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Abstract. We derive explicit formulas for the Chern-Simons-Witten invariants of lens 
spaces and torus bundles over S t, for arbitrary values of the level k. Most of our 
results are for the group G = SU(2), though some are for more general compact 
groups. We explicitly exhibit agreement of the limiting values of these formulas as 
k ~ oc with the semiclassical approximation predicted by the Chem-Simons path 
integral. 

1. Introduction 

New invariants of 3-manifolds were introduced by Witten [40] using Chern-Simons 
gauge theory. In this paper we study these invariants explicitly for certain families of 
three-manifolds. Our ultimate objective is to verify for these families certain properties 
of the invariants derived heuristically using the Feynman path integral. 

Witten [40] specified his three-manifold invariants in terms of the axioms of topo- 
logical quantum field theory (TQFT), based on modular functors derived from con- 
formal field theory [30]. This definition can be made rigorous, and is the one we shall 
use here. Three-manifold invariants were also defined combinatorially by Reshetikhin 
and Turaev [36], using modular Hopf algebras associated to quantum groups. Many 
properties of the invariants of Reshetikhin and Turaev have been established by Kirby 
and Melvin [23] from this point of view. It had always been expected that Reshetikhin 
and Turaev's definition would prove to be equivalent to the definition using the topo- 
logical field theory axioms: this was, however, only proved recently by Walker ([39], 
Sects. 9-11). 

Pure mathematicians who have worked on these invariants have focused almost 
exclusively on the combinatorial or TQFT definition. On the other hand, Witten and 

* Partially supported by an NSF Graduate Fellowship 
Address as of September 1, i991: School of Natural Science, Institute for Advanced Study, 

Princeton, NJ 08540; USA 



564 L.C. Jeffrey 

other physicists also use a complementary approach to the invariants, the Feynman 
path integral. Here, the Chern-Simons partition function is defined as follows. One 
takes a compact Lie group G and considers the trivial principal G bundle M x G over 
a 3-manifold M. One then performs the path integral over connections A on M x G: 

Z(M, k) = / 2 A  exp 27rikCS(A), (1.1) 

where the Chern-Simons functional is defined by 

CS(A) = ~ Tr (A dA + 5 A3) �9 (1.2) 

M 

The partition function depends on an integer parameter k, the level. 
The path integral encodes certain properties of the Chern-Simons-Witten partition 

function that are not superficially obvious from the combinatorial definition. In partic- 
ular, the path integral predicts a formula for the asymptotic behaviour of Z(M, k) in 
the limit of large k. This formula ((5.1) below) is expressed as a sum over the flat con- 
nections Ai on M (assuming these form a discrete set); it involves the Chern-Simons 
invariants CS(Ai), the Reidemeister-Ray-Singer torsion ~-(M, A4) and the spectral 
flow IA~ of a certain family of operators parametrized by a path of connections from 
the product connection A0 to Ai. 

In the TQFT definition, on the other hand, the more natural parameter is 

r = k + h .  

The invariant, which we shall denote by Z(M, r), is expressed as a polynomial in a 
root of unity whose order is some multiple of r; the number of terms in the poly- 
nomial is typically some power of r. Thus the asymptotic behaviour as r ~ oc is 
far from obvious. The axioms of topological quantum field theory [3, 39] treat each 
value of r separately and provide no axiomatic framework for studying the functional 
dependence on r of the family of partition functions parametrized by r. From the 
axiomatic point of view one can only study the behaviour as r --+ oc after one has 
obtained an explicit expression for the partition function of a given 3-manifold for all 
values of r. 

Evidence for the validity of the asymptotic expansion predicted by the path integral 
has nonetheless been provided by Freed and Gompf [11], who investigated the r ~ c~ 
limit numerically for lens spaces and Brieskorn spheres. The interest of the asymptotic 
formula is not so much its effectiveness as a tool for distinguishing 3-manifolds: it is 
rather that the gange-theoretic quantities involved in the asymptotic expansion do not 
enter in any obvious way in the combinatorial definition of the invariants. The path 
integral nonetheless predicts a relation between these gauge theoretic quantities and 
the combinatorial definition: finding this relation is a formidable challenge. 

This paper has two main objectives. One is to provide explicit formulas for the 
Chern-Simons-Witten invariants (defined via TQFT) for certain families of three- 
manifolds for which an explicit treatment is possible: lens spaces and toms bundles 
over S 1. The second is to write these formulas in a form where the behaviour as 
r --+ ec is obvious. In this way we explicitly exhibit the first term in the r 
ec asymptotic expansion for these families of 3-manifolds. This work is the first 
rigorous confirmation of the validity of the asymptotic expansion for a class of 3- 
manifolds; we hope to extend the methods presented here to treat a larger class of 
examples. More speculatively, we suggest that the partition functions Z(M, r) for 
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general three-manifolds M will satisfy certain number theoretic properties that lead 
to the asymptotic formula. These properties remain to be discovered, but the methods 
presented here may give some indication of the general ingredients involved. 

The lens space L(p, q) is obtained by gluing two solid tori using an element of 
SL(2, Z). We derive an exact formula (Theorem 3.4) for the SU(2) Chem-Simons- 
Witten invariant Z(L(p, q), r) for arbitrary r E Z, without assumptions that r be 
coprime to any primes determined by p and q. Theorem 3.7 gives the specialization of 
this formula to the case when (r, p) = 1. It follows from our formula that Z(L(p, q), r) 
distinguishes a large number of L(p, q) up to orientation preserving homeomorphism, 
provided p ~ 2 (mod 4). (It does not, however, distinguish all lens spaces: see Remark 
3.9.) We also derive the SU(2) Witten invariant Z(Xu, r) for the torus bundle S u  
over S l with monodromy specified by an element U of SL(2, Z) (formula (4.8)). For 
one family of torus bundles parametrized by Z, we also derive the Witten invariant 
(4.16) for an arbitrary simply connected simply laced compact Lie group G. 

For these families of three-manifolds M, we define Z(M, r) using the represen- 
tation 3 of SL(2, Z) (the torus mapping class group) obtained from confonnal field 
theory, on the vector space associated to the torus by the topological field theory. For 
lens spaces, this definition of Z(M, r) is transparently equivalent to the definition one 
would obtain from a surgery description (see, for instance, Lemma 3.2.7 of [23].) For 
torus bundles, the equivalence with the combinatorial definition in terms of a surgery 
description is not obvious, but follows as noted above from the work of Walker [39]. 

The representation ~ of SL(2, Z) is usually specified in terms of two standard 
generators S, T of PSL(2, Z): we derive a formula (Proposition 2.6) expressing it 
explicitly in terms of the four coefficients in a 2 • 2 matrix with determinant 1. This 
formula is obtained by an inductive argument using a classical identity from num- 
ber theory, the reciprocity formula for Gauss sums, which follows from the Poisson 
summation formula. 

In Sect. 5, we explicitly demonstrate agreement of these results with the leading 
order term in the path integral asymptotic expansion for Z(M, r) as r ~ co, which 
was described in [11] and [40]. 

The results presented in this paper are part of my Oxford University D. Phil. thesis: 
I would like to thank Prof. M. F. Atiyah for supervising this work. I also gratefully 
acknowledge helpful conversations with D. Freed, S. Garoufalidis, R. Kirby, and D. 
Zagier. 

This paper is organized as follows. In Sect. 2, we construct an explicit formula for 
the representation of the torus mapping class group SL(2, Z). Section 3 applies this 
formula to obtain formulas for the Chern-Simons-Witten invariants for lens spaces 
for G = SU(2). Section 4 likewise uses the formula from Sect. 2 to compute the 
Chem-Simons-Witten invariants for torus bundles over S 1. Finally, Sect. 5 compares 
these values with the large r asymptotic expansion from topological field theory (see 
[11]) and obtains explicit agreement. 

2. Formula for the Representation of SL(2,Z) 

2.1. Preliminaries 

Any topological field theory associates to a surface Z a of genus g a representation 
of the mapping class group/ 'g on a vector space . ~ r ,  the "physical Hilbert space" 
of the theory. For the Chern-Simons theory, these representations may be obtained 
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from conformal field theory, specifically from the Wess-Zumino-Witten model for the 
group G; there is a different representation of the mapping class group for each value 
of the level k, so we may denote the vector space by ff~(2 k). 

We shall pay particular attention to the case when 9 = 1, so that one obtains 
representations of the toms mapping class group SL(2, Z). These representations are 
known from the study of a space of theta functions arising in the theory of affine 
Lie algebras (see [21]): in fact (see [14], Appendix) they define representations of the 
modular group PSL(2 ,  Z). The representation is normally specified in terms of the 
generators S, T of PSL(2 ,  25) with 

satisfying the relations 

5 " = [  0 O1] ,  T =  [~ I]  (2.1) 

S 2 = (ST) 3 = 1. (2.2) 

In the present section we specialize still further to the case G = SU(2). In this 
case, the torus vector space ~T2 has dimension k + 1. 

Notation. We adopt the notation of [23]: 

r = k + 2  

and 

Also, 

e(c~) a=_~f exp(27rio0, 

en(C~) d=ef exp (27ri --~) �9 

def i71" 
= exp -~-. [] 

Convention on square roots. Throughout the following, if z E C, v ~ will denote the 
branch that is positive on positive real numbers, with a branch cut along the negative 
real axis. 

Proposition 2.1 ([14], (A.44)). The representation of PSL(2 ,  Z) on o~T2 (k) is given 
by 

Sjz = sin = ~ (e2r(jl) - e2r(-j l)) ,  (2.3) 

Tjl de=f Tj~Sjt, Tj = ~ - l e 4 r ( j 2 ) .  

Here, the indices j, l have been chosen to run from 1 to r - 1. For a general group 
G, the analogous representation is given in Proposition 4,2. 

Lemma 2.2. These coefficients have the following symmetries: 

&~ = & ( > + o  = - & ( > - o ,  Tj~ = ~j(2~+o = T~(2~-o .  [ ]  

We wish first to derive an explicit formula for this representation of SL(2, 25), 
which expresses the representation of an arbitrary element U without expanding U 
in terms of the generators S and T. To derive the formula for the representation, we 
shall need the following classical number theoretic result: 
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Proposition 2.3 (Gauss sum reciprocity formula in one dimension). 

E e2n(mA2)e(~bA) = E eam( -n (A  + ~)2), (2.4) 
A (rood n) A (mod n) 

i f  A E Z, n, rn E Z, n m  is even and n r  E Z. [] 

This proposition is proved by a minor generalization of the argument given in [7] 
(Chap. IX, Theorem 1); the basic idea is to consider a limiting case of the Poisson 
summation formula applied to a Gaussian function. A more general version is given 
below (Proposition 4.3). 

We now use the reciprocity formula for Gauss sums to derive an explicit formula 
for the representation ~ of P S L ( 2 ,  Z) which was specified in (2.3). We are able to 
write 

in terms of a, b, c, d, starting with the expression for the element U of P S L ( 2 ,  Z) in 
terms of the generators S and T. 

2:2. Formula for  the Representation 

Definition 2.4. Suppose U E SL(2, Z), A continued fraction expansion [me, . . . ,  me] 
for  U is a sequence o f  integers re1, . . . ,  m t  such that 

U = T ' ~ S . . .  T m l S .  

Such an expansion always exists, but is not unique because of the relations (2.2). The 
following proposition makes clear the reason for the name. 

Proposition 2.5. Suppose 

and suppose [ml, . . . ,  mr] is a continued fraction expansion for  U. Then 

(i) 
1 / 

a/c = m t  - 

1 
m~-x 1 

o . .  

ml  

= -  + - + . . . +  . 
a2al at 

with the convention that 

ao = d o  = 1, bo = co = O. 

Then these satisfy the recurrence relations (for t >_ 2) 

(iii) at = tatar-1 -- et-1, ct = at- l ;  

(iv) bt = tatar-1 -- dr-l ,  dt = bt-1. 

(ii) 

Moreover, define ai, bi, ci, di by the partial evaluation of  this product (for i ~ 1)." 

