

Theorem 2.5. The category Sh(X} o©f sheaves on the topo-

logical space X 1s an abelian category.

g

roof. Given a morphism £: F - G of sheaves. Let Ker{f)
and cok(f) denote kernel and cokernel presheaf as calculated
by the formula 1.6. It is easily seen that ZXer(f) is in fact

a sheaf, and that the inclusion of Ker(f} in F is a kernel

in the sense of 1I.1 for the morphism £ in the category Sh(X).

Put

A
Cok(f) = cok(f}

87
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The composite of the two canonical morphisms
—
G = cok({f) - cok{f) = Cok(f}

is easily seen to be & cokexrnel in the sense of I.1 for the
morphism £ in Sh{X). With the terminology of I.1 consider
the canonical factorization of £: F - G in the category Sh(X}

i~

£
F -+ Coim (£f) -» Im(f) - G

We will prove by localization that £ is an isomorphism in
Sh(X), so let there be given x €& X. WNotice that the locali-
zation functor preserves kernels and cokernels 2.4. From this

we conclude that (f)x is an isomorphism. From 2.2 we con-

clude that E is an isomorphism.

It is now time to adopt the general notions from the

theory of abelian categories I.5.

Theorem 2.6. Given a seguence of morphisms of sheaves on X

This sequence is exact in Sh{X) if and only if

is exact. for all x€X.

Proof. Let us first fix an x € X. Localization at x

igs an additive functor Sh{X) ———— AD
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which preserves Kernels and Cokernels as it follows from the

proof of 2.5. Thus the localisation functor is exact.

Te prove the opposite inclu

sion let us make the general g
remark that the sequence f.g /,///;a \\\\\$
is exact if and only if

the two compositions along the diagonals in the diagram above
are zero., Now, suppose the local sequences fx,gX are exact
for all =x€X, then £,9 is exact as it follows from the

first part of 2.2 and the previous remark.

Complexes of sheaves

Let F" denote a complex of sheaves on ¥X. For ne€w®

let HnE‘ denote the n'th cohomology sheaf, defined according

to general principles for abelian categories.
To describe this let us exhibit a presheaf on X: Given
an open set U of X we can form the complex of akelian

groups I{U,F"). For open sets U > V, restriction from U

to V will induce a chain map I{U,F'}) —— T {(V,F")

Thus we have established a presheaf on X

2.7 U l——-e BHOT(U,F")

H'F* is the sheaf associated tc the presheaf 2.7 as it follows

from the fact that the functor G l— & is an exact functor from

the category of presheaves tc that of sheaves.
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Direct limit of sheaves

Let (FA,F denote a direct system of sheaves en X

uP\}
over the directed set I, compare II.0.4. Let us prove that
such a system has a direct limit (fk,lim FA)“

To do so we shall first construct a presheaf F on X.
An open subset U gives rise to a direct system of abelian
groups (F,{U),f ,(U})} and we put F{U) = 1lim F, (U}

A uA o A

For open sets U =2 V restriction will define a morphism of

directed systems

L— (EA(U)’fUA(U)) 2 (F}\(V),qufV))

whose direct limit is restriction from U to V in the pre-

sheaf F. Our construction provides morphisms £,: Fy, - F,

which makes (f,,F) a direct limit of the system (Fk’fuk)
in the categcry of presheaves on X.

Let lim F denote the sheaf associated the presheaf F
-

X
above. With the notion of 2.3 the data (lim FA'iF OfA) is
-

) as

a direct iimit in Sh(X) of the direct system (Fl'fuk

it follows from 2.4,

Let us describe the stalk of 1lim F at a given point
-

A
x € X. We get a canonical iscmorphism

2.8 lim F ua(lim EA)X

Apx

Prcof. According to 2.4 it suffices to prove a similar
statement with 1lim FA replaced by the presheaf F, con-
structed above. The verification is straightforward and left

to the reader.

Q.E.D.

IT.3 Cohomology of sheaves

In this section we shall introduce cohomology groups for
sheaves on a fixed topological space X. This is based on

homological algebra in the category Sh(X) of sheaves en X.

Thecrem 3.1. The akelian category Shi{X) has enough in-

jectives.

Proof. We shall use that the category Ab of abelian
groups has enough injectives: an abelian group D is injective
in Ab if and only if it is a divisible group, - any abelian
group can be imbedded into a divisible group.

We shall describe an auxiliary construction: To a family

D = (D)

<) xex of abelian groups we can associate a sheaf D,

on X by the formula

I(UID*) = ﬂ DX
%0

The restriction maps in the sheaf D, are induced by pro-

jections. We leave it to the reader to establish a natural

isomorphism
Hom(F,D,) = T Hom(F,,D_)
b4
xEX
as F wvaries through Sh{(X). This shows that a family
D = (DX)X€X of divisible groups gives rise to an injective

sheaf D, on X.
Consider a fixed sheaf E on X. Por sach =x €X chocse

an embedding E, - D, of the stalk of E at x into a

91
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divisible group Dx and put D = (D) The construction

X xex”
above provides an imbedding E - D, of E intce an injective
sheaf D,. 0.E.D.

The basic functor for homological algebra on Sh(X} is

the global section functor

T(X,-): Sh(X) — Ab

This is a left exact functor. We shall now apply the general
notions of I.7. = The i'th derived functor of T (X,-) evaluated
on a sheaf F will be denoted Hl(X,F) and is called the

i'th cohomology group of the space X with coefficients in

the sheaf F. To calculate this we must take an injective

resolution F-I" of F +to get
3.2 HY(X,F) = HT{X,I")

Example 3.3. On an open subset X of the complex plane €

we have a fundamental exact sequence of sheaves, compare 1.11
D
O—-—>g-—-—-—>0———->(]—--—>0

This gives rise to a long exact sequence

0~ [(X,C) —1I(X,0) iI (X,0y —

Lou! (x,0) —a' (x,0) — 1 (X,0) —-

In particular, we see that if H1(X,§) = { then for any

f€I(X,0) we can find g €I (X,0) with Dg = f,
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Definition 3.4. A sheaf F on X is called flabbvy, if

for any open set U of X, rUX:F(X)* F(U) is surjective.

Theorem 3.5. A flabby sheaf F on X is I(X,-}=-acyclic.

Any sheaf I on X which is injective in Sh(X) is £flabkby.

ropf. Let I be a sheaf on X which is injective in
Sh(X}. According to the proof of 3.1 we can find a monomor-
phism i: ¥ - E from I into a flabby sheaf E. Let f: E-1T

denote a retraction of i, i.e. foi = 1. For an open set

U of X consider the commutative diagram

Ir
E(X) ——% 5 E(U)
£(X) £(U)
v I v
I(X) ———3% 5 1(u)

Notice, that the vertical arrows and the upper horizontal
arrow are cpimorphisms. It follows that the lower horizontal

arrow is an epimorphism.
et us now consider a short exact sequence of sheaves

on X with E flabby ¢

0= BE-S,F —s G — 0

Let us prove that £ induces a surjective map on the global
sections. — So let there be given a section s of G over

X. Let us intreoduce the ordered set I of pairs (U,u)

where U is an open subset of X and u a section of I
over U with fu) = IUX(S)“ The symbol (U,u} £ (V,v} means

that U c ¥V and that u = r ,(v).
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The set I has the property that any totally ordered sub-
set J (a<b or b<a for any pair of elements of J) has
an upper bound. The content of Zorn's lemma is that ordered

sets of this type have maximal elements.

Let ({U,u) be a maximal element of I. Suppose U=*X,
and pick x€X-U. Choose an open neighbourhocd V of x
and a sectien v of F over V with £f(v) = rVX(S)” The

() (v} represents a section of E

difference ran'U -IVGU,V
over VN U, Extend this to a section of E over V and

add the result to wv. After this modification, u and v
will have the same restriction te UNV and thereby define a
secticn of F over UUV contradicting the maximality of
{u,uy.

Let us returnto the exact sequence above. We leave it to

the reader to prove "E and F flabby implies G flabby".
We can now prove that H1(X,E) = 0 for a flabby sheaf E:

Choose an exact seguence as above with F injective to get
10,5 > 1'x,6) - ulx,E) -0l (x,E)

from which we can draw the conclusion, since the first map is
surjective and the last group is zero.
Let us finally prove by induction on n > 1 that "Hn(X,E)= 0

for all flabby sheaves E on X". Choose an exact sequence

as above with F injective. This makeés G flabby by our earlier

work. Consider the cohomclogy segquence

> 8,6 - 8L E) - YL E) -

to conclude the inductive step of the proof.

Q.E.D,
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The Godement resclution 3.6. Let F be a sheaf on the

topolegical space X. We have a natural imbedding F - COF,

described in the proof of 3.1:

3.7 Iw,c’F) = m F

x€U ®

Let F1 dencte the cokernel of F - COF and put C1 = COF1"

Iterate this process to get a flabby resclution F - C'F,

where C'F 1is given by

3.8 0% sclFac?r o un 2 CF - ...

The construction is functorial: a morphism of sheaves f: F-G

will induce a commutative diagram of complexes of sheaves

F =i » C'F

3.9 £ (o

G ———— G

Ancther virtue of the resolution is that for each x€X the

localization
3.10 Fy —— (C“F]X

is a homotopy ecuivalence in Ab. This is a consequence of the

fact that the imbedding F - COF comes egquipped with canonical

local retractions, namely the projecticns of an onto its

factors.
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1I.4 Direct and inverse image of sheaves. f£_,f*,

In this section we consider a fixed continuous map
f: X » Y. We shall first describe a procedure pull back or
inverse image, which toc a sheaf G on Y associates a sheaf
f*G on X. The sections of £*G over an open subset U of

X is the set of those

se€ M G

zey 12

which for each x€U satisfies the following condition:
"there exists an open neighbourhcod W of x in U, an open

set V containing f£(W) and a section t of G over V,

such that
4.1 pr s =tﬂw) ; WEW

- 3 " 1 3 n
where pr: s Gf(z) - Gf(w) is the projection™.

z€EU
For open sets U 2> V in X the natural projection

n G m G
zeu L2 zey L12)
will transform I (U,£f*G) into T (V,£*¢). It is left to the

reader to verify that in fact we have constructed a sheaf
£*G on X.

Given an open subset V of Y and a section t of &

over V., The stalks of t will define a section of f£*G over

f'1(v), i.e. we have the sccalled adjunction map

4.2 alv): T{V,G) — [ (£71(V), £*G)
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given a point x€X. As V varies through the open neigh-
bourhoods of £(x) the adjunction map induces an isomorphism

4.3 G )—'(f*G)x i XeX

fix

Procf. Let a

£ wE Gf(x) -+ (f*G)x dencte the map chtained

by the procedure above. A look at the definition of f*G
shows that a. is surjective. To prove that a, is injective

let us construct a map Py? (f*G)x - with anx = 1:

C (x)

For an open neighbourhocd U of x we can consider the com-

posite or
pre
L0

TG —— T Gp )y = Cp

zeU

and pass to the limit over all such U's to obtain s

Q.E.D.

The construction of f*G from G is easily seen to define

an additive functor which is exact, as it follows from 4.3

4.4 f*: Sh{(Y) —— Sh(X)

Starting from a sheaf F on X we shall construct a
sheaf f.,¥ on Y, the direct image of F by £. The sections

over the open subset V of Y are given by

4.5 TV, E,F) = T (w),P)

the restriction maps are those induced from F. - This

construction is seen to define a left exact additive functor

4.6 fi: Sh(X} — 8hi{Y¥)
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Let us now prove the fundamental formula

4.7 Hom(£*G,F) = Hom(G,£f,F)

for all sheaves G on Y and all sheaves F on X, i.e.

Theorem 4,8. The functor £* is left adjoint to the

functor £,.

rocf. Let us first record that the adjunction maps

I

4.2 fits together to form the adjuncticn morphism

4,9 ar G —— £,£*G

Starting with o: £*G - F we can construct a morphism
v: G » £.F given by U = fipo0a. Notice that for an open

gset V of Y we have the commutative diagram

(V)
I(v,G) > T(V,£,F)
4,10 alv) =
- o™ (v)) Y
TETHW) E56) ——————> T(E (D), )

Remark that the diagram 4.10 can serve us as definition of

the transform ¥ of . Let us remark that the map we have

constructed is injective

4,11 Hom(£*G,F) - Hom{G,f F} ;o fipoa
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Po see this let us fix a point x€X and take the direct
limit over all open neighbourhocods V of f£f{x) to obtain

from 4,10 a commutative diagram

Ve (x)

s (£,F)

Ge(x) £ (x)

4,12 a, b,
v Py

(f*G)x ——emmem—  F
Recaliing from 4.3 that a, is an isomorphism, we see how
the stalks of ¢ are determined by those of ¢. Injectivity
of 4.11 thus follows from 2.2.i. '
To prove surjectivity of 4.11 let y: G - £f,F be given.

For an open set U of X form the product

m G — T F

xgy f(x) xeg *

It is left to the reader to see that this map will transform
[(U,£%G) into I(U,F) where F denotes the sheaf associated
the presheaf F. 1In this way we obtain a morphism f£#*G - ¥
which we compose with the inverse of the isomorphism F - E,
2.4 to obtain a morphism ¢: £*G - F. It is now easy to see
that ¢ = f,woa.

Q.E.I.

Ceorollary 4.13. The additive functor f,o1 Sh(X) - Sh(¥)

transforms injectives intc injectives.

Proof. Let I be an injective sheaf on X. The formula

Hom(G,£,I) = Hom{f*G,I) and the fact that f* is exact,
show that G |—Hom(G,f, I} is an exact functor on Sh{Y).

Q.E.D.
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II.5 Continucus maps and cochomology

In this section we shall discuss the action of a continuous
map f£: X - Y on cohomology.
Let there be given a sheaf G on Y. We shall introduce

a natural map
5.1 £%. B'(Y,G) - H'(X,£'G)

To describe this choose an injective resolution G = J° on
Y and an injective resolution f£*J" - I" on X, I.6.1.
Since f* 1is exact this makes I" an injective resolution

of f*G. The composite
T{Y,J)5 (X, £%5")— 1 (X,I")
represents 5.1 on the chain level by definition.
Seoliuvm 5,2, Given a [({Y,-}-acyclic resolution ¢: G- T
and a I(X,-)-acyclic resolution s: £*G - S§" and a morphism

of complexes ¢: T - f£,8" making the following diagram

conmutative

t
G > T
a Y
% f.s v
f,f G > £,.8°

then £*: B"(Y,G) -» H"(X,f*G) is represented by the chain map

1
(Y, T" )~ [ {Y,£,8") = T(X,8"}
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Proof. Choose an injective resolution T - J* on Y
and an injective resolution £*J". I" on X, T.6.71.

consider the following commutative diagram

Fp N
!
|
A A"
E*T e T

where ¢ corresponds to by adjunction 4.7. Fill in the
dotted arrow to make the sguare homotopy commutative. Finally

consider the homotopy commutative diagram

r(y,r7) 2T, exrr) L1 (x,8")
i

. }
T(Y,J") — [ (X,f*T") — T (X,I"}

and use the commutative diagram 4.10. Let us finally remark that
the two extreme vertical arrows are quasi-isomorphisms I.7.5.

Q.E.D.

Closed subspaces

Let 1i: Z - X denote the inclusion of a closed subspace
Z of the topological space X. For a sheaf E on % and

a peint x of X we have

(i,E)_ = lim T(UN Z,E)
X >
XEY
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From this results immediately that

Ex for xe€%
5.3 (i*E)X = {

0 for x€X-Z
As a consegquence we see that the functor
i,: Sh(Z}) -» Sh(X)}) is exact

From 5.3 and 4.12 follows that adjunction yields an isomorphism

i*i,E 3 B. Moreover,
5.4 H'(X,i,8) ¥ H"(Z,E)

Proof. An injective resolution E - I' on 2 transforms

into an injective resolution 1i,E - i,I" on X. The composite
T (X, 3,135 T(2,i%,1°) T (%,1")

yields the desired iscomorphism.

Lemma 5.5. Let i: Z » X denote the inclusion of a closed
subspace and F a sheaf on X. The adjunction morphism
a: F » i,i*F has the following mapping property: Any morphism
F - G, intc a sheaf G, whose stalks are zerc outside 4%,

admits a unique factorization through a: F - i, 1*F.
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Procf. Let us first remark that the adjunction morphism
a: F = 1i,i*¥F 1is an epimorphism in 3Sh(X) as it follows by

localization using 5.3. Let us consider a morphism £: F - G.

This gives rise to a commu~

E—3 5> i i*F
tative diagram in Sh(X) .

£ i,i*f
where a and b are

v b v
adjunction morphisms. G > 1,1%G

Tt follows by localization that bis an isomorphism in Shi{X}.

For a sheaf F on X we shall often use the abuse of
notation H'(2,F}) for H"(Z,i*F}, where i:; Z - X is the

inclusion of the subspace 2.

Mayer-Vietoris sequence 5.6, Let A and B denote

closed subspaces of the topoclogical space X. A sheaf F on

X gives rise to a long exact seguence

- #P(avg,F) » BP(a,F) & HP(B,F) - BP(ANB,F) -

Progof. Let us put names to the inclusions h: AUB - X,

i: A+ X, J: B-X, k: AUB - X, Consider the exact seguence

5.7 0 — h,h*F — i, i*F @ j,3*F — X, k*F — 0

where the morphisms are sum and difference of adjunction
morphisms, taking into account the mapping principle 5.5.
This sequence is exact as one sees by localization. The long

cchomology seguence can be identified by means of 5.4.

Q.E.D.
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Open subspaces

Let Jj: U - X dencte the inclusion of an open subspace
and F a sheaf on X. Let us remark that J*F has a par-
ticular simple description in this case: the sections over

an open set V c U is given by

5.8 T(V,3*F) = I (V,F)

Let us consider a flabby resolution F - D" on X. This is

transformed into a flabby resolution J*F - j*D" on U, which

fits into a commutative diagram

F > D°
adj adj

LY v
J#J*F ———————>3,3*D"

As a consequence of Scolium 5.2 we can represent

j*: H"(X,F) -— H"(U,J*F)
by the chain map

5.9 r [(X,D") — I(U,D")

ux’

Maver Vietoris sequence 5.10. Let U and V Dbe open

subsets of X. BAny sheaf F on X induces a long exact

seguence

- HYUUYV,F) - 5°(U,F) @& H*(V,F} - E2(UNV,F} -

Proof. Consider the sequence

0 -I(UUV,F} » I(U,F} & I{(V,F}) = TI(UnV,F} - 0

05

where the two maps are sum and difference of restriction maps.
Note that this sequence is exact whenever F is a flabby sheaf
on X. In general replace F by a flabby resolution D’

and pass to cohomology using 5.9.

Application to Rnf*

Let us return to a general continuocus map f: X - Y. The
additive functor

fo: Sh{X) - sh(Y}

is left exact and transforms injectives into injectives as it

follows from the fact that £, has a left adjoint which is
exact by 4.4 and 4.8. The n'th derived functor of this is denoted
RVf,, ne =z,

Propesition 5.11. Let F be a sheaf on ¥ and nezZ.

The cohomology sheaf Rnf*F is the sheaf associated tc the pre-

sheaf —
Vi— H (£ (V) ,F)

Proof. Let I" be an injective resolution of F on ¥,

We have

It follows from 2.7 that Rnf*F is the sheaf associated to

the presheaf V |— H'I(V,£,1'), Using 5.9 we find that

HPT(V,£,T°) = BT (£ vy, 1) = 5™ (v),F)
which is the desired result.

Q.E,.D.
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1I.6 Locally closed subspaces. h,,hln

Given a sheaf F on a topological space X and a section
s of F over the open subset U o¢f X. We define

Supp(s), the support of s

Supp(s} = {x€U | s, * 0}

Notice that the subset Supp(s) 1is closed relative to U.

We shall be concerned with a locally closed subspace W

of ¥. This means that any point v €W has an open neighbour-
hood V in X such that WnV is cleosed relative to V.

The inclusion of W in X will be dencted h: W - X.

Defirition 6.1. For a sheal E on W we let hIE denote

the sheaf on X whose sections over the open set U of X

is given by

I{(U,h,E) = {s€I(WAU,E) | Supp(s} is closed rel. to U}

The restriction maps of h)E are induced from h,E, of which

it is a subsheaf. We record this as a canonical monomorphism

6.2 h,E — h,E
From the description of the sections of hk E follows that

EX for xEW
6.3 (h,E}x = {

0 for xeX-W

which in particular shows that h, i1s exact.
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Propositiocn 6.4. The functor h,: Sh{W) - sSh(X) is an

equivalence between the category of sheaves on W and the

full subcategory of B5h(X} made up of the sheaves for which

FX =0 for aill x &€X-W

The inverse functor is induced by £*,

g

rogf,. For a sheaf E on W let us record the fellowing

simple identity among sheaves on W
6.5 h*h|E = E

Next, consider a sheaf F on X whose stalks vanish cutside V.
A close examination reveals that the adjunction moxrphism

F -» h,h*F may be factored through the monomorphism 6.2 as
foliows

F - h h*F - h,h*F

toc yield an isomorphism F = h h#*F.

I
We shall comnstruct a functor h”

1
N
sh(W) =5 sh(x)

a,

which satisfies the following identity

Eom(h,E,F) = Hom(E,h'F)

for gsheavese F on W and =sheaves F on Y. Otherwise axprecced
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Propogition 6.6. The functor h,: Sh(W) - Sh(X) has a
right adjoint h': Sh(X) - Sh(W).
Proocf. For a sheaf F on X we let FW denote the sheaf

on X whose sectibons over the open subset U are given by

1(u,F%) = {se€T(U,F} | Supp(s) < W}
The stalks of FW are zero at all points outside W, so if
1
we put h'F = h*s"  we get according to the last line of 6.4

applied to FW

6.7 I(U,h!h[F) = {s€I{U,F}) | Supp(s) < W}

This formula provides a monomorphism h!h!E + F. It follows

from 6.7 that any morphism G - F where G is a sheaf on X
whose stalks are zero cutside W may be factored through the
monomorphism hlh!E -+ F. FYor a sheaf E on W we get accor-—

dingly
|
Hom(h E,F} = Hom{h,E,h h'F)
By the first part of 6.4 we have an isomorphism
1 !
h,: Hom(E,h'F) —— Hom(h,E,h h’F)

We can now compose the two isomorphisms.
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Proposition 6.8. The functor hI: Sh(X) - Sh(W) is

left exact and transforms injective sheaves into injective

sheaves.

Proof. The left exactness is a formal consequence of the

|
presence of a left adjoint L, to h”°. The second statement

is a formal consequence of the exactness of h,.

Open_and closed subspaces

We shall make a close investigation of the special case

of open and closed subsets.

Proposition 6.9. 1} For the inclusion 1i: Z » X of a

closed subspace we have i, = 1.

ii) For the inclusion 3j: U - X of an open subspace of

X, we have Jj*%* = j

Progf. 1} For a sheaf E on Z we have a natural map
6.2 i!E -+ 1,E which is an isomorphism as one checks by locali-
zation using 6.3 and 5.3,

ii} For a sheaf F on X we have according to the proof
of 6.6 that j'F = 3*F". Combined with the inclusion F" - F

f
this vields a monomorphism J°F = 3*F. OCne checks by localization

that this is an isomorphism.

Q.E.D.

Corollary 6,10. The inclusion j: U - X of an open sub-

space transforms an injective sheaf I on X inte an injective

sheaf 3*I on U.
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Proof. Combine 6.9.ii and 6.8.

In the case where U and % are complementary subspaces

of X, asheaf F on X give rise tc an exact sequence

6.11 0 = j,;J*F = F » i,i*F - 0

of sheaves on X, where the two morphism are adjunction
morphisms. The exactness is seen by localization.
For the benefit of the reader we shall make a small tableaux

over the basic functors

Sh (U}
A
l]l i* Ju
v
6.12 Shi{X)
li* ‘!"i,, 1t
v
Shiz)
exact exact left exact

preserves | preserves
injectives | injectives

The adjoint relationship between the various functions can be

read off the table. Identities:
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inverse _image of locally closed subspaces

Let us consider a continuous map f£: X - ¥ and a locally

closed subspace B of Y. Let us nctice that A = f_?(B} is

- a locally closed subspace of X. This can be seen by remarking

that a subspace is locally closed if and only if it is the

" intersection between an open and a closed subspace. - Let

h: B+ Y and g: A - X denote the inclusions. We shall establish

a natural iscmorphism

5.13 £*h,G = g, £*G «—T
£
h

s
b m— b

1 g

for all sheaves G on B.

map satisfying he = £g. We start with the adjunction morphism
G » pup*G from which we deduce a morphism hiG - f,0,0%* or
by adjunction a morphism

B8: £*h,G - g,p*G

We have monomorphisms £*h G -+ £*h,G and g, @*G -» g.p*G,

'compare 6.2. One can now check by localization that 6 will

induce on isomorphisms between these two subsheaves.
Q.E.D.
From 6.13 we deduce by adjunction a natural isomorphism

6.14 n'erF = £ gl

for all sheaves F on X.
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Fundamental diagrams : 1.7 Cup product

For a locally closed subset W of X and a sheaf F on X Throughout this section we shall work with a fixed

we put © commutative ring k. By a k-sheaf F on the topoloigcal space
6.15 Fy = h!h*F 7 x we understand a sheaf F together with a k-module structure

on F(U) for each open set U of X, making the restriction
where h: W - X denotes the inclusion of W in X. 5
. maps k-linear. By a morphism £f: F - G of k-sheaves we
Closed subsets S ¢ Z of X with complements O = U give .: I —_—
» pnderstand a morphism of sheaves such that £(U): F (U} - G(U)
rise to an exact commutative diagram =

“ig k-linear for all open subsets U of X. The category of

0 — F. o~ F ——n F, — G

LT

0~ F — F — F_, ™ 0

0] 5

" k-gheaves on X will be denoted

7.1 Sh(X,k)
For closed subsets A and B of X with complements U and V
regpectively we have exact commutative diagrams .iThe Hom functor in this category is denoted Homyg.

Let D Dbe a k-module. The sheaf D introduced in 1.10

. is in a natural way a k-sheaf. For any k-sheaf F on X we

|
{
l

unv “have a natural isomorphism

<

_f7”2 Hom {D,F) = Homy (D, I (X,F))

|
|
|

=)}
-
|
o

O e ] t—— ] e I — O

O e ] g o — M — O
|

O € 1] e 1T} G F] — O
o

N
=]
<3

Proof. Let p: X - Pt denote the projection of X onto
.}a poeint. The formula 7.2 may be interpreted as expressing that

“'ipy is a right adjoint to p*, IT.4.7.

)

2
l

6.18 _— 0 Proposition 7.3. The category Sh(X,k) 4is an abelian

!

w category with enough injectives. Any injective object in

|
|
;

b
s=]
w
=}
[e=]

“8h(X,k) is a flabby sheaf.

o
O T e— ] e T e— O
o<——'ﬂ<——;ue—dﬁ<——o
T
=
)
O e 1] o H] e N — O
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Proof. The previous chapters IZ.1-6 could very well
have been worked out for k=-sheaves. We shall freely refer
to these sections as 1T this had keen done.
In the present context we need to supplement 3.1 with
the fact that "the category of k-modules has enough injectives"
in order to prove the first part of the proposition.
The second part follows by a straightforward modification
of the proof of 3.5. Alternatively we can consider the in-
U -+ X

clusion Jj: of an open subspace and the corresponding

adjunction morphism J,i*k - k, which is a monomorphism. An

injective object E in Sh(X,k) will transform this into a

surjective map

Hom_(k,E) — Homy (3,3 %k,E)

The first term is I (X,B) as it follows from 7.2. The second

term can be evaluated by means cf 6.6 and 6.9.
Hom(j, 3%k,E) = Hom{j*k,j*E) = Hom{k,3*E} = I (U,E)
Tooking & bit c¢loser one sees that the surjective map above may

be identified with r_.: I(X,E} - I{(U,E).

ux-

The same ideas will prove that

Proposition 7.4. Any k-sheaf F has a resolution of the

form

is a direct sum of sheaves of the form 3,k

j: U = X 1is the inclusion of an open subspace of X,

Proof. It suffices to establish the existence of an epi-

orphism P = F where P 1is a sheaf of type described anove,

:For the inclusion j: U - X of an open subset we have the

‘adjunction formula 6.6 and 6.9

Hom(jlk,F) = Hom({k,j*F) = 1(U,F)

‘Tt follows that s€I[(U,F) determines a morphism of sheaves

}£ - F, which transforms 1€I(U,j k) into seT(U,F). The

esult follows by varving s and U.

For any k-sheaf F on X and p€®Z we have

.5 Exty "(kK,F) = H"(X,F)

Proof. et F - I" denote an injetive resclution of F

n Sh(X,k). Thus
Extk"(g,F) = H'Hom_(k,1")

By 7.3 and 3.5 F-1" is a T (X,-}-acyclic resolution of

in Sh({X}) thus by the acyclicity theorem I.7.5

H"{%,F) = H'IT (X,I")
From formula 7.2 we get with D = k
T{xX,1"}) = Homk(h,l“)

and the result follows.
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The formula 7.5 constitutes the basis for introducing cup o

his gives us three derived functoxs I1.7.9

products in sheaf cohomology. Let us first notice that this
RE#
D' (Y,k) ——> D' (X,k)

.9 RT (Y,-) \ AI (X, -

D" (k)

in case ¥ =k gives
7.6 Bxt, (k,k) = H' (X,%)

which makes H'(X,k) intc an associative rirng and provides
H"{X,F) with the structure of a right H'{X,k)-module, I.8., This.

is called the cup product and is denoted ;
10 RI(Y,=)

> RI(X,~) o Rf*

7.7 tuvaer? I, F) ;e x,m), aend(x,k)
:In this picture the formula 7.8 becomes clear recalling that

: ;ff is exact.
Let f: X - Y be a continuous map and G a sheaf on Y. We have’ :

: Once we have put up this machinery we might as well apply
the formula
it to triangles to get by means of I.7.10

7.8 £X(nUB) = £*nUE*g  ; ne€#P(Y,q),8 € HI(Y,k)
Proposition 7.11. A short exact sequence of sheaves on ¥

0 — E — F - G — 0
Verification. This formula is best described in terms of

derived categories. Let us start with three functors o
will induce a commutative ladder

£*
Sh(y,k) —> S8h(X,k)

IAY,-) \ /I (x,-)

k-mod

l l l l

and a natural transformation of additive functors 4.2

a: I (y,-) ———> [ (X,-) o f*

-—s HP(Y,E}) — HP(Y,F) — BP(Y,G) — EP*(y,B) ——

— B (X, £4E) — IP(X,04F) — BP(X, £%G) —> 1P (X, £4E) ——

117
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I1.8 Tensor product of sheaves pDefinition 8.2. Let F and G be k-sheaves on the topolo-

gical space X. The tensor product F & G is the sheaf associ-

éfed to the presheaf

Throughout this section k denotes a fixed commutative

U | F{U} ®&_ G(U)

ring., In this context it is important to notice that tensor- k

product commutes with direct limits.

g a consequence of 2.4 and 8.1 we find that

Lemma 8.1. Let (Fa,fba) dencte direct system of k-modules

over the directed set I. For any k-module E there is a canonica 3 r ®k G)X TPy 8 G x€X

igsomorphism
from which we conclude that tensor product of sheaves has exactness
lgm Ee F, 3E 8 lim Fa properties similar to those of ordinary tensox product.
5
Proof. Let fa: F, = lim F_ denote the canonical map. Con- Tensor product of complexes
— -

sider the system of maps Given two complexes R" and S° of k-sheaves. The tensor

product R" ®_ S" is the complex given by

1® f_.: E @

a k Fa - EB@

lim F ; ael
- a !

k

iR“ & s'1m= @& RrP g 59

k

of abelian groups. We shall check that this satisfies the uni- pram
versal mapping property II.0.2. - To do so we shall appeal to the{ d differential is given by
description of HomZZ {E @k F,G) as the set of bilinear maps - .
m: ExF » G which satisfies 4 P*2P o s = oP(eP) e s+ (-1)PrP e 39

mi{re,f) = m(e,rf) ; €k, ecE, fE€F This is in accordance with the general rules of I.11.

It is now easy to conlude by means of IL.(.3. Commutativity 8,5. Let R" and 8" be complexes of k-sheaves

Q.E.D: on X, The formula

G{rp® sq) = (—1)quq® sP
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defines a natural commutativity constraint

g: R’ @k 5" - 8" ®k R’

Translation 8.6. et A" and B' denote complexes of

‘k=sheaves, m,h e %, The map

a™Pep™td | (o) PR WP g *]

induces a natural isomorphisnm

T, n’ 2°[mi @ B'[n] 32" @ B"[m+n]

which is related to the commutatitivy constraint by the following'

commutative diagram

T
A'[M]BB"[n] et 2°@B’[m+n]
8.7 o (-1)™ g [m+n]
T
B'inled"fm] —=® ., B'@a’[men]

Agsociativity. The usual asscciatitivy constraint for the
tensor product extends without difficulties to complexes. Notice

the following commutative diagram

A'[m]®B'[n]®C’[r] — A'[m]@(B'@C") [n+x]
18t

‘ n,r
8.8 ltm'nm ltm’nﬂ:

T
(a"@B") [m+nlec {r] ZL, (2 @R eC") [min+r]

is a triangle.

. Chainwise splitting
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Homotopy 8.9. Given homotopic morphisms f£,g9: A" - B®

and homotopic morphisms w,v: P" - Q". Then

fou, gov : A'®P" - B'@Q"

are homotopic merphisms.

Proof. Use the general construction I.171.6.

0.E.D.

Trianglesg 8.10. Given a triangle in K+(X,k)

Then for any complex of sheaves P",

Cc'ep"

T1,0°h3}gf \\€f1

AgPp" ——e—> B"@P"
£®1

Proef. We may assume that the seguence

0 »-A" »B" »C" -0

" is a chainwise split exact sequence which comes equipped with a

g: C » B such that £fh = 3s-s3. This
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gives rise to a chainwise splitting § = s81 of the sequence .9 Local cochomology

In this section we consider the inclusion 1i: A - X of

@1

0 — A@P" 2L prgp" 81, CURP" ——s O ‘wlosed sets of an arbitrary topological space. The object of

15£udy is the behaviour of a sheaf in a neighbourhood of A.

(BS—SB)(xp®yq) = 8(sxp®yq) - s(axpqu + (—1)pxp®ayq)

Definition 9.1. For a sheaf F on X we define

asxPqu + (—1)psxp®8yq - saxp®yq - (-1 FxPe yq =
[ (X/F) = {s €I (xX,F) | Supp(s) < &}
((3s-s0) xF) @ y3 = (£81) (he 1) (xFoyd)
‘the sections of F with support in A,
Q.E.D;
This is a left exact functor. The p'th derived functor

of EA(X,—} evaluated on a sheaf F 1is denoted HAP(X,F) and

Let us call special attention to the isomorphism

s called the p'th local cchomology group with support in A

8.11 Ty ot M'®@klnl — M°[nl] nd coefficients F.
, 5
explicitly given by 1, n(xp®1[n]) = (-1)™PxP,  The effect of Proposition 9.2. Let U denote the complement of the
’

tensoring the triangle 8.10 from the right with k[n] is the closed subset A of X. A sheaf F on X gives rise to a

triangle long exact sequence

P P > P -
B"[nl] > H, ¥ (X, F) - HY(X,F} - H" (U,F)

=1)"n"[n] gln]
Proof. Consider the tautological exact seguence

£ini
A"[nl ¢"[n]

0 - IA(X,F) -» [ (X,F) = I (U,F}

The tensor product makes K+(X,k) into a category with an in-

-and note that r is surjective in case F 1is a flabby sheaf.

ternal tensor product satisfying the pentagon and hexagon axiom ux

~Thus an injective resolutio 3 I i i hi
of Mac Lane (1) 158(5), 180(3). ki ion - gives rise to a short exact

2quence of complexes
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0 — Ip{X,I") = I(X,I") — I(U,I") — O

which gives rise to a cohomolocgy sequence.

Corollary 9.3.

For a flabby sheaf F on X

HAp(X,F) =0 i p >0

Suppose we have given two closed subsets
For a sheaf F

diagram where U and V denotes the complements of A

0 0 0

L

0 - IAnB(X,F) —— IA(X,F) —_— IAnV(V,F) ————

0 — IB(X,F) — T (X,F)

0 — I

UnB(?'F)

— [ {U,F) —— T (U V,F}
| |

I | |
¥ ¥ A\
0 0 0
In case F

is flabby this diagram gives a 3x3-diagram

of 6-exact seguences as it follows by inspection. If we

the sequence above to a flabhy resolution of F we get

exact sequences related in various ways. Let us record the one

resulting from the 1. row

A and B of X.

on X we deduce the following commutative exact
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Excislion exact sequence 9.5.

Pv,r) »

P P
- HA-V (X,7) - HA (X,F) =~ HAnV

here A

is a closed subset of X and V is an open subset. In

: éase Vv contains A this degenerates into an

HAP(X,F) 3 HAP(V,F) : pE€ %

and B Functoriality 2.7. Let A ke a closed subset of X and B
'a closed subset of Y. A continuous map f: X - Y with
£{X-aA) € Y-B will for any sheaf G on Y induce a ccmmutative
0 “1adder, where V = Y-B and U= X-2A
— 1P(v,0) — #Pv,6) — #P(v,6) — HBp+1(Y,G) -
&
0 P p P p+1
- HA (X, £%G) - H¥ (X, £*G) — HY(U,£*G) — HA (X, £%G} =
Propf. Let G - J" and £*J° - I" be injective resolutions.
: This gives rise to a commutative exact diagram of complexes
consisting I
apply
4 — IB(Y,J") — I(Y,3") — I(V,J") — 0
six long

! | }

0 ——- TA(X,I') — I (%X,1") — I {(U,I") —— O

from which the result follows.
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Interpretation in terms of EXt

‘For a k-sheaf F +this gives an exact seguence

The same type of formula 1s valid for the excision seguence 9.5,

Let us now pass to the framwork of k-sheaves, where k 1is g .TO see this, remark that the diagram 9.4 can be derived from

fixed commutative ring. As before, we consider the inclusion 6.17. - Let us take the opportunity to mention that the Mayex-

i: A » X of a closed subspace and the inclusion J: U ~» X of yietoris sequence 5.10 can be derived from 6.18 again with a

the complement. Recall the exact sequence 6.71 formula like 9.10 as a conseqguence. In a similar way we derive
~from 6.18 a

0 — j)k —k —— ik — 0

Mayer-Vietoris sequence 92.11,

+1
— 7,00k e T (x,0 —— Hyyp (%K) N Hynpo | (X,k) —=

9.8 - ExtP(i,k,5) > ExtPik,F) - ExtP (5 k,F) -

again satisfying a relation like 9.10,

which we may identify with the seguence 9.2 as it follows from 7.5

the proof of 7.3. - The formula

The extraordinary cup product

B' (X,k) = Ext’{k,k)} Let 1i: Z » X denote the inclusion of a closed subspace.

The adjunction morphism k - i,k induces an isomorphism
= ~

allows us to introduce cup product in local cchomelogy accoxrding -

to the general principles of I.8 o f9.12 Ext’ (i,k,ik) % 2°(Z,k)

P . P q R P
2.9 aUpEH (X, k) ;o €HT (X, k), BEHE, (X, K) Proof, Let k - T' denote an injective resolution in

Sh(z,k)" We have by adjunction 4.8
Let us notice that the boudary operator of the sequence '
(2,1 = Hom(i*E,I“) = Hom(k,1i,I") = Hom(ik,i,I")

SE00,R - a1l S e 9 a0 -
vhere we have used Lemma 5.5. Conclusion by the fact that i,T°

satisfies the formula, compare I.8.5 an injective resclution of i*§ in Sh(X,k).

9.10 saup) = (-NFPauap ;aer®(x,k), &€ aN(Uk)
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If we combine formula 9,12 with the fact that [n,17: [J",3"[pl] — [1",0[p]] i PEE

9.13 Ext” (1,k,F) = HZ(X,F] ‘is an isomorphism. The map 1i*: Hp(x,k) -+ #P(Z,k) can be described
a5 the composite

we can introduce the extracrdinary cup product

' -1
i, i) e g pny LR e g

9.14 Buvyen T ) i b en,dx,F), yerta,k)
hile the restriction x: HZP(X,k) - HP(X,k) is represented
The two cup products are interrelated by the following formulas.
We let r: H,'(X,x) - B'(X,k} denote the restriction map [(me1): [J7,T7(pl] ———— [1",1"[p]]

9.15 at (BUY) = (aUp) UY “consider a€[J",I"[pl]l and B €(J",Z"[gll. WwWe have =zx(a) = anu,

r :(B) = Bn and i*r(a) = ma., This gives
aen(x,x), BEHT(X,k), ¥€H (Z,k)

BUi*r(a}) = Blpl{na) = (Bnlplla = r(p} U
9.16 (o) UR = aU i*rc(3)

aEﬁHZp(X,k), B EHZq(X,k) hich is the desired result.

g.17 aup = (-1)F9 u i*(q)

acuP(x,k), pe qu(x,k)

The first formula is cbvious, the second formula will be veri-
fied below while the third formula will be proved in the next

section.

