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On Invariants with the Novikov Additive Property 
KLAUS J~NICH 

1. Introduction 

As observed by S. P. Novikov, the signature of manifolds behaves additively 
in the following sense: If M 1 and M 2 are oriented compact bounded 
differentiable manifolds and ~p: c g M I ~ M  2 is an orientation preserving 
diffeomorphism, then 

z ( M  1 w ~ - M2) = z(M1)  - z(M2). 

The present paper is the third in a series of notes ([6, 73) concerning this type 
of additivity. In [63 I proved, that any real valued invariant with this additive 
property coincides (up to a factor in each dimension, of course) with the 
signature on all closed manifolds. In Section 2 of the present note, we will 
generalize this result in three ways: 

(i) We admit the invariant to take values in any abelian group G (in [6] 
I made much use of the fact that IR has no elements of order two), 

(ii) we also consider the unoriented case, and 
(iii) we formulate the additive property in terms of closed manifolds only, 

we will not assume that the invariant is defined for bounded manifolds at all. 
in Section 3 we will prove a similar theorem for real valued invariants of 

the equivariant oriented diffeomorphism type of orientation preserving 
involutions. The proof is based on Section 2 and on [73. 

2. A Characterization of Signature and Euler Characteristic 
on Closed Manifolds 

Definition. An invariant ~r of the oriented diffeomorphism type of closed 
oriented differentiable manifolds with values in an abelian group G has the 
property (A), if for any three oriented compact bounded differentiable manifolds 
M i (indexed modulo 3) and orientation preserving diffeomorphisms q~:0M~ 
-~t~M;+l, we have 

tr(M 0 W~o - M  0 + a (M1 w~, - M  2) + a(M2 ~ - M o )  = O. 

Obviously, property (A) follows from the additive property as formulated for 
the signature above. 

Similarly, we define for unoriented manifolds: 

Definition. An invariant e of the (unoriented) diffeomorphism type of 
closed differentiable manifolds with values in an abelian group G has the 
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property (B), if e is additive with respect to disjoint union of closed manifolds 
and for any two compact  bounded differentiable manifolds M o and M t and 
diffeomorphisms q~ : ~Mo~(3M ~ and ~p: OMo~OM l, we have 

e(Mo u~M1) = e(Mo uwML). 

In particular, if e is defined for all bounded manifolds and e(M o u~,M 0 = e(Mo) 
+ e ( M 0  for all diffeomorphisms qg:OMo~OM1, then the restriction of e to 
closed manifolds has property (B). The Euler characteristic e in even dimensions 
provides an example of such an invariant, because e(MZo"w~M~")=e(Mo) 
+ e ( M O - e ( d M o ) = e ( M o ) + e ( M O ,  since 0Mo is a closed odd dimensional 
manifold. 

Our  main result is: 

Theorem 1. (a) Let a have property (A) and define ak = o'(P2k(t~)). Then for 
any closed oriented manifold M" we have 

0 if n ~ O m o d 4  
a ( M " ) =  akZ(M4k) if n = 4 k .  

(b) Let e have property (B) and define bk = e(P2k(lR)). Then for any closed 
manifold M" we have 

, l 0 if n is odd 
e ( M ) =  bke(M2k) !f n= 2k . 

Proof. Consider the oriented case. If X is closed and we apply (A) to 
Mo = X, M l = M2 = 0, we obtain o-(X)= - o ' ( - X ) .  If X and Y are closed, we 
get a(X + Y) + a ( -  X) + a ( -  Y) = 0, thus a is additive with respect to disjoint 
union. (The " + "  sign between manifolds indicates disjoint union.) Now let 
M be bounded and X = M ~oM - M  the usual "double" of M. Putting M o = M 1 
= M 2 = M ,  we obtain from (A): a ( X ) + a ( - X ) + a ( X ) = a ( X ) = O ,  and since 
a(M o u ~ - M 0  does not depend on the choice of rp, we see that a vanishes for 
all closed manifolds of the form M u~ - M. As a special case, we have 

(1 a) I f  the closed oriented man,old X is fibred over a positive dimensional 
sphere, then a ( X ) =  O. 

Here and in the following we use the word "fibred" in the sense of "being 
the total space of a locally trivial differentiable fibration." 

