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1. The Sequence S(K). Let H, = H,(K) be the nth homology group of
a complex! K and let

o, = I,(K) = m(K) Tp=Ty(K) = i,m(K*™Y),
where 4, :7,(K" ™) — m,(K") is the injection (> 2). Then a sequence of
homomorphisms

i | S { i b i
SK): ... > Hyy;, »T,» N, >H,—»T,1—> ...,

terminating with Hy; — 0 — II, = H,; — 0, is defined as follows. §, is the
natural homomorphism and ¥, = 3,’ |T,, where 4, :m,(K*) — II, is the
injection. We assume that H, is defined as

Hn = Zn - dn+1Cn+1 (nZ 3):

where C, = 7, (K", K*™), Z, = d,”" (0) € C,and d,4,:Cyq;1— Cuisthe
resultant of the boundary homomorphism, B,4;:C, 41— 7,(K"), followed
by the injection j,:m,(K*) — C,. Let 2 € Z,4+,. Since j,B,415 = 0 it
follows from the exactness of the homotopy sequence of K*~!, K* that
Bu412 € Ty.  Also By 418,42 = 0,since B, 41 4s+1 = 0. Therefore 8,4, | A
induces a homomorphism, 8, ;: H, ., — T, which is the one in S(X).

THEOREM 1. The sequence S(K) is exact.?

Let m > 4 and let

Sn(K): Hyy > Ty — ...

be the part of S(K) which begins with H,. We write S (K) = S(K),
thus defining S,(K) form < .
By a homomorphism (isomorphism)?

F = (h: g, f) Sm(K) - Sm(K'): (1.1)
where K’ is a given complex, we mean a family of homomorphisms
l‘,n+!.:1:In-l—1_> Hn+llr gnzrn i P,.', fn:nn - Hn,

such that bl = ghb, i = i, if = hi, where b:H, ;' > T/, etc., are the
homomorphisms in S(K’). Let & be any category* of (simply connected)
complexes and homotopy classes of maps K — K’, for every pair of com-
plexes K, K’ ¢ K. Let #,. be the category in which the objects and map-
pings are the sequences, S,(K), and all homomorphisms, Sp(K) = Sn(K"),



56 MATHEMATICS: J. H. C. WHITEHEAD Proc. N. A. S.

for every pair K, K’ ¢ . Then a homotopy class of maps, K — K’,
induces a unique homomorphism, S,(K) — S,(K’), in such a way as to
determine a functor X — 8, Thus S,(K) is a homotopy invariant and
a fortiori a topological invariant of K. If a given homomorphism,
F:Sp(K) — Sn(K'), is the one induced by a map, ¢:K — K’, we shall
describe ¢ as a geometrical realization of F.

THEOREM 2. Letdim K,dim K" £ m. Then ¢:K = K’ if ¢ induces an
isomorphism F:S,(K) = S,(K').

This follows at once from Theorem 3 in CH I.

Let \:S% — 5% be a map which represents a fixed generator of 73(S?) and
let u:S? — K? represent a given element @ ¢ II,. Then u\:S?* — K? repre-
sents an element A(a) e '5. We shall describe equation (1.1) as a proper
homomorphism (isomorphism) if, and only if,

B\ (a) = Afa), 1.2)

for every a eIl,. Let equation (1.1) have a geometrical realization ¢: K —
K’. Then equation (1.1) is a proper homomorphism because o(pN) =
(@,

THEOREM 3. Letdim K £ 4. Then any proper homomorphism, Sy(K) —
S«(K"), has a geometrical realization, K — K'.

We now anticipate the definition of I'(4) in §2 below and consider a
purely algebraic (exact) sequence

b i i [ b
Ss: H—->T;—>I;— ... "'>H2—>0,
in which the (Abelian) groups are arbitrary except that
0!1‘(112) = T, Ty =0.

The isomorphism 0 is to be included as a component part of S;. Let Sy,
with groups H,,.,", I',/, I1,/, be a similar sequence. A proper homomorphism
(isomorphism), Sy — Sy, shall mean the same as before, w1th equation
(1.2) replaced by the condition

8,0 = 08:T(Ily) — T/,
where 6 means the same in S,’ as in .S, and
B:I(I;) — I'(II;")

is the homomorphism induced by §;:1I, — II,". By a geometrical realization
of S, we shall mean a complex, K, such that S4(K) is properly isomorphic
to S..

THEOREM 4. The sequence S, has a geometrical realization, which is

(@) at most 4-dimensional if H, is free Abelian,

(b) a finite complex if each of Hy, Hy and H, has a finite set of generators.
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Theorems 2, 3 and 4 show that S,(K) can be used to replace the more
complicated ‘“‘extended’” cohomology ring® of K. Moreover they apply
to infinite complexes and hence to universal covering complexes. There-
fore it seems reasonable to hope that these theorems, in conjunction with
the cohomology theory of abstract groups, may lead to similar theorems
in case m(K) # 1.