Verification of 9,16. We shall work in the category D' (X,k).
Let I" be an injective resolution of k, J" an injective re-
solution of i,k and let w: I'" » J" represent the adjunction

morphism k - i k. According to 9.12 we have that
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II1.10 Creoss products ‘aiven a sequence of k-sheaves

In this section we shall perform a considerable extension
‘ G — B —wp P =amid G e ()
of the cup product introduced in the previous section. We shall

work with a fixed commutative ring k. Given a topological space:
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which is pointwise split exact, i.e. whose localization at

X, two closed subspaces A and B and k-sheaves E and F
' : ach point of X 1s a split exact seguence of k-modules. For
on X. We shall construct a cup product
ny k-sheaf D on X we have
10,1 avpen,  P9x, Eer) rae B P(x,E), p e u, T (X, F)
:10.6 d{aUB) = (3a) UB :

Let us list some of its properties. First of all the following

diagram is commutative, here U denotes the complement of A

“Cross products

3 +1 Let A be a closed subset of the
£, P (2, B) s #P(%,E) o 8P (U, E) 2 m PY (2, E)
a closed subset of the topological
10.2 ve ue ve us "épace Y. For a sheaf ¥ on X and
P P j 3 p+1 g sheaf G on ¥ we consider
HAHB (X,EQF) - HB (X,EQF) - HUHB (X,EBF} — HADB (X,E@E}
* . - . * * .
The cup product is anticommutative B HA (X,F) - HAxY (XxY,p*¥)  g*:

10.3 alp = (-1)P% ua : O(EHAP(X,E), ped, (x,F)

axpE HApr+q(XxY,p*F®q*G) H

topolocial space X

aE HAp(X,F) s

aenP(x,6), 8¢, 7(x,0)

and

XxY

SN

HB”(Y,G) - HXxB"(XKY,q*G)

‘We can now define a cchomology class, the cross product

pen(y,6)

In the sense that the canonical symmetry E®F 5 F®E transforms
als into (—1)pq BUa, -~ Given a continuous map f: W -+ X and
closed subsets C and D of W with f£(W-C) < X-A and by the following formula involving the cup product
£(W-D)}) <« X-B, then
10.7 ox B = pra i g*p
10, 4 £*(qUB) = FraUf*p ;oaen, Pk, pen(E,k)
In case ¥ = X we let A; X » X xX denote the diagonal map, and
10.5 a U (BUY) = (aUB) U~

a e LP(x,E), sen, Tx,F), veu " (x,6)
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we deduce from 10.4 that

10,8 aUB = a*(axp)  ; aewPx,F), pend(y,0)
We shall now construct the cup product. The basic idea is to

construct a category with an internal tensor product in which

we can represent cohomology classes as arrows and cup product

as tensor product of arrows.

An auxilary category

Let X denote a toplegical space and k a commutative

ring. The category K+(X,k) comes equipped with an internal

tensor product obeying certain rules II.8., This is certainly not

the case for D+(X,k) being the homotopy category of injective
sheaves. Alternatively D+[X,k) can be obtained from K+(X,k)

by inverting all quasi-isomorphisms XI.2.6. This is a perfect
description when k 1is a £field since the system of quasi-iso=-
morphisms is stable under @,

In general we shall invert a

smaller class of quasi-isomorphisms namely the pointwise homo-

topy equivalences, i.e. moxphisms f: R" - 8" in k' (x,k) such

that for each point x€X, fx: R," = 8§ is a homotopy equi-

X X

valence of complexes of k-modules. The class of pointwise homo-

topy equivalences is stable under tensor product, moreover

Lemma 10.9. For any bounded below complex of k-sheaves

F" +there exists a pointwise homotopy equivalence F" -+ 8" where'

§° is bounded below complex of flabby k-sheaves.
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ﬁe Godement construction furnishes a morphism F"" - C"{F") of

gouble complexes which induces a morphism of single complexes

F* —— Tot” (C"(F"))

his is & pointwise homotopy equivalence: In fact for x€X a

onmotopy inverse C"(F")x - F' is furnished by the cancnical

X
ocal retractions, compare the remarks after 3.10, Finally use

he formula I.171.6 to construct the needed homotopies.

The class P of pointwise homotopy equivalences satisfies
he condition fR 1-5 of Verdier compare XI.1,2,6., The localized

ategory will be denoted
¢t x,x) = PR (x,k)
By the fact that P is stable under tensor product, the category

'+(X,k) comes equipped with an internal tenscor product. The

'ollowing two lemmas reveal the role G+(X,k} is going to play.
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Lemma 10.10. Let D be a k-sheaf with the property that Hom(D,E[pl} 5 Hom(D,s"[pl) = [D,S"[p]] (D, Ipll]

Ext, P(D,8) = 0 for all > 1 and all flabb heaves 8S. )
" (P 8) B2 ¥ e ‘The last group is Ext, P(D,F).

Then for any k-sheaf F and any pezZ 0.E.D

mxt, P (D,F) = Hom(D,F(p]) Lemma 10.11. Let h: W » X denote the inclusion of a locally

closed subspace. Then

where Hom i1s calculated in G+(X,k)"

Ext? (h,k,8) = © ¢ Pzl

Proof. Throughout the proof the functor Hom is calculated.

in G+(x,k)” Let us first prove that for a complex of flabby for any flabby k-sheaf S,

sheaves §° in K+(X,k} then

Proof. Tet us write W = ANV where A 1is a closed subset

[B,5"] = Hom(D,S") of and V an open subset of X. If we let U denote the comple-

ment of A in X we have an exact sequence of k-sheaves, compare
Suppose first that £¢€[D,5"] represents the morphism zero the first column of 6.,17.

D> 8" in G+(X,k)" This means that we can find s: 8" - T

in P such that sf = 0 in K+(X,k}" By Lemma 10.9 we may assumef 0 — k —_ k., — k_ —— 0

~UNY ~V ~W
that T° is a complex of flabby sheaves. The guasi-isomorphism

s: 8"+ T" is a morphism between complexes of Hom(D,-) acyclic from which we derive the isomorphism, compare 9.4

objects. Thus we conclude from the acvelicity theorem I.7.5 that

f is zero. Ext, " (h,K,F) = H,. " (V,F)

To see that our map is surjective notice that the general
element of Hom(D,8") is a fraction D § T éis where 8 is The result follows from 2.3.
in P. Again by 10.9 we may assume that T consists of flabby
sheaves. We conclude from the acylicity theorem that £ may be

factored through =. Let us record an important canonical isomorphism. For locally

To prove the stated result choose st F » 8" in P  where closed subsets A and B of X we have
8" is a complex of flabby sheaves and choose an injective resolution

8" - 1I". We have 10.12 k =k, 9k

~ANB ~A T ~A
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Let us now consider closed subsets A and B of X and k-sheave; proof of formula 9.17. Let us first establish the following

E and F. Cohomology classes GEHAP(X,E) and BEHBq(X,F) may’ formula, where i: A X denotes the inclusion

be viewed as morphisms in G+(X,k)

BUi*ta = BUa ;aEHP(X,k),BEHAq(X,k)
a: k, » Elp] Bt ky - Flal

iYere the left hand side is defined in 9.74 and the right hand side

We then define the cup product by the formula is defined in 10.13. This can be read off the commutative diagram

10.13 alUR = rp'q oo ® B

Kok 2 ox(p]l B kiqleklp]

| e

Kn wdtx k,lp] _BIp] | k[ p+ql

taking the iscmorphism 10.12 into account.

We shall now proceed to establish the formulas 10.1-6., The
basic principle is simply to write up a suitable commutative dia~
gram in the derived categoxy G+(X,k) "

Formula 9.17 is now a consequence of 10.3.

Proof of 10.3. According to 8.7 we have the following commuta

tive diagram 1

Kpa®ky = k9%
T
~ - Prg a1 alplowl
Kang — Ep®%g —— Elpleflql E€F[p+ql alple
—_ E
l1 lo ic (-1)qu slp+al Glploky —— Elprileky
T Proof of 10.6. The pointwise, | 18p 186
Kpna ~— Ep®%, ——Flal8Elp] —LB FeE(pq] : - alplet
split exact sequence Glplep[g] —+=> E[{p+1i@D(q]
T T
- Pg Pr1,g
The cup product extends 9.9 as it follows from the following 0»>D=F=>G=0

GoDlptql BUPML zgnrpiget]

commutative diagram \ . . .
gives rise to a triangle in

193 o1

K8k, —=— keklq]——— klpleklql 6" (X,k). Let 5: G » E[1] denote

‘0,9 e

kA_B_, x[q] —oig] | x[p+ql

~

© the third side of the triangle. We
leave it to the reader to check that

the accompanying diagram is commutative.
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be an acyclic resolution

Proof of 10.2. The short exact seguence Proposition 10.14. Let k - C°

h gh(X,k} which is a pointwise homotopy eguivalence. Given

0 —+ k. o3 K s k. —s 0 “morphism of complexes A: C"®C" = C7
S0 TS T A Kok — k
which makes the accompanving diagram l j
: . . v
is pointwise split exact. Let a:igA - 5U{1] denote the characte ommutative. Given crect N o
arrow. If we tensor the seguence above with EB wa get the seguenc
a€r(x,c%)  with 3a = 0 representing agdF (X,k)
a-— kpp — kg — kagg — 9 bet(x,C% with 8b = 0 representing s€HY(X,k)
The characteristic arrow of this seguence may be identified with hen aAab represents ol p
el kyek, - 50[1]®5B"
Proof. Consider the following commutative diagram in
381 Moo :
Ka®kp ——— kyilleky —— ky®kyl1] 6 (%,k)
18R @8 18B[1]
T
r k -2, pipiekiql —BL xek[ptg] ——— kip+al
kp®F[q) 2k 111erlq) 12 K eriqlit) k klpigklq k@k[p+qg kip+g
al1]1581 al11&1 o@1[1] l l l l
T
T k 28b C"[p]@c"[q]-—P—qh—»' ; C"@C”[p+q]A-EPE] C'[p+gl]
Flp+11eF[q] 3 Elp+11eFiq) 148 E(pleriql(1] >
T T o [t}
+1 1
Sl prird B Notice s q(a@b) = (-1)Oqa@b = a®b and the result follows.
-n4d !
E[p+g+1] —l» Elp+g+1] “le_a Elptgt+1]

From the commutative diagram above we deduce

.
I

(atug = (~1193(aup) aen,Pix,3), sen I(r,r)

Multiply this formula with (—1)p+1 to get the desired result,
compare I.8.5.

Q.E.D.

139
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IX.11 Flat sheaves Theorem 11.2. Let F. be a bounded above complex of

Let k denote a fixed commutative xing. A k-module F flat k-modules and R. a bounded above complex of k-modules

is called flat if any exact segquence with H.{R.} = 0. Then H.{(F.®R.}) = 0.

-+ R->85->T-20

order not to mess up the truncation notation I.5.7. - It suffices
of k-modules is transformed into an exact sequence

to prove the following statement for all n € %:

"any complex R" with H"(R") = 0 and Ri =0 for i >n
0 «=- RYF — S@F —— TRF —> 0

has HO(R"®F”) = 0 ", = This is done by increasing induction on

© n, noticing that the statement is cobvious for n<< 0. In order
Let us notice that a projective k-module is £lat, and that any :
" to preve "n = n+#1" consider the exact seguence
direct limit of flat modules is flat as it follows from 8.1.

Let us mention a theorem of D.Lazard to effect that any flat

0 — E<nR" — R" —— IZHR" —

module can bhe realized as a direct limit of finitely generated

free modules, Bourbaki (2) A.X.14. The reader may use this to

The resulting short exact sequence of complexes
simplify some of the proofs in these notes.

0 — {r [ R7)GF" — ROF" — (1, R")8F" — 0
Lemma 17.1. Given an exact sequence = zn

gives an exact seguence

0

H ((r<nR")®F") — HO(R“®F”} -t HG(ran”)®E")

of k-modules. If F'PO'“"”’Pn—1 are flat modules then Pn is

a flat module.
from which the result follows.
Proof. By splitting the sequence into short exact seguences

one sees that it suffices to treat the case n = 1. This case
Corollary 11.3. Let R. - S. be a guasi-isomorphism of

is easy to treat by means of I.1.3.
bounded above complexes of k-modules and F. a bounded above

compiex of flat k-modules. Then

R.QF, =—— 5,QF,

14]
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is a quasi-isomorphism. Let us now consider a topolegical space X. We shall
géneralize the discussion above to K_(X,k), the homotopy cate-
Proof. Consider the mapping cone of R.- S. and combine
I gory of bounded below complexes of k-sheaves on X.
11.2 with 8.10. .
Q.E.D.
Definition 11.6. A k-sheaf F on X 1is called flat if
for every point x of X the stalk F_ is a flat k-module,
Corcllary 11.4. Let F. be a bounded above complex of flat
; Proposition 11.7. Let R. » 5. be a quasi-isomorphism in
modules with H.{F.) = 0. Then for any bounded above complex R.
£ (¥X,k}. For any complex F¥. of flat k-sheaves in K (X,k)
we have H.(F.@R.) = 0. :
R.®F, ~———— 5.8F.
Proof. Choose a projective resolution P. » R. and notice
that P.OF. —» R.@F. 1z & quasi-isomorphism 11.3 and apply 11.2
is a quasi-isomorphisn.
to the complex R.8F. :
Q.E.D
Proof. Follows from 11.3 by localization 8.3,
Q.E.D.

Let us briefly discuss the functors Tor,. Given k-modules

M and N. Choose projective resolutions P, - M and Q. = N _
Thecrem 11.8. For any R. in K (X,k) there exists a guasi-

and consider the following two quasi-isomorphisms, 11.3
‘isomorphism F. » R. where F., 1s a bounded above complex

of flat k-sheaves {a flat resolution of R.)}.

P.ON = P.QQ. = M&Q.

]

roof. For any k-sheaf R there exists an epimorphism F - R

|

This makes sense to the following definition
i'where F is a flat k-sheaf, 7.4. In general, follow a procedure

al to the one used in the procf of I.6.1 see also I.9.

11.5 Tor; {M,N} = Hi(Pn®N) = Hi(MﬁQ") Hi(Pn®Q")

It foliows from 11.4 that we can use resclutions P.

and €. of flat modules in the definition 11.5.
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Proposition 11.9. Given gquasi-isomorphisms E. - R. and 1,12 Hom(E,I)
= . SR S A

F. - R. in K (X,k) where P. and Q. are complexes of

|

et X denote a topoleogical space and k a commutative

flat sheaves.Then there exists a ying. We shall work with the category Sh(X,k). - Two. sheaves

ey

“

g and F give rise to a presheaf

D.

commutative diagram consisting of l
quasi-isomorphisms in K (X,k)

13

o — -

* *
U + Hom(j E,J F) ;1 U- X
where D. is a complex of flat

sheaves. WhiCh is easily seen to be a sheaf. This will be denocted

_pm(E,F)” Thus with the notation above
Proof. According to the proof of XI.Z.4 we can construct .

3 & *
, ‘o L. . 2.1 [ (U, Hom(E,F}) = Hom(j E,j F)
such a diagram consisting of guasi-isomorphisms, but no con-

ditions on D. . Combine this with 11.8 to get the result. Given sheaves E,F,G on X we have a fundamental isomorphism

2.2 Hom (E® F,G) = Hom(E,Hom(F,G))

Definition 11.10. Let P, and Q. be complexes in X (X,k)

Proof. It suffi : -
Choose flat resolutions E.»F. and F. -» G. . We put —= ices to prove a formula of the form

Hom(E® F,G} = Hom(E,Hom(F,G))
here E,F and G are presheaves on X. This follows from
and define the Tor-sheaves

Hom(I(U,E)@I(U,F),I(U,G))= Hom(T (U,E} ,Hom(f {U,F)},I (U,C)}

ﬁich we consider well known from algebra.

k =
Tor,"(P.,Q.) = H,(E. 8 F.)
Q.E.D.
The constructions above may be interpreted in terxms of the-
_ o Corollary 12.3. 1f F is a flat k-sheaf and G an inject-
derived category D (X,k) introduced in XI.2Z.6~ . According to

_ : ve k-sheaf, then Hem(F,G) is an injective k-sheaf,
11.8 the derived category D (¥,k) is equivalent to the category

defined from the homotopy categery of bounded above complexes of

In case F" and G"' are complexes we define Hom'(F*,G") by
flat sheaves by inverting all guasi-isomorphisms, see XI.6. =

This makes it evident that D (X,k) comes equipped with an intern q n, .. .. .
r g pr Prctotaiiedimiraaletio 5 2.4 Hom (F ,G ) = m Hom(Fn’Gn+p)

tensor product, which allow us to interprete the formulas from . pEZ

I1.8 in D (X,k). ﬁe differential being similar to that of I.4.3,
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_efined to a finite covering (Nx)xES of K. Put L = xgs N, .

III Cohomology with Compact Support

C.E.D.

Definition i.3. For a sheaf F on the locally compact space

put

IC(X,F) = {s€T(XF) | Supp(s) 1is compact}

he sections o¢f F over X with compact support.

III.1 Locally compact spaces

Let ¥ denote a locally compact space, i.e. a Hausdorff to-

pelogical space in which every point has a compact neighbourhood This defines a left exact functor

Let us prove two simple facts about locally compact spaces.
TC(X,—): Sh(X) —— Ab

1.1 Any neighbourhood of a point x€X contains a

- . ,
compact neighbourhood of x. he i'th derived functor of this evaluated on the sheaf F

ill be denoted Hcl(X,F) and is called the i'th cchomology group

‘with compact support with coefficients in F.

Proof. It suffices to prove this for an open neighbourhood.

Vv of x which is contained in a compact subset K. Let us Consider a continuous map f£: X —Y¥ betveen locally compact

congider the compact set K-V. For each point yé€K-V choose -+ spaces which is proper, i.e. such that the inverse image of any

disjoint open neighbourhoods V. of y and UY of x. The compact subset of Y is a compact subset of X. For a sheaf
Y : i

covering (Vy) of K-V can be refined to a finite covering G on ¥, the adjunction map a: 1(Y,G) » 1 (X,f*G) will trans-

of K-v. The compact set X-U .V, is contained in V and form a section of G with compact support into a section of  £%g

€Sy
containg n uwnv. With compact support and thus induce a natural transformation
yES
Q.E.D,
1.4 a: IC{Y,G) - IC(X,f*G)
1.2 For any open set U containing a compact set K,

. S8ince f* is exact we can extend this to
there exists a compact set L © U with K < L,

-5 f£#* Hc” (Y, —— H, " (X, £*G)

I

roof. For each =x €K choose a compact neighbourhood NX

of x contained in U. The covering (NX)XEK of K can be
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by choosing an injective resolution G - J° and an injective 2 Soft sheaves

resolution £%J'= I° The composite - 1et X denote a locally compact space. We shall introduce

n .mportant class of IC(X,—)—acyclic sheaves on X.
.y @ . .
IC(Y,J ) S I (X, E£537) - IC(X,I )

Definition 2.1. A sheaf S on X 1is called soft if when-

represents 1.5 on the chain level, noticing that I" 1is an in- ay there is given data

jective resolution of £*G. 1) a compact subset K of X
Proceeding as in II.7.9 we can derive from an exact sequenée 2) an open subset U of X containing K
of sheaves on Y 3) a section s of S over U

0 —E —F — G — 0
yen there exists a section t of & over X, such that s
a commutative ladder of abelian groups 7@ t have the same restriction to some open neighbourhood of

‘contained in U.

+
— u Fw,® — 8P, F — HFw,e — Hcp Ty,m) —

16 ] | l |

— Hcp(X,f*E} — Hcp(x,f*E) — HCP(X,f*G) - HCPJHI (X, £*2)

The following proposition gives rise to an alternative

‘sarmilation of softness.

Theorem 2.2. Let 1i: Z - X denote the inclusion of a compact

Closed subspaces ubset into a locally compact space X. For any sheaf F on X,

Congider in particular the inclusion i: £ —X of a closéa “there is a canonical isomorphism

subspace. A sheaf E on Z gives rise to a canonical isomorph

compare II.5.4 lim I(U,F) 3 I(Z,1*F)

1.7 H,"(Z,E) = H " (X,1,E) he limit is taken over all open U o Z.

For closed subspaces A and B of X the exact sequence I1.5 Proof

Notice that the canonical map

yields a

lim T (U,F) - I(2,i*F)
Maver-Vietoris sequence 1.8 =

§ injective for trivial reasons. To prove that the map is sur-

w» H P(aUB,F) — # P(&,F) & 5 P(B,F) — H P(aNnE,¥F . _ . _
& < c c ective consider g €I (%Z,i*FP). For each point =z of 2 choose
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a compact neighbourhood E* of z in 2 and an open subset
u% of X containing K% and s%e I(UZ,F) with (sz)X = 8,
for all =x¢€K”? Since Z is compact, finitely many K?'s

will cover 4. This leaves us with the fellowing problem:

Given compact subsets K and L of X, sections s

and t of F over open subsets ceontaining K and L

tively, whose stalks agree on KnL. Find a section of F

over an cpen subset of X centaining KUL which agrees with

s 1in a and t in a

neighbourhoed ¢f K

neighbourhecod of L.

Choose an open neighbourhcod W of KNL in X such that s

and t ‘thave the same restriction to W, Choose disjoint open

subsets U and V of X containing L-W and X-W

ly, 1.2. Finally use the sheaf axiom to construct a section of
F over VUUUW which extends s and t.

Q.E.D.

respec- |

respective-

This theorem shows that a sheaf S

on

X is soft if

“and only if for any compact subset K

of X,

the restriction

map [ (%,8) > T(R,S)

is surjective.

we shall utilize
‘gubsets.

giging sections 2.3. Let

of a topoleocial space X and

‘and t€T(W,F) which have the
there exists one and only one
and

.restriction s to Z

‘from IT.5.6.

opolegical space X and F

of F over I
‘a section of F over
of 2 in X.

open covering of X,
of s to %

‘of F over X.

compact space X

locally closed subspace of X,

Extension by zerg 2.4. Let 2

with restriction ¢

To see this let us notice that 2

and the zero section over

Z and W be two closed subsets

a sheaf on X.

to 232

and

Let us menticn that a subspace W

is loecally compact if and only if W

compare 1I1.6.

X-Suppis)

Any section

can be extended to

¥=8upp(s)

of a locally

is

In the rest of this section
this formulation which is technically easier

“to work with once we make two remarks on sections over closed

be a c¢losed subset cof the

s

X with restriction 0 to the complement

form an
which we can use to glue the restriction

to a section

a
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F a sheaf on X. Given s€E€T1(Z,F)
same restrictions to WNZ then
secticn of ¥ over ZUW with

restriction t* to W, as it follows
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Q)

orpllary 2.5. Let h: W » X denote the inclusien of a Proof. Let there be given a short exact seguence of

locally closed subspace W of X. A soft sheaf 5§ on X “gheaves on X

will induce a soft sheaf h*s on W.
0 — 8 &sr do g — 0
Coroliary 2.6. Let i: Z - X denote the inclusion of
a closed subspace. A soft sheaf S on X has surjective re- .With E soft. Let us prove that the projection
striction map |
[o{X,F) — 1 (X,6)
IC(X,S) —— IC(Z,S)
ig surjective. - Assume first that X 1is compact. S¢, let there

Proof, Given s¢€ IC(Z,i*S)“ Choose a compact subset L pe given a section s of G over X. For each point x of X

of X whose intexrior L contains Supp(s) e can choose a compact neighbourhood K, of x and a section

: tx of F over Kx which projects onto the restriction of s

X
P o KX" We can refine the covering (KX)xex to a finite cover-
T oL ng. — This leads us to the following construction:
Given compact subsets K and L of X, u€Tl(K,F) and
A—— k] Z
Suppf{s) ‘vETI(L,F} which projects onto s. The section
ey g
rLr‘:K,K(u] ~ ok, V)

Let 5 denote the section of S over B3LU (ZnL) with restrictio
0 to 3L and whose restriction to LnZ coincides with the epresents a secticon of E over LNK and can as such be
raestriction of s to LUZ, 2.3. Extend s t0o a section t :extended to a section wéeET(L,E). We can now consider the
of 5 over L, and finally extend t by zero outside L, 2.4. ‘gections uel(K,F) and wv+e(w) €I (L,F) and glue these together
Q.E.D. 0 get a section of F over XKUL which projects onto s. -
We can now apply this construction to cur finite covering to

Theorem 2.7. Any soft sheaf S on the locally compact space.  obtain a section of F over X which projects onto s€1(X,0).

X is IC(X,-)—acyclic, i.e. In case X is no longer compact we can choose a compact

set K such that K contains Supp({s). Choose a section +t

H n(X,S) =0 for n >t : . .
= - of F over K which projects onto the restriction of s to XK.
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The restriction of + to 93K represents a section of E over :to XPr]X pt1

Dt 1 to a section ¢ of § over Xp+qh By
. : . . . +
93X which we extend to a section of E over K, and subtract ;.3 we can find a section Sp 1 of S over xp+1 which ex-
s s : 1
from t. Thus we may assume that the restriction of t to 3K tends <P ana oP"'. we can now proceed by induction

is zero, We can now extend + by zerc cutside K, to obtain a Let us now consider the general case. We know that the

global section of F which projects onto s. restriction of S to any compact subset of X 1is soft. Let

Let us remark that these considerations proves that if we us attempt to extend a section s of § over the compact sub-

add the assumption that F is soft, then G is soft. set K to a global section. Choose a compact subset L of X

Let us now return to our soft sheaf § and choose an exact _with K < L . Extend the section over KU 3L which is s

seguence on X and zero on 9L to a secticn of S over L. Use 2.4

00— S — I —T— 0 to extend that section to a global section which is zexo out-

gide L.

with I injective. Using that I is flabby we conclude first Q.E.D.

that I is soft and next that T is soft. We can now conclude gheaves of modules

from the first part that Hc1(X,S) = 0. The general case follows.’ Let X denote a locally compact space equipped with a

by an induction similar to the one applied in the prcoof of II.3.5. sheaf of commutative rings A. It is understood that the

Q.E.D " sections over any open set is a commutative ring with 1 and

that the restriction maps respect the ring structure and maps

Proposition 2.8. Let S denote a sheaf on a locaily com- 1to 1. - Let € be a sheaf of A-modules on X, 1i.e.

pact space X. 1If every point of X has an open neighbourhood I(U,E) carries a structure of unitary T (U,A}-modules and the

U such that the restriction of & to U is a soft sheaf on U, restriction maps satisfy  the following condition
then S is soft.

r...lae)

vu = ryylalr (e ;i a€l{V,A), e T(V,L)

Proof., Let us first treat the case where X 1is compact.

Proposition 2.9, Let A be a soft sheaf of commutative rings.

By assumption we can find a finite number of compact subsets
Any sheaf E of A-modules is soft.

X1'"”“'Xn of X such that the restriction of 8 to each of

these is soft, To prove that S 1s soft consider a compact sub- Proof. Let K be a compact subset of X and L a compact

set K of X and se€T(X,8). Put XP=KUX1 TR
a

0,...,0.
Suppose we have already extended s = s for a section P of

neighbourhood of XK. There exists g€I(X,A) such that

¢ =1 in an open neighbourhood of K and such that the restric-

P ; { ek sP .
§ over XY, By assumption we can extend the restriction of tion of o +to the complements of I is zero.
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To see this let us consider the section on X U 3L which

is 1 on K and 0 on 3L. Extend this to a section v cof

A over L and let o be the extensicn of 1t by zero cutside L

Let us now show that F is soft; so let s be a section

of £ over an open neighbourhood U of K. Let L be a compact:

neighbourhood of K contained in U and o a global section
of A as above. If we let 1 denote the restriction of -G to
L, then the section ts of E over L 1is zero on 3L,

and therefore extendable toc a&ll of X.

Q.E.D,

Local operators 2.10. Let S and T be sheaves on the

locally compact space X and D: [(¥,8) = I(X,T) a linear map

which satisfies the following condition
Supp D(f) < supp(f) for all fe IC(X,S)H

If f is soft then there exists a unigue meorphism of sheaves

d: 8 - T which induces D on the level of global sections.

Proof. For any point of X the restriction maps

IC(X,S) - S_x is surjective. Thus the uniqueness follows from

I1.2.2. - Given an open subset U of F and s€1(U,S). Cover |

U with open subsets u, such that there exists ti_EIC(X,S)

whose restriction to U, equals that of s. Notice that D(sj)

is independent of sj since D is a local operator, i.e.
satigfies the support cohdition. Using that T 1is a sheaf we
can glue the D(sj)‘s tegether to get a section of T over U.
The remaining details are left to the reader.

Q.E.D.
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I1I1.3 Soft sheaves on r"

A basic sheaf on :mn is the sheaf % of smooth, i.e.

infinitely often differentiable, R-valued functions. We shall

'prove that this sheaf is soft on the basgis of the following

classical.

Lemma 3.7. There exists a smooth, positive real function

g on R with compact support and g{0) % 0.

Procof. For t > 0 consider the function exp(-1/t). By a

simple induction we find that

k

% exp(~1/t) = P_(1/€)exp(~1/t) ; keN
at

. where Pk is & polynomial of degree 2k. Whence

dk
lim —x exp(-1/t}) = 0
t+0 dt

. As a consequence we can define a smooth function o« by

[ exp{-1/t} for t » 0
a{t) = 1
0 for £t ¢ 0

. Por B take the functicn pB({t) = a{l-t)a{i+t).

Thecrem 3.2. The sheaf e” of smooth functions on =" is

; soft,
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. n :
Proof. Let us first remark that for any a€R and any . pact neighbourhood N of K contained in U and a smooth

neighbourhood U of a there exists a positive smocth function function on " which is zero outside N and which is 1 in

n . , . ,
b on TR" with support in U and bz} +0. With the notation '~ a neighbourhood of K. The function ¢s can be extended to

of 3.1, such functions can be supplied by the formula all of =%,

n
bix) = 0 B(m(xi—ai))
i=1

Corcgllary 3.2“ The sheaf (¢ of continuous real functions

where m is a sufficiently large integer. on K" is soft. More generally the sheaf P o p-times

For a compact set K and a compact neighbourhood L of K continuously differentiable real functions on ®" 1s soft.

there exists a positive smooth function with support in L and wit

strictly positive values on K: For each a€K <choose a positive Proof. Notice that C(P) is a sheaf of modules over the

smooth function o, on ®R" with support in L and @y (a) 0. soft sheaf ¢¥ and apply 2.9.

Let Uz be the set of points x € R® where @a(x) > 0, Cover
K with finitely many Ua's and use the corresponding sum I9,.

For a compact set X and a compact neighbourhood N of X Example 3.4. The fundamental example of a locally compact

there exists a smooth function on IR which is zero outside N space is the real line ®R. The cons£ant sheaf IR has the

and which is constant 1 in a neighbcurhood of Ki: Choose a " "ralcoulus reselution” which is soft

compact neighbourhood L of XK with L ¢ N and choose a positive

smooth function ¢ on R" which is strictly positive on L D,

and which is zero outside N. Choose another positive smooth

function ¢ which is strictly positive on N=L and which is where D is ordinary differentiation. To calculate cchomology

zerc in a neighbourhood of K. This can ke deone since there ‘Wwe consider the exact sequence

exists a compact neighbourhcod of N-T. which dees not meet K,

K and L-N being disjoint compacts. The function ¢ + ¢

is strictly positive on N, thus the function w(w+$)—] is

(13, D I/
0 ———>IC(IR,C y —— I'C(]R,C) — s R —— D

defined in an copen neighbourhcod of N, is zero outside N and where [ is given by the formula

takes the value % in a neighbourhood of XK. If _ J+éf(x)dx

—0

The sheaf C° is soft: Let s be a section of c® over

an open neighbourhood U o©f the compact set K. Choose a com-
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Consequently we find

3.5 E, (R, R)

The sheaf of continuous real valued functions on W 1is a soft
sheaf on W.

Proof. Let h: W - R®® dencte the inclusion of W in r
and iet ¢ resp. ¥ be the sheaf of continucus functions on

®r® resp. W. Notice that we have a canonical morphism
C — h,?

which we can describe as follows: Let U be an open subset of
=D
h to h_1(U) = WNU to obtain a continucus function on WnU
i.e. an element of I[(Uh D} = T (h” (U, D). By adjunction we
derive a morphism of sheaves of rings h*C - PP . Thus we have.
equipped ¥ with the structure of a h*C-module. The sheaf

n*¢ is soft according to 2.5. Conclusion by 2.9.

¢.E.D.

Eégmple 3.7. On the unit interval [0,1] we have an exact

sequence of sheaves analogous to the one in 3.4

{1) D

g — R — C — s ((— 0

where

' The sheaf

3.8 EY([0,1],R) = 0

and feI(u,C). We can compose f with the restriction of
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C(q) and C respectively denotes the sheaf continuous-

.1y differentiable functions on [8,1] resp. continuous functions.

C(1) is soft since it may be viewed as a sheaf of

OO

‘modules over the restriction of ¢ to [0,1], compare the
- proof of 3.6. The sequence above furnishes a soft resolution of

iR and we find

o
v
—

‘ Using general topclogy we can generalize 3.6 to an arbitrary

locally compact space.

Urysohn 3.9%. The sheaf of R-valued continucus functionsg on

a loczally compact space X is soft.

Proof. Let us first prove that given a compact subset K

of X and a compact neighbourhood N of K then there exists

ra continuous function on X, which is constant 1 in a neigh-

bourhood of K and constant 0 outside N. = For this, choose

compact sets L and M with

In the compact space N we have to disjoint compact subsets L

Jand N-M, According to Uryschn's lemma we can find a continuous
‘function f on N with value 1 on L and value zero on N-M.

;We can now use the open covering X-M,ﬁ to construct a con-—
“tinuous function which agrees with £ on N and is 0 outside M.

‘We can now conclude the proof as in 3.2 or 2.9.

Q.E.B,
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I11.4 The exponential sequence

The muitiplicative group of complex numbers with absolute

value 1 is denoted S1h This group fits into an exact seguence

where the map expl is given by

4.2 expl v = cos v+ i sinv

The map expi has local sections, in the sense that for

every zE& s' there exists an open neighbourhoocd U of =z in

81 and a continuous map s: U -» IR, such that expios = 1:

1

Over the part of &8 which lies in the open right halfplane we

have the following section

v oA
~ v R Arcsiny
4.3 —_ A A
> X
expi|] 8
v va -
cosv+isinv § X+iy

By translaticn in the group SI we see that expi has leocal
sections everywhere. From the presence of local sections we
conclude that expi is an open map, i.e. transforms open sets
into open sets.

Let X be an arbitrary topological space. The exponential

seguence above gives rlse to a short exact sequence of sheaves

4.4 0 — 7 — c(® 'Ly —o
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where C(IR) and C(S1} denotes the sheaf of continuous

functions on X with value in R and S’| respectively. In
this section we shall exploit this sequence in three simple

cases.

The real line IR

We shall base our investigations on the folleowing classical
result.

1

Lemma 4.5. Any continuous map f: R -~ S can be factored

f = exploF, where F: R - R 1is a continuocus map.

Proof. Let us first sclve the analogous problem for

£: [0,11»8'. For te€[0,1] choose an open interval I, with

t
cgenter in t such that the restriction of £ to Itr1[0,1]
admits a factorization through expi. Let Jt denote the open
interval which makes up the middle third of I,. Accerding to
Borel-Heine we can find a finite subset S of [0,1] such
that (Jt)tEs covers [0,1]. Choose an integer n such that

1/n  is smaller than the length of each of the intervals J teg.,

tl
The restriction of £ +to an interval of the form [p/n,p+1/nl]
can be written £ = exp(JFP, where Fp: {p/n,p+t1/nl - R is

continucus. Notice that Fp(p/n) - FP_T(p/n) is an integral mul-
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tiple of 2m. We can now successively fit the Fp's together
by adding integral multiples of 2r to get the desired factori-.

zation of £,

Returning teo the original problem, we can for each ne€ %

1

choose a liftirg F%: [n,n+1] -8 of the restriction of £

to that interval and finally f£it these together.

Theorem 4.6. The exponential seguence 4.4 is a soft resclutioh

of the constant sheaf Z on R.

Eroof. Let us prove that for any open subset U of TR the

following sequence
T(U,C(R)) — T(U,C(5")) — 0

is exact. Remark first that this is true in case U is an
cpen interval as it follows from 4.5. The general case follows
from the fact that U is union of disjoint open intervals, .
Let us finally prove that C(S1) is soft. So let there

be given a compact subset X of 1R and a section t of
C(S1) over an open neighbourhood U of K. Lift €t to a
section s of C(IR) over U. After shrinking U we may
extend & to a glokal section r of C(R), since C(R) is
gsoft. The section expior will deliver the looked for global.

section of C(S1)L
Q.E.D.

on the basis of the resolution 4.4 we will show that

4.7 H,"(R; B) = 0, Z, 0,...

7o this end choose a continuous map t: IR - IR such that
= expiot, 4.5. S8ince s has compact support it follows that

t(x) 1s constant for large values of x, resp. small values

b Qf X. Put

8 I(s) = {(tl+e} = t{—e)}

e
2n
It is left te the reader to verify exactness of the sequence
0 — T (R, C(R)) Fhr_(wr,c8") L z— o

Let us calculate the action of a proper continucus map

f: R - R on HC1(IR;Z)“ Remark first that proper in this

‘context means that |£(x)| — +o for =% =s4wand x - =-o,
‘Taking into account that £*% =% we can identify the adjunction

‘morphism with the morphism

.associates the locally constant function sof: f (V) - Z. The

morphism ¢f can be lifted to the exponential rescluticn as

*follows, compare Scolium II. 5.2
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hich tc an open set V and a locally constant function s: V %
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2n 4.10 f*a = [fla : o €H, (IR, %)

0 — 2 c(m) ZBL o5y — 0
of of of

<

v .V .
0—4f*§gjef*C(m) expi f*C(S1) >0 for a prcper continuous map £f: R - R.
We shall now use the exponential resolution to make a closer

We shall evaluate the action f* of f on HC1(]I{,EZ) in terms study of the sequence 3.4

of the symbol [£f], which we now define
1

()
0T (R C ) - T (R, Q) ~ A (W, B) — 0

£ {+w) +m 4o —w —ow
4.9 £ (o) oo 400 40 —oo which tells us that a centinuous function f: R— R with
compact support represents a cohomolegy ciass.
[£f] 1 0-1 0

Propositien 4.11. A ccntinucus real function ¢ on R with

With the notation of 4.8 let us prove the formula %)
compact support represents an integral cohomology class if

1 and only if
I(sof) = [f] I{(s) : SEIC(]R,C(S })

+eo
J @(x)dx 1is an integer.
Chocse t: M— R such that s = expiot. This gives -

sof = expiotof and consequently, 4.8
Proof. Consider the fellowing exact, commutative diagram of

sheaves on R

I{sof) = (t{f(+) ) = t(f(—=)))

q
2n
B — C(1)(IR) —2—> C(IR} — 0
T )

— M oo — o

0 —s
which ensures us the validity of the formula, i.e. that

0 —

IC(JR,C(S1)) N S

of -[£] where C((C) resp. et (C) denoteg the sheaf of T-valued con-

v I v

IC(IR, ¢ (51” I 7z inuous functions resp. continucusly differentiable functicns

is & commutative diagram. Thus we have proved that *) Quite generally let X denote a locally compact space. A

cohomology class QEch(x,IR) is called integral, if it belongs

to the image of n n
He {X,2) — Hy (X R)

induced from the inclusion of sheaves Z - R.
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The unlabelled arrows are inclusions. It follows that it The unit interval [0,1]

suffices to prove a result similar to 4.11 with IR replaced Let us consider the exponential sequence of sheaves on the

by &. - Next consider the follewing diagram of sheaves on R ‘pnit interval [0,1]

0 — z 25 ¢Mm &L, o5y — o 07 2% em)ZRL, o)y — o

*)

1 1
I 2y Plog

v

(1) Y D This is a soft resclution of the constant sheaf % on{0,1].
— C (C}) —— () —— 0 :

|

‘ro prove that ¢ (81) is soft we can use the remarxk that a con-

inuous map V - S1, where V is a relative open subset of

where the unlabelled arrows are simple inclusions., This induces -

a commutative diagram 0,1], can be extended to a continuous map on an open neighbour-

hood of V 1in 1R. - From the procf of 4.5 follows that the

I

T (R, cs)) —Lem sequence

—lTDlog

I 0 »z 25 1([0,11,c(®)) EBL 1 ([0,11,¢(s")) — 0

S

IC(JR, C(T)) =—mtemms T
s exact. Thus we have found that

as the following computation shows: An element I of : i
1 : 4,12 H([0,1]1,%) = 0 P
IC(IR, C{S')} may be represented by expiog where g€l (R, C{R)),

‘A result of fundamental importance.

+oo E»+oo
i Dlog(expi g (x))dx = 1 gf{x}dx =
} o } o
‘The 1-sphere g!
i{lim g{x) - lim g(x})) = 2ni I(f)
K—>-too X = —w Let us once more consider the exponential sequence of

sheaves

where we have used the formula 4.8. 3 ) :
0 —z=5 c(r E sy — o0

1
*) The evaluation of ©Dlog on £ is —E—-—-

i_This is a soft resclution of the constant sheaf #% on SAI as

t follows from the local character of softness, 2.8.
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In order to calculate cohomology by means of the exponential | as it follows rather easily from the definition.

The nction of degree introduced in 4.14 is multiplicative

1

sequence we shall introduce the notion of degree of a continucus '
: . 1 .
“in the sense that two continucous maps f,g: 8 - S satisfy

map f: S] - S1.. To do so let us remark that it follows from

4.5 that we can find a commutative diagram of continuous maps
. 4.16 degl(go £) = degl(g)deg(f)

E_Eogu__f_.‘ Choose continuous maps F,G: R - R such that

The map F is unigue up to an integral multiple of 21, Thus it | foexpi = expioF, goexpli = expioG

makes sense to put

From these formulas follows gofoexpl = expioGoF

4.14 deg(f) = z=(E(2m) = F(0))

According to the definition 4.14 we find

The following segquence of abelian groups is exact 1
deg(g o £) :ﬁ[G(FQn)) - G(EON] =

2w

60—z 21!, om) 2L ey g o

%[G(F(U) + 21 deg(f)) - G(F(0)}]

Proof. To see that the degree map is surjective, let us We leave it to the reader to prove the formula

notice that meZ gives rise to a map zZ i~— z" of degree m.

1 1

G(x+2wn) = G{x) = 2rn de : 7
Conversely, let f: 5 =+ 5 be a map of degree zero with the o) () i glg) x € R, ne

notation from 4.13; remark that the expression F(x+2n) -F(x)

is independent of x. Thus we find that F is periodic with Q.E.D.

pericd 2n, which shows that f can be factored through expi.

Proposition 4.17. The action of a continuocus map £3: 51 — S5

1 ] on H1(51,ZZ) is given by
The product hk of two continuous maps h,k: 8§ = 8

is given by 2z |— hi{(z}k(z). We have 1,.1
f*y = deg(f)a i a€eH (87,%Z)

4.15 deg{hk) = deg(h) + deg(k)

Finally, use this with x = F(0) and n = deg(f) to get 4.16,

1

i71
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Proof. Lift £ to the exponential resclution as follows

z 25 c(m) 2B s 0

of of of

0 —f£,m 2 0(R) 2R £05T) -0

It follows from 4.16 that the following diagram

rist,cishyy 24, »
lof ldeg(f)

r(s',ceshy 22, »

is commutative, and the result follows.

group 5! has the form o J— Tt ; n€ &,
Proof. Let f£: st s 51 be an endomorphism and choose
F: R - R as in 4.13. By adding a constant to ¥ we may
assume that IF(0) = 0. Since f 1is an endomorphism we have
expt (F{x+y) - Fi{x} - Fly)) =1 ; X, vyER
or ptherwise expressed Fix+y) - F(x) - F(y) € 2n Z&

Using that R is connected we get that F 1is a continuous

endomorphism of IR.