Now consider the unoriented case. We cut S ~ into two pairs of intervals. 
Then there are two essentially different ways qo and tp to re-attach these interval 
pairs to a closed manifold, giving S ~ in one case and the disjoint union of two 
copies of  S I in the other. Thus (B) implies: ~(S 1) = e(S 1 + S 1) = e(S 1) + ~($1), 
hence e(S~)=0. The same argument shows that in fact e vanishes for any 
closed manifold which is fibred over S ~. We now generalize this to 

(t b) I f  the closed manifold X is fibred over an odd dimensional sphere, then 
a x )  = o. 
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Proof of (1 b): Let X be fibred over S 2k+1 with fibre F. Then, clearly, 
e ( X ) = e ( S  2k+1 ×F).  Now, S 2k+1 ×F is the total space E k of a fibration over 
Pk(C) with fibre bk = S 1 × F. We cut Pk(C) into D 2k and the normal  disc bundle 
DNk_, of Pk_l(t~) in Pk(ff_~) and define 

Mo= EklDNk_l + D2k× Fk and M, = Ek]D2k + DN~_t × Fk . 

Then we can glue M 0 and M1 together in two ways to get either Ek + Pk(C) × Fk 
or the disjoint union of  a fibration over the double of  D 2k and a fibration over 
the double  of  DN~_ 1. The double  of  DNk_t, however, is fibred over Pk-1(~) 
with fibre S z, and hence we get 

e(Ek) + ¢:(Pk (¢) x Fk) = e(E k_ i) + ~( S2k x Fk) , 

where E k_ , is fibred over Pk- 1(rE) with fibre F k_ i, which in turn is fibred over 
S 2 with fibre F k. 

Let us call a manifold Y an c-annihilator, if for any X we have e(X × Y) = O. 
S 1 is such an c-annihilator, and also, of  course, any product  o r s  a with a manifold. 
Moreover ,  if Y is fibred over a sphere S n such that the fibre Y' is an e-anni- 
hilator, then Y is one, because e(X × Y) = e(X × S" × Y') = 0. In particular, F k 
is an e-annihilator and hence we get ~(Ek) = e(Ek_ 0. 

N o w  we apply the same "cut and glue" procedure to Ek_ 1 and 
Pk- ,(C) × Fk_ ~, and since Fk- 1 is fibred over S 2 with the e-annihilator Fk as 
fibre, F~_ 1 is an z-annihilator  itself and we get e(Ek_ 1) = e(Ek_ 2), where Ek- 2 
~Pk_2((E) has an e-annihilator Fk~ 2 as fibre. By induction, we get e(Ek) 
= e(Ek_ 1) . . . . .  e(Eo) = e(F0) = 0, thus (1 b) is proved. 

The same trick is used to prove the following two statements on fibrations 
over projective spaces 

(2a) I f  the closed oriented manifold E is fibred over Pk(C) with fibre F then 
G(E) = G(P~(¢) x F). 

(2 b) I f  the closed manifold E is fibred over Pk([R) with fibre F, then e(E) 
+ e(n~(lR) x F) = e(S k × F). 

Proof of (2a). As the three bounded  manifolds involved in (A) we choose 
Mo = El D Nk- 1, M1 = EI D2k ~ D2k x F and M 2 = D N~_ , x F, suitably oriented. 
Then by (A) we have 

~(E) - ~(P~(¢) x F) - ~ ( G -  ,) = 0 ,  (,) 

where E k_ I is fibred over Pk-, (G) with a fibre Fk- i which is fibred itself over 
S 2 with fibre F. By (i a), Fk-, is a a-annihilator, and so are all the F i which 
occur upon repeating the process. Applying (.) to Ek-1--*Pk-,(C) instead of 
E--*Pk(tE), we get cr(Ek_,)=a(Ek_2), and by induction a(Ek_,)=a(Eo) 
= a(Fo) = 0 and hence a(E) = a(Pk(C ) x F), qed. 

Proof of (2b). By the real analogue of  what  we have done with Pk(ff2) in 
the proofs of(1 b) and (2a), we get from (B): 

e(E) + e(Pk(1R) x F) = Z(Ek_ ,) + e(S k x F) , (**) 

5* 
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where Ek-  ~ -*Pk-  ~(1R) has fibre F k_ a, and F k_ 1 is fibred over S ~. Any fibration 
over S a is an e-annihilator, and hence we obtain by induction: e(Ek_ ~) = ~(Eo) 
= e(Fo)= 0, thus (2 b) follows from (**). 