2. The Group T(A). Let A be an additive Abelian group and let w4
be any aggregate which is in a (1-1) correspondence, w:4 — wA, with
A. We define an (additive) group, I'(4), by means of the symbolic
generators w(a) ewA and the relations

w(a) = w(—a) (2.1a)

wie+b+c¢) —wb+c) — wic+ a) —wa+ b + we) +
w(b) + w(c) =0, (2.1b)

together with the ‘‘trivial relations,” w(e) — w(e) = 0. On writing
a =b=c=0in (2.15) we have w(0) =0. Hence it follows from (2.15),
with & = 0, that I'(4) is Abelian. Let b = (n — 1)g,¢c = —a (n > 1).
Then it follows from equation (2.1) and induction on # that w(na) =
n2w(a). ,
Let y(a) be the element of I'(4) which is represented by w(a) and let
[a, 8] = v(@a+ b) — v(a) — v(®).

Then, given that addition is commutative, equation (2.15) expresses the
fact that [a, b] is bilinear in ¢ and b.

Let A be free Abelian and let {a,} be a set of free generatorsof A. Then
T'(4) is freely generated by the elements v(a,), [a; a,], for every a,
and every (unordered) pair of distinct elements a,, a, € {a,}.

Let A, generated by @i, be a finite, cyclic group of order m. Then
I'(A4) is generated by y(a:) and is of order m or 2m, according as m is odd
or even.

Let A be the weak direct sum of a set of groups {4,}. LetT be the weak
direct sum of the groups I'(4,) and the tensor products 4,04,, for every
A, and every (unordered) pair of distinct groups, 4,, 4,, in the set {4,}
Then I'(4) ~ T.

It follows that, if 4 is finitely generated, so is T'(4). Moreover the rank
and invariant factors of I'(4) can be calculated from those of 4 and con-
versely. Alsoa = 0if [a,a’] = Oforeverya’eA. Therefore the pairing
(4, A) — T'(4), in which (a, a’) = [a, a’], is orthogonal.

It follows from the form of the relations (2.1) that a homomorphism
f:A — A’, into an additive Abelian group 4’, induces a homomorphism,
g:T'(4) — T'(4"), which is given by gy(a) = y(fa). If A admits a group,
1I,, as a group of operators, so does I'(4), according to the rule xy = yx(x
€ H1).
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Let A = II;(K) and let A\(a) mean the same as in equation (1.2). Then
AMa) = M(—a) and®

Ma + ) — Ma) — Mb) = [a, b],

where [a, b] e I'5(K) is the bilinear product, or commutator,” of a and b.
Therefore the relations (2.1) are satisfied when w and = are replaced by
)\ and =. Therefore a homomorphism, 6:T'(Il;) — T4, is defined by
6v(@) = A\a).

Let (h, B, ):5,(K) — Sx(K’) be a proper homomorphism and let
B:T(II;) — I'(Ily") be the homomorphism induced by f,. Then it follows
from equation (1.2) and the relations By = v, 6y = ), that

08 = B,6:T(IT;) — Ty, (2.2)

where 6:T'(II,') — T4’ is also defined by 6y = A. In particular let Il bea
group ‘of homomorphisms of K onto itself (e.g., the covering group if K
is a covering complex). Then each x e II, induces a proper automorphism
2:Su(K) = Sp(K) and it follows from equation (2.2) that 6 is an operator
homomorphism.

THEOREM 5.8 6:T'(Il;) = T,

3. T(A) and Cohomology. Let X be any topological space and let
H,(G) be the Cech cohomology group of X, which is defined in terms of the
nerves of all finite open coverings, with G as the (discrete) group of coeffi-
cients (we could equally well take closed coverings). We define the cup-
product, 8 U k eH”‘{I‘(A) }, of elements &, b ¢ H*(4), by means of the
pairing (a, b) — [a, b], where a, be 4.

THEOREM 6. Let n be even. Then there is a natural homomorphism,

h:T{H"(4)} - H*{T(4)},

such that h[&, B] = a u B for any pair 8, b e H*(4).
We write by = B:H"(4) — H™ { r4) } and call P& the Pontrjagin square
of &8¢ H*(A) (n is even). We have

pa4+b)y=patphiravh, 2pa=ava. (31

. Thus — &V b js a factor set, which measures the error made in supposing

P to be a homomorphism. Let g:T'(4) — I'(4’) be the homomorphism
induced by a homomorphism, f:4 — A’, into an additive Abelian group
A’. Then f, g induce homomorphisms

f*:H"(4) > H*4"), ¢":H*"{T)} > H"{r4"} (3.2

such that Pf* = g*p. If X is a finite polyhedron and if 4 is cyclic of even
order, then ¥ is the same as in “SCP.”
. Let X = K and let I,, be the group of integers, reduced mod. m. Let
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Hym) = Hy(K, I), Am=A—mA (m>0).