It follows that a is an integral multiple of 2r.

Q.E.D.

Consequently F must have the form X |[—ax.
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1I.5 Cohomology of dixect limits

Let us consider a locally compact space X and a direct

ystem of sheaves (FA'f ) over a directed set TI.

uA

Ehe0£§£=5.1” The canconical map, peNlN

: P P .
lim b, (X'FA)JzHc (X,lim FA)
ig an isomorphism.

Procf. Put F = Iim F and let f F. » ¥ denote the

Prool A xS
Canonical map. Let us at once notice that for the inclusion

Z-X of a {closed) subspace we have

1%F = lim 1*F
> A

.-2 l'J_;m IC(X'FX) - IC(XIF}

is an isomorphism., Let us first prove injectivity in case X is

compact. So let there be given s EI(X,FK) which maps to zero

[{X,F). For each =x€X we can find A(x) > A and an open

Heighbourhood U, of x such that f has restriction

Az, sl

Z?ro to UX Let us choose a finite set of points 8§ of X
?gch that (Ux}xes covers X and choocse HEI, such that
Mx} < p for all x€8S, It follows that £,(8) = 0.



174

Let us prove surjectivity of 5.2 in case X 1is compact, . Let us remark that if F is soft for all i€eI, then

— A
So let there be given s€I{(X,F}. For each x€E€X choose B i FA is soft. This follows from the first part and the
a compact neighbourhood KX of x 1in X, Afx) €I and eﬁarks following 2.4.
s¥¢ [(Kx'FA(x)] such that fk(x)(sxi equals the restriction Let us finally consider the Godement resolution C"FA of

of s to Kxﬂ Since X 1is compact we can cheoose a finite 7.3.6. This gives us a direct system of complexes of

subset T of X such that (Kx)xeT covers X. Consider

two points, %,v € T: according to our first result, the

abby sheaves on X. The direct limit lim C"FA is a soft

asolution of F by our previcus remark. Thus

canonical map

P = P ; " Pqs N
H, {(X,F}) = H Ic(x'lim c FA) B lim IC(X,C Fx)

lim I{Kxf1K 'Fl) - I(KX€1Ky,F)

Y

lim HPIC(X,C"FA) lim HCP(X,FA)

is injective. It follows that we can choose W€I with u > X(x)

for all x €T, and such that f )(sx) and £

U, Alx nd our journey ends.

v
u,nyy 1579

have the same restriction to er1Ky for all (x,y) €TxT. The Q.E.D.

section t€I(X,Fy} with restriction fu A(x)(sx) ta K for
' Corollary 5.3. Let X denote a compact space which is

all X €T will now be mapped cnto s €T (X,F).
cyclic, i.e. for which

e

Let us now prove injectivity of 5.2 in general. Given

s ETC(X,FA) which is mapped to zero in TC(X,E)“ Using the 7 o= HD(X,Z) and Hl(X,Z) =0 for 121

previous result for K = Supp(s) we find 1 > A such that .
- hen for any abelian group Xk

fuk(s) = 0 in T(K,Fu)p From this we conclude by localization :

k » 50(x,k) and HY(X,k) = 0 for i > 1
that fuk{sl = 0 in T(X,Fu)h

Let us prove that 5.2 is surjective. So let there be given
P 3 K ‘ Procf. The abelian group k is direct limit of its finite-

s€I (X,F). Chocse a compact set K containin Su s in it
C( rF) P & pp (s) o generated subgroups. Thus by 5.1 it suffices to treat the

interior. Choose A €I and t.EI(K,FA) such that fA(tJ

:éése where k is finitely generated. - Chcose a finitely
equals the restriction of s to 'K. Since the restriction of. ’ L

éenerated free resolution 0 — w'_, m e x — 0
fx(t) to 3K is zero, we can find @ > A such that fuk(t) :

h | i =
has restriction zero to JK. We can now extend fuk(t) by he long exact sequence on cohomology gives at once BT (X,k) =0

: . . 0 o .
zero outside K +to obtain a global section of F  with compact 12 1. The assumption #Z = H"(X,Z) implies that X is

support which is transformed into s€I{X,F} by fA“

ith values in k is constant.
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III.6 Proper base change and proper homotopy

‘proocf. Recall from II.5.11 that R'£,F  is the sheaf on

Let £: X - Y Dbe a proper map between locally compact agsociated to the presheaf

spaces. Recall that this means that the inverse image of a

n,~—1
compact subset of ¥ is a compact subset of X. In parti- v BO(E (V) E)

cular the fiber f_T(y) over a point y €Y is compact.

&’ a conseguence we have
6.1 A proper continuous map f: X - ¥ between

locally compact spaces is closed, i.e. a closed (Rnf*E)y = Lim Hn(f-q(v),F)
-

subset Z of X isg transformed into a closed v

subget f(2) of Y. jhere the limit is taken over all open neighbourhoocds V of

in ¥. By lemma 6.3 below we have an isomorphism
Proof. Let ¥y be a point of Y which does not belong to

f{(Z2). Choose a compact neighbourhood N of y in Y and lim Hn(U,F) 3 Hn(f_1(y),E)

1

consider the compact subset Znf (N} of X. This is mapped’

onto hére the limit is taken over all open neighbourhcods U of

1(y) in X, From the fact that £ is closed 6.1, follows

fFzRE TN)) = £(2) AN T

any such U contains an open subset of the form £
here V 1is an open neighbourhood of v in Y:

This shows that £f£{Z) NN is compact. Thus N - £(Z) is a
neighbourhood of v in Y which does not meet £(Z}. U f;1(Y..f(X_U))

Q.E.D,

hus we may identify the two direct limits above and the result

Theorem 6.2, Let f: ¥ - ¥ be a proper map between locally . follows.

compact spaces, and let F be a sheaf on X. For y€Y and n€ ﬁi 0.E.D.

the restriction map
n n, -1 Lemma 6.3. Let K be a compact subset of the locally
(R f*E)y-» H (£ (¥} ,F)
ompact space X. For any sheaf F on X there ig a canonical

.Somorphism

is an isomorphism. . ~
B Lim B9 (U,F) 3 H"(X,F)



178

179
where the limit is taken over all open neighbourhcods U of y of Y. Let us first remark that the canonical map
K in X.
(£,8%G) » B (£ (y),6,)
¥ Y
Proof. Let i: K » X denote the inclusion. Recall from 2.2
that the formula is correct for n = ¢, i.e. that .ié an iscmorphism since £ 1s proper 6.2. Thus we nmay identify
with the canonical map
lim 1(U,F) » I (K,i%F)
0, =1
G — H'(f G
. — ( (¥), y)
Let us remark that i* transforms soft sheaves into soft
sheaves. In particular an injective resclution I" of F trans ‘which is an isomorphism according to 5. 3.
forms inte a soft resoluticon 1i*I" of 1%F. Thus Let £%G - I" be an injective resclution. Let us prove
that Hlf*I" =0 for i > 1. This is done by localization so
B (K, i*F) = Hn(K,i*I") = Hn(l%m (g, ")) = ‘consider a point y of ¥. According to 6.1 we have
. n . n i “ i i,.-1
lim H°T(U,I") = lim H°(U,F) (HT£,I )y = R f, (£*%G) = H(f (y),Gy)
where the last step 1s justified by II.5.9. The last group is zero by 5.3. - Using that f, is left exact and

transforms injectives to injectives we conclude that £ f*G-£,I°

ié an injective resolution of f4£*G. Combine this with the

Vietoris—-Begle mapping theocrem 6.4, Let f: X > ¥ bhe &

act that the adjunctioﬂ morphism G -» £,f*G is an isomorphism

proper map between locally compact spaces with acyclic fibers, ﬁhd conclude by an adaption of Scolium II.5.2 to cohomology

5.3, For any sheaf G on Y the induced map h compact support.

Q.E.D.
f*; Hc"(Y,G) —— Hc"(X,f*G)

Example 6.5. For the n-cube [0,1]n we have

is an isomorphism.

-
s

v
—

B ([0, 11%,%x) = 0
Proof. Let us first prove that the adjunction map a: G -»f4£f

is an isomcrphism. This will be done by localization, sc conside_ for any constant sheaf k. This follows from 4.12 and 6.4 using
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the proiection The Vietoris-Begle theorem can be refined in variocus ways.

‘Here is one such refinement.

[o,11" - [0,1]]1-‘l : (x1,x2,“"”,xn)Fn»(xz,""0,xn)

Proposition 6.7. et £: ¥ - ¥ be a proper continuous

Let f,g9: ¥ - Y be proper continuous maps between locally ap between locally compact spaces. Assume that the fibers all

compact spaces. A proper homotopy from £ to ¢ is a proper

-gatisfy the condition
continuous map F: Xx[0,1] - ¥ with

0

ol
Fi{x,0) = f(x), Fix,1) = gix] i X€EX
‘then for any sheaf G on Y the induced map
Proposition 6.6. Two properly homotopic maps f,g:s X - Y
between locally compact spaces induces the same map £%: H P(y,c) - H P(x,£*G)
c c
freg*: g (Y, k) - g;(X:§) s an isomorphism for p = 0,...,n-1 and a monomorphism for
= Ila
for any abelian group k.
Progf. Let £*G - I" and G - J" be injective resolutions
Proof. Let F: Xx [0,1] - ¥ be a proper homotopy from £ n X and Y respectively. Choose 2 morphism of complexes
to g. Let p: Xx[0,1] — X denocte the projection and for ‘s 3" - £,I" making the following diagram commutative
te[0,1] let i,: X » Xx[0,1] be given by i,(x) = (x,t), X€X. ' ‘
By Vietoris-Begle, p*: Hé(X,&)-ﬁ Hé(x:«[0,1],&) is an iso- c - S
morphism. From the formula p()it = 1 we deduce i;<>p* = 1. a P
. v v
This shows that FLE%G — e s FT
*
it : HC(XX [Ol‘l]l]r{;) i Hc(xr]&)
t follows from the proof of 6.4 that HPY  is an isomorphism for
is independent of t€[0,1]. Notice that £ = Foiy and ) ] .
P=20,...,n., Consider the mapping cone triangle
g=*fo i1 consequently
* . F * . % * * -Ch
Fo= 1, 0F =1, oF =g /{\
L4

ag required.

Ny @ = % oana vET N w).B) =0 for i=1,..

181
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We can conclude that HYC' = 0 for p=20,...,n-1, Since ¢*° Locally closed subspaces

13L.7

i - . A ;
& a bounded below complex of injectives this implies that tet h: W - X denote the inclusion of the locally closed

C* » 1, C" 1is a homotopy eguivalence, I.5.8. - The transformed

>n suBSPace W of the lecally compact space X. For a sheaf E

friangte w we have the fundamental formula

I (y,en

/

I (¥Y,0") —— T (X, 1)

IC(X,h!E) = [c(W,E]

€ 45 it follows from the definition IT.6.1.

h i :
and the resulting long exact sequence Proposition 7.2, The ineclusion of a locally closed subspace

Hi W - X will transform a soft sheaf S on W into a soft

n—1 . n £* n &
- (IC(Y’C "= Hc .6 = HC (¥, £%6) = sheaf hLS on X.

aliows us to make the conclusion. procf. Let K be a compact subset of X. We are golng to

”fove that IC(X,h,S) - I(K,h,8) is surjective. Let us intro-

duce some notation and recall the formula II.6.13

WNE —— XK IT.6.13
g
3 i i*h S = g,3*s
v v
W ”_E__q X
[(K,h,8) = [(X,q,j*8) = I_(WNK,S}
Again by 7.1 IC(X,h,S) = IC(W,S)“ From 2.6 we conclude that

'rc(w,S) - I_(WNK,s) is surjective.
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Corpllary 7.3. For any sheaf E on W we have a canonical ‘Meyer Vietoris sequence 7.5. Twe cpen subsets U and V

isomorphism of.:X give rise to a long exact sequence
HC"(W,E) = Hc"(X,h:E) .
. Hcp(UﬂV,F) - HCP{U,F) @ HCP{V,F) N HCP(UU V,F)
Proof. Consider an injective resclution E -+ I" on W,
Recall that an injective sheaf is soft, since it is a flabby or any sheaf F on X.
sheaf. Accordingly hyE - h,I" is a IC(X,-)~acyclic resolution .
Using the acyclicity Theorem I.7.5 and formula 7.1 we get | g;gggu Let us put names to the inclusions

Hc” {(X,h,8) = H"Tc(X,hlI“) = H“IC(W,I") = Hc' (W,F) h: UnvVv » X, i: U =X, j: V> X, k: UUV - X,

Q.E.D. -

Cbnsider the exact sequence of sheaves on X

0 - hh*F » 1,i*F & j,j*F » k,k*F = C

Open and closed subspaces

Let us now turn to the case where 3j: U - X is the in- where the morphisms are sum and difference between adjunction

clusion of an open subset of the locally compact space X. For morphisms. The exactness is established by localization. The

a sheaf F on X, the adjunction morphism j, j*F » F will esulting cohomology segquence c¢an be identified by means of 7.3.

. . LE.D.
induce a morphism Q

H, (X,3,3%F) = H_"(X,F)
) Let 1: Z » X dencte the inclusion of the complement

. =X¥-U in X, We can how use the fundamental sequence II 6. 11
which we can compose with the isomorphism 7.3 to get a natural

map of fundamental importance "extension by zero"
0 — J,J*F =—— F —— 1,1%*F —— 0

7.4 jyr B LU,F) > B (GE)

:to derive a long exact seguence

— HCP(U,F) s HCP(X,F) — Hcp{Z,F) —_—
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Variationg over 7.6. From the diagrams at the end cf 1.8 Cohomology of the n-sphere

section II.6 can be deduced a number of useful exact sequences. In this section we shall make some geometric applications

We give some examples. ‘of cohomclogy with constant coefficients. We consider a fixed

Given closed subspaces 5 c Z of X with complements commutative ring k. The n-sphere

0 and U respectively. Then we deduce from II.6.76 an exact
n+1
commetative ladder of abelian groups S = {xeR [ ixt = 1)

-1
— Hcp (2,F} — HCP(U:F) — HCP(X;F) — H, — has cohomology as follows
T o 3 ! ix k for p=0,n
= I
v ¥ 8.1 HP (s™,k) = {
-1 P o - 0 otherwise
N Hc {(S,F) — HC {(O,F) —= HC (X,F) — HCP(S,F) .

. ] Proof. Let us introduce the half spheres
where 1i: 5 > Z and j: U - 0 denotes the inclusions. -

Let there be given a proper, continuous map f: X - ¥, a n n n n
s*={xes | > 0} 5. = {xes5|

*net 2 < 0

b- S
closed subset B on Y with morphism ¥V = Y-B. We put ol

A=£f B and U= £ (V). & sheaf G on Y will give rise : n
Each of these spaces are homeomorphic to [0,1]7, thus they

to a commutative ladder
have wvanishing higher cchomology groups by 6.5. Notice that

) Sff]SE = Sn_1 and deduce the result from the Mayer-Vietoris
— B2 (v,6) — Hcp(x,G) — 1.7(3,6) — Hcp” (V,G) — 0

e l l l

— HCP(U,f*G)——> HCP(X,f*G)—> HCP (A, £*¢) — HCPH (U, £*G}

sequence 1.8

— BP(s™ k) — BP(sD, %) @ BP(sD,k) —HP(sT ns® k) —

Procf. The exact sequence of sheaves on ¥, in notation of-
II.6.15 0 5 GV —_— G — GB — 0 Q.E.D.

transforms under £* into the sequence . . ;
Brouwer's fixpoint theorem 8.2. Any continucus selfmap of

- the unitball B" = {x € R" | Ix| < 1} has a fixpoint,
0 — £4G; ~—— £5C — £¥G, — 0 :

as one sees by II. 6.13. Conclusion by 1.6.
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. 0 n . ; . n
Proof. Let £: B" = B be a continuous map without fix- cohomology of a closed halfspace ;mz = {xeR" | 2 9}

points. We can then construct a continucus map r: B" - Sn_1
as follows — Hcp(mz,k) = 0 for all peEN
r{x) denotes the point -
£{x) where the oriented line proof. Use stereographic projection to see that 2Ef is
) . = + R .
(x) : from fix) to x inter- omecmorphic to one half of the sphere s ! minus N , i.e.
rix
n-1
sects ST . hemeomorphic to [0,11%-{0}. The long exact seguence
n P
- g P(ro,11"-103,%k) - BP([0,1]17,k) = HE ({0},k} —
Let i: g% 1 - 8" denote the inclusiocn., Note, that roi = 1. < (o, ' ! !
This implies that
‘allow us to make the conclusion.
NN n,.n-1 Q.E.D.
i*: HY(B , &)} - H (S ¢+ Z)

. n . . noooa
i ; i inclusion 1 D> R of an open disc in IR induces
is surjective, contradicting the calculation 8.2. EES_L________ J

‘an isomorphism

k forp=mn : s . ~ . n
8.3 g PPk = { 8.5 5y E (D) SH(RTK)
(o]

0 otherwise

Proof. Consider the exact sequence

Proof. Let N = {0,...,0,1) denote the northpole of Sn+1” .

Stereographic projection fxom N will map Sn+1—{N} homeomorphi- - Pm,x) - & P(r™,x) — 1 P(wr™-D,k) —
c c c

cally onto ®?, The result follows from the exact sequence

to see that it suffices to prove that HC“KRH_D,k} = 0. This can
P it D, .n+1 D
- Hc s —{N}’k)-*)HC s ,k)-«ch (N7 k) be seen by the method used in the proof of 8.4.

Q.E.D.

and the formula 8.7.

Q.E.D. The degree of a proper map f: R™ » ®® is by definition the

integer deg(f) characterized by the formula

8.6 f*q = deg(f)a ; o:Ech{IRn,Z) .
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Proposition 8.7, A proper map £: B? L &®Y  whose degree ig defines a continuous map F: €x [0,1] — €. To see that F

different from zero is surjective. proper, notice the inequality

&l )

[Fla,t}! 2 l=z {1 - la.g '| ... -la =z

Proof. The image Z = £ (ER") is a closed subset of RT,

Assume 2+ R® and let 1i: Z +ZRn dencte the inclusion.

Congider the exact seguence where 3 denotes the inclusion of nd use this to find a constant r such that

U= R'-z in R"
[Flz, €} > 31z ;o telo,11, lzi » r.

] ix
n !
B (U, ) —— H MR, z) — " (2, 7)

tom this follows that F: ©x[0,1] - € is proper.

n . .
The map J, is surjective as one sees by considering an open To see that zr=z" has degree n it suffices to calculate

: . . . 2
disc D contained im U and noticing that the inclusion the action on the open unit disc D". The exact sequence

noo, . 5
k: D ® R induces an isomorphism

) 2,.2
B, 8%,z - n '(s",m) ~u 2%z -8 6% e
ky: 87D, @) ~— ch(m“,m)
hows that H€l(g',m) 3 ch(DZ,ZZ.} . The action of =z i z" on
It follows that i* is zerc, Since £: R" -» R" can be factoré ‘51'2) is multiplication by n as it follows from 4.15.
C.E.D.

through i it felleows that £* = 0.
Q.E.D.-

Fundamental theorem cf algebra 8.9. Any non constant complex

Proposition 8.8. A complex polynomial, n » 1 olynomial has a root in &.

n n=1

flz) = 2z + a Procf. Combine 8.7. and 8.8.

defines a proper map £f: €T - € of degree n,.

Propositicn 8.10. A transformatiocn UEZGID(EU has degree

Procf. Let us first show that f is properly homotopic sign(det (o)), the sign of the determinant.

to the map zm z". The formula

Flz,t) = 2z + ta1zn—1 + ... + ta
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By a tangent vector field on a sphere sP  we understand

Proof. The automorphism group of HCH(JRH,ZZ) is cyeclic

; continucus map vs sP éjmp+1 such that x and vi(x) are
of order 2: multiplication with +71 oxr multiplication with -1, .
o cthogonal for all xesP. As an example, the sphere 577
Uzing the fact that the commutator group of Gln(EU is

taamits the tangent vector field
Sln(ﬂn we find that deg(c} depends only on det(s). Thus

it suffices to treat the case of a diagonal matrix of the form 211
: (FX2!x1l"x4Ix3l"“"J'_in(xzn_‘l) ;] XES n

aQ
i}
—

Notice that each tangent vector 1s a unit vector.

This will be done by induction on the dimension. The case The hairy ball theorem 8.12. Any continuous tangent vector

n = 1 has been treated in 4.170. The inductive Step is accom- fleld on an even dimensional Sphere SZI’I has a zero.

plished by the Mayer—Vietorisrsequence 1.8

o g2+l

: Proof. Assume to the contrary that wv: S
- B PR, @ - 1P (R me n PR 2) - 1 PRI R, 7)o o
presents a zero free tangent-vectorfield. By normalization we
én assume that wv(x) 1is a unit vector for zll =x¢ S2np Con=~
and the result 8.4.

2 -
igider the homotopy f: S By 0,11 g°" given by

fix,t) cos{ntlx + sin(nt)v{x)

Corollary 8.117. An orthogonal transformation o€ On+1(Iﬂ

acts on H"(8",Z) as multiplication by det (¢}, the determinant’ 5
: D This shows

‘Notice, that f£(x,0) x and f(x,1) = -x, %X€5

of o.
“that the antipodal map is homeotopic tc the identity, contradict—

1 +"|

+
Proof. TLet o" denote the open unit disc in w7, It

follows from 8.5 that On+1(EU acts on ch+1(Dn+1

+Z) through:

the determinant. The exact seqguence

n+1
fe ol

- ch(Bn+1,ZZ) ~ B (s",m) +H

aliows us to make the final conclusiecn.

Q.E.D,
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Topclogical manifolds Dimension of locally compact spaces

111.9

A topological space X 1is called a topological n-manifold, In this section we shall prove a number of vanishing theorems

if it is a Hausdorif space, and eachpeoint =x of X has an for cohomology with compact support. A basic such result is

open neighbourhood homeomorphic to Rr" or':mzu In the first

case x 1s called an interior point, otherwise a boundary point. -9"1 ch(IhF) =0 for all sheaves F on IR
The set of boundary peoints forms the boundary 38X of X. .

In order to distinguish the two sets of points we shall We shall derive this from the following general principle.
introduce a presheaf ¢ on X. For the inclusion Jj: V - U

of two open subsets of X consider Minimality principle 9.2. Let F be a sheaf on the locally

~compact space X and let { denote a family of closed subsets
jl: ch(v,k)-—a ch(U,k) ‘of X stable under arbitrary intersections, in particular X¢€ Z.
Let o € HCP(X,E) be a non vanishing cohomology class. For

and the linear transposed map 7€l let a[i GHCP(Z,F) denote the restriction of o to 2.
The ordered set

8.13 Homk(ch(U,k),k) - Homk{ch(v,k),k)
{zeZ | alg + 0}
The presheaf o4 on X defined by §.13 1is called the crientation

presheaf on X relative to k. From 8.4 and 8.5 we find contains minimal elements.

0 if x €aX Proof. Follows immediately from Zorn's lemma and lemma 9.3

8.14 oA

14
—

b

if x € X-3X below.

Q.E.D,

Proposition 8.15. A homemorphism between topological mani-

folds will transform boundary points into boundary points. Lemug 9.3. Tet F denote a sheaf on the locally compact

space X and I a downward directed family of subsets of X

roof. Follows from 8.14. with intersection W. We have

Q.E.D. B ~
lim B P (2, 5) 3 0 P (w,7)
Example 8.16. A M&bius band M is not homeomorphic to an

th imit t )
ordinary band 51 x [0,1] since 8M is connected while the ¢ limit taken over 3Z€Z

ordinary band has a disconnected boundary.
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Proof. For a closed subset Y of X, let i: Y— X de-.. pefinition 9.4, Let X be a locally compact space. The

note the inclusion and put Fy = 1,i*F. For closed sets 2 o Y} dimension of ¥, dim X, is the smallest integer n for which
2 : dimension a2

the adjunction morphism,IX.5.5, will induce a morphism

ch+1(X,F) = 0 for ail sheaves F on X

sing imbedding into injective sheaves it is easy to deduce

and thereby create a direct system of sheaves on the set of that for any sheaf F on X

closed subsets of X. With the notation above, we f£ind by locali

i
=]

zation, that Hcl(X,F) for i > dim X.

Proposition 9.5. For a leocally compact space X we have

Conclusion by 5.1 and 7.3. dim X x R < dim X + 1

Preof. Let X have finite dimension n, and let I denote

Proof of 9.1. Given ¢ €H02(IR,F) with o #0. Choose a

‘the set of closed subsets of Xx IR of the form ¥ x %, where

closed subset Z of TR such that &lz # 0 and which is minimal 7 is a closed subset of IR. For a sheaf F on Xx R and & non

with that property. Let 2z be & point of Z which separates :trivial cohomology class

two points of Z  and put

n+2
z = l-=,zlnz, Z, = [z,+=[N3Z o€ H, (X x IR,F) ;o% 0

Use the Mayer-Vietoris sequence 1.8 use the minimality principle 9.2 and a Mayver~Vietoris sequence

similar to the one used in the proof of 9.1 to deduce a contra-

1 2 2 2
- H, ({z},F) - B “(Z,F) » H “(Z_F) ® H “(Z,,F) - diction.

Q.E.D.

to obtain a contradiction.
Q.E.D.
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Proposition 2.7. A locally closed subspace W of the

locally compact space X satisfies

dim W < dim X

Proof. This is a consequence of 7.3.

Example 2.8. For a proper closed subset Z

HCH(Z,k) =0

for any constant sheaf k. - Let j: U —TRD

sion of the complement and consider the exact seguence.
n 3, n,n n n+1
HC (U,k} —= HC (R ,k) — HC {Z,k) — HC (U, k)

The last group is zero by 9.7. The map j, 1s surjective as

it follows by considering an open disc D £ U and using 8.5.

X Dbe a locally compact space of

dimension < n. Given an exact sequence

0755815 .. 5™ L g,

0 .1

If 57,8 ,"n“,Sn_ are scft sheaves, then s is soft.

Proof. It follows from the long exact sequence III.7 and

the material in III.2, that

A sheaf G on X is soft if and only if H_'(U,G) = 0

for all open subsets U of X.

denote the inclu-

splitting the complex into short exact sequences one sees

hat for any open get U

1
ch (G,F) .

the last group is zero by 9.7.
. Q.E.D.

Definition 9.10. For a point x of the locally compact

_space ¥, we put

dimxX = inf dim U

“where U varies over cpen neighbourhoods of x in X.

The concept of dimension is local in the sense made precise
;by the formula

V11 dim X = sup dim X

XEeX
Proof. It follows from 9.7 that

sup dimXX < dim X

:Put n = sup dim X. For a given sheaf F on X choose a re-
sclution
R B L L
where So,pho,sn_T are soft sheaves. For each point x of X

choose an open neighbourhood UX of x with dim U, = dim X.

. . n .
According to 9.9 the restriction of S teo U, is soft. It

follows from 2.8 that s is a soft sheaf on X. This proves

n+1

that I, (X,F} = 0.

19%
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IIT.10 Wilder's finiteness theorem

‘rf A€l and RE€! , then AURE€L. Only 3) needs a proof

In this section we shall use a Mayer-Vietoris technique to - wich will be given below., It follows from Borel-Heine and 1}, 2), 3)

establish a basic finiteness result. hat every compact subset K of L° belongs to L.

3} To see this choose for A compact sets B and C with

Theorem 10 cepBcBcCcCal such that EY(L,F) - EY(C,F) has finite

1. Let X be a compact topological manifold

with boundary and Xk a noetherian ring. Bach cohcocmology module generated image. Choose similar data S and T for R. Consider

Hl(X’k) is finitely generated over k. the foilowing commutative diagram constructed on the basis of Mayer-

We shall prove a theorem which is both more general and jetoris segquences II.5.6

contains more information in the concrete case.
' (L,F) ———— H™(L,F) 8H (I, F)
{1
i

v Venr, ) — wlicur,Fy ——0 wi(c,F) eni(r,E)

()

Theoren

em 10.2. Let X be a locally compact space, X a

noetherian ring and F a k-sheaf on X. Suppose that for any
ie N, any X €X and any compact neighbourhood N of x,
there exists a compact neighbourhood M ¢ W of x such that

i1

the map HL{N,F) - H'(M,F) has finitely generated image. Then q (BnS,F) , Hi(BUS,F)

for any pair of compact subsets L and K of X with ﬁ o K

the restriction map nd conclude on the basis of the lemma below that the map

Hi(L,F) - Hi(BUS,F) has finitely generated image.
B (L,F) — ' (K,F)

i le®: O.E.D.
has finitely generated image. Lemma 10.3. Given a commutative diagram of mcdules over a
noetherian ring. Suppose that CDE is

. A — B

Proof. This is done by increasing induction on i€ #Z. To “exact and that CF and BE have l l

accomplish the inductive step, let us fix L and let ! denote - finitely generated image. Then the C — D — E
the set of compact subsets A for which there exists a compact composite AE of AD and DE has i l
E — B

subset C with A ¢ C cCc L such that H™(L,F) - HY(C,F) has : finitely generated image.

finitel ated i . Th t L[ has the followi ties
ini ¥ generatec lmage € se as ¢ e wing proper l_ Broof. Left to the reader with the recommendation to reduce

; i L.
1} Every point x has a compact neighbourhood M€ to the case where A = B and B = E.

Q.E.D.
2) If Bel +then any compact subset of B belongs to L.
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soof of IIL1.6.6 to ordinary cohomolegy. None of this offers any

IV. Cohomology and Analysis

For any sheaf & on Y the induced map

IV.1 Homotopy invariance cof sheaf cohomology f*: H'(Y,G) —— H"{X,£*GC)

In this section we shall prove that sheaf cohomology with é an isomorphism.

constant coefficient is a homotopy invariant of the space. Re-

call that continuous maps f,g: X - ¥ are said to be homotopic:

if there exists a continucus map F: X x [0,1] - Y with proof of {.1. Let us use an ad hoc terminclogy and say that

continuous map f: X - ¥ between topological spaces ig proper

F(x,0) = f(x}, F{x,1) = g(x) i X€X

i. £ is closed, i.e. the image of a closed set
Theorem 1.1. Homotopic continuous maps f£,g: X - ¥ induce

is closed.
the same map

ii. Any two distinct points of X in the same fiber

f*,g*: H' (Y,k) ~——- H"(X,k) has disjoint neighbourhoods in X.

iii. The fibers of £ are compact.
for any abelian group k.
For a proper map £: X - ¥ we have an isomorphism

Let us first indicate how this is done in case X and ¥
are locally compact. The first thing to do is to prove the 4 (Rpf*F)y = HP(f“1(y),5)
Vietoris-Begle mapping theorem 1.2 below for ordinary cchomology:

as opposed to cohomology with compact support, IIL.6.4. Next, adap for y€Y and F a sheaf on X. - This statement is proved

exactly as I11.6.2 with the following modification of II1.6.3:
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Let X be a compact subspace of X with the

dﬁgligigion to fibre bundles

property that any two distinct points of X et F denote a topological space. By a fibre bundle with

have disjoint neighbourhoods in X hen for iper ¥ we understand a continuous map £: X »+ Y such that
£10EL

any sheaf F on X ach peint ¥y of Y admits a neighbourhood V and a homeo-

Y (X,F) = Zim E® (U,F) ‘morphism g:f_1(V) S vxTF such that the following diagram is
’ = Ll s £

‘commutative
as U wvaries over all open neighbourhoods of K

(V)-—’VxF

Theorem 1.6, Let f: X -» ¥ be a fibre-bundle whose fibre

in X,

To prove this, notice first that the case n = 0 is coveréd
by the proof of III.2.2. This can be used to prove that a flabby
sheaf on X restricts to a soft sheaf on K. The proof can be :

completed as the proof of I11.6.3. F is homotopic to a compact space and let k denote an abelian

We can now generalize 1.2 tc a continucus map f: X-VY, group. For each point y of Y the canonical map

proper in the sense introduced above, Finally, copy the proof

of II1I.6.6, using Lemma 1.5 below. (RPf, k) —— Hp(f'1(y),k)
(\-y ~

is an isomorphism.

Lemma 1.5, Let X be topolcgical space and C a compact

topoleogical space. The projection p: XxC » X is closed, i.e. Proof. The problem is local on Y so we may assume that

the image of a closed set is a closed set. YxF - Y is the projection onto the first factor. Let

: F » C be a hcomotopy equivalence, where C is compact and

2roof. Let "% denote a closed subset of XxC and x a let p: ¥xC - ¥ denote the projection. According tc 1.5, the

point of X outside p(Z). TFor each point ¢ €C choose open “map p satisfies the three conditions 1.3. Thus we can make the

) c c
neighbourhoods v of < and U” of x such that U"xvV_ N2 conclusion 1.4 for p. It remains to involve Theorem 1.1 in

Let 8 be g finite subset of € such that (Vc)CES covear Cf order to make the correct identifications.

The set n u® is an open neighbcurhood of x in X which
cES
does not meet p(Z).
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IV.2 Locally compact space, countable at infinity n+1

“n+1 ;
g7 of F over X which extends s" and projects onto

Tn this section we consider a locally compact space X

L . — From the family of sections (sn} we can construct

nelN

which is ccountable at infinity, i.e. which is union of a count- - a section of F over X, namely the section s whose restriction

v n

: n . .
able family to X' agrees with the restriction of s" to X™. It is clear

(K,) e ©f compact subset. From this we can con— _:

struct a filtration (Xn)nem‘ of X by compact subsets. We that s projects onto t.

R : G n+1 . . :
shall proceed inductively: X~ = Xq» X is a compact neighbour-: If we apply this resulttoan exact sequence with F in-
n .
hood of X LJKn" Motice, jective, we get H1(X,E) = 0. Let us notice that the sheaf G
igs soft by the prcoof of IIT.2.7. The cohomology seguence
2.1 X" < g0 ; REN

— 1PN (%,0) — HP(x,E) — EP(X,T)

at infinity. A soft sheaf E on X satisfies will now allow us to conclude the proof by inducticn.

. Q.E.D.
BY(X,E) = ©

~
=

v
Jy

Corgllary 2.3. Let X denote a locally compact space count-

Proof. Consider a short exact sequence of sheaves on X able at infinity and E a soft sheaf on X. TFor any closed sub-

gpace 2 of X the restriction
c £

0 —E -~ F — G — 0

T(X¥,E) —— TI(Z%,E)

where E 1is soft. Let us prove that I{(X,F) —T(X,G) is sur-

jective. We shall use a filtration =™ of X by compact'x is surjective.

nemw

subsets satisfying 2.1. Let there be given a section t of G

over X. We shall proceed inductively: Buppose we have constructe Proof. Put U = X-Z and let i: Z - ¥ and j: U - X dencte

a secticn s of F over ¥ which projects onto the restrictio '.fhe inclusions. The exact sequence

n n n+1 n+? n+l.

t of t to X°. Choose a lifting «r €T (X F) of t

. . 0+ '
The difference between s™  and the restriction of & 1 to Xn_ 0-—+j!j*E-—+E — i, i*E — 0

defines a section of E over ¥, Extend this to a section of

n+1 n+1 . R .
over X and add the result te «r . This gives a section sconsists of soft sheaves, III.2.5 and III.7.2. The exact seguence
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In the generxal case, chocse an injective resolution F - I".

. 1 .o
0 - I(er|j*E) - I(X,E) » T(Z,i*E} - U (XFJ!J*E)
’ the resolution I*F - i*I" is a soft resolution and consequent-

ke th lusi a I{Z,-)-acyclic resolution as it follows from the fact that
and 2.2, allows us Lo make e conclusion.
0.E.D is countable at infinity and 2.2. Consequently
1im BP(U,F) = 8P 1im I (u, 1) = BPI(z,i%*1") = ®P
Proposition 2.4. Let £ denote a locally compact space £ (U,E) im I'(U,I") (Z,1i*1") H7(Z,F)
countable at infinity. For any sheaf P on X and any closed 0.E.D.

subspace 2 of X we have
Let me list three useful remarks from pointset topology,

- shich will facilitate the applications of the material of this
1im BP(U,F) 5 HP(Z,F) i PEN :

section.

Proof. Let us considexr the case p = 0. The map
L5 A locally compact space with a countable basis is

countabie at infinity.
lim I{u,F) » [ (2,F)
6 A subspace of a space with z countable basis has it—

is injective for general reasons and surjective by 2.3. Consider: self a countable basis.

an exact sequence
7 A metric space has a countable basis if and only if

0 — F ~— I =— J it contains a countable dense subset.

where I and J are injective sheaves. This induces a commuta

Bemark 2.8. The results of this section can be generalized
tive exact diagram

0 a locally compact space which is paracompact. This can be done
0 — lim I(U,F) — lim I'{U,I) -— lim I{u,J) y using the fact that such a space is the topological sum of
ﬁcally compact spaces each of which is countable at infinity,
burbaki(z) §9, no. 10, Thm, 5. The general reference for sheaves

0 — I[{2,F) -——— [(Z,I} -———— [ (Z,J} On paracompact spaces is Godement (1) .

The two vertical arrows to the right are isomorphisms by our'p;e.
vious remarks. From this we conclude that the last vertical ar;OW

is an isomorphism.
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iv.3 Complex Logarithms

g_g_géf._iihms of complex numbers

In this section we shall make some sheaf theoretical inter- The multiplicative group of complex numbers C€* fits intc

pretations-of a number of elementary problems in ordinary com- 2 an exact seguence

2mi,

plex analysis. 0 —s7m L5 ¢ & oge_, g

Argument of complex number ' . .
pf topological groups. The exponential map has local sections

Let te a ect subset of th le :
e U denote conn ed open e e complex n virtue of the decomposition

plane. The exponential seguence

] xX+iy T —— e % z
0 M@.gﬂ_,c(m)ﬂi,c(sli) —— O I l l 1-
1 -
gives an exact sequence {x,y] ROR ————— R 85 (lzl,zlzl 1)
2n (x,y) F——— (¥, expiy)

0 — =z 2% 1, c(m)) EBL rqu,csly)— w1,z — 0

nd the fact that expi: IR — S1 has local secti
where we have used that H'(U,C(R)) = 0,2,2 and III.3.3. crions There
esults an exact segquence of sheaves on C

Let us suppose that U does not contain the origin, in

which case C(S1) has a canonical secticn over U, namely ,
2mi
.2 0 — Z 25

-1 , . . . ' ¢y =L cr) — 0
z b—zlzl '. Any lifting of this section to C(IR} is called

an argument and is denoted arg. Thus
or a connected open subset U of @€ we have an exact sequence

z = |z| exp(iarg z) ;1 zE€EU

s
0 — z 57 w,c@) 2B 1 (u,ce*)) —— BNU,Z) — 0

Collecting this together we have proved that

: here we have used H1(U,C(!1‘)) = 0.
If B (U,Z) =0 then we can find a continuous
If U does not contain the origin, the inclusion of U in
argument function on U. e

L% represents an element of I{U, C(T*)). Any lifting of this to

a section of C(L} over U will be called a logarithm on U.

Thus a logarithm on U is a continucus map log: U - &, such
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that fiote, £{0) = 0. Let us prove that

z = expllog z) ; zEU
exp(f{z-1)) = =z ;o lz-1] < 1

Using the commutative diagram above we see that logarithm and

argument are related by the formula otice that the two functions have the same logarithmic deri-

yative and both takes the value 1 for z = 1.

3.3 log z = loglz} + 1 argz ; ZEU

It follows from the lemma below that logz is an analytic Corollary 3.6. Let ¢ denote the sheaf of analytic functions

function on U. From the relation exp{log z) = z we find at n € and 0% the sheaf of zerofree analytic functions on .

once that ‘Then we have an exact sequence of sheaves

3.4 L togz =L ; ZEU 0 — 7z X o R px g

Lemma 3.5. Any continuous section of n'th roots of unity 3.7. For an integer n 2 2 let

I

enote the n'th roots of unity. Raising to the n'th power gives

exp: T = T* sequence of multiplicative sheaves on the complex plane

n
over any open subset U of {* is analytic. 0 sy — 0% — 0% — 0

Proof. By & translation argument in the group C* it suffig hich is exact as it follows from 3.6. For a connected open set

to construct one analytic section over some open neighbourhood of € we get the exact sequence

of 1 in &%*. - The power series

— T(u,0%) 2. T(U,0%) wmmmes H1(U'“n)

0 — vy,

+
2(z) = § (-1 ;olzl <1

o :Let there be given a fixed f€I(U,0*) where U is an open
has radius of convergence 1 and satisfies :

ubset of € with H](U,un) = 0. We want to analyse the space

£'(z) = |zl < 1

-

A
z+1

z = {(x,y)cuxtc|y" = £(x)}
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Let us prove that this is homeomcrphic to U xun: Choose ancther basic feature is that a continuous map £: &% - T* has

geT(Uu,0*}) with a degree, deg(f] given by

g(2)™ = £(z) : ZEU fr*q = deg(f) ; a€H (T, B)
We can ceonstruct two continuous maps Using the material from III.4 we deduce an exact seguence
(2,3) 2 (g (x) ) 0 —z T r(ex, o) B o1or, e By — o
(x,yi(x)_1) a[[n (Xlu) “and as a consequence of Proposition 3.6

0 —z 2 e, 0 SR, p(eE,0r) 29 Lz e o

which are easily seen to be inverse to each other.