(3 a) a is an invariant o f  the oriented bordism type and hence induces a 
homomorphism (2, --* G. 

Proof  o f  (3a). As proved by A. H. Wallace and also by J. Miinor, two 
closed oriented manifolds X and X' are cobordant if and only if there is a 
finite sequence of (oriented) spherical modifications (or surgeries) leading from 
X to X'. Hence we have to prove that o-(X) = a(X') if X' is obtained from X 
by a single surgery. To perform surgery on an n-dimensional manifold X 
means first to remove an imbedded S k x  D "-k  and then "replace" it by D a+~ 
x S " - k -  1. Thus if we apply (A) to M o = X - S k x b n-k, M 1 = S k x O n - k  and 
M 2  = D k + a x S"-  k- a, we get 

~ ( x )  - ¢ ( s " )  - ~ ( x ' )  = o ,  

and hence o-(X)= ~r(X') by (1 a), and thus (3a) is proved. 
e, of course, will in general not be a cobordism invariant, since the Euler 

characteristic e is not. Instead, we consider an invariant ~ defined for n-dimen- 
sional manifolds X" by 

~'e(X") if n is odd 
6(X") = ( e ( x Z k ) _  e(P2k(1R) ) e(XZ,)  if n =  Zk . 

Note that 6 has property (B) in all dimensions, so that (1 b) and (2b) hold for 6 
as well. 6 = 0 is exactly what we have to prove in part (b) of the theorem. 

(3 b) ~ is an invariant o f  the unoriented bordism type and hence induces a 
homomorphism ~ ,  ~ G. 

Proo f  o f  (3b). We apply the unoriented version of the Wallace-Milnor 
theorem. Let the n-dimensional manifold X' be obtained from X by a single 
surgery of type (k + t, n -  k). If we put M o = ( X -  S k x ~),-k) + S k x D "-~ and 
M 1 = S k x D n - k q  - O k+ 1 X S n - l ~ -  1, then by (B) we have 

~ ( x )  + ~(s") = ~ (x ' )  + ~ ( s  k x s"-k) .  

If k is odd, 6(Skx  S n-a) vanishes by (t b), and hence 6(X)+ 6(S")= 6(X'). If k 
is even, we choose M~ as before but use M~) = ( X  - S k x D"-k) + Dk+ l x S n -g-  t 
instead of M o. Then (B) gives 6(X)  + 6(S k+ 1 x S n - k -  1) = 6(X') + 6(S"). Thus 
in either case, it suffices to prove that 6(S")=0. To do this, we apply (2b) to 
E = S"- .  P,(IR), obtaining 6(S ") + 26(Pn(IR) ) = 26(S"), and since 6(P,(IR))=0 by 
definition of 6 for n even, this implies 6(S")= 0 for n even. Since the odd case 
follows from (1 b), this proves (3 b). 

Let us note that we now can improve (2 b) to 

(2b') r f  the closed manifold E is f ibred over Pk(IR) with f ibre  F, then ~(E) 

= 6(Pk(~R ) x V). 
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This is simply because by (3b) all elements 6(X) are at most  of  order  two 
and 6(S" x F) vanishes. We also notice that (3 b) finishes the proof  of  part  (b) 
of the theorem for the case where G has no elements of  order two. 

The next two proposit ions,  (4a) and (4b), are a preparat ion for the last 
stage of  the proof, the evaluation of cr and 6 on a set of  generators of f2, and 
9I ,  respectively. 

(4a) a(X x P,+ z(IE)) = a (X  x P.(C) x P2(C)) for any closed oriented X.  

(4b) b(X x P,+ 2(IR)) = 6(X x P,(IR) x P2(IR)) for any closed X.  

Proofs of (4 a) and (4 b). In the real as well as in the complex case, we denote 
by DN[' the normal  disc bundle of P, ¢ P,,. As bundle over Pk, ONe' can be 
described by S 2~+~ xs~D 2m-zk in the complex and Skxz2D " -k  in the real 
case. We will now prove (4) for the special case X = {pt}. The p roof  of the 
general case can then be obtained by simply writing " X  x . . . "  in front of  
everything. 