Then the pairing (4, I;) — A,, in which (@, 1) e 4,, is the residue class
containing a € A, determines a homomorphism

u*(m):H*(A) — Hom {H™(m), An}. (3.3)

If K has no (» — 1) dimensional torsion %®(0) is an isomorphism (onto).
Now take 4 = H, and let K be without (» — 1)-diménsional torsion.
Then v

u"*(0):H*(H,) =~ Hom (H,, H,)

and we identify each element & ¢ H"(H,) with »"(0)8. Thus H"(H,)
becomes the additive group of the ring, E,, of endomorphisms of H,.
Let f*(e), g*" (e) denote f*, g* in equation (3.2) when4 = A’ = Hyand f =
eeE, Then it follows from the way in which e induces f"(e) that f*(e)e’
= ee’ (¢’ ¢ E,). Since Pf* = g""P we have

Plee) = g"(@Pe’, Pe=g"(P1), (34

where 1 ¢ E, is the identity. Thus ¥ is determined by the map e — g™*(e)
and by B(1).

Now let K be a finite (simply connected) complex of arbitrary dimen-
sionality. We make the natural identification Il = H, and, using Theorem
5, we identify each v e T'(H,) with 6y eT;. Also K has no 1-dimensional
torsion and we identify each & ¢ H2(H,) with #?(O)& ¢ E;. Then equation
(3.3), with n = 4, A = T'5, becomes

u(m) = u*(m):H*T3) — Hom {H4(m), T, ,,.}.

The homomorphism # : C4(K) — T's, which is defined on page 85 of “SCP,”
induces what we call the secondary modular boundary homomorphism,®

b(m) e Hom{H4(m), Ts, m}v

and B(0) is the same as b, in Si(K).

THEOREM 7. B(m) = u(m)P(1) (m > 0).

4. The Calculation of S«(K). The group II3, in Sy(K), is an extension
of Hy by G = T3 — BH, and Sy(K) is determined, up to a proper isomor-
phism, by H,, H;, H,, the homomorphism b, and the element of H%(H;, G)
which determines the equivalence class of the extension Il;. Let K be a
finite, simplicial complex. Then it will be shown how these items may be
calculated (constructively) with the help of Theorems 5 and 7. This
construction does not provide a finite algorithm for deciding whether or
not Sy(K) is properly isomorphic to Si(K'). Some of the difficulties
inherent in this question are indicated on page 88 of “SCP.”
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5. A,-polyhedra. Letm(K) =0forr=1,...,n — 1, wheren > 2.
In this case we may identify I, ;, with'® H,(2) and h,,+2 determines a homo-
morphism, 8(2):H,,(2) — H,(2), which is the dual of!! Sg,_,:H"(2) —
H"+2(2). The structure of II,,,, as an extension of H,; by H,(2), is
determined by B(2). Thus S, 4,(K) is determined, up to a proper isomor-
phism, by the co-homology system H(K), or by the analogous system of
homology groups,'? in which B(2) plays the part of Sg,_,.

1 All our complexes will be simply connected CW-complexes, as defined in §5 of J.
H. C. Whitehead, “Combinatorial Homotopy 1,”” Bull. Am. Math. Soc., 55, 213-245
(1949). This paper will be referred to as CH 1.

2 In the light of this theorem a Jycomplex, K, as defined in CH I, is seen to be one
such that §,:7(K) = H,(K), if n < m, and §m+, is onto, where K is the universal cover-
ing complex of K. This, and the other theorems stated here, will be proved in a paper
which is to appear in the Annals of Mathematics.

3 An isomorphism will always mean an isomorphism onto.

4 Cf. Eilenberg, S., and MacLane, Saunders, ‘‘General Theory of Natural Equiva-
lences,” Trans. Am. Math. Soc., 58, 231-294 (1945).

® See Whitehead, J. H. C., “On Simply Connected, 4-Dimensional Polyhedra,”
Comm. Math. Helvetici, 22, 48-92 (1949). This paper will be referred to as “SCP.”

¢ See equation (7.3) in Whitney, Hassler, ‘“Relations Between the Second and Third
Homotopy Groups of a Simply Connected Space,” Ann. Math., 50, 180202 (1949).

7Cf. Fox, R. H,, “Homotopy Groups and Torus Homotopy Groups,” . Ibid., 49,
471-510 (1948). )

8 Cf. Hirsch, G., “Sur le troisieme groupe d’homotopie des polydéres simplement
connexe,” C. R. Acad. Sci. Paris, 228, 1920~1922 (1949), in case K is finite and without
2-dimensional torsion. Hirsch’s representation of I's — MH, can be obtained from
Theorem 5 and Theorem 7 below. -

® In the forthcoming paper B (m) is defined more generally and is shown to be natural.

10 See Whitehead, J. H. C., “The Homotopy Type of a Special Kind of Polyhedron,”
Ann. Soc. Polonaise Math., 21, 176-186 (1949); also Whitehead, G. W., ““On spaces
with vanishing low-dimensional homotopy groups”, Proc. Nat. Acad. Sci., 34, 207-211
(1948).

11 Steenrod, N. E., “Products of Cocycles and Extensions of Mappings,” Ann. Math.,
48, 290-320 (1947).

12 See a forthcoming paper by P. J. Hilton.
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If p is a prime of the form 3f + 1, the diophantine equation 4p = a2 +
3b? has a unique solution in ¢ and b with @ = 1(mod 3) and b = 0(mod 3).

About forty years ago von Schrutka! derived the formulaa = 1 + bs(4),
where ¢,(n) is the Jacobstahl sum defined by :



