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MULTIPLICATION ON SPHERES (I)
1. M. JAMES

1. Introduction. By a multiplication on a space, 4, I mean a con-
tinuous product with a two-sided identity. I say that a multiplication
is homotopy-commutative if the two maps 4 XA—A, which are given
by

(2, 9) =2y, (2,9 —>yx (x, y € 4),

are homotopic. Consider the topological #-sphere, S*. The purpose of
this note is to prove:

THEOREM 1.1. A multiplication on S™ is homotopy-commutative
if, and only if, n=1.

Multiplications exist if #=1, 3, or 7, as follows. In case n=1, a
1-sphere is formed by the ordinary complex numbers of unit modulus,
which have a commutative multiplication. Bott! [2] has proved that
S* does not admit a commutative multiplication if #>1. A 3-sphere
is formed by the quaternions of unit modulus, which have a non-
commutative multiplication. H. Samelson [7] and G. Whitehead [12]
have proved that the quaternionic multiplication on S? is not homo-
topy-commutative. A 7-sphere is formed by the Cayley numbers of
unit modulus, which have a noncommutative multiplication. Suga-
wara [9] has proved that the Cayley multiplication on S7 is not
homotopy-commutative. However, there are many classes of multi-
plications on .S? and .S7 besides these, so that (1.1) widens our knowl-
ege quite apart from the possibility of multiplications on spheres of
other dimensions.

It is an open question whether there are other spheres with multi-
plications. The obstruction to constructing a multiplication on S* is
the Whitehead product [j, j]Em2-1(S"), where j denotes a generator
of 7,(S*). Hence, by (3.72) of [11], we have:

THEOREM 1.2. There exists an element of Hopf invariant unity in
Tont1(S"HY) iof, and only if, S* admits a multiplication.

Adem [1] has announced that there is no element of Hopf invariant
unity in me,41(S*+!) unless #+1 is a power of two, and Toda [10]
that there is no element of Hopf invariant unity in 73 (S%). This ap-
pears to be all that is known about this problem at present.

Received by the editors February 28, 1956.
1 Numbers in brackets refer to the list at the end of this note.
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In a second article I shall deal with questions of associativity. In
particular I shall prove Samelson’s conjecture [7] that the Cayley
multiplication on .57 is not homotopy-associative.

2. The Hopf construction. Suppose that we have two multiplica-
tions,

f,g:8* X S*— S,
with the same identity e&.S*. Then f and g agree on the set of axes
S*XelUeXS*CS* XS,

whose complement is an open 2#-cell. Hence f and g are homotopic
if their separation element in m.,(S") is zero. Since m(S') =0, this
immediately proves:

LemMA 2.1. Any multiplication on S* is homotopy-commutative.

Hopf, in [4], describes a construction which associates an element
of Hopf invariant unity,

c(f) € menpa(S™HY),

with each multiplication f. It can be seen at once from the definition
that

(2.2) o(f) = c(g) if f=g.
Let g be the multiplication which is related to f by

f(x, ) = g(y, %) (%, y € S™).
Let

w = ['I'v 7’] S 7"2n+1(S"+1)

denote the Whitehead product of a generator of 7,1(S*+!) with itself.
Then

c(f) = (=Dme(g) = (—1)"w,

by (2.19) of [6]. Since S* admits a multiplication, # is odd, by
Theorem V of [4]. Hence we have

(2.3) o) + o) = — w.
We obtain from (2.2) and (2.3) combined:

LEMMA 2.4. Suppose that S* admits a homotopy-commutative multi-
plication, f. Then 2¢(f) = —w i1 wou41(S™HY), where c(f) is the element
obtained from f by the Hopf construction, and where w= [4, 1].
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3. The Whitehead product. It is easy to show how an z-field on
S*, i.e. a parallelization, determines a multiplication on S*. However,
there may be values of # such that S* admits a multiplication but not
an n-field. Many theorems in the literature which are proved for a
parallelizable sphere can also be proved for a sphere with a multiplica-
tion. A case in point is (4.14) of [3]. We shall prove the following
stronger version of that result:

THEOREM 3.1. Suppose that S* admits a multiplication, where n> 1.
Let YEm2n41(S™Y) be an element of Hopf invariant unity, and let
w=[i, 1| Emens1(S™+Y). Then an element aCm(S") exists, which has
a nonzero generalized Hopf invariant, and such that w2y =E(x).

In (3.1), the suspension homomorphism
E: 73,(S™) — m2nq1(S™HY)

is an isomorphism into, by Corollary 1 on p. 282 of [8]. Hence (3.1)
implies that w-+2y0, i.e.