Let us drop the assumptions on U. The above result shows

that 2 -» U 1is a covering space with u  as covering group. The degree can be calculated by the formula

3 1
3.9 deg (f) = Res@—;o)

The pointed complex plane &%

Let us recall that an analytic function £ on T* can
Proof. We can write £ 1in.the form

be expanded in a Laurent series

o
£l{z) = ¥ anzn ;o ZET*

n=mc

flz) = zlexplg(z)) : z € E*

where g is analytic in C€#%*. This gives
and that the residue of £ is defined by

B tee

Fhl

3.8 Res(£f,0) = a_,

‘Note that Res(g',0) = 0, and the result follows.
From this follows easily that we have an exact sequence

D Res
0 —+ & — I(C*,0) — [ (C*,0) T — 0
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iV.4 Complex curve integrals. The monodromy theorem. where g(t) denotes evaluation of the stalk £ at

9 € Oy

The complex plane comes equipped with the following
sequence of sheaves Let us establish the basic rules for this symbol. For an

_:analytic function hi(z) on U we have

2

.2 EY Dh(z}dz = hiy{b)) - hiy(a))
where D= d/dz is the complex differentiation. This seguence

is exact as it follows from the theoxry of complex power series “as it follows by considering y*h €7 ([a,bl,y*0). -
Let there be given an open subset U of , a continuous curve' Subdivide [a,b] into two intervals [a,c¢] and [o,b]
Y: [a,k]=+U and an analytic function £f{z) on U. We are gOing'- }and let Y1rYy dencte the respective restrictiong. We leave

to make sense to the symbol t to the reader to show that

= [
jY £{z)dz .3 JY £(z)dz jY1f(z)dz t |y fla)as

2
Consider the pull back along vy of the sequence above
an be evaluated as follows
D
O—»E-—)T*O-a-f‘*()—»o
rb

1.4 [ f(z)az - |

Iy E{y (D) )y'i{t)dt

Since H1([a,b],m) = 0 we get an exact sequence .
Proof, Suppose first that £ = Dh. In that case
0 -0~ I(la,bl,v*?) = I ([a,b]l,Y*0} - 0O b
I . fly{t)) v (t)at = J: é% hiy{t})dt = hiv(b)) - hiY(a))
The adjunction morphism 0 - yv,v*0 induces a map
and the result follows from 4.2. In the generazl case we can use
I{U,0) = I{la,bl,r*0) :“3 to make a reduction to this case by a finite subdivision,
using Borel-Heine.

Let y*f denote the image of £ under this map, choose

g€I({la,b]l,y*0¢) with Dg = yv*f and put

IYf(z)dz = g(b) - g(a)

217

n case vy: [a,b] - U is continuously differentiable, our symbol
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and &

Proposition 4.5. Let B,yv: [a,b] = U be continuous éurves' Notice that the stalks

G €0
(b,2) € “nib,0) (a,t) € %nga,0)
which are homotopic with fixed endpoints. Then for any analytic ye independernt of t since [b1xI and [a]lxI are

function f(z) on U onnected. In particular G(b,t} - Gla,t) is independent

Jf‘r £(z)dz =Jf8f(z)dz

Progf, Put K = [a,b] and I =[0,1] and let MM: KxI > U et T: [a,b] » @ -{0} denote a continuous curve. Choose

be the required homotcpy i.e. a continuous map a:continuous function 8: {a,b] » B such that, III.4.5

(a,'l) (b"]) Y(t) = ‘Y(tll EXpia(t) ; tE{an}
We shall establish the formula
{z,0) (b, 0)
J % = logly(b)y(a) 't + i(8(b) - 6(a))

which is constant on the two vertical lines, and such that
M(s,0) = B{s), M(s,1) = v(s) £for s€EK. Consider the pull back

of the exact sequence 4,1 along M: KxI-=U Procf. Acccording to our discussion of complex logarithms

1

1v.3 we can find fog €1 ([a,bl,y*0) with D fog = y*(z l»2z ')

Oﬂg——‘ﬂ*O -— TI*0 - 0
Log(t) = logly(t)| + is(t) ; t€[a,bl]
Using H‘I (KxI,C) = 0 we derive an exact sequence
from which the result follows.

Q0 - & — I(KxI,O0*0} D, T {KxI,*3} — 0

Let T*f € [ (K x 1,0*0} denote the transform of f by the adjunctit In particular, for a closed curve vy: [a,bl - T-{0}, we

morphism 0 - M, M*0, and choose GET(KxI,M*0} with Can put

DG = MI*f, For the curve Tt K - U, Tt(s) = T{s,t), we have . . 4,7 I{y,0) = 2—1—(6(}3) - 8(a))
) mn

J fiz)dz = G{b,t} - Gl{a,t) ; te[0,1]
T
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and we find from 4.6 order differential equation

Let X dencte an open subset of € and f an analytic

41,8 =7 — = IL(y:0) anction on  X. We shall analyse the first order differential

quation

' Dv = f
Definition 4.9. Let s€C and +vy: [a,b] » € - {5} he a v v

continuous curve., The winding number of v with respect to s

, . According to our analysis of the logarithmic derivative any
is given by

pint ¢f X has a neighbourhood U in which the equation admits
Ily;s) = I(y-2;0) 2

a zerofree analytic solution v, sav. - For a second solution w

on U we get
By a simple translation argument, we find from 4.8, that :

1

D{wv ) = (Dwiv | = wv °Dv = fwv lewv 2fv = 0

= I({r:s)
n particular, if U is connected we find, that wv_‘i is constant.

‘In conclusion we have shown

Logarithmic derivatives

A zerofree analytic function g on an cpen set U of € - Proposition 4.12. The sclution sheaf to the 1. order equation

has a logarithmic derivative ©Dlogg=g'/g. Wotice, that = fv 1s a locally constant CT-sheaf of rank 1. - The equation

‘admits a zerofree solution on any contractible open subset U of .
Dlog gh = Dlogg + Dlogh r g,he I (U, 0%}
Let us specialize to the case X = €-{0}. Tet U, be the

This gives a sequence of sheaves on complement to i]=e,0] in € and U_ the complement to i[0,+e[,

Choose a solution v, + 0 on U, and a sclution v_+0 on

4,11 0 - TF ——s Q% _chﬁio 0
B such that

H]

v+(z) v_{(z} + Rez<0, zEU+nU_

which is exact: Given an open subset U of &, a point x of:

U and fETI(U,0}. Choose a smaller neighbourhood V of x and:
: onsider f£inally the number meT* given by

PEI(V,0) with F' = f£; this gives DlogexpF = £ by direct -

calculation. = From 4.11 we deduce an exact sequence
v_{z) =mv {2} ; Rez>0, z€U NU_

I(u,0%) 2199 ;1 (4,0) — B (U,T*)
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The number m€{L* is called the monodromy of the differential

equation. The monodromy depends in fact only on the solution shea

=.‘I

In particular, the solution sheaf isconstant if and only if m

The monodromy of the eguation is

m = exp(2ni Res{f;0))

Proof. TLet us make the two choices

F+ EI(U+,O) with DF+ = f
F_EeT(U_,0) with DF_ = £

We shall assume this done in such a way that
F (z) = F_(z) i Z€U_NU_, Re 2<0

W =

To calculate the monodrony we can use the solutions +

and v_ exp F_. We have

v_(1)v (1) exp(F_(1) - F (1)}

exp(F_(1) ~ F_(~1)+ F_(=1)= F_{1))

exp [ 4 fiz)dz
'8

It remains to quote the formula

[ 1 fz)dx 2i Res(£f;0)
]

exp F+.
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The principle of unigue continuation 4,.14. Let E be a

heaf on the topological space X which satisfies the principle of

‘unigque continuation i.e. any section of E over any open set has

open support. Given an open connected subset U of E and two
;Sections s,tel(U,8). If 8, 7 tX for one point =x of U,
“then s = t.

Given a continuous map f: W - X then the sheaf £*E on W

will likewise satisfy the principle of unique continuation. In

particular, constant sheaves or more generally locally constant

heaves satisfy the principle of unigue continuation.
We are especially interested in the fact that the sheaf O

of analytic functions on the complex plane satisfies the principle

of unigue continuation.

Analytic continuation 4.15. Let ¢ be a point of the complex

plane and s¢€ OC an analytic germ, i.e. a convergent power

series. Given a continuous curve Y: [fa,b] - T with ~y(a) C.

By an analytic continuation of s along v we understand

section

g 3 I([a,b},‘r*O) H ga = g

An aralytic continuation of s along Yy is unique if it exists

by the principle of unique continuation.

Monodromy theorem 4.316. Let X denote a connected open subset

- of the complex plane, ¢ a point of X and s € Oc an analytic

germ, which admits analytic continuation along any continuous curve

- 8: [a,b] — X with s8(a) c. - Given continuous curves
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B,v: [a,b]l - X with g(a) = y(a} = ¢ and B(b) = y(b}, which Lemma 4.18. Any locally constant sheaf on [0,1] is constant.
are homotopic in X with fixed end points. Rnalytic continuatibﬁg
s along B and y respectively have the same stalk at the othér 2roof. Use the procedure from the proof of III.4.5 to find
endpoint b. .a finite subdivision of [0,1] such that the sheaf is constant on
each subinterval and proceed by a simple induction.

Proof. Let : [a,b]x[0,1] » X denote a homotopy as in the
proof of 4.5. The sheaf A4 = II*0 has the section s over

{a}x[0,1] which can be extended to a secticn over [a,b]x{t] fOFﬂ Proposition 4.20., Let X be a simply connected and locally

all t€1[0,1]. By proper base change 1.4, such a section can be: 'path—connected topological space. Any locally constant sheaf on X

extended to a section s of A over [a,b]«x Vt where V iS_'

t t is constant.

an open neighbourhoed of t in [0,7]. By the principie of

unigue continuation, these sections will determine a glcbal Proof. Let E be a locally constant sheaf on X and ¢ a

section of A. Conclusion by the fact that the restriction of A }point of X. The restriction map [ (X,E)} - E, is injective by

to {b}x[0,1] is constant. fthe principle of unique continuation. Let us prove that a given

Q.E.D ssEEc extends tc a gleobal section of E.

For =x¢€X choose a path Yy from c to x and choose an

A wide class of examples, where the monodromy theorem applie: ‘cpen, path connected neighbourhood U, of x such that the re-

is the case where s satisfies a linear differential equation - “striction of E to U, 1is constant. Let st [(Ux'E) be the

- ontinuation of s along y_.
4.17 s(n)-+a1s(n (R a, 48ta, =0 x
7 We must show that given x and vy in X, then s
where Bqar.0.08y are analytic functions on X.
¢ and sy have the same stalk at any point 2z of Uxf]Uy“ To
To see this let us remark that the solution sheaf E to Lo
this end connect ¢ and 2z in two ways: Follow Y, from ¢

the equation 4.77 is a locally constant ¢-sheaf of rank n as:;

. to’ x and pass from x to 2z by a path in Uyg. Similarly,
it follows from the theory of differential equations over an open :

follow Yy from ¢ to y and pass from y to 2z by a path
disc. Given a continucus curve vy: [a,bl-X. Then <vY*E is a
~in Uyu - The two paths from ¢ to =z are homotopic and the

constant sheaf on {a,bl, as it follows from the following lemma,
'- - result follows from the monodromy principle.

and consequently any germ over a can be continued over the whole

interval.
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]

efinition 4.21.

Let

topological space X and v: [0,1] - X

= ¢, The linear transformation

~ IST I, ~
EC——aY*EO wm— T([0,1],Y*E) =——» T*Ei-——aEc
where Iy and r, denote restriction to the stalks,

the monodromy along .

Buler's equation 4,22,

E be a locally constant sheaf on thé

a loop with Y(0) =

The differential equation

227

1f the indicial equation g{v} = 0 has two solutions r and s,

5

(1) the Euler equation has solutions 2% and =z If » 1is a

double root of the indicial equation, then we have solutions z"

and leogz“ By analytic continuation and counter clockwise

r 2nir_r
—— e Z

is called
logz = logz + 27mi

. conseguently we f£ind the monodromy matrix

r#s r=s
zzw“ + azw' + bw = { ;7 a,bEC Ziir 0 1 1 %)
re rir 2nir
[~

10 eZHlS o 1

has a solution sheaf on €-{0} which is a locally constant

T~sheaf of rank two. In crder to calculate the monodromy matrix

we introduce the operator *} Notice that {1 2ni

2“

L{w) = z°w" + azw' + bw

and the polynomial

g{v) = v(v=-1) + av + b

By explicit calculation we find that
L(z") = q(v)z’
and by applying %; to this formula

L(zvlogz) = q'(v)zv + q(v)zulogz

. . 1 1
10 1 } is conijugated to {0 1}"

Bessel's eguation 4.23.

zzw" + zw' + (zz—nz)w = 0
has monodromy matrix nd z ne @
e21'rir1 0 1
0 e—Znin 0 1

In case n = G this can be seen from the explicit solutions

+eo m 2m
J. {z) = E (_1) {E\
0 m=0 (m1) % \2/
- o L O 1Y/ z)*"
K = o~ £ 2z
O(Z) mzo (m!)z \1+2+ “""+nj\2} +lOgZJO(Z}
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IV.5 The inhomogeneous Cauchy-Riemann equations cee this chapter 7.20 for an elementary discussion.
A smooth T~valued function £ on an open subset of the
complex plane is known to be analytic if and only if £ = utiv a compact subset K of C
satisfies the Cauchy-Riemann eguations .The induced operator - TC(Q,C)
T P
e
3u _ 3v u _ 3v 3. incl.
5.1 X% 0 By | ax oot [0 = TR 3
= v
re,0) —2% 1,0
Introducing the operator - ?,E—1-iaw\ this can be expressed 'is surjective as it follows frem the
) 55 2\8x iy ) . Tk ¢ R, T
by - £ = 0. accompanying commutative diagram, d
37 v a3 v
noticing that the composite of the T(K,€) ——22 |, 1(x,0)
Theorem 5.2. Let ¢ be a smooth C-valued function on the “two vertical arrows to the extreme
open subset X of . Then the partial differential equation “right is surjective, as it follows from the fact that ( is a
soft sheaf.
Y
dz
+The case X = (€
can be sclved with a smooth function £ on X. Given g€I(€,() we are looking for fe€T7(T,C) with
i=—Ff = g. Choose a sequence of compact discs KO,"uu,Kn,ﬂ.u with
97
Proof. Tet us introduce the sheaf C of C-valued smooth ; center in the origin and union (€. We are going to construct a
n . d
functions on the complex plane. We shall be concerned with the sequence f,,f ,... where f E€I(K,C) with g: f, = ¢ and
z
morphism E: : C - C.
3z sup |fn+1—fn| < 270
n hY
K
Functions with compact support
The point of departure is the existence of an operator Suppose we have already constructed fg,...,f . Choose
o n+1 ; 3 X )
9o4q ETHK () with —— $h4q T 9. Notice that —- (¢  ,-f.) =0

3z 3z

which proves that wn+1—fn is analytic on K", Expand this

T: IC(E,C) — I{a,C})

- function in a power seriesaround the origin to see that there

with (3: oT) (£f) = £ for all f EIC(E,C)" Such an operator is exists a polynomial p_,, such that
0z n
given by
1 f(z} = -
T ———d H - - n
Tf (w) PR j[ z—w o7 A dz wet SUPKnimn+1 £ pn+'|| <2



230

and put fn 1v.6 Existence theorems for analytic functions

Define £(z) = lim fn(z)n Notice
n->

1 wn+1-pn+1"

n

for =z €K we have We shall analyse a number cf classical existence thecrems

fiz) = lim(fp(z) - fn(z)) + fn(z)

prwee ‘in complex analysis by means of the following basic

which shows that f—fn is analytic on k" and consequently

5z = £ (1) = a(2),
oz 9z

Theorem 6.1. The sheaf ¢ of analytic functions on the

“complex plane satisfies

The general open subset X of €

i _ s
We are going to follow the proof scheme of the previous H™(X,0) =0 P2

case. Thus we must show the existence of an increasing sequence

¢

K”,...,K" of compact subsets of X, such that every compact for any open subset X of €.

subset of X is contained in one of the K"'s and such that any

fe I(Kn,O) can be uniformly approximated by analytic functions

on X . pn the complex plane. The sequence

We shall use Runge's approximation theorem 5.3 below. For

neEMW let e be the complement in & to the set

U D(a;%) u{xea| lxl>n} is exact as it follows from the local part of 5.2. We are in
C-X
* fact dealing with a soft resolution of the sheaf 0. Thus

Let us prove that any bounded connected component V of &-K" H'(X,0) can be calculated as the cohomology groups of the com-

plex

!Q)

meets €-X: A point x of V must be contained in one of the

[}

d
discs D(a,%)n This disc must be contained in V since V is 0 — I, — 1,0 > 0

a connected component, while aé€ V. Conlusion by Runge's thecrem,

: Conclusion by 5.2.
Q.E. D2

Runge's _approximation theprem 5.3. Let K be a compact subset

of the complex plane, and P a subset of C-K consisting in Primitives

one point from each bounded, connected component of &€-K. Any The exact sequence 4.1

analytic function defined in a neighbourhood of X can be uni- Qs T > 0 2y Qaes

formly approximated on K by raticnal functions with poles in P..:

gives rise to a cohomclogy sequence
An elementary reference is Burckel (1) VITI.§2.8.71.
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Proof. Let ¢ denote the sheaf of €-valued smooth functions
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6.2 T(X,O)ELI{X,O)-a H1(X,E)-ﬂ 0 By inspection we see that f has a primitive in X if and
bnly if Res{f;s) = 0, Thus the residue will induce an iso-
which shows how the problem of primitives depends on the topblogx
of X. Res(=;s): H1(X,E) 3
Logarithms : Recall that £ is said to be meromorphic at s if the principal
zQgarithms

The exponential sequence 3.6 part of the Laurent expansion of £ at s is finite, i.e.

the expansion has the form

0= & - (0 — 0*— 0
+-ca
£(z) = | a (z-s)" ; a_+0

n=m
gives rise to an exact segquence

The integer m is called the degree (or multiplicity) of £
6.3 I({x,0) ‘"”I(XIO*) i H1 (x,Z) — 0 A at s and is denoted div{(f;s)

and an iscomorphism Mittag-Leffler thegrem 6.6, Given a discrete subset 8 of

X which is closed relative to X, and let there for each s €85

6.4 H?(X,O*) 3 HZ(X,Z) “be given a finite series

a a
o, 2,

We shall prove in VI1I.6.8 that Hz(X,Z) = 0. 3 5
{z -s) (z-3)

[l

xample 6,5. Let us consider the case where X 1is a disc with - Then there exists an analytic function on U=S which for each

s€ 8§ has the above series as the principal part of the Laurent

expansion at s.

oo
flz) = an(z-s)n 7 2€X Progf. Let us describe a general construction departing from
. a2 locally compact space X and an abelian group BD. Let P
where +§° an(z-s)n converges for all z€X while the principal: - dencte the sheaf of D-valued functions with discrete support: for
part n=e mi?a_m(z“s)-m converges for all =z€C-{s}. The residue -an open subset U of X we can describe I (U,P) as the set
of £ at s is of functicns s: U - D for which the set {x€U ]| s(x) #0} is
Res(f;s) = a

-1
discrete and closed relative to U. Remark that the sheaf 0
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is soft (not flabby in general}).
&M

We shall now present a theorem of Weierstrass which ante-

Let denote the direct sum of countably many copies 3.dates the theorem of Mittag-Leffler.
of €. We can think of an element of E@N as a segquence
Aprdgsen of complex numbers of which only finitely many are Weierstrass® theorem 6.7. Given a discrete subset S of X

different from zero. By the sheaf of Laurent expansions, L[du

we understand the sheaf of memq—valued functions on @ with dis

_closed relative to X and let there for each s€8 be given

‘an integer d(s) € Z. - There exists an analytic function f
crete support. Thus our initial data is precisely a section of von X-5 which has ne zerces on X-8 and which is meromorphic
e over  X. :at each s€8 of degree d(s).

The sheaf M of meromorphic functions on € is the sheaf

associated the presheaf whose sections over the open set U is ' Proof. The sheaf of divisors, D{v is the sheaf of Z-valued
functions on the complex plane with discrete support.

{£/g | £,9€1(U), g, +0 for all x! Let M*, the multiplicative sheaf of moromorphic functions

dencte the sheaf associated to the presheaf whose sections over

civen meTl{U,M) and s€U, In a neighbourhood of s we can the open set U is

represent m = f£/g where £ and ¢ are analytic functions
with g, £0 for all x€U. It follows that m can he represent§ : {f/g | E,9€T(U,0), £.+#0 and g,*0 for all x €U}
by an analytic function in a punctured neighbourhood of

is meromorphic at s in the sense of 6.5. The sheaf M is a

'Alternatively I{U,M*) can be described at the group of multipli-

sheaf of rings on €. Here we shall only be concerned with the cative units in I (U,M), where M

is the sheaf of meromcrphic

underlying additive sheaf. Taking the principal part of the Laur functions. We can £it M* into an exact sequence
expansion defines a merphism of sheaves pp: M - lau which £
into an exact sequence of sheaves 0 — 0% — Y* QLX Piv — 0

PP

0 —s 0 —s M 22 fgu — O vhere div is defined at the end of 6.5. From this we deduce

the cohomolegy sequence

Theorem 6.1 provides us with an exact sequence div
0 = I (X,0%) — I (X, M) 1 (x,04v) — (X, 0%)

0 s T(X,0) — T(X,H) =5 (X, lau} —0

from which the result can be read off.
Q.E.D.
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Recall from the discussion of logarithms 6.4 that

H (X,0%) > H2(X,ZZ)

Thus the result follows from VI.6.8.

Any meromorphic function on a connected

open subset X of the complex plane is a guotient of two analy-

tic functions on X.

Proof. Let m be a non zero mercmorphic function on  X.

Write the divisor of m as

divi{m) = F-G

where F and G are positive divisors on X, i.e. assume
positive values only. According to 6.7 we can find non zero
meromorphic functions £ and g on X, with div{(f) = F
Since F and ¢ are positive, it follows

and div{(g) = G.
that f and ¢ are analytic functions on X, moreover

aivimtE tg) = 0

i.e. mf_1g is a zerofree analytic function on X.

Q.E.D.

‘s finite dimensional real vector space E.

civen fE€T{U,C)

7.1

Let

Let

_ DeAR

7.2

subset of RB™ and v = (v1,ﬂu“,vn)

rhe sheaf of vector fields on E:

v, 7 De Rham theorem

Let us describe the basic sheaves of differential geometry.

Te begin consider the sheaf { of smooth R-valued functions on

Let C(E) denote

the sections over an open

gubset U of E is the set of smooth maps from U to E.

and v €I (U,C(E)}) define vaE I{u,C} to

be the directional derivative, i.e.

fix+tv(ix))-1(x)
t=-0

D _f{x) = 1iim
v t-0

XEeU

Bean(C,C) dencte the sheaf of R-derivations in C:

j: U » E denote the inclusion of an open set, a section of

{C,C}) over U is a morphism cf IR-sheaves

D: §*C —— j3C

- such that for any open set V of U

D(fg) = gD(f} + fDI(g) : £,g9€I(v,C).

Proposition 7.3. The directional derivative induces an iso-

morphism of sheaves

C{E}) ——— ﬂenE{(C,C)

n

Iirg

roof. Let us assume that E = IR Let U be an open

a smooth vector field on U.

237
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We have roof. By means cf the chain rule we get

_ ., 3 5
Pv = Vi e, T Ynaxs

n jO i

as it follows from the chain rule. This proves that our map is Q.E.D.

injective. Consider an arbitary section D of Der]R(C,C) over:

U. Put Let X denote a differentiakle manifeld and € the sheaf
=D - 5D(x) o
i’ ax of R-valued smooth functions on X. The tangenit sheaf of X
is by definition the sheaf T = Dery (C,C). The sections of T
i P i i f ¢,¢C o ith :
Notice, that is section ¢ Deh]i( ,C) ver U wi are called tangent vector fields.
) o= i = 1,...,n. Let that P = 0. . e ' .
P{xl) 0, 1 T 7 et us prove a So let there Given two tangent vector fields v and w over the same

i f ti £ bset WV "
ke given a smooth function on an open subse of U. We open cubset U of ¥. We define the bracket [v,w]€TI(U,T)

must show that Pfla) = 0 for any a€V. According to Lemma :
by the feormula

7.4 below we can write

7.5 [v,w] = vow - wov
fi{x) = £{a) + Z(xi—ai)hi(x)

where h ,hn are smooth functions defined in a neighbourhood:

e

of a. If we confuse f with its restriction to that neighbour-

The De Rham complex

For p€N we put
hocd we get

PE{x) = I(x;-a;)Ph, (x) GP = Hamc(p) (T, )

hich f = 0,
which shows that Pf(a) 0 the sheaf of alternating p-forms on 7. To describe this let

us first remark that QO =C . For p > 1 consider the in-

clusion j: U -» X of an open set. The sections of P over U

Lemma 7.4, Let D be an open disc in R" with center a.

is the set of morphisms of sheaves
Any smooth function f on D can be written
w: J¥Tx ... x 3% - j¥C (p-factors}
f(x) = £(a) + Z(xi—ai)hi(x)

such that for each open set V of U, wi{v) is an alternating
where h1,u"h,hn are smooth functions on D.

Ta (7o
fi{x) - f(a) = JO ar f{t(x-a) + a)dt = Z(Xi_ai) Bgf(t(x“a)+a}dt
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p-form on the ¢(V)-module T(V}). - Recall the presence of The exterior dJderivative d and @ constitutes the de Rham

& pairing exterior product

p g pP*q
G, 2% =« 1(u,9%) - I(U,R ) £Q§2£2£=léig- Let X be a differentiable manifold.

given by the formula “rhe de Rham complex Q" 1is a soft resolution of the sheaf B,

_ 1 . . Proof., Recall from IIT.2.8 that soft is a local notion.
7.6 GI\B(V1,onu,Vb+q)—-£ﬁEE E Slgn(o)d(v6(1)'“””'Vd(pfﬁlvé(p+1)'“”"vc(p+q)) Froot
Thug it follows from III.3.2 that C is a soft sheaf on X.
2This implies that any sheaf of (-modules is soft III.2.9.
the sum being over all permutations ¢ of [1,...,p*gl. This

Thus it remains to be shown that for any point =x€X,

makes Q" into a sheaf of graded algebras which is anti commu- X

is a resolution of WR. By a suitable choice of cocrdinate system
tative:

it suffices to treat the case where X = =" and x is the

origin. Conclusion by 7.11.
7.7 aP A ge = (-3 PRI A o 0.5.D

The representation T = Derp (C,C}  and simple evaluation give Poincaré lemma 7.11. Let 0" denote the de Rham complex on

rise to a morphism of sheaves R . For an open disc D with center in 0 we have

uir (D,2°) = 0 for i > 1

: - - ; : . oP p+1
in fact an IR-derivaticn. This c¢an be extended to d: 2 -» Q Proof, For p > 1 let xP  denote the operator

by the formula

kP: 1(p,2P) — 1(D, 2P

_ i+ A '
7.8 dm(vj,ou”,vp+1) = % (-1} viw(v1,n"“,vi,n"",vp+1)
which maps the differential
_1y 1*3 - : :
+ i;j =1 m([vi,vji,vi,"““,vi,ﬂ.ﬂ,vj,.u",vp+
w = f(x1,"““,xn)dxi Adx:‘L PN AdXi : i1< i2< "
This satisfies dod = ¢ and 1 2 p

7 g d(mpncﬁﬁ s dP A od s (—1)pprdwq _into the differential form
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Integration 7.13. Let 9" denote the sheaf of smooth n-forms

1
kPy = Xi,l (Jo £LO,.. .‘,O,txi1,xi1+1,., . .‘,xn)dt)dxi Auea Adxi ) - -

+1 -1 — . : Tooofy L
We must verify the formula KPFTaP o 9P KP = A J TR ) —R

“py means of the usual integral on R

To this end we offer the following details:

J f(x.', . ..,xn)dx1 A v A dxn = Jff(x,l,., ...,xn)dx1 . ..dxn

1
p-tp ([ &
3% k%w U qelEf (., 0,8%, ,x, 4,000 )dt dxi A dxi
0 1 1 1 2
‘Let us prove the fundamental formuls
Z 1
+ b4 [ £1¢ 0,tx. X, ....)c'it) dx. A dx -
351, i, (‘0 R A S erw=0 F mETc(an,Qn h
1 1 | _ ~
kP 13Py 3 (Jo X‘f;‘l(“'o'txj'xjﬂ' ..)dt)dx. A dxiz'” It suffices to treat the case o = g(x1,.. ; ..,xn}dx1 " "Adxi“ . Adxn

‘where g 1is a smooth function <n =Y with compact support

z

1
- r
3 Xi'] (L} fj('...,O,tx.‘I,xi‘I”,..)dt) dxjf\dxi

i=-1
2. Jdm = (-n? I%%; (x1,.‘.,..,xn)dx1,\ we A AR

leaving it to the reader to evaluate the integrals in the first

(Zoreun

and the third line.

Q.E,]
In conclusion the integral induces an iscmorphism

De Rham theorem 7.12. Let X denote a differentiakle manifold

J: ch(IRn,JR) — R

which is countable at infinity. Then

More generally let X be an oriented smocth n-manifeld, i.e. X

H'{X,R) = H"I(X,8")
1

admits an atlas (U ,¢ ) whose transition functions ¢, 0¢B_

have positive Jacobi determinants. Th i
Moreover, the cup product is induced by exterior product. P irants en we can construct integrals

I: Ic(Uu,Qn) s R
Proof. Combine 7.10 and 2.2 with I.7.5. The statement about ‘

the cup product follows from II.10.14.
Q.E.
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. n .
which agrees on the overlaps. Froem the facet that Q& is soft rake any smooth function g on V with compact support, which

follows V.1.2 that the presheaf s constant 1 in a neighbourhood of 0 in V., The restriction of

to V-{0 represents the canonical cohomole c¢lass.
O e IC(U,ﬂn)V dp {0} P gy

is a sheaf. Thus we obtain an integral Example 7.15. Let X denote an open subset of € and £(z)

J: Ic(x’ﬂn) — an analytic function on X. The exact sequence 4.1 gives rise to
a boundary map

1

which satisfies the relaticn HO(X,O)‘—m—-—~—+ H (X,C)

erw =0 ; merc(x,gn“1)

The image of £(z} by this map can be realized as a de Rham coho-

: Q .
using the fact that the presheal o IC(U' mology class by the differential form -f{z)dz. To see this

igs a sheaf, we can reduce the problem to Ifl, where it allready consider the commutative diagram

has been delt with,

Example 7.14. Let V denote a finite dimensional real
vector space. The exact seguence in cohomology with compact where the second vertical arrow is separation in real and
support gives rise to a boundary map imaginary part while the third vertical arrow can be described
_by decomposing the analytic function £ into
HCO({O},]R) - HC1 {(V, R}
fix+iy} = ulx,y) *+ iv(x,y) ;7 Xtiy EX
Let us seek a de Rham representation of the image of the constant
function 1. To this end consider the commutative diagram where u and v are smooth real functions on X. To f(z) we

associate the differential form

0
0 — I (v-101,2"%) — 1_(v,20) — o (01,0% —s 0
a d P =1 a fiz)dz = {ulx,yidx - vix,y)dy) + i{u(x,yldy + vix,y)dx)
0 — I tv=(0},8Y) — 1 v,y — 1_(t0},0Y) —— 0

The commutativity of the diagram follows from the Cauchy-Riemann

equations 5.1. Conclusicn by XI.4.9.
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Example 7,16, Let p be a smooth real function on € with

n

compact support which is constant in a neighbourhood of 8. Let - R as foliows. Put

ug show that

n
_ -n i-1 A
6(x) = xr(x) 121 (-1} x, dxgo. adxg . adxy
| o Eaa =00
T* N
where r(x) = (x.l2 o +Xn2}i” This is a closed differential form

*
In case p(0) = 0 the function ¢ has compact support on C on the space r"-{0}:

we f£ind that

r 2 32 4¢P + nr fax,.. Lax

ds = dr P ar™s + r "ar’e )

1
)
[S}=1

22y = ¢

which is zero by direct calculation of the first term. For a smooth

n

As a consequence the value of the integral depends only on p(0). function p: B® - R with compact support and constant in a neigh-

Consider a smooth function p:[0,+] - 1R with compact support bourhood of the origin we have

which is censtant in a neighbourhood of 0. The composite of o n
crn__.lp(O) = (-1} J n B adp
and r = VEIty? defines a function which we alsc denote by 5. R-{0}
We have where O _, = ni,, i.e. n times the volume of the unit ball
in R". The formula can be proved in a way similar to the proof
- dp (3r ar - 14de of the formula 7.16.
dp dr |\ 9x dx + Yy dy) r dr(XdX * ydy)
% dz = } dlog (X2+y2) + 1—2 i{-ydx + xdy) Example 7.18. The formula
r
1 daz _
. Jm* 77tz A0 = 00

Using polar ccordinates we get

ig true for any smooth function ¢ with compact support:

[ 1 ;d__z_Adp S B [S‘..R zzdx:\dy = 'According to 7.16 it suffices to treate the case where p(0)=20.
1 2wl oz 2m 3 jdr
Using Stoke's theorem we get
2m +oo
1 JH dp 1 ("1 do -
- — — == dxdy = - 5= as — == rdr = p(0) 1 4 1 dz 1 dz
2r |} r dr 2 foradr J —-——ZAd:J . a(pad®) = I .42
0 4] - P - pA
Izl e 2ni =z |z{>¢ 2ni z lzi=g 2wi =7
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write out the last integral to get the estimate 1v.8  Relative cohomology

J 42 140 <  sup Qe(=z}!.
lzize

et % denote a closed subset of the topological space X
a2 lzi=c

and U = X-Z the complement., The inclusions are dencted i: Z2-X

- i: U - X respectively.
from which the result follows and 3 P Y

Definition 8,1. For a sheaf F on X we put

Example 7.18. For a smooth function £: € =+ € with compacﬁ'

suppert er get from 7.18

HY (X, 2;F) = BY (X, 3, 3*F) ; peu
_ 1[4z
f{w} = '2_111 Jm/\ df (=}

From the short exact sequence II.6.17 we deduce by means of II.5.4

(z)dz + “E(z)a3
34

or with df{z)

1
!

z a long exact seguence

1 P Lann
fiw) = m—f _(Z)EdZAdZ..

53 8.2 - PN (z,7) - BPx z,5) > HP(X,F) - uP(2,F)

Example 7.20. For a smooth function f: € + € with com- For closed subsets A and B of X we derive from the first

pact support we have :6w of II.6.17 an exact seguence

= If(z) zlw dzadz = £(w). 8.3, » HP(x,AUB;F) - HP(X,A;F) ~» HP(B,BOAF) -

ow

According to 7.19 it suffices to prove that

Broposition 8.4. Suppose X is a locally compact space,
- £ -

2 [f(z)—i—}a dz A 47 = J%(z)——f— dz A dZ

3w 3z zw

countable at infinity and % a closed subspace of X. Then

for any soft sheaf 8§ on X, uP(x,2;8) = 0 rpz

which is easily checked by changing into polar coordinates

[

1 - _ 1
Jf(Z)z_w dz A dz = —H

Proof. The restriction i¥F of F to & is a soft sheaf
2m -
™ aa

+a
. P8
( £ (wrret®yetPar ITI.2.5. It follows from 2.2 that HP{(%,8) =0 ; p > 1. The

lo )

result follows from the long exact sequence 8.2 using that
i (x,8) ——o 10(2,8)

is surjective, 2.3.
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IV.9 Classification of locally constant sheaves defines a G-action on p*F. - Given a G-sheaf E on X. In

Let us introduce the notion of equivariant k-sheaves. Giwven order to describe the sections of InvGE over an open set V

commutative ring k and a topological space X on which the group of B we can remark that the formula 2.1 defines a left action

G acts from the right. By a G-action on the sheaf E we understs "of G on I(f‘1(v),E)n We put

data (a}) where a .t E ~0,E ig a morphism of k-sheaves sﬁbT

OgEG
ject to the cenditions

a
)
[(V,Inv"E) = 1(£ ) (v),E) ¢

=i

9.1 a = 1.,a_o0 a ; @,TEG ji.e., the G-invariant sections ¢f E over £ (V). We leave it

. to the reader to prove that £* is a left adjoint to Inv, i.e.
By a G-equivariant sheaf E we understand a sheaf equipped with.,
& G-action. By a morphism h: E - F of G-eguivariant sheaves we . 9.3 Homth*F,E) = Hom(E,InvGE)
understand a morphism of k-sheaves which makes the following diagran
o To a k~module N with a left G-action we can associate a G-action

commutative

on N: To o €G and the open set U of X we associate

E ———— ,E

lh ld*h + OEG

F ~—— 0,F

the map

9.4. Hom (U,N) — Hom{ o '(U},N) ; @k g 0 ®oo

The category of G-equivariant sheaves on X will be denoted Lemma 9.5. In case X 1is connected, the functor E -+ I{X,E)

G i = "
Sh™(X,k). In the following we put B = X/G and Iet f: X - B induces an eqguivalence between the category of G-sheaves on X,

denote the projection. We shall introduce two functors whose underlying k-sheaf is constant, and the category of k-modules

x

o £
9.2 Sh™ (X, k) S———— Sh(B,K)

InVG

with a left G-action.

Proof. The inverse functor is furnished by 9.4.

Q.E.D.
Let us first remark that a G- action on a k~-sheaf E on X can

be described in terms of isomorphisms a%: ¢*E - E as it follows Lemma 9.6. Suppose every peint be€B admits an cpen neigh-

by adjunction. Thus for a sheaf F on B the canonical isomorphlsﬁ bourhood VvV such that f—1(V) - V is G-equivariantly isomorphic

G .
tc pr: Vx5 - V. Then f£* and Inv induces an equivalence
o* £*F

- I*F ;s OEG
between the category of locally constant k-sheaves on B and G-

sheaves whose underlving k-sheaf is locally constant.
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Proof. It suffices to prove a similar statement for b

BxG » B with locally constant replaced by constant. This is end introduce names to the cancnical map

left to the reader.

£
X

r
E, — f*EX<—X I (X,£%E)

b

Let us turn to the main theme of this section. Given a “The result is quite simply

topological space B and a basepoint bE€B. Regarding the fun-
damental group ﬁ1(B,b} we use the convention proposed by Deligné
(1) that o=*p denotes the loop obtained by first running throug
the loop pBA. Given a locally constant k-sheaf E on B, then

monodromy 4.21 defines a left action of m.(B,b) on B, the composite of the maps

stalk of E at b. - 1

f r r bl
X, fxp - r(x, £4E) —2 £4E o, g

E (x)

b

space for which every point y €B admits an open neighbourhood 'V . i.e. by the furmula

such that n1(V,y) - n1(B,y) is trivial. Then, monodromy is an -

-1 -1

fo(X) Foix) Tx X geG

: 9.9 [

~

equivalence between the category of locally constant k-sheaves on
B and the category of left HT(B,b)nequivaxiant k-modules.
Proof. Put G = n1(B,b) and let f£: X - B denote the uni- diagram

versal covering space of X. The space X 1is simply connected,

r
o (%) *
Spanier (1} 2.5.15. Thus it follows from 4.20 that any locally fc(%l///’ f*EO(X) I{X,f*E)
constant sheaf on X is constant. A combination of the two pre- E a s
b a
vious lemmas gives an eguivalence between the locally constant \\\\‘
. - T r
- - - - les.,
k-sheaves and the G-equivariant k-modules x f*EX P % [ (X, E%E)

In order to identify this correspondence with the monodromy

correspondence, consider the base point x of X, £(x) = b. It remains to identify 5.8 with the recipe 4.21.

For a locally constant sheaf E on B, we want to transport the

g-action on I (X,f*E) +to the stalk E of E at b. To this

. For a fixed g €G the action on B, may be calculated as the
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The formula 9.9 follows from 9.8 using the following commutative
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V. Duality with Coefficient in a Field

éd by the sum and difference between two restriction maps is

st - consider the Mayer-Vietoris sequence III.7.5

. - T .
05 IC(VHW,S) =+ ic(v,8) & I (4,8} =1 _(VUW,5) ~» 1 {VNw,s)

iotice that HC1(VT1W,S) = 0, since the restriction of §

vnwW is soft. The result now follows by taking the k-linear
Lii'of the Maver-Vietoris sequence.

V.1 Sheaves of linear forms Let us next consider a set U of open subsets of X with

In this chapter we shall work with a fixed field k. roperty, that for any pair V,Wel there exists UE U

a k-vector space N we let N' denote the dual vector space aining V and W. We shall prove that §' has the sheaf
NY = Homk(N,k)" operty relative {0 such a directed covering: Let @ denote
Let X be a locally compact space and § a k-sheaf éh' "qnion of all the sets from 4. It follows rather directly
The inclusion 3: V - U of two open subsets of X will iﬁdu 0 Borel—Heine that -
a map

3y I v,8) - I _(U,8) lim I _{U,s) = T_(0,s)

uell

"extension by zero". The k-linear dual of this ¢ the universal mapping property of 1im it follows direct-

rom this formula that 8Y has the sheaf property relative
3,V T,09,8)Y s 1,8
In order to show that 5Y has the sheaf property relative to
gives rise to restriction maps in a presheaf s’ defined by r 1txary family V of open sets, we can introduce the family
f. pen sets which are unions of finitely many open sets from

7.1 r(u,s") = IC(U,S)V ' and then we use the previous result.

Propgsition 1.2. For a soft k-sheaf S on the locally

compact space X, the presheaf s¥ is a sheaf. Proposition 1.3. Let § be a soft k~-sheaf on the finite

mensional locally compact space X. For any k-sheaf F  on X,
Proof. Let us first prove that for any two open sets W sheaf g @, F is soft.

and <V the seguence

¢ > T (vuw,s) »1_(v,s) & I w,s) - r_(vnw,s
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Proof. Let J: U - X be the inclusion of an open subset.: proposition 1.5. Let X be a finite dimensional locally

Let us establish a canonical isomcrphism for any k—sheaf S mpact space and S a soft k-sheaf on X. There is a natural

smerPhism N
e I (X, F ®5)Y 3 Hom(F,s")

Consider an open subset V of X. Scalar multiplication B . F varies through Shi{X,k).

