Simple Homotopy Types

J. H. C. Whitehead

American Journal of Mathematics, Vol. 72, No. 1 (Jan., 1950), 1-57.

Stable URL:
http://links jstor.org/sici?sici=0002-9327%28195001%2972%3 A1%3C1%3ASHT%3E2.0.CO%3B2-6

American Journal of Mathematics is currently published by The Johns Hopkins University Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://uk jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have
obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://fuk.jstor.org/journals/jhup.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http:/fuk.jstor.org/
Mon Nov 15 06:41:25 2004



SIMPLE HOMOTOPY TYPES.*

By J. H. C. WHITEHEAD.

1. Introduction. This is a sequel to two papers® entitled “ Combi-
natorial Homotopy,” Parts (I) and (IT). It deals with what I have previously
called the “nucleus,” but which will now be called the simple homotopy type
of a complex. It is closely related to parts of [1] and [3] but the treatment
is so different that we shall start again from the beginning.

Let {K} be the class of all (cell) complexes,? as defined in CH (I),
which are of the same homotopy type as a given complex K. Let K/=K
(i.e. K’e {K}) and let ¢: K = K’ be the class of maps which are homotopic
to a given homotopy equivalence, ¢: K =K’. If ¢': K’ = K”, we define ¢'¢
by

Fe=¢'¢: K =K".

It is easily verified that the classes ¢, with this multiplication, form a groupoid,®
@, whose unit elements are the classes 1: K’ =K', for every K’ e {K}, where
1: K’ — K’ is the identical map. Our plan is to analyse this groupoid in
algebraic terms.

First consider the group, Gx C @, which consists of the classes ¢: K = K.
We define an additive Abelian group, T, which depends only on =; (K). The
group T admits Gx as a group of operators and we shall define a crossed
homomorphism 7: Gg — T. We call 7(g) the torsion of a given element g & Gx.
If ¢:K=K’, where K’54 K, we define a class of elements 7(¢) C T,
which we call the torsion of ¢. We describe ¢ as a simple (homotopy)
equivalence if, and only if, r(¢) =0. We say that K and K’ are of
the same simple homotopy type, and shall write K=K’ (3), if, and
only if, there is a simple equivalence ¢: K =K’. It will follow from the

* Received January 18, 1949.

* Bulletin of the American Mathematical Society, vol. 55 (1949), pp. 213-45 and
453-96. These papers will be referred to as CH (I) and CH (II).

2 Until the final section we assume that any given complex is finite' and connected.
We also assume that the points in our complexes are taken from some aggregate, o,
which is given in advance. The power of o shall exceed that of the continuum, so that
it is not exhausted by any one (finite) complex, and the points in Hilbert space shall
be included in o.

2 See [6], p. 132.
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definition of 7(¢) that K=K’ (3) is an equivalence relation. We then
prove that K =K’ (3) if, and only if, K can be transformed into K’ by a
“formal deformation,” which is defined in much the same way as in [1].
Thus the elementary transformations, or ‘“moves,” do not appear in the
definition of simple equivalence but in a theorem which is analogous to
Tietze’s theorem* on discrete groups. Similarly it is proved that two
complexes are of the same n-type if, and only if, they can be interchanged
by elementary transformations of the sort used in [1] to define the “ n-group.”

It was proved in [3] that the Reidemeister-Franz torsion,® when defined,
is an invariant of the simple homotopy type. TUsing this fact, examples
were given of complexes, which are of the same homotopy type but not of
the same simple homotopy type. However, if T =0, then K =K’ (3) if
K=K’. It will be obvious that this is so if = (K) =1. It follows from
Theorems 14, 15 in [11] that T =0 if = (K) is of order 2, 3, 4 or cyclic
infinite.

It is an open question whether or not the simple homotopy typé is a
topological invariant. However we shall prove that it is a combinatorial
invariant in the following sense. If K’ is a sub-division of K, then the
identical map K — K’ is a simple equivalence.® Any differentiable manifold
has a “preferred ” class of triangulations,” any two of which are combi-
natorially equivalent in the sense of Newman. Also any analytic variety has
a preferred class of triangulations,” any two of which have a common sub-
division. Therefore the simple homotopy type has an invariant status in
differential and alegbraic geometry and in the study of analytic varieties.

2. The group T. Let R be a ring with a unit element 1. Eventually
R will be the group ring® of = (K) but here we only assume that, if A
is a free R-module of (finite) rank nm, then any free E-module, which is
isomorphic ® to A4, also has rank n. This condition is equivalent to the

+See [71, p. 46.

5 See [81, [9] and p. 1209 of [3]. In Section 12 below it is shown, in the case of
Lens space, how this is related to our torsion. See also [10].

¢ This may turn out to be a wider definition, even for simplicial complexes, than the
one based on Newman’s “ moves,” or on recti-linear sub-divisions (see [12], [13]). For
example, we do not enquire whether or not the vertex scheme of a given “curvilinear ”
triangulation of an n-simplex is a formal n-element, as defined by Newman.

