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Introduction

In this paper we give detailed proofs of the theorems announced in' [1]. These
theorems concern, first of all, an exact sequence, =(K), where K is a (connected)

1 Numbers in square brackets refer to the list of references at the end of the paper.
The two papers in [2] will be referred to as CH I and CH II.
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52 J. H. C. WHITEHEAD

complex.” The sequence =(K) is the same as = in §1 below if
Cor = 7rﬂ+l(Kﬂ+1> K")a A, = 7 (K") (n 2 2),

B, j are the (homotopy) boundary and injection operators and C; = JA:, Cp =
An = 0if n < 2. It is shown to be a homotopy invariant and a fortiors a topo-
logical invariant of K.

Various realizability theorems are proved, which show that, if =(K) = 1
and dim K < 4, the part of Z(K) which we call Z,(K) is an algebraic equivalent
of the homotopy type of K. Thus =(K) may be used to replace the more compli-
cated cohomology ring, R(K), which was defined in [3]. Moreover Z4(K), besides
being simpler, is in some other ways better than R(K). For Z4(K), unlike R(K),
is defined for infinite complexes. Besides this, Z4(K) includes m3(K) as a com-
ponent part and therefore yields more information than R(K) concerning
homotopy classes of maps K — K’. Thus the theory of Z,(K), unlike that of
R(K), includes the homotopy classification of maps S° — S?, where S" is an
n-sphere.’ But Z,(K) does not include w(K) and is incapable of distinguishing
between the two classes of maps S* — S°. A step towards including 74(K) in a
purely algebraic system would be to calculate m,(S] u S3), where S? n S2 is a
single point.

On replacing Hy(K) by H.(K)/im(K) we obtain a very simple algebraic expres-
sion for the 4-type, as defined in CH I, of a simply connected complex.*

Another set of theorems concerns a certain group, I'(4), which is constructed
from a given Abelian group A. We prove that I'(Il) ~ T} , Where II,, T; are
taken from Z(K). When K is a finite, simply connected complex we use I'(Il,)
to express the secondary modular boundary homomorphism,

b(m):Hy(m) — T3/mT;
in terms of the Pontrjagin square map
p:H (K, A) — H'(K, T(4)),

which is defined in Chapter IV. Our expression for b(m) shows that, if K is
given in a suitable form (e.g. as a simplicial complex, which is known to be
simply connected) Z,(K) can be calculated constructively.

In Chapter V we show how the domain of definition of =(K) can be extended
from the category® of CW-complexes to the category of all arcwise connected

2 All our complexes will be CW-complexes, as defined in CH 1. Here we define Z(K) for
complexes which need not be simply connected.

¢ Consider also the group of homotopy classes of maps, ¢:K — K, where K = §? u S*
and S? n §* is a single point, such that ¢ | S» is of degree +1 over S" for each n = 2, 3.
All such maps induce the identical automorphism of R(K). But the induced automorphism
of m3(K) varies with the Hopf invariant of ¢ | S% in S2.

* An algebraic expression for the 3-type of a complex, which is not simply connected, is
given in [9].

® The term category will mean the same as in [10]. We follow Eilenberg and MacLane in
recognizing categories in which the objects are “all’’ groups etc. Theyindicate various means
by which this can be justified.
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spaces. The method used is to realize the singular complex of a space, X, by a
CW-complex, K(X), which is seen to be of the same homotopy type as X in case
X is itself a CW-complex. We then define Z(X) as Z{K(X)}, if X is any arcwise
connected space.

In presenting these theorems we have, as far as possible, separated the purely
algebraic part of the theory from the geometrical applications. The result is that
Chapters I and II are purely algebraic. The geometrical applications are given
in Chapters III, IV and V. In the latter we refer to certain ‘“topological” and
“homotopy” categories, which we define as follows. The fopological category of
all (topological) spaces will mean the one in which the objects are all spaces and
the mappings are all maps of one space into another. The homotopy category of
all spaces will mean the cne in which the mappings are all homotopy classes of
maps of one space into another. Similarly we define the topological and homotopy
categories of all (geometrical) complexes of any specified kind. Here a complex
means a pair (X, K), where X is the space which is covered by a complex K.
A map of (X, K) into a complex (Y, L) means a triple (¢, K, L), where ¢ maps
X into Y, and a homotopy class of maps, (X, K) — (Y, L), has a similar meaning.
We shall denote (X, K) by the single letter K and ¢:K — L will stand for
@, K, L).

We shall introduce a number of standard operators, 8, j, k, I etc., which we shall
denote by the same letters, with or without subscripts, in whatever system they
occur. With the exception of the deformation operators, in §3 for example, a
subscript attached to an operator, as in 8,:C, — A._1, will always agree with
the one attached to the group which is being operated on. All our groups, except
groups of operators, will be additive and we shall denote zero homomorphisms,
C — 0, and identical automorphisms C — C, by 0 and 1.

CuartER 1. THE SEQUENCE 2(C, 4)
1. Definition of =(C, A)
Let (C, A) denote a sequence of arbitrary Abelian® groups, C. , 4, , together
with a sequence of homomorphisms,
LB abeBad

such that j,A, = 87'(0). In general 8,C, # jo-1(0). We assume that C, , A, are
defined for every n = 0, =1, £2, --- . Let

dn+l = jnﬂn+1:0n+1 - Cn .

Then duday1 = O, since Bjn = 0. Let Z, = d,,'(0). Then jA, C Z, , since dyjn =
Jn1Bnjn = 0, and dCnyq C jA,. . Let

Ta= j;l(o)) I, = An/ﬂ0n+1, H, = Zn/dC,‘.H

¢ It is just as easy to define = and to prove Theorem 1 if A, , C, are non-Abelian, pro-
vided BCn41 , dCy 41 are invariant sub-groups of A, , Z. .
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and let
(1.1) iniln — A, ka4, — 10, , l.:Z, — H,

be the identical map of I', and the natural homomorphisms of 4, , Z. . Notice
that the sequence

(1.2) A I AT N

is (internally)’ exact. Notice also that j.%7°(0) = juBrs1Cns1 = In (0). Therefore
a homomorphism, j,:II, — H, , is defined by jsks = lnjn -
Let z € Zn 1 . Then j,8,412 = 0, whence 8,12 € T, . Since
Bat1dni2 = Bnt1Jnt1Bntz =0

it follows that Bs11 | Zn+1 induces a homomorphism b,41: Hy4a — T's . Therefore a
sequence of homomorphisms,

= SRR N/ S LN | S N - AL LA
is defined by
(1.3) blz = Bz, i = ki, ik = .

We describe b as the secondary boundary operator. We shall sometimes write
z = 3(C, A).

TreOREM 1. The sequence = is exact.

It follows from (1.3) and the exactness of (1.2) that

iblz =iz =FkBz=0 (2 € Znya)
fi= ki =Ui=0
bjk = bl = Bj = 0.

Therefore ib = 0, jt = 0, b = 0.

Let ty = ky = 0, wherey ¢ T, . Theny = B¢, for some ¢ € Cp41 , since k210) =
BCr+1 . Moreover dc = jBc = jy = 0. Therefore ¢ € Z,41 , lc € Hy11 and we have
v = B¢ = blc ebHpyy -

Therefore i,(0) = b6Hni1 .
Let fka = lja = 0, where a € A, . Then ja = dc = jBc, for some ¢ € Cpy1 ,
since [;'(0) = dCp41 . Therefore a = y + Bc, where y € T, , and
ka = ky + kBc = ty e il .
Therefore {5 (0) = il .

Let blz = 8z = 0, where z € Z,, . Then z = ja, for some a ¢ A, , since §;'(0) =
JjA, . Therefore

Iz = lja = ika € ill, .
Therefore 5;'(0) = {II, and the theorem is proved.

7 I.e. the last homomorphism need not be onto nor the first an isomorphism into.



A CERTAIN EXACT SEQUENCE 55

2. The secondary modular boundary operator

Let m > 0 and assume that, for some particular value of =,

(1) (a) {mz =0 implies z=0, where zeZ,

(b) jAn—l = Zn—l-
Let
H"(m) = {dzl(mzﬂ—l)/dcﬂ-i-l}m )

where G» = G/mG if G is any additive Abelian group. We proceed to define
what we call the secondary modular boundary homomorphism

(2.2) Ba(m):Ho(m) = Tpotym = Tpea/mTp .

Let cx € H,(m) and let ¢ € C,, be any representative of cx. Then dc = mz =
mga, for some a € An—1 , by (2.1b). Therefore j(8c — ma) = 0, whence Sc — ma €
T,..If @’ € A,y is any other element such that mja’ = dc = mja it follows
from (2.1a) that j(a’ — a@) = 0. Therefore a’ = v + a, where v € I'n1, and
8c — ma' = (B¢ — ma) — my. Therefore the coset, (8¢ — Mma)m € T'n1,m , Which
contains B¢ — ma, is uniquely determined by c, where a € A, is an arbitrary
element such that mja = dc.

If ¢’ € C, is any other representative of cx, then ¢’ = ¢ + me: + dea, where
6160”,6266,,4.1,3‘]1(1 N

d¢’ = dc + dme; = jm(a + Bei).

Moreover B¢’ — m(a + Be) = Be — ma. Therefore a single-valued map (2.2),
which is obviously a homomorphism, is defined by

bo(m)ex = (Bc — ma)m ,

where ¢ € C, is any representative of ¢« and jma = dec.

As an alternative to (2.1a), let j: 4,1 — Cn_; havea right inverse,® w:Z,_;1 —
A,_; . Then j(8 — ud) = 0, whence (8 — ud)Cr C Ty . We define b(m):H,(m)
— Tp1.mbyb(m)exs = {(B — ud)c}m, wherec e d Y(mZn-1). The homomorphism
u is determined by j, modulo an arbitrary homomorphism 6:Z,—1 — Tna . If
dc = mz we have {8 — (u + 6) d} ¢ = (8 — ud)c — mbz. Therefore u andu + 6
determine the same homomorphism b(m), which is therefore determined uniquely
by the system (C, 4). If (2.1a) is also satisfied this definition of b(m) is equiv-
alent to the previous one.

3. Induced homomorphisms of 2

Let =’ be a sequence of the same sort as Z. By a homomorphism (¢somorphism),

F=(hgD:Z—2

® This is always the case if Ca—1 , and hence jAs-1 (See p. 50 of [18]) is free Abelian.
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we mean a family of homomorphisms (isomorphisms)°
bn+l:Hu+1_’H:t+l ] gnzrn'—’ I‘:l ’ fn:nn'—)n:t ]

such that

@3.1) bh =gb, ig=fi, jf = bj,

where b:H,,; — I'y etc. are the homomorphisms in 2’.
Let (C", A’) be a system of the same sort as (C, A). Then a homomorphism
(isomorphism)

3.2) (B, f):(C, 4) — (C', A"

will mean a family of homomorphisms (isomorphisms),
ha41:Cnsa — Cra, fatAn— As

such that

3.3) Bh =18, i =h.

Notice that dh = jBh = jf8 = hj8 = hd in consequence of (3.3). Also fT, C T,
since jfi = hji = 0, where 7:T, — A, is the identical map.

Let (3.2) be a given homomorphism and let 3/ = 2(C’, A'). Then kfg8 =
kBh = 0, Ihd = Idh = 0. Therefore k, f induce homomorphisms

b:H,.+1—>H,'.+1, g:Fn—»F;, - fiI, — 10, ,
according to the rules
(3.4) bz = lh, g = fi, ft = kf (2 € Zna).
It follows from (1.3), (3.3) and (3.4) that

bhlz = blhz = Bhz = fB2
= g8z = gblz,
ig = kig = kfi = fki = fi
itk = ikf =Uf = 1hj =l
= bik.

Therefore (h, g, f):Z — Z’ is a homomorphism. We call it the homomorphism
tnduced by (h, f).

By a deformation operator, £:C — C’, we mean a family of arbitrary homo-
morphisms, £,,,:C, — C:..H . We describe two homomorphisms,

(1), &% f*):(C, 4) — (C", 4"),

as homotopic, and write (h, f) ~ (h*, f*), if, and only if, there is a deformation
operator, £:C — (’, such that

? An isomorphism, without qualification, will always mean an isomorphism onto.
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h: - hn = dn " ndn
3.5) { pibns1 + &

f: - fn = ﬁn-{-lEn-{-ljn .

Since ld = 0, i = 0, k8 = 0 it follows from (3.5) that lh*z = lhe, f* = fi,
kf* = kf. Therefore (h, f) and (h* f*) induce the same homomorphism
3(C, 4) — Z(C, A).

Let (C, A) and (C’, 4’) both satisfy (2.1). Let c e d;'(mZ,_,) and let dc = ma.
Let Z._, C Cu_y and H,(m) be defined in the same way as Z,_; and H,(m).
Then hZ,—1 < Z._y, since dh = hd, and dhc = hdc = mhz. Therefore h, in-
duces a homomorphism

b(m): Ha(m) — Hn(m),

according to the rule h(m)cx = (hc)x, where cx and (hc)x are the elements of
H,(m) and H »(m), which correspond to ¢ and hc. Also g induces a homomorphism

Q(m) : Fn—l,m g I‘:t—l,m

such that g(m)ym = (@v)m , Where vm , (@)= are the cosets which contain v, gy.
By the definition of b(m) we have b(m)cs = (8¢ — ma). wherea ¢ A, is such
that dc = mja. Then dhc = hdc = mhja = mjfa and

b(m)(he)x = (Bhc — mfa)m

— {f(Bc — ma)}m
= {g(Bc — ma)}n
= g(m)b(m)cx .
Therefore b(m) is natural in the sense that
3.6) b(m)h(m) = g(m)b(m).
Obviously (h, f) and (h*, f*) induce the same homomorphisms f(m), a(m) if

(h, f) >~ (h*, 1*). ) ,

Let j:An1 — Cp_1and j:Aa_y — Ca_; have right inverses, « and v/, let jAa1
= Z,._, and let b(m) be defined by the second method in §2. Since j(fu — w'h)
= hju — h = 0it follows that fu — w'h = ¢:Z, 1 — Ts_i. Let dc = mz, where
¢ eC,.Then f(8 — ud)ec = (8 —u'd)hc — mez, whence g(m)b(m) = b(m)h(m).

4. Combinatorial realizability

By a composite chain system we shall mean a system (C, A), of the kind intro-
duced in §1, such that

@) C,r=A,=01ifr <2
(b) each C, is a free Abelian group.
Let (C, A) be a composite chain system. Then Z(C, A) terminates with Hs — 0,



58 J. H. C. WHITEHEAD

followed by a series of homomorphisms, 0 — 0, which we discard. Let
TR TS VLN GUUR O R

be an exact sequence in which the groups are Abelian, but otherwise arbitrary.
A composite chain system (C, A) will be called a combinatorial realization of
X' if, and only if, £(C, 4) ~ X'.

TaEOREM 2. X' has a combinatorial realization.

Assume that we have constructed a composite chain system (C, A), and
homomorphisms

ViiiiZnpn— Hopry,  guila T, khid, —I0,
foreveryn = 1,2, - -, such that
wn @ {bl,.ﬂl’mz = Wbet, b = z“ inkn = Luja
(0) UntsZnis = Hoia,  dCosa = 120),  BCais € k70),

where, as usual, z ¢ Z,,, and %,:T, — A, is the identical map. Then it follows
from (4.1b) that isomorphisms and homomorphisms,

bn+1:Hn+1%Hi.+1, fn:Hn-"H:t (n = L, 2, "')7

are defined by hl = I', fk = I/, where Hn41, I, are in = = =(C, A). It follows
from (4.1a) and (1.3) that

Bhlz = bl'z = g8z = gble
ig=Fki{ =fki = ft
ifk = ik' = Uj = plj = bik.
Therefore by = gb etc. and (b, g, f):Z — 3’ is a homomorphism. Since b1 , ga
are isomorphisms (onto) for every n, so if f., by (7.5) on p. 435 of [17]. There-
fore (C, A) is a combinatorial realization of X’.

We now construct (C, 4) inductively, starting with C; = 4o = 0. Let r = 1
and assume that we have constructed the groups and homomorphisms,

e.ladio b .. 84,

likewise I541 , ko, SO as to satisfy (4.1) forn = 0,:--,r — 1. Let I, B, be
any groups which are isomorphic to T'; , 8;2(0) and let 6T, =~ T, ,u: 8,2(0) ~B,
be any isomorphisms. We define A, and j, by™

A4, = Pr+Br, ]r(’Y+b) =y (‘YEP,,bEB,-).

Then T, = 57'(0) and j, A, = 8;%(0). Since C, is a free Abelian group so are
87(0) and B, . Let {b\} be a set of free generators of B, . It follows from (4.1a),

0 If X, Y are any (additive) groups X + Y will always denote their direct sum. 1t is
always to be assumed that z ¢ X, y ¢ Y are identified with (z,0), (0,y) ¢ X + Y.
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w,ith no=r- 1, that blrjr = gr1Bgr = 0. Therefore l:j,h = {x, for some
zx ¢ II, by the exactness of Z'. We define k14, — 10, by

4.2) kr(y + b)) = gy + 2.
Then j,k/y = 0 = lijry and jksby = lLijbx . Also ki, = g, . Therefore
(4.3) ter = kisr,  dkr = L.

Let {1} be a set of elements which generate H ++1. Let Z,,; be a free Abelian
group with a set of free generators, {2}, in a (1-1) correspondence, 2z, — Y,
with {9). Let I/41:Z,41 — Hi11 be defined by ly412, = %, . Then l1Z, 1 = Hypa .
Let P, be any group such that v:Pry & ,7}0) < Z, and let Cryy =
Zrs1 + Py . Since C, is free Abelian so are 1,7X(0), P, and hence C,i1. Let
{p,} be a set of free generators of P, . Since vPry = 1,72(0) it follows from
(4.1a), with n = r — 1, that

Bpe = Graabilivp, = 0.

Since j,{l, = 6710) it f,ollows that vp, = j.a, for some a, ¢ A, and from (4.3)
th%t i,k,a’., = l,j.a, = Lwp, = 0. Therefore there is a v+ € T, such that kia, =
tve = kyv,, where v, = g:l'y;. Also it follows from (4.3) and the exactness

of =’ that
vy by paleiaz = i, 4alraz = 0.
We define 8,4, by
Besi(z + Po) = G brpaliriz + (@0 — 7o)

Then dra(z + Do) = jBr1(z + Do) = jrle = VD5, whence dr41(0) = Z,41 and
Ar1Cria = 1,71(0). Also kBryr = O and gBra2 = Brialy412. Therefore (4.1) are
satisfied when n = r and the induction is complete.

