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1. The Sequence S(K). Let Hn = Hn(K) be the nth homology group of
a complex' K and let

Hn = Hn(K) = 7n(K) rn = rn(K) = in.7rn(K"-l)
where in: irn(K"-1) irn(Kn) is the injection (n > 2). Then a sequence of
homomorphisms

S(K): H l >rn iIn Hn r

terminating with H3 0 -> II2 H2 -> 0, is defined as follows. in is the
natural homomorphism and In = int r,,, where in': 7rn(K) H> 1n is the
injection. We assume that Hn is defined as

Hn = Zn - dn+1Cn+l (n.> 3),
where Cn = rn (K", K"1), Zn = dn1- (0) C Cn and d+1:C.+, > Cnis the
resultant of the boundary homomorphism, # n+:C,,+, -> 7rn(K"), followed
by the injection jn:rn(Kn) -> Cn. Let z e Zn+,. Sincejn,#,+lz = 0 it
follows from the exactness of the homotopy sequence of K"n-, Kn that
3n+lZ e rn. Also /n+1dn+2 = 0, since in+1Jnl+ = 0. Therefore fn+1 Zn+
induces a homomorphism, bn+i:Hn+i-> r., which is the one in S(K).
THEOREM 1. The sequence S(K) is exact.2
Let m > 4 and let

Sm(K) Hm > rP,-mi>.*
be the part of S(K) which begins with Hm. We write S. (K) =S(K)
thus defining Sm(K) for m < co.

By a homomorphism (isomorphism)3
F.= (4,,f):Sm(K) ->Sm(K'), (1.1)

where K' is a given complex, we mean a family of homomorphisms

llx+l Hn+l-> Hn+1% lan:rn ->rn II fn: Hn >In'

such that lbk = gix, ig = f11 -if = li, where b :Hn+1' -- rn', etc., are the
homomorphisms in S(K'). Let iK be any category4 of (simply connected)
complexes and homotopy classes of maps K -> K', for every pair of com-

plexes K, K' e K. Let Im be the category in which the objects and map-
pings are the sequences, Sm(K), and all homomorphisms, Sm(K) * Sm(K')I
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for every pair K,K' e 7S.Then a homotopy class of maps, K K',
induces a unique homomorphism, Sm(K) > Sm(K'), in such a way as to
determine a functor N m #M. Thus Sm(K) is a homotopy invariant and
a fortiori a topological invariant of K. If a given homomorphism,
F:Sm(K) > Sm(K'), is the one induced by a map, q5:K K', we shall
describe qb as a geometrical realization of F.
THEOREM 2. Let dim K, dim K' L m. Then 4:K = K' if gb induces an

isomorphism F:Sm(K) ;t Sm(K').
This follows at once from Theorem 3 in CH I.
Let X: S -> S2 be a map which represents a fixed generator of i3r(S2) and

let ,: S2 -> K2 represent a given element a e II2. Then puX:SI >K2 repre-
sents an element X1(a) e r3. We shall describe equation (1.1) as a proper
homomorphism (isomorphism) if, and only if,

O3X(a) = X(f2a), (1.2)

for every a e. I12. Let equation (1.1) have a geometrical realization 4:K
K'. Then equation (1.1) is a proper homomorphism because 4(MAX) =

THEOREM 3. Let dim K L 4. Then any proper homomorphism, S4(K)
S4(K'), has a geometrical realization, K -> K'.
We now anticipate the definition of r(A) in §2 below and consider a

purely algebraic (exact) sequence

S4: H4 -> r -> 113i . . H2 > o,
in which the (Abelian) groups are arbitrary except that

o: r(12) P r3, r2 = 0.

The isomorphism 0 is to be included as a component part of S4. Let S4',
with groups H,+1t, Ir.,, 1,', be a similar sequence. A proper homomorphism
(isomorphism), S4 -> S4', shall mean the same as before, with equatioi
(1.2) replaced by the condition

0.3o = 00:1r(112) -> rI3,
where 0 means the same in S4' as in S4 and

:Fr(112) ->r(II2')
is the homomorphism induced by f2:112 -> I2'. By a geometrical realization
of S4 we shall mean a complex, K, such that S4(K) is properly isomorphic
to S4.
THEOREM 4. The sequence S4 has a geometrical realization, which is
(a) at most 4-dimensional ifH4 isfree Abelian,
(b) afinite complex if each of 112, Ha and H4 has afinite set of generators.
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Theorems 2, 3 and- 4 show that S4(K) can be used to replace the more
complicated "extended" cohomology ring5 of K. Moreover they apply
to infinite complexes and hence to universal covering complexes. There-
fore it seems reasonable to hope that these theorems, in conjunction with
the cohomology theory of abstract groups, may lead to similar theorems
in case 7ri(K) $ 1.