[ai bi] = T m ~ s . . . T m I S  
ei di 
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Proof. We first consider 

bl 0 
T r a l s =  [ ; ;  dl] = [0 1 1 ] [1 ; 1 ] - =  [ 1  1 ; 1 ] ,  

so indeed the induction begins correctly. We then evaluate 

[at bt] = [ m t a t - l - - c t - 1  m t b t - l - d t - 1 ]  
ct dt t at-1 bt-1 ' 

which gives the inductive formulae (iii), (iv). Formula (iii) is clearly solved by the 
continued fraction expansion (i). As for (ii), observe that indeed b~/al = - l / m 1 .  By 
induction, 

1 
+ . . . + -  

afar-1 

_ bt-~ + 1 

at-1 atat--1 
-atbt-1 + 1 

at at-1 
--(tatar-1 -- Ct-1)bt-1 q- 1 (by (iii)) 

afar-1 
-rrttat-lbt-1 + at-ldt-1 (as l - c b = a d )  

at at-1 
-rrttbt-1 q- dr-1 bt = --  (by (iv)), 

at at 

completing the proof. [] 

Lemma 2.6. Denote by 5~t the sum 

~= ~ Sjt+lJtTfftrntSjtjt_lTjt_l~'Zt-l,..TfflmlSfflffO 
j l , . . . ,  j t = l  

(2.5) 

(in terms of the quantities Tj, Sjz specified in (2.3)). Then in the notation of Proposition 
2.5, we have (provided that none of al, . . . ,  at vanish)." 

q, (rood 2rat) 
T=Jt+ 1 (mod 2r) 

where Ct is given by 

( 1 / { Q1 1 ) }  
Ct = i(t-1)~ Dt ~ ~ -(ml+'''+mt) e4r - ~ ~-""  q- --at-2at-1 j02 ' 

and Dt -- sgn(a0a0 + . . .  + sgn(at-lat). 

Proof. First observe that each of the indices j~, . . . ,  j t  appears in two of the S 
in (2.5), so we may divide by appropriate factors of 2 and replace by a sum over 
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j l ,  . . . ,  j t  running from 1 to 2r (using the symmetries in Lemma 2.2.) First we do 
not the calculation for ~Yf: 

2r 
1 

j l=l  

1 2 1 
- -  . 2 . ~-ml . E e4r(mlJZ) 

= 2 " r  (2i)  2 
j (rood 2r) 

X {e2r{(j2 + j0)j} -- e2r{(j2 -- j0) j}} .  (2.7) 

(In the large curly brackets, two terms corresponding to the complex conjugates of 
the terms shown have been removed, and the overall expression multiplied by 2: this 
results from the substitution j ~ - j . )  

Now we apply the reciprocity formula (2.4): denoting the constant outside the 
second sum in (2.7) by B1, we have 

~ =  CI 

= C1 

. ))} 
/3 (rood m 1 ) 

E {e4rmt(--(2rfl 4- j2 4- j0) 2) --  e4rrat(--(2r/~ 4- j2 -- j0)2)}, 
/3 (mod m I ) 

where 

C I = B 1  2 ~ _  1 ~/-~-~-m~. 
V m1 v ' ~  Y al 

This confirms the first step in the induction. 
Now we assume the result of the lemma inductively and write (again using the 

symmetries in Lemma 2.2 to expand the sum over jt to run from 1 to 2r) 

2r 
1 

&~+. / r s~  . ~ - 1  
jt=l 

Jt (mod2r) ~(rnod2rat_l) 
7=j~ (rood 2r) 

X {e2r(Jt+ljt) -- e2r(--jt+lJt)} ~-mt e4rat_, (mtat- i j~)  

X e4rat_l ( - - 5 t -  I"Y 2) {e2vat_i (-TJo) " .2 -- e2rat_l ('}/30)} e4rat_lct_ 1 (--30)" 

We may now replace j~ by -y throughout the previous expression. Thus 

1 ~ e4rat_lct_l(_3o)Ct_l 

• E {e2 rO ' t+ l " / )  - e2r(-jt+l"[)} 
3' (rood 2rot) 

X e4rct (mr at- 172) e4rct (--Ct- 1 ,,{2) {e2rct (--730) -- e2~-c~ (T J0) }. 

(2.8) 
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Now we combine the coefficients of the 3'2 factors using Proposition 2.5(iii), to obtain 

2 m 
1 V~_2rr * e 4 ~ t _ , ~ _ l ( - j ~ ) G - l ( - 2 )  ~ =  a7 
X E e4rct(at~2) 

7 (mad 2~ct) 

• {e2ret(ctjt+l+jo)5-e2~ct(etj,+l - j0)3"}-  (2.9) 

(Here, the factor ( -2 )  immediately in front of the sum arises, as in the calculation of 
(2.7), from the substitution 7 ~ - 3' which allows us to condense four terms to two.) 

Now another application of the reciprocity law (2.4) yields (denoting the constant 
in front of the sum in (2.9) by Bt), 

v at 5(rood at) 2ret 

V at 3' (mod 2rat) 
3,=Jt+l (rnod 2r) 

using "7 = 2rfl + jt+b This completes the induction. 
By induction the formula for Ct is 

-mr .2 
C t = ~ r e4ra t_ ,c t_ l ( -ao)Ct_ l .  

(2.10) 

as claimed. [] 

So we have that 

Dt = sgn(aoal) + . . .  + sgn(at-lat). (2.11) 

• e4r - -  goal a t - 2 a t - 1 ]  J 
(2.12) 

Notice that the phase of a~t- t i /a t  is ~ if at, at-1 have the same sign and s if they 
have different signs. Thus these factors multiply to give a factor ~Dt ~[at i 1~2, where 
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It is now easy to derive the formula for Jg(U). We have 

= 

~-mt , 2 -~ e4rat-ICt-l(--30 )Ct-1 Z e4rat-1 (mtat-l ' /2) 
"7 (rood 2rct) 

~/=Jt (rood 2v) 

X e4rat_l (--C4-1~ 2) {e2rat_ 1 (--"/j0) -- e2rat_ 1 ("/j0)} 
~--rnt - 2 

= -- e4rat-lat-2(--30 )Ct-1 E e4rat-a(at~2) 
'7 (mod2rct) 

~f~Jt (rood 2r) 

__ ~-mt �9 2 " 2 
e4rat_lat_z(--JO )e4rata~_i(--30 )Ct-1 

"/(mod2rct) @ a S /  / --e4rat-I  -- a - t /  / 
7=Jt (rood 2r) 

Now using Proposition 2.5 (ii) for the prefactor involving jg, we have 

.N(U)j,jo 
i 

= (-iKt) ~ e4~a(bjo 2) 

X E { e 4 v a t - l ( a t (  ~{ _~_ Jo~2~ _ ( ( ~ / _  J o ~ 2 ~ ,  (2.13) 
3'(mod2rct) a~t.I / e4ra~-I \ at a--~t/ / ) 

3'=Jr (rood 2r) 

where 
f4[t -= i t - l~Dt - l~  ( -ml- ' ' -mt )  (t > 2 ) ,  

K1 = ~-ml .  (2.14) 

Combining all the terms quadratic in j0, and replacing jt by j and j0 by l, we get 
finally 

Proposition 2.7 (a). The representation of SL(2, Z) on ~(~) is given by 

1 2 Jg(U)jl = ( - iK(U))  ~ e4~c(dl ) 

"7 (mod2rc) 
"y=j (rood 2r) 

Here, K(U) ~ Kt, where K~ was given by (2.14); it will be shown in Proposition 2.8 
that Kt depends only on U and not on the choice of a particular continued fraction 
expansion for U. [] 

We know from Lemma 2.2 that .~(U)jt depends on 1 only rood 2r. To rewrite our 
formula so that this is manifest, we consider 

Y ~f E e4~c(a0'2 + 271 + dl2)" 
7 (mgd 2'rc) 

"7=3 (rood 2r') 
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Now completing the square by introducing )~ = "y + dl, we have 

~ e4re(a("/+ dl) 2 + (2 - 2ad)~/1 + (d - ad2)l 2) Y 
(rood 2re) 

)~=j +dt (rood 2v) 

= E e4rc(a)~ 2) e4r(-bdl2 - 2blj). 
h (rood 2re) 

)~=j+dl (mod2r) 

Thus our sum is 

Proposi t ion 2.7 (b). The representation of S L(2, Z) on ffr k) is given by 

1{ 
~ ( U ) f l  = - i K ( U )  ~ E e~c(a~ 2) e4~(-bdl 2 - 2blj) 

A (mod 2r c) 
)~=j+dl (rood 2r) 

- E e4~c(aX2) e4r(-bdl2 + 2bl j )} .  
,k (rood 2re) 

N=j-dl (mod 2r) 

Here, the value of K(U)  will be given in Proposition 2.8. [] 

This formula depends on j and I only rood 2r, as we know it must.l 

2.3. The Rademacher phi Function 

Rademacher ([33], p. 150) defines an integer valued function on PSL(2,  Z) by 

a + d  _ 12(signc)s(d, tcl) if c r  0; 

if c = 0 .  

Here, for c > 0 the Dedekind sum s(d, c) is defined by 

8(0,  l) = 0 ,  

c-I ((__kC)) ( ( @ ) )  (2.16) s(d, e) = ~ 
k=l 

where for a real number x, 

J" 0, x e ~; ((z)) 
Y x - Ix] - �89 otherwise. 

The Dedekind sum has the alternative definition (for c > 0) 

1 e-i  71-k 7rdk 
cot - -  cot - (2.17) s(d, c) = ~c - -  c e 

k=l 

After we had completed our work, we learned of a very similar formula for a representation of 
SL(2, Z) (Proposition 4.1 of [38]) obtained in a different context and with different methods 
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(For further properties of  the Dedekind sum, see [15], especially p. 18.) The function 
is "almost" a homomorphism from SL(2, Z) to Z; more precisely, Rademacher 

proves that if A" = A'A,  then 

~(A ' )  = ~(A) + g~(A') - 3 sign(cct c"). (2.18) 

In particular, consider A = TinS, so ~(A) = m; by induction, defining ~t  by 

~ t  def ~ (Tr r~  , S . . .  T ~a S) ,  (2.19) 

we find from (2.18) 

~t  -- ~ t -1  = m t  --  3 s ign(at- lc t -1) ,  (t > 2) 
(2.20) 

(~31 ~- g t ~ l  �9 

Proposi t ion 2.8. The quantity Ke from (2.14) is given by 

K~ = ~ - ~  sign(et); 

in other words we may define 

[ ( (U)  = K t = (-~(U)sign(c) .  

Proof 

where 

The recurrence relation satisfied by Kt is (from (2.14)) 

/r = C A~ , 

At - At_l = - 2  - sign(ct_lat_~) + mt 

AI = ml �9 

(t _> 2) 

The discrepancy between this and (2.20) is ~t  = At + ~ hi, where 
i=2 

nl = 2 - 2 sign(cz_icl), 

so 

and (since cl = 1) 

~ t  = sign(ct-1)sign(c0 (t > 2) 

sign et = s [] 

(2.21) 

2.4. Framing Dependence 

The invariants Z(M,  r) depend on a choice of 2-framing 7r for M [2], i.e., on the 
choice of  a homotopy equivalence class 7r of  trivializations of T M  �9 T M ,  twice the 
tangent bundle of  M viewed as a Spin(6) bundle. The possible 2-framings correspond 
to Z. The identification with ~ is through the signature defect ~(M, 70 defined by 2 

~(M, 70 = sign(X) - ~ pI(2TX,  70, (2.22) 

where X is a 4-manifold with boundary M and Pl (2TX,  70 is the relative Pontrjagin 
number associated to the framing 7r of  the bundle T X  (9 T X .  The canonical 2- 
framing 7r ~ [2] corresponds to 6(M, 7r c) = 0. When we wish to specify explicitly the 

z Note that ol~r identification (2.22) of 2-framings with ~ differs from that in [ltJ by a minus sign 



574 L.C. Jeffrey 

dependence of Z(M, r) on the framing 7r, we shall use the notation Z(M, r; 6(M, 7r)). 
We have the following 

Lemma 2.9. If the two-framings 7r, 7r p satisfy 6(M, 7r r) ~ 6(M, 7r) + 1, then 

Z(M,  r; 6(M, 7r')) = Z(M,  r; 6(M, 7r)) e ~ic/24 . 

Here, e is the central charge, which is defined by (A.4). 