By (2a) we have in the complex case: a(P, x Pz)= O'( Szn+ 1 XS 1Pz). Here the 
action of  S 1 on Pz or  more  generally on Pk can be described as follows: Con-  
sider S l as the centre of  U(k) and let U(k) act on Pk(¢2) by the usual imbedding 
U(k) C U(k+  1). The point  Po(¢;)= {(0 . . . . .  0, 1)} then becomes a fixed point  
of this action, and hence we can choose the dissection Pk = DN~_ l w D  2* to be 
invariant under the action, and therefore we can dissect S z"+~ xs~P 2 into 
S 2"+1 xs, D N  ~ and S 2"+1 xs, D4= ON ~  +z. 

N o w  we put ~s - n ~r,+z = DN~+2 = s2n+ 1 ~'*0 . . . .  1 , - M r  and M2 x s l D N  2. Then 
we have canonical  q~o and ~01 such that M o w o o - M  l = P.+2 and M a ~ 1 - - M E  
= _ S z.+ 1 xs,  P2. Therefore we can use (A) to determine the difference ~r(P. + 2) 
-a(P. x P2), provided we can evaluate a on M z w e 2 -  M 0 for some q~2. 

It is M o = S 3 x s ~ D  2"+z and M 2 = S  a"+l Xs~(S3×s~D2), and the action 
of  S a on S 3 xs~D z is simply induced by the usual action of  S 1 on $ 3 C ~  2. 
Therefore we get 

M2 = S zn+ l ×sl(S 3 xs iD2)= S 3 Xsl(S 2n+ l xs, D2)= S 3 xs, DN~ + l , 

and thus we can glue M 2 and - M  0 together to S 3 xs, P,+ 1, and by (A) we get 

a(P, + 2) - a(P, x P2) = - a( $3 Xs, P, + 1) = O, 

since S 3 xs lP ,+  1 is fibred over S 2 and hence has vanishing invariant a by (1 a). 
This completes the p roof  of  (4a). 

The real case is proved analogously:  We first use (2b') to  replace P, x P2 
by S" ×z2P2, and then we dissect P.+2 into DN~ +2 and DNnn +2 and S" ×z2P2 

= D N  n+2 DN~ +2 S 1 D n+l and into S " x z D N  ~ and S" x z z D  2 ~ . . .  . Since = Xz~ 

S" x z ~ D N  ~ = S" Xz~(S 1 x z ~ D 1 ) = S  1 Xz~(S" xz~D1) = S t xz2DN,  "+~ , 

we can apply (B) to get 

6(P.+ 2) + 6(P,, x P2) = 6( $1 x z2P.+ 1) + 6(D N,~+ E~ D N2+ 2) • 
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The first summand of the right hand side vanishes because of (1 b), and the 
second vanishes since the double of a bounded manifold always bounds. Since 
all 6(X) are at most of order two, we get ,~(P,+2)=b(P,, xP2), as desired. Thus 
(4b) is proved. 

Now we come to the final part of the proof, namely the evaluation ore  and 6 
on sets of generators of the cobordism groups. For  convenience we will now 
introduce A analogously to 6 as follows: If X" is a closed oriented n-dimensional 
manifold, we put 

A 'X" ' -  ( a(X") if nq a0 m o d 4  
~ - ~ a(X *k)- a(P2k(¢))r(X 4k) if n = 4k.  

Then A still has the property (A), and it vanishes on even dimensional complex 
projective spaces. A = 0 is then exactly what we have to prove in part (a) of the 
theorem. 

As usual, we represent the abelian group f2 as a direct sum O + T of a 
torsion free part ~ and the torsion subgroup T. We will divide our proof into 
the following three steps: 

(5a) AI~] = 0, 

(5 b) 6 = 0, 

(6a) AIT=O.  