2. The Group r1(A). Let A be an additive Abelian group and let wA
be any aggregate which is in a (1-1) correspondence, w:A -> wA, with
A. We define an (additive) group, r(A), by means of the symbolic
generators w(a) e wA and the relations

w(a) =w(-a) (2.1la)
w(a + b + c) - w(b + c) - w(c + a) - w(a + b) + w(a) +

w(b) + w(c) = 0, (2.1b)

together with the "trivial relations," w(a) - w(a) 0. On writing
a = b = c = 0 in (2.1b) we have w(0) 0. Hence it follows from (2.1b),
with b = 0, that r(A) is Abelian. Let b = (n - 1)a, c = -a (n > 1).
Then it follows from equation (2.1) and induction on n that w(na) -
n2w(a).

Let 'y(a) be the element of r1(A) which is represented by w(a) and let

[a, b] = Ay(a + b) - 'y(a) - -y(b).
Then, given that addition is commutative, equation (2.1b) expresses the
fact that [a, b] is bilinear in a and b.

Let A be free Abelian and let I ai } be a set of free generators of A. Then
r(A) is freely generated by the elements y(a1), [aj, ak], for every a,
and every (unordered) pair of distinct elements aj, ak e ai }.
Let A, generated by a,, be a finite, cyclic group of order m. Then

r(A) is generated by y(a1) and is of order m or 2m, according as m is odd
or even.

Let A be the weak direct sum of a set of groups {A }. Let r be the weak
direct sum of the groups r(Aj) and the tensor products A1oAk, for every
A1 and every (unordered) pair of distinct groups, A1, Ak, in the set {AJ
Then r1(A) 2r.

It follows that, if A is finitely generated, so is r1(A). Moreover the rank
and invariant factors of r(A) can be calculated from those of A and con-

versely. Also a = 0 if [a, a'] = 0 for every a' eA. Therefore the pairing
(A, A) -> r(A), in which (a, a') = [a, a'], is orthogonal.

It follows from the form of the relations (2.1) that a homomorphism
f:A -- A', into an additive Abelian group A', induces a homomorphism,
g:1r(A) -> r(A'), which is given by g-y(a) = y(fa). If A admits a group,
[I,, as a group of operators, so does r(A), according to the rule xy = -yx(x
IHI).
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Let A = H2(K) and let X(a) mean the same as in equation (1.2). Then
X(a) = X(-a) and"

X(a + b) -X(a) -X(b) = [a, b],

where [a, b] e rs(K) is the bilinear product, or commutator,7 of a and b.
Therefore the relations (2.1) are satisfied when w and = are replaced by
X and =. -Therefore a homomorphism, 6: r(112) -÷> r3, is defined by
6ly(a) = X(a).
Let (11, 0, f) Sm(K) Sm(K') be a proper homomorphism and let

0: r(II2) -> r(III2') be the homomorphism induced by f2. Then it follows
from equation (1.2) and the relations 0y = -yf2, 6y = X, that

60 = 030:1r(112) -> r3l, (2.2)

where o: r(1I2') -> r3' is also defined by 6y = X. In particular let HI be a
group of homomorphisms of K onto itself (e.g., the covering group if K
is a covering complex). Then each xe II1 induces a proper automorphism
x: Sm(K) st Sm(K) and it follows from equation (2.2) that 6 is an operator
homomorphism.
THEOREM 58 6:(r(113)#2 3.
3. r (A) and Cohomology. Let X be any topological space and let

H"(G) be the Cech cohomology group of X, which is defined in terms of the
nerves of all finite open coverings, with G as the (discrete) group of coeffi-
cients (we could equally well take closed coverings). We define the cup-
product, a u i eH2n{Lr(A) }, of elements a-,HeH"(A), by means of the
pairing (a, b) -* [a, b], where a, b eA.
THEOREM 6. Let n be even. Then there is a natural homonorphism,

h:rI{H"(A)} H2n {r(A)},

such that h[a, 1] = a u b for any pair It* et H"(A).
We write hy = P :H'(A) -> i2n r1(A) I and call pa the Pontrjagin square

of t e 1"(A) (n is even). We have

p(a+ b) = pa + ph + a u, 2 pa =aU. (3.1)

Thus - a u lb is a factor set, which measures the error made in supposing
P to be a homomorphism. Let g: r (A) rF(A') be the homomorphism
induced by a homomorphism, f:A -- A', into an additive Abelian group
A'. Then f, g induce homomorphisms

fn:HM(A) -*HM(A'), g2n : f2l I r(A) HH2n{r(A)} (3.2)

such that Pfn = g2,p_ IfX is a finite polyhedron and if A is cyclic of even
order, then P is the same as in "SCP."

Let X = K and let Im be the group of integers, reduced mod. m. Let
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H,(m) = Hn(K, Im), Am = A - mA (m 2 0).

Then the pairing (A, I",) -> Am, in which (a, 1) E Am is the residue class
containing a e A, determines a homomorphism

u"(m):1"(A) Homr {IP(m), A,}. (3.3)

If K has no (n - 1) dimensional torsion u"(0) is an isomorphism (onto).
Now take A = H. and let K be without (n -l)-dimensional torsion.