27tie = exp 4 exp f iTr } Remark. For G=SU(2),  we have exp - ~ -  2(k + 2) =~e4~(-1) .  

If a three-manifold M is specified by a framed link L for surgery, there is a 
standard 2-framing 7rL associated to the surgery link [11]. This 2-framing differs 
from the canonical one by the following factor: 

Proposition 2.10 ([11], Theorem 2.3). The signature defect of the 2-framing as- 
sociated to a framed link L with the framings of components specified by integers 
T i l l ,  . . . ,  ??'~t is 

6(M, 7rL) = ~L , 
for 

$ 

~ L  : 3cr(Wr) -- Z mi~ 
i = l  

where ~r(WL) is the signature of the linking matrix WL of L. 

3. Lens Space Invariants 

tn this section we apply our formula for the representation .~r of SL(2, Z) to obtain 
a formula for Witten invariants of lens spaces L(p, q). Our result for general r is 
Theorem 3.4. In Sect. 3.2 we also provide formulas for the case (r, p) = 1, where 
further simplifications are possible. 

Our first formula (3.8) for lens space invariants is for a 2-framing that arises 
naturally when one glues together solid tori using elements of SL(2, Z). Theorem 
3.4 is the result of correcting this formula to the canonical 2-framing of Atiyah [2]. 
Theorem 3.7 gives the specialization of the formula in Theorem 3.4 to the case when 
the integer parameter r is prime to p. 

3.1. General Formula 

Let us now apply our formula for the representation ~.@ to obtain a formula for 
Witten invariants of lens spaces. The lens space L(p, q) is specified by a pair p, q of 
coprime integers with 0 < Iql < p;3 in fact l(p, - q )  is diffeomorpbic to L(p, q) via an 
orientation reversing diffeomorphism. The space L(p, q) is formed by surgery on S 3 
along a framed link L which is a chain with the framings of successive components 
specified by integers ml,  . . . ,  mr-1. Such a surgery is a - p / q  surgery on the unknot 

3 We ignore the case p = 1, q = O, which is S 3 itself 
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in S 3 (see e.g. [11]): this means that a solid torus around the unknot is removed and 
glued back using a matrix 

Here, the matrix A is given by a continued fraction expansion [mi, . . . ,  m r - i ] ,  i.e., 

A = T m r - i S . . .  T ml S (recall Proposition 2.5). (3.1) 

In other words, the rai satisfy 

1 
- p / q  = rot-1 - (3.2) 

1 
rat-2 1 

, . .  

rai 

This surgery is obviously equivalent to gluing two standard solid tori using 

p 

thus U has a continued fraction expansion [ral, . . . ,  mr_l,  rat = 0]. 
Via Proposition 2.10, there is a 2-framing 7rL associated to this surgery description, 

with signature defect ~(M, 7rL) = ~L- It is shown in [11] that ~L depends only on A 
and not on the particular choice of  integers (ral, . . . ,  ra t - i ) .  4 So we may introduce 
the notation 

~L = ~(A) .  (3.4) 

Thus we have 
t - 1  

qS(A) = 3 sign WL -- E mi  ' 
i = 1  

(3.5) 

where the liinking matrix W L  is given by (! o 0) 
m2 1 . . .  0 

WL : 1 . . .  . (3.6) 

0 1 . . .  
1 mr-1 

The lens space L(p,  q) is obtained by gluing two standard solid toil using U; 
thus, according to the TQFT axioms, the Witten invariant of  L(p, q) in the 2-framing 
~ ( - S U )  is given by 

Z ( L ( p ,  q), r; ~ ( - S U ) )  = 3 ( U ) 1 1  �9 (3.7) 

4 This will also follow from Proposition 3.5, whose proof does not depend on it 
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Using the expression (2.13), this is 

~-~(u) 
Z(L(,p, q), r; O(-oeU)) = - i ~ e4rq(b) (3.8) 

'~ (rood 2rp) 
"y= 1 (mod 2r) 

~- '~(U) 
= --  i ~ e4rq(b)  

p 

X E { e 4 r p q ( 2 r ~ q  + q § 1) 2 --  e4rpq(2rnq + q -- 1) 2} 

n = l  

= - i ~ e4rq(b) E ep(qrna) (3.9) 

x {ep(n(q + 1))e4rpq(q + 1) 2 - e p ( n ( q -  1))e4rpq(q- 1)2}. 

We now wish to obtain a formula for the lens space Witten invariant in the canon- 
ical framing. We need the following preliminary lemma: 

L e m m a  3.1. Assume IP/q[ > 1. Then - p / q  has a continued fi'action expansion given 
by 

1 
- p / q  = mr-1 - 

1 
/Tzt_ 2 1 

m l  

with all mi >_ 2 or with all mi <__ - 2. 

Proof. Assume first that - p / q  > 0. By induction, any rational number > 1 has such 
a continued fraction expansion. Indeed, set rat-1 to be the least integer > re~n, 
SO m / n  = mr-1 -- (mr~n1) -1, where m I = n < m and 1 _< n / < m ~. Since the 
denominators continue to decrease, this process must terminate. It follows likewise 
that a rational number < - 1  has a continued fraction expansion with all mi <_ -2 .  
[] 

In this situation, the signature defect is related to the Rademacher phi function by 
the following lemma. 

L e m m a  3.2. I f  A is given by a continued fraction expansion (3.2)for  - p / q  with all 
mi > 2 or all mi <_ - 2 ,  then 

�9 (SA) = - ~(A) .  (3.10) 

Proof. The linking matrix WL has signature t - 1 if all m~ ___ 2 ([16], Lemma 8.12). 
Thus ~(A) = 3t - 3 - (m~ + . . .  + ro t - l )  (from Proposition 2.10). In this case, all 
the a~ are also _ 1 (see the proof of  Lemma 3.1, and (2.5) for the definition of the 
a~.) Thus (2.20) shows q~(SA) is equal to - ~ ( A ) .  A minor alteration of this argument 
makes it work also for the case - p / q  < O. [] 

We may now reduce to the Witten invariant of L(p, q) in the canonical 2-framing: 
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Lemma 3.3. The quantity 

(e4r (-- 1) 0 ~(U) Z(L(p, q), r; ~(-SU)) 

1 P 

• n=l  

x %(n(q • 1))e4r,q(q-4- 1) 2 (3.11) 

depends only on p and on q (modp): it is independent of the choice of U. 

Proof The factors in (3.11) involving roots of unity of order some multiple of r give 
(recalling that a - q, c = p )  

e4rpq(pb + q2 • 2q + 1) = r + q 4- 2). (3.12) 

Introduce the integer q* (modp) solving q*q = 1 (modp). Now notice using the 
Definition (2.15) of 4~(U) that 

e4rp(d + q 4- 2) e 4 r ( - ~ / i ( U ) )  = ezrp(+ l) e~r(12s(q*, p)) = e2rp(4-1) e4~(12s(q, p)), 

since d = q* (modp) and s(q*, p) = s(q, p). This gives 

(e4r (-- l ) ~)q~(U) Z(L(p, q), r; ~(-SU)) 
p 

i P)) E E 4-e2~p(4-1)ep(qrn2)ep(n(q 4- 1)). (3.13) . 9/'5-Jg~v.,r e4~(12s(q' ~: n=l 

The right-hand side depends only on p and on q (modp). 
Hence, finally, we have 

Theorem 3.4. The Witten invariant of the lens space L(p, q) in the canonical 2-framing 
is given by 

Z(L(p,q),r;O) i E i = -- 2V/~ e4r(12s(q, p)) -t-e2rp(-}- ])ep(qrn 2) ep(n(q 4- 1)). 
& n=l  

Proof If we choose U so that A = -  SU satisfies the hypothesis of Lemma 3.2, 
then that lemma says the factor (e4r ( -  1)~) ~(U) in (3.13) is just the factor 
(e4~(-1) 0 -~(-S~0 that is picked up when one changes from the framing ~(-SU)  to 
the canonical framing (see ]_,emma 2.9), so (3.13) represents the value Z(L(p, q), r; O) 
in the canonical framing. [] 

We may now use Lemma 3.3 to generalize the result of Lemma 3.2 to arbitrary 
U 6 SL(2, Z). In other words, we obtain a formula for the Rademacher phi func- 
tion r in terms of the signature of a matrix associated to a continued fraction 
expansion of U; this formula was obtained in [24]. We show that the formula follows 
immediately from our results, using the transformation properties (Lemma 2.9) of the 
Witten invariant under change of framing, and the identification (Proposition 2.10) of 
the signature defect of the framing associated to a framed link. We have 

Proposition 3.5. For arbitrary A 6 SL(2, Z), 

r = - @(A), 

where ~(A) is given by (3.5). 
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Pro@ The formula (3.13) expresses 

Z(L(p,q),r;c~(-SU)) as Z(L(p, q), r; O) x (@4r(-1)) -~(U). 

But by Lemma 2.9 we also have 

Z(L(p, q), r; @(-SU)) = Z(L(p, q), r; O) x (@4r(-1)) ~(-SU), 

where qS(A) was specified by (3.5). [] 

3.2. The Case (r, p) = 1 

We now rewrite our formula (Theorem 3.4) for the lens space invariants in a more 
transparent form when (p, r) = 1. Formulas of the type obtained in this section for 
the Witten invariant of L(p, q) have been obtained independently by Garoufalidis [131 
and Kirby and Melvin [25], who work under the assumption that r is prime to p. In 
this section we assume q, r > 0. Consider first the factor 

P 

J = E 4- E e2rp(4-1) ep(qrn 2) ep(n(q 4- 1)) 
• n = l  

= E 4- e 2rp ( 4-1) E n= l qr n + -~-qr ] j p - qr k -~-qr ) ' (3.14) 

Case 1: p odd. We can then find integers l and h such that 

pl + 4qrh = 1. (3.15) 

Defining u• = q 4- 1, and completing the square, we than get 

P { ( ( P~q/r))}2 (-4qrJU~=~ Y =  E +e2~p(4-1) Z ep qr n + 2u• h -  e v 
• n = l  

P (.  o212 - 1)) 
= E ~e2,~p(-+-l)E ep(qrn2)eP\ ~qr 

=E n = l  

for 
Y '  = E • ep{(q 2 4- 2q + 1) ( - 2  + 4qrh) h}. 

• 

Here, we have introduced the notation 
P 

G(h, p) = ~ ep(hna) , 
n = l  

and used the properties ([28], Chap. IV, Sect. 3) that 

Proposition 3.6. If p is an odd integer >_ 1, than 

G ( h , p ) = ( h ) G ( 1 , p ) ,  

w h e r e ( h )  istheLegendresymbol. 

(3.17) 
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The explicit values for G(1, p) for arbitrary p > 0 are given by 

1, p = 1 (mod4) 

0, p = 2 (rood 4) 
G(1, p) = v/~ x i, p = 3 (mod 4) 

( l + i ) v ~ ,  p = 0 ( m o d 4 ) .  [] 

We first decompose J '  as Y '  = e~(e ~ - e-S) .  Thus we have 

e ~ = e2rp(1 + 4qrh(-2 + 4qrh)) = e2rp(p212) = e2r(1). 

Also 
e/~ : ep((q 2 + 1 ) h ( - t  - p l ) )  = e p ( - h ( q  2 + 1 ) ) .  

Now because of  (3.15), h is 4 * q ' r *  (modp),  so we have 

e ~ = ep ( -4* (q  + q*)r*). (3.18) 

(We have introduced the notation q* for q-1 (modp).)  

Case 2." p even. In this case, q is odd and we define the integers u• = (q :[: 1)/2. We 
choose integers 1 and h satisfying 

4pl + qrh = 1. (3.19) 

Then, as before, we have 

( })( " J : E ~ e 2 r p ( •  qr n + u •  h -  4pl~ 2 ep - uz-~-i) 
+ ~=1 qr ] qr / 
P 

= E ep(qrn:) E &e:rP(:t:l)epq ~(u~(16p212 - 1)}. 
n = l  4- 

We manipulate the Gauss sum using the reciprocity formula (2.4); we take p = 2~p ' 
where p '  is odd, and consider 

p 21-lp t i~rqrn 2 
Z ep(qrn2) = 2 ~ exp 2~_lp, . 
n = l  n = l  

This sum is zero if c~ = 1 (i.e., if  p = 2 (rood4)). Otherwise, if  p = 0 (rood4), 
reciprocity (2.4) shows 

P ~ qr 
Eep(qrna)  = es(1) 2p E e x p  iT:U'-lp'n 2 
n=l n = l  qr 

(2c~-2pt)~ • { 1 ,  qr = 1 (rood4) 

= x / ~ e s ( 1 ) \  ~, / - i ,  q r - - 3 ( m o d 4 ) .  