Proof of (5 a). ~ can be generated as an abelian group by cartesian products 
of (i) even dimensional complex projective spaces PZk(~) and (ii) Hyper- 
surfaces Ht,,o of degree (1, 1) in P,(~} × Pt(C) with 1 _< r _< t. These hypersurfaces 
are defined by 

Hc,,O : {(x, y) E P,(~) x Pt((E) lXoYo +... + x,y, = 0}, 

The canonical projection/4(,,o~Pr({E ) is in fact a fibering with fibre P~_ I(G), 
and therefore by (2a) and (4a) we have 

A (I~ H(r,,,o x l~ P2k~(¢)) = A (P2((12) x . - .  x P2(¢) x PI(G) x . . .  x P1 (¢)) • 

If factors P~(~) do occur, then A vanishes by (la), otherwise we have 
A(P2(C)x...xP2(~))=A(P2k((~)) by (4a), and this vanishes by definition 
of A. Thus (5 a) is proved. 

Proof of (5 b). Let P(m, n) be the quotient manifold of the free involution 
(x, z) ~ ( -  x, z-) on S m x P,(q2). In [4] Dold proves that 91 is additively generated 
by products of manifolds P(m, n). The canonical projection P(m,n)~Pm(IR) 
is a fibre bundle with fibre P,((U), so by (2b') we may restrict our attention to 
products of real and complex projective spaces. It is well known that P,(C) 
is rood2 cobordant to P,(IR)xPn(IR), and hence it remains to show that 
6(P2(IR)x ... xP2(IR)xPI(1R)x.. ,  x PI(1R)) vanishes - which it does: By ( lb)  
if a factor PI(IR) does occur, and by 3(P2 x ... x P2)=5(P2k)=0 otherwise. 
Thus (5 b) is proved. 
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Proof of (6a). A little more care is required to prove A IT=O, In [9], 
Wall gives the following description of a set of generators for T: 

Let P(m, n) denote again the Dold manifolds, and let ~:P(rn, n)~P(m, n) 
be the diffeomorphism induced by the map (x, y)--,(x', y) on S" x P.(~), where 
x ~ x '  is the reflection at x,.+l = 0. Identifying the two boundary components 
of P(m, n) x [0, 1] by ~ defines a bundle Q(m, n) over S t. 

Any positive integer which is not a power of 2 can be uniquely written as 
a = 2"- 1 (2s + 1), and Wall defines X2. to be the element of 91 represented by 
Q(2 r - 1, 2's). Then T can be generated additively by products of elements of 
the form ~3(X2a,  " . . . .  X2ar,), in Wall's terminology. 

Recall the definition of c~3: If M is a closed manifold and ~r the orientation 
covering, then one can always find a closed 1-codimensional submanifold V 
of M such that :71 is trivial over M - V. Let us call V an "orientation submani- 
fold", because it represents the orientation line bundle in Ht(M, Z2). Wall 
proves that if V can be chosen orientable with trivial normal bundle, then V 
represents an element [V] = - [ V ]  in Q, which only depends on the class 
[M] e 91. Given these circumstances, he defines 633[M ] = IV] ~ (2. ~'~3 is then 
defined on a subgroup 2B of 9l. 

In our case, M is a product of manifolds Q(rn, n). First let this product 
consist of a single factor Q(m, n). Since m = 2 r - 1 is odd ( r -  1 > 0), the fibre 
P(m, n) of the bundle Q(m, n)~ S 1 is orientable, but Q(m, n) itself is not, because 
the defining diffeomorphism e is orientation reversing. Thus the orientation 
covering of Q, which of course is also fibred over S t, has fibre P + ( - P ) :  

' ' - P x [ 0 ,  I ]  

0¢ 

P x  [0, 1] 

Fig.l 

and is defned as bundle over S 1 by 0 ' one could say. Hence 93 [Q(m, n)] 

is represented by P(m, n). Therefore, since P(m, n) is fibred over P,,(IR), we have: 
If one of the factors of a generator of T is of the form 03[Q(m, n)], then this 
generator can be represented by a bundle over an odd dimensional real pro- 
jective space P2k+I(IR). But any such bundle is of the form Mu,9-M,  and 
hence has the same invariant A as the double of M, namely zero. To see this, 
dissect P2k+t(lR) into the normal disc bundles DN 2k+1 and DN[, zk+t of two 
complementary projective subspaces Pk and P~. If E--'P2k+t is the bundle in 
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question, M = E I D N k  zk+l and M'=EIDNI ,  2k+1 are (at least unorientedly) 
diffeomorphic, and hence E is of the form Mw~,M or M u ~ - M .  There is no 
need to decide which, because M admits an orientation reversing diffeo- 
morphism as follows: Choose a non-vanishing section of the normal bundle 
of PkC P2k+ t-  Then the reflection in each fibre at f (x )  ± defines an orientation 
reversing diffeomorphism of DN 2k÷1 which leaves the zero section pointwise 
fixed, and since EIDN~ k+l is induced from EIPk, this map can be lifted to an 
orientation reversing diffeomorphism of M = E I D N 2 k + 1. 