Then

un(O) :H(Hn) ; Hom (H,,, H.)
and we identify each element a e H1(H1) with u"(0)lt. Thus H"(H1)
becomes the additive group of the ring, En, of endomorphisms of H,
Letf"(e), g2"(e) denote]f, g2n in equation (3.2) when A = A' = H. andf =
e f EE. Then it follows from the way in which e induces f"(e) that f"(e)e'
= ee' (e' e En). Since Pf" = g2"lp we have

P(ee') = g2,(e)pe', Pe = g2"(e)P(M) (3.4)

where 1 e E. is the identity. Thus P is determined by the map e -g2"(e)
and by p(1).
Now let K be a finite (simply connected) complex of arbitrary dimen-

sionality. We make the natural identification 112 = H2 and, using Theorem
5, we identify each 'y e r((H2j with o7 e r3. Also K has no 1-dimensional
torsion and we identify each It e H2(H2) with u2(O)a e E2. Then equation
(3.3), with n = 4, A = r3, becomes

u(m) = u4(m) :H4(r3) -- Hom {H4(m), r3, m}.

The homomorphism y: C4(K) -> r3, which is defined on page 85 of "SCP,"
induces what we call the secondary modular boundary homomorphism,9

h(m) e Hom.JH4(m), rs, m}

and 6(0) is the same as t4 in S4(K).
THEOREM 7. h(m) = u(m)P(M) (m > O).
4. The Calculation of S4(K). The group 19s, in S4(K), is an extension

of H13 by G = r- bH4 and S4(K) is determined, up to a proper isomor-
phism, by H2, H3, H4, the homomorphism b4 and the element of,H2(H1, G)
which determines the equivalence class of the extension I1g. Let K be a

finite, simplicial complex. Then it will be shown how these items may be
calculated (constructively) with the help of Theorems 5 and 7. This
construction does not provide a finite algorithm for deciding whether or

not S4(K) is properly isomorphic to S4(K'). Some of the difficulties
inherent in this question are indicated on page 88 of "SCP."
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5. An2-polyhedra. Let 7rr(K) = 0 for r = 1, .. ., n - 1, where n > 2.
In this case we may identify Fn+1 with'0 Hn(2) and bn+2 determines a homo-
morphism, (2) :Hn+2(2) -> Hn(2), which is the dual of" Sqn-2:H`(2) >
HJ+2(2). The structure of In+2, as an extension of I,,+, by H,(2), is
determined by 11(2). Thus Sn+2(K) is determined, up to a proper isomor-
phism, by the co-homology system H(K), or by the analogous system of
homology groups,'2 in which 11(2) plays the part of Sqn-2*

All our complexes will be simply connected CW-complexes, as defined in §5 of J.
H. C. Whitehead, "Combinatorial Homotopy I," Bull. Am. Math. Soc., 55, 213-245
(1949). This paper will be referred to as CH I.

2 In the light of this theorem a Jmcomplex, K, as defined in CH I, is seen to be one
such that n:wr(K) t H.(K), if n < m, and 'm+j is onto, where K is the universal cover-
ing complex of K. This, and the other theorems stated here, will be proved in a paper
which is to appear in the Annals of Mathematics.

3 An isomorphism will always mean an isomorphism onto.
4 Cf. Eilenberg, S., and MacLane, Saunders, "General Theory of Natural Equiva-

lences," Trans. Am. Math. Soc., 58, 231-294 (1945).
6 See Whitehead, J. H. C., "On Simply Connected, 4-Dimensional Polyhedra,"

Comm. Math. Helvetici, 22, 48-92 (1949). This paper will be referred to as "SCP."
6 See equation (7.3) in Whitney, Hassler, "Relations Between the Second and Third

Homotopy Groups of a Simply Connected Space," Ann. Math., 50, 180-202 (1949).
7 Cf. Fox, R. H., "Homotopy Groups and Torus Homotopy Groups," -Ibid., 49,

471-510 (1948).
8 Cf. Hirsch, G., "Sur le troisieme groupe d'homotopie des polyderes simplement

connexe," C. R. Acad. Sci. Paris, 228, 1920-1922 (1949), in case K is finite and without
2-dimensional torsion. Hirsch's representation of r3 - 13H4 can be obtained from
Theorem 5 and Theorem 7 below.

I In the forthcoming paper t1(m) is defined more generally and is shown to be natural.
10 See Whitehead, J. H. C., "The Homotopy Type of a Special Kind of Polyhedron,"

Ann. Soc. Polonaise Math., 21, 176-186 (1949); also Whitehead, G. W., "On spaces
with vanishing low-dimensional homotopy groups", Proc. Nat. Acad. Sci., 34, 207-211
(1948).

11 Steenrod, N. E., "Products of Cocycles and Extensions of Mappings," Ann. Math.,
48, 290-320 (1947).

12 See a forthcoming paper by P. J. Hilton.
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If p is a prime of the form 3f + 1, the diophantine equation 4p = a2 +
3b2 has a unique solution in a and b with a = 1(mod 3) and b 0(mod 3).
About forty years ago von Schrutkal derived the formula a = 1 + 43(4),
where Xt(n) is the Jacobstahl sum defined by
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