We also have to treat the factor 

This is 

y = - 1 ) } .  
4- 

Y '  = Z &e2rp(~l)e4v{ (q2 • 2q + 1 ) ( - 2  + qrh)h}. 
+ 
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We get J r  = e~(e c~ - e -a) ,  where 

e a = e2rp{(1 - 4 p l ) ( - 1  - 4pl) + 1} = er(2l(1 - qrh)) = e~(2l). 

Now 
e ~ =- e4p{(q 2 + 1 ) ( -1  - 4pl)h} = e4p(-(q 2 + 1)h) .  

Thus we get simply 

e p = e@(-(q 2 + 1 ) q ' r * )  = e4p(-(q + q*)r*).  

These results are summarized in the following theorem: 

Theorem 3.7, When r is prime to p, we have the following values for Z(L(p, q), r) in 
the canonical framing: 

p odd: 

where 

Z = ~2_2 (q_r_r ~ sin 7r /e4r(12s(q ,p))ep(- (q  + q*)4* r* )e  ~ 
V r \ p ]  r 

f 1, p = l ( m o d 4 )  

i, p = 3 ( m o d 4 )  

Here, q*, r* are inverses of q and r with respect to p, and I is the inverse of p (mod 4r). 

p = 2 m o d 4 :  Z = O .  
p = Omod4: 

Z = v ~  ~/~ sin417r ( ~ r  ) es(1)e4r(12s(q'p))e4p(-(q + q*)r*)i~ 

where 
6 = ~ 1, qr = 1 ( rood4) .  

[ - i ,  qr = 3(rood4)  

Here, 41 is the inverse o fp  (mod r), and q*, r* are inverses of q, r (rood 4p). [] 

Remark 3.8. The identity Z(L(p, q); r)  = 0 when p = 2 (rood 4) is not necessarily 
satisfied when r is not coprime to p (consider for example L(6, 1)). Thus the case 
(r, p) = 1 is not entirely typical of the behaviour of the invariants. [] 

Remark 3.9. Distinguishing Lens Spaces. Notice that if p is known, then by taking 
the 2:o c" or 4/) th powers of the expressions given in Proposition 3.7 and varying 
over all r, one may use the values of Z to extract the Dedekind sum s(q, p). Since 
s(q, p) = (q + q*)/p (rood Z) (see (2.15)), the value of s(q,p) determines the value of 
q+q* (modp). I f p  is prime, this yields a quadratic equation over the field Zp, which 
one may solve for the pair {q, q*}: recalt that the pair {q, q*} classifies the lens spaces 
L(p, q) up to orientation preserving diffeomorphism. If p is not prime, however, Zp 
is not a field and so the values of q + q* (modp) will not always uniquely determine 
{q, q*}. (Kirby has pointed out that L(65, 8) and L(65, 18) are not distinguished by 
Z(L(p, q), r; 0), for r prime to p = 65: this is because for p = 65, the values q =- 8 
and q = 18 both give q +  q* = 0.) [] 

Remark 3.10. We should clarify one point regarding the Dedekind sum factors, Ac- 
cording to [23] Sect. 1, the invariant 

~-~(M) = ( 2 x / ~  s inOr/r ) ) - I  Z(M,  r; O) 



Chern-Simons-Witten Invariants of Lens Spaces 581 

takes values in the ring Z[e8~(-t-1), r-l]. This is not superficially obvious from The- 
orem 3.7: however, when p is odd, a short calculation using (3.15) and the definition 
(2.15) of the Rademacher phi function establishes that 

4 ; / ] )  �9 e4~(12s(q,p))ep(-(q+q*)4*r*)=e4~(ql-~[; (3.20) 

Similarly if p = 0 (rood4) we have using (3.19) 

e4r(128(q,p))e4p(--(q q-q*)f'*) :e4r (4ql--~ [ q ; h / I ) .  (3.21) 

Thus the invariants specified by Theorem 3.7 do indeed belong to the ring specified 
in [23]. [] 

4. Torus Bundles over the Circle 

Recall that for a surface S and a diffeomorphism/3 : ~ --+ S ,  the mapping torus ~ 
is defined as 

S~ = S x [0, 1 ] / ~ ,  (4.1) 

where 
(z, 0) ~ (/3(x), 1). 

The axioms of topological field theory say that in an appropriate 2-framing (see 
(4.4)), 

Z(S~, r) = TRY(/3). (4.2) 

We shall particularly consider the case when S is a 2-torus and/3 is an element U 
of SL(2, Z). 

4.1. Torus Bundle Invariants for G = SU(2) 

In this section, we consider 

U =  [a  b] 6SL(2 ,  Z), a + d r  (4.3) 

We derive the SU(2) Chem-Simons partition function of Zu ,  where S is a 2-torus. 
There is a canonical 2-framing (u  [l] associated to the turus bundle over S 1 formed 
using U E SL(2, Z). This framing has signature defect 

r  = - r  + 3 sign(c(a + d)). (4.4) 

According to the axioms of topological field theory, we have 

Z (Su ,  r; r = Tr.~@(U). (4.5) 

Thus, using Proposition 2.7 (a), the Witten invariant is 

McJ 

1 E ~(U)jj  Z(SU, T; r ~--- 2 ~  j=l 

= s i g n ( c ) C  ~(g) rH'4ilc L "~+ ~ ~ e4~c(dj% 
5- flmodc jmod2r]cl 

• e4~c(a(j + 2r/3) 2) e2~(•  -}- 2r/3)j). (4.6) 
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We may now replace the summation variable j by j - r/3, yielding 

1 
Z (Zu , r ;~b (U) )  = ~ sign(c)~ -~(u) ~ j(mod2~lq) E + Z  

:t: ]3 (mod c) 

• e4rc(d(j - rfl) 2) e4rc(a(j + r/3) 2) e2rc(4-(j + r/3) (j - r/3)) 

4ilc I sign(c)~-r r ~  E • + a • 2) j  2) 
j,]3,-4- 

X ezc((a -- d)j/3)e4~(r(d + a T 2)/32) �9 

Applying the reciprocity formula (2.4) to the sum over j ,  we get 

V d + a + 2  

X E E gd+a4-2 --re "}1• "~ 
3"=1 ]3 (rood c) 

x e4c(r(d + a T- 2)/32)- 

The coefficient of/32 in the exponential is 

r (4be) r {(d • a) 2 - 4 - (d - a) 2} = 27ri. 4c(d + a 4- 2) ' 27ri. 4c(d + a • 2) 

so we obtain finally 

Z(2u ,  r; r 
l K---, ~-~(U)+3 sign(c(d+a-t-2)) sign(c(d+as • sign(c) i -  

Z..., 2@1 ~ [ d  + a 4- 2 I • 
ld+a:t:2t -c72 + (a - d)~/3 + b/3 2 

x E E exp27rir d + a - t - 2  
/3 (mod c) 3'=1 

(4.7) 

(In the last expression, the sign of the 7/3 term was changed by substituting -/3 for 
/3.) For simplicity, we restrict to the case when U is hyperbolic, i.e., la + d I > 2. 
Then, correcting to the canonical framing, we have 

1 
Z ( S u ,  r; O) = e4r (~(U)) sign(c) i-sign(c(d+a-t-2)) N E • 

• 2 i l c I v q d q - a •  

Id+a-t-2 I 

• E Eexp 
/3 (mod a) 3`=1 

- c 7 2  + (a - d)~//3 + b/3 2 

d + a •  

This simplifies to give 
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Theorem 4.1. Suppose U E SL(2, Z) satisfies I Tr UJ > 2. Then the Witten &variant 
of the torus bundle Su  in the canonical framing is given by 

1 
Z(Su,  r; O) = e4r(~(U)) sign(d + a qz 2) x =k 

2M v/Id + a T 2l 
[d+a:F2[ 

x - "  x - "  + - a)7  + • exp 27fir (4.8) Z-, A., d + a T 2  
/3 (rood e) "y= 1 

4.2. Torus Bundle Invariants for General G 

This section gives a similar calculation of the Chern-Simons-Witten invariant for the 
toms bundles S u ,  where U = TPS in terms of the generators (2.1), for a general 
compact simply connected Lie group G with Lie algebra 9 and Caftan subalgebra 
t. For simplicity we shall assume G is simply laced, i.e., all the roots of G have 
the same length. First we need to list the values of the representation of PSL(2, Z) 
corresponding to general G: this requires considerable notation, which is collected in 
the Appendix (Sect. A. 1). 

Proposition 4.2. In terms of the basis for .f{(~) given by the level k weights (A.16), 
the representation of SL(2, Z) is ([14] (A.44)): 

ilza+[ volA ~ 1/2 ( 27ri ) 
S x , u -  vU2 vo~-j-ff Z det(w) exp - - - ( w ( A + 0 ) , # + Q )  , (4.9) 

wEW r 

T)~,, = ~a,, exp (A + 6, A + e} - -h- (& e} 

= &~ exp 2zci(Ha - c/24). [] (4.10) 

Here A and # satisfy (A. 16), and [A+I is the number of positive roots. The conformal 
weight HA and central charge c are defined in Sect. A.2; 5 see also [21], Proposition 
13.7. 

We also need a more general version of the reciprocity formula for Gauss sums, 
whose proof, like that of the one-dimensional reciprocity formula (2.4), is a verbatim 
generalization of an argument in [7]). Consider a real vector space V of dimension 
1 with inner product ( , )  and a lattice A in V with dual lattice A*. We introduce 
an integer r, a self-adjoint automorphism B : V ~ V, and an element r of V. We 
assume 

• BrA), (A, Brl) , r(A,•) E Z  V A , ~ e A ,  2 
(4.11) 1 

Under these assumptions we have 

Proposition 4.3 (Reciprocity Formula for Gauss Sums). 

vol(A*) Z expiTr(A, BA/r)exp2~ri(A,@ 
AcA/rA 

= ( d e t B ) - l / 2 r U 2  ~ exp{ - i~r (#+r162  Z] 
#EA*/BA* 

5 We correct an error in the formula in [I4]. Note that [14] writes this in terms of  a lattice M and 
its dual M * :  for simply laced groups, the identification of M with A n is given by [21], 6.5.8 
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Now we can exhibit the formula for the torus bundle invariant for general G. 
We refer to the notation of Sect. A.1 and A.2, where in particular the weight 

lattice A ~ and the coroot lattice A R are introduced, and general properties of roots 
and weights discussed. The basic inner product on t is denoted (, .). The conjugacy 
classes of  U E SL(2, Z) for which c = 1 can be represented by U = TPS. Using 
formulas (4.9) and (4.10), we obtain 

Z ( ~ v ,  r; ~O(U)) 

1 lvolA*~ 1/2 ~ pirr(&O) } 
= Tr(TPS) = ila+l v-77 ~ ~ exp ~ h 

• ~ d e t ( w ) ~ - ~ e x p { i ~  ( ( p - w - w - 1 ) ( - k + O ) , A + O ) } ,  (4.12) 
w c W  ), 

where the sum is over -k E A ~J satisfying (A.16). 
We shall later wish to compare this expression with the semiclassical approximation 

(Proposition 5.15). This requires us to recast (4.12) in a form where the parameter r 
appears in the numerator of each exponential rather than in the denominator. 

We must first alter the sum in (4.12) using some symmetries so we are summing 
over something of the form Z n / N Z  '~ for N some integer. Then we must apply the 
reciprocity formula to convert this sum to a sum over points in a dual lattice. Let us 
analyse the symmetries of  the trace sum (4.12) with a view to expressing it as a sum 
over A~'/rA ~. Define ( for ) ,  E A ~) 

~ i / ( p  - ~o)-k ,  -k) 
9(s = ~ det(w)- exp 

T 
w E W  

The trace is obtained by summing 9(s over weights 

{ - k = ~ + Q : ~ E F W C ,  ( ~ , a . ~ } _ < k } ,  

in other words we must compute the sum 

~ 9(-k) 

where the sum is over {-k E FWC [ (-k, am) < k + h}. 