COROLLARY 3.2. Suppose that S admits a multiplication, where
n>1. Then the Whitehead product w is not contained in 2mwany1(S"H1).

We shall prove (3.1) in the next section. Let us assume it for the
moment so as to finish the proof of (1.1). In case =1, (1.1) is ob-
tained from (2.1). Suppose that S* admits a multiplication where
#>1. Then w cannot be halved, by (3.2), and so the multiplication
cannot be homotopy-commutative, by (2.4). Hence it only remains to
prove (3.1).

4. Proof of (3.1). Let S (m=1) denote the m-sphere in Hilbert
space, which consists of points

(xo’xl’aao’x'n,o-n)'

such that x;=0 if i>m, and such that

2t w1+ g = L
Thus
StCstEC---CS"C -

Let a™€.S™ be the point where x,=1. Let Rn41 denote the rotation
group of S™, and let

ém: Rnp1 > S™

denote the fibre map which is giveniby
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$n(r) = r(a™) (r € Rmy).

We embed R, in R,;1 by extending rotations of S™~! to rotations of
S™ about the axis of x,,, so that R, =¢,,"(a™). Thus

RiCR;C - CRnC---.

In §5 of [3], Hilton and Whitehead examine the values of the
Steenrod squares in the cohomology rings of Stiefel manifolds, and
prove a result about V41,2, the bundle of unit tangent vectors to S».
This manifold can be identified with the factor space Rui1/Rn_1, so
that we have a natural isomorphism

Wn(Rn+lr Rn—l) g Wﬂ(VfH-l.z)‘

Moreover the homotopy sequence of the bundle can be identified
with the homotopy sequence of the triple (Rat1, Rny Ra—1). This en-
ables us to reformulate (5.1) of [3] as follows:

LEMMA 4.1. Let n be odd, n> 1. Then the image of the boundary homo-
morphism

a: 1r,,+1(Rn+z, Rn+1) - ‘ﬂ'n(Ru+1s Rn—l)
is contained in 27y (Ray1, Ra—1) of, and only if, n=1 (mod 4).

Consider the following diagram, where? n> 3.

E P
T2a(S™) = Tang1(S™Y) e g (S
H, | H, | T ¢+
Ta(Ray Ra-1) i Tn(Rat1, Rn-1) 9 Tt 1(Rat2, Ruya).
t 3

(4.2)

In (4.2), s is the injection, and 9 is the boundary homomorphism,
asin (4.1); E is the suspension homomorphism, ¢y is the isomorphism
induced by ¢,41, and P is the homomorphism which carries a gener-
ator of m,41(S™*1) into the Whitehead product w. The other two
homomorphisms, H; and H,, are defined as in [5]. Thus Hj, which
maps m,(S") into a group of order two, is equivalent to the general-
ized Hopf invariant, by (1.2b) of [5], and H; is such that we have the
relations

(a) iso Hy= — Hy0E,
} (b) = Hs0 PO ¢s.
In (4.3), (a) is by (4.2¢) of [5], and (b) is by (1.2a) and (4.1c) of [5].
? If =3, H, is not defined.

(4.3)
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We are now ready to prove (3.1). Suppose that S* admits a multi-
plication, where #>1. Then #=3 (mod 4), by §9 of [11]. If n=3,
(3.1) is a corollary of (6.1) of [3]. Hence we suppose that #>3, so
that the homomorphisms H; and H, are defined. Let ¥ Emony1(S™HY)
be an element of Hopf invariant one. Since the Hopf invariant of the
Whitehead product w is equal to minus two, in the conventions of
[6], the Hopf invariant of w2y is zero. Hence, by a Freudenthal
theorem ((3.48) of [11]), there is an element a&ms,(S*) such that
E(a) =w+2y. I say that Hi(a), the generalized Hopf invariant of «,
is not zero. For suppose, if possible, that H;(a) =0. Then

Hy(w 4 2v) = HE(a) = — ixHi(a) = 0,

by (4.3a), and so Hi(w)E2m,(Rny1, Rua1). But w=P(N), where A
generates m,41(S™t!), and A=¢«(u), where u generates mni1(Raye,

R,+1). Hence
Hy(w) = HaPpu(p) = 9(w),

by (4.3b), and so 27,(R.41, Ra—1) contains the boundary of the gen-
erator of mn41(Rny2, Raq1). This contradicts (4.1), since #=3 (mod 4).
Therefore Hi(a) #0. This proves (3.1), and with that the proof of
(1.1) is finished.
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