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THIS article concludes the survey of properties of the family of Stiefel mani-
folds which we began with (3) and (4). It is primarily concerned with two
families of auxiliary spaces, called stunted protective and stunted quasi-
projective spaces, whose algebraic topology not only makes an interesting
study in itself but also illuminates the classical problem of determining
which Stiefel manifolds admit cross-sections. The theory is fairly self-
contained, although there are important connexions and resemblances of
technique as regards previous papers in this series. The auxiliary spaces
are denned in the introductory section and our main results are stated in the
following one.

1. Introduction

Let K denote the field of real numbers, complex numbers, or quaternions.
We refer to K as the basic field, and we denote its dimension over the reals
by d. Thus d = 1, 2, or 4 according as K is real, complex, or quaternionic.
Let E^, where| m ^ 1, denote the m-dimensional right vector-space over
K, with a fixed basis and the classical inner product. We regard the elements
of Km as column-vectors

u = [>!,..., xm] (*!,..., xm G K),

so that linear transformations are determined by matrices acting on the
left. As usual we identify u with [xv..., xm, 0], so that JLn% is embedded in
Km+i> We also identify KpxKa with K,n, where p+q = m, by means of
the relation:

Let Sm denote the subspace of K^ which consists of unit vectors. Topo-
logically, 8m is a sphere of dimension dm— 1.

Let Om denote the topological group of orthonormal mXm matrices, i.e.
those which leave the inner product invariant. Thus Om is the standard
orthogonal, unitary, or symplectic group according as the basic field is real,
complex, or quaternionic. We define OQ to be the subgroup of O1 which

f When Ko is mentioned it means the empty set.
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consists of the identity. Of course Om acts transitively on 8m, and the
transformations of the point

am = [0,...,0,l]

determine a fibre mapping p: Om-> Sm. We identify Om_x with p~x{am) in
the usual way, so as to correspond with the embedding of Kin_1 in K,n.
Write 8X = 8. We identify 0x with 8 by means of p.

Projective spaces are defined as follows. Let m ^ 1. Represent 8 as a
transformation group of 8m, by means of multiplication on the right. Let
Pm denote the orbit space which is obtained by identifying points of Sm

with their transforms under the action of S. Then Pm is a projective
(m— l)-space over K. In particular, Px is a point-space. Since 8m c 8m+1 we
have a natural embedding of Pm in Pm+1, and the complement is a cell of
dimension dm. Write c° = Px and write cm = Pm+i—Pm- Then we obtain
the well-known cellular decomposition:

Pm = c° u d u ... u cm_x.

The homology and cohomology of Pm can be determined by means of this
cell-structure and Poincare duality.

Let L denote the set of elements x e K such that x-\-x = 0, where x
denotes the conjugate of x. In the real case, for example, zero is the only
such element. Let ra ̂  0. By the equator of Sm+1 we mean the subspace
Tm which consists of unit vectors

U = [XQ, #!,..., Xmj [XQ, a;lv.. E K)

such that a;0 e L. Define 6(u) to be the orthonormal mxm matrix | |a#||
in which a__ = hi._2Xi{i+Xo)-2x. ( i < itj < m ) .

We recognize the map 6: Tm ->• Om as one which arises in connexion with the
representation of Om+1 as a principal Om-bundle over 8m+1 (see §§ 23, 24
of (6)). Consider the space Q'm which is the image of Tm under 6. We can
obtain Q'm from Tm by identifying the vectors in each set of transforms

[xxox, xxx,...,xmx] (x G 8),

and also identifying all vectors having xx = ... = xm = 0. Notice that
Q'm contains the point O0 except when the basic field is real. Write

Qm=Q'mu00cOm.

Because of analogies with the definition of Pm I propose to call Qm the
quasi-projective (m—l)-space over K. The construction is similar to that
studied by Yokota in (13), (14). Notice that Qo = O0 and that

Gi = Oi = 8.

Also notice that the embeddings of Tm in Tm+1 and Om in Om+1 are compatible
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with 6. Hence we have a natural embedding of Qm in Qm+1, and the comple-
ment is a cell of dimension d(m-\-1)—1. Write e° = Qo and write

Then we obtain the cellular decomposition:

Gm = «°Ue0U...Uew_1.

Conjugation by elements of S is a trivial operation unless the basic field
is quaternionic. Hence it follows that Qm is isomorphic to Pm in the real
case, to the suspension of Pm in the complex case. These observations are due
essentially to J. H. C. Whitehead (11) in the real case, to Yokota (13) in
the complex case. Indeed, Yokota once announced that Qm is isomorphic
to the threefold suspension of Pm in the quaternionic case, but this was
withdrawn in (14).

We have now defined the group space Om, the projective space Pm, and
the quasi-projective space Qm. Let m ^ k ^ 1. Our definitions have been
arranged so that

where m ^ k in the projective case. We define the Stiefel manifold Om k

to be the factor space of Om by Om_k (using left cosets); we define the
stunted projective space Pmk to be the complex obtained from Pm by
identifying Pm-k with c°; and we define the stunted quasi-projective space
Qmtk t° De the complex obtained from Qm by identifying Qm_k with e°.
Notice that Pm>m is not defined.f Also notice that

We have the cellular decompositions:

It is easy to check that the inclusion of Q.m in Om maps Qmk homeomorphic-
ally into Omk, and so we regard Qmk as embedded in Omk. Procedures for
extending the cell-structure of Qmk over Omk are described in (11), (13),
and (14), but these are unnecessary for present purposes.

Let k > I ^ 1. Since Om_l c Om we obtain an embedding of Om^ltk_t in
Omk. Since Om_k c 0m_t we obtain a projection

P: ^m,k~> ®m,l-

Thus Omk is expressed as a fibre bundle over Oml with fibre Om_lk_t. Simi-
larly we embed p p n n

rm-l,k-l C rm,k> Hm-l,k-l C ^m,k'>
t Except where special emphasis is required I let it be tacitly understood that

m > k > 1 in the case of Pm1t while m > k > 1 in the case of Omk and Qm>fc.
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and we define projections

P • Pm,k ~> Pvip 9. '• Qm,k ~> Qn,l'

Thus Pml is represented as the complex obtained from Pmk by identifying
Pm-ijt-i with c°, and Qml is represented as the complex obtained from Qmk

by identifying Qm-l>k-i with e°. Notice that q and p agree on their common
domain.

An ordered orthonormal set of k vectors in K^ is called a ifc-frame. We
can regard the vectors as constituting a matrix with m rows and k columns.
Elements of Omk are represented as fc-frames by taking the last k column-
vectors from each matrix of Om. In particular, Oml is identified with Sm.
The standard projection n n

is obtained by suppressing the first k—l vectors of each &-frame. Consider
the case 1=1. By a cross-section of Omk I mean, as in (4), a map of Sm into
Om>k which is a right-inverse of p. By the covering homotopy theorem,
Ovhk admits a cross-section if and only if p admits a homotopy right-
inverse.