Proposi t ion 4.4. g(A) is invariant under." 
(i) -k -+ - -k (obvious. 

(ii) -k -+ u,k, u E W: for 

(u-k, (1o - 2w)u-k) = (-k, {p - 2(u-~wu)}-k) .  

(iii) -k + -k + r h a ,  a any root (hc~ denotes the corresponding coroot 2(~/(a,  (~).) For 

1 
- (-k + rh~, (p - 2w) (-k + rha)) 
?, 

= 1_ (-k, (p _ 2w)-k) + 2(h~, (p - 2w)-k) + r(ha, (p - 2w)ha).  
?. 

The second term is obviously in 2Z, since ha is in the integer lattice. The third term 
is also in 2~, since (ha, ha} c 2g~ (a properly of the basic inner product), and 

2{wa, h~) 
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The highest root, a long root, is normalized to have length 2 = 2 in the basic inner 
product, and the length squared o f  short roots is then 2 In  for  some n E Z. 
(iv) g(),) = O for a weight A with (A, a} = rn  f o r  any root o~ (n E ~). For every even 
w c W there is an odd w contributing the opposite amount to the sum g(A), namely 
r w  where r is reflection in a. For  

rA = A - r nh~ 

SO 

(A, 2 r w k )  - <A, 2wA) = - 2r n<h~, wk )  C 2rZ ,  

SO 

(p - 2rwA, A) (p - 2wA, A) 
exp i~r - exp i~r 

r r 

We refer to Sect. A.5 for general discussion of alcoves, and more generally r- 
alcoves. The trace formula (4.12) requires one to sum g(A) over weights A in the 
interior of one f-alcove (and (iv) above says that weights on the boundary of the alcove 
do not contribute.) By Proposition 4.4, all r-alcoves contribute the same amount to 
such a sum. They are permuted simply transitively ([32], 5.14) by W~<rA R c Waef. 

I f .Y  is the sum of g(A) over one r-alcove, and if N is a positive integer such that 
A ~ / N r A  v' is precisely tiled by r-alcoves, then the number of r-alcoves is obtained 
by dividing the volume of A~~ by the volume of one r-alcove, which is 
r 1 v o l A R / I W I .  Thus we have 

E g(A) = NI[WI  v o l ( A W ) / v o l ( A f t ) Y .  
A E A W / N r A  w 

In other words, the trace sum (4.12) gives 

i Izx+l ] vol(A w) 1/2 vol(An ) prri(& p) 
Z( S u ,  9; ~(u))  

, ~ o ~ )  NzlWl vol(A~) exp h 

~i((p - w -w -1 )A ,  ~> 
x E det(w) E exp 

r 
w 6 W  A E A W / N r A  w 

(4.13) 

The lattice volume factors in this sum combine to give v o l A  R (since volAW= 
(vol AR)-I). 

Define 

B = p - w - w -I,  (4.14) 

an endomorphism of t. We wish to apply the reciprocity formula (Proposition 4.3) to 
relate 

E exp - -  
r 

i ~ E A w / r A  w 

(which appears in (4.12)) to 

E exp - ircr(A,  B-1A) 
A ~ A R / B A  R 
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(which will appear in the semiclassical calculation of Proposition 5.15). We cannot 
do this as stated, for the conditions (4.11) are not satisfied. However, we can choose 
N E Z so that they are satisfied if we replace r and B by rN, BN. This gives 

v~ E exp r .kEAW/vNA w 

= det(B/i)-l/2rt/aN l x E exp-iTr(tz, rB-l#) ,  
,uEAR/BA R 

by the reciprocity formula (4.3). 
Using this, the trace sum (4.13) becomes 

Z(Su,r; r = Tr.~(U) = exp { pTri(& o) } ilza+l exp { iTrl sg4det(B) 

1 det(B)l- 1/2 
x ]W I E det(w) E exp-iTr(lz, rB-l#).  (4.15) 

wEW pEAR/BA R 

All the lattice volume factors have cancelled out. 
Formula (4.15) is not in the canonical framing. If we correct it using the framing 

~b(U) = - p + 3 sign(p) from (4.4) and 

e27ric/24=exp{27ri (~-----~) ( ~ - ) }  

(see Sect. 2.4), we obtain the formula in the canonical framing: 

Z(Su,r;O)=exp{-iTr(&~) (p - 3 ~gn(p)) } 

x exp{-37r i  (~h~--~} } i  Lza+l E det(w) 
wEW 

x exp 4 IWI 
uEAR/BA R 

x exp -irr(#, rB- l#) .  

After some simplification this becomes 

Proposition 4.5. If U = TP S and ]Pl > 2, the Witten invariant of the torus bundle 
Zu for an arbitrary simply laced compact connected simply connected group G in the 
canonical flaming is given by 

Z(Sv,  r; 0 ) =  exp ~-iTr(& 0) ( p - 3  sign(p)) ~ (signp)l E det(w) 
1 r J wEW 

x [ det(B)l-1/2 E exp-iTr(#, rB-l#}. (4.16) 
}W1 .E~R/BAR 
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5. Formula for the Large v Limit 

In this section, we compare our results for the CSW invariants of  lens spaces and 
toms bundles (Sect. 3.4) with the path integral formulas for the asymptotic behaviour 
of  the Chern-Simons partition function as r ~ c~. This path integral prediction 
was originally obtained by Witten [40]. A more refined version of  the path integral 
prediction is given in [11], (1.36). One has 

Z(M,  r) ~ Z~r r) 

_ 1 e_iTr(dimG)(l+bl(M))/4 E e2~rirCS(A)V[T0(M~ A) 1/2] 
Iz(~) l  A 

)< 7-1 (M, A) 1/2 e -27r i ( lA /4+(d im H~ H~)/8) r(dim HI-dim H~ " (5.1) 

Here, we sum over the gauge equivalence classes of  flat connections A. The notation 
is as follows. We denote the centre of G by Z(G), and the first Betti number of M 
by bl(M). The element CS(A) is the Chern-Simons invariant of  the flat connection 
A, given by (1.2). For a definition of  the Reidemeister-Ray-Singer torsion, we refer 
to [12, 19 or 35]. The square root of  the torsion associated to the fiat connection A 
is denoted by r (M,  A)1/2: it is canonically an element %(M, A) 1/2 | ~q(M, A) 1/2 of  
AmaxH~ dA)| {AmaxH 1 (M, dA)}*. We denote by v a volume on AmaXH~ dA), 
so that v[z-0(M, A) 1/2] E C. In other words, once one chooses an element v of  
AmaXH~ dA)*, the square root of  the torsion is a volume on Hi(M, dA), which 
is the Zariski tangent space of  the moduli space of  gauge equivalence classes of  flat 
connections on M.  A canonical such element v E AmaXH~ dA)* is obtained from 
the basic inner product (Sect. A.1) on H ~  dA) C g.6 

The integer tA is the spectral flow of  the family of  operators 

DA = [ *dA dA* 0 ] (5.2) 
~ d A  ~ 

on $21(M, g) @ ,Q3(M, 9), where A = A(t) is a path of  connections running from the 
product connection A0 to the fiat connection A. We denote Hi(M, dA) by H~.  

Formula (5.1) was stated in [11] only for the case G = SU(2), dim H~ dA) 
0, dim Hi(M, dA) = 0; however, it extends also to the case when dim H~(M, dA) 5 L O, 
by interpreting 7-(M, A) 1/2 as a volume on the space of  gauge equivalence classes of  
fiat connections on M and the sum as an integral over that space]  

In this section, we explicitly demonstrate agreement of these results with the path 
integral asymptotic expansion for Z(M, r) as r --+ ~x~, which was described in [11] 
and [40]. The values of  the Chern-Simons invariants of  flat connections on the toms 
bundle S u  are given by a certain cocycle ([5], Sect. 4.4.3) for the action of  the 
automorphism group Aut(P)  of  a bundle P over S on the space of connections 
~ ( S ) :  below (Theorem 5.11) we obtain values for CS(A) explicitly when S is a 
toms, through an alternative interpretation of  this cocycle. Values for the Reidemeister 
torsion of  flat connections on S u  will be derived in a companion paper [18]. For the 

6 Although this choice of v gives the correct normalization for the limit Z(L(p, q), r) as r ---+ ~x~, we 
do not obtain the correct normalization for Z(S 3, r) = ~-~(S)11 ~ x/~Trr-3/2: we have no explanation 
for the factor 7r that appears here 
7 This is true provided the Zariski tangent space HI(M, dA) equals the actual tangent space to the 
moduli space of gauge equivalence classes of flat connections on M 
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toms bundles, we have not been able to compute the spectral flows, but we conjecture 
a value based on the TQFT formulas for Z ( S u ,  r). 

Sect. 5.1 exhibits the precise agreement for the case of lens spaces and G = SU(2). 
In preparation for the treatment of torus bundles, Sect. 5.2 describes results from [ 18] 
on the terms appearing in the asymptotic expansion for mapping tori (i.e., Chern- 
Simons invariants and Reidemeister torsion of flat connections). Our results on torus 
bundles are given in Sect. 5.3. In contrast to our lens space results, which are complete, 
the torns bundle results have some details unresolved: these are listed in Remark 
5.17. Nonetheless, in the toms bundle case almost all of the quantities appearing 
in the TQFT formula for the Witten invariant may be identified with corresponding 
quantities appearing in the semiclassical formula. 

Remark 5.1. For the families of three-manifolds we have treated, the mechanism 
behind the proof that Z(M, r) satisfies the asymptotic expansion is the reciprocity 
formula for Gauss sums (2.4), (4.3). This formula relies on the Fourier transform (via 
the Poisson summation formula): the Fourier transform is essentially what transforms 
the TQFT formula for the Witten invariant (where r appears in the denominator 
of exponentials, as in the formula (2.3) for the representation of PSL(2, ~)) to the 
semiclassical formula (5.1) where r appears multiplying CS(A) in the numerator of 
exponentials. 

Since the semiclassical formula (5.1) is expected to hold for all three-manifolds, 
we expect that the Witten invariants will quite generally satisfy some number-theoretic 
identities that facilitate such a transformation. Moreover, we speculate that the Fourier 
transform may be the basic mechanism behind these identities. Several authors have 
already studied the number theoretic properties of partition functions defined using 
quantum groups [29]: it is a challenge to extend the understanding of the link between 
quantum groups and number theory to find a number theoretic mechanism behind the 
asymptotic expansion. 

5.1. Lens Spaces 

The fundamental group 7rl of L(p, q) is Z v, so representations O of 7rl in SU(2) are 
indexed by n = 0, . . . ,  p - 1 in the obvious way (i.e., 0n sends the generator to 
e2~i~/P), and Qn and pp_~ are conjugate. The Chern-Simons invariants CS(on) and 
torsion T(L(p, q), 0n) of these flat connections have been calculated [10, 11, 26]: they 
are ([11] (2.20), (2.25)) 

CS(0,~) = q*n2/p, (5.3) 

4 v ~  sin 2~rn sin27r;*n I (5.4) v['r(L(.p, q), O~) ~/21 = - ~ -  - ~ -  

where q*q = l(modp), s 
Finally, the spectral flow is given by the following proposition. We are indebted 

to D. Zagier for its proof, which we include for completeness. 

8 The factor x/2 in the torsion does not appear in [11]; it arises from the volume element v coming 
from the basic inner product, because the root of SU(2) has length V'-2, whereas in [1 l] its length 
had implicitly been normalized to 1 
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Proposit ion 5.2. The spectral flow I~ from the product connection Ao to Ar~ is given 
by 

\{ . 2rcq*np 2 ; n )  
( - i )  In = ( - i )  sign ! sm sin - -  

i . e . ,  

In (rood4) = / l, 
( 

Proof. We have from [11] (2.21): 

q* n < P; 

q*n > p 
2 

/,~ + 2 -  
p-1 

8q*n 2 + 2 N-~ cot 7rk 7rqk 27cnk 
- Z_.., - -  cot sin 2 , 

P P k=l P P P 

1 ,x~l  A + I  A q + l  _/~-~)2  8q *n2 q_ 

p ~pp = A - 1  Aq 1 (A~ " 

We make the expansion 

1 + 1  (~n _ ;~-~)  _ _  
A - 1  

= ( A +  1 ) (A  n-1  + A  '~-2 + . . . + A  - n )  

= A ~ + 2 A  ~-l  + . . .  + 2 A  -'~+~ + A -~ .  