I{v,s) ®k I(Vf1U,E) - I1{VvNnu,s)
Proof. Let j: U - X denote the inclusion of an open sub-

i1l induce a linear map II.6.1 :
" : pace. Consider the natural maps

T(v,8) & I(V,3,k) » I(V,3,3*S)

3y
and by wvariation of V a morphism of sheaves Tu,rF) @ IC(U"S}"é Ic(U'E ®8) — Ic(X'E ®5)

S @3,k - 3%

b~ . he dual of the composite can be written

By localization this is seen to be arn isomorphism, II.6.3.
) I \

Let the dimension of ¥ be n and consider a resoluticn: [,X, F@3) —— Hom(T(U,F),IC(U,S)V)

of F by k-sheaves 11.7.4

v variation of U this defines a map

[ (X,F@5)Y — Hom(F,s")
where the P's are direct sums of k-sheaves of the form sz'
where Jj: U » X is the inclusion of an open subset. From the shall prove that this is an isomorphism,

formula 1.4 and III.7.2 follows that 5 & 3,k 1is soft. Let Let us first check the case F = jk where J is the in-

us remark that a direct sum of soft sheaves is soft as it follg lusion of an open subspace. In order to evaluate the left hand

from III.5. Using this we conclude that S @, Pi is soft.

From the resolution

ide of 1.6 we use formula 1.4 and III.7.1 to get
Let K denote the kernel of an_1”

. - v P
above we obtain an exact seguence of sheaves I (%3 kes)” = Tc(XﬂMJ*S)V= [C(UrS)V = I{u,s")

0 - 5®K > SQP -+ 58P - .., > S®P, » 5QF » 0
n-1 n- 0

) can evaluate the right hand side of 1.6 by II. 6. and II.7.2

Hom(j,k,S") = Hom(k,3*sY) = I(U,3*8) = I(U,8")
Uging IIT.9.9. we conclude that S&F 1is soft.



258

It is left to the reader toc check that these identificaticns-

transform the map 1.6 into the identity.

The general case can be handled by choosing a presentation:

of F of the form

P — (O —F — O

where P and { are direct sums of sheaves of the form just
described. The two functoxrs involved in 1.6 transform direct
sums into direct products. It follows that the two vertical
maps to the right in the commutative diagram below are isomor-

phisms
0 — Ic(X,F®S)V — IC(X,Q®S)V — IC(X,PGS)V

A4 v v
0 —— Hom(¥,S8Y) — Hom(Q,S5") ——— Hom(P,8Y)

It is easily seen that the diagram is exact. From this follows

that the vertical arrow to the left is an isomorphism.
Q.E.D.

Corollary 1.7. The sheaf s¥  is injective in Sh(X,k).

Prcocof. According to 1.5 we must show that

Fl— 1 (X,F® sy

is an exact functor. This follows from 1.3 and III.2.7.
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vVerdier duality

Let X denote a locally compact space of finite dimension

and let k denote a fixed field. The category Sh(X,k) of
¥-sheaves on X is an abelian category with enough injectives.

we let D+(X,k) denote the homotopy category of bounded helow

complexes of injective k-sheaves.

To an object I of D+(ka) we can associate [IC(X,I“},k]

ﬁhe set of homotopy classes of morphisms of complexes of

vector-spaces from IC(X,I”) to k. Meore naively

a

. B WV
[IC(X,I ).kl = H IC(X,I )

The assignment I“F—a[fc(X,I"),k] defines a contravariant functor

from D+(X,k) to the category of k-vectorspaces which is re-—

Verdier duality 2.,1. There exists 0" in D+(X,k} and

a natural iscmorphism

(1,071 = [T (X,1"),k]

I" wvaries through D+(X,k)“

Proof, Let us first establish the proper sign conventions.
'For a complex L° of k-vectorspaces we put L' = Hom'(L",k)
ith the notation of I.4.3, Notice that L°Y isg a complex of
'k~ vectorspaces whose p'th differential is given hy

PGP, TRy L (TP
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This formula will also be used to extend the functor Sl—»sy He k-linear dual of this

on Sh(X,k) given by 1.1 to complexes of k-sheaves, sece 1"1?;9

Let 8% denote a bounded soft resolution of the constanf_ Tol(X,I"®8")Y —+IC(X,I"V

sheaf k% on X. Recall from 1.7 that s*¥ is a bounded sheaf

of injective k-sheaves. For I" in D+(X;k) and integers p ;. sonbined with the isomorphism 2.2 yields a final quasi-iso-

and g we have a canonical isomorphism, 1.5 morphism

rc(x,lp o s)Y = pom(zF,s?") Hom' (I°,8™) - T _(X,1")Y

Taking the direct sum over all p,q with pt+tg = -n we deduce pasging to H0 this vields an iscmorphism

a canonical isomorphism of k-vector spaces

0

[x",8"¥] 5 H IC(X,I")V

[ro(x,1°08)Y1" % Hom™(1",8"")
Finally put D" = gV,

_ : Q.E.D.

It is left to the reader to check the signs to see that this in

fact gives an iscmorphism of complexes The complex ©?° from 2.1 is called the duglizing complex.

Thig is a bounded below complex of injective k-sheaves unigquely

2.2 TC(X,I"® sY = Hom" (I',5"Y) determined up to homotopy, in particular the cohomology sheaves

From the guasi-isomorphism X - 5" we deduce a quasi-iscmorphism ﬁbw calculate these: Recall that an inclusion of open subspaces
V> U give rise to a map

I"——1I"® 5"
ipr B - H P,k
Noticing that both complexes are soft 1.3, we deduce still

another quasi-isomorphism I.7.5 fextension by zero". The k-linear dual of this

TC(X,I“] — TC(X,I"QS") v

~

3,7 1 Pk’ - P,k pER

gives rise to a presheaf U P—éHcp(U,kw .
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HPD”, pE€#Z, are uniguely determined up to isomorphism. We shall
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Proposition 2.4. Let 0" denote the dualizing complex g the adjunction formula I1.6.6 and II.7.2

gsin
for the locally compact space X. For any integer p, the .
-p Hom({j,k,0"} = Hom(k,j*D") = I (U,0")
cohomeclogy sheaf H D" is the sheaf associated to the pre- )

sheaf
U —H P, Y ye get the formula
c e

5.6 5 Pr(u,07) 3 H PuxY
Proof. Let us first establish a canonical isomoxrphism for

all integers pE &
the formula 2.5 is functorial in F, which implies that 2.6

v - is compatible with restriction to an cpen subset of V.
2.5 E P(x,F1" = 0 PHom(F,D")
¢ Q.E.D.

as F runs through Sh(X,k}). To do this let us choose an injective

i The next result is already contained in the proof of 2.2
regolution I" of F. Notice that
put I £ind it enlightening to deduce it as a corollary to 2.4.

HP G F) = BT (x, 1) = BOT_(x, 10 [p])
Corollary 2.7. The dualizing complex for an n~dimensicnal

locally compact space X may be represented by a complex 7D°
From the duality formula 2.1 we get :
of injective k-sheaves where

B Px,m)" = [T (x,171p)) k1 = [L°(p],0°1 = [I",0"[-p]] .
pt =0 for i¢l-n,o0]

The qguasi-isomerphism F - I" allows us to make the identificatiqﬁ
. roof. Let D" be & dualizing complex. It follows from

[T",0'[=pl]l =8 PHom" (1",0") = B PHom(r,0")
HPpr = ¢ for p¢l-n,0]

which proves 2.5, - Consider in particular F = J,k where
) From this we conclude that the canonical morphism I.5.8
J: U -+ X 1is the inclusicn of an open subset U of X. This

gives
v L - . “
g Pw,x’ = Hc?"(x,jlg)vz 1 PHom(3 k,0")

+18 a guasi-~isomorphism, and that the second of these complexes
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consists of injectives. Thus we may assume that P = 0 for

p < -n. = Notice that the following sequence is exact
30 4

0 1 2

4 — Ker 80—99 — 7 —0T— ..

Interpreting this as an injective resolution of Ker 80 we

get for any k-sheaf F on X

Ext1(F,Ker 30) = H‘l Hom(F , 0"}

Using the formula 2.6 we get

g Hom{F,? ") =Hc_1(X.F)V =0

from which we conclude that Kex BO is injective. It follows

that the canonical morphism

is a homotopy equivalence.

orollary 2.8. On a locally compact space X of dimension

n, the presheaf

U b— ch(u,k)"

is a sheaf.
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proof. Let the dualizing complex ©0° be represented as in
77. For an open subset U of X we have an exact sequence

-n+1

G~ T(UH DY - 1(U,?™™ - I(u,D )

By the formula 2.6 we have

H 27 (g,D) = ch(U,k)V

{combinaticn of the two results realizes ch(U,h)v as sections

n the sheaf H™pe,

Example 2.9. Let X dencte a locally closed subspace of

and o the sheaf from 2.8, For a point x €X we have

k for x€X
on {

0 for x €3X

he first statement has already been noted in TTI.8.14. To prove

he second statement choose an open disc D with center in =x

such that XND is closed relative to D, It follows that

ND is homeomorphic to a proper closed subspace of R" and as

oted in II1.9.8 H_"(XND,k) = 0.
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V.3 Orientation of topolegical manifolds proof. Let D" denote a dualizing complex represented as

i . h A1 2.4
Let X be a topoleogical manifold of dimension n, i.e. 2.7. For xE&X we have according to

a Hausdeorff space iccally homeomorphic to R". cConsider a
. - Py - 13 P .
fixed field k and recall from IIT.8.13 that the corresponding oo ® lz_)m HC (0.%) Popen

orientation sheaf on has sections over the open subset U of

X given by here the direct limit is taken over all open neighbourhoods U

¢ x in X. The point =x has a fundamental system of open

I . . . n . .
3.1 T (U, 0% ) =ch(x’l§)v glghbourhoods each of which is homeomorphic to IR™., This im
ijes, III.8.14.
The k-sheaf o¢n is locally isomorphic to k loc.cit. - Let us #Pp = 0 ; p#n
recall the formula II.7.5
According to 2.8 we have HBpe = ¢f. We can record this as a
P = B . B
HY (X,0%) = Bxt” (k,01) ;7 PEZA gquasi-isomorphism
where Ext is calculated in Sh(X,k)., From general principles : enn] -2 p*

.8.6 we deduce for p,g€% a cupproduct

‘Otherwise expressed o4 - U'[-n] i an injective resolution of the

ptg . P g9
aUBEH, (X,0m) PoaCH (Xon), BE He (X, k) vsheaf on. For peE€Z we get accordingly

subjected to Poincaré duality: Hp(x,aft) =gPr (x,P"[-n]) = HGF(X,D‘[p—n]) - ['}E,P"[p—n}]

Poincaré duality 3.2. There exists a linear form

Choose an injective resolution k - K° to get

n ;
J= e (X,00 = k P (,01) = [K",D"[p-n]l = [K'[n-p],0"]

such that for each p&€ #Z the bilinear form
-Let us now reorganize the duality isomorphism 2,1

J ol B ; (o, p) € 2P (X, 01) ~H TP (X, %)
[z*,0°]1 5 [T _(X,I"},k]
[

induces an isomorphism

HE (X,04) - ch"P(x,k)"
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Put I° = P and let the image of

3.4 J:

According to the Yoneda principle for representable functors

1e€[P",0"] be denoted

IC(X,P"} -+ k

the duality isomeorphism is given by

3.5 o b= [oT e eelr,D7]
Let us apply this to I = K'[n-pl to get
[X"[n=pl,0"1 = [I(X,R"[n-p]),k} = B P(x,k)

Finally use 3.5 to identify this isomorphism with the one de-

scribed by the cup product formula,

By a k=-orientation of a topeclegical manifold X we under- |

stand an isomorphism

of k-sheaves, where

that X is orientable relative to k if a k-orientation exisfs'

and k-uncrientable in the opposite case.

We shall now give a cchomolcogical criterion for orientabili-

ty of a manifold.

oi is the orientation sheaf. We shall say
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propositicn 3.6. Let X De a connected topological mani-

fo1d of dimension n. Then
ch (x,k} 3k if X is orientable relative to k.
ch(X,k) 30 4if X is unorientable relative to k.

Proof. Suppose X 1is orientable relative te k, and let

i3 k be an orientation of X. According to Peincaré duality
with p = 0 we get

i (%K)~ B % (x,K)
since X 1s connected we have HO(X,k) = k and it follows that
'”n(XrE) 3 k.
Let us next assume that ch(x,k) #0. Then we get from

Poincaré duality 3.2 that

I (X,01) #0

be a non trivial section of 04 over X. Recall that

is a closed subset 0f X for general reasons. The fact
Bupp(s}) is
open., Thus Supp(s} = ¥ gince X 1is connected, and Supp(s) + 3.
¢# 5 k. This in turn implies ch(X,E) 35 k.

Q.E.D.

Let us prove that in case the coefficient

k = FZ’ the field on two elements, then

oh = I,
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This is a consequence of 7.4 gsubmanifolds of R" of codimension 1

The oxrigin o©f this topic is the celebrated thecrem of

Let X be an arbitrary topological space. Any'

Jordan: The complement of a simple closed plane curve has two

F.,-sheaf w lecally isomerphic to F, is isomorphic to T

) 2". _' ‘connected components.

The basis for ccunting connected components of a topological

I

rocf. Recall the formula II.7.5 space is the following

HOm(]\];—Z.rN) = T(er) *
) Let X be a topological space and k

Broposition 4.1

] . ~ . g - field. The set <c.cX of connected components of X can be
This allows us to identify an iscmorphism s: F, =@ with a- a £i e

: ag follows
glokal section ‘counted

#c.c X = dimk HO(X,k)

seT(X,u) with sX4=O for all =x€X.
Procf. Suppose # c.cX is finite. In that case each con-

. ected component is both cpen and cl d. It
Lel us prove that there exists at most one such s: If t is ; P P ose follows that the

. ) characteristic functions for the connected components form a
another such section, we can find a section u of I(X,Ez*) i P

T 0
basis for H {X,k).
, % = {1}. For each x€X, choose an i k)

gsuch that t = us, but I

0
: suppose conversely that H (X,k is finit i i ‘
open neighbourhocd Ux of x and an isomorphism Sy between F PP o (Xk) is finite dimensional

Assume X+ @ and let ( denote the set of non empty subsets

and the restriction ¢f w to U_. By the previous result s

X X

o of X which are both open and closed. Let CE€C be chosen such
and sy have the same restriction to er1Uyn Thus we can ;

: . 0
hat dim E (C,k is as all ible. Thi i i
glue the qus together to a global isomorphism. (Crk) s as possinie is implies that

0.E.D is connected: cotherwise we would have a partition C = EUD
of C into the non empty open subsets with END = ¢, From the

formula

dim 5°%(c,k) = aim #°(E,k) + dim B°(D,X)

‘e derive at a contradiction. Thus we have proved that X has

a.connected component which is open (and closed). It is now

%) For a set S, we let #S€EMN = I U{+x} denote the number of
. elements in S. For a k-vector space V we put dimkV== #B
. where B is a basis for V.
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easy to proceed by induction on dimkHO(X,k)u

Corollary 4.2. Let X be a locally compact space and k

& field. The set c.c.cX of compact connected components of
X can be counted as follows

. 0
# c.c.cX = dlmkW&:(X,k)

Proof. In case X 1is compact the result follows from 4.1,

A
In case X 1is non compact we let X denote the 1-point com-

A
pactification ¢f X. The space X 1is compact and contains a

A :
point e such that X - {=} is homeomorphic to X, The exact se-

guence

Q 0.4 0
0 > H(x,k) » H, (X,k) » H ({=},k) > 0

shows that

dim, 29X, k) = 1+dim. ® %(%,%)
k ’ k“e ’

A :
Let C{=) denote the connected component of X which contains -

w , We leave it to the reader to identify the remaining con-

A
nected components of X and c.c.cX. This gives
A
# c.cX = 1+ fcuc.cX

The result follows from 4.1 by combining the two formulas.

Q.E.D.

="

.

R

n

Let us now return to our main theme a proper closed subset

ﬁX of =",
¥ _of = -

For an arbitrary field we have

# c.o(® - %) = 1 + dim

n-1
" Hc (X, k}

Consider the exact seguence (X#ZRn)

G - H
c

n

T,

n

k) = ch(]Rn—X,k) > H, (ER™,k) - 0

deduced from the IXI.8.3 and III.8.5 see the proof of III.B.7,

and compare this with Poincaré duality 3.2 for mP-x

0 ~
g2 (R-x,k) 3 H, M(R™-x, k)Y

+to deduce the result.

C.E.D.
Jordan-Brouwer separation theorem 4.4. Let vy: Sn_1 - R
be an injective continuous map. The complement of Y{Sn-1) in

has two connected compeonents.

Proof. We have

H

n-?(s

21 %) ¥k according to 111.8.8,

and the result follows from 4.3.

Let us turn to ancther important classical theorem

Invariance of domain 4.5. Any injective continucus map

—r]Rn

is open,

i.e.

transforms open sets into open sets.

273
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Proof. It remains the same to prove that any injective olude that ch_1(ﬁf1§,k) = 0. We can now apply lemma 4.7
. n ; ' : ; i n ; T
continucus map £: B - R will transform the interior D ielow to the closed subset UNY of X to get the result.
n . n :
of B into an cpen subset of R, 0.E.D3.
. ; n_ n
Let us first remark that it follows from 4.3 that R -£(B") Lemma 4.7. Let X be a connected n-dimensional manifold,
. n n-1 . '
is connected, whereas R ~£(S } has precisely two connected oriented relative to k. For a proper closed subset 2 of
components. Notice that this set admits the partition ¢~ we have
B "(Z,k) =0
R -£(s°") = ®'- £%) U £
roof. Consider the long exact sequence
Thus the connected components of Imn—f(sn_1} arec :mp—f(Bn)
n . . =]
and f£(D). Quite generally the connected components of an o ch(X—Z,k) b ch(x,k} o ch(z,k) 50
open subset of R are open. Thus f(Dn) is open.
Q.E.D The restriction map in the orientation sheaf [ ({X,e#) - [(U,04)
may be identified with e", the linear dual of e, by 3.1.
Theorem 4.6, Let X be a closed, connected submanifold of 8
. —na N Since ¢t k and X is connected we conclude that e is
R of codimension 1. The complement R -X has fwo connected G ,
o Jective. From this follows that e is surjective,
components U and V and X = UnQAV,
2.E.D
Proof. Let us first remark that X is oriented relative
Theorem 4.8. A closed submanifold X of ®® of codi-
to k =iF2 according to 3.7. Thus we conclude from 3.6 and 4.3 o . ) '
=nsion n-1 is orientable relative to any field. Moreover
that ®RP-x has two connected components, U and V say. - :
= = n 3 \ #c.c(BR'-X) = 1+ #c.cX
We have UUV = R as it follows by remarking that the comple--
ment is an open subset of R" contained in X, but X has no Proof. We must prove that any connected component Y of
interior points as a subset of WR". - Consider the Mayer-Vietoris is orientable relative to k. According to 4.6 we find that
o0
sequence R'-Y has two connected components. Using 4.3 we conclude that
n-1,=.5 N, S n,~ NS Ly ! : . . .
H, (Unv,k) - H, (GuVv,k) - H, (U,k) & H, {(V,.k)- o (¥,k) is t-dimensional, which implies that Y is orientable,
_ 6. From Poincar& duality applied to the oriented manifold ¥
Since U and V are proper closed subsets of R we find from We got that

100,k - B K Y

III.2.8 that the two groups in the direct sum are zZero. We con— Bnclusion by 4.1 and 4.3.
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V.5 Duality for a subspace

Let X denote a locally compact space of finite dimension
and k a fixed field. The corresponding dualizing complex will::

be denoted D", Verdier duality is a natural isomorphism

5.1 [z",0'1 5 {IC(X,I“),k]

as I wvaries through D+(X,k)0 Put I" = 0" and let the
image of 1€ [D",P"] be denoted

5.2 E H IC(X,D"} — k

X

which we call the trace map. According to the Yoneda principle
for representable functors the duality isomorphism can be re-

covered from the trace map by the formula

o we 10
iDl j OIC(Xr(p) a(De [I rD ]

X

Lemma 5.4. Let 8~

k=-sheazves, The map 5.3 induces an isomorphism
(7,071 S [T (X,8") k]

Progf.

This gives rise to a commutative diagram
[(r",2"] ———— [ (X,1I"},k]
v v

[§7,D"] wommmems [T (X,87) K]

denote a bounded below complex of soft

Let 5" = I" be an injective resolution in Sh(X,kf
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The vertical maps are isomorphisms according to I.6,2 and

I.7.5. Conclusion by 5.1,

Let us now consider the inclusion h: W -» X of a locally

and hl

slosed subspace W of X. The functors h, of II.6
re adjoint:

Hom(h ,E,F) = Hom({E,h'F)
fbr sheaves E on W and P on X. In particular we have an
‘adjunction morphism

i

hyh'P" — D°

Tpplying IC(X,-) to this we get a map, III.7.1

P “
T tW,niDT) 5 T, D)

The composite of this with J will be denoted
: X

.' 5 JW:

6.

fhe
fc(W,h p*)y — k

igs a dualizing complex

Theorem 5 The complex LD

for W. The corresponding trace map J is given by 5.5 above.
: W
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Proof. Consider the commutative diagram below. The mor-

phisms involved are those discussed above.

[3°,h*0"] [h,J",0"]
I (w,-) I x,-)
v . ! ~ M . .
(I W, 3°), I (W,n" D)) — [T _(X,h ") ,T (X,07)]
| 1= S5 |10
v — ) v .
(1 W, 3") k] [T (X/h,T7) K]

The composite of the two wvertical arrows to the right is an iso-
morphism by Lemma 5.4, It follows that the composite of the two
vertical arrows te the left is an isomorphism.

Q.E.D.

Corpliary 5,7, Let X be a topclogical manifold with

X

j: U » X be the inclusion of an open subspace. The orientation

orientation sheaf o and trace map { : ch(X,onX) -+ k. Let
X

sheaf on U is Jj*oxz, and the corresponding trace map

>4
JW: ch(U,j*OkX) - k 1is given by

[ . n .
a = H *
JW | Jy @ a EHC {U,3J onx)“

Proof. Follows from the fact that ¢4 [nl 3 P°, 3.3.

Q.E.D.
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“y.6 Alexander duality

Let us start with a discussion of cup products in ccho-

mology with compact support. We consider a fixed commutative

Consider a closed subspace of a locally compact space X

“and a k-sheaf F on X. We shall construct a cup product

6.1 GUBEHcp+q(X,E) — Hzp(X,F), pen 1z, k)

‘To this end we let 1i: 2 -+ X denote the inclusion and use the

~yepresentation II.9.8

1P (x,k) = Ext, Pligk,

An element o€ Extkp{i*k,F} will induce a linear map
Bl— wug ; B Ix ik —a P x,r
The result follows from the identification ITI.1.7

B, (X,i,k) = BE,T(2,k)

Put U = X-Z and let i: 2 - X and 3j: U - X denote the in-

~clusions. The cup product andé the two basic long exact sequences

j* r 2 _
HP (U, %) «— HP(x,k) «— H P(x,k) «— &P T(u,x)
Y B o
[ n £
n-p n-p n-p
B! (U,k)—-:;-} H, (X,k)f*Hc (Z,k)T)Hc
'

n_P+1(U,k)
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are interrelated through the three formulas

6.2 (-1 U g =3 ,(aU 58)
6.3 rUn = BUi*n
6.4 3, G U gy = vy U 3¢

Verification. The cancnical exact sequence
0= k= k=»dik-0
gives rise to a canonical class, I1.8.4
8 € Ext' (1,k,3,%)
The long exact sequence in local cohomology

¥ ¥ 8
« HP(U,k) €= HP (X,K) «— H.P (X, k)« 0P ' (U, %) <

Z

may be identified with the Ext-sequence, I.8§.5 and II.9,8

o 5 ve-nF
¢— ExtP(],k, k) e— Ext¥(k,k) e— BxtP(i,k, k) ¢~ EZxtP

while the long exact sequence in cohemology with compact support"

1, Pw,x) ~— 1 Pk — 1 PPz, k) —— 1 PP

may be identified with

au
"R, 00— 1 VP k) —— B P (x, 1,0k > 1 PP

With these identifications the formulas become more ore less obviou§

(3

(U,%)

(X,3,k)

Where j¥w € Hypng

g

we have J*¥i,G =

‘solution k - K

resclution of 1,

“we can represent

transforms by Tc

p(O,FJ) is the restriction of w.

rogf. Let us recall I1II.6.13,

1.h
in

K,

0]

(X,
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JExcision formulas for cup product
Let Z dencte a closed subset of ZNo ——i——+ G
the locally compact space X and O lh 1j
:gn open subspace. For any k-sheaf Z —~—£——9 X
F we have
5 w{Jh!a = Jj,(J*w U a) ;o EHZP(X,F),GEEHCq{ZnO)

that for a sheaf G on EZ

is an injective

*G. In particular if we take an injective re-
Shiz,k) we find that J%i,X
since

1,k = l.h*k = J*iK

Let F -+ J" be an injective resolution Sh(X,k}.

Since

HZP(X,F) = BxtP (i, k,F) = [1,K",1"[p]]

as a morphism of complexes

“The commutative diagram

[bH

i,K° = I”ipi.

3%, K e T [p]
l ][J*w | l
i K m I"[p]
-} intc the diagram, compare III.7.1.
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{0, I* K" )

> 1510:3*1" [p])
[, 0,3%a)

T (X,i,K") I, (X I [p])
A I(Xw) ¢

Applying HY to this we get the commutative diagram

j*w U _
4.3(0 N2,k —————— a P %0, 3%

+
ch{z,k) Hcp q(x,F)

from which the result focllows. Q.E.D,

Alexander Duality 6.6. Let X denote an n-dimensional topo;

logical manifeld oriented relative to the field k, and let

[ 2P,k —
JX' fo] ( .l)

denote the trace map. For a closed subset 2 of X the bi-
linear form

JX aUB ; aem Pk, 8 en P,k
induces an iscmorphism HZP(X,k) 5 ch_p(z,k}vn
Proof. The duality isomorphism
o — | ot 117,013 [Io(x,1),%)

X

can be rewritten {1°,0" [p-nll ~ (Hn-pIc{X,I“))V

applied to an injective resolution i,k - I" +this gives
[1.k,0"[-nlipl] = 1 ""Pz,x)"
The result follows by the fact that ?0'[-n] is an injective
resolution of k, 3.3,
Q.E.D.
alexander duality for r"
Let 2 denote a proper clesed subspace of Rn« We have an

somorphism

5,0k S PExY  pem
B k) - BP0k - B PR - BT -
we deduce the following formulas

dimy 1% (U, %)

!
+
=
E.
A
=]
0
o
I
@
z

dimy 1P (u, k)

1
o
[
=2
m

0

=}

1

o

[

-
=
z
o]

Iv

The first of these has been exploited in 4.3. Let us work out the

second relation in case p = n~]. We get according to 4.2

.8 dim, a7 w,x) = # coc.c(@)
In case P =n we get
6.9 1HNU,k) = 0 ;U rY

283

by Alexander duality. Using the long exact seguence with U = -z
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V.7 Residue theorem for n-1 forms on R 7 2 Tri{w;s) = [ ?_wl1
T I]Rn s s
In this section we shall generalize Cauchy's residue theorey
to w". | n-1
ot there be given y: § - R" a continuous map and an
jentation of s with trace map
Local symbols
We consider a fixed orientation of R" with trace map [ 1 1
(s e s @
JSn-1
J L BMEL D s
R : -
or S € R~y (st 3) we define the index by
For a point s€ ]Rn, the cup preduct gives a non degenerate pair-
- sy = |
ing by Alexander duality 6.6 .3 I(yss} = an_1 Y oug
n,..n 0 n, n
H r,C H T e H r,C
{g3 (BR7,Q) xH, ({s}, 0} — HE (R )_ Theorem 7.4. Let U denote an open subset of R" and
sn"‘I =+ U a continuous map. The function si+-=I{y;s) is locally

We let 1_€H 0([5],03) denote the constant 1 and denote by : . n o
s o] onstant on the complement Z of U in IR, Let l'EHc {7,T)
n-1 n G

€H R - © th 1 such that ‘
Yy ( {s},C) € class pe the corresponding cohomelogy class. We have

[ -
7.1 LB U1, =T

J]R }{ e Y*w = [ nawuf ;mEHn-‘I(U,ﬂl)

n-i n n,.n
where 3: H ® -{s},0) — H R,C) denotes the boundary i G
{ ) {s} ( f Y N where du € HZH(IRH,G:} denotes the image of « by the boundary

£ 1 1 R ;
he long exact sequence of lccal cohomology map of the long exact sequence of local cohomology.

For an cpen neighbourhoed U of s and w€ g (U~{s},T)

. n . :
we let dw € H u,t denote image under the boundary map from -
sy (U0 gl ¥ map L Proof, Choose an open subset V of U containing y (827}

the leng exact sequence in local cohcmology. By excision II.G.6° i 1 .
dg ! Y Y E am_il such that Hc (V,€) is a finite dimensional vector space.

. . \ n,._.n . :
we can identif Jw with an element of H R, T which we B
ldentily {s} (R, T) Take for example V +o be a finite union of open cubes. - The

denote i
inear form on a" 1(V,ﬂf)

n n
B € Hp ) (R, @)

*
W = n-1 YW

|
It follows from II.9.7 that the symbol Bsm is unchanged if we 5

fan according to Poincarg duality 3.2 be represented

[

Js

replace © by the restriction of w to V-{g} where V 1is

an open neighbourhood of s in U. Finally put

_ Y*w:JwUm
n=1 v
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where wEEHc1(V,m)u Let j: V - U denote the inclusion and - om formula 5.7, 6.2 and 7.1 we deduce
put 8 = j,p, We get fozx mEHH-1 (U,T) nusing 6.4 and 5.7 ‘ [
) n n . .
(-1} J w_ U3at_, = (-1) J (w U331 ) = dw_ U1, =1
Riofg) S & Jpnst s s Jgr s s
[ wue =] avio=| 3yu%ue = [ sreug |
v u v v ' ia consequently I(s) = I(y;s). This proves the first part of
which proves the formula tﬁé theorem. From 7.5 we get with 6 = (=1)7aT
7.5 ( fp = | wus , - Jrv*m:(-'l)nj[ wﬂaI:anawur
R JSn-iY w = JUw H w (U, IR} u =
Consider a point 54U and let jS: U - Rn—[s] denote the ere we have used 5.7 and 6.2.
Q.E.D,

inclusion. Proceeding as above we find

. - - Let U be an open set of R', and § a
J g TR = J n 0Uj_ 8 we B (R {s}, 0} P d
8 R-{s} which is closed relative to U. Given
a.’continuous map Y: Sn_1 = U=5 such that
At this point let us introduce the commutative diagram III.7.7
I(rszz) = 0 for all =z € RT-U

0 0 51 1
B O (R, €) —u " (R7-0,0) S (u,0) —H (R0

J n

s! en for any w@€H = {U-5,C)

v v
1 01,0 2 a1 (B 1510

[ Y*u = ) Triw;s) I{rv;s)
| on-1 s
n -1 . n s ]
Pat I = (-1) 3 8 to get Js,e = (=1) T(s)31s and
Proof. Let P denote the support of the function s l—I(y:s)
j o Yre = (-1)nr(s)J wU 31 . n
gt R’ {g1 8 on the closed subset SU (R-U). We must have P < S: to exclude

point z €R"-U we can remark that I{y:z} = 0 by assumption
In particular with w=u we get by 7.3
= and that our function is locally constant. In conclusion P is

'compact subset of the discrete set 5, i.e. P 1is a finite

0

I(v; s} = (=111 (g) J w_U a1
subset of S. TLet T EHC {P,&) denote the restriction of the

]Rn-{S}S s

tunction s |—I{y;s} to P.
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For each s€P choose an open disc Dg with center s VI Pojnca.re Dua]jty with General Coefficients
contained in U such that D_NS§ = {s}. Make the discs so :
small that they do not intersect and let 3j: D - U denote the
inclusion of their union inte U. We have according to 7.4, E_Sf

that

[ J j ;
_aY*0 = j*ew U = dj*w U I
Jgn-1 D D

In order to evaluate the right hand side we may replace & by o 1.1 verdier duality

L Tri{e;sle,. This gives

Sép In this section we consider a locally compact space X

pf finite dimension and a noetherian commutative ring k.

[ d3*0 U =} Triw:s)I(y;s) [ n d0gU 7

J }
U SEP R Recall that D+(X,k) denctes the homotopy category of bounded

and the result follows from 7.1, elow injective complexes of k-~sheaves on X and D+(k) the

_hbmotcpy category of bounded below complexes of injective

modules. We are going to prove that the derived functor

Example 7.7. For s€EC we find

+ +
1 1, = RI (X,-}: D {X,k) » D (k
Tr{m—z—g,s]—T c N (k)

as it follows from IV.7.16. From this we find

as a right adjoint.

Tr(f(z)dz) = 27i Res{f(z)dz;s)

Verdier dualiiy 1.1. There exists a functor

for a merocmorphic function £ defined in a neighbourhcood of s.

Gl G'', D (k) — DT (x,k)

T}

xanple 7.8. The closed differential form

\l

n 3 A A
- -1 ‘ . .
g = ¢ D _E (-1t g dxl"“ Adxg . Adxn gnd a natural isomorphism
i=1
i in IV.7.17 have local trace . R 1
discussed in [RIC(X,I 1,671 = [1",G6" 7]
Tr(6;0) = On—1

o . +
I" varies through D (X,k} and G° varies through D+(k)h

This foliows from 6.4. and loc.cit.
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Proof. 1) For a soft, flat k-sheaf S and a k-module & ‘quffices to prove that the functor

we are dgoing to define a k-sheaf D(S,G) on X: For an open

subset U of X we put F l=Hom(I,(X,F ®5),G)

T(u,D(5,6)) = Hom(I_{U,S),G) : .
;5 exact on  Sh(X,k). This follows from 2).

The inclusion j: V » U of two open subsets will induce 5) Let k - 8" bhe a bounded resolution of k by soft and

“flat sheaves, see 1.3 below. An object I' of D+(k} gives rise
jl: IC(V'S) -+ IC(UJS) " PR - =
- to a complex D"(S",I"} by general principles, Z.11. In fact a

The transform of this by the functor Homk(—,G) is restriction L
bounded below complex of injective k-modules as it follows from

from U to V in the presheaf D(S,G}. The proof of V.1.2 . . .
=4), The isomorphism from 3) extends t¢ an isomorphism

shows that D(S,G}) 1is a sheaf.

2) The next thing to do is to notice that the tensor pro- . ! ~
Hom (IC(X,E“ ®S5"},G") » Hom"(F",D"(8",G"))

duct S@F of a soft and flat k-sheaf S with an arbitary

k-sheaf F, is a soft k-sheaf by the proof of V.1.3, see I1.11, . , +
_— 6) In case I is an object of D (X,k) we successively

3) For an open subset U of X, the composite L )
deduce quasi-isomorphisms

I{u,r} @ TC(U,S) - IC(U,E®S) - IC(X,F®S)
I"-I"gk > I"®8" by II.11.7
transforms by Hom, (-,G) into a map Te(X,I7) > T (X,17@5%) by 2) and I.7.5.

HDm"(TC(X,I“ @s"),G") - Hom"([c(X,I"),G") by I.6.2

Hom(TC(X,E‘® S) ,G) = Hom(I(U,F),Hom(FC(U,S),G))

7) A combination of 3) and 6) yields a guasi-isomorphism

and by wariation of U in fact a map
2 Hom" (T",D"($",G"}) - Hom' (I (X,I"),G")
Hom(Tc(X,F'® 5} ,G) - Hom(F,D(5,G)}
Fut G"° = D"(8",G"}) and apply HO to 1.2 to get

which is seen to be an isomorphism still provided S5 1is soft and

flat: use the proof of V.1.5. : (10,6™M - [I_(%,1),6"1
. ~ c

4) If G is an injective k-module, then the sheaf D(S,G)

is injective in Shi{X,k): According toc the isomorphism above it ‘and our journey ends, 0.E.D
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Proposition 1.3. Let X be a locally compact space of

finite dimension and Xk a noetherian ring., There exists a
bounded resclution k - 8" of 5 in 8h{X,k) by soft and

k=flat sheaves.

Proof. More generally let F be a flat k~sheaf and

0 1 n
0 — % 2. ¢t 2, . oW XL e

+the Godement resolution of F, IZ.3.6. Let us prove that clr
and Im3" are flat sheaves for all n € N, By the iterative
nature of the Godement resolution it suffices to treat the

case n = 0. For an open subset U of X we have

r¢u,c’m) = M F

b4
XEU

and it follows from Lemma 1.4 below that T(U,COF) is a flat

k-module: since a direct limit of flat k-modules is flat it

feliows that the stalks of COF are flat k-modules. Noticing

that F - COE has local retractions it follows that Im 90

is a flat k-sheaf.

Let the dimension of X be n. The fruncation S"=r71_C°"

is flat and soft, III.9.9.

Lepma 1.4, Let A be a noetherian ring and (F,) a

i€T
family of flat A-modules. The product F = T F, is a flat
i€T

i

Proof. Let M be s finitely generated A-module. Let us

. prove that the canonical map

M®F = T Dd@Fi
i€T

15 an isomorphism. This 1s clear in the case where M is finitely

'.generated and free: check the case M = A. In the general case

choose an exact sequence of the form 2P 5 a9 5 M50 and

consider the exact commutative diagram

aPer com 2997 — MOTFT — ©

ﬂ'ApeF-i——-»ﬂAq®Fi——»nM®Fi 0

to conclude that the vertical arrow to the right is an isomor-
phism. As a cecnseguence, the functor ®@F is exact on the cate-

gory of finitely generated k-modules. Let us now prove that
Tor1A{M,E) =0
for any A-module M. The case where M is finitely generated

follows by considering an exact sequence of the form

0-N-+a%Y ¥~ 0. The general case follows by considering M

as the direct limit of its finitely generated submodules: nctice

that :t follows from IJ7.8.1 that TorAp(~,F) commutes with direct

limits.
Q.E.D.

293
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VI.2 The dualizing complex 0.

Let X denote a locally compact space of finite dimension
and kX a noetherian ring. We chocse an injective resolution

k - K" and define the dualizing complex 7" = k! with the

notation of 1.1, Recall that we have a natural isomorphism
2.1 [2°,9"1 3 [T (X,T"),K"]

as I' +varies through D+(X,k)“ Put I" = P° and let the

image of 1€ [P",?"] be denoted

[ s .
2.2 2 T_(X30") — K

This is called the trace map. According to the Yoneda principle
for representable functors the duality isomorphism can be re-

covered from the trace map by the formula
2.3 9 - { OICDLw) i welrr,p]
X

It is useful to give this a slightly broader formulation

Proposition 2.4, For any bounded below complex S° of scft

k-sheaves on X, the trace map induces an isomorphism
[8",0"] <= [I_(X,5"),x"]

Proof. Analogous to the proof of V.5.4.

2.6 1 Pr(u,n")
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Propositicon 2.5. Let X be a locally compact space of

fdimension n. The dualizing complex may be represented by a

pounded complex D" of injectives with PP =0 for p < -n.

‘Moreover

T(uH"%py = Hom(ch(U,k),k)

" for any open subset U of X.

ropf . Let k - 8" be a soft resolution of k of length n.

‘consider the inclusion j+ U - X of an open subset. By 2.4

vapplied to the soft complex 3 ,3*s"[pl, p€ &, we get

L3 d*s P [-pll = [T (U,8"[p]),K"]

where we have used III.7.1. The left hand side can be identified

by means of TI.6.6 and II.7.2 obtaining

[i§

[T,(U,8°[p]),K"]

‘For p > n, the complex IC(U,S“[p]) is concentrated in strict-
+ ly negative degrees, thus the right hand side is 0. By II.2.7

:we ¢onclude that

#Pp = for p > n

.Thus we may replace V" by v D", In the sequel we shall

>-n

- asgume that 0F = 0 for p<-n. This gives rise to an exact

sequence of sheaves on X
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0 - H B 5 p™R L pTBH] " yI.3 Lefschetz duality
In this section we consider an n -dimensional topological
and isomorphisms .
manifold X with boundary 23X, compare IIL.8.14. We let k
-n_. -n . . .
I{u,# ") = H T(0,0") = [T {U,S"[n]),K"] denote a noetherian ring and o4y, the orientation sheaf relative

xt
to k. The sections over an open subset U of X are given by

The right hand side can be evaluated by noticing that the first f

of the two complexes is located in negative degrees and the 3.1 I(u,onx) = Homk(ch(U,k),k)

second complex is located in positive degrees. It follows that

The dualizing complex 7" and the orientation sheaf are related

. " 0 B 0 n
I (U,s K] = Hae(H'F _{U,S (K" = Hom(H_ U (U,k) ,k L .
[ c( inl} ] ( c( {n]} (K")) ( - (U,k) ,k) through a quasi-isomorphism

3.2 orgin] 5 D

Proof. Let k -+ 5" be a soft resolution of k. Recall from

Let us consider the inclusion h: W X of a locally ci d . } .
* - arsy ose 2.6 that for each open subset U of X we have an isomorphism

subspace W. The adjunction morphism, II.6.6

1 72 PI(u,0) = [I,(0,8"[p]),K"] ; PEL
h h'0" » D"
In case U 1is isomorphic to R" or :mn—1 * R, the complex
will induce a chain map, compare III. 7.1 . .. X n ;
FC(U,S”[p]) igs guasi-iscmerphic to Hc {U,k)Ip-n] and we find
that

L N
IC(W,h D"y — IC(X,D } H_pI(U,D") - Extn-p(HCn(U,k),k)

which we compose with Jx to obtain a chain map Using that ch(U,k) is & free module (in fact isomorphic to

k or 0 respectively) we find
I

2.7 J : T {W,h° D"} = K"

w °© -

5 Prqu,5°) =0 ;i pEn

The proof of V.5.6 shows that h!D" is a dualizing complex

From this we can calculate the stalks of H P0° to conclude
for W with trace map J N
W

that H PP° = 0 for p#+n. The result now follows from 2.5.

Q.E.D.
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3% and 3j: ¥ - X the inclusion of the interior % = X-3X.

The orientation sheaf ox for X 1is given by ohy, = J,ch-

X X

where 04 is the orientation sheaf for X, the interior of X.

Proof. Let us first remark that the stalk of Gﬂx at a

boundary point is zero, as it follows from 3.17. Next remark that

have the same restriction o ku It follows

m& and j,04

from II1.6.4 that these two sheaves are identical.

Q.E.D,

Lefschetz duality 3.4. Let X be a manifold with boundary

aXx. If X = X-3X is oriented relative to k, we have an

isomorphism

2Pk, 00k) 2 [R'T (k) [p], K]
where K" 1is an injective resoclution of the k-meodule k.