To obtain Pmk from Sm we identify the vectors in each set of transforms

[«!«,..., a;ma;] (xeS),

and we also identify all vectors having xm_k+1 = ... = xm = 0. It is easy
to check that PmX = S'm, where S'm is a sphere of dimension d(m— 1). I
describe Pmk as reducible if the standard projection

P- pm,k-+8'm

admits a homotopy right-inverse. Recall that Pmk is obtained from
Pm-i,k-i by attaching cm_v It follows that Pmk is reducible if and only if
the attaching map of this cell is inessential. Take cohomology with co-
efficients in the ring of integers modulo 2. The cohomology of Pm forms a
truncated polynomial ring, so that the class carried by cm_1 is equal to the
product of the classes carried by cm_k and ck_v By naturality, therefore, it
follows that Pmk cannot be reducible unless m ^ 2k or k = 1.

To obtain Qmk fromf Tm we identify the vectors in each set of transforms

[xxox, xxx,..., xmx] {xeS),

and we also identify all vectors having xm_k+1 = ... = xm = 0. It is easy
to check that QmX = Omfl, and so Qml = Sm. I describe Qm>k as reducible
if the standard projection

T- Qm,k-+8m

admits a homotopy right-inverse. Recall that Qmk is obtained from
Qm-ijc-i by attaching em_1. It follows that Qmk is reducible if and only if

f In the real case when m = k it is necessary to adjoin the point e°.
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the attaching map of this cell is inessential. Because p is an extension
of q it follows that 0mk admits a cross-section if Qmk is reducible.

We observe once more that conjugation by elements of S is a trivial
operation unless the basic field is quaternionic. Hence Qmk is isomorphic
to Pmk in the real case, to the suspension of Pm k in the complex case. In the
real and complex cases, therefore, reducibility of Pmk implies reducibility
of Qm>k; in the real case, the converse is also true. In any case we have the
relation rr , p \ ^J TJ m \

nr+l\rm,k) ^ J1r+d\(Vm,k)>

which is true for homology with arbitrary coefficients. The reader is asked
to bear in mind throughout what follows, the particular structure of the
homology groups of the auxiliary spaces.

2. Statement of results
Two spaces are said to belong to the same $-type when there exist

numbers i and j such that the i-fold suspension of the one space belongs
to the same homotopy type as the J-fold suspension of the other. Consider
the problem of classifying stunted protective and stunted quasi-projective
spaces by #-type. Our main object in what follows is to link this classifica-
tion to the problem of deciding whether certain Stiefel manifolds admit
cross-sections. The connexion is provided by the condition of reducibility,
or rather by the corresponding notion in $-theory, which I call the con-
dition of $-reducibility.

Let Am>k denote Pm>k or Qm>k, and let wm_x correspondingly denote cm_x

or em_v so that Amk is formed by attaching wm_x. I describe Amk as S-
reducible if the attaching map of this cell lies in the zero #-class, i.e. if its
r-fold suspension is inessential for sufficiently large values of r. Of course,
reducibility implies #-reducibility. In order for Amk to be ^-reducible
it is necessary and sufficient that the r-fold suspension of the projection
from Amk to AmX should admit a homotopy right-inverse, for large enough
r; in other words, that the r-fold suspension of wm_x should carry a spherical
cycle. Hence #-reducibility is an invariant of the $-type. That is to say,
if two of the spaces

•*-vi,k> *vm,k> •'•n,k> ^n,k>

belong to the same $-type then either both the spaces are ^-reducible or
both are not.

Since Qmk is isomorphic to Pmk in the real case, to the suspension of Pmk in
the complex case, we immediately obtain

THEOREM (2.1). Exclude the quaternionic case. Let m > k ^ 1. Then
Pmk and Qmk belong to the same S-type. Hence Pmk is S-reducible if and only
if Qmk is S-reducible.
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We shall see later that (2.1) cannot be extended so as to include the
quaternionic case unless, of course, we have k = 1.

The following three theorems constitute our main contribution to the
classification problem. The proofs will be found in § 8 below, where they
appear as applications of more general results.

THEOREM (2.2). Suppose that Pmk is 8-reducible. Let n ^ k. Then Qn>k

and Pm+n>k belong to the same 8-type.

THEOREM (2.3). Suppose that Qmk is S-reducible. Let n > k. Then Pnk

and Pm+n>k belong to the same S-type.

THEOREM (2.4). Suppose that Qmk is S-reducible. Let n ^ k. Then
Qnk and Qm+n>k belong to the same S-type.

Because of (2.1) these theorems nearly coincide with each other when the
basic field is real or complex. In the quaternionic case when k ^ 3, how-
ever, the hypothesis of (2.3) and (2.4) can be fulfilled, for suitable values
of m, but never that of (2.2). The justification for this assertion appears in
(2.7) and (2.9) below. But before we pursue such questions there is a further
result to be stated. As an application of (2.4) above we shall prove

THEOREM (2.5). There exists a number r, which may depend on k but not
on m, such that the r-fold suspension of Qmk is a retract of the r-fold suspension
of Om>k.

Let rk denote the least value of r which satisfies the requirements of (2.5).
I emphasize that rk must be independent of m. Certainly r1 = 0, and it is
easy to prove, by means of homology theory, that rk ^ 1 if k ^ 2. More-
over, by using techniques developed in (5) it can be shown that r2 > d,
where d means the same as before. I t would be interesting to know some
more about the values of rk. For example, is it true that rk is bounded ?
And how is rk+1 related to rk ?

I t is proved in (4) that there exist values of m, for given k, such that
Omk admits a cross-section. Let the greatest common factor of all such
values be denoted by qk. Information about these numbers qk will be
found in the introduction to (4). A complication arises in the real case
where there is a possibility that some values of k are irregular, in a certain
sense which is sufficiently well indicated by (2.6) below. I t is not known
whether any irregular values exist; certainly k is regular if k ^ 9. The
relevant results from (4) can be conveniently summarized as

THEOREM (2.6). In order for Om k to admit a cross-section it is necessary and
sufficient that m be a positive multiple of qk and, in the real case, that k be
regular or m > qk.

In § 8 below we use (2.4), (2.5), and (2.6) to prove
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THEOREM (2.7). In order for Qmk to be S-reducible it is necessary and
sufficient that mbea positive multiple of qk.

It is most satisfactory that (2.7) avoids making any exception of the real
case. We use (2.7) to prove

THEOREM (2.8). Let m,k^ 1. Suppose that Qnk and Qm+n>k belong to the
same S-type for all sufficiently large values of n. Then m ^ k, and Qmk is
S-reducible.