NOW consider a factor ~3(X2,,- . . . .  X2a.) in which n > 2 .  How can one 
construct an orientation submanifold of a product  M1 x M z if one has orienta- 
tion submanifolds 1/1 and 1/2 with trivial normal  bundles for the factors M 1 
and M 2 ? Start with the non-manifold M 1 x V z u V 1 x M 2 C M t x  M 2 and proceed 
as indicated in the following picture. 

v2 , > 

Fig.2 

J 

Then V is in fact an orientation submanifold of M1 x M2, because first 
Stiefel-Whitney classes behave additively under direct sum of bundles. In our 

application, M1 is Q(mt, nl) and/141 = f l  Q(ml, ng). Since each Q(m, n) is fibred 
1=2 

over $1 with orientable fibre and orientation reversing defining diffeomorphism, 
it is not difficult to show by induction: 

P r o p o s i t i o n .  I f  M =  f l  Q(mi, hi) and all ml odd, then one can find an 
i = 1  

orientabIe orientation submanifold V with trivial normal bundle which is fibred 
over the (r - 1)-dimensional torus. 

In particular, for r > 2, V is fibred over S 1 and therefore is a A-annihilator, 
which finishes the proof  of the theorem. 

A few remarks shall be made about  "additive" invariants for manifolds 
with boundaries. Let a now denote an invariant of the oriented diffeomorphism 
type of oriented compact  bounded manifolds with values in G, and let e denote 
an invariant of the diffeomorphism type of compact  bounded manifolds. Then 
we say that a has property (A'), if a is additive with respect to disjoint union 
and ~ ( M U q ~ - M ' ) = a ( M ) - a ( M ' )  for any orientation preserving diffeo- 
morphism tO :t?M~t?M', and we say that a has property (A"), if a(Mu~, - M ' )  
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= a(M)-  a(M') for any orientation preserving diffeomorphism ~o of a union 
of boundary components of M onto a union of boundary components of M'. 
Similarly we define (B') and (B") for e by e(Mw~,M')= e(M)+ e(M'). Clearly 
(A") ~ (A')~ (A) and (B") =,- (B') =~ (B). 

If we wish to determine all invariants with properties (A") and (B"), then 
by our theorem it suffices to determine those which have these properties and 
vanish on closed manifolds. And just as in [6] (Bemerkung 1), these invariants 
can all be obtained as follows: (i) Oriented case: For each oriented diffeo- 
morphism class X"-1 of closed connected manifolds choose an element 
c~(X'-I)~ G with the only requirement that always c~(X)=-~z(-X) .  Then 
define o-(M") to be the sum of the e's of the boundary components. (ii): Un- 
oriented case: For  each diffeomorphism class X"-  ~ of closed connected mani- 
folds choose an element/~(X) e G with 2/~(X) = 0. Then define e(M") to be the 
sum of the fl's of the boundary components. 

(A') and (B') do not imply (A") and (B") in general, as the following example 
shows. Let M" be an oriented connected bounded manifold and X 1 . . . . .  X~ 
its boundary components. We choose a subset X~ . . . . . .  X~ of the set of boundary 
components in which any (unoriented) diffeomorphism type of X 1 . . . . .  X, 
occurs exactly once. Then we define a(M")= [ X j  + . . -+  [ X j  e g/,_ 1. For  
nonconnected manifolds, we define a to be the sum of the a's of the components. 
Then a satisfies (A') but not (A"), and in particular is not of the form described 
above, although it vanishes on closed manifolds. The same example works in 
the unoriented case. 

If however G has no elements of order two, the (A')~(A") and (B')~(B"), 
which can be proved as for z in [6], p. 35. 