ApDENDUM. The combinatorial realization, (C, A), of Z' may be constructed
so that
(8) 1n:Zn~ Hif H, is free Abelian.

(b) The rank of C is finite if both H wy, H " _1 have finite sets of generators.

To prove this we assume, as part of the inductive hypothesis, that these
conditions are satisfied for n < r and also that the rank of Z, is finite if H W is
finitely generated. We insist that the generators {y.} of Hy4 shall be free if
H,,, is free Abelian, in which case ly1:Zea ~ H ++1, and finite in number if
H:+1 is finitely generated. In the latter case the rank of Z,,, is finite. If H . ,
and hence Z,, are finitely generated, so are 1,72(0) and P, . Therefore the
rank of C,4 is finite if both H,.., H, are finitely generated. This proves the
addendum.

Let = = 2(C, 4), 2’ = Z(C", A"), where (C, A) and (¢, A") are composite
chain systems. If a given homomorphism F:Z — 2’ is the one induced by a ho-
momorphism (&, f):(C, A) — (C’, A’) weshall call (h, f) a combinatorial realiza-
tion of F.
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THEOREM 3. Any homomorphism, F:Z — 2’ has a combinatorial realization
(€, 4) - (C, A).
Let F = (b, g, ). As in the proof of Theorem 2 we have
Cn+1=Zn+1+Pn+1y An= Pn+Bn;

where Poiy & dCnt1, Bn & jA, . Let {b}, {2}, {p.} be sets of free generators
Of Bu ) ,Zn+1 ) Pn+1 .
Let 2, € [iabnsalngaz, © Z :.+1 and let h%y1:Z, 1 — Z :.+1 be defined by k%, = z,:
for every n = 1. Then
(4.4) In = bl
Let ax e k7 fakabr © A . Then it follows from (1.3), (3.1) and (4.4), since
JA. C Z,, that
ljox = ikay = ifkby = bikby
= bljbr = h%by .
Therefore ja = h%by + dex , for some ¢y € Chyy. Let f:4, — A% be defined by
fi=1i  fbr=al — Bes.
Then kfi = kig = ig = fi = fki and kfby, = kax = fkbs . Therefore
(4.5) bl=1UW", dg=7fi, fk=kf
Since kf = fk and k8 = 0 we have kf8p, = fkBp, = 0. Therefore fBps = Bes ,
for some ¢; € Cpyr. Let h:Cppy — C w41 be defined by hz = h%2, hp, = c, . Then
Bhp, = fBp, . Since Bz = blz it follows from (4.5) and (4.4) that
fBz = fblz = gblz = bhlz
= blhz = fBhz.
Therefore f8 = Bh. Also jfi = jig = 0 = hgi, jfbr = ja;( — dex = hjby . There-

fore jf = hj. Thus (k, f) is a homomorphism. Since hz = h’z it follows from
(4.5) that (h, f) is a combinatorial realization of (, g, f) and the proof is complete.

CuAPTER II. THE GrOUP I'(4)

5. Definition of I'(4)

Let A be any additive, Abelian group. We shall define I'(4), additively, by
means of symbolic generators and relations. The symbolic generators shall be
the elements of A. We emphasize the fact that an element a ¢ A is not an ele-
ment of T'(4). The elements of I'(4) are equivalence classes of words, written
as sums, in the pairs (+, @), (—, a) for every @ ¢ A. We write (&, a) as +w(a)
and, frequently, +w(a) as w(a). We shall use the symbol = to denote equiva-
lence between words and = to indicate that two symbols, in any context, stand
for the same thing. In defining I'(4), or any other group, by this means we
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always assume that the “trivial relations”, * — = = 0, are satisfied as a matter
of course.
The relations for T'(4) are

() |w(—a) = w(a)
5.1) b)sw@+b+c¢c) —wbh+c) —w+ a) — wla + b)
+ w(a) + wb) + wl) =0,

for all elements a, b, ¢ € A. It follows from (5.1b), with @ = b = ¢ = 0, that

(5.2) w(0) = 0.
Hence it follows from (5.1b), with b = 0, a + ¢ = d, that
(5.3) w(d) — w(c) — w(d) + w(c) = 0.

Therefore T'(A) is Abelian. It follows from (5.1a), (6.2) and (5.1b), with ¢ =
b = —c, that
w(a) — w(2a) + 3w(a) = 0,
whence w(2a) = 4w(a). Let
(5.4) Wi(a, b) = w(a + b) — w(a) — w(b).
Then W(a, b) = W (b, a) since A and T(4) are Abelian. Since w(2a) = 4w(a)
we have
(5.5) W(a, a) = 2w(a).

Given that addition is commutative, it is easily verified that (5.1b) is equiva-
lent to

(5.6) W(a,b+ ¢) = W(a, b) + W(a, c).

It follows from (5.4), (5.6) and induction on n that

(57) W(a1 + -+ an) = 2 w(ai) + <Z W(ai ) ai)'
1 1<)

On taking a; = --- = a, it follows from (5.5) and (5.7) that

5.8) wna) = n'w(a).

Let v(a) € T(A) be the element which corresponds to w(a) and [a, b] € I'(4)
the element corresponding to W(a, b). Then

v(@ + b) = v(a) + v(b) + [a, 1],

in consequence of (5.4). Therefore —[a, b] is a factor set which measures the
error made in supposing the map v:4A — I'(4) to be a homomorphism. We shall
deal with the generators (i.e., generating elements) y(a) in preference to the
symbols w(a).

Let g be a map" of the set of generators v(a), indexed to A by the map

11 We admit the possibility that gy(a) = gv(b) if @ = b, even if v(a) = v(b). But the map
gv:A — G shall be single-valued.
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a — v(a), into an (additive) group G. We shall say that g is consistent with a
relation

ew(a) + -+ + eaw(a,) =0 (e; = +1)
if, and only if,
agy(m) + -+ + egy(@) = 0.

If g is consistent with all the relations (5.1) it determines a homomorphism
r) —G.

We give some examples of groups I'(4). First let A be free Abelian and let
{a:} be a set of free generators of A, indexed in (1-1) fashion to a set {z}.

(A) T'(A) is free Abelian and is freely generated by the set of elements v(a;),

laj, az), for every i € {i} and every pair j, k € {1} such that® j < k.

Let™ be a free Abelian group, which is freely generated by a set of elements,
{g:, gix}, indexed in (1-1) fashion to the union of {7} and the totality of pairs
(4, k) such that j < k. Let ¢:G — T'(4A) be the homomorphism which is defined
by ¢g9: = v(a:), ¢gix = [a;, ax). Let a(x) = Z x.,a; where {z;} is a set of in-
tegers, almost all* of which are zero. Let

g(@) = > xig: + Z:,kxmgjk-
+ 7
Then g(—2z) = g(x), where —z = {—z;}. Since
(i + yo)* — 7 — ¥ = 2z
(@ + y)@e + yu) — T — Y = T + TY;
it follows that

(59) g@ + y) — g&) — gly) = 2; ryg: + JZ;k(x:yk + Ty )G

where y = {y:}, ¢ + y = {x; + y:}. Since this is bilinear in z, ¥ and since
g(—z) = g(z) it follows that the correspondence y{a(x)} — g(z) is consistent
with (5.1a) and with (5.6), and hence with (5.1b). Therefore it determines a
homomorphism ¢’':T'(4) — G. Obviously ¢'y(a;) = g¢; and it follows from (5.4)
and (5.9) that ¢’[a;, ar] = g if 7 < k. Therefore ¢'¢p = 1. Also it follows from
(56.7) and (5.8), with a; in (5.7) replaced by z.a;, that ¢¢’ = 1. Therefore
¢:G =~ T'(4), which proves the assertion.
(B) Let A be cyclic of (finite) order m and let a;, be a generator of A. Then T'(A)
1s cyclic of order m or 2m, according as m is odd or even, and is generated
by v(a).

This is a corollary of Theorem 5 below.

12 We postulate a simple ordering of the set {4} (j = kand k € jif j < k) as a conveni-
ent method of indicating a summation over all unordered pairs j, k (5 # k). It is to be as-
sumed, when the context requires it, that any such store of indices is simply ordered.

18 This proof of (A) and its use in simplifying an earlier proof of Theorem 7 below were
suggested by M. G. Barratt.

14 By almost all we mean all but a finite number.
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(C) If every element in A is of finite order and also divisible by its order,
then T(4) = 0.
Let a € A be of order m and let a = mb. Then

2v(a) = [a, a] = [a, mb] = [ma, b] = 0.

Therefore 2y(z) = 0 for every z ¢ A. In particular 2y(b) = 0. If m is even it
follows that

y(a) = v(mb) = m*(b) = 0.

Since m*(a) = y(ma) = 0 and 2v(a) = O we also have y(a) = 0 if m is odd.
This proves (C).

It follows from (C) that I'(R;) = 0 if R, is the group of rationals, mod. 1.

(D) If A is the additive group of rationals, then T(A) =~ A.

First let A be the additive group of any commutative ring, R. Then a homo-
morphism, ¢g:T'(4) — A4, is defined by gy(a) = a’. Now let R be the ring of
rationals. Then it may be verified that a homomorphism, f:A — T'(4), is de-
fined by" f(p/q) = pgv(1/q), where p, q are any integers, and that fg = 1, gf = 1.

Let A be a free Abelian group and let {a;} be a set of free generators of A.
Then the following expression for I'(4) is suggested by [19]. Let I, be the group
of integers and let A* be the group of homomorphisms a*:4 — I, , which are
restricted by the condition that a*a; = 0 for almost all values of <. Then A* is
a free Abelian group, which is freely generated by {ar}, where afa; = 1 or 0
according as j = ¢ ory # 7. We describe a homomorphism' f:A* — A as admzs-
sible if, and only if, fa] = 0 for almost all values of ¢ and as symmetric if, and
only if,

(5.10) a*fb* = b¥fa*,
for every pair a*, b* e A*. Let
(5.11) faf = Zifia; = Ziaifal)a; .

Then (5.10) is equivalent to the condition fi; = fj: .
Let S be the additive group of all admissible, symmetric homomorphisms,
fiA* —> A, and let A: S — T'(4) be given by

(5.12) N = 2 (affad)ess,

157

where e;; = v(a:), e;; = [a;, a;] if ¢ < j. It follows from (A) and (5.11) that
A7} (0) = 0. An arbitrary element a e T'(4) is given by

a = Z Vii€ij

=%}

for integral values of v;;, which are zero for almost all values of 7, j. Therefore
a = N, where f is given by (5.11), with f;; = v;; if © < j. Therefore

(5.13) NS = T(4).
15 Since pgk?*y(1/kq) = pgy(1/q) we need not insist that (p, ¢) = 1.
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6. Induced homomorphisms of I'(4)

Let f:A — A’ be a homomorphism of A into an additive Abelian group A’'.
Let T'(A’) be defined in the same way as I'(A) and let y(a’) e T'(4’) be defined
in the same way as y(a). Then the correspondence v(a) — v(fa) obviously deter-
mines a homomorphism

g:T(4) > T'(4").
We describe g as the homomorphism induced by f. It is given by gy = ~f. Ob-
viously
(6.1) gla, b] = [fa, fb] (a, b e 4).
It is also obvious that ¢T'(4) = I'(A4’) if fA = A’ and that g = 1if A =4’
and f = 1. Let ¢’:T(4") — T'(4") be induced by f': A’ — A”". Then it is obvious
that ¢’g:T'(4) — T'(A”) is induced by f'f:4 — A’. Hence it follows that
g:T(4) =~ T(4")
iff:A~A.
Let A admit a (multiplicitive) group, W, as a group of operators. Then so
does I'(4), according to the rule
(6.2) wy(a) = v(wa) (weW).

That is to say, w:T'(4) — T'(4) is the automorphism induced by w:4 — A.
Let f:A — A’ be an operator homomorphism into a group, 4’, which also admits
W as a group of operators. Then it is easily verified that the induced homo-
morphism, g:T'(4) — T'(4’), is also an operator homomorphism.

On taking A to be cyclic infinite and A’ = A we see that a given automorphism,
r(4) — r(4) (e.g. y(a) = —~v(a)), is not necessarily induced by any endo-
morphism 4 — A; also that distinct automorphisms of A (e.g. a — =+a) may
induce the same automorphism of T'(4).

Let g:T'(A) — I'(A’) be induced by f:4 — A’. Let {a;} C A be a set of genera-
tors of A and let {b\} C f7'(0) be a set of elements which generate 170). Then

() = gla:, b] = 0.
THEOREM 4. Let fA = A’. Then g~ (0) is generated™ by the elements
(6.3) 7(b)\)7 [ai' ) b’\])

for all values of \, 1.
Let Ty C ¢ '(0) be the sub-group generated by the elements (6.3). I say
that, if a € 4, b € £'(0), then

(6.4) v(a + b) — y(a) €Ty .
Forletb = by, + --- + by, , Then it follows from (5.7) that
10) = 2 aky) + X, bl

16 Cf. Theorem 6 in [20].
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Each by, is a sum of generators in the set {a;}. Therefore [by, , b,] is a sum of
elements of the form [a:, by,]. Therefore y(b) ¢ To. Let @ = @i, + -+ + @i
Then

[a) b] = ZZ[ai,, b}\,] € I‘o.
Therefore

y(@+b) —v(@) = [a,b] +v(b) €To,

which proves (6.4).
Let T* = T'(4)/To and let o* ¢ T'* be the coset containing a given element
o € T(4). Since Ty C g *(0) it follows that g induces a homomorphism,

gs:T* — T(4),
which is given by
(6.5) g*v(a)* = gv(a) = v(fa).

Then ¢* ' (0) = ¢~ '(0)/T, and we have to prove that g*'(0) = 0.
Let u(a’) ef'a’ C A be a “representative” of @', for each a’ ¢ A’. Then

flu(fa) — a} =0,
whence
u(fa) = a + b(a) ' (@ ed),
where b(a) € f'(0). Therefore it follows from (6.4) that
(6.6) y{u(fa)}* = v(a)*.
Similarly
67 {v{u(-,a’)}* = “/{,—u(a’)}* = vl{u(a’)}* ,
y{uai + -+ +a)}* =vlu(@) + - +ul@)}*

Let ¢’: {v(a")} — T'* be the correspondence which is given by
(6.8) gv@) = viu@)}*

Then it follows from (6.7) that g’ is consistent with the relations (5.1), for T'(4").
Therefore it determines a homomorphism ¢’:T'(4’) — T'*. It follows from (6.5),
(6.8) and (6.6) that

dg*v(@)* = gv(fa) = v{u(fa)}* = v(@)*.
Therefore g’g* = 1, whence ¢*(0) = 0 and the theorem is proved.
Let A’ = A/B, where B C A is generated by {h}, and let g:T(4) — I'(4")
be induced by the natural homomorphism 4 — A’. Let A be a free Abelian

group, which is freely generated by {a:}. Then A’ is defined by {a.}, treated as
symbolic generators, and the relations b = 0, when b, is expressed as a sum of
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the generators a; and their negatives. It follows from (4) in §5 and from Theorem
4 that T* = TI'(4)/g'(0) is similarly defined by the symbolic generators y(a.),
[a;, ax](j < k) and the relations

(6.9) v =0, [a:;,b] =0,

when v(by), [a:, b] are expressed in terms of 4v(a,), =+[a;, ax]. Let us identify
each element o* ¢ T'* with g*a* € I'(4’), where g*: I™* ~ T'(A4’) is given by (6.5)
(obviously g* is onto). Then Theorem 4 can be restated in the form :

THEOREM 5. Let A’ be defined by symbolic generators {a.} and relations {br = 0}.
Then T(A") s defined by the set of symbolic generators (as), laj, a7 < k) and
the relations (6.9).

Let A be generated by a: , subject to the single relation ma;, = 0, where m > 0.
Since y(ma;) = m*y(a;) and [a;, may] = mla;, a;] = 2my(ay) it follows from
Theorem 5 that I'(4) is generated by v(a,), subject to the relations my(ay) = 0,
2my(a:) = 0, which reduce to the single relation (m®, 2m)y(a1) = 0. This proves
(B) in §5 since (m’, 2m) = m or 2m according as m is odd or even.

Theorem 4 is not necessarily true if f is into, but not onto A’. For example,
let A’ be cyclic of order m’, where m is odd. Let a; be a generator of A’ and let
A C A’ be the sub-group generated by ma; . Then 4 and likewise T'(4) are of
order m. Also T'(4’) is of order m’. Let ¢g:T'(4) — I'(A’) be the homomorphism
induced by the identical map f:4 — A’. Since

v(may) = m*(ar) = 0,

in1 consequence of the relations for I'(4’), it follows that ¢gT'(4) = 0, though
f7(@©0) =0.

As another example let A’ be the group of rationals mod. 1 and let A C A’
by the cyclic sub-group, which is generated by 1/m (m > 1). Let g:T(A4)—>14")
be induced by the identical map 4 — A’. In this case I'(4’) = 0, according to
(C) in §5. Therefore Theorem 4 may break down even if g, but not f, is onto.

THEOREM 6. Let A’ be such that ' T'(4'/Aq) 5 0, for each proper sub-group
Ay C A'. Then a homomorphism, f:A — A’, is onto A’ if the induced homomorph-
wsm, g:T'(A) — T'(4’), is onto T'(4").

Let gT'(4) = I'(4’) and let Ay = f4. Then

f=1fo:d — A,

where fo:4 — A is defined by foa = fa(a € A) and i:4, — A’ is the identical
map. Therefore

g =7g:T(4) > T(4"),
where ¢o:T(4) — I‘(Aé), j:I‘(Aé) — T'(A4’) are induced by f, , <. Since g is onto
so is j. Let ¢":T'(4") — I'(4’/As) be the homomorphism induced by the natural
map f':A’ — A’/A,. Then f is onto and so therefore are ¢’ and

9517 (4o) — T(4'/4).