Proof. Let X - I" be an injective resclution. Consider

the duality isomcrphism (" lpl,0"] = [IC(X’I'{p])'K“}

(r[pl,?"] = [I"[p=], 0[] = [klpnl,0"[-n]] = 2P, 0" [-n])
Using the orientation D"[—n]zonx = 3,k we get

B2, 5,k = [1(X,1) [p],X"]

Recall the definition of the relative group, IV.8.71:

H'(X,8%;k) = H' (X,3,k) and the result follows.
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“yr.4 algebraic duality

Let X" and E" be complexes over a fixed commutative

“ring A. For n&€#Z consider the map

" 5 Hom™(Hom" (X',E"),E") = T Hom (X",E°),E- )

ieZ

X

n n

‘which to x €X assigns the product over 1€ Z of the maps

Hom (X" ,E") — BT 0, £ b (-1) P (%)
©it is left to the reader to show that this defines a chain map
W ev: X" - Hom" (Hom' (X" ,E"),E")

“which we call the evaluation map.

Definition 4.2. Let A denote a noetherian ring. A dualizing

“complex for A 1s a bounded complex D" of injective modules

with finitely generated cohomology modules, such that

ev: X' - Hom' (Hom"{X",D"),D")
is a quasi-isomorphism for any bounded complex X' with finite-

ly generated cohomology modules.

Proposition 4.3. A& bounded complex D" of injective modules

With finitely generated cchomology modules is a dualizing complex

for a if and only if

eyv: A -———— Hom"{D",D")

is a quasi-isomorphism.



Broof. Assume that the evaluation map is an isomorphism Psind I.1.4 we deduce an exact seguence
for X" = A, Consider a finitely generated module M. Recall :
that we consider M a complex, placing M in degree zero and Cck evp(Am) - Cok evp(M) - Cck evp+1(N)
placing zero's elsewhere, Let us prove that
from which we deduce that ev®(M) is surjective for any finite-~
ev: M — Hom'(Hom" (M,D")},D") 1y generated module. In particular we can insert the dotted arrow
i; the diagram and conclude by I.1.3,

is a quasi-isomorphism. For pé€Z put We shall now freat the general case of a bounded complex ¥°
py induction on the "length™ ¢f X". 1In case X" is concentrated
Up(M) = gP Hom" (Hom"” (M,D") ,D") 5 a single degree the result follows by decalage from the first
:éart of the procf. The general case follows by considering the

The evaluation map gives rise to morphisms yact seguence T1.5.7

evP (M) = HP (M) —s UP (M) : PER 0 = [ X" > X" 5 X/t X' >0

which we proceed to prove are isomorphisms., Notice that this is of complexes.
the case for M = Al: Dby additivity cof the functors involved :
it suffices to consider M = A and use the assumption.

We will now prove the statement by decreasing induction oﬁ Corollary 4.4. Let A be a noetherian ring with the proper-
v that 2 admits a bounded injective resclution A - D (a

P& %. Notice, that the result is true for large values of p.

since D" is bounded. Assume the result is true for p+1. Choose Gorenstein ring). Then D" is a dualizing complex.

a short exact sequence J — N — Am — M — 0

and consider the resulting long exact sequence Proof. The quasi-isomorphism A - D" gives rise to a quasi-

éomorphism, compare 1.6.2 Hom" (D",D") - Hom"(A,D") = D"

i hat : A Eom" (D" ,D") ig a guasi-
P — 5P — 2P (M) — HP+1(N) — gPt M fom which we deduce tha ev = , i g

Lo Lo |

UN) —— UP@™) — P — P ) — oP s

isomorphism.

|
|
v
0
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Example 4.5. The complex of abelian groups

0 — ) =— O/ — 0
is a dualizing complex for the ring Z.

Propogition 4.6. Let C° denote a bounded complex of

abelian groups. Put

DC’ = Hom" (C',K")

where K" is the complex 4.5. Then there is a natural exact
sequence
i =i i,
0 » Ext (@ oy @) » mTioCT > Hom(HTCHm) - 0
Proof. A combination of the exact segquence

0 = 1 8" = C 2 CT /T et >0

and the guasi-isomorphism I.5.9

. e
<i® T Tried

c /it
yields the exact seguence , sce also 1.6.14

T | w1t
goi=1 C*»H 'DC"H Dr C"~H °

-1
" H "Dt
Dr<iC -+

Tui+d
>i+1 -

.

Ihe two extreme groups are zZero for rather trivial reasons. We

leave it to the reader to Y the Iesllltlng short exact
Ldentlf

sequence.

vI.5 Universal cocefficients

Let X denote a locally compact space and N an abelian

group. We are going to establish a natural exact sequence for

each P € Z

N 0~ H. P,z 0N - B Foom - Tor, (1 "]

(X, Z),8) - ¢

he derivation is based on the following

Lemma 5.2. Let X be sz locally compact space., There exists

positive complex L' of torsion free abelian groups and a

atural quasi-isomorphism

L" @ N 3 R'T _(X,N)
as N varies through the category of abelian groups.

Proof. Let 8 be a torsion free sheaf on X,

i.e. a

sheaf whose stalks are all torsion free abelian groups. An in-

A X . . m ;
teger m+ 0 will induce a monomerphism 0 - § 5 5§ which trans-

forms into a monomor phism I, (X,8) ELIC(X,S)" This proves that

is a torsion free abelian group. Suppose in addition
Hat s is a soft sheaf. Let us prove that for any abelian

éup N the canonical map
[, (X/8) 8 ¥ - I.(X,8 8 M)

S-an isomoxrphism. Observe that N

éerated subgroups. Thus we can use ITX. 5.1 and I1.8.1

is direct limit of its finitely

303
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to reduce to the case where N is finitely generated. In proof of 5.1. Consider the canonical exact sequence

that case we can choose a presentation (0 - zP 5 m95 w o o s

and deduce an exact, commutative diagram 0— 1, L'—L"'=— L" /1, L — 0
h$y <p

0 — I(X,8) ® Z¥ —> 1 _(X,8) 8zd — 1 _{X,5) 8N — 0

R N
0 — Ic(x,sazzp) — I (X,58 79 — T {X,88N) — 0 2 zp

censider at the same time a free resolution F° - N of length 1.

m these data we deduce an exact seguence

o Mg i) . o Py, P
o (t L'8F") - H (rSpL RE "} g {L"®F") - H (t>

. ot RN,
_p+1L®E)—>H (ISPLQF)

from which the result follows. - Let us now prove that S@N >ptl

is a soft sheaf on X: Let i: K » X denote the inclusion of

he two extreme groups are zerc for rather simple reason W
compact subspace. We have ik £ s. We leave

““to the reader to identify the resulting short exact seguence,
sing the following d4di y
[(K,i*(S@N)) = [(K,i*S@N) = I(K,S) ®N i 9 crastan

0 = Hp‘”@Fl — cokaf @ F, Pt g ¢

! ! !

+
p‘I@EO —->Cok8p®fo —, P*T ® I,

which implies that [(X,S@N} - I(RK,S8N} is surjective. 1

Let us now consider the Godement resolution #Z — c*, II.3
0 — H

This is a resclution of Z by scoft, torsion free sheaves. Hore
over, at each stalk this is a homotopy equivalence, II1.3.6. For
an abelian group N we deduce the soft resolution C"®N of

N. In conclusion
Let us add some information on the lowest cohcomology groups

I (X,C7} 8N = I (X,C"@N) = R"I_(X,N) th compact support.

i.e. we can use L = I (X,C7). Proposition 5.3. For a locally compact space X the group

Q.E.D. . {X,Z) is a free abelian group and the group HC1(X,ZZ) is

torsion free.
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Proof. Let F denote the group of all Z-valued Cfunctions yI.6 Alexander duality

on the set X which are bounded. This is a free abelian group Let X denote ar n-dimensional oriented topclogical mani-

according to a theorem of NSbeling (1}. The group HCO(X,Z) old. For a closed subset 2

alexander dudlity

of X there is a quasi-isomoxrphism,
is a subgroup of 7P, which makes it a free group.

To prove that HC1(X,E) is torsion free we consider an

integer m+0 and the long exact sequence R"IZ(X'E):: DR"IC(Z'Z)['D]

s HCO(X,Z) 5 HCO(X,Z/m) N HC1(X.Z) n HC1(X,Z).4 where we have used the notation of 4,6.

Choose a set theoretical section s: %Z/m » Z to the projectio Proof. As usual we let 0" denote the dualizing complex

% - %/m such that s(0) = 0. This induces a set theoretical and K" denote the complex 0 - @/% . For an object I" of

. + -
section to the first arrow in the exact sequence above. This {X,Z) we have a quasi-isomorphism 2.1

proves that multiplication with m on Hci(x,m) is injective

| [(z*,0°1 =% DI, (X,I")
Q.E.D.

Let i: Z - X denote the inclusion and I" and injective re-

lution of 122 This gives a quasi-isomorphism, TI1,9.132

IZ(X,D") LDR"IC(Z,Z)

crientation of ¥ provides us with a quasi-isomoxphism

5 D', anéd the result follows.,

Q.E.D.

Proposition 6.3. Let X denote an n-dimensional topolegical

inifold with orientation sheaf ox relative to %. For any

therian ring k +the orientation sheaf relative to k is
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The sheaf on 8y k is generated by the presheaf

o
R
o]
Fh

The two vertical arrows are iscmorphisms according to universal
coefficient, 5.1. The horizontal map at the bottom is an iso-

n . ; ) .
U |Hom,, (H_~(C,Z) 12} @5k morphism since X 1is oriented relative to #Z/p. Thus we have

7
"'proved that r 1is an isomorphism mod p for all primes. Since

i i ; ive to k is gi by, 5.1 Yoy n o
while the orientation sheaf relative to s given by, Hc (D, #) and Hc (X,7%) are finitely generated and free, it

“follows that r 1is an isomorphism.

n
U |—»Hom (Hc (U,Z) ,k) 2) = 3) This is an immediate consequence of 6.3.

7z
3} = 1) Let U dencte an open connected subset of X

Thege explicit formulas define a morphism of sheaves from o1 QZ_K which is the union of finitely many discs, i.e. open subsets of X

+o the orientation sheaf relative te k. This is an isomorphism cmeomorphic to IR, Let us remark that ch(U,z} is finitely

as one checks by localization. generated as it follows by a simple argument bhased on the Mayex-

: Vletoris sequence III.7.5

Theorem 6.4. Let X denote a connected n-dimensional man.if n
Theorem 6.4 ~H v, z) 8 5w, ) - HT(VUW,Z) - 0

The following conditions are eguivalent

n o~ .
1) Hc (X, Z) — Z rom universal coefficients 5.1 and PoincarZ duality III.3.2

2) X is orientable relative to Z&. and ITI.4.1 follows that for any finite field k

3} X is orientable relative to #Z/p for any prime p.
n o~ : 3 n Ly

4) H_ (X,%/p) - B/p for any prime p. dlmkHc (U, %) @kxdlmkﬂcn{u,k) “ ¥ coc(U) = 1

Proof. 1) =4) Follows from universal coefficients 5.1. Using the structure theorem for finitely generated abelian groups

mh 4 i n ~

4} » 3) This has already been noted in V.3.6. - conclude that H,M(U, ) = Z, and thereby that U is

1) = 2) Given x€X and D an open neighbourhood of =x hom 6riented, - Let U be the set of all non empty open subsets of
. N . n n 5 A .

morphic to a disc., Let us show that x: H, (D,#@) - H_ (X,2) it t_he type just described. Let us notice that any two sets U and

an isomcrphism. For any prime p consider the commuatative diag__f «from U is contained in a third set W from X This follows

,n . fzom the fact that for any two points % and vy in X there
H, (D,Z) @Z/p — Hy {X,%Z) ® Z/p

l rel

1 (D, 2/p) ~——— B (X, B/P)

ists a chain of discs DO,......,DS, with xEDO and yEDS

uch that i i
at Di-—1 {}Di is non empty for i = 1,...,8. We can now

“onclude from 6.5 below that
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Proof. For an open set U put Fﬁ = jlj*F where

U =+ X 1is the inclusien. It follows from IZ.2.8 that

5 Mx,2) = lin 1" (U, %)
-

u

13m FU. Using III.5.1 we deduce that

Let j: U-»V denote the inclusion between two sets from U,

Let us prove that J,: ch(U;Z) — ch{V.Z) is an isomorphism,

From the fact that V is oriented we conclude that HCP(X:F) = lim Hcp(X.FU)

jrv= Homchn(V,ZZ),E) N Hom(ch(U,Zﬂ , Z) 1and the result follows from IXII,7.3.

Q.E.D.

is an isomorphism. Since ch(U,E) and ch(V,Z) are isomorph

to % we conclude that 3, 1is an isomorphism. - The result now Remark 6.6. Let us notice an interesting consequence of 6.5

follows by a simple argument involving the direct limit descripti ompare the proof of V.1.2: Let X denote a locally compact

of ch(X,Z}n space of dimension n. Consider a commutative ring k and a

Q.Ef fk-sheaf F on X. The nresheaf

U b— Homk(ch(U,E) k)

Lemma 6.5. Let X denote a locally compact space and s a sheaf, proceeding as in the proof of V.1.2.

i a covering of X Dby open subsets such that any two sets U

and v from U is contained in a third set W from U. Proposition 6,7, Let X denote an oriented n~dimensional

Then for any sheaf F on X onnected manifold. For any point =x€ X, the restriction map

H{x}n(xf ZZ) - ch(x, E)

P = 1i P
H, {X,F} = lim Hc {(U,F)

where the limit is taken over all U in U. 8 an isomorphism.

Proof. Let j: U - X dencte the inclusion of an cpen

nnected neighbourhood of x. The nap

3Y: Bom(u (X, Z) ,Z) > Hom(E,"(U,Z) ,2)
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is an isomorphism according to the theory of orientation 3.1

VIL Direct Image with Proper Support

It follows from 6.4 that
. n n
ip: B, (U,B) » H(X,Z)

is an isomorphism. Thus by excision the guestion is lccal,

and we may replace X by s™. This case is left to the reader.

yII.1 The functor f,

Q.E.D.

The inclusion h: W » X of a leocally subspace of a

Theorem 6.8. Let X denote an oriented compact manifold Jocally compact space gives rise to a very useful functor

of dimension n. For any proper open subset U of X we have Sh(W) - Sh(X), compare II.6 and III.7. In order to generalize

“this notion let us observe that h is a proper map if and only
n ;
H (0,Z) =0 if W is a closed subspace of X, III.6.

Proof. Put 2 = X-U and censider the exact sequence Definition 1.1. Let f: X - Y bhe a continuous map between

) locally compact spaces. For a sheaf F on X and an open sub-
- 8%, ®) - °HN(U,®) - Hzn+1(X,ZZ) - y conp P P
set V. of Y put

The first map is zero: Pick x€ X-U and notice that the map Supp (s) E;Y

i TV, F) = dser(e T (w),E) !
can be factored through H (X-{x},®) which is zero as it : 1 is a proper mapj

follows from 6.7. By Alexander duality 6.1

1

n+ ‘We consider £ |F as a subpresheaf of f,F.
(X,Z) = H DR'T (2,%) : .

Hy

Proposition_1.2. The presheaf £,F is a sheaf on Y.

From 4.6 we deduce an isomorphism

1 "V, m = st @z, 3, @)

4 Procf., It suffices to prove that the map £: X-Y has the

From this the result follows since HO(Z,Z) ig a free abelian

group, 5.3. ;
Q.E.D.
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Given a family (V of open subsets of Y with union -

-1

Theorem 1.,4. Let f: X - ¥ denote a continuous map between

)iEI
Vv and a c¢losed subset 8 of £

i

(V). If the restriction :locally compact spaces. For y €Y we have a natural isomorphism

f: Si1vi =V, is proper for all i, then the restriction
i

....1 .
e (£ " (y),F) ; 1e®m

f: 8§ - V is proper. (lelF)y =i

Let K be a compact subset of V. We are going to construdt

a family (Ki) of compact subsets of K, with Ki < V.

i as F varies through the category of sheaves on X.

i€l
for each i€7T, whose union is K and such that K, is empty.;

except for finitely many 1€TI. Proof. Let us first treat the case i = 0. Consider an

For the construction of the K;'s we may assume that I open neighbourhood VvV of y in Y and the restriction

is a finite set by Borel-Heine. For =x &K choose a compact

=1
neighbourhood K, of x contained in some V;, 1€I. Using vV, £, F) — I{f (y},F)

Borel-Heine we obtain a finite covering of X by compact

subsets of K each of which is contained in some Vi’ i€ X, Consider a s ET(V,le) which maps tc zero. This means that

. -1 . .
T.et K. be the union at those of the components of the covering Supp(s) NI (y) 1is empty or otherwise expressed y € £{(Suppis)).
1

which are contained in U;. This gives the desired family Let W denote the complement of Supp (s) in V, this is an
{R;) jey+ - To conclude the proof notice that ‘open neighbourhood of y to which the restrxiction of s is
i'iex” :

Zero. Thus we have proved that the restriction
~-1

sne () = snf WK, susne(xy))

(£,F), = T (€7 (y),F)

which shows that Sf]f—1(K) is compact.

is injective. In case F ig soft the restriction map is sur-
qéctive as it follows by remarking that IC(X,F) is a subgroup

i . R -1
Let us consider the left exact functor of I(Y,f;F) and that restriction from I_(X,F) to I.(E (y),F)

8 surjective IIT.2.6. - In the general case consider an exact

sequence 0 - F - S - T with S and T soft and use the re-

1.3 £ Sh{xX) -—-» Sh(Y)

‘sulting diagram
The i'th derived functor evaluated on the sheaf F will be

dencted le,F"
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0 = (le)y —_— (fIS]y —— (flf)y Corollarv 1,6, Let f: X-Y denote a continuous map be-
l l l en locally compact spaces. A soft sheaf S o¢on X is trans-
0 aarc(f4(y),F)—aTc{f_1W1,F)+IC[f_1W1,F) f;rmed into a soft sheaf £,8 on Y. Moreover Rif!S =0
or 1 >0
to conclude that restriction is an isomorphism. - Let us now.
choose an injective resolution F - I". We have Proof. Let us prove that for any compact subset K of ¥

(Rif!F)y = (Hif[I')y:Hi(f!I“)y - HiIc(f-1(y),I‘)

The result follows by noticing that the restriction of I" to
-1

-1

o this end let p: K- Y and g: £ (K) - X dencte the in-

f (v} 1is a soft resoluticn of the restriction of F to

. =1 o .
f—1(y), ITT.2.5. glugions and h: £ (K} » K the restriction of £, According

0.E.D to 1.5 we have p*f!S = h!q*S” Apply I{(K,-) to this identity

té get 1.7.
A diagram as below is called cartesian if (g,h): A - XxB In case 8 1s soft we shall prove that £(S is soft, i.e.
induces an isomorphism between A and the subspace that the restriction map

{{x,b) €XxB| f(x) = p(h}} of X=xB.

Corollary 1.5. Consider a cartesian square of leocally

is surjective. Notice that I{(Y,f 5) contains IC(X,S) as

compact spaces. For any sheaf F on X
=1

—_—
q

subgroup. Restriction from this group to Ic(f (K},B) is

G oe— X
H

A
we have ih
] o B —> Surjective according to III.2.6 and the result follows from 1.7.
p*Rf F 5 RN, g*F  ; i€ p -
- : The second part follows from 1.4 by localizaticn using

the fact that & induces soft sheaves on any of the fibres

of £, IIT.Z2.5.
Proof. The canonical morphism ; ! T >

P¥L,F -—= h *F
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is an isomorphism as one sees by localization using 1.5 and

yII.2 The Kiinneth formula

identification of the fibre of h over beB with the fiber Let k denote a noetherian ring and £: X b4
: - a con-

of £ over pi(b). TLet us remark that in case S 1is soft, ‘tinuous map of locally compact spaces both of finite &imensi
: i0n,

then g*S 1is acyclic for h. : Notice that g*S induces soft

| .We are first going to construct with the notation of XI.2 a

sheaves on the fibres of ‘h and apply 1.4. For a soft resolution:

5* of F we have

9,1 ~ Rfy: DT{X,k) -— D7 (¥,k)

prHle 87 = {p*fy8" = Hh q¥s’
on the basis of the following

from which the result follows using 1.7.5.

Q.E.D., Lemma 2.2. Let X denote a locally compact space of

;inite dimension and k a commutative ring. Given a soft sheaf

Let us now consider a commutative ring k and interprete
_ § and a sheaf F on X. If either § or F is flat then

f, as a functor

'S@kF is a soft sheaf.

£,: sn(X,kx) —- Sh{¥,k)
; Proof. In case S is flat we can use the proof of v.1.3.

n case F is flat,that proof needs a small modification:

and similarly for the derived functor :
notice that K = Ker 3n—1 is a flat sheaf II,11,1.

1.8 Rf.: DT (X, k) ——> DY, k)
1

Given two continuous maps between locally compact spaces Lemma 2.3. Let X denote a locall t
L3 y compact space of

f: X » Y and g: ¥ » % then it is easily seen that finite dimension and k a noetherian ring, For any F" i
. in

%,k) there exists a quasi-isomorphism F" - T' in K (¥X,k}
r

1.9 (fogly =9, 0%, ¥here T' is a complex of soft sheaves (a soft resuluticn of F’)

and as a consequence of 1.6 and I.7.15 Proof. Choose according to VI.1.3 a guasi-isomcrphism
j 3 where §" 1is a bounded complex of soft and flat sheaves,

1.10 R{g o £), = Rg,c Rf,
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accerding to II.11.2 this gives a guasi-isomorphism Proof. Let us first prove that for a sheaf ¥ on X d
== E an

F* - S*®F", The complex 5" ®F is a bounded above complex a flat sheaf G on Y there is a cancnical iscmorphism

of soft sheaves by Lemma 2.2.

Q.E.D. 2.5 £,(F) ®¢C 3 £, (F ® £%G)

1et us first notice that there is a natural transformation from

Constryction of RE: D {%,k) =D (K he left hand side of the formula to the right hand side. Thus it

Let 8 (%,k) denote the homotopy category of bounded follows from 1,4 that we may assume that Y is a point. Next
. .‘ I3

above complexes of soft k—sheaves" It follows from 2.2 and Jet us remark that both sides of the formula are left exact

%I.2 that we may identify D (X,k) with the category obtained functors in F. Thus we may assume that F is soft

by inverting all quasi-isomorphisms in 8 {X,k}. - The functor It is now time tc vary the k-mcdule G The case wh G
: “ ere

is a free module follows from the fact that T preserves

£, extends to a functor
c

direct sums, III.5.171. In general consider an exact sequence

£, sT(X,k) — 8§ (Y,k)

0L, L, >L. -8 =0

2 1 0

according to 1.6. It remains to establish that £, transforms

uasi~isomorphisms intc gquasi-isomor hismg. To see this remark | .
gq P q P . where Ly and Ly are -free modules. Since & is flat we can

that R, = 0 for n > dim X and use I.7.6. oA .
! conclude that L, is flat. There results an exact sequence

Let ue remark that the functor f*: Sh(¥,k} =+ Sh(X,k) being f sheaves on X
exact extends immediately to a functor

0> S8L, » SOL, > S8Ly > S8G » 0
f*: D (¥,k) ~— D {X,k)

his is a sequence of soft sheaves on X by 2.2. It follows

With the notations above and the notation of II.11.10 we rom I.7.5 that the sequence

have the fundamental
0- TC(X;SQLZ) - TC(X,S®L1) - IC(X,SQLO) - IC(X'SQG) =0

Projection formula 2.4.

L L

5 exact, in i . ,
Rf, (F" @ £*G") = (RE,F") ® G" : 4 particular we deduce a commutative exact diagram

for F* in DT(X,Xx) and G in D (¥',k}.
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IC(X,E) eL, — I (XF)eL; — IC(X,F)®t3 — 0 With the notaticn of 2.6 put ¢ = fg = ph.

1

Kiinneth formula 2.7.

[ (XEQL) — [ (X, F@Lg) — [ (X, F8C) — 0 L
L
Rey (h*E" @ g*F") = (Rp,E") @ (Rf,F)

from which we conclude that the vertical arrow to the right is .~

an isomcrphism. This proves 2.5. - ‘for E" in D (B,k) and ¥F- in D (X,k}.

Let us notice that in case F is soft, then F@ f*G 1is soft

o

roogv Use first the projection formula 2.4 and next the

as it follows from 2.2 and the fact that f*G 1is flat. With this
remark in hand it is a simple matter to extend the formula 2.5 “pase change formula 2.6 to get

to the derived categories.

L L L
Q.E.D Rq!(h*E"aq*F') = Rq, (h*E") @ F = f£*(Rp,E"}) 8 F"
f t i =

Base change 2.6. Consider a cartesian A—9x apply RE, © this and use ke, RfIOqu to get

square of locally compact spaces of finite \h lf L L
*E" = “ -
dimension. Then Re, (h*E" ® q*F) = RE (£*(Rp E") 9F")
B —F .y

* “ X . .
P Rf!F - Rh!q F Apply the prejection formula once more to get the result.

for all F" in D (¥,k}.

In particul
proof. Let us remark that a soft sheaf S on X trans- particular for two locally compact spaces X and Y

of finite di i i i
forms into a sheaf g*S on 2 which is acyclic for h, as imension and a noetherian ring &
it follows from 1.5 and 1.6. For a complex 5" in K (X,k)

L
2+8 RI AXY,k) = RIC"(X,k) &

« RIg7(2/k)

choose a soft resolution g*s” - T' in X (A,k). According c {

to 1.6 we have

p*f §' = h,g*s” — h,T"

The second arrow is a guasi-isomorphism by I.7.7.

Q.B.
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VIII.3 Global form of Verdier duality

s a sheaf on X, here SU = j!j*S =8 ® j,k where Jj: U~ X
Let k be a noetherian ring and £: X - Y a continuous denotes the inclusion: For open subsets U and V of X

map between locally compact spaces of finite dimension. nsider the transform of the exact sequence

0 — k — EUGQEV — k -— 0

Theorem 3.1, There exists an additive functor ~UAV ~UNV

f!: D+(Y,k) . D+(X,k} v the functor Fl— Hom{f,(S@F),G}.
2}y Let fl(S,G) denote the above sheaf on X. Here S

and a natural isomorphism 5 a k-flat and soft sheaf on X and ¢ 1is any sheaf on Y.

3) There is a canonical isomoprphism
~ !
[RE,F",G"] . [F,Eler]

2 Hom(£, (¥ ® 5) ,G) —— Hom(¥,£'(S,C))
as F"' waries through D+(x,k) and G" varies through D+(Y,k);

s F varies through the category Sh(Z,k). - Let us first

stablish the identification

Proof. We shall follow the proof of VI.1.1 closely and giv
the needed modifications., For a soft and flat sheaf S on X and .3 f*f!(S,G) - Hom(f!S,G)
a sheaf G on Y the functor

this end consider the inclusion j: V - ¥ of an open subset

F s Hom(f, (5@F),G) of Y and notice that

from Sh(X,k) to the category of k-modules transforms kernels Hom(j*f,s,j*G) = Hom(j,j*f,8,G) = Hom(fl(SF_1(v)),G)
into cokernels and direct sums into direct products: To see

B i it follows by the base change property 1.5. -
this notice that the functor F = f {88F) is exact as it follows

. By adjunction we deduce from 3.3 a morphism of sheaves
from 2.2 and 1.6. The same functor preserves direct sums or :

more generally direct limits as it follows from 1.4 and IIT.5.
fxHom(£,5,6) - £'(5,6)
1) With & and G as above, the presehaf on X )

et us now depart from the morphism f,FEOE,8 — £ (F®S)
U b Hom(£, (5),6) )
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and deduce first a morphism, II.12

Hom{f,(F®8),G) - Hom{f,F,fom(L5,G))
and by adjunction a morphism

Hom (L, (F @ 8) ,G) - Hom(F,f*Hcm(fls,G))
Combine this with the morphism above to get

Hom(f, (F @ 5},G) ~ Hom{r £’ ($,G))

To prove that this is an isomorphism we shall vary F. It
suffices to check the case F = j,k where Jj is the inclusion

of an open subset of X.

4-7) Needs no essential modifications.

Example 3.4. Let h: W - X denote the inclusion of a

locally closed subspace.With the notation of II.6 the functor
|
h*: sh{¥X,k) - Sh{w,k)

is left exact and transforms injectives into injectives. Thus
it extends to a functor n': ovx,x) - Dt W, k)

which is a right adjoint to the functor h! described in IIL.6.
Thig provides an extension of Theorem 3.1 for this kind of

immersions beyond the framwork of locally compact spaces. The

case of a closed subspace will be explored in Chapter VIII.
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yIl.4 Covering spaces

et f£: X - Y be a finite covering space of degree n,

i.e. for each point y€Y there exists an open neighbourhood

v of y such that f: f_1(v) - V 1is isomorphic to the pro-

jection Vx [1,n] » V. TFor a sheaf F on X and vE€Y we

have a canonical isomorphism

~

4.1 (E4F) —— @ F
Y xef~l(y) ¥
from which we conclude that the functeor
4.2 : £.: Sh(X,k) - Sh(Y,k) is exact

‘For a sheaf G on Y we deduce from 4.1 an isomcrphism on the

“stalks at yE€Y

(£.£%G) 5 @ G
Y xefl(yy ¥

“Compose this with "summation" to get the trace map

4.3 Er s (£%£,6), — G i yEY

Y

o4 tr: £,E*G -— G

“whosa stalks are those recorded in 4.3: Unigqueness follows from

I1.2.2.i. By II.12 the problem is local on Y. Thus it

;suffices to treat the case where the covering is trivial which
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is left to the reader. - For a sheaf F on X the trace map

induces an isomorphism

4.5 Hom(F,£*G) 5 Hom(£,F,C)

morphism of sheaves on ¥

4.6 £ Hom(F,£5G) - Hom(£,F,G)

We shall in fact prove that the morphism 4.8& is an isomorphism: -

The new problem is local on Y. Thus it suffices to treat the

case of a trivial covering which is left to the reader.

Q.E.D.

Corollary 4.7. The pull back functor

£f*: Shi¥,k) - Sh(X,k}

transforms injectives inteo injectives.

Proof. Follows formally from the presence of a left

adjeint which is exact by 4.2.
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Froem our discussion feollows that in the case where X

and Y axe locally compact we have £l = £* in  this

_EEEEicular case of Verdier duality 3.1.

For a sheaf G on Y let res: G - f,f*G dencte the stan-
dard adjunction moxrphism, II.4.%. By localization on Y follows

that

.8 trores = n

.Let us consider an injective resclution k - G*. Apply the
unctor H'I(Y,-) +to the morphisms
.9 G LEE, £ prgr L g

0 obtain merphisms on cohcomelogy £* = res
10 HO(Y,k) 223 m'(x,k) =5 B (Y,k)
hich satisfies the relation 4.8. Notice that

i tr(E*nUE) = nU tr(f) : ned"(Y,k), E€H"(X,k)

s it follows from the construction above.
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VII.5 Local form of Verdier duality Proof. Let S5 be a soft and flat sheaf on X. The iso-

In thiz section we shall give a local version of Verdier morphism 3.2 extends easily to an isomorphism
duaiity. To do so we shall use the general theory of derived
categories as exposed in Chapter XI. . 5.3 Hom(f (E®S},F) = f*Ham(E:fI(S.F)}
Given a topological space and a commutative ring k. For :
F' in D {(X%,k) and F" in D+(X,k) we shall define RHOM‘(E;F ¢ E varies through S5h(X,k) and F through 5h(Y,k). Let
in D+(X,k) : choose an injective resolution F" - J" and put “us choose a fixed bounded flat and soft resolution Xk - S" on
: :g, VI.1.3. For a bounded above complex E" of flat sheaves
5.1 RHom"(E",F") ==Hom"(E",J"}. ) _5# X and a bounded below complex F" of injective sheaves
;6n ¥ we deduce from 5.3 an isomorphism.
This takes a particularly simple form if we represent the de- :
rived categories as follows D (X,k): The category obtained :_4 Hom"(f, (E" @5"),F") 3 f*HOm"(E“,fl(S“,E“))
from the homotopy category of bounded above complexes of flat !
sheaves by inverting all gquasi-iscmocrphisms. D+(X,k): The

homotopy category of bounded below complexes of injective sheavesi

3 - " “w . |
In particular, with E and F such represented, the complex omp lex £f°(8",F"'}) 1is a bounded below complex of injective

Hom*(E",F"} is automatically a bounded below complex of injectiv sheaves on X as it follcws from the proof of 3.1. The complex

. I
sheaves, II. 12.3. for" (E",£7(8",F")) 1is a bounded below complex of injective

dmits a flat resolution by II.11.8.

Theorem 5.2. Let k be a ncetherian ring and £: X = Y a
continucus map of locally compact spaces of finite dimension. Tﬁer

Example 5.5. Consider a finite covering f: X - ¥. Verdier

is a natural isomorphism in D+(X,k)

r luality is simply represented by the isomorphism 4.6,
RHom* (RE E",F") 5 Rf, RHom (E",£ F") :

as E" wvaries through D (X,k} and F' through ot (X, k).




VIII. Characteristic Classes

VIII.1 Local duality

In this section we consider a fixed commutative ring k,

Let us recall that the inclusion i:; 2 - X of a closed sub-

space gives rise to two functors

i
A e
Sh(z,k) Sh(X,k)
i
which are mutually adjoints
7.1 Hom(i,E,F) = Hom(F,i'F)

1
The functor 1i° is left exact and carries injectives into

]
injectives. We shall study the derived functocrx Rpi’, p E #Z.

For a sheaf F on

tion of the sheaf ilF on Z or rather the sheaf

X. It follows from the formula II.6.7 and II.9.1 that the

1
sections of 1,1i°F over the open subset V of X are

1.2 T(V,i,i'F) = T __(V,F)

Znv

X we shall give an explicit descrip-:’

!
i i"F on
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)y an integer p €% we shall describe a presheaf on X:

Aﬁ open subset U of the open subset V of X gives rise to

& restriction map

Piv,py -— 1.__ P,

Hong unz

and thereby a presheaf U |~E P(U,F)“

unz

Proposition_1.3. The sheaf asscciated to the presehat

a
U | Hunz (U,F) ; de#@
. a,! p.!
s 1,R7i'F. If RYi'F = 0 for all p < d, then
. opdl ! d
I{(U,i,R71°F} HZnU (U,F)

for any open subset U of X.
Proof. Let I" denote an injective resolution of the sheaf
We have

on W,

i 1 |
i ,RPi°F = 1,8P1°10 - #Pi,i%T

: .
hus it follows from II.2.7 that i*Rpi'F is the sheaf associated

to the presheaf of

1
U - BT (U,i41°1")
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From the description 1.2 we deduce that proof. Let I° denote an injective resolution of F.

i'v is the sheaf associated to the presheaf

P O O, « vy P
BEFI{U,i,i°1") = H rUnZ(U,I ) = HUnZ (U,F)
V b—s HY (V,i'1") Vo g

which proves the first part of the statement.
1

1f RPi'F = 0 for p < d then the complex i'I' is homo ing formula 1.2 we deduce that

R P
topic to r>d i1

I o) ' o - A -
and we deduce from the formula above that.. HnI(V,l 1) = HnI(p 1(V),1*1 Iy = % [i(v){p 1{V),I")

from which the first result follows.

| I
P (u,Fy = BPT (Uit qi'T") = [(g,i,HPi’1") \
unz >d n. . _ . B .
z ) If R1'F =0 for n < d we deduce that i°I is homo-
1
tOPic to r>di'I" and get that

1
from which the result follows since RPi'F = #Pilr-,

a, -
Hyyy (B (V),F) = HdI(V,eriII“) -t v, uditty

Most of our calculations will be based on the following - a.
R1'F.

d the second result follows since Hdi!I” =

proposition

Proposition 1.4. Let p: X - Z be a retraction to the in-.
: Local duality theorem 1.5, Let i: Z > X denote the in-

clusion i: Z - X of a closed subspace. For a sheaf ¥ on X, o
lusion of & closed subspace. We have

the sheaf associated to the presheaf

|
[i*I“,J”} =[1",1°J"]
nea

~e

V -8 (o7 (V) ,F)

v
" . + "

‘ o I° in D (%,k) and J' in D (X,k).

is ®%°p. If R™i°F = 0 for all n < d, then

LProcof, The identity 1.1 gives an isomorphism

d

1 - d, -1
I{V,RPL°F) = 1 (yy (P " (V),F)

w g " N P R
Hom” (i,I",J) = Hom"(I",1i°J")

for any open subset V of Z.

tom which the formula results by applying the functor HO“

Q.E.D.
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wI1l.2 Thom Class

1.6 1,0 (x,0 = [k[-d],R'1'K]

In this section we consider the inclusion 1i: Z-X of a

Proof. Apply 1.5 with I' eqgual to the constant sheaf kf§] losed subspace and a commutative ring k. We shall study a

on Z and J° an injective resclution of E on X. jxed guasi-isomorphism

1 t: k[-d] = R7i'k

Proposition 1.7. Let X denote a locally compact space

of finite dimension, Z & closed subspace of X and k a where dEM is a fixed integer. The basic examples are the

noethetrian ring. If Dg denotes the dualizing complex for X,

then the dvalizing complex Dé for 7 1is given by

ase where % and X are oriented manifolds 1.8 and the case
ﬁhere i 1is the zero section in an oriented vector bundle or
mlore generally an oriented microbundle VIII.3. Our basic cbjec-
:ﬁive is to establish some important cup product formulas arising

n this situation.

roof. Let k - K" denote an injective resoluticn in the-

i)

By local duality, 1.6 we may interprete 1 as a local

“ . +
category of k-modules. For I in D {Z,k) we have cohomology class, the so called Thom class

[I",ilD}'&] = fi,1°,7

oI L, 7, R =11 (2, T7),K" ]

.2 v e 5,9,k
where we have used Verdier duality VI.Z.1.

The extraordinary cup product II.%.14 gives rise to the

Thom isomorphism 2,3. The cup product

8. Let X dencote an n-dimensional t0pologicai 

]

orollary 1

d+
manifold and i: Z-2X the inclusion of a closed submanifold of: o= tUa ;o uP(z,x) - H pZ(X,k)

dimensicn m. If both manifolds are coriented relative to the nb is an isomorphism for all peZ.
etherian ring k, then .
Broef. Let I" be an injective resolution of the constant
R"1i'k = k{m-n] _heaf k on 2 and J° an injective resolution of k on ZX.

Using clal™l itaeral S we get from the local duality that

roof. We have D¢ 3 k[n] and D, S kIml by vr.2.2,

[lige]
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1, P,k = [4,17,07 [asp]] = (17, 3t0 ldepl] 3 (1%, 10 [

from which the Thom iscmorphism can be read off.

The Thom isomorphism can be composed with restriction

r: HZ" (X,k} - 4" {X,k} toc obtain the Gysin map
i*: HP(Zrk) e Hd+p(X'k)

i ) = r{tu o)

The Gysin map satisfies the

Projection formula 2.5

i {oUi*B) = i,(0) UB

[l

roof. Using the formula II.9.77 twice we get

r(tUaui*g) = (-1) P AL p g q

(-1)(d+p)qBUI(rUa) = r(tUa)UB

from which the projection formula follows.
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Definition 2.6. The Eulex class eEHd(Z,k)

is given by

= i*r{r) where rEHZd(X,k) is the 7Thom class.

Formula 2.7. i*i,a = eUa ;i oeHP(Z,k). If 4 is odd,

then 2e = 0. In particular e U a = a U e for all aEH"(Z,k}).

Proof. For the first part it suffices to prove that

pPEZE

0 i*i,a = tUeVUa . Using the formulas IL.9.15-16 we get

> o
3 : cyx
a & (Z,k) tUi*¥iga=tUi*r(tUa) = e{t) U {rua)

tbleva)l = tui*r(t)Ua = x{t)UT UG

et us finally pxove the formula e = {(=1'Pe  or what amounts to

tue = (-1)® uUe. The formula 2 lines above with

I

= 1 gives tue z{t} Ut , on the other hand by II.9.17

dZ
tUi*e{r) = (-1} zi{thur

Tle

f_ld the result follows sihce d2 = d mod 2.

Q.E.,
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VIII.3 Oriented microbundles Example 3.2. Let M denote a d-dimensional topological mani-

Let X denote a topological space. By a microbundle offfihf 51d. The projection pq: MxM =+ M and the diagonal A: M - MxM

-ohstitutes a microbundle: For x €M choose an open neighbourhood

‘of % in M and a homeomorphism f: U :;}Rd: The neighbouxr-

dimension & we understand a triple (E,p,1) where E is a-.
topological space, p: E -+ X a continuous map and i: X - B -
a continuous sectiocn to p such that for each part x of X ood UxU of (x,x) is mapped homecmorphically onte U x R

there exists an open neighbourhood V. of i(x} in E and an. y the map {(x,¥)|l— (x,£{y) -~ £(x)). This micrcbundle is called

.open neighbourhood U of x in X with p(V) ¢ U and~ : & tangent microbundle. — In case of a smooth manifold the

1{(U} € Vv and a homeomorphism a: V - UxJRd which makes the:

following diagram commutative

v Theorem 3.3. Tet (E,p,1) be a micrcbundle of fibre dimension
L 5 1 over the topological space X. The presheaf
U a U
: ‘ U —H, . S LK)
%0 pr, i(u)y ‘P ’
U x m@

s a locally constant k-sheaf. The stalk of =x¢X is

Microbundles (E,p,i) and (F,q,j) are said to be iso-

o d, -1
morphic, if there exists an open neighbourhood VvV of 1(X} in H{i(x)} {(p (X}, /k}

E and an open neighbourhood W of j(X) in F such that the.

triples (V,p,i) and (W,g,j) are isomorphic. The concept of Proof. Let us calculate the stalk at x€X of the sheaf

. .l .
microbundles was introduced by Milnor (1). It is known that any i'k, s€ Z. According to 1.4 we have

microbundle over a paracompact base space is isomorphic toc an

d

. 1 -
®%bundle, Kister (1), Holm (1). R%1'k = lim 8y ) (p Ty, k)

?
m

(U)

Example 3.1. Let E be a d dimensional vector bundle ove here the limit is taken over all open neighbourhoods U cof x

the space X and V and open neighbourhood of the zerc section X. <Consider the long exact commutative ladder

in F. The projection of V onto X and the zero section make R

a5 ™ N i) ) — g ST )0 = 7 (),

l | !