3. "Additive" Invariants for Involutions 

In this section we consider compact oriented differentiable manifolds with 
orientation preserving involutions. Let me introduce the following notations: 
By conj:P2k(C)--,P2k(~ ) we denote the involution on the 2k-dimensional 
complex projective space which is induced by complex conjugation. If X is an 
oriented manifold, then triv: 2X--, 2X denotes the trivial interchanging of the 
two copies in the disjoint union 2X = X + X. I f X  is an oriented manifold and 
T:X--, X an orientation preserving involution, then the components of the 
fixed point set must have even codimension, and we denote by Fk the union 
of the 2k-codimensional components of Fix T. 

Definition. A real valued invariant Q of the oriented equivariant diffeo- 
morphism type of orientation preserving involutions on closed oriented 
manifolds has the property (AZ2), if for any three orientation preserving 
involutions T i : M ~ M  i on bounded manifolds and equivariant orientation 
preserving diffeomorphisms ~Pi:OMi-~ OM~+I we have 

~(Mo~o- M,, TouTO+e(M1u~l-M2, T1uT2)+e(M2u~2-Mo, T2~,T0)=0. 
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In particular, if z(M, T) denotes the signature of an orientation preserving 
involution T : M ~ M ,  (i.e. z ( M , T ) = 0  if d i m M ~ 0  (4) and T(M4k, T) 
= signature of the symmetric bilinear form on HzR(M 4*, R) given by (x, y) 
~ x o  T.y), then ~ has this property (AZz). (See [1], Prop. 7.1.) 

Theorem 2. I f  Q has property (AZz), then 

Q(X, T ) =  f 0 /f d i m X ~ 0 ( 4 )  
a.z(X)+~akz(FkoFk) /f d i m X = 4 n ,  t .  

k 

where an, a k only depend on Q, n and k, namely 

an = ½ 0(2P2,(~), triv), 

= ( -  1) k e(Pz~,-k)(~) × Pzk(~), ld × con j ) -  ½ Q(2P2,(C), triv). 

Proof. Define 

T'  r e ( x ,  T) 
2(X, ) =  ~o(X, T ) - a , z ( X ) .  

Then 2 still has property (AZ2), and 2(2P2.(C), triv) = 0. We have then to show: 

{o 
2(X, T ) =  ~ aRz(Fko FR) " 

k 

We first note that for any X we have 

2(2X, triv) = 0.  (1) 

This follows from Theorem t, because 2(2X, triv)= a(X) depends only on X 
and has property (A), hence {o 

or(X) = = 0 
a(Pz.(~))z(X) ' 

since 2(2P2,(~), triv) = a(P2,(~)) = 0. 
Proceeding as in [7], the next step would be to show that 2 vanishes for all 

fixed point free involutions. Now, an orientation preserving free involution 
determines a real line bundle over an oriented manifold and vice versa. Hence 
instead of considering 2 for free involutions, we may as well consider an in- 
variant for real line bundles over oriented closed manifolds, satisfying a 
corresponding additivity condition. For later use in the proof of Theorem 2, 
we shall consider a more general situation: 

Definition. An invariant # for real m-dimensional vector bundles over 
oriented closed manifolds has property (A'), if for any three m-dimensional 
vector bundles E~ over oriented bounded manifolds Y~ and any vector bundle 
isomorphisms q~ : 0E~ ~ 0E~+ 1, inducing orientation preserving diffeo- 
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morphisms qh : ~ Y/-~ 0 Y/+ 1, we have 

#(E o W,o - E l )  +/~(Ea w~0~ -E2) + P(E2 U,2 -Eo)  = 0. 

In particular, if m = 1, then # defined by #(E) = 2(SE, - 1) has property (A'). 

Proposition 1. I f  p has property (A'), then # is a bordism invariant. 

Proof of Proposition 1. Let E ~  W be an m-dimensional vector bundle over 
an oriented bounded manifold W with OW= Y1 + ( - Y 2 ) - T o  show #(El Y0 
= p(E[ Y2), we make use of the fact (see [8], p. 43) that any oriented bordism 
is the "trace" of a finite sequence of (oriented) surgeries. So we may as well 
assume that W is the trace of a single surgery leading from YI to I"2- But then 
E[ Y~ and E[ Y2 "differ by a bundIe over a sphere" in the sense that there are 

o 
bounded submanifolds Aic  Yi such that E l ( Y 1 -  A1) and EIA2 can be glued 
together to give E[ Y2, and E[A~ and EIA2 can be glued together to give a 
bundle over a sphere. But it is an immediate consequence of(A), that # vanishes 
for any bundle over a sphere. Therefore, again by (A3, we get #(El Y0 = #(Et Y2), 

which proves Proposition 1. 