!7 In §8 below we shall see that this condition is always satisfied if 4’ is finitely generated.
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But ¢'7 is induced by flitAg — A’ /Aq . Since fiAs = 0 it follows, obviously,
that ¢’ jI‘(Aé) = 0. Therefore T'(A’ /Aé) = 0 and it follows from the condition
on A’ that Ag = A’. This proves the theorem.

7. Relation to Tensor products

Let A be a weak direct sum,”® 2,4, , where {A,} is any set of additive Abelian
groups. Let T' be the weak direct sum

r=2Jm»+§AwA”
g<lr

where A, © A, is the tensor product of 4, and A, . Since [a,, a,] ¢ T'(4) is
bilinear in a, € 4, and a, € 4, it follows that a homomorphism, f:T' — T'(4),
is defined by the correspondences

(7.1) v(a,) — v'(ay), aq - ar — lag , al,

where v(a,) € I'(4,) and v'(a) € T'(4) means the same as y(a) in §5.

TaeEorEM 7. f:T = T'(4).

Let A, be defined by a set of symbolic generators, a,:, and relations b, = 0.
We assume that each a,; is distinct from each a,; if p # g. Then 4 is defined by
the combined set of generators {a,:} and the combined set of relations {b, = 0}.
Therefore it follows from Theorem 5 that I'(4) is defined by the union,

{85, Sarl,

of all the generators and all the relations in the sets

,.me, [api , api) G <)
C W) =0, g, bpl =0
;o |laes, anl (@<n
- {[aq,-, b,,] = 0, [ba , an] = 0.

But T'(4,) is defined by S, and 4, o A, by ¥ 8., where S, , S, are obtained
from S, , S., by writing v instead of 7’ in S}, and z-y instead of [z, y] through-
out S;, (x = @qj Or bgu, ¥ = @ or by,). Therefore T is defined by the combined
system {S,, Si} and (7.1) transforms this system into {S%, S.r}. This proves
the theorem.

8. “A” finitely generated

Let A have a finite number of generators. Then it is a direct sum
(8.1) A=X+ - +X+YV1+--+7Y,

where X, is of finite order, o, and Y, is cyclic infinite. Moreover we may take

18 An element in A is a set of elements {a,}, with a, ¢ A, , almost all of which are zero.
If a, = 0 except whenp = p1, - , Do We write {ap} = ap, + <+ + ap, .
19 This follows from two successive applications of Theorem 6 in [20].
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91, -+, o¢ to be the invariant factors of 4, so that o1 > 1, o | oa41 . Let this
be so and let p;, --- , p, be those among o, -+ , o, which are distinct. That
is to say

OTiyvtl = *°° = Ok, = A # A1 (kl =0, kp+1 = t))

forA =1, .-+, p. Let na = kay1 — kx . Then we denote (61, *-+, a¢) by

(82) (Pl ) nl)’ ) (pP ) n?)‘
Let {45} = {X\, Y.}, in §7, and let T be identified with I'(4) by means of
the isomorphism f in Theorem 7. Then it is clear that the rank of T'(4) is
r(r + 1)/2.

Let px be odd. Then it also follows that px occurs s\ times in I'(4), where s, is
calculated as follows Let

No=m+ - +np+r (Np4a = 1)
My = m(mn + 2Nnyr + 1)/2.
Then p) occurs na(na -+ 1)/2 times in the summand
}; (X)) + 2 Xio X, (ky < 14,7 < kag)

i<J
and 7Ny times in

ZZXi°XM+ZZXt‘°'Ya;
i on T a

wherep = kxyu + 1, -+ ,t,a =1, --- , r. Therefore s, = M, .

In general let s be odd and ps even, where 1 < h < p + land b = 1,
h = p + 1 have the obvious meanings. If ¢; = p, and A\ = h then I'(X;) is of
order 2p\ . Hence it follows that py occurs My — n, times in r(4)if A\ = horif
A > h and pn > 2p—1 . In the latter case 2py_; occurs ny_; times. If n = 2;m4
and A > h then p\ occurs M, — mn + na_; times. Also 2p, occurs n, times if
h = p. Therefore the invariant factors of I'(4), written in the form (8.2), are

(8.3) (pr, 81), -+, (b, Sp),
together with
(8.4) (2pu , M)
for every u such that A < u < p and either 2p, < p,11 or 4 = p, where
(@) (s = M, fl1sl<h
(8.5) 0 e
() |sn = My — m if A > h o> 204

(d) LS)\ = M\ — m\ + na ifA > h, n = 2p.
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Notice that I'(4) cannot be an arbitrary group. For example its rank must
be a binomial coefficient or zero. Suppose however that a given group, T, is
known to be of the form I'(4), where A is finitely generated. Suppose further
that the rank and invariant factors of I' are known.

TuEOREM 8. The rank and invariant factors of A are uniquely determined by
those of T.

Let 7’ be the rank of I'. Then the rank, r, of A is the (unique) non-negative
solution of the quadratic equation

24z —27 =0.
Let the invariant factors of T, written in the form (8.2) be
(P{ ) sll.)’ ) (pt; ’ 8;)

We proceed to determme the sequence (8.2) for A. If pq is odd it follows from
(8.3) that p, = p, . Since

M, = ny(n, + 2r + 1)/2
it follows from (8.5a) that n, is the non-negative root of the quadratic
2+ 2r+ Dz — 2s, = 0.

If p, is even then p, = pq/2 n, = 8, , according to (8.4), with u = p.

Assume that (o, m) -+, (pp, 7p) have been uniquely determined, where”
A=< p,andletp = p; If j = 1 the sequence (8.2) is detennmed and we number
(ou , ™) S0 that A = 1. If either j = 2 orif j > 2 and pj_s is odd it follows from
(8.3), (8.4) and (8.5a, b) that ;1 = p,_1 and that na_; is the non-negative root of

x+ax—2s,-_1=0,

where @ = 2N, =+ 1 according as p;_ is odd or even.
. ! . .
If ; > 2 and p;— is even we consider the cases

a) s; = My — m
b)s;--:aé My — m.

In case (a) it follows from (8.4) and (8.5¢) that ;1 = p;-_l/2, Mg = s;_l.
In case (b) it follows from (8.5d) that

’ ’
a1 = pi/2, M1 = 8; +m — M.

Therefore pr—1, a1 are uniquely determined in each case and the theorem fol-
lows by induction on j.

Let g:T'(4) — T(4’) be the homomorphism induced by a homomorphism
f:A—- A IfAis ﬁmtely generated so is A’/Ao , where Ag C A’ is any sub-
group. Therefore I'(4’ /As) # O unless Ay = A’. Therefore it follows from

2 The value of p is not determined till the induction is complete. Therefore we allow
AS0.



70 J. H. C. WHITEHEAD

Theorem 6 that, if A’ is finitely generated and gI'(4) = T'(A’), then fA = A’.
We prove a kind of dual of this.

THEOREM 9. If A s finilely generated, A’ being arbitrary, then g~'(0) = 0
implies f(0) = 0.

Since g[ao, a] = 0 for any a € A, ao € f(0) this follows from:

TaeorEM 10. If A is finitely generated and [ao, a] = O for every a ¢ A, then
ap = 0.

Let A be given by (8.1) and let z; , y» be generators of X;, Y» . Let [ao, a] = 0
for every a ¢ A, where

a = ks + -+ ke + byr + -0 + Lys.
First assume that r > 0. Then

i r
lao, y:] = _Zl kiz: , y.] + 7; hlyr, ] = 0.

But [z;, y,] generates the cyclic summand, X;o Y, , of I'(4), whose order is
ai . Also [y, y] is a non-zero element in the free cyclic group Y o ¥, or I'(Y,),
according as X < r or A = r. Therefore k; = 0(s;), h = 0, whence ao = 0.

Let r = 0. Then a similar argument, with y, replaced by z;, shows that
kixz; = 0if 72 < t and that

kt[xty 3’/’:] = 2]0:‘}’(%) = 0.

Therefore o | 2k, , where ¢ is the order of v(z:). But ¢ = o, or 20, according as
o is odd or even. In either case o; | k: . Therefore a; = 0 and the theorem follows.

As a corollary of this and Theorem 8 we have:

THEOREM 11. Let both A and A’ be finitely generated. Then f:A ~ A’ if, and
only if, g:T'(A) = T(A’), where g is induced by f.

Notice that, in consequence of Theorem 10, a finitely generated group, 4,
is orthogonal to itself by the pairing (4, A) — T'(4), in which (a, b) = [a, b].

9. Direct systems

Let U be the category of all (additive) Abelian groups, with all homomorphisms
as mappings. Then a functor™ I': % — ¥ is obviously defined by the correspond-
ences A — I'(4), f — Tf, where I'f: T'(4) — T'(4’) is the homomorphism induced
by f:A — A’. Let O = Dir be the category of direct systems of Abelian groups,
defined as in [10], except that the groups are to be Abelian. Let

-9, L=Lm,O—Y

be the functor defined by lifting T'([10], §24) and the direct limit functor. Let
(D, T) be a given system in O, with groups T(d) (d € D) and projections T'(d: , d;)

*1 See [10]. There are obvious generalizations of Theorem 12 below to non-Abelian groups.
The partial ordering in D, below, is not to be confused with the simple ordering of indices,
which was introduced in §5 and which is not needed here.
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(di < do). Then T'y(D, T) consists of the groups I'T(d) and the projections
I‘T(dz 5 d]_). Let

Ad):T(d) — L(D, T), p(d):TT(d) — LT«(D, T)
be the injections in (D, T') and T'y(D, T'). Then a homomorphism
w(D, T):LTw(D, T) —» TLD, T)
iy given by
9.1) w(D, T){u(@dyv(ta} = v{Md)ia},

where t2 € T(d). We recall from [10] that the transformation w:LT; — T'L, which
is thus defined, is natural and that T' is said to commaute with L if, and only if, v is
an equivalence, meaning that (D, T) is an isomorphism for each system (D, T).
TaEOREM 12. The functor T commutes with L.
Using the same notation as before we have

,U.(dz)'Y{T(dz ’ dl)tdl} = ”(dﬁ) {FT(d2 ’ d1) }Y(tdl)
= u(d)yy(ta,)-

Therefore a single-valued map, ¢, of the generators, y{\(d)ta} € TL(D, T), into
LTy(D, T) is defined by

9.2) oy {(Nd)ta} = wn(d)y(ta)-

Let a, b, ¢ € L(D, T). Then there is a d e D such that a, b, ¢ have representa-
tives r, s, t € T(d). Therefore

¢v(—a) = ¢y(Md) (=1} = w@n(—r) = p@dh(r)
dv(a+b+c) =vAD (T + s+ 1)} = @+ s+ 0).

Similarly ¢y (b + ¢) = u(d)v(s + t) ete. and it follows that ¢ is consistent with
the relations (5.1). Therefore it determines a homomorphism

¢:TL(D, T) — LTW(D, T).

It follows from (9.1) and (9.2) that ¢w(D, T) = 1, w(D, T)¢ = 1, which-proves
the theorem.

CuaPTER III. THE SEQUENCE Z(K)

10. Definition of Z(K)

In this chapter a complez will mean a pair (K, ¢"), where K is a connected CW-
complex and ¢ ¢ K° is a 0-cell, which is to be taken as base point for all the
homotopy groups which we associate with K. Nevertheless we shall denote
complexes by K, K’ etc., remembering that, if K; stands for (K, e (@ =1,2)
and ¢} # ey, then K; # K. . A cellular map, ¢:K — K’, will mean one which,
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in addltlon to ¢K" C K'" for every n = 0, satisfies the condition ¢’ = e’°,

where ¢’, ¢”° are the base points of K, K’.
Let K be a given complex, let p, = 7 (K2, KY),

Can = (K™, K™), A, = mu(K") (n 2 2)

and let B:Coy1 — A,, j:A, — C, be the boundary and injection operators,
where C; = jA; C p,. Let B:py — m(K') be the boundary homomorphism.
Then 8C; = 1 and, asprovedin CH II, p, = C, + B*, where ® B*is the image
of Bp; in an isomorphism, 8*:8p, &z B*, such that 88* = 1. We can imbed C,
isomorphically in p, made Abelian, which is a free m(K)-module. Also C, is a
free m(K)-module if n > 2. Therefore, ignoring the operators in m,(K), C.(n = 2)
is a free Abelian group. Also j,A, = 3'(0). Therefore the family of groups
Chni1, An, related by 8, j with BC: = 0, is a composite chain system (C, 4) =
(C, A)(K), as defined in §4 above. We define =Z(K) = =(C, A).

Let T, = T.(K) etc. be the groups in £ = Z(K). It follows from CH II that
there are natural isomorphisms 7, & 7.(K), H, &~ H.(K) (n = 2), where H,(K)
is the n'™ integral homology group of the universal covering complex, K, of K.
The homomorphlsms in, i in T are equivalent under these isomorphisms to
in | T, where in:4, — 7.(K) is the injection, and to the resultant of the lifting
isomorphism =,(K) &~ wn(K), followed by the natural homomorphlsm m.(K) —
H,(K). Also T,, = i,m,(K"™), where 4,: 7.(K"™) — A, is the injection. There-
fore T, = 0 and = terminates with

> I3 >H;—>0—->1,— H,— 0.

An element w ¢ m(K), operating in the usual way” on C,,1, 4, , obviously
determines an automorphism, w:(C, A) & (C, A), which induces an automor-
phism, w:Z = Z. More generally, let = be any algebraic sequence, of the kind
considered in §4. Then the totality of automorphisms of = is obviously a group
G(Z). Let \:W — G(Z) be a homomorphism of a given (multiplicative) group
W into G(Z). Let Z’, W', X’ be similarly defined. Then a homomorphism

(10.1) (F,w):(2, W, \) — (2, W', \)

will mean a pair of homomorphisms, F:= — Z’, w: W — W’, such that FA(w) =
N{w(w)} F for each w ¢ W. Since

A (’U)o))\ (w) = A (’lDo‘lD) = A (wo'w'll)o—l) A (‘U)o)

it follows that (A(wo), [wo]) is a homomorphism, where [wo] is the inner auto-
morphism, w — wawws , of W. We shall use A(K):m(K) — G(Z) to denote the
homomorphism which describes how 7,(K) operates on £ = Z(K).

We shall say that homomorphisms (F, ), (F*, w*), of the form (10.1), are in

2 In defining Z(K) we ignore B* and hence lose sight of the invariant k*(K) (Cf. [11],

(13], [9D).
28 I.e. through the inverses of the injection isomorphisms =i (K") = = (K) (n = 2).
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the same operator class, {F, w}, if, and only if,
(F, w) = (N (wo), [wo]) (F*, w*) = (N (wo)F*, [wo]mw*),
for some wo ¢ W’. Let
(10.2) F',w): (2, W, \N)— &, W, \")
be a homomorphism. Then, writing o’ (wo) = wo, we have
F'N (wo) = N @wo)F',  w'fwo] = fwo .
Hence it follows that a single-valued product of operator classes is defined by
{F',w'} {F,w} = {F'F, w'n},

for all pairs of homomorphisms of the form (10.1), (10.2). It may be verified that
all triples (Z, W, ) (the objects), together with all operator classes of homo-
morphisms (the mappings), constitute a category, &".

The usefulness of Z(K) is limited by our ignorance concerning =,(K) for large
values of n. Therefore we shall often want to confine ourselves to a finite part of
Z. It will be convenient to start with H, , and 2, will denote the part

Zg H—->T\ -y — -
of Z. We write =, = Z, thus defining =, for ¢ £ «. A homomorphism or iso-
morphism

8, D:Z— 2, (¢ < =)
will mean the same as when ¢ = «, except that §,41 , g» , f» Will only be defined
forn=1,---,q— 1.

11. The invariance of Z(K)

Let K = (K, ¢"), K’ = (K, ¢°) be given complexes. It follows from proposition
(J) in §5 of CH I, on homotopy extension, that any map K — K’ is homotopic
to one in which ¢’ — ¢’°. Hence it follows from (L) in §5 of CH II that

a) any map, K — K’, is homotopic to a cellular map.

(11.1)

b) if ¢o =~ ¢1:K — K’, where ¢y , ¢1 are cellular, then ¢o , ¢, are related by a
cellular homotopy, ¢:K — K’ (i.e. K" C K'™).

Therefore, in discussing the invariance of =(K), we may confine ourselves to
cellular maps and homotopies.

A cellular map, ¢:K — K’, induces a family of homomorphisms™

(11.2) hesapria(K) = pra(K'), frim (K7) — m(K") rz1),
such that Bk = f8, jf = hj. Since hyjs = jaf2 we have hC: C Cs = Co(K’). The

induced homomorphism hz:Cy — Cs together with hnyy , fa forn = 2,3, --- ,
obviously constitute a homomorphism

(h, ):(C, A) — (C", A") = (C, A)(K').
1 See [17] in CH IL pn(L) = ma(L", L) (n 2 2), pr(L) = m(LY).
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This induces a homomorphism F:Z(K) — Z(K'). Let w:m(K) — m(K’) be the
homomorphism, which is induced by ¢ and is given by Wi, = uf; , where i :m (L")
— (L) is the injection (L = K or K’). Then hny1 , frn , h2:Ce — C; are operator
homomorphisms when 7;(K) operates on (C’, A’) through 1. Hence it follows
that (F, ) is a homomorphism of the form (10.1) where Z = Z(K), W = m(K),
A = 2AK), 2 = Z(K'), etc. We describe (F, ) as the homomorphism induced
by ¢.

Let ¢ ~ ¢*:K — K’ and let (h, f), (h*, f*) be the families of homomorphisms
of the form (11.2), which are induced by ¢, ¢*. Then®

(11.3) wh* —h = dt + &4,  xf* — f = BE,

where zo € m(K'"), which operates on Cy1 , A through the injection m(K™) —
m(K'™"), and £:p(K) — p(K’) is a deformation operator as defined in §4 of CH II.
The homomorphisms & | C: , &, &, - - - constitute a deformation operator in
the sense of §3 above. Also dC; = 0 and d&C. < C, , since dC; C Cs . Therefore

(h, ) =~ (woh* ,wef*): (C, 4) — (C", A"),

in the sense of §3, where wo is the image of o in the injection m(K™) — W'.
Hence it follows that F = N (we)F*, where F, F*:2 — =’ are induced by (&, f),
(h*, f*). Moreover v = [wo] w* in consequence of the relation

2o(fiz)ze  (fiz) ! = Bokaz,

which is included, additively, in (11.3). Therefore (F, v) and (F*, w*) are in the
same operator class, where (F, ), (F*, w*) are induced by ¢, ¢*. Therefore a
homotopy class, a:K — K’, of maps induces a unique operator class, Za =
{F, w}, of homomorphisms.