Similarly, we rewrite the second factor A n - A -~ as (Aq) q*~ - (Aq) -q-n, so we get 

A q + 1 = (Xq)q,,~ + 2(Aq)q*n_ 1 + . . .  + 2()3)_q,n+ l + (Aq)-q*n. (An - A-n) A q -  1 

So 

1 2A~_ ~ . . .  2A_~+ ~ 
AP=I 

X ((~q)q*n ~_ 2(/~q)q*n-1 @.. .  @ 2(.~q)-q*n+l @ (/~q)-q*n). 

One to sum = 1 is in fact the term - -  verifies that the contribution this from A 
\ 

in (5.5).~ In other words, ) 

1 2A._ ~ + 2A_n+l L ~ + 2 = -  Z ( A n +  + . . .  + A  - s )  
P AP=I 

• (1 + 2A q + . . .  q- 2(/~q) nq*-I -~ An). 

Since 
pl ; 

xp=i O, otherwise, 

we have (rood 4) 

IJl<n O<j<nq* 
j=O or -n(modp) jq=:l::n(modp) 

l) 

8q*n 2 

P 



590 L.C. Jeffrey 

In other words 
In = 1 + 2 E 1 (mod4). (5.6) 

O<j<nq* 
j q=:~n (mod p) 

We claim the sum is even if q*n < p- and odd otherwise. This is true because the 
2' 

number of j = ~- q*n (modp) in an interval [kp, (k + 1)p] is 2, so since nq* is the 
first value of j not contributing to our sum (5.6), the interval [kp, (k+ 1)p] containing 

nq* contributes 0 if nq* < p and 1 otherwise. This completes the proof. [] 

We compare these values with the prediction of the path integral formula. In the 
limit r --~ ec, formula (3.9) gives 

~ r ~  p 27rn Z(L(p, q), r; 0) -~ i 2 E exp 27riq*rn2 sin 27rq*______nn sin - -  (5.7) 
n=l  P P P 

This agrees precisely with the path integral prediction (5.1). 

Remark 5.3. Notice that the semiclassical formula (5.7) does not agree with the exact 
formula for Z(L,p, q), r; 0) given by Theorem 3.4, but only with its r ~ ~ limit: in 
other words, stationary phase is not exact. 

5.2. Mapping Tori 

In this section, ~ is a surface of arbitrary genus, and/3: S -~ S a diffeomorphism. The 
mapping torus G O with fibre S and monodromy/3 was defined by (4.1), The Witten 
invariants of these 3-manifolds are treated more extensively in a companion paper 
[18], in relation to a (0 + 1) dimensional analogue of the Chem-Simons path integral 
(symplectic quantum mechanics) based on Floer's symplectic action functional. In that 
paper, we identify the semiclassical approximation of a special case of the (0 + l) 
dimensional field theory with the semiclassical approximation (5.1) to the Chern- 
Simons path integral for the mapping toms Z~. To this end, [18] treats the Chem- 
Simons invariants and Reidemeister torsion of fiat connections on mapping toil. In 
this section, we summarize from [18] those results we shall need for the explicit 
treatment of mapping tori of tori. 

5.2.1. Preliminaries. Let S be a surface. We recall the following: 
1. The surface S is assumed equipped with the (topologically trivial) principal G 
bundle P,  and we assume a lift/3 of/3 to P has been chosen. One may then define a 
mapping torus bundle P;9 --+ S~, as the mapping torus of P under/3. For reference, 

we specify a flat connection A0 on S such that/~*A0 = A0. (For instance, one may 
do this by picking a trivialization of P,  and taking/3 to be the corresponding trivial 
lift of/3 and A0 to be the product connection.) 
2. We denote by ~ ( S )  the space of all connections on P --+ r ,  and by . ~ ( ~ )  
the moduli space of gauge equivalence classes of flat connections on P. This space 
of course has an equivalent description as the moduli space of conjugacy classes of 
representations of 7raS in G. This moduli space is equipped with the basic symplectic 
form 

w(a, b) = ~ Tr(a A b), (5.8) 



Chern-Simons-Witten Invariants of Lens Spaces 591 

for a, b E TAd/d(S) = H i ( S ,  dA). There is a prequantum line bundle with connection 
(~%z, 0) over J S ( S ) ;  this is by definition a line bundle ~ over J /d(S)  equipped with 
a connection 0 whose curvature is - iw .  
3. The bundle map ~ : P  ~ P covering/3 induces a diffeomorphism fz  : . /~(S)  --4 
. /~(S) .  This has a lift fZ : ~gf ~ S-  preserving the connection 0. Such a lift is unique 
up to multiplication by a constant U(1) phase factor. 
4. We denote by J~(Z;~) the moduli space of gauge equivalence classes of flat 
connections on the bundle P3 over the mapping torus SZ. 

First observe that a connection A on P;? --+ Sp may be written as 

fl  = A(t) + r dt (t E R), (5.9) 

where A(t) �9 ~ ( Z )  and r c ~~  ad(P)) satisfy the periodicity conditions 

~*A(t + 1) = ACt), ~*r  + 1) = ~(t) .  (5.10) 

The following facts are treated in more detail in [18]: see also [8], especially Appendix 
A. The treatment of the Chern-Simons functional given in Proposition 5.5 follows 
from [5], Sect. 4.4.3. 

Lemma 5.4. There is a surjective map from the moduli space of gauge equivalence 
classes of flat connections ,7t = A(t) + ~(t) dt on S~ to the set of fixed points of 
f z  : f /d(S)  ~ f ig(S) ,  given by [4] ---, [A(0)]. [] 

Proposition 5.5. One may choose the lift f~ : ~  --+ =cx~ so that the Chern-Simons 
action e 2~ics(A) at a flat connection A on SZ is equal to Trfz ,  the trace of f~ on the 
fibre of the prequentum line bundle over the fixed point [A(0)] �9 J ~ ( S ) .  [] 

5.2.2. Reidemeister Torsion. We refer also to the following results from [18]. The 
first Betti number is bl(S;~) = 1. The fundamental group 7rl(SZ) is Z,~Th(S), where 
Z acts on 7rl (S) via the diffeomorphism/3. The moduli space J~(Sr of conjugacy 
classes of representations of 7rt(S~) in G may thus be identified as 

J/~(SZ) = {~ = (~),g) I P �9 Hom(TrlS, G), g �9 G, gpg-1 =/3*O}/G. 

Denote by ./A~o the subspace of S/J(SZ) corresponding under the above identification 
to a particular element ~ C Hom(TrlS, G). One sees that if (Q, g) E .~ ,  (SZ), then any 
g is in the normalizer N(Stab(~)) of the stabilizer Stab(p) of L) under conjugation. 
Furthermore, if (p,9), (Q, g0) �9 J/de, then 9-1g o E Stab(0). Thus conjugation by 
Stab(e) preserves the space Stab(~)g, and we may identify .//~o = Stab(~)go/Stab(~), 
where by this we mean the quotient of Stab(~)g0 by the conjugation action of Stab(y). 

Let ~ �9 ~/~,  and let .4 be a corresponding flat connection on P3" Then the square 

root of the Reidemeister torsion 7-(S;~, .~)~/2 is an element of AmaxH~ dA) | 
Am~H~(SZ, dA)*. In other words, if we specify an element v of AmaxH~ dA)*, 
then ~-(SZ,~)I/~ becomes a volume on the tangent space to . ,~(S~) at [~]. The 
following proposition is proved in [18]: 

Proposition 5.6. Assume that f z  has isolated fixed points on . ~ ( S ) .  Then the follow- 
ing hold: 
(a) For the mapping torus ~ ,  we have 

dim H~ dii ) = dim HI(~Z,  dA). 
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(b) For a suitable choice of the element v of Ama~H~ dT~)*, the integral of the 
square root of the Reidemeister torsion over the subset , ~  of d/d(S~) is 

1 f T(~I3'A)l/2~- f ,det(ad(9)~*-l) , l /2dv~ 
"//go (0,g)E./NQ 

Here, 13 =- ad(9)/3* - 1 E E n d ( H l ( ~ ,  dA)), where A is a flat connection on P 
corresponding to the representation Q; we take the determinant of the restric- 

tion of B to the orthocomplement of Ker B. We take the volume element of ~ = 
Stab(o)9o/ Stab(~) in an appropriate metric. [] 

5.3. Torus Bundles over the Circle 

The case of mapping tori of  r when Z is a torus can be treated quite explicitly. Firstly, 
in this case there is a simple concrete description of the moduli space J ~ ( S ) :  it is the 
space (T x T) /W,  the product of  two copies of the maximal torus quotiented by the 
diagonal action of the Weyl group. Secondly, there is an equally explicit description 

of  the vector space ~,~ff(k) and the action of  SL(2, Z) on .5~(~), as discussed in the 
Appendix. 

Notation. The diffeomorphism I3 of  r corresponds to an element U E SL(2, Z). We 
shall write fg for the corresponding map on (T x T) /W,  and f v  for its lift to the 
prequantum line bundle ;~r over (T x T / W  or T x T. 

5.3.1. Semiclassical Formula for Torus Bundles. We shall define the contributions to 
the semiclassical formula starting by working on T • T. Observe that if A c T x T 
is a fixed point of a linear map U acting on (T x T) /W,  then there is some w E W 
such that A is a fixed point of  wU acting on T x T. It is natural to consider all 
maps f = wU on T x T and sum the contributions to the semiclassical formula 
corresponding to their fixed points. In fact, wUA = A in T • T if and only if w~A 
solves w~w(wr) -~ U(wtA) = wtA, so it is necessary to divide our fixed point sum by 

IWl, 
Remark 5.7. Reidemeister Torsion. Suppose A is a fixed point of  wU in T x T. 
The stabilizer Stab(A) of  a generic point A E T x T is the maximal torus T. As- 
sume Stab(A) = T. Then the quantity I det(1 - ad(9)/3*) I on H~(S ,  ad(P)) from 
Proposition 5.6 naturally corresponds to the quantity det(1 - wU). 9 The volume 
vol(Stab(Q)9/Stab(Q)) may be identified with vol(Stab(o) M Z(9)) = vol(Z(w)), the 
volume of  the fixed point set of  the element w E W corresponding to 9. When 
G ~- SU(2), the factor vol(Stab(o) f3 Z(9)) is 2 for all (~,9), provided we as- 
sume we have a metric for which vol(T/W) = 1. l0 This factor cancels the factor 
IZ(G)1-1 = 1/2 in the semiclassical formula (5.1). We have not deten'nined the factor 
vol(Stab(o) C3 Z(9)) for a general group G. 

9 We have not obtained this identi6cation when A is stabilized by a larger group that T. The 
formulas given below (Proposition 5. i2, Proposition 5.15) assume the same formula for the torsion 
holds for such points A; this assumption appears to agree with the TQF-f formulas for the Witten 
invariant 
to We remark that this is not the same as the normalization given by the basic inner product; we 
have no explanation for this discrepancy 
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This prescription determines Trf~ou]A and det(1 - ad(g)/~*) for A C T x T, 
provided A is fixed by only one of the maps wU, i.e., provided no nontrivial element 
of W fixes A. For those elements A which are fixed by some element in W, we sum 
the contributions to the semiclassical formula for all wU that fix A. 

We now wish to compare with the formulas in Sect. 4. We have not been able to 
obtain a prescription for the spectral flow, but make the following conjecture based 
on the TQFT formulas (4.8), (4.16) for the Witten invariant: 

Conjecture 5.8. We have 

e-ircIA/2 e-irr(dim H~ +dim HOA)/4 e-irr dim G(I +b I (XTU))/4 

(_i)IA+dim H i+dim G = det(w) sign(Tr U) l , 

where w is an element of the Weyl group such that wU fixes the point A c T x T. 11 

The semiclassical formula is then, using Proposition 5.5, Proposition 5.6 and Con- 
jecture 5.8: 

Zsc(ZU, r) - sign(Trlw[ ~ detw (Tr f,~v[A)" 
weW AETxT ] det(1 - wU)[1/2 

wUA=A 
vol(Z(w)) 

• [Z(G)[ ' (5.11) 

where Z(w) is the subgroup of T that is fixed by the action of w. (As discussed 
above, for G = SU(2), vol Z(w) = 2 for all w.) 