To prove (2.8) we choose n to be a sufficiently large multiple of qk. Then
Qnk is ^-reducible, by (2.7), and so Qm+n>k is ^-reducible, because the
property is an invariant of the #-type. Hence m is a multiple of qk, by (2.7),
from which (2.8) follows at once. The above result is in the nature of a
converse to (2.4), so that in one sense our original purpose of classifying
stunted quasi-projective spaces has been achieved. But the converse of
(2.4) is untrue if we only consider individual values of n, as we shall see in
the discussion which follows (2.10) below.

It might be expected that (2.7) would have an analogue for stunted
protective spaces. However, we shall prove

THEOREM (2.9). Let the basic field be quaternionic and let k ^ 3. Then
Pmk and Qnk never belong to the same S-type. Also Pmk is never S-reducible.

The second assertion of (2.9) is a consequence of the first assertion, with
m replaced bym-fw, and of (2.2) above. If the basic field is real or complex,
or if & ^ 3, (2.1) and (2.9) effectively dispose of the problem of determining
when Pm>k is ^-reducible. It only remains for us to investigate the quater-
nionic case when k = 2. For this a direct approach is feasible, and we
achieve a complete analysis as follows.

Let Sq denote the standard g-sphere and let Gq denote the stable homo-
topy group of the g-stem. A map of Sn+a into Sn determines first an element
of rrn+a(S

n) and then, by iterated suspension, an element of Oq. In what
follows we shall be concerned with the 3-stem, regarding which there is a
convenient account in (8). It is known that G3 is cyclic of order 24 and is
generated by y, the element determined by the Hopf map of S7 to $4.

Let the basic field be quaternionic. We write P"m = Pm>2 (m ^ 3) and
Q'm = Qm,% (m ^ 2). Thus, P"m is obtained by attaching a (4m—4)-cell to a
(4m—8)-sphere, and Q"m is obtained by attaching a (4m—l)-cell to a
(4m—5)-sphere. These attaching maps determine! elements ocm, j3m £ O3,
respectively. We shall prove that

(a) ± <xm = (m—2)y,]

f There is a question of orientations here, which accounts for the alternative
signs in (2.10) below. For present purposes it is unnecessary to settle these.



122 I. M. JAMES

The first of these relations is immediate when m = 3, because P"z is the
quaternionic protective plane. Let us show how the second relation can be
deduced from the first. Since 24y = 0 we obtain from (2.10 a) that P"26 is
^-reducible. Hence Q'^ belongs to the same #-type as Pm+26> by (2.2).
Therefore /Jm = ±a:m+26,

 a n d s o (2.10 b) follows from (2.10a). We prove
(2.10 a) in § 10 below.

The following conclusions are obtained immediately from (2.10). First,
P"n and P'n belong to the same #-type if and only if

m—2 = ±(n—2) (mod 24).

Secondly, Q"m and Q"n belong to the same $-type if and only if

m = ±n (mod 24).

Thirdly, P"m and Q'^ belong to the same #-type if and only if

m—2 = ±n (mod 24).

Fourthly, P ^ is ^-reducible if and only if ra = 2 (mod 24). Fifthly and
lastly, Q"m is ^-reducible if and only if m = 0 (mod 24). By (2.6) and (2.7)
this last conclusion is equivalent tof

COBOLLABY (2.11). The quaternionic Stiefel manifold Om2 admits a cross-
section if and only if m is a positive multiple of 24.

Finally, some remarks are due concerning the possibility of using the
algebra of Cayley numbers (octonions) in place of the basic field. It is
pointed out at the end of (4) that an octonionic Stiefel manifold Om2 can be
defined. Similarly, one can certainly define octonionic Pm2 and Qm2. The
Cayley protective plane, for example, is P32. I t would not be difficult to
include these extra cases in our discussion, but it seems preferable to deal
with them separately on another occasion.

3. The join construction
Let / denote the unit interval, parametrized from 0 to 1. Take spaces

A and B, which may be empty. We define the join of A with B to be the
space A * JB which is obtained from the disjoint union A I) (AxBxI)V B
by identifying ^ ^ Q) = ^ ^ b l ) = b)

for all a e A, b e B. We generally omit to write in the identification map, so
that the image of (a, b,t)in.A*B is denoted by the same expression, where
tel. Notice that A*B is homeomorphic to B*A under the trans-
formation: / , ,v ,, 1 .\

(a,b,t)^{b,a,l—t).

We refer to this as 'inverting the order of the join operation'. The notion
f The result which follows was announced in (4) without proof.
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of join is functorial, and applies to maps as well as spaces. If A' and B'
are closed subspaces of A and B, respectively, we embed A' * B' in A * B
by means of the join of the inclusion maps.

Now let A and B be CPF-complexes. We extend their cell-structure over
A * B by taking the joins of cells of A with cells of B. Either suppose that
both A and B are locally countable, or else suppose that one of them is
locally finite. Then A * B is a (7TT-complex. If A' and B' are subcomplexes
of A and B, respectively, then A' * B' is a subcomplex of A * B. Consider
the cellular homology groups, with integral coefficients. We have a natural
direct-sum decomposition:

where the summation extends over all pairs of positive integers p, q such
that p -\- q 4-1 = r. The value of the isomorphism on each summand is given
by the chain-mapping:

Cp(A)®Ca{B)-»Cr(A*B),

which corresponds to the operation of joining cells. A direct proof of this
result is straightforward, but it is easiest to derive it from the corresponding
result for the singular theory (see § 2 of (10)).

4. The intrinsic maps
Our theory is based on the construction of a pair of maps:

(n > "0
9- Om,k * Qn,k ""*" Qm+n,k (n ^ *0

where m > & > 1. I call these the intrinsic maps, although it is not clear
how they are related to the previous intrinsic map

Ji' O «i» O >• O

constructed in § 2 of (3). The definition of/ and g proceeds as follows.
Let a e Omk> so that a determines a linear transformation of Kk into K^n.

We use a to define a series of maps

a: SnX I ->Sm+n,

where n = k-\-l, ifc+2,... . Let u e Sn and let t e I. Write <j> = \nt and write
u = (ult u2), where ux e Kn_k, u2 e Kk. We define cx(u, t) = u'', where

u' = (ux, aM2cos^,M2sin^).

Notice that a(ux, t) = u'x if x e S, and that u' e Sm+n_k if u e Sn_k. By
passing to equivalence classes, therefore, we obtain from a. a map
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which ultimately depends on a. Let b e Pnk. Then jS(6, t) is independent of
b when t = 0, of a when t = 1. Define/, in (4.1), to be the map in which

(a,b,t)->P(b,t).