Let & be the homotopy category of all complexes (i.e. connected, CW-com-
plexes with base points). Then it may be verified that the correspondences

K— (E(K)r TI(K)7 R(K)), a— Za

determine a functor =:R — &”. We express this by saying that (Z(K), m(K),
MK)), or simply that Z(K) is a homotopy invariant of K.

Similarly Z,(K) is a homotopy invariant of K, for any ¢ < . Also, for a par-
ticular value of n, the secondary modular boundary homomorphism

b,(m): Hu (K, m) — Tnoy,m(K),

is a homotopy invariant within the category of complexes such that every (n — 1)-
cycle in K is spherical. Notice that by (m) is defined for every complex.

The definition of =(K) can be generalized as follows. Let r = 0,let A, = C, = 0
fn<r+1landifn >r-+ 1let

Cn+1 = Tn+l(Kn—r+1: Kn_dr); A, = Wn(Kn-f)-

Let 8:Cppe — A, , j:A4s — Co(Crie = jA,;2) be the boundary and injection
operators. Then the groups C..1 , 4. , related by 8, 7, constitute a system, (C, 4),
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of the sort introduced in §1. We define Z'(K) = =(C, 4). Then it may be verified,
in consequence of §3 and (11.1), that ="(K) is a homotopy invariant of K.

The groups which appear in ="(K) are naturally isomorphic to groups which
belong to a larger class of “injected’” invariants. Let 0 < p £ ¢ <r,withg > p
if p > 0,let m < nandlet

(K", K*; m, p) = im(K", K7),

where i:m. (K™, K®) — (K", K% is the injection and = (K°, K°) = m(K’)
(s = m or n). Then it follows from (11.1)* that =.(K", K%, m, p) is a homo-
topy invariant, and indeed an invariant of the n-type of K. In Chapter V below
we shall see how these invariants may be defined for any arcwise connected
space.

12. The sufficiency of =(K)

Let K, K’ be given complexes, whose dimensionalities do not exceed ¢, where
g = «. -

THEOREM 13. If a map ¢:K — K’ induces isomorphisms Zo(K) = Z,(K') and
m(K) ~ m(K'), then® ¢:K = K'.

Since the homomorphisms H, ~ H,(K) are natural this follows from Theorem
3 in Chapter I.

This is what we call a sufficiency” theorem. We shall prove the corresponding
realizability theorem, subject to the restrictions ¢ = 4 and m(K) = 1. But first
we must prove a theorem concerning I'; .

13. Expression for I';(K)

Let u:8* — 8 be a fixed map, which represents a generator of m3(S%). Let
v:8* — K* be a map which represents a given element” z ¢ I, . Then vu:8° — K*
represents an element u(z) e I's . We have *

(13.1) u@ + y) — u(@) — uly) = [z, yl*

where [z, y]* is the product, or commutator (cf. [22]), of z, y € IT, . Also u(—z) =
u(z) and [z, y]* is bilinear in z, y. Therefore the map v(z) — u(x) is consistent
with the relations (5.1a) and (5.6), for I'(Il;). Therefore it determines a homo-
morphism, §:T'(Il,) — T, and 6fz, y] = [z, y]* Obviously® 6 is an operator
homomorphism with respect to the operators in = (K).

26 Cf, p. 220 in CH 1.

28 ¢:K = K’ means that ¢ is a homotopy equivalence.

27 Cf. §14 below and §5 in [9].

B, = M,(K), s = I's(K) and, in the following paragraph, II, = Iy(K)’, T; = Ts(K’),
where I',(L) etc. are the groups in Z(L).

29 See (7.6) in [21]. Alternatively let P = S} u S be formed from S? by pinching an
equator into a point. Let ¢:S% — P be the identification map and y:P — K a map such that
v | 8%, ¢ | Si represent z, y, when S}, S} take their orientations from S?. Let v = yg.
Then (13.1) follows from (11.5) in [3]. Similarly u(—z) = u(z).

3 This is obvious if the operators are defined by means of homotopies ¢::8* — K, in
which ¢.p, varies, where p, ¢ S™ is the base point. If the operators are defined by means of
the covering transformations, K — K, it may be deduced from (13.2) below.
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Let (b, g, f):Z(K) — Z(K’) be the homomorphism which is induced by a
cellular map, ¢: K — K, into a complex K’. Since ¢(vu) = (¢v)u we have gsu(x) =
u(f,x). Let g: T'(I,) — T'(IT;) be the homomorphism induced by f»:II; — II, and
let 6 mean the same in K’ as in K. Since 8y(z) = u(z), gsu(x) = u(fx), v(fx) =
gv(z) we have

00y (z) = gau(z) = u(fix) = by(fx) = gy ().
Therefore 6 is natural, in the sense that
(13.2) 00 = 0g:T(I;) — T3 .

THEOREM 14. §:T(II;) ~ T .
Let K betheuniversal covering complex of K and let p : K — K bethe covering
map. Then it follows from the standard lifting theorems that

f:I(K) &~ 10, 0s:T3(K) ~ Ty,

where f2 , g; are induced by p. Therefore g: T'{II,(K)} ~ I'{II,), where g is induced
by f. , and the theorem follows from (13.2) if it is true when K is replaced by K.
therefore we may assume that =, (K) = 1.

Let m(K) = 1 and let {a;} be a set of free generators of A, which is free
Abelian since j: 4; & C; . Let {ex} be the 3-cells in K and let ¢, e C; be the element
which is represented by a characteristic map® for e} . Then {c\} is a set of free
generators of C; and I, is defined by the generators a; and the relations b\ = 0,
where by = Bc, . By Theorem 5, T'(II,) is defined by the generators v(a), [a; , ai]
(7 < k) and the relations

(13.3) v®) =0, [as,B]=0.

Let Ki = ¢’ u{ei}, where {¢}} is a set of 2-cells in a (1-1) correspondence, 2 —
a; , with {a:}. Thus K5 = ¢’ and &} = ¢’ u ¢} is a 2-sphere. Moreover m3(K3) is
freely generated by the set of elements {a}}, where a? is represented by a homeo-
morphism ¢::8*> — &% . Let ¢:K: — K’ be a map such that (¢ | &%)¢p; represents
a; and let Y»:my(K5) — A be the homomorphism induced by y. Then y»a’ = a; .
Therefore ¥»: II:(K3) & A, and it follows from Theorem 1in CHI that y»: K2 = K.
By (D) in §5 of CH I any compact subset of Kj is contained in a finite sub-
complex. Therefore it follows from arguments similar to those used in the proof
of Theorem 2 in [4] that m5(K3) is freely generated by u(a?), %, af)* G < k).
Therefore m3(K?) is freely generated by

(13.4) u(as), [a; , a]* G < k).

Notice that 6y(a:;) = u(as), 0la; , ax] = [a; , al*.

Since any compact subset of K® is contained in a finite sub-complex it follows
from the proof of Lemma 4 on p. 418 of [4] that T; is defined by the generators
(13.4) and the relations u(b) = 0, [a; , b]* = 0. It follows from (13.1) and (5.4)
and the bilinearity of [a, b, [@, b]* that these relations, when expressed in terms of

81 T.e. a map, $:I3 — & , such that 12 C K3 and ¢ | I* — I*is a homeomorphism onto e .
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the generators (13.4), are the images under 6 of the relations (13.3). Therefore
0:T'(II;) &~ T; and the theorem is proved.

14. Geometrical realizability
Let ¢ < « and let

Zg: H,—-»T¢y3— -+ —H,—0

be a sequence in which the (Abelian) groups are arbitrary except that T'; = 0,
if ¢ > 2,and

(14.1) 9:T(I) ~

if ¢ > 3. In this case 9, like b, i, i is to be a component part of Z, . Let 2 be a
sequence which also satisfies these conditions. We shall describe (b, g, f):Z, — 2
as a proper homomorphism if, and only if, either ¢ < 3 or¢ > 3 and

(14.2) 0s0 = 0g:T(I) — T3,

where ¢ T'(IL;) — T'(II;) is induced by f. . We shall describe a complex K as a
gelometrical realization of =, if, and only if, =,(K) is properly isomorphic to
..

The symbol (C, A), will denote a composite chain system, with the groups
C,, A, discarded if r > ¢q and 6:T(Il;) = Tsif ¢ > 3, where I, = A,/8Cs .
A proper homomorphism (isomorphism), (k, f), , between two such systems, will
consist of homomorphisms, (isomorphisms) k;, +-- , hgand fi, -, fo-1, sSuch
that f8 = Bh, hj = jf and (14.2) is satisfied if ¢ > 3, where g; is the homomorphism
induced by f; . That is to say zaga fits , as in (3.4). We describe (C, A), as a
combinatorial realization™ of =, if, and only if, there are homomorphisms (onto)

(14.3) UniriZnss— Hugt ) gn:Tn & T, kntA, — 11,
form = 1, -+ ,g — 1, such that ku *(0) = B8Cns1, ln '(0) = dCut1,
Basslnsi? = GuBnti?s  inn = knin,  inkn = lnkn

and (14.2) is satisfied if ¢ > 3. If (C, 4), is a combinatorial realization of Z, S0,
obviously, is any system (C’, A’), which is properly isomorphic to (C, A), . The
existence of a combinatorial realization of =, follows from the proof of Theorem 2,
with g; chosen so as to satlsfy (14.2) if q > 3.

Let n < ¢q and let =% be the part of =, which begins with H, We shall say
that (C, A). is part of (C', A"), if, and only if, Crys = Crii, A, = Al and Bria
Jj- are the same in both systems, for every r < n. By an n-dimensional partial
realization of Z, we shall mean a complex, K", of at most n dimensions, such that
the part, (C, A)., of (C, 4) (K") is a combmatorlal realization of Zn Notlce
that a ¢- d1mens1onal partlal realization, K’ is a geometrical realization of =, if,
and only if, I, : Z, ~ H,

32 We take X, to consist of a single homomorphism, 0 — 0, and we admit that (C, A)
(C: = A, = 0) is & combinatorial realization of Z; .
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LemMma 1. Let n < q and let K" be a simply connected, n-dimensional partial
realization of Z, . If T,(K™) ~ T, the complex K™ can be imbedded in an (n + 1)-
dimensional partial realization of Z,

Let (C, 4), be part of (C, A)(K™) and let (C, 4). be extended by the construc-
tion in the proof of Theorem 2 to a combmatonal reahzatlon, , A1,
of E,.+1 In order to simplify the notatlon we take T', in A7, to be the same as
I, in =, and the 1somorph1sm r,~T,, analogous to the one in (14.3), to be the
identity. Let g,: T, &~ T, , where T, = T',(K" ) and g, is defined by (14.2) if n = 3.
Then

Aw=T,+B,, A.,=T.,+ B,

as in the proofs of Theorems 2 and 3, where u:j4, =~ B, , v':jA, ~ B, and
]u =1, ]u = 1. Smce B is the same in (C’, A')n41 and m (C, A), we have
= B (0) = jA', . Therefore an isomorphism, f: 4, & A4, , is defined by

fl&y + b) = guy + u'sb (y €Tn,beBy,).

Since jy = 0, jg.y = 0, ju’ = lwehavej,,f—j,, .
Let {cx} be a set of free generators of Cnss . Let

Kn+1 — Kn { n+1}7

where the (n + 1)-cell ert* is attached to K" by a map, éu: EX* — K", such that
on: I™F = K" represents f '8¢y , where n: ™" — Eptlis a homeomorphism.
Then ey has a characteristic map, ¥a:I"™ — ¢?*' which agrees with ¢y in
I". Let (C, A)ny1 be part of (C, A)(K™™) and let ¢ e Cn41 be the element
Wthh is represented by nh Then {c\} is a set of free generators of C,1 and an
isomorphism, h: C,,+1 ~ Crny1, is defined by hex = cx . Moreover ¢ represents
both Bex and fBey . Therefore f8 = Bh. Also jn f = j» , fy = gxv and g, satisfies
(14.2) if n = 3. Therefore the identical maps of C,4; , 4, (r < n), together with
h, f, constitute a proper 1somorph1sm (C,A)ns1 = (C’; A")ny1 . Therefore (C, A)pia
is a combinatorial reahzatlon of 2,1 and the lemma is proved.

THEOREM 15. Z; has a (szmply connected) geometrical realization K, which is

a) at most 4-dimensional if H, zs free Abelwn,

b) a ﬁmte complezx if each of Hy , Hs , Hy is Jinttely generated.

Let K* consist of a single 0-cell. Then K* is a partial realization of 27 . Since
I'(K) = 0, T(K) = 0 and T3(K) =~ TI'{II(K)}, where K is any complex, it
follows from three successive applications of Lemma 1 that ={ has a 4-dimen-
sional partial realization, K*.

Let (C' A)4 be part of (C, A) (K*) and let I, ¢ mean the same as in (14.3).
Let z € ls™ (0). Then 8z = ga 9lz = 0. Therefore 2 € jam(KY). Let {z,.} be a set
of elements which generate l4_1(0) and let @, € ji'2, . Let K° = K'u {e]}, where
e,‘ is attached to K* by a map which represents a, , and let {¢,} be the correspond-
ing basis for Cs = ms(K°, K*). Then B¢, = a, and de, = z,‘. Therefore dCs =
1:71(0) and it follows that l4 induces an isomorphism b,: Hy(K°) &~ H. . Therefore
K® is a full realization of =; .
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If Hi is free Abelian we may assume that l;’l(O) = 0, as in the addendum to
Theorem 2. In this case Z; is realized by K*. Also we may assume that, if H ,
H;, H; are finitely generated, so are Cy, C;, C; and hence [;7*(0) and Cs . In
this case K’ is a finite complex and the theorem is proved.

We now consider the realizability of a proper homomorphism, Fg:Z, — 2, ,
by a map ¢:K* — K'?, where K, K’ are given complexes and = = Z(K), 2’ =
Z(K"). Let (C, A),, (C’", A")4 be parts of (C, A) (K), (C, A) (K’). Then it follows
from the proof of Theorem 3 that F, can be realized combinatorially, in the same
way as when ¢ = «, by a (proper) homomorphism (h, f).:(C, 4); — (C’, 4"), .
We shall describe a cellular map, ¢:K? — K’? as a (geometrical) realization of
both (h, f), and F, if, and only if, the homomorphisms h, f are those induced by
¢. Notice that k,dCys CdCyys , since lghy = Bl ; also that a given map, ¢ : K% —
K, induces a homomorphism 2, — 2, if, and only if, he:C, — C, satisfies this
condition, where k, is induced by ¢. This is certainly the case if K = K? for then
Cq+l = 0.

Let (h, f); be a combinatorial realization of a given proper homomorphism
Fi:Zq— 2, . Letl < n < g let (C, 4)., (C", A")n be parts of (C, A),, (C', A"),
and let (h, f). consist of the homomorphisms A, -++, h, and f1, +++ , fau .
Let F,:Z, — Z, be the homomorphism which is similarly induced by F,.
Then F, is obviously a proper homomorphism and (k, f). is a combinatorial
realization of F, . Let ¢5:K" — K’'" be a realization of (h, f). . We assume that
K, but not necessarily K’, is simply connected and also that ¢,K* = ¢”°, the base
point in K’. Let g% , g.:Tp — T, be the homomorphisms induced by ¢ and by
fain (B, f)q -

LEMMA 2. If @) = . and if j.A, is a direct summand of C., , then ¢ | K™ can
be extended to a realization, K™ — K'™™ of (h, )ns1 -

First let n = 1 and let p, = m(K’, K). Then p» = C; + B*, as in §10, where
B*:Bp, &~ B*and f8* = 1. Also Bp; = m(K"), since m(K) = 1. If a e py , b* € B* we
have (Ba)b* = a + b* — a, by (2.1¢) in CH I1, and a + b* — a € B* since p; is the
direct sum of C; and B*. Therefore B* is invariant under the operators in = (K").
Also Bp: operates identically on C» . Therefore hy:Cy — C5 can be extended to an
operator homomorphism, h*:p, — m(K”, K™), by taking h*B* = 0. Since
BCy = 1 and ¢'K* = ¢”° we have Sh*p, = 1°8p2 = 1, where f° :m(K") — m(K"™)
is induced by é1 . Therefore it follows from Lemma 4 in CH II that ¢! can be
extended to a realization, K> — K, of (h, f), .

Let n > 1 and let fo:A4, — A, be the homomorphism induced by ¢5 . If
f3 = f, we have foBn11 = Bnythasa , since (h, f)n41 is & homomorphism. Therefore
it follows from* Lemma 4 in CH II that ¢, can be extended to a realization,
K™ = K™ of (h, f)as1 . Therefore the lemma will follow when we have
extended ¢ | K™ to another realization, ¢,,: K™ — K’", of (h, f)» , which induces
In -
Since f5 , hn are both induced by ¢% We have jufs = hnjn = jufn . Since jz-(0) =

3 If 7, (K) = 1 this argument fails unless hn41 , fa are operator homomorphisms asso-
ciated with the homomorphism, 7 (K) — 71(K’), which is induced by ¢; .
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0 it follows that f = f,if n = 2. Let n > 2,let g% = g, and let C, = A* + B*
where A* = j,A, . Let u:A* — A, be a rlght inverse of j, . Then a homo-
morphism, A:C, — A, , or cochain A e C™(K", Av), is defined by

Ala* + b*) = (fo — fua* (a* € A*, b* e B*).
Since j.(fa — fa) = 0 we have j,A = 0, Whence AC, C T, .
Let ¢.:K" -—-> K'" be an extension of ¢,. | K™ whlch realizes* the separation

cochain d(¢n , ¢%) = A. Let fi: 4, — A and hL: C — C" be the homomorphisms
induced by ¢, . Then®

ho — ha = jub =0,  fu—fa=Ajn.
Therefore ¢, is a realiza.tion of (k, f)» , because &% = h, . Also
— fa)ua* = Ajaua* = Aa* = (f, — fa)ua*.