We now discuss the lifting of/3: Z -+ Z when 2 is a torus: we refer to Sect. A.3, 
where the prequantum line bundle co  is constructed. We may view ~| t as a subspace 
A of the space of connections ~/~ on Z,  and the actions of W and A = A R | A R 
on A as the restrictions to A of certain gauge transformations. The lifting of these 
actions to the prequantum line bundle is described in Sect. A.3; it is easy to check 
by explicit calculation that this lifting coincides with the lifting of the gauge group 
action via the Chem-Simons cocycle (see, for instance, [34]). 

We need to choose a lift of ,3 = U : ~  --+ ~ to U : P  --+ P,  and a flat connection 
A0 preserved by U-. We do this by choosing a trivialization of P and letting A0 be 
the product connection and U the trivial lift. This choice of (T then preserves the 
subspace A C .,~. We identify A0 with 0 C t; this enables us to lift the action of fu  
on (T x T ) / W  to the linear action of U C SL(2, Z) on A. Of course the connection 
on the symplectic affine space A is given by Lemma A. 1: it is simply the restriction to 
A of the standard connection (A.8) on the space J g  of connections, whose curvature 
is - i w  for the symplectic form w given by (A.7). 

We now choose a lift of fg  : (T x T ) / W  --+ (T x T ) / W  to fg  :~c,a _+ cp, preserving 
the connection. We choose the trivial lift to the trivial bundle over A: 

fu(A,  z) = (UA, z).  (5.12) 

The detailed proof that the lifting (5.12) descends to give a lift to the prequantum 
line bundle over (T x T ) / W  is given in Sect. A.4. 

Lemma 5.9. The lift (5.12) coincides precisely with the lift described in Proposition 
5.5. 

H This requires interpretation when there are more than one wU fixing A: see (1) of Remark 5.17 
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Proof. The lift (5.12) is easily shown to preserve the connection (A.8) on ~ .  How- 
ever, all lifts to the prequantum line bundle preserving the connection coincide up 
to a constant in U(1). That this constant is 1 follows from the fact that the two lifts 
agree on the product connection A0. [] 

We now derive explicit formulas for the trace of f u  at a fixed point. We refer to 
section A.3 of  the Appendix. If  A is a fixed point of  f u  on (T • T ) / W ,  there are 
w ~ W and ), ~ A = A R | A R such that 

w U A  - A = )~ (5.13) 

in t ~) t. The trace of  f g  -= fwu at a fixed point is computed as follows: 

f~u(A,  v) = (wU(A), v) = (A + )~, v) 

= (A, e~(A)-~v), 

the last step using (A.9). In other words 

Trace f~u[a = ca(A) -~ 

i 
= exp ~ co(A, ),)e(k) by (A.10). (5.14) 

Explicitly, 

Lemma 5.10. The fixed points A (~1 of f u  on (T x T ) / W  are in correspondence with 
k = ()~1, A2) E A / ( w U  - 1)A: we define 

= A;  

Furthermore, the trace of the lift f ~u  at the fixed point A ()') is given by 

Trace fwuIA(X) = exp 2 co((wU - 1) - I  ~, A)~()O, 

= exp - irc((wU - 1) -1 A, SA) e(A) by (A.7), 
(5 .16)  

where the theta-characteristic c(A) is defined by (A. 17). [] 

By Proposition 5.9, we actually have that 

Trace f~UIA(~) = exp(2rci CS(A(;~))), (5.17) 

where A (~) is the flat connection on Sl3 corresponding to A (x). This proves: 

Theorem 5.11. The Chern-Simons invariant of the flat connection 7t (~) on the torus 
bundle r v  is." 

1 { 0, e ( )0=l;  [] 
CS(A( : ' ) )  = 4 7  c o ( ( w U  - 1) -1 ),, ),) + _ �89 e (~ )  = - 1. 

Kirk and Klassen ([26], Theorem 5.6) have obtained this result for G = SU(2). 

5.3.2. G = SU(2). We shall present the calculation of  the semiclassical limit 
Zsc (Su , r )  (5.1) for the Chem-Simons partition function of  the torus bundle S u  
for S a toms. We shall see that the result agrees with the large r limit (5.20) of the 
formula for Z ( Z u  , r; 0). 
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We denote by U an arbitrary element 

(provided U is not parabolic, i.e., Tr U r -t-2.) We wish to compute the semiclassical 
formula (5.11) for the torus bundle partition function. We need the quantity 

det(wU - 1) = 2 7: (a + d). 

Equation (A.7) and Theorem 5.11 allow us to evaluate the action: recalling that the 
theta-characteristic g(~) is 1 for G = SU(2), we have 

( w U _ l ) _ ~ _  1 [dzF l  - b  ] 
a + d ~ 2  - c  azF1 ' 

1 
CS(~i (:')) = ~ ( ( w U  - 1) -1 ;~, S,X) 

1 (A, (wU t 1) -I SA) 
2 

where 

o 1] 
(Here, (., .) is the inner product on t 0 t, and S E SL(2 ,  Z) acts on t G t.) This 
becomes 

c s ( ~ ( ; , )  ) _ 1 a + d T 2 (-eA~ + bA~ + (a - d).~l.~2), (5.19) 

where we have used the coroot basis and the basic inner product (., .) to identify A R 
with Z. Our expression (5.11) then gives 

Proposition 5.12. The semiclassical approximation to the SU(2) Witten invariant for  
the torus bundle Z u  is given by 

Z~c(~U, r) = sign(d 2 + a) E Z  i 1 
~: ~ x / la  + d z# 21 

{ 'F (--C/~l 2 § 2 § (a -- d)/\l.\2)} , (5.20) x e x p  27Ci a + d ~z 2 

where we sum over A = (A1, A2) E A/ (4 -U - 1)A. 

Assume now for simplicity that U is hyperbolic, i.e., [Tr(U)I > 2. Then the 
expression (5.20) is equal to the large r limit of the expression (4.8) from the TQFT 
formula for T rY.  One may see this as follows. Note that the result (5.20) is expressed 
as a sum over a fundamental domain of A under the action of B = 1 i U. The 
equivalence of this with (4.8) is established by the following observations: 
1. d e t B = 2 + a •  
2. The sum 

Icl Id+a:t:21 Id+aigp 
E Z exp2rrir -c72 + (a -- d)-y/3 + b/32 (5.21) 

d + a r k 2  ~=1 7=i 

equals I detB[ times the sum in (4.8). Indeed, if (rn, n) E A - 2~ 2 is such that de tB 
divides rn and n, then (rn, n) is in B A ,  so the points (/3, 7) = (0, Id + a 2: 21) , 
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(/3, 7) = (Icl I d + a + 2 1 , 0 )  are in BA.  The rectangle spanned by these two vectors has 
volume l det B[ 2 I cl. Hence the sum (5.21) covers precisely I detBl let fundamental 
domains for the action of B (as it covers an integer number, each of which contains 
I de tBl  points.) [] 

5.3.3. General G. In the case of  general G we shall restrict ourselves for simplicity 
to one specific family, namely those U E SL(2, Z) for which c = 1. 

Notation. p will denote Tr(U). 

L e m m a  5.13. We have 

I det(w | U - 1)l = I det(,P - w - w - l ) ] .  

Here, the first determinant is the determinant of an automorphism of ~ | t =- t | R 2, 
while the second is the determinant of an automorphism of t, 

Proof. If  the eigenvalues of U are ~, )`-1 and those of w are # then this breaks up as 

LHS = ) H ( A / z  - 1) (A- l#  - 1) (A# -1 - 1) (~-1#-1 _ 1) l/z 

I ,a 

= I II()~1/2#1/2 _ )k-1/2#-1/2)()k-1/2#1/2 _ )`1/2#-1/2) 

I /.t 

= I - I ( ) ` + ) - 1 _ # _ # - 1 )  = R H S .  [] 
a 

L e m m a  5.14. A basis of representatives ~ for A / ( w U  - 1)A is given by 

A = (a, 0), a E AR/(p  - w - w-1 )A  R . 

Proof. By Lemma 5.13, these sets have the same number of elements. Now 

( w U -  1)A = ( U -  w-1)A,  
where 

7/3 - 1  
U - z0 - I  ~--- [ a  

As c = 1, there is clearly a basis of representatives of  the form (a, 0) (since for every 
T E A  R , 

is an element of (U - w-~)A  with the second coordinate equal to % so the second 
coordinate may be subtracted off  from any set of  representatives.) 

Also, 

[ a - w  -1 bw ~] [ - ( d - a w - l ) a ]  = I ( p - w  - 1 - w ) w - l a  1 c d -  - 0 j '  

so for any a E A •, ((39 - w - w-1)a ,  0) �9 (wU - 1)A. [] 

Remark. Since a set of representatives A �9 A can be chosen in the way described in 
Lemma  5.10, with the second component )`2 equal to zero, it is easy to see that the 
theta characteristics e(.k) defined by (A.17) for the representatives A are 1. 
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We need the factor 

_ _  1 _ _  1 (A2,~r), (5.22) c s ( k ( ~ )  = 5 ( a(x~, S ;9  = 5 

where (wU - 1) A (•) = •. Explicitly, 

(aw - 1) bw A1 

su substituting for A1, we obtain 

A2 = (w + w -1 - d - a) -1 or. (5.23) 

Combining (5.22) and (5.23), we have 

exp 27fir CS(A ()')) = (Tr fA(~)) ~ = exp -- i~rr{(p -- w -- w-1)a,  @. (5.24) 

Substituting this, Conjecture 5.8 and the result of Lemma 5.13 into (5.11), we have 

Proposition 5.15. The semiclassical formula for the torus bundle partition function 
for an arbitrary compact connected simply laced Lie group G and U = T v S  is 

Zsc(~U, r) - sign(p)l det(w) 
IW I E V/i det(p - w - w-l)[ w E W  

• Z exp{-rTri((p - w - w- l )  -1 a, @} vol Z(w) [3 
Iz(a)l 

Here, the second sum is over ~r E A n / ( p  - w - w-1)A  n. 
The TQFT result (4.16) in the canonical framing equals what we obtained (Propo- 

sition 5.15) from the semiclassical calculation, up to the factors vol Z(w)/IZ(G)]. 
Remark 5.16. Exactness of  the Semiclassical Approximation. Under a change of fram- 
ing by one unit, the semiclassical formula for the SU(2) Chern-Simons partition 
function varies like ~ rather than like e 27ric/24. (This is predicted by the path integral 
[40], in which the framing enters the semiclassical approximation when one adds a 
"gravitational Chern-Simons" counterterm to remove the metric dependence.) Thus, 
in the natural framing ~(U) associated to the monodromy matrix U for ~ u ,  the semi- 
classical formula Z ~ ( 2 u ,  r; ~(U)) agrees precisely with Z ( Z u ,  r; ~(U)). There is a 
simple formal path integral argument for this result: see [18]. 

Remark5.17. Unresolved Difficulties. For Witten invariants of mapping tori Zu ,  we 
have only been able to identify a large number of the factors appearing in the semiclas- 
sical approximation with factors appearing in the TQFT formulas. This is in contrast 
to the lens space case, where we have shown exact agreement between the TQFT 
formula and the semiclassical formula (in the limit r ~ oe). The ambiguities we 
have been unable to resolve, which prevent our identification from being complete, 
are the following: 
1. The spectral flow factors need to be identified, as in Conjecture 5.8. Furthermore, 
Conjecture 5.8 should be rephrased to take account of points A c T x T that are 
fixed by more than one wU. This might be done by introducing a family of operators 
interpolating between an operator corresponding to U and an operator corresponding 
to wU, which would have spectral flow 2 if det(w) = - 1. Thus, if an element A 
is fixed by both U and wU, it would be natural for the corresponding terms in the 
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semiclassical approximation to have different factors ( - i )  rA. The Maslov index (cf. 
[8]) may offer a natural interpretation. 
2. For general groups G, the volumes of stabilizers Stab(Q) N Z(g ) need to be com- 
puted. 
3. In the case G = SU(2),  we have computed the volumes of stabilizers explicitly, 
and find that they give an appropriate normalization only in a metric that is different 
from the metric induced by the basic inner product. The latter metric however is the 
one giving the correct normalization for lens space Witten invariants. 
4. We have not computed the integral of the torsion f ~_1/2 when Stab(Q) is larger 
than T. ~ o  

Some of these ambiguities disappear if, instead of the semiclassical approxima- 
tion to the Chem-Simons theory, one considers the semiclassical approximation to 
symplectic quantum mechanics: see [18]. 