The definition of g is similar. Let 6: Tr-> 0r mean the same as in the
introduction, where Tr denotes the equator of 8r+1. Let n > k, and con-
sider the map a

which is one of the series defined above. Let v' = a(v, t), where v e Tn.
Then v' e Tm+n, and hence v' e Tm+n_k ifve Tn_k. It is easy to check that
6(v') depends on d(v) rather than on v itself. By passing to equivalence
classes, therefore, we obtain from a a mapf

7'- Qn,k ~> Qm+n,k>

which ultimately depends on a. Let c G Qnk. Then y(c, t) is independent
of c when t = 0, of a when t = 1. Define <7, in (4.1), to be the map in which

(a,c,t)^y(c,t).

When k = 1 all the spaces involved in (4.1) are spheres, and the degrees
off and g are easily determined. We obtain

LEMMA (4.2). Both f and g are homotopy equivalences when k = 1.

5. Naturality relations
The purpose of this section is to examine the behaviour of intrinsic maps

in relation to various projections and inclusions. Let us concentrate
attention on the stunted protective spaces and remark, once and for all,
that the corresponding relations for stunted quasi-projective spaces are
proved by similar methods.

Let Jc > I ^ 1. Consider the projections

P> P: Om,k^ Om,k-l>

where p takes the last k—l vectors of each &-frame and p takes the first
k—l. The standard projection defined in the introduction is p. Let a, a
denote the joins of/), p, respectively, with the identity map on Pn_l>k_h as
shown in the following diagram.

U>n,k * • * n - l , k - l ~~*"

Om,k-l * *n-l,k-l ~7? P>n+n-l,k-l

In the above diagram, j is the inclusion map , / ' is the intrinsic map, a n d /
is obtained by restriction from the intrinsic map of Omk*Pnk into Pm+ntk-

f In the real case when n = k it is necessary to add that y(e°, t) = e°.
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It is easy to check t h a t / = jf'5. Also p ^ p, by (1.3) of (3), and so a cf a.
Therefore f^jf^ ( g J )

A similar relation holds in the case of g.
Next, let T denote the join of the standard projection from Omk to Oml

with the standard projection from Pnk to Pnh as shown in the following
diagram. f

n * p •> p

I
In the above diagram, p denotes the standard projection and /, / " are
intrinsic maps. I assert that

Pf^tf'r, (5.2)
where £ denotes a certain homeomorphism. of Pm+n>i onto itself. A similar
relation holds in the case of g. The definition of £ is unimportant apart
from the proof of (5.2), which proceeds as follows.

The first step is to associate a homotopy

(sel)
with each point a e Omk. Let a' denote the submatrix formed by the first
k—l columns of a, and let a" denote the submatrix formed by the remaining
I columns. Then a', a" determine linear transformations ofKk_h Kh respec-
tively, into E^. Let ueSn and let t e I. Write u = (uv u2, uz), where
% E Kn_k, u2 £ Kk_h u3 £ K[. Write <f> = \nt and §s = £TT(1—s+st), so that
cf)0 = 7̂7 a n d </>! = </>. W e define as(i*, t) = u's, where

u8 = (uL, a'u2cos<f>s-\-a"u3cos<f), u2sin<f)s, u^sincf)).

Notice that as(ux, t) = usx if x e S, and that u's e Sm+n_[ ifue Sn_k. When
we pass to equivalence classes, therefore, we obtain a homotopy

Ps- *n,k X i ->

Let b £ Pnk. Then /?s(6, t) is independent of b when t = 0, of a when t = 1.
Consider the homotopy

f • D * P - ^ P
Js- wm,k •̂*• n,k ~^ x m+n,l

in which (a, b, t) -> j3s(6, t). Let ^ denote the homeomorphism of Pm+nj
onto itself which is induced by the transformation

(vXt v2, v3, «4) -+ (vv v3, v2, »4),

where v± E Kn_k, v2 e Kk_b v3 e K,n, and v4 £ Kt. Then/0 = £f\ and/x = pf.
This proves (5.2).
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Finally, let p' denote the join of the identity map on Om_ltk_l with the
standard projection from Pnk to Pn>k-b as shown in the following diagram.

Vm-l,k-l * *n,k ~ P

Om-l,k-l * * n j c - l ~^ * m ,

In the above diagram j is the inclusion map , / ' is the intrinsic map, and /
is obtained by restriction from the intrinsic map of Omk*Pnk into Pm+n>k>
Thus j means the same as in (5.1) bu t / ' and/have new meanings. We shall
define a homeomorphism £ of Pm+n>k onto itself, and a homeomorphism -q
of Pnk onto itself, with the following property. Let

V : Om-l,k-l * Pn,k ""*" ^m-l,k-l * ^n,k

denote the join with 77 of the identity map on Om_lk_l. Then

Uv'-jf'p'. (5.3)

A similar relation holds in the case of g.
The first step in the proof of (5.3) is to associate a homotopy

oiB:8nxI-+8m+n (a el)
with each point a e Om_lk_h regarded as a linear transformation of Kk_t

into Km-i. Let ue8n and let t e / . Write u = {ux, u2, u3), where ux e Kn_k,
u2 E Kk_i, u3 e Kt. Also write <f> = \nt and <f>s = ^Trst, so that <j>Q = 0 and
fa = <f>. W e define a's b y

as(u, t) = (uv au2 cos cf>, uz cos <f>s, u2 s in <f>, u3 s in <f>s).

By passing to equivalence classes we obtain from ocs a homotopy

Hs '• P>i,k X i - ^ Pm+n>k-

Let b e Pnk. Then f?s(b, t) is independent of 6 when t = 0, of a when t = 1.
Consider the homotopy

/ s : Om-l,k-l*-f«,& ~*" -̂ m+n,fc

in which (a,6,£) ->- j8^(6,i). Define 77 to be the homeomorphism of Pnk onto
itself which is induced by the transformation

(u^u^Ua) -+ {u1}u3,u2).

Define £ to be the homeomorphism of Pm+n>k onto itself which is induced
by the transformation

(«!, v2, v3, vA) -+ (v1} v3, v2, u4),

where vx e if%_fc, v2 e i^, v3 e i ^ . , , and v4 e Kk. Then /^ = Itf'p'-rf and
/1 = / . Hence (5.3) follows at once. It can further be shown that £j c± j
so that £ can be dropped from (5.3), but this simplification does not assist
any of the present applications.
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6. Applications of the theory
Let A be a OTT-complex and let A' denote the complexf A *Sm, where

Sm = Qml. Consider maps

where u is arbitrary and p denotes the join of the identity on A with the
standard projection from ^-frames to 1-frames. I describe u as an A -section
of Omk if and only if pu ~ 1. An A -section certainly exists if A is con-
tractible or if Omk admits a cross-section.