Therefore frua* f,,ua* Also foy = g,;y = @uy = fuv,if v €T», and fay = ff;y
since ¢, | K*™ = ¢% | K™ . Therefore fay = fuy. Since Jau = 1 we have 4,
T'» + ud*. Therefore f,, = f. and the proof is complete.

TaeoreM 16. If m(K) = 1 and ¢ < 4 any proper homomorphism, F,:Z(K) —
2(K’), has a geometrical realization K* — K'°.

Let (R, f)q:(C, 4)q — (C’, A’), be a combinatorial realization of F, , where
(C,4),, (C", A"), are parts of (C, A) (K), (C, A) (K"). Since 1‘2 = 0 the theorem
follows from two successive applications of Lemma 2 if ¢ < 3. Let g = 4 and
let ¢3:K° — K” be a geometnca.l realization of (h, f); . Then qbs induces the
homomorphlsm fo:I, — I, in F, , and it follows from (14.2) that g3 = g; , where
83 , gs are induced by 3 , f; . Therefore the theorem follows from another applica-
tion of Lemma 2.

Let B be any category. We describe two objects in B as equivalent if, and only
if, they are related by an equivalence in B. Let T:11 — B be a given functor,
where U is any category. By the sufficiency and the realizability conditions, with
respect to T', we mean the following,

Sufficiency: if Ta is an equivalence, so is o, where a is a given mapping in .
Realizability: a) any object in B is equivalent to the image, TU, of some object in
U, and

b) any mapping. TU — TU’, in B, is the image, Ta, of at least one
mapping, a:U — U’, for every pair of objects, U, U’, in 1.

Let & be the homotopy category of all simply connected complexes of at most
four dimensions. Then a mapping (i.e. homotopy class), a:K — K’, in £} induces
a unique homomorphism Z4:2,(K) — Z4(K’), because m(K’) = 1. Let &, be
the category in which the objects are all sequences =, , which satisfy the condi-
tions T'; = 0 and (14.1), and in which H, is free Abelian, with all proper homo-
morphisms as mappings. Then a functor, Z,:K; — &, is obviously determined
by the correspondences K — Z4(K), a — Z4a.

4 See [15]. In order to apply the existence theorem (10.5) in [15] we can take ¢n = ¢2 in
€} — o5 , where o} C e} is an n-simplex, for each n-cell 7 ¢ K.
3% See Appendix B below.
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THEOREM 17. The functor Z, satisfies both the sufficiency and the realizability
conditions.

This follows from Theorems 13, 15, 16.

As pointed out in the introduction, both homotopy classes of maps §* — §°
induce the same homomorphism 24(84 ) — Zu(8Y). Therefore the function a« —
S is not (1-1). By taking N = S*u §*, where S°n S* = ¢, we see that =, does
not even induce an isomorphism of the group of equivalences a:K =K.

Sequences of the form Z4(K) can be simplified algebraically by identifying
I;, H; , H, with T'(Iy), IT;/iTs , II; so as to make 6 = 1, j; the natural homo-
morphism and {; = 1. When =, is thus simplified it is completely determined by
1T, and

Let II, be finitely generated. Then it follows from Theorem 8 that II, is deter-
mined, up to an isomorphism, by I'(I;). Let Fy:Z; — ¢ be a proper homomor-

phism which determines an 1smorphlsm of the sequence (14 4). Then it follows
from Theorem 11 that Fi:Z, &~ =: (obviously bs:H; =~ H, if s , fz are isomor-
phisms, where F, = (b, g, ).

Theorem 16 is analogous to Theorems 1, 2, 3 in [5], concerning (n-1)-con-
nected complexes (i.e. those with »,(K) = Oforr =1, --- ,n — 1) whenn > 2.
Let £ = Z(K), where K is (n — 1)-connected (n > 2), and if z e IL, let u(z) € Tnya
be defined in the same way as u(x) ¢ T3, in §13 above, when = e Il . Then
u:II, — Tn4q is & homomorphism since 7 > 2. It is shown in [5] that 6:1l,2 & Tata
where II, . = II,/2II, and 6 is induced by u. The argument leading to (13.2),
with y:II; — I'(Iy) replaced by the natural homomorphism II, — I, , shows
that 6 is natural. Therefore Lemmas 1 and 2 yield realizability theorems for
Znie, With T, = II, = H, = 0if r < n and (14.1) replaced by 0:II, 2 = T'ny1,
which are analogous to Theorems 15, 16.

Many of these facts have been recorded by G. W. Whitehead in {23]. In
particular his results may be used to show that, if Z = Z(K), where K is (n — 1)-
connected, then 2, is mternally exact (n > 2) and that the sequence =%,
which is defined in §15 below, is exact if n > 3.

Theorem 16 is also analogous to Theorems 1, 2, 3 in [9], concerning the 3-type
of an arbitrary (connected) CW-complex. In the following section we prove a
theorem which leads to analogous results concerning the 4-type of a simply
connected complex.

16. g¢-types

Let 2 < ¢ < . We recall from CH I that complexes K, K’ are of the same
g-type if, and only if, there are maps,

¢:K<1 — Klq’ ¢I:KI¢ — K'I
such that ¢'¢ | K% ~ 1, ¢¢' | K'“"" =~ 1. If, and only if, these conditions are
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satisfied, we write ¢: K* = ,_,K’". By Theorem 2 in CH I this is so if, and only
if, ¢ induces isomorphisms 7.(K) ~ m,(K’) forn = 1, --- , ¢ — 1. Obviously
K and K? have the same g-type. Therefore, when studymg g-types, we may con-
fine ourselves to complexes of at most ¢ dimensions.

Let Z, = Z,(K), where, to begin with, dim K may exceed ¢. Let

H} = H{(K) = H/il,

Thus Hy =~ H,(K)/S «(K), where K is the universal covering complex of K and
S4(K) consists of the “spherical” homology classes. Since ill, = b,"(0) an
isomorphism

be:Hy ~ bH, = ;%(0)
is induced by b, . Let Z; = ZJ(K) be the exact sequence
0 : ’

=0 o-m e, db . dm o
Since 1,2, = Hy , ljedq = 11y, H(K®) = Z,/jA, it follows thatl 1nduces an
isomorphism Hy(K?% =~ H} , by means of Whlch we identify =(K?) with Zo(K).
From the purely algebraic point of view =, may be regarded as a sequence 2,
in which every group preceding H, is zero. Therefore we need not redefine the
terms homomorphlsm ete.

Let 2 = Z(K’) and let (9, g, f):Z, — E be any homomorphism. Since
bhy = gq1b, it follows that

bﬁ@c@@=@$

Therefore b, induces a homomorphism

be:HY — H.° .
Obv1ously bobs = gg-1b, . Therefore a homomorphism, Fg: =8 — =.°, which con-
sists of b, and of g, , fu, bs form = 2, --- | g — 1, isinduced by (9, g, ). If

(h, 8, f) is induced by a map ¢:K* — K'? we shall say that ¢ induces, or realizes,
F .
TrEorEM 18. a) If ¢1:m(K) = m(K') and Fy:Z0 =~ ;° , where ¢; and Fy are
induced by ¢:K* — K'?, then ¢:K* = ,,K"°. )

b) Any proper homomorphism. F3:Zy — = has a realization
K* - K"

Part (a) follows from Theorem 2 in CH I.
Let {z,} be a set of free generators of H,(K*). Let

2, € b 'asbiz, C Hy(K™),

where g;:Ts — T is in F3 , and let be: Hy(K*) — H,(K") be the homomorphism
which is defined by bz, = z,, . Then I)4I)4 = @304 and it follows that I)4 induces a
homomorphism bi:H3(K*) — H 4(K’ ), such that b4I)4 = gsbs = bihs . Since
(697" (0) = 0 it follows that bf = B2. On replacing b? by by we have a proper
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homomorphism, Fy: 2, — Z4 , which induces F§ . Part (b) now follows from Theo-
rem 16.

An algebraic sequence = is a special kind of =4 , namely one such that b5(0) =
0. Therefore Theorem 15 applies unchanged to the geometrical realization of
=% . Notice, however, that any sequence Z§ is realized by a complex K*, since
(K) = Zi(K"), even if dim K > 4.

Notice that, by analogy with (14.4), =% may be replaced by a pair of arbitrary
Abelian groups, II; , IT; , and a homomorphism i:T'(Il;) — II; , which may be
arbitrary. Therefore the “algebraic 4-type’ of a simply connected complex is a
comparatively simple affair. The algebraic (n + 2)-type of an (n — 1)-connected
complex (n > 2) may be similarly defined, with I'(Il;) replaced by II, s .

CHAPTER IV. THE PONTRJAGIN SQUARES

16. The main theorem

We give the following definition of a net of finite, simplicial complexes, which
differs slightly from the one in [18)]. Let {K(d)} be a set of such complexes, which
is indexed to a directed set D. Instead of taking a projection, K(d») — K(dv),
to be a single map, where d; < d; , we take it to be a homotopy class of simplicial
maps. We then assume that, if d; < d», there is a single projection,

K(d,, d2):K(dy) — K(dy),

such that K(d, d) = 1 and K(d:, do)K(dz, d;) = K(dy,ds) if &y < d2 < d.
Let (D, K) denote this net and let (D’, K’) be a similar net. By a homomorphism,

(16.1) (R*, p):(D, K) — (D', K"),
we shall mean an order preserving map, R*:D’ — D, together with a family of
homotopy classes,
p(d):K(R*d") — K'(d"),
where p(d’) is defined for every d’ e D’ and
p(d)K(R*dy , R*d;) = K'(d1, d3)e(dy) CARAE

It is easily verified that all nets, with all homomorphisms as mappings, is a
category X. We shall sometimes denote nets by X, X’ etec.

Let % and © mean the same as in §9 above and let (%X, A) be the Cartesian
product of X and ¥, in which the mappings, (£, «), are pairs of homomorphisms,
£X > X, a:A— A’ Let (R, A) be similarly defined, where & is the homotopy
category of finite, simplicial complexes. Let P: (R, , %) — A be a functor, which
is contravariant in &, and covariant in U. Let (p, a): (K, 4) — (K’, A’) be any
mapping in (R, A). Then P(p, @) is & homomorphism

P(p,a):P(K', A) —» P(K, A').
Let (D, K) be a given net and let P{K, A} denote the family of groups
P(K(d), 4),
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for every d e D. Then it follows without difficulty that (D, P{K, A}), with the
homomorphisms®®
(16.2) T(dz, di) = PK(d:, do):P(K(dr), A) — P(K(dn), 4),
is a direct system of groups; also that a “lifted” functor,
P (% %A) — D,

is defined by
Pl((DyK);A) (D;P{K7A})
(16.3) {P:((R*, o a) = (R* Plp, a}),

where (R*, p) means the same as in (16.1) and P{p, o} denotes the family of
homomorphisms

P(p(d), a):P(K'(d"), A) — P(K(R*d'), A").
Therefore LP; is a functor,
LP;:(I, 2[) - ?I,

where L:D — ¥ is the direct limit functor.

Let 7:P — Q be a natural transformation, where Q: (8, , %) — ¥ is a functor
of the same variance as P. Let Q;: (X, %) — D be defined in the same way as P, .
Let (X, A) mean the same as before and let 7{K, A} denote the family of homo-
morphisms

7(K(d), 4):P(K(d), A) — Q(K(d), A).
Since 7 is natural, and since P, @ are contravariant in &, , we have
7(K(ds), A)PK(d;, d») = QK(d, , d2)7(K(dy), 4),

or
7(K(dy), A)T(dz, dr) = U(dz, di)7(K(dy), 4),

where T'(d; , dy) is given by (16.2) and U(dz , d)) = QK(d, , ds).
Therefore a homomorphism,

(X, 4):Pi(X, A) - Qu(X, 4),

is defined by 7i(X, A) = (1, 7{K, A}).
Let (R*, p) and « mean the same as in (16.3) and let S = P or Q. Then

S(e(d), @)
is a homomorphism
S(pd"), a): S(K'(d), A) — S(K(R*d"), A").
Since 7 is natural we have
7(K(R*d"), AP (p(d"), @) = Q(p(d"), &)7(K'(d'), A4).
% PK(d, , d») stands for P(K(d, , ds), 1).
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Therefore, writing ¢ = (R*, p), it follows from (16.3) that
(X, APyt @) = (1, 7{K, A"})(R*, P{p, a})
= (R*, 7{K, A"}P{p, a})
= (R*, Qfp, a}r{K’, A})
= (B* Qfp, o}, 7{K', 4})
(16.4) = Qi(§, X', 4).

Therefore 7; is natural. Let Lr;:LP; — LQ; be the transformation which is
defined by

(L) (X, A") = L(n(X, A").

On applying the functor L to both sides of (16.4) we see that Lr; is natural ’’
The r** cohomology functor H':(R,, %) — A is contravariant in K, and
covariant in %. We define H; in the same way as P; and write

H = LH;:(%, %) — .
Then H' is the Cech cohomology functor. We define the cup-product,
yuze H*(X, I'(4)),
of elements y, z ¢ H*(X, A), by means of the pairing (a, b) = [a, b] € I'(4), where
a,beA. '
It is obvious that a covariant functor
T: (%, %) — &, A)

is defined by I'(X, 4) = (X, T'(4)), T}, @) = (¢, Ta).
Thus we have functors

(16.5) TH,HT:% %) — ¥,

which are contravariant in X and covariant in 2.
TaEOREM 19. Let n be even. Then there is a natural transformation,™

(16.6) n:TH" — H*"T,
such that
(16.7) 7(X, A)ly, z] =yuz

for every pairy,z e H(X, A).
Assume that the analogous theorem has been proved for the category (R , %)

37 Cf. the concluding remarks in §9 of [10].

¥ We do not assert that n is uniquely determined by naturalness and (16.7). When this
theorem is quoted it is to be understood that 5 is the transformation which is defined in the
course of the proof.
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and let 7:TH" — H’"T be a natural transformation which satisfies (16.7), where
TH', HT:(8: , A) — A are defined in the same way as TH', H'T in (16.5).
It follows from (16.3) and the definitions of I';:D — D and T': (R, , A) — (K., A)
that

(TH)y = T.\H;,  (H'T), = H;iT.
Therefore
L7;:LT,H} — LH:"T

is a natural transformation. It follows from Theorem 12 that w " :TL — LT is
a natural equivalence, where  is defined by (9.1). Therefore®’

w 'Hp:TLH; — LTH}
is a natural transformation. Therefore, writing LH] = H', it follows that

n = (Lm)(w 'H}):TH" — H'T

is a natural transformation.
We now verify (16.7). Let X = (D, K). Then it follows from (16.3) that

Hi(X,A) = (D,H'{K,A}), I'H;(X,A) = (D,TH {K, A}).
Let
Md):H"(K(d), A) » H"(X, A)
#(d):TH"(K(d), A) — LTWH{ (X, A)
v(d):H™(K(d), A) —» H*(X, A)

be the injections. Let (1, p):T'H7 (X, A) — H3"(X, A) be a homomorphism of
the direct system I'H; (X, A) into the direct system H3"*(X, A). Then

L(1, p):LT\H} (X, A) — H™(X, A)
is given by
L1, p)u(d)g(d) = »(d)p(d)g(d),

where g(d) e TH"(K(d), 4).
Let

y =Mdyd), z=NMd:zD),
where y(d), 2(d) ¢ H"(K(d), A). Since
(@), 2(@d)] = v@y(@) + 2(d)) — ¥(y(d) — v(z(d))
it follows from (9.1) that

w(Hi (X, A)u@ly@), 2(d)] = [y, zl.
Therefore
@ HI(X, Ay, 2] = oH; (X, 4)7'l, 2]

= w(@y(d), 2(d)].
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By hypothesis 7(K(d), 4)ly(d), 2(d)] = y(d) u 2(d). Therefore

2(X, Ay, 2 = L)X, A){(« H)(EX, Dy, 21}
L(1, 7{K, A})r(@)y(d), 2(d)]
»(d)7(K(d),A)ly(d), 2(d)]
»(d)(y(d) u z(d))

=yuz

I

Il

Therefore it only remains to prove the theorem for the category (R, ).

Let K be a finite simplicial complex, let " = C"(K) be the group of integral,
r-dimensional cochains in K and let ¢, ---, ¢, be a canonical basis for c".
Then

(168) éc; = o d; (’L = 1, crc,450% l 0'.;+1),

where o;d; = 0if 4 > t and (dy, -+ - , de) is part of a canonical basis for C**.
We recall from [3] the definition of the Pontrjagin Square

(16.9) pc =cuc+ cuide (ceC™.
The cochain group, C"(4), is the tensor product,
C"(A) = A C,

and the group of cocycles, Z"(4) C C"(4), consists of these, and only those,
cochains,

=6+ -+ agcq,

such that o1a; = -+ = 048 = 0, where o; = 0 if ¢ > . The cup-product of
cocycles,

(16.10) y=arc+ -+ ag¢Cq, z="byci+ -+ + bgcg

is defined by
yuz= 2, 2la:i,bl-cucs.

If 4 < j then o; | o; and, since n is even,
c;iUCj~CjUC; mod. o; .

Also gia; = ob; = 0. Therefore
(16.11) yuz-— 2; [a:, bil-ciuci + Z; ([a;, b;] + [aj, bi])-ciuc;.

I say that a homomorphism
(16.12) »:T(Z"(4)) — Z™(I'(4))
is defined by
(16.13) vy(y) = Zev(@i)-ve: + ;;,— la:, aj]-ciu cj,
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where y € Z"(A) is given by (16.10). For since o,a; = 0 we have
6?‘7(01‘) = v(o:a;) = 0
200v(a:) = oia:, ai] = [0ia:,a:] = 0.

Therefore (¢5, 20:)y(a;) = 0. That is to say oxy(a;)) = 0 if o; is odd
and 2¢:y(a;) = 0 if o, is even. Obviously spc; = 0, mod. ¢;, and it is proved in
{3] that dpc; = 0, mod. 20, , if o; is even. Therefore, and since oila;, a;] =
aila:, aj] = 0, it follows that svy(y) = 0. That is to say, vy(y) e Z**(I'(4)).