B e 160 i) i 56T 60— 157 0,3

V into a microbundle.

angent microbundle is isomorphic to the tangent bundle, Milnor (1}.
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By excission we may assume that E = X x Ra‘. Pass to the

Definiticn 3.4. By an orientation relative to k of the

direct limit over all open neighbourhoods U of’ X to obtain. jerobundle (E,p,i) of fibre dimension d we understand a ccho-

a new eoxact commutative ladder, Zpply theorem IV.1.6 to the mology class

fibrations E and E-i(X) over X and use the five lemma to- 4
. tEHi(X) (E k)
conclude that the stalk of R%i,k at the point x is as de-

scribed.
s mich for each x€X restricts to a generator of the k-mdoule
From this we conclude that R7i,k = 0 for s#+d. It -

!
d

[i(x}

If (E,p,si,1) 1is an oriented micrcbundle of fiber dimension

}d(p"{x},k)u

follows from 1.4 that the sections of R i!k over the open set

U of X are given by
t will also be called the Thom class of the bundle. The image

d.t 4, -t 1 by the composite
I{U,R7i'k) = B (1) {p {U),k)

" .3
B, (E,k) = E(E, k) —— B (%,k)
which shows that our presheaf is indeed a sheaf,

To prove that our sheaf is locally constant we may assume

d

called the Bulexr class, e(E} of the oriented microbundle.
that the bundle i1s the trivial bundle prq: X =R - X, Let

us pick a generator rEH{O}d(Eg,k) and pull this back aloné_

Pro: X« Ed —+imd to obtain a class

Eﬁll back of micrcocbundles
Let f: X » Y be a continuous map and (F,j,g) a nmicro-

* a a bundle on Y of fibre dimension d. Let
S IEHXx{O} {X x R ,k}

. £¥F = {(x,v) €XxF | f(x) = q(v}}

From the first part of the proof follows that pr, T generates:

our k-sheaf.

0.E 5’ nd let p: I£*F - ¥ denote the restriction of the first projection

nd let i: X - f*E denote the map given by ilx) = (x,3f{x)). In

; this way we have constructed a microbundle (£*F,i,p), the pull
The microbundle (E,p,i) 1is sald to be orientable relative X

- : back of (F,j,gq} along f£.
to k 1if the k-sheaf of the theorem is isomorphic to the a

If t€H. v (F,k} is an orientation of F <then
constant k-sheaf k. Expressed otherwise - j(y)
*TEHi(X)d(f*F‘,k) is an orientation of f*E which follows by iden-
1

tifying the fibers p (%) and q“1(x), x€EX, If e(F) is
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the Euler class of F then the Euler class e(f*F} is given by n case E and F are oriented microbundles the Euler class

(E®F) of E@F is given by
3.5 e(£*r) = f*e(F)

. 7 e(E®F) = e(E) U e(F)

g it follows from 3.5, 3.6 and II.10.8.

Products of microbundles

Let (B,p,i) be a microbundle on X of fibre dimension Proposition 3.8. Let D dencte a d-dimensional real vector-

m and {F,q,j) a microbundie on Y of fibre dimension n. pace and TEHOd(D,k) an orientation. For any pair X,Z

Then (ExF,pxqg,ix]J) 1is a fibre bundle on XxY of fibre onsisting of a topological space X and a closed subset %, the

dimension m+n as one easily verifies, ross product with 1t will induce an isomocrphism

Given orientations g€ me(E,k) and T € HYH(F,k} re-.

+d
spectively. Then the cross product, II.10.7 LR Hzp(xrk)"'—“’ Hzx{]p (XxD, k} ; pEZz

g*TEH m+n{ Preof. Let us first remark that in case Z 1is empty the

- E x F,k)

esult follows from 3.3 and 2.3, In the general case consider the

is an orientation of (ExF,pxq,ix3) as it follows from ommutative exact ladder II.10.2

Corollary 3.9 below. If e(E) GHm(X,k} and e(F) EHn(Y,k) de-"

-1
notes the Euler class of E and F respectively, then the — B (%-2,k) —— HZP(X.;k) — s BP (X, k) ——s
Euler class e(ExF) of the product is given by _ % T x T
pl+d, ptd p+d
3.6 e(ExF) = e(E) x e(F) —Hyon 0 ((X~-2)*D,X) > Hy % " (XxD,k) —> Hy ©  (X<D/k)

"inally apply the 5-lemma.

Q.E.D.
Whitney sum of microbundles

Let E and ¥ be microbundles on X and ExF the pro-:
= Coropllary 3.9, Let E and F be finite dimensional real

duct bundle on X x X. Consider the diagonal map As X = X x X

‘ector spaces. Cross product induces an isomorxphism
and let the Whitney sum 2@ F be defined by :

. H{O}"(E,k) & H{O}h (F,k) — H{O}"(EXF,]{)
EGF = A ExF
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Example 3.10. Let E denote an arbitrary microbundle vIII.4 Cohomology of real projective space

of fibre dimension d. The Whitney sum E®E has a canonical 1

The set of lines in R™’ constitute P (R), real
orientation relative to Z: For x€X let = enerate \ . . o
——-—(-1--——— x 9 .'projectl.ve n-space. The multiplicative group =JR* of real
H{x} (EX,Z) . Then t_xT1 iz a local orientation of E®E,

3 .
X X numbers #0 acts on R" 1—(0) and we can represent 2 (R)

- . . 5 - - = X
which is independent of 1, since ( tx) x | 'Ex) Ty ® Tye a5 the orbit space

These local data fit together to give a global orientation of

n +1
E®E, 3.3. PHR) = B '-0 / R*

In the following two sections we shall consider the case Projective space carries a canonical line bundle L. given as

where the coefficient ring k eguals ZIFZ.. Any microbundle has . -f.he orbit space

a unique orientation relative to ¥, as it follows from the fact)
that a locally constant ]Fz-sheaf of rank 1 is uniquely isomorphi_c
to Z'EUE‘z, compare V. 3.8.

here the action of R* is given hy

3.11. The MBhius band is the classical microbundle M of :

. r{v,x} = (rv,rx} ; rem*, veRE -
fibre dimension 1 over s'. Let us investigate the Euler class ’ ’ " 0 XER
of M 1in cohomology with coefficients in ]E‘z.. In this case n
he projection p: L-P is induced by the projecti o
the Thom class is unigque V.3.8., — From the fact that M-S‘i is Y pred ton of (IR7-0) xR

. 1 : ‘onto its first factor.
connected follows that restriction from H 1 (M,]Fz) — | (M,IE‘Z)
S

iz a monomorphism and consequently by dimension reasons, re-

. Theorem 4.1, Let e€H! (PHR), T dencte th ‘
striction is an isomorphism. It follows that the Euler class of k ° mnier olase

f_:' the canonical line bundle L on PR (R). The -powers

the M8bius band is the non trivial-element of H'I (S‘l,]E‘z) N

2
1rere Fowngpe

aréabasis for the F,-vector space H’ (Pn(JR},IE‘z) .

Proof, The Thom class TEH n1 (L,IIF2) of L
P

induces an iso-

morphism for each pe€ %

P o0 ~ +1
HE(PY F,) —— Hpnp (L, F,)

; o b= TU
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The complement of the zero section in L may be identified

n+l_g

with TR by mapping v into the orbit of (wv,1) in

tRn+1

may be written, compare 2.7

HP (L-0, F )

R

Y

HP(IIRn+1-0,IE’2} - 3P (2, F,)

n+1

+1
The fact that TR -0 is connected and Hp(mé —O,EZ)

for p=1,...,n~1 1implies that

P (%, F ) L wP T (" E )

is an isomorphism for p = 0,...,n=2

n+1

Using that H we find that

p = n-1, (P% F,) = 0

w0, ¥, — BN, E,)
is an epimorphism. From this first fact we find that
TP F,) #0

Hn(Pn,Eé) is one dimensional over EE"

-0) x IR, Thus the long exact sequence of local cohomologj_

+1
— 5 P, E,) - w1, m, — ®T (-0, 7y

* k + )
Ve, zp+7 (p,IEz)-E» AR S

and a monomorphism for

and from the second fact we conclude that

349

n

Remark 4.2. The canonical projection p: 5 - P?  induces

. the zero map in mod 2 cohomology

pr: BRPR,E ) — BN, )

. as it follows from the previous proof.

As an example of application of the idea of characteristic
211 “class let us consider a theorem of K. Borzuk proved in 933

on the basis of a conjecture of St.Ulam.

Borzuk-Ulam theorem 4.3. Any continuous map f: 8§ - TR

ﬁst identify a pair of antipodal points.

Proof. Suppose to the contrary that

£(-x) # £(x) ; xesg”
n n-— .
en the map g: 5 = § given by
= _fi(x) -£(-x)
=) = T = 0]
11 satisfy g{-x) = -g(x) for all x€S%., The formula

Q"E;

xe m g

~r

£(x) = 1xfg{§T)
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defines a continuous map f: IRn”—O - IR™-0, which satisfies Lusternik-gnirelmann theorem 4.4. If 8" is covered by n+1
cj_‘-osed sets, then one of the sets contains a pair of antipodal
f(rx) = rf(x) ; xe oo : points.

n

From this formula follows that £ induces a continuous map procof. Let the closed sets ZO'Z1"' . "'Zn covyer S5, For

F: P - Pn_1 with the property F?*L = L. The last fact is dedue 1,000 let d(x,Zi) dencte the distance from x to 2.

from the commutative diagram These n functions define a continuous map d: st L wh, By 4.4

01 £x1 N we can find x €87 with d{x) = d(-x). If d(x,2;) > 0 for

(R =0) xR ——— (R -0} xR :
1,00, then x and -x 1lie in ZO" On the other hand, if
v l : _d(X,Zi) =0 for some 1>0, thenm x and -x 1lie in Z,¢
P S -
: since Iy is a closed set.
Q.E.D
which is R*-equivariant, Let us now remark that F*en-—‘l = e,

Theorem 4.5. Let K‘I’“ “ "’Kn be compact subsets of ="

where e, 4, and e denote the Euler classes of the canonical

. . n -
bundles on IPn—‘] and P%. This gives here exists a hyperplane in TR that divides each of Kerow Ky
fte two parts of egqual volume.
e ™ = Fre moFxo =0 n n
n n-1 Procof. We shall identify IR with the hyperplane R x0
n IRn+1.. For x€s" let P(x) denote hyperplane in IRmVl
which is a contradiction. hrough (0,...,0,%) orthogonal to x. Notice that P(x) =P(-x).
Q--E-_D or i =1,...,n and x€ES" let u; (x} denote the volume

We shall present two applications of the Borzuk-Ulam theorem

the first result goes back to about 19%30. ® = g bxd e, (x0) PoXES

o find an x € 8" such that ui(x) = ui(—x) for i = 1,...,.0.

s left to the reader to prove that P(x) nR"® solves our
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VIII.5 Stiefel-Whitney classes - gtiefel Whitney classes

This section is intended to give a brief introduction to Let E denote a rank n vector bundle on the topological

- : - s : by}
Stiefel-Whitney classes. The general reference is Milnor and space X and T EHX (E,Fz) the Thom class., Recall that the Thom

Stasheff (1). Recall from Bredon {1} II.Z1: . isomorphism is given by

Steenrod squares

ob— tua ;  HPX,F,) -EPR R, T ; pEm

T

For a closed subspace Z of the topological space X

and i€ N there is given a linear map "square upper i" The total Stiefel-Whitney class w(E) EH(X,]EZ) of E

ils given

“as the image of Sq(r) by the inverse of the Thom isomerphism, i.e.

sats mP (X, T, — BT F) ; PEZ

Thoms formula 5.4.

with the following properties: For akEHzn(X,Eé)
Sqg{r) = tUw(E)

5.1 Sqo{a) = a, Sqn(a) = ala, Sql(a) =0 for i > n

“From the formula 5.1 follows that we can write

As a conseqguence of this we write
5.5 w(E) = 1-+w1{E) oo+ w (E) : Wi{E}EZHl(X,Ez)

sq(a) = Sq°(a) + Sg'(a) + ... + Sq”(a)

Erom the proof cof 2.7 we see that the Euler class e satisfies

Given a continuous map f: X - ¥ and closed sets % and W of tUr= rlUe, congequently by 5.1

X and Y with £(X-Z) < ¥-W, then
5.6 w (B} is the Euler class of the rank n bundle E

5.2 Sqlf*a) = £*Sg(a) ;o aEi, (Y, F,)

or a continuous map f£: Z - X we have

For closed subsets Z and W of X we have

5.7 w(f*E) = f*w(E)}
5.3 Sq{auUp) = Sgla) U Sg(B} : BEH,
as it follows from Thoms formula 5.4. - For bundles E and F on

he space X we have

w{E ® F) = w(E) Uw(F)
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Proof. Consider the bundle ExF on XxX. It suffices 1o LNormal bundles
prove that Let us consider a smooth manfeld X and the inclusion

Ww(Ex F) = wi{E) x w(F} j: Z » X of a closed smooth submanifold of codimension 4.

.We have
To see this let o€ HmX(E,Eé) and tGZHXn(E,EZ) denote the.
Thom classes for E and F respectively. The Thom class of

ExF 1is oxT as it follows from 3.9. Using Thoms formula 5.4

and the formulas 5.2, 5.3 we get .
as it follows bynoticing that the result is in fact local, which

‘allows us to view i as the zero section of a microbundle. With

Saloxt) = Safo) x 8g(1) = (oUw(E)) x (tUw(F}) = (ox1} U (v(E) x w(F})
“the notation of VIII.2 we deduce a Gysin map

from which the result follows. P +d
i BY(2,F,) — B (X, ¥,) ; pem

-in case X 1is countable at infinity we can find a diffeomorphism

The formula 5.8 has the following variant :
»of the normal bundle N of 2 in X onto an open neighbourhood

of Z in X which transforms the zerc section into i, Milnor
Proposition 5.9. Let X denote a locally compact space,

*}

and Stasheff (1}. It follows that i: Z » X and the zeroc section

countable at infinity. Given an exact sequence of vector bund

Z » N have the same Fuler class. In particular we get from 2.7

0 -~ E —— F — G — 0

11 i*i,a = wd(N) Ua H O(GH"(Z,JFZ)

Then w(F} = w(E) Uw{G).
rom this formula we can deduce a useful non imbedding criterion.

Proof. Introduce a Riemannian metric on F +to obtain an ié
== o Proposition 5.12. Let X be an n-dimensicnal smooth mani-

d, d > 0.

morphism F > E & G. .
fold vhich admits a closed, smooth imbedding into R

then

1

[w(x)~ =0

la

) It sulfices that X 1is a paracompact topological space.
1se, the d'th homogeneocus component of the inverse of the total

355
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Stiefel-Whitney class of the tangent bundle of X 1is zero. There results an exact seguence of bundles
. . n+k S n+1
Proof. Let N denote the normal bundle for i: X-RR " 5,13 0 ——— PxR == LOR — T — 0
From the canonical exact sequence
where T 1is the tangent bundle on p". We shall calculate
0 — T(X} —> i*T(IRn+k) —s N — 0 wi{P} = w(T} £from this sequence using 5.9 and the fact that
w(L) = 1+e where e 1is the non trivial element of H1(PH,ZIF2) ;
we deduce from 5.9 with w(X) = w{(TX) that The result is
wix) Uw@) = 1 4 wieh = (1+a)™1 ; een'(®E,), eso
From 5.11 and the fact that Hd(IRn+d,]E'2) = 0 we deduce that Example 5.15. For n = 4 we find that
wa(N) = i*i,1 =0 w(Ph) = 1+e+et
Combine these two formulas to get [W(X)_1]d = 0. A simple calculation yields
Q0.E.D
wiph) Tl s 1sere? s ?
Imbeddings of projective n-space
Recall from VIII.3 that " comes equipped with a canonical.:: We deduce from 5.12 that P" cannot be imbedded in IIR7.‘ It is
line bundle L. The bundle L@ 1Rn+1 has a canonical section s known that P5 can be imbedded in IRS.. For additiconal information
We can represent L@ :IRI’H"I as the orbit space See Milnor and Stasheff (1).
n+1 n+1
(IR -0} x I® JIR*
N
under the action r(v,z) = (rv,rz). The section s: vt - L®IRn_

is then induced by the R¥*-equivariant map

1

n+1 n+1__0) x B : v f— (v,Vv)

IR -0 — (R
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VIII.6 Chern classes haracteristic class

Let V be a real d-dimensional vector space. Recall that

we have a canonical isomorphism L2 e(E) EH2n(X,Z)

¢ the Eulexr class of the complex vector hundle E.
the oo wh Loser

It follows from III1.8.10 that a linear auvtomorphism f of V agg
; Propogition 6.3. The Euler class of the tensor product of

on H{O}d(V,Z) as multiplication by signi{det(f)).
wo complex line bundles K and L on the teopological space X

An ordered basis a,,...,33 for V will determine a generafb
' iven b
for H{o}d(V,E) as it follows by decomposing Vf:ﬂ{a1 @‘””,Q]Qad; s giv Y
and using 3.9. A second basis b1,"u“,bd will determine the sams

B e(K® Ly = e{K) + e(L
generateor if and only if the transision matrix from the first bagi ( ) (K) ()

to the second basis has positive determinant. Accordingly we shall

identify an orientation of V with a generator for H{O}d(v,z}:

. ¥ ‘Whitney sum K&L onto its factors induce an isomorphism
Let us ccnsider a complex vecter space E . An ordered comp o

basis e 1€y, for E give rise to an crdered real basis

1 2 2 2
_ ‘ _ HX (K, Z) & HX (L, Z) - HKUL (K& L,Z)
e1 ,1e1 ,e2 ,1e2 raae g2, le

n n

The resulting orientation of E is independent of the complex bas

e leave it to the reader to show that the projection of Ka&L

considered as it felliows from the fact that a complex linear auto: nto its factors induce isomorphisms

morphism of E , considered as an automorphism of the underlying

space, has positive determinant. HX“(K,Z) iy HL"(KEBL,Z) HX"{L'E) ~ HK"(KGBL,E}

Let E denote a complex vector bundle of fibre dimension n

According to the discussion above E has a canonical orientatio ?he Mayer-Vietoris sequence 11.9.11 for the subspaces K = Kx 0

i.e. a Thom class ind L = GxL of K@L gives us an exact seguence

- HXZ(KQL,E) - HKZ(K$L,ZU ®HL2(K®L,Z) -» H Z(K@L,E)

6.1 t(E) € szn(E,ZZ) KUL

) g nd the result follows from the fact that Hxl(K@L,ZZ) =0 fox
which for each =x€X zrestricts to the complex orisntation class

= =0,1,2,3.
of E .+ compare 3.3, According to 2.6 this gives rise to a e
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The map K&L - K®L given by (x,v) |»x®y induces a Let p: E - X be a complex vector bundle of rank n on the

map on local cchomology topological space X. Define

Z(KGBL,ZZ) P(E)

2 .
HX (KeL,Z) — HKuL E-X/TC*

L(E)

(E-X)} = &/C*
Compose this with the inverse of the isomorphism established abovg

to get a map 3.e. the guotient spaces under the action of the complex

pultiplicative group €%. Tn the latter case the action is given
HA (KO L, Z) » B2 (K, %) 6 B2(5L, %)
zle,x) = (ze,zx} ;1 ZEQC*, e€E-X, z€X
We are going to prove that this map transforms the Thom clasg
of XK®L into the direct sum of the Thom class of K and the_ The projection of (E-X) €C onto its first factor induces a map
Thom class of L. .

ﬁ(E) - P(E) which in fact makes L({E) & line bundle on P(E),

According to 3.3 it suffices to treat the case where X i the canonicai line bundle on P(E). If we let m: P(E} - X dencte

a peint. Thus we may assume that K = L = & in which case we may the projection and E' the dual bundle, evaluation defines a

identify three relevant local cohomology groups with I-I‘I (C*,2) ., . C*-equivariant map
it suffices to prove the following, |

Let p and g denote two projections of @* x T* onto it: (E-X) x B » (E-X} x C ;3 {e,f) — l(e,fle))
factors and w: I* x {* - ¥ the product morphism n{z,w) = zw;

z,wE{L*, Then and consequently a map of bundles

TR = p*a + g*a ; acH'(T*,Z) 6.4 N*E L(E) 0

To prove this formula, notice that the two canonical injections A different way of describing this is to start with the E%-equi-

i;ri, = ©¥ > ©¥x L* give rise to an isomorphism variant map
4 ~ 1 1 (E=0) - (E=-0) x E ;e l-{e,e)
H (C* xC*, R} > H (C*,Z) & H {(T*, %)

: where the action on the second space is given by x(e,v) = (re,rv).
as it follows from the Kiinneth formula. This completes the proof _
: This defines a non vanishing section
of the statement about the Thom class. From this it is easy to

deduce the statement about the Euler class. 5 g: P(E} — LI(E) ® n*E



362

Theorem 6.6. Let p: E - ¥ denote a complex vector bundle gsing that f*E =k, we may by adjunction interprete «o

i

of rank n, and £€ HZ(P(E),E) the Fuler class of the canonigy g a morphism

line bundle L(E) - P(E). Then H'(P(E},Z), 1is a free a3 k[-4,1 » £,I° in KT(X,k)

H"{X,Z)-module with basis

iet us form the direct sum of these morphisms
-1
1,8, .., g"
&, §[—di]-—+ £,I°
Preoof. The fibre of P(E} at =x€X is P(Ex) and the

regstriction of L(E) +to P(EX) is the cancnical line bundle L(E By Theorem IV.1.6 this is a gquasi-isomorphism of complexes of

. 2 R :
on P(Ex)“ Thug the image gxe H (P(Ex},m) of £ is k-sheaves on X. Wow apply &RI(X,-} to this guasi-isomorphism

the Euler class of L(EX}“ It follows by a proof similar to that to get a guasi-isomorphism

of 4.1 that H"(P(E_),#) is a free Z-module with basis B
1 o) &, R'I{Xk}[-4,] — T (P,I")
n-

< The theorem is now a consequence of the follow-

1!E r""'-r‘z
b4

i L v :

ng Lemna and the result follows by passing to cohomology.

Q.E.

Lemma 6.7. Let f: P - X be a fibre bundle whose fibres have

With the notation of the previous thecorem there is a unique

the h ke & of COom t space and let k denote a commuta—
e homotopy type a pact sp A sequence of cchomology classes

tive ring. Given homogeneous elements Xgrowmnr @y of H"(P,k)

which for each =x€X restricts to a basis for the k-module 21
C,I(E);o uurcn(E) H Cl(E) EH (XIZ)

H"(Px,k}” Then the E" (X,k)-module H"(P,k) 1is free with basis

[ PR
1f % such that the following relation holds in H'{P(E), %), here and in

the following we omit the U-sign,
Proof. Let I" denote an injective resolution of k in
Sh(pP,k}. For i=1,...,n let d. dencte the degree of «a, 3 n n—-1
i i 6. -
. N . : : 8 g+ c1(E)g .. cn_1(E}g+-cn(E) =0
and interprete oy €H “{(P,k) as a morphism
~With the conventions

. +
oy b[-di] - I in X (P,k)

cO(E) = 1, ci(E) =0 for 1i>n =7k E
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we have defined the i'th Chern class of E

¢, (8) centix, m) ; LEN

and the total Chern class c.(E) €d"{X,Z&) of E

c.(E) = CG(E) + c1(E) L
Given a continuous map £f: W - X, then
c. (£*E) = f£*c. (E)
as it follows rather immediately from the construction of

Proposgition 6.10. Given an exact sequence of bundles

0 — B -— G -— 0O

— F

on the topolegical space X. Then

365
%econd let us remark that the restriction of B +to P(F) - P(E)
;g zero: the pull back of L{G) along the projection
P{F} = P(E) - P(G)
quals the restriction of L(F) to P(F) ~ P(E). Conclusion by
‘lemma 6.12 below.
Q.E.D.

Corellary 6.11. Let p: F - X be a rank n bundle on X. If

has a continucus section s: X » F with s(x)*0 for all

%€ X, then
c. (E) c (F} =0
Proof. This implies the existence of a short exact sequence

f bundles as in 6.10 where E is the trivial bundle. Hence

€. () = c. (G},

c¢.(F) = c.{E) Uc.{®) Lemma 6,12. Let Z denote a closed subspace of the topological
_ pace X and k a commutative ring, Given GEHP(X,k) whose
Proof. Let £ EHZ(P(F),Z) dancte the Ruler class of ﬂip] mage in Hp(z,k} is zeroc and B EHq(X,k) whose image in
and consider the cohomology classes o and B in H'{P(F),Z): 9(x~2,k) is zero. Then oup = 0 in HPTI(X,X).
o = Em+r:1(E)£m_1 + + cm(E) s m = rkE i . )
Proof. If we let i: 2 - X denote the inclusion we have
g = gni-c1(F)£nw1 ..+ cn(F) :n=rkG ¥a = 0 In virtue of the exact sequence

According to the relation 6.8 the sought for formula is eguivalen

to aUp = 0.

to P(E} is zero, since L(F} restricts to L(E}

To see this, remark first that the restriction ©

on P(E).:

HZP(X,k)——-—-—rr P (x,k} — EP(X-2Z,k)
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we can write B = r(y) where 1’€HZP(X,k)" Thus A Chern class formula for the Thom class

Let E denote a rank n vector bundle on the topological

_space X. Put E = E@C and consider P(F).

aUp=alrly) = r{alY) = (-1 Py ui*a) = 0 The cancnical

map E - E@C -0, el-(e,17) induces an imbedding J: E - P(E)

of E onto an open subset of P(E). We shall consider X

where we have used the formula I1.9.17. as

a closed subset of E and ©(E) through the zero section of E

This gives an excision isomorphism

Proposition 6.13. For a rank n vector bundle E on the

topological space X, the Eulex class of E eguals ¢ {E), i*: HX"(P(E),Z] — Hy, ' (E, Z)

the top Chern claszs of E. ;
Which allows us to view the Thom class of E as

Proof. Let us first treat the case n = 1. From the defi-

nition 6.8 and 6.4 we find that c,(E) = -e(EY), which accordiﬁg: T (E) EHX“(P(E),Z)

to 6.3 eguals e(E): using that EB® Y is the trivial bundle.:

: The restriction map
in the general case we can refer to the proof of 6.14 which

establishes that
r: HX"(P(E),E)-_—a H™ (P(E),Z)

cn(E) = 8, e(B)}

: is injective and the followi
where 6, is a constant depending only on n. To determine thi gt Ping Formaie holds

congstant consider the canonical line bundle L on P and appl

&n

r{t(E =
this formula to E = L . We get (E}) c (E®L(E))

n
alE) = e(L)n, cn(E) = c1(L) Proof. Let us first prove that the cohomology class

as it follows from 3.7 and 6.10 respectively. Thus we can Cn(E®1LUﬁ) €H2n(P(§),Z)

conclude that Gn = 1.

o ; n, .~
Qi has image zero in H (P(E) ~X,%). According to 6.11 it
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suffices to prove that E@L(E} has a section over ?(E) whicﬁ Let us now prove that the restriction map r mentioned
is non vanishing over P(F)-x. In fact the standard section, n the line before 6.14 is injective. Put 01(L(E)) = &, Then
6.7 of B@L(¥) has a projection onto E®L(E) of the re- . ,E,.00rE" form a basis for the H'(X,Z)-module H'(p(E),=)
gquired sort, This section is induced by the L*-equivariant map - ccording to 6.6, while the restriction of 1,E,n"“,£n-l to
p(E)-X farma basis for the H"(X,Z)-module H'(P(E)-X,%) as

E®&C-0 — (E®C-0)xE ; (e,z) +—— (e,z2,e) ¢ follows from 6.7 and our investigations above of the case

here X 1is a point. This proves that the map
Let us exploit this in case X 1is a point. We conclude that :

c1{L)n the free generator of 72%p"™ , z) can be lifted back

to Hozn(Pn,E}" This group we have identified with Hy (€ ;ﬁ”

so let 1T EHOZH(PH,Z) denote the Thom class. Thus we can Writg

H' (P(E),B) — H' (P(E}-X,Z)

s surjective. The long exact seguence of local cohomology proves
kat r is injective,

=6 P 6 = ot
r{rt} nc.I(L) Q.E.D,

The constant 6 will be determined indirectly. The splitting principle 6.15. Let E be a complex vector

Returning to the global situation we can choose a cohomoidqy

undle on the topological space X. There exists a continuous

class e P(p(E),Z) with () = 6.c (B8L(E). We shall ip f£: W~ X such that

now prove that @ = {E}). Using 3.3 we see that it suffies td 1) £%: E'(X,Z) — 0" (W, Z) is injective

treat the case where X is a point, which has been accompliShe 2) F*E admits a finite filtration by sub-bundles

above. Hence whose quotients are line bundles,

r{T{E)) = encn(EM(TE“)}

froof. Repeated applications of 6.4 and 6.6.

where 6 _ = t1 is a constant which depends only on n € M. 05D

If we puli the formula above bvack to X we get e(E)==9nCn(E) Let us give some applications of the splitting prineciple.

dﬁ-a complex vector bundle FE, we have for the dual bundle E'

1t is established during the proof of 6.13 that b, = 1.

e () = (-17c (B)



370

Procf. Let us look at the even part of H'"(X,Z) py the induction hypothesis we have

ev _ 21 -
H™ (X, E) =8 H™ (X, Z} cn_1(E‘®Id cn_?(F)4-cn“2(F)cT{L) o
ieNN

Notice that this is a commutative ring. For this reason we shal consequently we get
omit the cup product sign. This ring has an automorphism o l— a
given by cn(EQL) = cn_,I(F@L)c,I(K@L) =

a= (-1P« a € 1P (x, )

(e _q(F) + Chap (Flo, (L) + cew) (g (K) +¢q (D))

In orxder to prove the formula 6.16 we may assume that E admit

a filtration whose guotients are line bundles L1,""",Ln. It from which the formuia follows.

follows from 6.3 that c"{LSV) = E'(Ls)“ Using 6.10 we get

v v v - = = =
LAETY = ¢ (L evaColl, ) = Ccufl,)weeca (L) = . (BE). -
c.(E7} el 1 ) cod n 1 n For a complex vector bundle E of rank n, let E denote

e conjugate bundle: The underlying real bundle is the same as
: i la 6.16 follows. : -
from which the formula ollows izt of E but the action of i =/=1 on E is that of -i

E. We have

18 c {E) = (~i)Te (B ; Z €W
For a rank n bundle E and a line bundle L we have : 1 i

- 2 _ Proof. Let us notice in general that
6.17 c {E ® L) = ¢ (E) + cn_1(E)c1(L) + Chop{E) 5 (1) t -

E) = (-1 uE i n=1kE
Proof., This will be done by induction on ne¢ W. By the

U it follows by i i i
splitting principle we may assume that E has a sub bundle 'F : y inspection of the case where X is a point,

Mpare i : : | ;
such that E/F = K is a line bundle. Notice that mp the introductory remarks of this section,

Q.E.D,

Ci(E) = ci(F) + CJ.—‘I(E)C'I (K) H ieN
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VIII.7 Pontrjagin classes 4 PolE) = 1, p,(E) =0 for i > }+ rkE

Consider a real vector bundle E of rank n on the topo--

. a continuous ma f: w » ¥ we have
logical space X. To this we can assign the complexified or P

bundle F @R C. Let us remark that the Chern classes of this

: (f*E) = f*p.(E
bundle satisfy 7.5 p. (£*E) p-(E)

_ . Qr an exact sequence of bundles on ¥
7.1 2ci(E QI{E) = for i odd

g~ B — F — G — 0

as it follows from 6.192 by noticing that the bundle E ®Elm is’

, . “we have the product formula
isomorphic to the conjugate bundle

.6 p.(F) = p(E) Up.{G)

E®@ E3IE® C ; e®zlsc@z

In consequence of 7.1 we define the 1i'th Pontrjagin class of

We shall draw attention to
the real bundle E on the space X to be

Hirzebruch's signature theorem 7.7. Let X denote a

i ompact oriented 4n-dimensional smooth ifold. Th iri
7.2 p; (B} = (-1)lc21(E o €) P iona manifo e pairing

churs ; «,B € RN (M, R)
which is considered as a class 1in raticnal cohomology M

Iy s symmetric and non-~degenerated by Poincarg& duality. The
7.3 py (E) € H°1 (X, @) ) . o
ignature of M, sign{M) is by definition the signature of this

dratic form. The Pontriagin classes of M, p1(M), pZ(M),
The total Pontrijagin class p.{E) €H'(X,Q) 1is given by

te by definition the Pontrjagin classes of the tangent bundle

£ M, According to Hirzebruch one has
P(E) = py(E) + py(E) + ....

)
il

n 1: sign(M)

1
= P (M)
JM31

n o= 2: sign{M) J 45 (7o, (1} = p, () 2)
M

The following properties of Pontrjagin classes follow immediatel:
from the properties of the Chern class .
general there is a polynomium Ln_Em[T1,""n,Tn] such that

sign(M) = JM LoptPqrowwrp))
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Eggggu Let us introduce the ad hoc notation 4lcX for

X Application to Algebraic Geometry

the concept of dimension introduced in III.9 while dim X de-
notes the dimension as an algebraic scheme. - Let us first

prove that

dlc X < 2 dim X

This will be done by induction on & = dim X: In case X is
X.1 Dimension of algebraic varieties

irreducible, let an denote the non singular part of X.

In this chapter we shall give an intreduction to the

The complement XS = X-an is an algebraic scheme of dimension

topology of algebraic varieties over the complex numbers. For < d. For any sheaf F on X we have the exact sequence

all unexplained notation we refer to Fulton (1).

The set of geometric points of a complex algebraip scheme X . Hc2d+1(an'F) N H02d+1(X,F) R Hc2d+1(X5'F) .
carries the structure of a locally compact space, which we
also denote by X. DLet us recall three fundamental facts about : and the result follows from 1.1, - In the general case we shail

complex algebraic varieties, i.e. reduced and irreducikle

do induction on the number s of irreducible components of X.

schemes . Let ¥ be the union c¢f s-1 of the irreducible components of X.

t.1. A non-singular point x of X admits an open neigh-: For a sheaf F on X we have an exact seguence

bourhood homeomorphic to g® where n = dim OX'X, the local

ring of ¥ at x. 28+1 24+1

-+ HC (X-Y,F) - Hc

(X,F} - H02d+1

(Y,F)} =

1.2. A non empty Zariski cpen subset of an algebraic

variety X is dense in X. and the result follows, since X-Y is irreducikle of dimension < d.

. : i i = ] ¢ d
1.3. An algebraic variety is connected. To prove the opposite inequality put d dim X, x% an

choose an irreducible component 27 through =x of dimension d.

Proposition 1.4. For a point x€X of an algebraic scheme’ Since dlc,Z ¢ dle X it suffices to treat the case where X is

irreducible, - Let U be an open neighbourhood of x in X,
X we have

dim X = 2 dim OX It follows from 1.2 that UIWXn "is non empty. Thus we conclude
b4 X

24

]
“from 1.1 that U contains an open subset homecmorphic to IR

where the first symbol refers to the concept of dimension in- and consequently dle U > 2d.

traduced in IITI.9. Q.E.D.
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X.2

The cohomology class of a subvariety

relative to %,

G:n

complex analytic transition functions have complex Jacobi matriges:
and finally that complex linear transformations have positive

determinants ceonsidered as real linear transformations,

and

Conclusion by 1.4 and IX.1.6.

for any open subset of X as it follews from the proof of 2.1.
With the terminology of VIII.1, let 1i: Z-X denote the in-

clusion., We conclude from VvIII.1.3 that -

A non-singular algebraic variety has a natural orientation

inherits the natura! orientation of €% and the fact that -

Theorem 2.1. Let X be a non-singular algebraic variety

Z a closed subvariety of codimension d. Then
HF(x,7z) = o for p < 24
Proof. By Poincaré duality with n = dim X
1P (x,z) 5 &

gn—p (5 )

Remark 2,2. With the notation of 2.1 we have

BY_ (U,Z) =0

ZNu <d

-
[¥N

This comes from the fact that open subsets of:

RPi‘gm = 0 : p<2d
and from VIII.1.3 that the presheaf
24
U§—>HZnU (U,zZ)
is a sheaf on X,

indeed equal to i,R"T17ZE.

Corgllary 2.3. Let X be a non=singular variety and 2

a closed subvariety of codimension 4. TFor any Zariski open

subset U ‘of X which meets Z, the map

24 24
H,""(X,Z) - H, v (UrZ)

8!

is an isomorphism.

Prcof. The excision sequence II,9,5
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28 2d 24 24+1
HZ_U (X,Z) g HZ (XIZ} g Han (U,Z) d HZ_U (X:E)
compined with 2.1 yields the zesult.
Q.E.D
Defipition 2.4. Let X denote a non singular variety and
Z a closed subvariety of codimension d. The Thom class of Z in X

T €szd(X,%) ; d = codin(z,X)

Z

is the class whose restriction to X—ZS is the Thom class for
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the oriented submanifold ZnS of the criented manifold X—ZS
in absolute cohomology will be denoted

- The image of T,

1z e 8%%(x, m) : d = codim(Z,X)

or just ¢l{Zz) when no confusion is possible.

Proposition 2.5. Let X be a non-singular variety and Z

de-

a Zariski closed subset of codimenson d. If Z,],M...,ZS

of codimension d.

note the irreducible components of X

the canonical map

® H, 2y, m) - HZZd(X,Z)
i

is an isomorphism.

Proof

with 2.1.
Q.E.D.

Intersection numbers
Let V and W denote closed subvarieties of the

of the non-singular variety X.

component Z of VNW we have

codim % € codim V + codim W

Then '

. Use the Mayer-Vietoris sequence II.9.71 in combinatibﬁ

Recall that for any irreducible
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Vv and W intexsects properly in X,

Let us assume that
that the inequality 2.6 is an equality for all irreducible

i.e.
components Z of VNW., Let ¥ and W have codimension ¢
and d respectively and consider the cchomology class

2{c+d} -
2.7 gVt € Hy oy (X, 2)

Taking the isomcrphism 2,5 into account we can write

2.8 Ut T % i(z,v"w;x)rZ

the sum being over all irreducible components 2z of VAW. The

is called the local intersection symbol.

integer i(Z,V'W;X)

Push the formula 2.8 into H'(X,#Z) to get

1 (v) nc1®¥(w = $i(z,viW:ix) cl¥(2)
7

The local intersection number can be calculated by means of
Serre's alternating Tor formula

. er % oy d 0
i(Z,ViW:X) é (-1 8 {(Ton, (OV,OW))

where ( denotes the local ring of X of the generic point of

4. LCompare Iversen (1).
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3 H 1 lass of a subvariety Proof. In case X is a non singular variety, this is a
X. omology ¢

In this section we shall generalize some of the constructions:: consequence of Peoincaré duality and the fact that X is connected.

from the previous section to singular spaces and Borel-Moore homo- In case X 1is a variety, the result fellows from the iso-
logy. The basic principle is that for a scheme X we have morphism 3.2, In the general case we have an isomorphism

3.1 Hi(X,ZZ) =0 ;1> 2dimX ® Hzn(xi’gg.) >, H2n(x’z)

i

as it follows from 1.4 and IX.1.6. In Case X 1is a varlety of by an excision or Mayer-Vietoris argument.

dimension n and U a non-empty Zariski open subset we have. Q.E.D.
a long exact sequence
For a scheme X let Zk(x) denote the group of k-cycles
- ; i.e. li : t ubva-
H2n(X—U,E) - Hzn(x,m) - HZn(U,Z) - H2n—1(x U,z} on X, i.e. the free abelian group based on the set of s
rieties of X of dimension k. The cycle corresponds to a
g tly an isomorphism subvariety V is denoted [V]. The cycle map
and consequen

3,2 H, (X, %) 3 H, (U, %) 3.5 Cly: 2y (X) = Hy (X,2)

i i ' is given by the formula
in particular if U = an we find a fundamental homology class, g v

uXE H2n(X,Z) : n = dim X 3.6 ClX([Vl) - i*(“V)

iz ] ! icti s where i: V -+ X denotes the inclusicn of a closed k-dimensional
characterized by requiring its restriction to an to be the... -

subvariety.
orientation class.

et £: X » Y be & proper map of algebraic schemes. For a

i i i en closed iet v of X the i e W= f(V : loged
and let X ,.0.0%, denote the irreducible components of dimension : subvariety r e imag (v} is a ¢

i i - that . subvariety of Y. Define £,[V] = deg(V/W}[W], where
The images of wrky in Hzn(X,Z) form a basis for at v . ,
group.

0 if dim V < dim W
deg (V/W) = {

[REVY: R(W)] if dim V = dim W
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Here R(-} denotes the function field. This defines X.4 Intersection theory

Consider a non-singular variety X of dimension =n.

3.7 fet 2.(X) — Z.(Y) pPoincaré& duality

N
The following diagram is commutative P (x,z) £ HZH_P(X’Z} ; pem

£

*
by (X)) ———— 2y (¥) is a isomorphism. In IX.7 we used Poincaré duality to trans-
3.8 port stucture from homclegy to cohomology. In accordance
f., with Fulton (1)} we shall here transport structure from cochomology

HZk(X,Z) —_— HZk(Y,ﬂ)
to homology. This has several advantages: better and more

suggestive formulas which in many cases may be generalized to

Proof. It suffices to prove that if £: V> W is a sur- singular varities.

jective and proper map of algebraic varieties then Let 2 denote a closed subvariety of X. Then we have the

fundamental relation, compare 2.4
Tyluy) = deg (W/V) Mg
4,1 g = By N1,
In case dim W < dim V = k then H, (W,%) = 0 and the result 5

which follews from 3.3 and IX.4.9 using the second square in

U

is clear. In case dim W k we may replace W by an open sub-"

variety and assume that V =+ W 1is a covering space of degree IX.3.5.

deg(V/W) and the result follows from IX.11. Let 1i: 2 -+ X denote the inclusion. From 4.1 follows

Uz 0 i*g = (uxn rZ) ni*g i EEH'{X,%)

Using IX.3.3 and II.9.17 and taking advantage of the fact that

Ty has even degree we get

4,2 uy N i*g = (ux nel i,

In case Z 1is non singular we can interprete the formula 4.2

as expressing that the Poincaré dual of i*: H'(X,Z)} -~ H' (3,%)
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is given by

4.3 o b— a[)rz y Ho(X,%) — H.(Z2,%)

At the same time this suggests immediately a generalization
to the case where Z 1is singular.