Let F denote the composition

A. n * A „ n J
A ' «j- TJ -̂  A «i» f) «fe P -̂ A «fe P

•" * •* n,k ^ -C1 ̂  W7n,k ^ •* n,k ~^ • " *" -^m+njo

where u denotes the join of u with the identity on Pnk a n d / denotes the
join of the identity on A with the intrinsic map/. The main purpose of this
section is to prove

THEOREM (6.1). Suppose that u is an A-section of Omk. In the real case,
further suppose that m is even or that k = 1. Then the map

F:A'*Pn>k^A*Pm+n>k

which u determines is a homotopy equivalence.
We prove (6.1) by induction on k. When k = 1 both u and/ are homotopy

equivalences, hence u and / are homotopy equivalences, and hence F is
one too. Let k ^ 2. Suppose that (6.1) is true for all values of k less than
the given one. Define

A * Om;fc_, <- A * Om>k -> A * OmJL,

where 1 ^ I < k, by taking the join of the identity on A with appropriate
standard projections. Write u' = p'u, u" = p"u. Then u' is an ^4-section
of Om>k-i, and u" is an ^4-section of OmJL. Hence, by hypothesis of induction,
the corresponding maps F' and F" are homotopy equivalences, as shown
in the following diagram.

% J)
' sk "P ..... ^ A ' & Jp y A '

A ^ ~D ^ A ^ ~p ^ A wu Jp
•"• v Jrm+n-l,k-l • •"- 3pjrm+n,k ~*~ -*1 VJrm+njl

3 2

In the above diagram, i and j are inclusions while p and g are defined by
taking joins of appropriate identity maps with standard projections. It
follows almost immediately from (5.1) and (5.2) that

(a) Fi ~ jF' )
, (6.2)

(b) qF~F'"p)

f The cell-structure of a sphere consists of a basepoint and its complement.
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where F'" denotes the composition of F" with a certain homeomorphism
of A *Pm+nj onto itself.

Now pass to homology with integral coefficients, and consider the follow-
ing diagram of induced homomorphisms, where r > 1.

X 2^Hr(A'*Pn>l)
El' El El'« I G 9 \

\F* \F* \F* (0.3)

Recall that Pnl is obtained from Pnk by identifying i^_/)&_/ with a point.
Hence it follows that the kernel of p* coincides with the image of i%. Simi-
larly, the kernel of q* coincides with the image of j * . Also (6.3) is commuta-
tive, by (6.2); that is to say

w ****** -
(b) F F'"J'

Both F* and F% are isomorphisms, since F' and F'" are homotopy equiva-
lences. The next stage in the proof of (6.1) is to deduce that F* is an iso-
morphism too. When i%, j% are monomorphisms and p%, q* are epimor-
phisms we can reach this conclusion at once by an appeal to the 'five' lemma.
In the real case, however, this will not work, and two lemmas are required
to overcome the difficulty.

We begin by proving

LEMMA (6.5). Suppose that I = 1 in (6.3). Then the image of q* coincides
with the image of F%p*.

Every A -section of Oml is homotopic to the identity map. Hence and
from (4.2) it follows that F'", when I = 1, is homotopic to the join of the
identity on A with a homotopy equivalence <Sm*Pnl ->• Pm+n>\- Therefore
F'£, as well as p% and q%, can be computed in terms of the expression for
the homology of the join which we gave in § 3 above. After computation
and, in the real case, use of the hypothesis that m is even, we arrive at (6.5).
A similar argument proves

LEMMA (6.6). Suppose that I = k—\ in (6.3). Then the kernel of i+ co-
incides with the kernel ofj^F*.

We are now ready to prove that F% is an isomorphism. First consider
(6.3) with 1 = 1 . Let x e Hr(A *Pm+Bjfc). Then q*(x) = q*F*(y), by (6.4b)
and (6.5), where y E Hr(A' *Pnk). Hence, by exactness, x—F*(y) is con-
tained in the image of j * . Since F'* is an isomorphism there exists an
element z e ^{A'*Pn_x>k_^) such that x—F:¥{y)—j^F'^{z). Hence
x = F^(y-\-i^z), by (6.4a), which proves that F# is onto. Secondly, con-
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sider (6.3) with I = k—1. Let x' be an element of Hr{A' *Pn>fc) such that
F*(x') = 0. Then F%p*{x') = q*F*(x') = 0, by (6.4b), and sop*(x') = 0,
since F% is an isomorphism. Hence x' = i*(y'), where

y'eHr(A'*Pn_k+1>1).

But j*F*(y') = F+iM) = 0, by (6.4a), and so i*(yf) = 0, by (6.6).
This completes the proof that F% is an isomorphism. Hence F is a homotopy
equivalence, by Theorem 3 of (12), since A'*Pnk and A*Pm+nk are
simply-connected. This concludes our inductive proof of (6.1).

Of course there is a similar result for stunted quasi-projective spaces, as
follows. Let 0 denote the composition

ii g
A' *Qnjc -> A * O m k * Qnk -> A *Qm+n>k,

where u now denotes the join of u with the identity on Qn k and g denotes
the join of the identity on A with the intrinsic map g. Then we have

THEOEEM (6.7). Suppose that u is an A-section of Omk. In the real case,
further suppose that m is even or that k = 1. Then the map

O: A * Qn>k -> A * Qm+n>k

which u determines is a homotopy equivalence.

The proof of (6.7) is omitted since it is similar in all respects to the proof
of (6.1).

7. Further applications
Let A mean the same as in the previous section and let A" denote the

complex A * S'm, where S'm = Pml (m ^ 2). Consider maps

where v is arbitrary and p denotes the join of the identity on A with the
standard projection. I describe v as an A -section of Pmk if and only if
pv c± \. An .4-section certainly exists if A is contractible or if Pmk is
reducible. Furthermore, Pmk is ^-reducible if and only if Pmk admits an
A -section where A is a sphere.

Consider the map / ' : Pm>k * On>k -> Pm+n>k

which is obtained from the intrinsic map

by inverting the order of the join operation. Let F' denote the composition

A" * Onk -> A * P m k * Onk -> A *Pm+n>k,

where v denotes the join of v with the identity on Onk a n d / ' denotes the
5388.3.9 K
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join of the identity on A with / ' . Let F denote the restriction of F' to
A"*Qnk. Then we have

THEOBEM (7.1). Suppose that v is an A-section of Pmk. In the real case,
further suppose that m is even or that k = 1. Then the map

F:A"*Qn>k->A*Pm+n>k

which v determines is a homotopy equivalence.

As in the proof of (6.1), we make an induction on k and study the homo-
morphisms of homology groups induced by F. We use (5.2) and (5.3) so
as to obtain the relations analogous to (6.4). The details of the proof of
(7.1) are omitted because it is very similar to the proof of (6.1).

Since F' is an extension of 3? over A" * Onk we obtain from (7.1):

COROLLARY (7.2). Suppose that Pmk admits an A-section. In the real
case, further suppose that m is even or that k = 1. Then A" * Qn kis a retract
ofA»*On>k.