Obviously »y(—y) = vy(y). Therefore v is consistent with (2.1a). Let z ¢ Z"(4)
be given by (16.10). Then

ytz=(@+b)a+ -+ (ag+ by)cg.
Since y(a; + b;) — y(a:) — v(b:) = [a:, by and
[a: + b;, a; + bj] — la:, a;] — [bs, bj] = [a:, bj] + [a;, b

we have
tly, 2l = vy + 2) — »y(y) — v (2)
(16.14) = 2 [a:, b pe; + ; (las, b1 + [a;, b)) -ci v e;.
T <7
The right hand side of (16.14) is bilinear with respect to (ai, --- , @) and
(b1, -+, by). Therefore v is consistent with (5.6). Therefore (16.12) is a homo-

morphism.
Since afa;, bi] = [0:a:, b = 0 it follows from (16.8) and (16.9) that

la:, b -pe: = [a:, bi]-ciu ¢; + ailas, b -c; uy d;
= [a;, b]-ciuc;.
Therefore it follows from (16.14) and (16.11) that
(16.15) vy,2z] —~ yua.
Let y = dw where w ¢ C"*(4). Let
w = gl a0,
where (¢;, - -+, &) is part of a canonical basis for C* ™" and 8¢, = m\¢.4n . Then
Yy = Exax < 06 = an ax © Ceqnr.
If 6¢ = 0 we have pc = ¢ u ¢. Therefore
Y(na) - peia = (@) A(Craa U Ce)
= y(ap) 86 U 86
= 3{v(am)-oru 8}

[nar, ] copm U e = [an, @) 86 U 86, = 8([ar , a,]-G\ U 8G,).
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Therefore it follows from (16.13) that vy(dw) — 0. Also it follows from
(16.15) that
v[dw, 2] «~ (bw) u z 0.

Therefore it follows from Theorem 4 in §6 above that the kernel of the homo-
morphism

r(Z"(4)) — T'(H"(K, 4)),
which is induced by the natural homomorphism, Z"(4) — H"(K, A), is carried
by v into the group of coboundaries in Z*™(T'(A)). Therefore v induces a homo-
morphism

7(K, A):T(H"(K, A)) — H™(K, T(4)).

Also it follows from (16.15) that

(K, A)ly*, 2] = y*u 2,
where y*, z*H"(K, A).

Let (p, a): (K, A) — (K’, A’) be any mapping in the category (8, ). Then
(p, a) is the resultant of (1, ), followed by (p, 1), where each 1 denotes the
appropriate identity. It is obvious that not only 7, but even v is natural with
respect to the homomorphisms a: A4 — A’. It remains to prove that 7 is natural
with respect to maps K — K'.

Let

Mz K', A) —» Z"(K, A)
" Z™K', T(A)) — Z™(K, T(4))
be the homomorphisms induced by a simplicial map ¢:K — K'. Let
¢":T(Z"(K', A)) — T'(Z"(K, A))
be the homomorphism induced by f" and let
V:T(Z"K', A)) — Z(K', T(4))

be defined in the same way as v, by means of a canonical basis,” (c1, -+ , c,: R
for C"(K ). We have to prove that

@) — Vg™ @) = vy,
for any y’ € Z"(K', A).

Letoc, = oidii=1, -+ ,¢'),6c, =0G=¢t+1,---,q), where (di , - - -, ds")
is part of a basis for C"“(K') Then Z"(K', A) is generated by cocycles of the
form a- c. , where oia = 0 and a'. = 0 if 2 > t'. Therefore it follows from The-
orem 5 that I'(Z"(K', A)) is generated by the elements v (a-c;), where gia = 0,
together with [y’ 2’], for every pair ¥, 2’ ¢ Z"(K', A). Since

P, 2 P w2 o Y u S
—olf"y, 2] = vg"ly’, &']

# Pogsibly K’ = K. In this case the following argument shows that  is independent of

the choice of the canonical basis (¢1, -+ , ¢g).
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it only remains to prove that, if o;a = 0, then
(16.16) My (@a-ci) ~ vy(f(a-ci)) = vy(a-¢"c),

where ¢ C’ (K') — C' (K) is the (integral) cochain mapping mduced by ¢.
Let ¢"ci = mer + - -+ + nge, for a fixed, but arbitrary value of 7. Let sia = 0.
Then it follows from one of the preceding arguments that

(16.17) (@, 20i)v(a) = 0.
If o; is odd, then
¢™"pe; = ¢™(ci u i) mod. o}
“ ¢"ci U p"c;
= poci .
If o; is even then
(16.18) ¢'"pci  poTcs mod. 20} ,
as shown in [3]. In either case
(16.19) ¢i"pci o pTci = plmaer + + -0 + gty mod. (¢i%, 207).
Since éc; = 0, mod. o; , and since d¢; = o;jd;, where (di, ---,d:) is part

of a ba51s for C"“(K), it follows that s | njo; . Therefore njc; 1s a cocycle,
mod. o; , for each j = 1, -+, q. Let o be even. Then it follows from (16.17,)
(16.19) and (4.7) in [3] that

Fru'v@a-ci) = f™(r(a)-pei) = v(a)-¢™pci
(@) -plmer + -+ + ngcy)
(@) (Zip(nics) + 2 ; NiCi U Mjic;)

= > miy(a)-ve: + 2 [a, a)-nic; u nye;
i
= D iy(na)-pe; + Z<: [nia, njal-c; u c;
i1<i
=vy(ma-ci + -+ + nga-cy)
= vy(a-¢"ci).

If o; is odd we have the same result on replacing each Pontrjagin square, pc,
by ¢ u ¢. This proves (16.16) and hence the theorem.
Let n be even, let y e H*(X, A) and let

py = n(X, Ax(y).
We call py the Pontrjagin square of y. It follows from (16.7) that
(16.20) py+z)=py+pz+yuz



A CERTAIN EXACT SEQUENCE 91

Thus —y U z appears as a factor set, which measures the error made in supposing
p:H"(X, A) - H"(X, T(4))

to be a homomorphism. We also have p(ry) = r’py, where r is any integer.
Therefore (16.20), with y = z, gives

(16.21) 2y = yuUy.
Let (£, a): (X, A) — (X', A’) be any mapping in the category (X, ). Since g
is natural we have
pH”(E’ a)y = 7I(X7 A')’Y(H"(E, a)Y)
= (X, A)TH"(, a)¥(y)
= H"T(, a)n(X’, Av(y)
= H'"(§, Ta)py
or, writing f = H"(, @), g = H"(§, Ta),
(16.22) B = gp:H"(X',4) —» H™(X, T(4")).
Let | X | be an arbitrary topological space and let D be the directed set,
which consists of all finite coverings of | X | by open® sets. Let K(d) be the

nerve of the covering d. Then (D, K) is a net. Let (D', K’) be similarly defined
in terms of a space | X’ |. Then amap ¢:| X | — | X’ | induces the homomorphism.

(R* p):(D, K) — (D', K'),
in which R* d’ is the covering {¢ 'U’}, where d’ = {U’}, and p(d’) is determined
by the transformation, ¢ U’ — U’, of the vertices of K(R*d’) into those of

K'(d"). Therefore n, and likewise p, are topological invariants of | X |.
Let K be a finite cell complex, which need not be a polybedron. We take

Cr(K) = Hr(Kry K'_l)
C"(K) = Hom {C.(K), I,}

to be the groups of r-dimensional, integral chains and cochains in K, where I,
is the group of integers. By Theorem 13 in CH I there is a finite, simplicial
complex, L, which is of the same homotopy type as K. Let :K — L,y:L — K
be cellular maps such that y¢ ~ 1, ¢ ~ 1. Let

¢ :C"(L) — C"(K), Y :C(K) — C'(L)
be the cochain equivalences induced by ¢, ¢. We define
(16.24) cucd =¢"Wreuy'), pc=¢" W,

where ¢, ¢’ are any elements of C"(K). If ¢, ¢’ are cocycles mod. o, so are ¢"c,
Y"c’ and

(16.23)

2 2n ,2 n n
V*cud) = ¢ "W cu ) — Y cuyc, mod. o.
4 We could equally well take closed sets
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Similarly y*"pr «~ p"c, mod. 20, if ¢ is even. Notice that this relation is analo-
gous to (16.18).

Let X, Y be the nets which are defined by means of all the finite, open cover-
ings of the spaces, K, L. Since K, L are compacta it follows from the Cech co-
homology theory that ¢:K — L induces isomorphisms H' (Y, @) ~ H'(X, @),
for every r = 0 and every coefficient group G. Also the cohomology group
H'(L, @), which is calculated in terms of cochains in C"(L), may be identified
with H (Y, G). When this is done 7(Y, A) becomes the homomorphism, (L, 4),
which is defined by means of (16.13). It follows from the final arguments in
the proof of Theorem 18 that H (X, @) and 7(X, G) may be similarly identified
with H' (K, G) and 7(K, @), which are defined in terms of C"(K), when cup-
products and Pontrjagin squares of cochains are given by (16.24).

If K has a simplicial sub-division we take this to be L and, as in [3], we take
¢:K — L to be the identity and ¢:L — K to be such that yLo C K, , for every
subcomplex Ko C K, where L, is the subcomplex of L, which covers K, .

17. Secondary boundary operators

Let K be a finite cell complex, let C.(K), C"(K) be defined by (16.23) and let
cup-products and Pontrjagin squares of integral cochains be defined by (16.24).

Let (c1, ---, ¢, be a canonical basis for C"(K), with é; = o¢d;, where
(dv, -+, dy)is part of a basis for C"*(K) and o.d; = 0 if £ > t. Let m = 0 and
let

Hn(A) = H"(K1 A)1 H'n(m) = H,(K, Im);
where I., is the group of integers reduced mod.m. Let
y*e H'(A), 2+ e H,(m), am) e A, = A/mA

be the cohomology, homology and residue classes of ¥ € Z"(4), 2z € Z,(K, I.,),
a ¢ A. Then a homomorphism®

Um = Um:H"(A) — Hom {H,(m), A}

is defined by
(17.1) (Uny®)zx = (cR)ar(m) + -+ + (ci2)aq(m),
where y = a;-¢1 + --- ag-¢q, with oya; = 0. If K is without (n — 1)-dimen-

sional torsion, then
uo:H"(A) ~ Hom (H, , A),

where H, = H,(0).

Let K be simply connected. We make the natural identification II,(K) = H,
and we also identify I'(TI(K)) with T'; = I';(K) by means of 6, in Theorem 14.
Also K has no 1-dimensional torsion and we identify each y* e H*(A) with

4 Cf. (12.2) in [14].
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usy*. Moreover we take A = H,, so that H*(H,) is the additive group of the
ring of endomorphisms of H, . Then we have maps

Hom (H,, H,) 5 H'(Ts) 32 Hom {H,(m), Ts,m}.

Since m(K) = 1 the group C,(K) (n = 3) may be identified with C, in the
system (C, A)(K). Let b(m): Hy(m) — T3, be the secondary modular boundary
homomorphism. Let 1 ¢ H*(H,) be the identity 1: H, — H, .

TrEOREM 20. b(m) = un.p(l).

First let K be any finite cell complex, which need not be simply connected,
and let the notations be the same as in (17.1). Let a ¢ A and let a-c € Z"(4),
where ¢ = nici + - -+ + N4, . Then

{um(a-c)*}ze = { Um <i n,a-c,-)*} 2x

=1

q
= ; (c:2) (nsa) (m)
q
= 2 (nc2)agm)
(17.2) = (c2)a(m).
Let ¢: K — K’ be a cellular map into a finite cell complex, K’, and let
a4 — A’ )
be a given homomorphism. Let H,(m) = H,(K’, I..) and let
(17.3) fiHu(m) > Ho(m), = @:Am— An

be the homomorphisms induced by ¢ and a. Consider the diagram
*
'K, A B HK 4) P HEK, A)
Um | ! Um } Um

’ vy f* ry Qx
{Hn(m), Am} —> {Ha(m), Am} < {H.(m), An}
in which {H, A} denotes Hom (H, A) and ¢*, f*, ax , ax are induced by ¢, f, o, @.
Thus
ax(a-¢)* = (aa-c)¥, axh = ah, f*n' = h'f,
where (a-c) € Z"(K, A), h € {H,(m), An}, ' € {H,(m), An}. Let (c1, -, cor)
be the canonical basis for C"(K’), in terms of which u.,, , operating on H*(K’, A),

is defined and let f, ¢* etc. also denote the corresponding maps of chains and
cochains. Let

Y =ai-ci+ - + agocyr e ZNK', A).

Then ¢*y' = a{-d:*c{ + .-+ aémb*cél . Let y = airci+ -+ ag-cq. Then it
follows from (17.2) that
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{un(@*y*)}2x = {un(®*y')*}2x
=4 (¢*ci)z}ai(m)
= Zi(ci f2)ai(m)
(Umy*)f2x
{F*(umy'*)} 22
{um(asy®)}2x = Zi(ciz) (aas)(m)

= Z;(cz)aai(m)
a{ (umy®)zs}

{ax(uny™)}2x .

Therefore
(17.3) Und* = [FUm,  Umox = Bxlim .
Now let K, K’ be simply connected and, as before, let
I, = Hyy, T(H)) =Ty, H(H)={H,H),

with the analogous identifications in K’. Let ¢: K — K’ and a:4A — A’ mean the
same as before and, returning to the notation used in Chapter I, let

b:H, — Hy = H;(0),  b(m):Hi(m) — Hi(m)
g:Ts — Ty = T'(Hy), @am):Tsm — Tim

be the homomorphisms induced by ¢. It follows from (17.3) and (16.22) that
the diagram

{H3, Hs} 5 {Ha, H3) g s, Ha
pl Ip iy
HYK', T3) &, HY(K,T;) <3 HYK, Ts)
Uml Jtm Lt

(Him), Tom} 2™ (Hym), Tym} & (H,(m), To.m)

is commutative, where hse = he:H; — H,, b*' = ¢'h for every e ¢ {H;, H,}
¢’ ¢ {H;, Hy} and the two bottom layers are the same as before, with n = 4,
A = I';and a = g. Since h*(1) = h = b« (1) it follows that

{ump(1)}H(m) = h(m)*ump(1) = unph*(1)
= Umphs(1) = g(m)sunp(1)
= g(m)unp(1).

We also have b(m)h(m) = g(m)b(m), according to (3.6).



A CERTAIN EXACT SEQUENCE 95

Therefore
(17.4) {b(m) — unp(1)}h(m) = g(m){b(m) — ump(1)}.

Let K’ be any simply connected complex, let K = K’ and let ¢:K — K’
be the identical map. Then §(m) is onto and it follows from (17.4) that Theorem
19 is true of K’ if it is true of K. Therefore we need only consider complexes of
at most four dimensions.

Let K’ be any complex of the same homotopy type as K and let ¢:K — K’
be a homotopy equivalence. Then g(m) is an isomorphism and it follows from
(17.4) that Theorem 19 is true of K if it is true of K’. Therefore we may replace
K by any complex of the same homotopy type. Therefore we may take K to be
a reduced, 4-dimensional complex, as defined in [3].

Let K be a reduced, 4-dimensional complex. Then

K =¢duédu --- ueg, K*=Kuéu--- veueu--- uel,
where ¢! (i = 1, ---, ¢) is attached to K* by a map, S — &, of degree o’
and & (A = 1, --- , 1) is a 3-sphere attached to ¢. Obviously Z,(K) = Cy(K)-
Moreover we may assume that o; | ¢4 in which case (¢ -+, ¢?) is a canonical

basis for Cy(K), where ¢’ is represented by a homeomorphism S* — &} . Let
zeZy(K) andlet (¢, - - - , ¢,) be the basis for C*(K), which is dual to (c, -+, .
Then

ze = (c)ck + - + (c2)ck .
Therefore it follows from (17.1), withm = 0,n = 2, H*(H,) = {H,, Ha}, o = 1
and a; = c%, that

(ke -+ + ckc)*ze = 25
Therefore (ck-¢c; + -+ + ck-c)* = 1.

Since K is reduced we have pr = ¢ u ¢ for any ¢ ¢ C*(K), according to (10.1)
in [3]. Therefore it follows from (16.13) that
p(1) = (S pe; + 2 eociucy)*

1<7
= (Z eij-c; U Cj)*
isS7
where e* = v(ck), € = [c% , ¢}]. Also it follows from (14.1) in [3] and (17.2) above,
with » = 4, A = T; that
(17.5) b(m)ze = E {(c:u cj)z}e(m)

157

= {umz (€¥-¢c; u c)*}ex
157

= {ump(1)}zs .

Therefore b(m) = u.p(1) and the proof is complete.
Let K be without 2-dimensional torsion, so that H® and H, are free Abelian
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groups of the same rank. Subject to this condition, G. Hirsch ([19]) has given
a very elegant expression for the kernel, G, of the natural homomorphism

‘Ks(K) — H 3.
Let S be the group of symmetric homomorphisms, f: H* — H, , which is defined
at the end of §5 above, with A = H,, A* = H®. Let 2z« ¢ Hy and let f,: H* — H,
be given by

f£* = c*n 2z (c* € HY).
Then f, ¢ S and a homomorphism, u:H,; — 8, is defined by pzx = f.. Hirsch’s

theorem states that G =~ S/uH,. We give an alternative proof of this.
Let ¢f, --- , cf be a basis for H*. Then it follows from (5.13) and (5.12) that

A:S = Ty, where N
N = 2 (cifei)e”,

i5i
and from (17.5), with m = 0, that
bz = ,;’ {ci(cf nzx)}e Z (cif.ci)e”
= )\}z = Au2x
Therefore b = Ap and it follows that A induces an isomorphism
S/uHy ~ T3/bH, .

Therefore Hirsch’s theorem follows from the exactness of Z(K).

Let us discard the condition that m(K) = 1 but let K be without (n — 1)-
dimensional torsion for some n = 2. We take 4 = = H,(0) and use u; to
identify H"(H,) with the additive group of the ring of endomorphisms of H,
It follows from (17.1), with m = 0 and a; = 2%, that H"(H,) operates on H
according to the rule

ezx = (C2)2x + -+ + (c2)d%,

where e = (2%-¢1 + -+ + 2%-c)*. Let &:H"(H,) — H"(H,) be the endomorph-
ism, which is induced by a given endomorphism e’:H, — H, . Then

(Ee)zs = (€'Zx-c1 + -+ + €'Z%-co)*2«
= (ce)e'zx + -+ + (ci2)e'z%
= ¢'(ezy).