Let f: X - ¥ be a morphism between non-singular varieties -

and R.EHI“(XxY,Z) the Thom class. The following formula

K

gives an expression for the Poincaré dual of £*: H'{Y,Z) -H'(X,%Z)

or meore geéenerally the symbol LU £%n,

4.4 o (gu ) = (CDPS G, nE) x (mynn)) oo
¥x Wx ¥ I
where £eHP(X,®) and neHY(Y,Z).

Proof. Let vy: X » Xx¥ denote the graph map and

§: X » Xx X the diagonal map. Notice the formula
EUERn = S%{Ex £*n) = §*(1x£)*{Exn) = y*{Exn)
Next, apply the formula 4.2 to v: X » XxY to get
Uy Ny* (g xn) = (uyg xuyd D {Exn) N1
= P ugngr x ugrm)) 0

where we have used IX.5.9. The result follows by combining these

two formulas.
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The formula 4.4 suggest the following definiticon, compare

Fulton (1) Ch.8
4.5 o g8 = NP%xpn jeeE (X,E), BEH Y, 2)

In particular, for £ = 1, the intersection product o g is

defined by
4.6 a B =(Bxaghn 3% 7 o,B € H.(X,Z)
The defirition 4.6 may be refined in the following sense. Let

i: V- X. and h: W+ X be inclusions of closed subvarieties.

The symbol

(B x N 1y ; BEH.(V,Z), s €H, (W, Z)
defines an element of H.(VNW,Z). If we push this forward into
E.(X,%Z) we obtain 1i,B*h,a as it follows from the projection

formula IX.3.7.

Theorem 4.7, Let V and W be closed subvarieties of

dimension v and w. Then

nz

Hy " My = kg liy = up Ny

in Hy oo (VNW,E).

Proof. Let &: X - X xX denote the diagonal map. We

start from the formula II.10.8 ..U .. = (S*('[V x T_)

v W W
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valid in H nw“(X,E) and the formula

Proijection formula 4,9. Let f: ¥ - Y be a proper map between
. :

non-singular wvarieties. Then

My = (Hy X Hy) N Ty
Telerem) = £,(E)m ; EEH(X,E), n€H.(Y,E)
valid in H.{(X,%Z}. Cap these together to get
Proof. With the notation of 4.5 we shall prove that
— *
(ug Nrg) N = (g x ued N ted 0o* (1, x 1)
4.10 (fx’IY)*rY = 1

and using the formula 4.1, IX.3.4 and IX.5.9

To do so consider the commutative diagram

uvﬂ Ty = (uXXMX)ﬂ(rXU(rvxrw)) or,
—
X L KXY
Y
= [y % Hy) L R . iy
Pr1
- Y e
—((uxﬂ tv) % (px 0 IW))D Ty < L YXY
&

from which the result follows. This may be viewed as a pull back diagram of microbundles and

4.10 follows from the remarks preceding VIII.3.5. combining

Corgllary 4.8. If the two subvarieties V and W Iinter- : 4.5 and 4.10 we get

sect properly then

egn = wxB 0 (Ex1) ¥y (-1) P2
=3 1(Z,VWiX)p,

ey ¢ M
v W 7

From the pro'ection formula IX.3.7
i n v %
in HZ( ) (v W, }

EilogB) = (Ex1) 4 loxB) 0o, (=1)F9
Proof. In anw“(x,ﬂ) we have the formula

(fiax8ine, (-1P% = (£,0) 8
T UL, = ) L(Z,V'W:X) T,
Z

where we have used the definition 4.6.

and the result follows by capping this with 1y
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X.5. BAlgebraic families of cycles

it*(tr) = f*(rt) in H _, (v,Z) .
S

Let f: V - T be a map of algebraic varities where T

is non singular. Let the dimension of V and T be n and This follows from the commutative diagram where V_ = f_1(t)
t

d respectively. We define the class

i

(V,V-V) ——5 s (VxT,VxT-T)
5.1 T €H 2d(VxT;Z)
£ £x1
2n s — (s,t)
to be the pull back of T €H,“*(TxT) along f£x1. Let us (T,T={t}) ——mmms’ (TxT,TxT-4)

notice that

and the thecry of the diagonal class IX.6.13. The second

5.2 Uy X an T T Wy formula follows from

as it follows from an excision argument, compare 4.10. (UV" UT) Nt n (1><rt) = (uvx “T) n ('zxrt) nt;

Proposition 5.3. For teT let 2d(T,Z) denote

the formula 5.2 and =
rtEH{t} n U n T = Hiw

the Thom class. Then we may identify

u,NE¥{1. ) €H (f_1(t),(23)) In case f: V - T 1is proper we have the
v t ) proper

2(n-d

with the refined intersection class Projection formula 5.4.

wp NP (1) = g xud 11y fulavgB) = £,{a}"8 ;a€H.(V,B), BEH.(T,Z)

where p: VxT - T denotes the projection. ‘as 1t follows from the proof of 4.9.

In case the fibers of f: V » T all have dimension n-@&

‘we can defi
efine V EZn_d(V) by

roof. Let us first identify uvn f*(rt) with the class'_:' +

g

(uvx pe) N tp.  To do so let i,: V = VxT given by lt(v) = (Vrt

= *
We must prove that cel{v,) wy N E* (1)

-1
By (n-q) T (8},%). Tet us remark that
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(v, =} is independent of £E€T. Proposition 5.9. Given an algebraic family (Zt)

5.6 cl(Vt) EHZ(

n-4d) teT

Proof. Let r(r{t})EZﬁzd(T,Z) denote the image of ry,,. cl(z.) €H, (X,Z) is independent of tecT,

According to IX.3.5, 1. square the image of cl(Vt) in

Procf. But B = cl{Z). For +t€T define BtEH..(X,ZZ}

&1 {(V,Z} ig gvn f*(r(tt)).. Conclusion by the fact that

2 (n-d)

r(tt) € sz(T,ZZ) is independent of t€T, as it follows from such that

i¥,6.74 and a homotopy argument,

thut = Bﬂp*(rt)

Consider a cycle Y€ 12 (X xT) where X 1is a variety

k+d

of dimension n and T & non-singular variety of dimension d.

For a point t€T for which local on T, thus we may assume that T = R"., Using the

Kinneth formula IX.5.8 we see that £ has the form & X Uy,

5.7 dim X x {£} N Supp ¥ = k with o€ H.(X,Z). Thus we get

we can define a k-cycle Y on X characterized by

v Bﬂp*(tt) =(a><u,1Jn(1xrt)=0prt

5,8 cl{¥.) 7y, = cl(Y) np*(z,) i.e. B, = o for all teT.

where ©p: XxT » T is the projection and rtEH{t}Zd(T,ZZ] the

local Thom class. In case X 1is non-singular consider algebraic cycles

YEZ 4 (XxT) and 2€24,,(XxT) and a fixed t€T such

L that ¥ 7 and Y, 3 are defined. Th
a family (2 ) .q of k-cycles on X is called an algebraic t’ Tt t " Yt en

family if there exists ¥ on Z{X % T) which satisfies 5.7 ]
<10 cl(¥_“Z.) = (cl(Y} cl(z
for all t€T and such that v, =32, for all +t&T. £y (¥} (2)),

in H. {(Supp Yt n supp Zt,?Z) .

of k-cycles on the algebraic variety X. The homology class

the canonical generator. In thie formulation the problem becomes

417

where ttEH{t}(T,Z) is the local Thom class and utEH.‘({t},ZZ)
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Proof. Put o = cl{¥) and B = cl(Z). This gives
cl(Yt) = af1p*(rt) and cl(Zt} = Br1p*(tt) and the formula

reads

{exB) N (p*(ry) xp*{c )Nty = {axB) N Ty o NP* (1)
Thus it suffices to prove that Tysep = Ty X Tp and that
XTI, " tTUTXrt
which is left to the reader.

Q.E.D,

We shall now prove a result which will justify more

intuitive ways of defining the local intersection symbol.

Theorem 5,71. Let X denote a non-singular variety of

dimension n, (Zt) an algebraic family of cycles on X

teT

and (W an algebraic family of cycles of complementary

t)tET

dimensicn such that Supp 2

t t

Given a compact subset K of X and a connected open sub-

set D of T such that

supp Z. N Supp Wt < K for all teD

t

Then the sum of the local intersecticon numbers

é i({x},Zt"Wt;X)

is independent of t&D.

N Supp W is finite for all tE€T.
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Proof. It follows from the hypothesis that the cycles
Z and W on X=xT intersect properly. Let W-ZE€ ZO(XX T)
be the intersection c¢ycle. Let Y be an irreducible component
of the support of Z'W. It suffices to prove that deg Yy is
independent of te€D. Let f: Y - T denote the restriction
of the projection. Notice that. f-1(D} = KxD as a conseguence
of the second assumption and consequently that f_1(D) -+ D is
proper. Let J: f_1(D) -+ Y dencte the inclusion and considex

#

the cchomolegy class j Ly v According to the principle of pre-—

servation ¢f numbers TX.10.3
deg Y, = deg(j#u nf*c, ) ; LED
t Y t f

is independent of te€D,

Q.E.D,

Example 5.12. Let W be a plane curve, ({V the

t) tep]
family of lines through a fixed non singular point x of W and
a compact neighbourhood of x in the plane. Let V be

o

the tangent to W at x. Variations of € in a suitable neigh-

bourhood D of t, will often reveal the number i({x},W"Vt |
0
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X.6 Algebriac cycles and Chern classes

Let X denote an algebraic variety cf dimension n,

P: £ » X an algebraic bundle of rank d and s: X - E

an algebraic section. We shall assume that

The pull back of the Thom class VIII.6.1

sxrper 27 g
s (0)
defines a homology class
-1
uxr1s*tE € H2(n_d)(5 (0} ,2) .

By the assumption 6.1 this determines an algebraic cycle

z{s) € 2__,{X) by the formula

= &*
6.2 clx(z(s)) Uy 0 8% 1y

in Hz(n_d)(s—{(O),Z)“ The image of s*tE in H2(n—d)(x’z) .
is cy{E): Let x: szd{E,E} —>H2d(E,Z)_ denote the restrictio
We have cd(E) = i*(r(tE)) where i: X -» E denote the zero
section, VIII.6.2. On the other hand i* = s* since p* is

an iscmorphism and i* and s* both are left inverses to p¥*.

Applying XI.3.5 to 6.2 we get

6.3 el (Z(s)) = My cgq(E)

in H.(X,Z).

421

In case X 1z non-singular we have

6.4 c1¥(z(s)) = c g (E)

Proof. By Poincar& duality we must show that

nel®(z(s)) = uun ey (E)

Uy Uy

But for any algebraic cycle % we have

1 N c1¥(z) = cl, ()

and the result follows from 6.3,

Theorem 6,.5. Let E denote a complex vector space and

Grassi(E) the variety of i-subplanes in E and @ the cancnical

quotient bundle on Grassi(E)n For & linear subspace F of E

let o(F} < Grassi(E) denote the set of i-planes which meet

: F 1n a non zero subspace. If 1 < rk F < rkQ then o(F) is

- a subvariety of Grassi(E) with

codim o(E) = rkQ-xkF+1

and for p = codim F we have

cd(Q) = cl{o(F})
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Proof. For the first part of the statement, see Hodge-Pedoe
(1) XIV.2. - The restriction of the bundle Q to the comple~
ment of o(F) contains F as a subbundle; consequently the

restriction of cp(Q) to the complement of of{F} is zero.

n 1 ZP .
It follows that cp(Q) comes from Ha(E) {(Grass; (B} ,Z), l.e.
iz a multiple of cl{g(F}). Write
CP(Q) =m cl(g(F)) ; ME B

In order to prove that m = 1 choose an {(i-1)-plane D with

DNF = 0 and consider the cancnical projection

jsH Grass1(E/D) — Grass, (E)

Notice that p_1(U(F+D/D)) =g{F) and that these two subvarieties

have the same codimension. Thus we can write
p*cl(g(F)) = n cl{g(F+D/D)} ;s neZ
Combining the two formulas we get
CP(P*Q) = mn cl{c({E+D/D)}
Thus we have reduced the problem to 1 = 1.

Let I denote the canonical line bundle on P(E} = Gras1(E)

We have an exact sequence of bundles on P{(E)

0 — LY — E — Q — ©

423

which gives c. (Ve (@) = 1. Writing c.(LYy = t=cq (L)

we get immediately
c.(@) = T+e (L +e,m e, ..

in particular cp(Q) = c1(L)P" On the other hand o¢(F} may be
identified with P(F), a linear subspace of P(E) a codimension

P
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XI. Derived Categories _ , -1
Morphisms in 5 K: Given objects X and ¥ in K:

By a right fraction (b,s} from X to Y we understand a diagram

of the form

where s 1s in S, Given twe right fractions ({(a,x} and (b,s)
from X to Y. We write (a,r) ~ (b,s) if there exists a commu-

XI.1 Categories of fractions tative diagram as below with u in S,

Let us consider an additive category K and a system 8

of morphisms subjected teo conditions FR 1, 2, 3 below. To

these data we shall assccilate an additive category Sw1K

b 4
.

o

R . If f and g are composable morphisms belonging

to § then gof belongs to S. The identity of every object

LA o

of K belongs to S.

Lét us prove that ~ 1is an eguivalence relation on the fractions

FR 2. Any diagram in K with s in S LS- from X to Y. 8So let there be given three fractions with
can be completed to a commutative diagram . — {a,r) ~ {b,s} and (b,s) ~ (c,t}. Let the former eguivalence be
in K with t in 8. L o—y realized by the diagram above and the latter by the commutative
: : t+ ’ .
Ditto, with all arrows reversed. U U.S.' diagram below

FR 3. For morphisms f,g: ¥ - 2 in K and t: 2 - W
with tf = tg, there exists s: ¥ - Y in $§ with fs = gs. =

Dittoc with all arrows reversed.

We shall now introduce the additive category S_1K

Objects in S_1K: The same as those of K.

In order to construct an equivalence between (a,r) and (c¢,t)

consider the following diagram which is commutative except for

+the mid8lae A5 amoand
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Explanation: Complete first u,v to a commutative square

u,v,x,y with x in 8. This implies s(hx}

g(ky). Choose

w in S8 with (xh)w = (yk)w. Conseguently

(aixw,rixw) = {bhxw,tjyw) = (bkyw,tivw) = (cjyw,tiyw)

which provides an eguivalence between ({a,r) and (c,t).

) . -1
The morphisms or arrows in S

equivalence classes of right fractions from X to Y., The equi--

valence class of a right fraction (a,s) is denoted a/s. The

basic relaticn for calculation with right fractions is

1.2 ac/sc = a/s i1 SES, scES

Composition in sk . Given objects X,¥,2 in K and
a right fraction (a,r) from X to Y and a right fraction

{b,s) from Y %o Z. Consider the following diagram

/ \‘ b/s o a/r
1.3 ‘
_ / \ / \b4
a
¥ 7

X

be/rt

K from X to ¥ are the -
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where a commutative square has been filled in according to ¥R 3
with t in S. The arrow bc/rt from X to Z is easily
seen to be independent of the way the square has been filled in.
We leave it to the reader to verify that bec/rt depends only on
a/r and Db/s, It is also left to the reader to verify that
this composition law gives rise to a category.

=1

Addition in § 'K, Given objects X and Y in S-1Kh

It is easy to see that two morphisms from X tc Y can be re-

presented with a common denominator a/t, Db/t. We put
1.4 a/t +# b/t = (a+b) /t

and leave it to the reader to verify that this defines a structure

of abelian group ©n Hom _ . (X,Y) which makes composition in

S_1K bilinear.

The functor K—aS_1K" A morphism £: X - Y in K gives

-1

rise to a morphism £/1: ¥ - Y in § K. This functor is seen

to transform X®Y into a direct sum in S

-1

K. This completes

the proof of the fact that S
-1

K is an additive category. Notice

that K — § K is an additive functor.

Proposition 1.5, Let U: K - L be an additive functox

which transforms the morphisms in $ into isomorphisms in L,

Then there exists a unique additive functor V: 8_1

composite with K -— sk is o

K -» L whose

Proof. Left to the reader.
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Definition 1.6. The multiplicative system S 1is said to be diagram
saturated if any morphkism £: X » Y, for which there exists
h: W- X and k: Y > % such that fh and kf is in &8,
belongs to S. //3////"L$\\\\Q;\\
- 1.9 X rd \‘_t Y
Proposition 1.7. Let S be a saturated multiplicative system
in K. Then, a morphism f: X - ¥ is an isomorphism in S‘1K b T ®
if and only if £ belongs to S.
Proof. If £ is an isomorphism in S—1K then £ has &
right inverse Y-$i= Z _P;+X“ A simple consideration shows that _E with t in §. - Let us reproduce the diagram for composing left
this can be chosen such that s = fh in K. The opposite relatiéﬁ fractions

can be obtained from the discussion below.

s~bor-a = ts~ca

AN

Left fractions. Let X and Y be obkjects in K. By a

left fraction from X to Y we understand a pair of morphisms

(s,b) with s in S

This gives rise to a morphism
1.8 s~b = (1/8) o (b/1)
It follows from FR 2 that any morphism in $7% can be repre- - -

sented by a left fraction. Two left fractions (r,a) and (s;b)’

give zr~a = s~b if and only if there exists a commutative

429
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%I. 2 The derived category, D(A) Remark 2.1. The dotted arrow in TR3 is not unique in

general. Here is a collection of examples

Let A denote an additive category and K(A) the
homotopy category of complexes over A, Let us recall the basic.

properties of the triangles in X(A}.

TR1 Any diagram isomorphic to a triangle is a triangle.

Any morphism can be completed to a triangle. The diagram

{X,X,0,1,0,0) is a triangle.
Any dotted arrow will meet the reguirements,

TR2 A diagram of the form Let us use TR 1.2.3 to prove twc familiar results about

triangles.

Proposition 2.2, From an cbject X and a triangle

a

E* —— F~
-z[1] v g
is a triangle. ¥ —E 7" result two exact seguences
TR3 Given a diagram — [X",E*] —— [X",F"] [X°,6"] — [X",E"[1]] —
_____________ &> m°
— [6",X"] —> [F',X"] == [E",8"] — [&"[-1],x"] —

Proof. We shall restrict ourselves to prove exactness of

the following sequence

consisting of two triangles and morphisms £ and g making thé, [X",E"] » [X",F"] =~ [Xf,G“]
bottom square commutative. Then the dotted arrow may be £illed in

making the remaining two squares commutative.

431
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Proof. Complete g®t to a triangle (..,W,g®t). Next

Let us first notice that goce =0 as it follows from

choose 1i: G" » W' to make the following diagram commutative

¢ —————— G

£ e'\ e NG - + .

b e jme— —
P /" Ne ) \
g £ F' —— e { — F'8S"
S )

E » g (S’ / get

Ef-re——— s E'OR"

Given x €[X',F"}] with ex = 0 then we can find y€[X",E"]:

with x = gy from the following diagram construct Jj: T" - W' in a similar way. Finally prove that

(i,3) : G'&@T" > W" is an isomorphism by using the following

G commutative diagram

0

| P ST

G'OT" —————— Y’

F"@S" —————— — F'RS"

Proposition 2.3. Two triangles E"®R" - > E"®R"

G" JT Propesition 2.2 and the 5-lemma.
¥
f/ \3 S/J Q.‘E‘,D
" g W R+ t
E"emmiiee—s T — 5

Let us now assume that A is an abelian category. We shall

give rise to a direct sum '_constxuct the derived category D(A) of A on the basis of the

G"@®T"
f®s¢f;r FK\\\ edy

E"®R — > "F"$5"
gt

following proposition.

Proposition 2.4. The class (@ of K(A}) consisting of

all gquasi-isomcrphisms is a multiplicative system in EK(A),

i.e. satisfies FR 1,2,3 of the previous section,

which again is a triangle.
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Proof. The axiom FR1 is clearly satisfied. The proof

of FR2 is based on the cbservation that given a triangle

then s is in ¢ if and only if H'(8") = 0, compare I.5.5.

To prove FR2 let there be given morphisms

E" 5 Y = X" : s in @

On this basis we can construct the following diagram

s g
\xf . \\x
E" A

D" mmmmmmmmee Ly

where we have used TR1 to construct the triangle D"E’S® and TR3

to fill in the dotted arrow. The proof of the dual statement is
similar.

To prove FR3 let there be given morphisms f,g:.X” - Y
and t: Y" » %' in 0 with tf = tg. Put h = g-f to get
th = 0. We are looking for s: W' - X" in ¢ with hs = 0.
Let us first complete +t: Y'» Z° to a triangle Y  &'T",

next construct the diagram

L i W O A

LT

¥
iy g

Explanation: Since th = 0 we can choose an arrow X: X" - T
with =zk = h, Wext, fill ir the triangle X"T"K" at random.

Notice that s is in @ and that hs = (zk)s = 0.

The category obtained from K(A)} Dby inverting the class

¢ of quasi-isomorphisms is the derived category DI(A} of A

2.5 D(A) = 07 'K(A)

Quite similarly we can invert the class of all guasi-iso-
morphisms in K+(A), the homotopy category of bounded below com—
plexes over A to get

2.6 ptear = 9 kT (A

Propesition 2.7. Let A Dbe an abelian category and I the

full subcategory of injective objects. If every object of A

admits a monomorphism into an object of 1, then

ot (A = k(1)

the homotopy category of bounded below injectives.

Proof. Let 1 denote the additive category of injective

objects in A and consider the resolution functor

o K'(AY » kY (D)

The class { 1is transformed inte isomorphism which allows us to

435
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factor p through D+(A) to obtain
r: DY (A) — k(D)
The inclusion I — A will induce a functor
it KN(I) ~—- DY ()
which is a right adjoint to 1, I1.6.6
[x",iT"1 = [zx",1"]
Let us notice that the adjunction morphism

ril" —— T

ig an igomorphism. From this we conclude that the functor

i K+(I} - D+(A) is fuliy faithful, i.e. gives isomorphisms
(1,,1,] s [1,Tq,1,1,]

Thus it follows from I.6.1 that i is an equivalence of categories
The same is true for r, r being a left adjoint to 1.

Q.E.D. -

Let us record the dual nctions. The result of inverting

the gquasi-isomorphisms in X (A) is denoted

o]

2.6 DT(A) = TTRT(A)

Let 7 denote the full subcategory of projective objects in A.

If A has enocugh projectives, then

2.7° DT(A) =5 KT(P)

Triangles in D(A)}. Let us first remark that the trans-~

lation functor X" -— X"[1] gives rise to an endofunctor of
p(A), 1.5. By a triangle in D(A) we understand a diagram iso-

morphic to the transform of a triangle from K(A).

Proposition 2.8. The triangles in D{A) has the pzoper=-

ties TR1,2,3.

Propof. Only TR3 needs to be treated seriously. We leave
it to the reader to check that it suffices to take as point of

departure a commutative diagram in K({A) of the form

We can now f£ill in arrows F'C" and F' 7' according to TR3. The
arrow F'C" 1is necessarily a quasi-isomorphism as it follows
from the long exact homology ladder resulting from the morphism

D'"E"F" » A'B'C" and the five lemma.

437
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Homology in  DP(A). The homology functor

Q

E': K(A) —— A

transforms the multiplicative system ¢ into isomorvhisms.
Thus by 1.5 the homology functor may be factored through D(4).

The resulting functor will be denoted

g5°%: Dl4) = A

Given a triangle in DI(A}

ff‘\

E* —————a P

the resulting sequence in A

g o we o Wle #(g01)
2.9 B2(8") s BO(F") mes BO(G") —— H

0

is exact,

Ext groups. For complexes X' and Y' over we define

for each integer n
2.10 Ext™(X",¥") = Hom{X',¥"[n])

where Hom is calculated in D{A). Define

2,11 xUB = alg]l o

(B [1]) —— " (FL1])

for o € ExtP(Y',2') and peExtdx,¥").

Let us note a case where we can identify DI(A4)

Proposition 2.12. Let A he an abelian category in which

every object has an injective resolution of length n, where n

is a fixed integer. Then
D{A) = KI(I)
where [ denotes the category of injective cbjects in A,

Proof. According to I.7.7 every cohiject of K(A}) adnits
a quasi-isomorphism into a complex of injective objects. Thus
it suffices to prove that any guasi-isomorphism £: I" - J' in
K(1) is a homotopy equivalence. It suffices to treat the case
where J" = 0 by a mapping cone argument. To prove that I° ig
homotopic to zero it suffices to prove that Ker ¥ isg injective
for all pe Z. By translation it suffices to treat the case
P = 0. From the long exact sequence

-n -n -n

¢ - Ker 3 O S - Ker aO = 0

we derive for each object N in A an isomorphism

Ext1(N,Ker §) 3 Extn+1(N,Ker a™

Hence Ext1(N,Ker BO} =0 for all N in A shows that
0
Ker @~ is an injective object. For the sake of completness let

us show that

439
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fl
o

2.13 [x",1"1 for 1" in K({I)} and

X" in XK(A) with H"(X") =0

So let there be given f: X" - I 4in X(A}. According to FR2
applied to £ and X" - 0 we can find a gquasi-isomorphism

ks I" - J" such that %kf = 0. By the first part of the proof
we may assume that J° is in K(I} and by the second part k
is a homotopy egquivalence. Whence £ = 0.

Q.E.D.
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XI.3 Triangle associated to an exact seguence

Let us consider an abeiian category A and the correspond-
ing derived category D{A) constructed in the previous section.

To a short exact sequence of complexes

1=
i<

3.1 0->pP"
we are going to associate a triangle in D(A}
R
., ‘}/ \V
e 2,0

The arrow w: R" - P"[1] will sometimes be referred to as the

characteristic arrow of the short exact sequence 3.1.

Construction: Let us notice that (0,v): P[1]1 & O+ R in

fact defines a morphism of complexes
{(O,v): Con"(u) — R

We are going to prove that this is a guasi-isomorphism. As in

the proof of I.4.15 consider the exact commutative diagram

CINNCTE

Cyl'(u) —— Con"{u) — 0

r
l 1 (O,u;1) l(orv)
P

- - u 0" v R" 0

It follows from the discussions preceding I.4.14 that the vertical
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arrow in the middle is a homotopy equivalence. Now form the
long homology ladder and apply the 5-lemma to conclude that
{0,v) 1is a guasi-isomorphism.

We can now define the characteristic arrow w: R> - P"[1]

in D{A} to be the fraction
3.3 Wr R@Q% Con" (u) -(-z-'-o-)—--eP"[‘I]

We can conclude that 3.2 is a triangle in D{A) by referring

to the standard mapping cone triangle I.4.14.
Functoriality 3.4. Given an exact commutative diagram of
complexes in A

u
—_—

!

0 — ~,

P’ o
PoF
E" E"

Then (p,d,r}) 1is & morphism from the triangle associated the

Qe "

l

0 —— g 4, 5o 9,

upper row to the triangle associated the lower row.

g

roof. This results immediately from the following diagram

of complexes in A

R'< Con" (u) ~— P"{1]
e
G'e— Con"(f) —s>E"[1]

which is commutative.

The formula 3.3 represents w as a right fraction. The

following formula represents w as a left fraction

_!02 u[1])
3.5 w: R” L Con“(v}-_—g—rP[1]

Proof. Consider the following diagram

{0
- (1,0) ul1]
- A1/ Con' (1) - P [1] —— 0" [1)

1 l(O’V) l(ué1]) 11
- -(?} (1,0)
R Con’ (v) — Q°[1]

0 — ©

Notice that the two rows represents triangles. In fact the dia-
gram is a morphism of triangles in X(A) since the middle squa

is homotopy commutative

(ué”)ﬂ,m

/

From the morphism of triangles results a homoclogy ladder. Apply
the 5-lemma to this to conclude that (ué?]) is a quasi-isomorphi
Thus 3.5 represents indeed a left fraction. To see that this

equals 3“3 we have to appeal once more to the homotopy commutat

square just established.

Q.B.D.

ul1] = - -
(B - (472 - (2800 - 6D

443

re

sm.

ive



444

The 3 x 3 diagram. Let us consider a commutative exact

diagram in the category of complexes over A of the form

0 0 0
_ % S AU G
0 —_— A.I AZ > A3 —_
a-| az a3
3.6 W _Z .1 “
0 B1 B2 B3 s ()
by by by
v o MW "
0 C1 C2 C3 — 0
0 0 c

Let w1,w2,w3 denote the characteristic arrows of the three

columns and Wy e W s Wy the characteristic arrows of the rows.

Then

asy b.
. bid . 3 . 3 .
0 A, a, B, Cy 0
el o b
L\ LT - T L N X
3.9 0 —— A;" — A,°8B," — B," — Cy° s 0
11 l(o,—n lbz lT
—aq Vb w
0 A, B, C," — = Cy" —— 0

The sequence in the middle is exact: check directly that wb2
X

is a kernel for (az,—z) and that (a1

Let us make a general remark concerning an exact sequence

of complexes of the form

By factoring the middle arrow in an epimorphism followed by

a monomorphism we obtain two short exact sequences of complexes

) is a kernel for (a2,—z

3.7 wa[1] 0wy = ~w1[1](3w

c

0~-D," =D

2" - E* - 0,

0 - E"

-

D, - D

3

4

"
-

0

Let u:

B

-

D

T"[1]

and v:

D

. .

o B[]

denote respective

or otherwise expressed: the diagram below is a morphism of

characteristic arrows. The composite

triangles in D(A}.

3.8 C, — = . [1]
3 W 1
N\?3 c r\\b1
W W
3 B3 ™ ->B1[13
b
/a3 a4
A, A 13
W
a

o

complexes over A

Proof. Consider the following commutative diagram of

ul1] o vz

D

4

— D1[2I

will be called the characteristic class of the sequence 3.10.
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).

Notice that this construction is functorial in a sense similar to

3.4, If we apply this to the diagram 3.9 we see that the top

row and the bottom row has the same characteristic arrow. The
characteristic arrow of the top row is wa[1]c)w3 while the

characteristic class of the bhottom row is —w1[1](3wcu
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XI.4 Yoneda extensions

Let us consider two objects M and N of an ahelian

category A. We shall consider n-fold extensions of M by N,

i.e. exact sequences of the foxm

4.1 0 -+ N - Rn—‘i - Rn__2 B RO M0
An n~feld extension gives rise to a complex
4,2 R.: 0—>N—>Rn_.| -+ —>R1 —rRO—>0

and two morphisms of complexes over A

S
4.3 MeR. 5 N[n]

As indicated, the morphism s 1s a quasi-isomorphism, so that
f/s defines an arrow in D{A}. The characteristic c¢lass of

the extension 4.1 is by definition

4.4 (_1)n(n+1}/2

£/s EExt™ (M,N)

The reason for the sign will appear shortiy.

Proposition 4.5, In case n =1 the characteristic class

0f the extension 0 - N - RO + M + 0 coincides with the third

side in the triangle asscciated to the exact sequence, 3.2.

Proof. Consider an extension of M by N

0o-n3gr 3

0 M-0
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The rule from 3.3 assigns the fraction

(0,v) (1,0}
Me== Con" (u} =—> N[1]

Notice that Con'({u) and the complex R, from 4.2 only differs

by the sign of the differential. Consider. the commutative diagram

Con" (u)
7 (1,0
(O!V) \
(o7)
M 01 N[1]
0,V /:.0)
R

From which we conclude that the fraction above equals -f/s with

the notation of 4.3. This is consistent with 4.4 since (—T)H(m'”/2 =

in case n = 1,
Q.E.D.
Proposition 4.6. Given extensions in A
3 3
0——>P-——>Sm__.]I—!......—>S1—}-->SOA—>N—>O
8 n-1 a1
0-—-F>N——->Rm_,[ [ N —)R,I«--~—->RO-——>M-——->O

with characteristic classes 6¢ Extm(N,P) and qJEExtn(M,N)

respectively. Then the spliced extension

0 == P - 5 == 0o~ 8, B3, R 4 — -—— R

1 e 0

ey M ——m

has characteristic class

oug € Ext™™mM,D)

.
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T
Proof. Let us define three complexes
u \\\“h
v 3 3 R
= 0 — P —» S__, =) - 84 1, Sg — 0 5[n]
5 3 s \& t[rN (-1 glnl
n—] |
R. 0 — N 2 Rn-1 e T R1 - RO — 0 M N[n] Pim+n]
T - m-1 o n-1 0

where the data 4.3 relative to the spliced sequence is repre-

sented by the composites su and (-1)nmg[n]h“ Thus the

Let us first exhibit a guasi-isomorphism wu: T. = R.
spliced sequence has characteristic class

WA
0 -P->3S8 «..851 = 5, - R Y > R, = 0
m-1 0 7 n-1 0
o 9] o 1) d (-1) (R AFH 1) 2\ DM 1y ind 0 £/
0 - 0-20 .. 0 =N 1—‘L>Rn_.]--> —>RO->0
We shall finally involve the elementary identity
and a morphism h: T. > S.[nl
mi{m+1}/2 + n({n+1)/2 = (m+n) (m+n+1)/2 -~ mn
3 3
0 - P LN Sm__,] -IE_—}» W — S..] --14 SO —E}—\) Rn_,]
and the formula follcows.
{-1) ™ (_E)(Hr1)n (=1} ‘ 1 J
Q.E.D.
(—1)nv (_1)n3 1 (_1}n31
0 —— B' =™ 5 -—---9m_‘..‘.‘-—bs —_—s'S5, — 0 —
m=1 1 0
Proposition 4.7. Two n-fold extensions in A

Let the two extensions give rise to diagrams

0—>N—>Rn 2+ +.. = R - M >0

-1 - R

N eft= 5. 95 Plm]

0 -N->5 D wew 2 8, 28 - M->0
a f n-t
M == R, Ls n[n]

has the same characteristic c¢lass if and only if there exists

Then we have the following commutative diagram .
a commutative exact diagram of the form
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- N = Rn i . = R1 - RO - M =0
A A A A A
- I

0 - N - Tn—1 S oaeas T.| - T0 - M= 0
Lo ol

0 » N - Sn__1 D e S1 - SO > M >0

The same statement is true with the vertical arrows reversed.

Proof. Given a diagram as above. Let R., 8. and T. de-
note the corresponding complexes in the sense of 4.3. We deduce

a commutative diagram

from which we concliude that the two relevant right fractions are
identical. - Suppose conversely that the two extensions have

the same characteristic class. Then we deduce the existence of

a diagram as above where T° is some complex. In the diagram

above we can replace T° by the truncation T" without

TS(} TZ__D

disturbing the diagram. This gives a diagram of the promised sort.

In order to prove the statement relative to the reversed
vertical arrows we need a representation of the characteristic
class by a left fraction. This is accomplieshed in 4.9 below.

Q.E.D.
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Propogition 4.8, et M and ¥ be objects in the abelian

category A, and n €W.. Any element of Extn(M,N) can he
realized as the characteristic class of an n-fold extension of

M by N.

Proof. An element of Extn(M,N} can be realized as a

right fraction £/s
s £
M €&=—= R, —— N[n}

Replace R. by the truncation R, to obtain the desired

rsOtZ_n Y
n-fold extension of M by N.

Representation by a left fraction. Let there be given an

n-fold extension of M by N as in 4.,1. Let us introduce the

complex

- M =0

= ..0 =2 R

o

M 5. < Nin]

With the notation of 4.3 let us prove the formula

4.9 £/ = (-11" t~g
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Proof. We shall prove that the following diagram
R, — 1 — R
I
ﬂs £
N[n] (-1) £ = gs
g t
-nn
S.
is homotopy commutative. Put 60 = gs and Bn = tf. For
i=1,440,n=-1 let Bi: R. = 8. be given by
Fivg o N 1
N — Rn-1 —_ . Ri+1 ———»Ri———a Ri_1 —_— s R1 —> R0
i Fd
(=1F~
0 0 0 - -1 "x. {0 0 0
¥ or. r. r
n- i-1 0
Ry 9By g = we Ry~ Ry LRy = o Ry — N

The single dotted arrow above provides a homotopy from ei to

) A simple induction will complete the proof.

i+1"

Q.E.D.
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XI.5. Octahedra

Let A denote an additive category by an octahedra in

K = K{A) we understand a diagram of the form
ic
c
5.1
C B A N ’ wdemw D‘

=N

i

consisting of four triangles and such that
5.2 gi = 3f cp = dg

The first of these relations expresses commutativity of the
middle diamond in 5.71. The second relation is nicely realized by
reflecting the diagram 5.1 inh the line AY and attaching it to

the old diagram

(S SRRAPTN PRI

N ANAN AN A
AONANAN AN

oJ ag ic

Alternatively the diagram can be represented as a braid
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This xepresentation reveals that an octahedron contains four
morphisms of triangles.
To explain the name of the diagram 5.1 we shall represent

it as an octahedron

< ek " o € ag ¥

0 s n Py
{ d////”1 hV

g
re
/
£a A ic fa - ¥ /// ic

n 3 . t
B s N c B ~WW\;?~;|vvw} ¢
upper cap lower cap

where the shaded areas represent triangles and the unshaded areas

represent commutative diagrams. To the general octahedron we can

associate two sequences

(_f) (e, 3) cp
5.3 A" ——— X"®B Y A"l
i { p) (c,d)
5.4 A -2y L c i1]ep” ~Er2, avf1]

which we call the Maver-Vietoris sequences of the octahedron,
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L
Theorem 5,5, Any diagram consisting 1\1H‘ ///ﬁ

of two triangles with a common vertex can be

completed to an octahedron whose Mayer-Vie-—
toris sequences are triangles.
L el

Proof. The triangle I.4.22 can be completet to the diagram

(U

Con®({v) €

N

Con" (vu)

VYIS

X" oo~ Con {u)ﬁbevNﬂwvﬂﬁ—COn

which is easily verified to be an cctahedron.

To establish the Mayer-Vietoris sequence 5.3 we notice

that the chainwise split exact sequence
0
(-

\ / (100)
Y"—m———e Con"{u) ¢ 2" - Ov1 Con” (vu)

has homotopy invariant (u,0) as it follows from

~300 10 10
O 0oy 00 0y
\"3821& ) 7 O v 3) = (o) ( ALY

We leave the sequence 5.4 to the reader.

Q.E.D.
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Proposition 5.6. Any commutative square A1A2B132 can be f. ¥, Xp2 1
completed to & ¢ diagram i fﬂi C2 < . B, € A2
"'5  z
xq ¥q % i 2 E < //; gh = ag
A, = B \ C a ] A r
1 1 1 1 G
) L AZ D
a, " b, . ¢y . a i1l G
2 2 ey :
A, B, c, ,A2[1] ! ay a. h
a b c a,[1] By
2 - 2 ¥4 2 24 2 A.] o A3 e AZ
A3 B3 Cg > A3 ? aq asz.,
aq b3 C3 - _b3[1] ;
x.lE'I] y1[1] 21[1]
2 01 ~—— 5,011 c, 1 » A (2]
; s di : 173 *3
in this diagram the three first rows and the Cllle——J>L 2 By, &—— A,
three first columns are triangles and all squares are commutative,
-k 3 ¥3 Zy
except the one marked - anticommutative.
-kc3 = th

Proof. Choose first triangles bhased on :’4:1,.b,l,(:11,x2 and
complete the two octahedrons below, finally complete the third octa-

hedron. We let the diagrams speak for themselves.

a,Z, -Cy
b < b2 B, e b1x1 A,
by b1 £ g Let us verify the required anti commutativity
1 z, = gk
. b . ; ZiCq = gkc3 = g(—hz3) = -agzg
1 oo c1 BS The commutativity relations are left toc the reader.
zZ, y1b3

Q.E.D.
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XI.6 Localization

Let us consider the homotopy category K{A) of complexes
over an additive category and M a subcategory of K = K(A],

which satisfies the fellowing two conditions

6.1 The category M is stable under translation.
If two of the vertices of a triangle belongs to

M then the third vertex belongs to M.

6.2 If X ® Y belongs to M, then X and ¥

belongs to M.

Let 8 denote the c¢lass of morphisms s in K which are
the basis for a triangle in K whose third vertex are in M.
We are going to prove that S is a multiplicative system in K

i.e, that it satisfies FR1,2,3 from XI.1. Let us add

FR4 S is stable under decalage.

FR3 Given a diagram consisting of two triangles and a

commutative square

PR |

+

with f and g in S. Then there exists h: C - T in §

making the remaining two sguares commutative.
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Theorem 6.3. The class S of morphisms in K is a multi-

plicative system in the sense that it satisfies FR1,2,3 from XI.]

and IR 4,5 above. Moreover, the system S is saturated, 1.6.

Proof, Let s: X » Y and +: Y » Z be morphisms from S.

Consider the octahedron

\/\/
NN

X S 5

Notice that S and T belong to M to conclude that W belongs
to M i.e. that to0s belongs to S. This proves FRi. The
proof of FR2 and FR3 can be read off the proof of 2.4. The con-
dition FR4 is a consequence of 6.1 while FR5 follows from 5.6.

We shall now prove that S is saturated, so let there he
given morphisms r: V - X, s: X > ¥ &t: Y - % such that sr and
ts are in 8. With the notation from the octahedron above remark
that g{sz} = (gs)r = 0. TFrom this follows that g can be
factored through the third wvertex of a triangle based on sr. In
particular we conclude that gof can be factored through an ob-
ject of M. &Apply the lemma below to the morphism gof and

conclude that S 4is in M, i.e. that g belongs to 8.
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Lemma 6.4, Given a triangle with W in M .':f IgﬂDﬁfgﬁalﬂly

AN

T s S

If the morphism h can be factored through an object of #M,

then T and S belong to M.

Proof. Let T £ v 88 be a factorization of h with Y
in M., Consider the octahedron above and notice that ¥ and W

belong to M. It follows from the Mayver-Vietcris sequences that

Z® S and T & X belong to M., We conclude from 6.2 that

§ and T belong to M,

Q.E.D,

On the basis of this theorem we can construct the category

s77k. Let us say that a diagram in g1

isomorphic to the transform of a triangle from K. The category

sk is a triangulated category in that the triangles satisfy

TR1,2,3 £from XI.2Z.
It is easy to see that the construction M- S5 gives a
complete description of the saturated multiplicative ystems in K

in terms of subcategories of K satisfying 6.1 and 6.2.
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