Let A' denote the complex A *8m, as before, where Sm = Qml (m > 1).
Consider maps w

A <r- A * Qmtk -> A ,

where w is arbitrary and q denotes the jmn of the identity on A with the
standard projection. I describe w as an ^.-section of Qmk if and only if
qw ~ 1. An A -section certainly exists if A is contractible or if Qmk is
reducible. Furthermore, Qmk is ^-reducible if and only if Qmk admits
an A -section where A is a sphere. Let w' denote the inclusion of w in
A * Omk. Then w is an A -section of Qmk if and only if w' is an A -section

of Om,k.
Consider t h e m a p g': Qm>k * On>k -> Qm+n>k

•which is obtained from the intrinsic map

9'- On,k * Qm,k ""*" Qm+n,k

by inverting the order of the join operation. Let 0' denote the composition
w 5'

A> * On>k -+A* Qm>k * On>k ^ A * Qm+n>k,

where w denotes the join of w with the identity on Onk and g' denotes the
join of the identity on A with g'. Let G denote the restriction of G' to
A'*Qnk. Then we have

THEOREM (7.3). Suppose that w is an A-section of Qm>k. In the real case,
further suppose that m is even or that k = 1. Then the map

which w determines is a homotopy equivalence.
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The proof of (7.3) is analogous to the proof of (7.1). I do not know
whether G is related to the map G determined by w' as in (6.7). Since G'
is an extension of G over A' * On>k we at once deduce

COROLLARY (7.4). Suppose that Qmk admits an A-section. In the real
case, further suppose that m is even or that k = 1. Then A' * Qnk is a retract
ofA'*On>k.

8. Proof of the main theorems

We apply the results of the previous two sections so as to obtain proofs
of the main theorems stated in § 2. Recall that d denotes the dimension
of the basic field over the reals. We begin by proving

LEMMA (8.1). The pair (Omk, Qm>k) is t-connected, wheref
t = 2d(m—k)+3(d—l).

The lemma is obvious if k = 1, since Qml and OmX coincide. Let k ^ 2,
and suppose the lemma to be true for all values of k less than the given
one. Consider the following diagram, where **, j * are injections and q*, p*
are induced by the standard projections.

r m, •> m , ^ r m,

Of course j# is an isomorphism and p% i* = j * q*. Also p* is an isomorphism
since p is a fibre map. Now it follows from the Blakers-Massey theorem, as
stated in (1.25) of (8), that q* is an isomorphism if r < t, an epimorphism if
r = t. Therefore the same is true of i%. Consider next the following
diagram, which represents the injection of the homotopy sequence of the
pair (Qm>k, Q^^^) into that of the pair {Om>k, Om_x>k_x).

... -> TTr(Qm-l,k-l) -*" KriQmJe) "* ^AQmJc* Qm-l,k-l) "* •••

k_x) -> TTr(Omk) -> 7Tr(Omk,

By the inductive hypothesis i%, as well as i*, is an isomorphism if r < t, an
epimorphism if r = t. Hence it follows from the 'five' lemma that i'* is
an isomorphism if r < t, an epimorphism if r = t. In other words, the pair
(Om,k> Om-\,k-\) is ^-connected. This completes our inductive proof of (8.1).

The lemma is used to prove
THEOREM (8.2). In order for Qmk to be reducible it is necessary and sufficient

that Omk admit a cross-section and, in the real case, that m ^ 2k or k = 1.

f Homology considerations show that the stated value of t cannot be improved
except, of course, when k = 1.
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The necessity of these conditions has been proved in the course of the
introduction. Their sufficiency is obvious when k = 1 and in the complex
case when m = k = 2, because Qmk is reducible. Let k ^ 2, therefore,
and let m ^ 3 in the complex case. Suppose that Omk admits a cross-
section. Then m > 2k, by hypothesis in the real case, by (20.6) of (1) and
(1.1) of (4) otherwise. Hence and from (8.1) it follows that every map of
Sm into Omk is homotopic to a map with values in Qmk. In particular, a
cross-section can be deformed into Qmtk, and so Qmk is reducible. This
completes the proof of (8.2).

Now we are ready to prove the main theorems, as listed in § 2 above.
Let us begin with the classification theorems. Suppose that Qmk is ir-
reducible. Then Qmk admits an ^[-section, where A is a sphere, and so
Omk admits an -4-section, by inclusion. Homological considerations show
tha t m is even in the real case when k ^ 2. Hence A' *Pn>k belongs to the
same homotopy type as A *Pm+nik, by (6.1), and A' * Qnk belongs to the
same homotopy type as A * Qm+n>k, by (6.7). This proves (2.3) and (2.4).
A similar argument based on (7.1) is used to prove (2.2).

The retraction theorems of § 7 have various applications, such as the
following theorem, which is what we need for proving (2.5).

THEOBEM (8.3). Suppose that Qmk is reducible. Let n ^ k. Then the
dm-fold suspension of Qnk is a retract of the dm-fold suspension of Onk.

We obtain (8.3) at once from (7.4) as the special case when A is empty.
By (2.6) and (8.2) there exist values of m, for given k, such that Qmk is
reducible. Choose the least such value, and write r = dm. Then (8.3)
yields (2.5), with n in place of m.

Now let us prove (2.7). Let m be a multiple of qk. Then O2mk and O3mk

admit cross-sections, by (2.6). Hence Q2m>k and Q3m>k are reducible, by
(8.2), since qk ^ k. Also Qmk and Q3m>k belong to the same £-type, by (2.4)
with mreplaced by 2m. Therefore Qmk is ^-reducible. Conversely, suppose
that Qmk is ^-reducible. Then Q2m>k and Q3m>k are ^-reducible, by (2.4),
and hence are reducible, by the Blakers-Massey suspension theorem, as
stated in (2.6) of (8). Therefore O2mk and O3mk admit cross-sections by
(8.2). Hence it follows from (2.6) that m is a multiple of qk. This completes
the proof of (2.7).

We conclude this section by proving a classification theorem of a
different kind, which happens to be needed for the proof of (2.9). Let A
and B denote P or Q (both the same, possibly). We prove

THEOBEM (8.4). Suppose that Amkand Bnkbelong to the same S-type. Let
k > Z ^ 1. Exclude the real case ifm—l (or n—l) is even. Then Am_lk_l and
Bn_lk_l belong to the same S-type. Also Amland Bnl belong to the same S-type.



SPACES ASSOCIATED WITH STIEFEL MANIFOLDS 133

Since k ^ 2 our hypothesis ensures that m and n have the same parity
in the real case, for otherwise the homology groups of Amk and Bnk would
be incompatible. I do not know whether the theorem can be extended so
as to include the real case when m—l (or n—l) is even.