Proposition 2. Let m = 2k, let # have property (A') and E be a 2k-dimensional 
real vector bundle over the closed oriented manifold Y. Then if Y x lR zk denotes 
the trivial bundle over Y, we have 

#(E) = #(Y × IREk). 

Proof of  Proposition 2. By the same argument as in the proof of (2a) in 
Section 2 we obtain: 

If Y is fibred over Pr(~E) and F0 is one of the fibres, then 

#( E) = #(P,(ff~) x ( E J Fo)) . (*) 

Now, by Lemma (3.3) on p. 96 in [3], ~2.(BO(2k))/Torsion can be generated 
(additively) by bundles of the form 

X x ? / 2 i l  X ' "  X /~2 ik  , 

where X is a closed manifold and ~/2~-~P2i(~-') is the canonical complex line 
bundle over P2i(~E). Clearly, by (*) we get 

#(X x q2i, × ' "  x rt2i,) = #(X × P2i,(C) x . . .  × P2~k(*) × 1R2~), 

thus Proposition 2 follows from Proposition 1. 
Let us now continue with the proof of Theorem 2. Let T: X - ,  X be fixed 

point free. Then by a result of Burdick [2] (see also [5], Section 2), the disjoint 
union of two copies of (X, T) is cobordant, as an orientation preserving free 
involution, to a trivial involution. Hence by Proposition 1 and by (t) we have 
2).(X, T)=0,  and thus 

(2) I f  T is fixed point free, then 2(X, T) = 0. 
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This can now be generalized to 

(3) I f  the normal bundle N of Fix T admits a non-zero section f ,  then 
2(X, T) = O. 

Proof of(3). As in the proof of Lemma 1 in [7], we dissect X into DN and Y, 
where the disc bundle DN is regarded as an invariant tubular neighborhood 
of Fix T. Let ~ :  S N ~ S N  be defined by reflection at f(x) ± in each fibre. Then 
22(X, T) = 2( D N u~,O N, T) + 2( Y u~, Y, T). But reflection at f (x) ± also induces 
an orientation reversing equivariant diffeomorphism of (DN, T) onto itself, 
and therefore 2(DNu~,DN, T ) = 2 ( D N u ~ , - D N ,  T ) = 0  by (AZ2), and 
2(Yu~,Y,  T ) = 0  by (2). 

Let (3') be those technical generalization of (3) which is formulated in [7] 
as Lemma 2 for z. (3') can be reduced to (3) in the same manner in which we 
just reduced (3) to (2). 

Now let T: X ~  X be any orientation preserving involution on a closed 
manifold and Fk the 2k-codimensional part of Fix 7'. Choose sections fk for 
each N IFk which are transverse regular at the zero section. Then B, 
= {X[fk(X)= 0} represents Fk o Fk. We denote by Ek the restriction of the 
normal bundle of Fk in X to B k and by/~k the associated O(2k)-principal bundle 
(with respect to some bundle metric). 

Then one shows exactly as in [7] : 

2(X, T) = ~ ( -  1) k 2(/~k XOt2k~(P2k(tE), conj)), (4) 
k 

where O(2k) acts on PZk(C) via O(2k)C U(2k)C U(2k + 1). (The ( -  1) k does not 
appear in [7] because there we used a non-canonical orientation of Pzk(ff~).) 

Now define for 2k-dimensional real vector bundles E over oriented closed 
manifolds Y: 

#(e) =,~.(/~ ×ot2k)(P2k(¢), conj)). 

Then (AZ2) implies that # has property (A3, and therefore, by Proposition 2, 
does the value of/~(E) only depend on Y; and #, now considered as an invariant 
for Y, has property (A). Hence by Theorem 1 we get 

0 if dim Y s~ 0(4) 
# (E)=  12(p2(n_k)(C) x lR2k) z(y  ) if dim Y = 4 n - 4 k ,  

o r  

and thus by (4): 

0 

0 
2(X, T) = { E  a~Z(Fk° F,), 

k 

what is what we wanted to prove. 
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