Therefore &’¢ = e’e. Let g(e) be the endomorphism of H™{T'(H,)} which is in-
duced by Te:T'(H,) — T'(H.). Then it follows from (16.22), with f = &, g = g(e),
that

pe = p&(1) = g(e)p(1).

Therefore p: H*(H,) — H*"{T'(H,)} is determined by the correspondence
e — g(e)
together with p(1).
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18. The calculation of =,(K)

We return to the sequence
I H4—f—,> 1‘3—1> H3L)H3—>O.

We make the same identifications, I, = H, and I'(H,) = T'; as before. We also
identify each ¥ € I's/bH, with iy € ;T3 = @, say, where

i rs/bH4 ~ @G

is the isomorphism induced by i; . Then i; becomes the natural homomorphism
T 3 > G

The group II; is an extension of H; by G. Let II; be an equivalent extension.
Then there is a homomorphism, j;:II; — H;, and an isomorphism, f:II; ~ I ,
such that

fg=g, i::‘f= i3) (geG'),

whence j;(0) = {37'(0) = G. Let . be thesequence which is obtained from =,
on replacing j;: II; — H; by i; :II; — H; . Then F:3, &~ T.isa proper isomorph-
ism, where F consists of f:II; =~ II; and the identical automorphisms of the
other groups. Therefore Z, is determined, up to a proper isomorphism, by the
groups H;, H;, H,, the homomorphism b:H, — TI'(H,) and the cohomology
class in H*(H; , @) which determines the equivalence class of the extension IT; .

Now let m(K) = 1 and let K be a finite complex. Then H; = T 4 B, where
T is the torsion group and B is free Abelian. Let T, - -- , T, be cyclic summands
of T, whose orders, 71, -+ , 7, , are the coefficients of 3-dimensional torsion.
Since B is free there is a homomorphism, i*: B — II; , such that j;j*b = b for each
b € B. Therefore II; is the direct sum

I; = I3 + i*B,

where TI; = ;7. Thus II; is an extension of T by @ and the equivalence class
of II; is obviously determined by that of I3 .

Let (¢!, --- ,¢% ¥, -+ ,¥) be a canonical basis for C, such that dd = nd,
dy* = 0 where I;Z ¢ H; generates T . let d €ji'2, @ = ksa'e II; . Then

i = Qskia® = Lj:d® = L2
Therefore 2* ¢ TIS and 2" is a representative of 2.
Since j3(8c' — nd') = d¢* — nZ' = 0 we have
B — nd = v € T(H,).

Let ¢ = —iyy' € G. Then nz* = ksna' = —ksy' = ¢ Therefore the equivalence
class of I3 is uniquely determined” by g¢'(r1), - -+ , g°(7»), Where g(n) e G, is
the residue class containing ¢.

 See §16 of [12].
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It follows from the definition of b(m) that
b(n)ck = 7'(n) € T(Ha),
where cx is the homology class, mod. n , which contains ¢". Therefore
g(n) = —t(n)b(n)ck,

where i3(n): T'(Hz)r, — G, is the homomorphism induced by 1i; . Therefore the
equivalence class of II3 is determined by b, which determines @, and by

b(Tl)) ) b("P);
which determine g'(ry), - - - , g%(7p).
Since b(m) = ump(1l) the sequence Z,(K) is determined, up to a proper iso-
morphism, by the groups

H, ) H; ’ H4(m)) H4{P(H2)} (m =0,71, ", 7?)1

the element p(1) ¢ H*{T'(H,)} and the family of homomorphisms u, . If K is
a (finite) simplicial complex all these items can, theoretically, be calculated by
finite constructions.”
Let n > 2,1let K = K" be (n — 1)-connected and let us make the natural
identifications
I‘|n+1 = Hn/QHn = Hn(2)

so that 6 = 1 at the end of §14 above. Then Theorem 19 has an analogue, namely
Theorem 4 in [5], which states that b,,2(2) is the dual of the Steenrod homo-
morphism ([24])

Sqn_a:H"(2) — H"*(2).

Further light is thrown on the calculation of =,:(K) in forthcoming papers by
S. C. Chang and P. J. Hilton. Chang defines certain numerical invariants, called
“secondary torsions”, which can be calculated constructively if K is given as a
simplicial complex. An analysis which is similar to, but rather simpler than the
one above, shows that Z,..(K) is determined, up to a “proper” isomorphism, by
the Betti numbers and torsions of K, together with the secondary torsions de-
fined by Chang.

CHAPTER V. THE SEQUENCE OF A GENERAL SPACE

19. The Complex K(X)

Let P be any (geometric) simplicial complex, which may be infinite but which
has the weak topology. That is to say, every (closed) simplex in P has its natural
topology and a sub-set of P is dosed provided it meets each simplex in a closed
sub-set of the latter. By a local ordering of the vertices of P we shall mean an
ordering, o(c"), of the vertices of each simplex, ¢” € P, such that, if ¢" " is a
face of ¢", then 0(¢"™") is the ordering induced by o(¢™). Let such an ordering

4 This does not mean that we have found a finite algorithm for deciding whether or no
Z4(K) = Z4(K'). Some of the difficulties in this question, even when K, K’ have no torsion,
are indicated on p. 88 of [3].
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be given. Let the simplexes of P be divided into equivalences classes by an
equivalence relation, =, such that

a) o] = o} impliesr = s,
(19.1) b) if " = 7", where " = vo - Vn, T = Wo --- w, and the vertices

v: , w; are writlen in their correct order, then vy - -+ v;, = Wiy -+ - W;

r r

for each sub-set 0 = 10 < 12 < +-- 4 = n.
Let h(s", ¢™):6" — 7" be the order preserving barycentric map (onto) for every
pair of simplexes ¢", 7" € P. Let p;, p: be points in P. We write p, = p; if, and
only if, there are equivalent simplexes, o7 , o3 € P, such that p; e 6 — o7 and
ps = h(o3 , 67)p1 . Obviously p1 = pe is an equivalence relation. Let K be the
space whose points are these equivalence classes of points in P and which has
the identification topology determined by the map k:P — K, where kp is the
class containing p.

Lemma 3. K is a CW-complex, whose cells are the sets k(s" — o™), for each
stmplex, ", of P.

First assume that the following supplementary conditions are satisfied:

a) v % v if v, v are distinct vertices of the same simplex of P
(19.2) b) if " =wo -+ vy, T = Wo - W, and if v; = wj; foreacht =0, -,
n, then ¢ = 7".

Let « be the cardinal number of the aggregate of classes kv, for each vertex,
v € P. Let kv — e(kw) be a (1 — 1) correspondence between the aggregate {kv}
and a set of basis vectors, {e}, in a non-topologized vector space, A, of rank
a (Cf. [25]). Then a simplicial complex, L, with {e} as the aggregate of its vertices,
is defined as follows. Let ¢, --- , e, be any finite sub-set of {e}. Then the
rectilinear simplex, e, -+ - e, < A, is a simplex of L if, and only if, there is a
simplex vy - - - v, € P, such that e; = e(kv;) Z = 0, - -+ , n). We give L the weak
topology.

Let ¢® = vy « + - v, be a given simplex of P. Then it follows from the definition
of L that e(kv,) - - - e(kv,) is a simplex in L. Therefore a simplicial map,1:P — L,
is defined by Iv = e(kv), for each vertex v e P. Since P has the weak topology it
follows that 1 is continuous. Notice that, in consequence of (19.2a), the map
1| ¢" is non-degenerate. Let p = ¢, where p, ¢ are points in P, and let
o'n=vooaov”’ T"=w0.'.wn
be the simplexes of P, whose interiors contain p, g. Then ¢” = 7" and it follows
from (19.1b) that kv; = kw, , for each ¢ = 0, - - - , n. Therefore 1o" = 17", Also
g = h(+", ¢")p and the map h(s", ¢"), likewise 1| ¢” and 1| 7" are barycentric.
Therefore Ip = lg. Therefore the map Ik:K — L is single-valued. Since K
has the identification topology determined by k the map Ik is continuous.*

Similarly it follows from (19.2) that kI™:L — K is single-valued. It is ob-
viously continuous in each simplex of L, and hence throughout L, since L has

44 See §5 of [6].
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the weak topology clearly (lk™)kI™ = 1, (kI™)Ik™" = 1. Therefore kI-! is a
homeomorphism onto K. Therefore K is a simplicial complex, with the weak
topology, whose cells are the interiors of the simplexes kI '(Ic") = ke¢", for each
simplex, ¢” ¢ P. This proves the lemma, subject to the conditions (19. 2).

Now assume that (19. 2a) is satlsﬁed and let P’ be the derived complex of P,
in which each new vertex is placed at the centr01d of its simplex. We deﬁne a
local ordering in P’ by placing the centroid of ¢" after the centroid of ¢™ if
m < n. The equivalence relation between the simplexes of P induces a similar
relation between those of P’, in such a way that the equivalence classes of
points are unaltered. Also it may be verified that the equivalence relation in P’
satisfies both (19.2a) and (19.2b). Therefore kP’ is a simplicial complex and
K = kP is a “block complex”, in which the blocks are the sub-complexes of
kP', which cover the sets ke”. It may be verified that K is a CW-complex, with
the combinatorial structure described in the lemma.

Finally let P be general. Then the induced equivalence relation between the
simplexes of the derived complex, P’, obviously satisfies (19.2a). Therefore the
induced equivalence relation between the simplexes of the second derived com-
plex of P satisfies both (19.2a) and (19.2b). Again it is easily verified that K is a
CW-complex, with the structure described in the lemma. This completes the
proof.

We now proceed to the definition of K(X). Let v, be the origin and v; the point
(h,t, --- ) in Hilbert space, R*, where t; = 1 and ¢, = 0if 7 4. Let vy, vy, - - -
be ordered so that »n < »h41and let A" C R” be the rectilinear simplex v - - - v, .
Let f:A* — X be a given map and let (f, A") be the rectilinear n-simplex, whose
points are the pairs (f, r), for every point 7 ¢ A®, and whose topology and affine
geometry are such that the map r — (f, r) is a barycentrlc homeomorphism. If
¢’ is any face of A™ we shall denote the corresponding face of (f, A™) by (f, ¢%).
We emphasize the fact that (f,7) # (f/, r) if f, f': A" — X are different maps, even
if fr =f'r. Also (f,r) % (g,r)if r e A" " andg = f | A"™. Therefore no two of the
simplexes (f, A™), (g, A™) have a point in common.

Let P(X) be the union of all the (disjoint) simplicial complexes (f, A™), for
every n 2 0 and every map f:A" — X. We give P(X) the weak topology, which
makes each (f, A™) both open and closed in P(X). The simplexes of P(X) are the
simplexes (f, ¢"), where ¢" is any face of A". The ordering v, v;, - - , v, , for
each n > 0, and the maps » — (f, r) determine a local ordering in P(X). Let
(f, ¢°) and (g, ) be faces of (f, A™) and (g, A™). We define (f, ¢*) = (g, ) if,
and only if, s = j and®

fla" = (| Hn(", o).
It is easily verified that this is an equivalence relation and it obviously satisfies
(19.1). Therefore a CW-complex, K(X) = kP(X), is defined as in Lemma 3.
Notice that K(X) is uniquely determined by X. Notice also that fr = f7’ if
k(f, r) = k(f/, r’), though the converse is not necessarily true.

4 h(r?, o%) will always mean the order preserving, barycentric map, ¢ — 7%, onto r*.
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Let S(X) be the abstract singular complex of X, as defined in [16]. Any n-cell,
s" € S(X), has a unique representative map,” f(s"):A" — X. It is obvious that
the correspondence s” — k{f(s"), A"} determines an isomorphic chain mapping
of S(X) onto K(X), when the latter is treated as an abstract complex.

Let ¢: X — Y be a given map into a space Y. Then a map, K¢:K(X) — K(Y),
is obviously defined by

(Kd’)k(f, ’I') = k(d’f: 'l"),
where k: P(Y) — K(Y) is defined in the same way as k:P(X) — K(X). More-
over the correspondences X — K(X) and ¢ — K¢ determine a functor T — Iy,
where T and T, are the topological categories of all topological spaces and all
CW-complexes.”

20. The maps « and A,

It is obvious that a (single-valued and continuous) map, x:K(X) — X, is
defined by «k(f, r) = fr. Let ¢:X — Y be a given map. Then

ok(f, r) = ¢fr = k{(Ko)k(f, )},

where k:K(Y) — Y is defined in the same way as k:K(X) — X. Therefore
k is natural in the sense that

(20.1) ok = kKo.

Let @ be any simplicial complex with the weak topoldgy and with a local
ordering of its vertices. Let ¢:Q — X be a given map. Then a map, \,:Q — K(X),
is defined by

(20.2) Mg = k{(@ | a")h(a", A"), K(A", o")g}

for each point ¢ € @, where ¢" is any simplex of @, which contains q. Obviously
K\s = ¢. Moreover, if @, is a subcomplex of @, with the local ordering induced
by the one in @, and if ¢ = ¢ | Qo, then

(20.3) Mg = Mo | Qo.

Let 6:Q — L be an isomorphism of @ onto a simplicial complex, L, with the weak
topology. Let L have the local ordering which makes 8 order preserving in each
simplex of Q. Let ¢:L — X be a given map. Then it may be verified that

(20.4) R,pa = NO:Q g K(X)

46 Strictly speaking the unique representative of s* is the pair (f(s*), 0,), where o, is our
fixed ordering of the vertices v, , - , va. Eilenberg has communicated to me a simplified
definition of S(X), to be used in a forthcoming book with N. E. Steenrod, in which a cell
of S(X) is simply a map f:A" — X and its faces are the cells (f | o%)h(o*, A%), for each face,
at, of A",

47 Notice that K¢ maps each cell of K(X) homeomorphically onto a cell of K(Y). There-
fore T — i maps T into the category of complexes in which the mappings are of this
restricted sort.
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Let Q* be any simplicial subdivision of @ and let a local ordering be defined
in Q*, which is independent of the one in Q. Let ¢*:Q* — X be a given map and
let A}« be defined in the same way as \,, but in terms of Q* and the local order-
ing in Q*.

LEMMA4.If¢§¢*then>\4,u>\Ia .

Let L = Q X I, let 6y, 67 be the maps of Q into @ X 0, @ X 1, which are
given by 6g = (g, 0), 61¢ = (g, 1) and let Q, , @ be the triangulations of Q X 0,
Q X 1 which make 6, , 67 isomorphisms. Then L is a polyhedral complex, which
consists of the simplexes in Qo , QF and the convex prisims ¢” X I, for every
simplex, ¢" € Q. Let v(¢™) = (g, 1), where ¢ is the centroid of ¢", and let L’ be
the triangulation of L, which is defined inductively by starring each ¢" X I from
v(e™) as centre, taking ¢™ X I before ¢" X I if m < n. We define a local ordering
in I’ by giving Qo , Qf the local orderings which make 6, , 67 order preserving
and placing v(c") after all the vertices of L', which lie on the boundary of 6" X I.

Let ¢:L' — X be a map such that ¢(g, 0) = ¢q, ¥(q, 1) = ¢*¢. Let \p:L' —
K(X) be defined in the same way as \,. Then it follows from (20.3) that A
determines a homotopy Ay,f0 =~ A5167 , where ¥ = ¥ | Qo ,¥1 = ¥ | QF . Since
¢ = Yobo , ¢o* = Y1 67 the lemma follows from (20.4).

Let p, u':Q — K(X) be given maps.

TueoREM 21. If ku =~ k', then p ~ p'.

We first show that, in the presence of Lemma 4, this is equivalent to

(20.5) Bo Ay

For ku = k), . Therefore (20.5) follows from Theorem 21 with p’ = A, . Con-
versely, if ku ~ xu’ it follows from (20.5) and Lemma 4 that p o~ A\, o Ay =~ o',
Therefore Theorem 21 is equivalent to (20.5). We shall prove (20.5).

Let K = K(X). Though K is not a simplicial complex we shall describe p:Q —
K as simplicial if, and only if, it can be defined as follows. Let a barycentric map

0(c™):e" = P(X),

onto a simplex of P(X), be defined for each simplex ¢” € @ in such a way that
the (simplicial) map u:Q — K is single-valued, where pg = k8(¢")g if ¢ € o”.
Since u | ¢ is continuous and @ has the weak topology it follows that p is con-

tinuous.
Let the simplex 6(¢")¢" be d(¢")-dimensional, let j = d(¢") and let

p(e™) = k(A% 0(c™)e™0 (c) 6™ — A7,
where ¢'(¢"):6" — 6(¢")o" is the map induced by 6(¢"). Let
8(c™)e" = (9(c™), of) C P(X),
where ¢ C A%, for some & = j, and let
f@@™) = (g(e™) | (ol , A): A7 > X.

Let o™ be any face of ¢" and let u(c™)oe™ = of C A’. Since u:Q — K is single-
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valued it may be verified that ¢ = d(¢™) and that

(20.6) a) t("") | o™ = th(o} A.'.)u'(a"')
b) (f(c") | 61 = f(e™h(A’, o1),
where 1101 — A’ is the identical map. Also (f(c™), &) = (g(¢™), o), whence

(20.7) ug = k(f(e™), n(e™)q) (g ed™).

Conversely, given u(c"):¢" — A%, f(¢™):A” — X, satisfying (20.6), for each
o" € Q, a simplicial map p:Q — K is defined® by (20.7).

We shall describe the simplicial map p as non-degenerate if, and only if,
d(¢") = n for each ¢" ¢ Q. Let this be so and let u(¢"), f(¢") mean the same
as in (20.6). Then we can order the vertices of each simplex ¢" € Q so that u(c")
preserves order. It follows from (20.6a) that we thus define a local ordering in
Q and from Lemma 4, with @* = @, ¢* = ¢ = ku, that we lose no generality in
assuming this to be the one by means of which A,, is defined. Then

p(@”) = (A", 6",  xu|d" = f(a")u(e"),

in consequence of (20.7). Therefore it follows from (20.2) and (20.7) that p =
A . Therefore the theorem will follow when we have proved that a given map,
Q — K, is homotopic to a non-degenerate, simplicial map Q* — K, where @*
is a simplicial sub-division of Q.

Let P” be the second derived complex of P(X). Then K” = kP” is a simplicial
sub-division of K, as shown in the proof of Lemma 3. Let §;::P” — P(X) be the
canonical homotopy in which o = (1 — t)v + t5w, where v is any vertex of
P”, 5p is treated as a vector and dw is the last vertex of the simplex of P(X),
which contains v in its interior. Obviously 8,p = &’ if p = p’. Therefore* a
homotopy, p:: K” — K, is defined by p:k = ké,. Clearly p;: K” — K is simplicial.