In the proof of (8.4) let us use the symbols ' and " to denote iterated
suspension, the number of iterations in each case being such that A'mk

and B"n h belong to the same homotopy type. By the cellular approximation
theorem there exists a cellular homotopy equivalence

F- Amk-^ Bnk.

It follows from the disposition of the cell-structure, as described in the
introduction, that F determines a map

and hence also determines a map

@- Aml—>~ Bnb

because A'ml can be obtained from A'mk by collapsing A ^ ^ and B"nJL can
be obtained from B"nk by collapsing 2^_/fc_j. These three maps induce
homomorphisms of integral homology, as shown below.

-> Hr(A'mk) ->

-> Hr(B:>k) -
a p

In the above diagram a denotes the injection and p the projection homo-
morphism, so that

It is easy to check that a is an isomorphism whenever ,
Hr{B'n_l)k_^ are non-trivial, and that p is an isomorphism whenever Hr(A'ml)
and Hr(B'ntl) are non-trivial. Also F% is an isomorphism, since F is a homo-
topy equivalence. Therefore E* and G* are isomorphisms, and so E and G
are homotopy equivalences, by Theorem 3 of (12). Hence the conclusion of
(8.4) follows at once.

9. Intrinsic join operations
Let A, B, and C be spaces. To each map

h:

there corresponds a pairing of -^(J.) with TTJ(B) to 7ri+J+1(C), which I call
the intrinsic join (with respect to h). The intrinsic join of a e ^i(A) with
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P G TTJ(B) is defined to be the element a * jS which is the image of the ordinary
join of a with jS under the homomorphism

induced by h. The operation is defined when i > 1 and^' ^ 1. I t is linear
in a when i ^ 2, in /? when j ^ 2.

We have already studied one example of the intrinsic join in (3). Two
more are obtained by taking h to be one or other of the maps shown in (4.1).
By u s i n g / we obtain a pairing of ^(0^) with 7r,(Pn|Jfc) to iri+j+1(Pm+n>k);
by using g we obtain a pairing of ^(0TOfc) with ir^Q^) to 7Ti+j+1{Qm+n>k).
A theory of these operations can be built up, somewhat on the same lines
as the exposition in (3). For example, consider the homomorphismsf

(9.1)
Tj(Qn,k) """*" 7Ti+j+l(Qm+n,k)

in which jS -» 9*j8, where 6 e TTi{Omk) and the intrinsic join is taken with
respect to / , g, respectively. We prove a theorem about these homo-
morphisms which may be regarded as an extension of the Freudenthal
suspension theorem.

Take i = dm—1, where d means the same as usual, so that 9 is represented
by maps of Sm into Omk. We describe 9 as a 1-section if and only if it can be
represented by a cross-section. We prove

THEOREM (9.2). Suppose that Omk admits a cross-section. Let 6 be a 1-
section, and consider the corresponding homomorphisms

fl'w(P Ww (P )
vj. /ij\j- n,kf "j+dnvS-m+nJch

Qg'- 7Tj(Qn,k) ~> 7Tj+dm(Qm+7i,k)-

Write p = 2d(n-k)-l, q = 2d(n—k+l)—2.

Then 9f is an isomorphism if j < p, an epimorphism ifj = p; and 9g is an
isomorphism ifj < q, an epimorphism ifj = q.

For let u be a cross-section of Omk which represents 9, and let

If: om*Pnk -> Pm+n>k

denote the corresponding homotopy equivalence, constructed by using
u and/as in (6.1). Then 9f coincides with the composition

E FL
TT IP \ —*- TT ftfjfeP ^

where F# is the isomorphism induced by F and where E(fS) denotes the join
with /? of a 1-section <f> e rr^^^S.^. Since <f> is a generator it follows from the
Blakers-Massey suspension theorem, as given in (2.6) of (8), that S is an
isomorphism if j < p, an epimorphism iij = p. Hence the same is true of

t These are homomorphisms even when j = 1.
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dp which proves the first part of (9.2). The proof of the second part is
similar in all respects.

When k = 1 both parts of (9.2) reduce to versions of the Freudenthal
suspension theorem, so that our result may be regarded as a generalization.
The second part of (9.2) can be used, in conjunction with (8.1), to establish
a generalized suspension theorem for Stiefel manifolds, somewhat re-
sembling (3.1) of (4).

10. Proof of (2.10)
Although the following argument can be applied to the other cases as

well, let us ease the notation by assuming throughout this section that
the basic field is quaternionic. Accordingly we write On = Spn and
Sn = S*71'1, where n ^ 1. We regard Sin as the suspension of S*71-1, so that
points of Sin are represented by pairs (x, t), where x e AS471"1 and

— 1 < « ^ 1.

Consider the map hn: S*n+3 -+ Sin

which is given by the transformation

b o . - . &J "> Ptfo£n> 2ft £„,..., 2 g B g n - l ] .

It is easy to check that the complex Pn+2>2 c a n b© formed by using hn to
attach a (47i+4)-cell to Sin. Our problem in (2.10 a) is therefore to deter-
mine the homotopy class of hn.

Let q G S3. Multiplication on the right by q determines a symplectic
transformation <f>{q) of $4 n - 1. Let | n e ir3(8pn) denote the homotopy class
of the map K'-&-+8pn

which carries q into <f>(q). We obtain hn from tin by applying the Hopf
construction. Therefore hn represents Jn{in), where

denotes the homomorphism which is given by the Hopf construction. In
particular, J^x) is the Hopf class. Consider the diagram shown below,
where i* denotes the injection and E% the iterated suspension.

It follows from (16.7) of (6) that £w = ni^j), and so
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by Theorem 2 of (9). We obtain (2.10 a) at once from this relation when we
pass to the stable homotopy group.

We have already described, in § 2, how (2.10 b) can be deduced from
(2.2) and (2.10 a). A direct proof can also be given, with a little difficulty.

11. Relations between the three cases
Let K denote the field of complex numbers or quaternions. Let K'

denote the real field if K is complex, the complex field if K is quaternionic.
We represent elements of K in the usual way by pairs (x, y), where x, y e K',
and we identify x with (x, 0), so that K' is a subfield of K. Let O'mk, P'm>k,
etc., mean the same as Omk, Pmk, etc., except that K' is used as basic field
instead of K. The purpose of this section is to discuss relations between
Om>k and O2m>2k, between Pmk and P'2m>2k, and between Qmk and Q'2m>2k.

The case of the Stiefel manifolds has already been considered in § 8 of (3),
and a canonical map of Omk into O'2m2k has been defined, which happens
to be an embedding. Letk > I ^ 1. By (8.1) of (3) we have a commutative
diagram as follows, where p and p are standard projections, a and a' are
standard inclusions, and u, u', u" are canonical maps.