A. Appendix 

A.1. Notation for Lie Groups 

We collect here our notation for various quantities associated to Lie groups, which 
will be used in this and the next chapter. The main reference for this material is the 
Appendix to [6]; see also [21]. 
1. We choose a compact Lie group G, which is assumed simple, connected and simply 
connected. It has maximal torus T and Weyl group W. The usual alternating character 
on W is denoted w --* det(w). The Lie algebras of  G and T are respectively 1~ and ~. 
The rank(dim T)  is denoted I. 
2. We introduce the basic inner product <, ) on t, normalized so that the highest root 

has length v~ .  
3. "Tr" denotes a negative definite Ad-invariant quadratic form on t~: the normaliza- 
tion is such that on ~, T r (XY)  = - <X, Y).  
4. Roots will be denoted c~. Although roots are actually in the dual t*, we use the 
basic inner product to identify them with elements of  t. The set of  positive roots will 
be denoted by A+. Simple roots will be denoted c~i, i = 1, , . . ,  1. 
5. The highest root is denoted C~m. 
6. Long and short roots: For any simple Lie algebra there are at most two possi- 
ble lengths of  roots, "long" and "short". The highest root is a long root, and has 
(c~m, c~>  = 2. Short roots then have Ic~l 2 = 2/n for some n E Z, A simply laced 
Lie group is one for which all roots have the same length. 
7. As usual, g will denote half the sum of the positive roots. 
8. Coroots: To every root c~ E t* is associated a coroot ha  E t such that c~(h~) = 2. 
Using the basic inner product, this gives tz~ = 2c~/<c~, c~), and ]h~ I 2 = 2/(c~, c~). 
9. Lattices: We define two lattices in t. The coroot lattice A R is the lattice spanned by 
the coroots; because G is simply connected, it equals the integer lattice. The weight 
lattice A w (which is dual to A R) has a basis given by the fundamental weights As, 
which is the dual basis to the basis of  coroots h ~  for simple roots c~i. Of course, 
since these lattices are dual, their volumes are inverses: vol A ~ = (vol AR) -~. _ _  
10. The fundamental Weyl chamber and its closure will be denoted FWC and FWC. 
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A.2. Notation Associated to Loop Group Representations 

We shall also need several quantities associated to loop groups, the definitions of 
which are rather more involved, k E Z is the level, as before. This is in fact the same 
k as appears multiplying the Chern-Simons Lagrangian in path integral formulation. 
1. If A is a weight, then Qa, the quadratic Casimir of the corresponding representa- 
tion, is 

1 
Qx = ~ (IA § 012 - 1 0 1 2 )  . (A.1) 

2. The dual Coxeter number, denoted h, is the quadratic Casimir of the adjoint rep- 
resentation. 
3. Freudenthal's strange formula 

provides an expression for h. 

1012 dimG 
2 h - -  24 ' (A.2) 

4. The conformal weight of the representation indexed by the weight A is 

Qx 
HA = k + h  

5. The level k central charge is 

6. We denote k + h by r. 

(A.3) 

(dim G) k 
c -- k + ~  (A.4) 

A.3. Theta Functions and Quantization for the Torus 

When ~ is a toms, the vector space gg(k) arising from the quantization of the Chern- 
Simons theory can be constructed quite explicitly. We define generating cycles ~,/3 
for 7rlS. Then the moduli space of representations identifies with 

= (T • T ) / W  (A.5) 

under 0 --+ (0(a), 0(/3)). (Because the fundamental group is abelian, any representation 
must map the whole fundamental group into a maximal torus of G; then the only 
conjugation freedom left is the diagonal action of W.) The tangent space to T x T is 

and 

where 

A = t G t ,  

T x T = A / A ,  

A = A R | An .  (A.6) 

A choice of trivialization for a G bundle P ---+ Z identifies A with a subspace of the 
space of connections ~A~(S), and the product connection (denoted A0) is identified 
with 0 E ~.  The semidirect product W ~ A identifies with the gauge transformations 
preserving A as a subspace of ~ .  The lattice in A is canonical, although the choice 
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of 0 E A is not (gauge transformations may move 0 to another element of the lattice 
A). The basic symplectic form ~ on N is ([6], (5.19)): 

~((~1, ~1), (~2, ~2)) = 2~((~i ,  ~2) - (~2, ~1)) 
= -2~r ((~1, ~71), S(~2, m)) (A.7) 

for 

We have: 

Lemma A.I. I f (A ,  w) is any symplectic affine space, then a connection 0 on the trivial 
line bundle A • C with curvature -ico is given by 

i 
OA(a) = -- -~ w ( A  - A t ,  a) ,  (A.8) 

for  any A t  E A. [] 

In our situation, we of course choose the reference connection A0 to be the product 
connection, as above. 

There is a line bundle ~ on T • T, the prequantum line bundle, such that ea (~)  -- 
w/(2~). To construct it, we start with the trivial bundle A • C ~ A and quotient out 
by the action of A lifted to A x C as follows ([6], l(c):) 

(A, v) ~ (A  + A, e;~(A)v), (A.9) 

where 
e;~(A) = ~(A) e x p { - ( i / 2 ) w ( A  - A t ,  A)} (A. 10) 

and the theta-characteristic e(A) E {:kl} satisfies 

K(AI A7 A2 ) ~. E(AI)E(A2)(_l)~(xl,;~z)/2~. (A.11) 

To lift the action of W to Y ,  one chooses the trivial lift from A to A • C: 

ff?(A, z) = (At  + w ( A  - At) ,  z ) .  (A.12) 

This lift is equivariant with respect to the A action, as we shall show in Lemma A.2. 
Both actions preserve the connection 0. 

Holomorphic sections of the line bundle cpk on T • T are given by thetafunctions. 
The following is treated in more detail in [6] (Sect. 5). A complex structure on T • T 
is defined by a modular parameter 7- in the upper half plane H,  which specifies a 
holomorphic structure on the torus S.  For u E t | C, we define 

( ../2 ( a + ~ ) )  (A.13) O.~,k('r, u) = ~ exp izckT- a + -~ + 2~rik u, 
aEA R 

Since we have lifted the action of W to ~ ,  W also acts on H~ We may thus 
also define the Weyl anti-invariant linear combination 

0#-,k---- Z det(w)0~(-~),k. (A.14) 
wEW 

The 0.~,k are theta functions for T x T with the symplectic structure (A.7) and the 
complex structure given by ~-. 
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One may define the level k physical Hilbert space ~ ( k )  as H ~  x T)  w ,  
the space of Weyl invariant holomorphic sections of ~ k .  This is a vector space 
depending on the complex structure ~- C H. The authors of [6] define a bundle over 
H whose fibre over ~- E H is ~(rk)('r), equipped with a projectively flat connection. 
The sections of the bundle over H parallel under this connection turn out to be ([6], 
5.44): 

Zb.y,k(7-, u) -- O~+~ u) (A.15) 
O~,h (r , u) 

Here, a Weyl invariant theta function is obtained as the quotient of two Weyl anti- 
invariant theta functions. The quantity r (up to a phase) appears as the character 
for the level k representation of the loop group LG labelled by % in the Weyl-Kac 
character formula. 

A basis for Jd'(~ k) is given by those level k theta functions CX,k corresponding to 
the highest weight integrable representations of the loop group LG at level k: i.e., by 
those labelled by weights ), E t such that for every positive root a, 

k > {A,a) > O. (A.16) 

In fact, it is sufficient to demand that A be in the fundamental Weyl chamber and that 
its inner product with the highest root a,~ be <_ k. 

For the torus, ffd (~) has an inner product in which the ~-y,k form an orthonormal 

basis: this also provides an identification of 3J(~ k) with its dual. The vector in if-el (~) 
corresponding to the solid torus under the axioms of topological field theory is lb0,k, 
the vector labelled by weight O. The other ~x,k correspond to the solid torus with a 
longitudinal Wilson line in the representation )~. 

A.4. Liftings to the Prequantum Line Bundle 

This subsection proves the following technical lemma: 

Lemma A.2. For a suitable choice of the theta-characteristic e, the lift f u  of f g  :T  x 
T ~ T x T corresponding to U E SL(2, Z) given by (5.12) and the lift o f w  E W 
given in Sect. A.3 are equivariant with respect to the action of the lattice A on the line 
bundle ,~ -~ T x T, which is defined in (A.9). 

Pro@ Write V for the linear maps on t | t corresponding to U c SL(2, Z) and 
w ~ W. The equivariance condition is characterized by the following equation on 
S = A x C :  

( V A  + V),, e),(A)v) = (VA  + V,~, ev(~,)(VA)v). 

Now from (A.9) we have 
ev(),)(VA) e(VA) 

e),(A) ~(A) ' 

so we need ~(VA) = ~C~). Actually we need only check this for A in some basis of 
lattice vectors. 

We fix the coroot basis {ha} of A R (see Sect. A.1) and correspondingly a basis 
{h ~ h (2)~, of A A R A R. a ~ j = �9 We define the theta-characteristic by 

e(h(~ )) = 1. (A.17) 
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Then for U c SL(2, Z), Uh~ ) = mh~ ) + nh~ ) for some m, n E Z; because ha does 
not mix with the other coroots h~,/3 r c~ under U and because (ha, ha) E 2Z, we 
have ~(i) e(U,~ ) = 1. 

Similarly for w E W, wh~ ) = ~ r ~ p h ~ :  the two summands h and h in ~O ~ do 

not mix. So since co pairs t1 with t2, again e(wh~ )) = 1. Hence the Definition (5.12) 
does indeed give a A-equivariant lift to 2~. 

Remark A.3: Theta-Characteristics. The choice of a theta characteristic for a bundle 
Y on T x T is the specification of wl ( S )  E H I(T x T, Z2). We know that (T x T ) / W  
is simply connected, so bundles with different choices of theta-characteristic on T x T 
descend to isomorphic bundles on (T x T) /W,  and the choice of theta-characteristic is 
irrelevant for our purposes. For convenience in specifying the lift of SL(2, Z) to Y ,  
we make the particular choice (A. 17) for the theta characteristic. A different choice 
would force us to choose a different lift in order that the lift be equivariant with 
respect to the A action. 

The theta characteristic we have chosen is obviously identically 1 in the SU(2) 
case. [] 

A.5. Alcoves 

Suppose G is a simply laced Lie group, i.e., all the roots have the same length. 
1. The affine Weyl group Waff is the semidirect product of the ordinary Weyl group 
W and the translations given by the coroot lattice A •. It has an obvious action on L 
2. An alcove is a fundamental domain of Wall. One may define a distinguished alcove, 
the fundamental alcove Co in t, by 

Co = {z E FWC I (z, am) _< 1),  (A.18) 

where c~m is the highest root and FWC the fundamental Weyl chamber. 
3. A basic cell of A R thus contains ]W I alcoves. Hence also a basic cell of A w 
contains IwI vol(AW)/v~ alcoves. 
4. By extension, we may define k-alcoves as fundamental domains of the action of 
the semidirect product W~kA R. The set of weights indexing the level k integrable 
representations of the loop group (A.16) are then the weights in the fundamental 
k -alcove 

Co(k) = {z E FWC] (z, C~m) _< k}. (1.19) 

5. Using the formula (A.1) for h, it follows that 

(am, 0) = h - 1. (A.20) 

Thus translating the set of weights in the fundamental k-alcove by ~ transforms them 
into the set of weights in the interior of the fundamental (k + k)-alcove, 
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