Let uo:Q — K be a given map. By Theorem 36 on p. 320 of [7] we have po =~ p; ,
where u;:Q — K is simplicial with respect to K” and some simplicial sub-division,
Q*, of Q. Then py ~ pu: . The resultant of simplicial maps, @ — L — K, is
obviously simplicial, where L is any simplicial complex with the weak topology.
Therefore pu; is simplicial and it follows that we lose no generality by assuming
that the given map p:Q — K is simplicial.

Let u be simplicial and let u(¢™), f(¢") mean the same as in (20.6). Let

p*(@") = (A", 6"),  f*(") = f(e")u(e")h(a", A").
Let o7 = u*(¢™)e™ where o™ is any face of ¢". Then
u*(@™) | ™ = h(A", 6") | ¢ = th(aT, o)
= th(eT, A")u*(™),

where ;o7 — A" is the identical map. Let ¢i = p(¢")e™ C A",

4 When p is thus defined it is to be understood that u(sn)e® = Ai(j = d(¢™)) and that
t = d(o™) in (20.6).
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Since h(s", A™)eT = ¢™ we have
™) | o = fe™u(e"h(s", A™) | oT
= {f(e"u(e™) | e"}h(™, oT)
= {f(e") | o1}w'h(s™, oT),
where y':6™ — o} is the map induced by u(c™). It follows from (20.6a) that
B = h(ai, A (™).
Hence, and from (20.6b), we have
F*@™) | of = f(e™h(A", eD)h(ai , Au(a™h(a™, oT)
= f(e™)u(e™)h(s™, o7)
= f(e™)n(@™)h(a™, A™)h(A™, oT)
= f*(e™h(A", o7).

Therefore the families of maps p*(¢"), f*(¢™) satisfy (20.6) and a non-degenerate,
simplicial map, p*:Q — K, is defined by

#*q = k(*(o"), w*(e")q) (qed™).

Finally we prove that p ~ p*. Let uo, - - , u, be the vertices of ¢", written
in their correct order. Let j = d(¢™) and let

vo(e™), n(e™)ie” — ATt
be the barycentric maps which are given by
vo(0™)ta = u(o")Ua y (6" Ua = Vjj14a (@=0,---,n).

Let »:(c™)g = (1 — &)wol(o™)g + tn(a")g, for each g € ", where 0 < ¢ < 1 and
v:(o™)g is treated as a vector in A", Let p(¢™): A" — A’ be the barycentric
retraction which is given by

p(a") | A7 =1, p(e"Wisrsa = w(o")ua (@=0,-,n)
and let F(¢") = f(o")p(c™): A" — X. Let
0:(c™):6"” — P(X)
be the homotopy which is given by
(20.8) 8:(c™)g = (F(o™), v(a™)q) (g ea™).

I say that a homotopy, u::Q — K, of po = p into w3 = u* is given by ug =
k0.(¢™)q. This will follow when we have proved that

(20.9) k0;(c™) = pi| 0" (z=0,1)

and, since @ has the weak topology and k6;(¢") is continuous throughout ¢", for
each ¢" ¢ Q, that u, is single-valued. The fact that u, is single-valued will follow
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when we have proved that
(20.10) k6.(¢™) = kO,(c") | ™

where ¢” is any face of ¢". .

Since vo(c™)g = p(c")g (g e ¢™) and F(¢") | A’ = f(o") it follows from (20.7) and
(20.8) that ko(¢") = p|o". Let A7 = vjpq ++- vjgnpa. Then u(c™)h(c”, AT)
and k(A7 , ") are the maps induced by p(¢") and »(¢"). Therefore

F(e™) | AT = f(e")u(e™)h(a", A7)
= f(e")u(e")h(c", A™)R(A", AT)
= f*(e")h(A", AT)
n(e™)g = k(AL , o")g (ged)
= h(AT , AMR(A™, o™)q
= h(A7 , A")u*(a")g.

Hence it follows that k6,(¢”) = p*| ¢" and we have proved (20.9).
Let

3
0" = Upy t ot Upa 01 = Vg *°* Vg (ra < Tat1; 88 < Sp41)

s+m+1
Veg **° Usgljititrg *** Vjtlirm = O1 .

Then p(c™)oi™™* = u(6™)e™ = oi. Let p':0i™™ " — o} be the map induced
by p(¢"). Then it follows from (20.6a) that

(™) R(A™™, o1 ™ Y0 h14r
= p(e™Wis11a = I‘(o'm)uf.
= h(A’, eDu(e™ur, = h(A%, 61)p"vj114n, -

Therefore
h(A%, o1)p’ = p(a™h(A™H, o™ H)

and it follows from (20.6b) that
F@™) | ai™™™ = {f(e™p(e™)} | ™"
{f(e™) | o1}o’
= f(e™h(4’, a1)p’
= f(@™p(e™A(AT™, ot
= F(e™h (A7, o1t m ),
Therefore (F(s™), ai™™?) = (F(s™), A™™M). Also

h(a’;‘, A‘)vﬂ = v., = h(a_;:+m+l’ Ai+m+1)vﬁ (B é 1:).
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Therefore
vo(o™)ur, = u(e™)y, = h(oi, AMu(o ™)y,

- h(di+m+l, Ai+m+l)vo(am)ur¢

n(@™ry = Vigaer, = @i, A (6™, .

Therefore »,(c")g = h(sit™", A" )y, (¢™)q if q € o™ This proves (20.10) and
hence the theorem.
Let ¢ ~ ¢’:X — Y, where Y is any space. Then it follows from (20.1) that

kK¢ = ¢k ~ ¢’k = kK¢'.

Therefore K¢ ~ K¢', by Theorem 21. Therefore {K¢} is a single-valued func-
tion of {¢}, where {¢} denotes the homotopy class of a map ¢. It may be verified
that the correspondences K — K(X), {¢} — {K¢} determine a functor of the
homotopy category of all spaces into the homotopy category of CW-complexes.

21. The sequence X(X).

There is a unique map, f: A’ — X, such that A’ is a given point in X. There-
fore k | K°(X) is a (1-1) map onto X, whence kK (X) = X. Since K(X) is locally
contractible, according to (M) in §5 of Cu I, each of its components is arcwise
connected. Therefore each component of K(X) is mapped by k into a single
arc-component of X. Let Ko(X), Ki(X) be given components of K(X) and let
i e Ki(X), z; = ke} (i = 0, 1). If o, x;, are in the same arc component of X
there is a map, f: A' — X, such that fo; = z;. Then k(f, A") is a 1-cell in K(X),
whose extremities are ) , ey . Therefore K¢(X) = K;(X) and k maps precisely
one component of K(X) onto a given arc-component of X.

Let X be arcwise connected and let a 0-cell ¢’ ¢ K°(X) and the point zo = e’
be chosen as base points in K(X) and X.

THEOREM 22. k.7, {K(X)} & mn(X) for every n = 1, 2, -+, where k, 1s in-
duced by k.

Let ¢: (A", A®) — (X, zo) be a map which represents a given element
a € m(X). Since ¢A° = 2o we havee® = k(p | A’, A°) and A\,A° = ¢’. Therefore
Ns: A" — K(X) represents an element ay € m,{K(X)}. Since ¢ = kA, we have
a = Kqao . Therefore k, is onto.

Let u:A™™ — K(X) be a map which represents a given element ao € x, (0)
and let u’ be the constant map A" — ¢, Since k.00 = 0 we have ku ~ k'
Therefore p ~ u’ by Theorem 21. Therefore ay = 0 and Theorem 22 is proved.

It follows from (20.1) that the isomorphisms k, are natural with respect to
the homomorphisms induced by maps ¢: X — Y and K¢, where Y is any arcwise
connected space.

We recall from CH I that X is dominated by a CW-complex, L, if, and only if,
there are maps ¢: X — L, ¢:L — X, such that y¢ ~ 1.

TaeoreM 23. If X is dominated by a CW-complex then k:K(X) = X.

This follows from Theorem 22 and Theorem 1 in CH 1.
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Let X be itself a CW-complex. Then it follows from Theorem 23 that « in-
duces a proper isomorphism

(X)) = ZJ(KX)} (¢ £ =),

which is natural in consequence of (20.1). If X is an arbitrary, arcwise connected
space we choose base points e e K'(X), k" ¢ X and define Z,(X) as Z{K(X)}.

The complex K(X) can also be used to extend the domain of definition of
other invariants from CW-complexes to arbitrary spaces. For example the n-type
of X may be defined as the n-type of K(X). The same applies to the injected
groups discussed at the end of §11.

APPENDIX A. ON SPACES DOMINATED BY COMPLEXES

We have seen, in Theorem 23, that any arcwise connected space, X, which is
dominated by a CW-complex, is of the same homotopy type as some CW-
complex® K. Let A:X = K and let k:K — X be a homotopy inverse of \. Let
AX C K, where K, is a sub-complex of K, let Ao: X — K, be the map induced by
A and let ko = k| Ko. Then koo = kX =~ 1. Therefore X is dominated by Ko .
If X is compact, so is AX. Therefore AX C K, , where K, is a finite sub-complex
of K, by (D) in §5 of Cu L. Therefore X is dominated by a finite CW-complex.

THEOREM 24. An arcwise connected space, X, which is dominated by a CW-
complex with a countable aggregate of cells, is of the same homotopy type as some
locally finite polyhedron.

By Theorem 23, k:K = X, where K = K(X). Let \:X — K be a homotopy
inverse of k. Let ¢:X — L, ¢:L — X be such that y¢ ~ 1, where L is a count-
able CW-complex. Then

AW = wh: X > K,

where up = MW:L — K. Let €" be any cell of L. Since pé&" is compact it is con-
tained in a finite sub-complex of K. Since L is countable it follows that wL
and hence p¢X, is contained in a countable sub-complex, Ko C K. Since ub o~ X
we have up:X = K and we may replace X by up. Thus we assume to begin
with that AX C K, .

Let p:: K — K be a homotopy of po = Ak into py = 1. Then there is a count-
able sub-complex, K; C K, such that p.Ko C K, for the same reason that
uL C K, . By repeating this argument we define a sequence of countable sub-
complexes Ko, K1, - -+ , such that p;K, C K,41. The union of the complexes
K, is a countable sub-complex, K*, such that A\XX C K* and p.K* C K*. There-
fore N*k* ~ 1 (in K*) and k*\* = K\ ~ 1, where \*: X — K* is the map induced
by A and k* = k| K* Therefore \*:X = K*. But K* = P, where P is a locally
finite polyhedron, by Theorem 13 in CH I. This proves Theorem 24.

It follows from Theorem 24, and the remarks which precede it, that any
compact space which is dominated by a CW-complex, and in particular any
ANR compactum, is of the same homotopy type as some locally finite poly-

# This may be proved more directly by a construction of the sort used in [8].
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hedron. We leave open the question whether or no it is of the same homotopy
type as a polyhedron of finite dimensionality.

ArPENDIX B. ON SEPARATION COCHAINS
Let X, X’ and Y C X, Y’ C X’ be given topological spaces and let
An = m(X, yo), Co = (X, Y, y0) (n 2 2)

’

An = m(X, y0), Cn = m(X', Y, 0),

where yo , 4o are base points in Y, Y Let

jida—Co, AN —Ch,
be the injections and let

%A, > A, hK:C,—C.

be the homomorphisms induced by given maps

$, ¢ (X, Y, y0) > (X', Y', ).
Let ¢ |Y = ¢’ | Y. Then ¢, 4" determine a separation homomorphism,

A= Al,¢"):Co— A,

which is defined in the same way as Eilenberg’s separation co-chain, except

that attention must be paid to the base points. The purpose of this section is to
prove that .

a) [h—1 =44
®0 SRV s
We recall the definition of A. Let Ef , E; be “Northern” and “Southern”
hemispheres on an n-sphere, S, and let S™* be the “equatorial” (n — 1)-sphere.
Let I" C R" be the n-cube, which is given by 0 < &, -+-, t, < 1,
where #;, - -+, t, are Cartesian coordinates for R". Let 6;:E} — I" be fixed
homomorphisms (onto), such that 6, | S*™ = 6,| S™™. Let E? be oriented by
means of the map 6;' (# = 1, 2) and let 8™ take its orientation from E7 . Thus,
taking orientation into account,

(B2) Et =E7 =8""' S"=E'—-E}.

We shall use maps of I" and of the (oriented) n-elements E7 , E to represent
elements of homotopy groups, both absolute and relative. We shall also use
maps of S" to represent elements of absolute homotopy groups. Let
o= (3,0, ---,0)el" It will be convenient to take p, and 6;'po as base points
in I" and S™.

Let A:(I", I", po) — (X, Y, yo) be a map representing a given element ¢ € C,,.
Then Ac € A, is the element represented by \(¢, ¢°):8" — X’, where

M, ¢")g = ¢Nbig if ¢ ¢ BT
= ¢'Mag if g ¢ Bf .
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Obviously Ac is unaltered by a homotopy of the form
A (In) I”) po) - (X1 Y; yo)-

Therefore it does not depend on the choice of the representative map A.

Any pair of elements ¢, ¢/ ¢ C, may be represented by maps, A\, N:I" — Y,
such that

A, ooy te) = Yo ifty <3
N, -y ta) = Yo if, = §,
and ¢ + ¢ by A*:I" — Y, where
N, ooy ta) =N, -+, 1) ifty 2 %
=N, -, ta) ift, < 3.

Then Ao, O)E; = yo, N, ¢")Er = 4o, where Ej , Ef C 8™ are “Western”
and ‘“Eastern’” hemispheres, and

2*(¢, 4°)

A (@, ¢) in E¢
= N($,¢) in Ep .
Hence it follows that A(c + ¢’) = Ac + Ac’. Therefore A is a homomorphism.
Let by € 7,(S™) and b; € m,(S", 8" ") be the elements which are represented

by the identical maps S — 8" and E{ — S" (z = 1, 2). Then it follows from
(B2) that :

by — by = j*bo,

where j*:7,(8") — 7.(S", 8"7) is the injection. On carrying this relation into
X’ by means of the homomorphism

(87, 877 — m(X', V),

which is induced by (¢, ¢°), we have (Bla).
Let A:(I", I™) — (X, yo) be a map which represents a given element a ¢ 4, .
Then Ao, ¢")S™™ = y, and fa, f°a are represented by the maps

Ao, ) | BT, Ao, 9) | E: .

Since 8» = Ei — E; the map \(¢, ¢°) represents fa — f’a. But \ also repre-
sents ja and \(¢, ¢°) represents Aja. This proves (Blb).

REFERENCES

1. J. H. C. WurteneAD, The secondary boundary operator, Proc. Nat. Acad. of Sci., 36
(1950), 55-60.

2. J.H. C. WaiTEHEAD, Combinatorial homotopy I and IT, Bull. Amer. Math. Soc., 55 (1949),
213-45 and 453-96.

3. J. H. C. WHITEHEAD, On simply connected, 4-dimensional polyhedra, Comm. Math.
Helv. 22 (1949), 48-92.

4. J. H. C. WHITEHEAD, On adding relations to homotopy groups, Ann. of Math., 42 (1941),
409-28.



110 J. H. C. WHITEHEAD

10.

11.

12.
13.
14.
15.
16.
17.

18.
19.

20.
21.

25.

. J. H. C. WrIiTEHEAD, The homotopy type of a special kind of polyhedron, Annals de la

Soc. Polon. de Math., 21 (1948), 176-86.

. J.H. C. WHITEHEAD, Note on a theorem due to Borsuk, Bull. Amer, Math. Soc., 54 (1948),

1125-32.

. J. H. C. WHITEHEAD, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc.,

45 (1939), 243-337.

. J. H. C.WHITEHEAD, On the realizability of homotopy groups,Ann. of Math., 50 (1949),

261-3.

. SAUNDERS MacLANE and J. H. C. WHITEHEAD, On the 3-type of a complex, Proc. Nat.

Acad. of Sci., 36 (1950), 41-48.

S. EILENBERG and SAUNDERs MACLANE, General theory of natural equivalences, Trans.
Amer. Math. Soc., 58 (1945), 231-94.

S. EILENBERG and SAUNDERs MacLaNE, Determination of the second homology and
cohomology groups of a space by means of homotopy invariants, Proc. Nat. Acad.
of Seci., 32 (1946), 277-80.

S. EILENBERG and SAUNDERs MACLANE, Cohomology theory of abstract groups I, Ann.
of Math., 48 (1947), 51-78.

SaunNpERs MAcLANE, Cohomology theory of abstract groups III, Ann. of Math., 50
(1949), 736-61.

S. EiLENBERG, Topological methods in abstract algebra, Bull. Amer. Math. Soc., 55
(1949), 3-37.

S. EILENBERG, Cohomology and continuous mappings, Ann. of Math., 41 (1940), 231-51.

S. EILENBERG, Singular homology theory, Ann. of Math., 45 (1944), 407-47.

A. L. BrakErs, Some relations between homology and homotopy groups, Ann. of Math.,
49 (1948), 428-61.

S. LEFscHETzZ, Algebraic topology, New York (1942).

G. HirscH, Sur le troisiéme groupe d’homotopie des polyédres simplement connezes.
C. R. Acad. Sci. Paris, 228 (1949), 1920-2.

HassLer WHITNEY, Tensor products of Abelian groups, Duke Math. J., 4 (1938), 495-528.

HassLer WHITNEY, Relations between the second and third homotopy groups of a simply
connected space, Ann. of Math., 50 (1949), 180-202.

. R. H. Fox, Homotopy groups and torus homotopy groups, Ann. of Math., 49 (1948),

471-510.

. G. W. WHITEHEAD,On spaces with vanishing low-dimensional homotopy groups, Proc.

Nat. Acad. Sci., 34 (1948), 207-11.

. N. E. SteENROD, Products of cocycles and extensions of mappings, Ann. of Math., 48

(1947), 290-320.
W. Hurewicz, J. Dugunpsi and C. H. DowkEeRr, Continuous connectivity groups in
terms of limit groups, Ann. of Math., 49 (1948), 391-406.

MaGpALEN COLLEGE, OXFORD.