\u' \u \u" (11.1)
Y Y Y

Now consider the situation in the case of stunted projective spaces.
Vectors of K'2m are transformed into vectors of E^ according to the rule

When we pass to equivalence classes we obtain a map of P2m>2k onto Pmk.
Let us call this the canonical map. The following diagram is commutative,
where p and p' are standard projections, i and i' are standard inclusions,
and v, v', v" are canonical maps.

x??i— /,fc—/ ~ ^ Jrmlk ~~^ m{^
A A A

U' « U" (11.2)
-pi jy __. p '
-^ 2m-2l,2k-2l ~T r 2m,2k , * 2m,2l

% P

Moreover, v maps Cgr+1 homeomorphically onto cr, where m—ifc ^ r < m.
This property is useful when we have to consider the homology and co-
homology of stunted projective spaces.

In the case of stunted quasi-projective spaces there is nothing quite
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analogous to either of these two constructions. Guided by considerations
of cohomology, however, let us designate as canonical any cellular map

w- Q > Q'

which maps er onto e'2r with degreef J^l for m—k ^ r < m. Define w'
and w" so as to make the following diagram commutative, where q, q'
are standard projections, and^', j ' are standard inclusions.

3 ^ X o
\w (11.3)

r 2m>2k q' 2m>2Z

It is easy to check that w is canonical if w' and w" are canonical.
The theory of cup-products indicates that canonical maps do not, in

general, exist when m < 2k. However, we prove

LEMMA (11.4). Suppose that m ^ 2k. Then there exists a canonical map
w: Qm,k ~> Q2m,2k'

In the case of Stiefel manifolds we have defined the canonical map

Let u denote the restriction of u to Qm>k. It follows from (8.1) that u can be
deformed into Q'2m>2k so as to determine a map

Wm ^m,k *o2m,2k'

Define w to be a cellular approximation to id. I say that w is canonical. This
statement is obvious if k = 1. Let k ^ 2 and suppose, inductively, that
the statement is true for all values of k less than the given one. Since (11.1)
is commutative it follows that w' and w", as shown in (11.3), can be obtained
by the same procedure as w. Hence w' and w" are canonical, and so w is
canonical.

The restriction on dimension in (11.4) is inconvenient, and for purposes
of #-theory it can be avoided as follows. Let n > k. Choose any value of m
such that Omk admits a cross-section. By (6.7) there exists a homotopy
equivalence j , . .o * n . n

Also 02m,2fc admits a cross-section, by (1.1) of (4), and so there exists a
homotopy equivalence

"' • *V2m+2n,2k ^ ° m * *V2n,2k>

by (6.7). After an appeal to the cellular approximation theorem we may
suppose that h and h' are cellular maps. Since m-\-n ^ 2k there exists a
canonical map ,.,. n . ry

w. ^ f f l + B j j ; ^ vc2m+2«.,2&>

f Remarks like this must be interpreted homologically.
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by (11.4). Let w denote the cellular map h'wh. Then

W'. Sm * Qnk -> Sm * Q2n,2k

maps the dm-fold suspension of er onto the dm-fold suspension of e'2r with
degree ± 1 , where n—k < r < n. For purposes of #-theory, therefore,
$ makes a satisfactory substitute for the canonical map and has the
advantage of avoiding any restriction on dimension.

12. Use of Steenrod squares
Although the main purpose of this section is to prove (2.9), we take the

opportunity to make some observations concerning the cohomology,
modulo 2, of stunted projective spaces and stunted quasi-projective spaces.
Consider the cohomology operations Sq1, which are known as the Steenrod
squares. In the case of projective spaces these can be computed by using the
special structure of the cohomology ring, as described in (1) and (7). Hence,
by naturality, we deduce the values of these operations in the case of stunted
projective spaces. Since the Steenrod squares commute with suspension we
further deduce their values in the case of stunted quasi-projective spaces
by using (2.1), provided that the basic field is not quaternionic. Finally, the
relation between complex and quaternionic quasi-projective spaces de-
scribed at the end of the previous section enables us to complete the compu-
tation. We obtain the following result.

Let (s, t) denote the coefficient of us in the expansion of (l-\-u)s+t. Let
xr denote the cohomology class, modulo 2, which is carried by cr or er, as
appropriate, where m—k^.r<.m. Then the Steenrod squares in the
case of Pmk or Qm>k are given by the formula

Sqd%_i=(r-2i,i)xr, (12.1)

where i ^ k-\-r—m and d means the same as usual. I t is remarkable that
we do not have to separate Pm k and Qmk for the quaternionic case.

Let A and B denote P or Q (both the same, possibly). We use (12.1) to
prove

THEOREM (12.2). Suppose that Amk and Bnk belong to the same S-type.
Then m—n is a multiple of q, where q denotes the least power of 2 such
that q^h.

The theorem is obvious if k = 1. Let k ^ 2, and make the inductive
hypothesis that m—n is a multiple of 2', where 2' < k. This is certainly true
if t = 0. Suppose, to obtain a contradiction, that m—n is an odd multiple
of 2l. Then it follows by consideration of dyadic expansions (see (7)) that
one of the coefficients

(n—2*+1-
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is even and the other is odd. Apply (12.1) with i = 2l and with r = m— 1
in the case of Amk, r = n— 1 in the case of Bnk. We conclude that Amk

and Bnk belong to different /S-types, which is contrary to the hypothesis
of the theorem. Therefore m—n is an even multiple of 2l, and the proof
of (12.2) is completed by induction.

By a similar method, or else by combining (2.2) and (2.4) with (12.2), we
obtain

THEOREM (12.3). Suppose that Amk is S-reducible. Then m is a multiple
ofq, where q denotes the least power of 2 such that q > k.

We are now ready to prove (2.9). Let the basic field be quaternionic and
let k ^ 3. Suppose, to obtain a contradiction, that Pmk and Qnk belong to
the same #-type. Then Pm2 and Qn2 belong to the same $-type, by (8.4),
and so m—2 = ±n (mod 24), by (2.10). Also Pm-1>k-x and Qn-lik-x belong
to the same #-type, by (8.4). Hence Pm-1>2 and Qn-li2 belong to the same
S-type, by (8.4), and so m— 3 == ±{n— 1) (mod24), by (2.10). Therefore
m—2 = n (mod 24), which contradicts (12.2). This proves the first part of
(2.9). As observed in § 2, the second part follows from the first part and
(2.2). Alternatively, we can use (2.10a) and (12.3) to show that Pmk is not
^-reducible if Pm2 is ^-reducible, and therefore Pmk is not ^-reducible
if k > 3.

The techniques of this section can obviously be adapted so as to apply
to the other cohomology operations of Steenrod. Consequently we obtain
further conditions like (12.2) and (12.3) but with an odd prime p in place
of 2. The details are slightly more complicated, and so we do no more than
mention this development. It is worth remarking, perhaps, that (2.9)
cannot be estabhshed simply by consideration of cohomology operations.
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