7 See [2] and [14].

8 By the group ring of a group, I', we shall always mean the integral group ring,
in which the additive group is the ordinary free Abelian group, which is freely generated
by the elements of T.

° A module will always mean a free R-module and, unless the contrary is stated,
a homomorphism will always mean an operator homomorphism.
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condition that every regular R-matrix (i.e. one with elements in R and a
R-sided inverse) is square. Hence it is satisfied if there is a homomorphism,
other than R — 0, of R into a division ring, D. For such a homomorphism
carries a regular R-matrix into a regular D-matrix, which is necessarily
square. If R is the group ring of a group, T, then I'— 1 defines a homo-
morphism of R into the rational field. Therefore the condition of rank
invariance is satisfied.

Let M be the module, of infinite rank, whose elements are the infinite
sequences (71,7, * *) (7:€ R), in which all but a finite number of 7, 75, - -
are zero. The elements in R will operate on M from the left.’® Thus an
operator, r € R, transforms m into rm, where

m= (Ty, 7" * ), rm o= (11y, " * *).

Let m;e M be the basis element which is given by r; =1, r; =0 if j=%41.
Let M» C M be the module generated** by (my,- - -, m,) and M, the one
generated by (Mus1, Mnsz, - * *), where n =0 and M°—=0. Then M is the
direct sum M = M" -+ M, and a given element in M is in M» for some
value of n. We shall describe an endomorphism, f: M — M, as admissible
if, and only if, fm; = m, for all sufficiently large values of +. Iff,g: M —> M
are admissible endomorphisms *2 so, obviously, is fg: M — M and if f: M - M
is an admissible automorphism so is f*. Therefore the admissible auto-
morphims form a group, (.

Let f: M — M be an (admissible) endomorphism and let fm; — m; if
j > p. Let n; be such that fm;e M (1=1,- - -, p) and let n = Max(n,, p).
Then fmiseM® for i=1,---,n and fm;=m; if §j>mn. Therefore
fM» C M, fm =m if meM, We shall write f= (f)*:M — M, and f~
will denote the endomorphism, f*: M» — M», which is induced by f. That
is to say, frm —fm if me M". Notice that (f)»= (f)2 if ¢ > n. There-
fore, if fi: M — M is any finite set of endomorphisms, we may take f; = (f:)*,
for any value of n which is sufficiently large to be the same for each .
Notice also that any endomorphism f’: M»— M* can be extended to a unique
endomorphism, (f)*: M — M, such that f»=#. Obviously f* is an auto-
morphism if, and only if, fe d.

Let f = (f)™ be given by

(2.1) fmi=§1fijmj (fise R).

1% This has the disadvantage indicated by (2.3) below. But the convention m - mr
would be inconvenient in the geometrical application.

11 T.e. generated with the help of the operators in R.

12 Unless the contrary is stated it is to be assumed that any given endomorphism of
M is admissible.
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Then the matrix f= [fi;] is of the form

(2-2) =00

where f* is the matrix of f»: M»— M» and 1, is the infinite unit matrix.
Let g: M — M be given by
gmi = ; giim;.

Since fr = rf, where 7 € R is any operator, we have

(R.3) fgmi = 3 gssfm; = 3 giif jume.

j ik
Therefore fg: M — M corresponds to the matrix gf.
Let g: M — M be given by

(2.4) gmi = m; -+ rmj, gmy, = my (j,k=%~i;reR).

Then g has an inverse, which is given by (R.4), with r replaced by — .
It is therefore an (admissible) automorphism. TLet 3, C (I be the group
generated by all such automorphisms, for all values of 4, 7, r.

Let 4 and B be the modules generated by disjoint sub-sets, mi,, - « -, ms,

and mg, - - -,mj, of the basis elements m;, mo,- - -,. Let h: 4— B be
an arbitrary homomorphism and let g: M — M be given by
(2.5) g(a+0)=a-+4 (ha+0), gmy = my,

where ae A, be B and ls44p or jo. Then g is the resultant of the homo-
morphisms
mi, —> mi, -+ hpo'mj", My —> My (k5% 1p),

where hmi, = hpim;, 4+ - - = hpgmj,. These are of the form (2.4), whence
g €3,
THEOREM 1. 3, s an invariant sub-group of A and A/3, is Abelian.

Let f, fCd. We shall write f=/f if, and only if, f— gf'¢’, where
g, ¢’ C 3;. This is obviously an equivalence relation. Assume that ff'=f’f
for every pair f,7 C (. Let ge3,, and let f'= gf*. Then

foft=gf'f=y.

Therefore fgf-'eS,, whence 3, is invariant in (. Also (/3; is Abelian
since ff/ = f'f for every pair f,f’ C .
We proceed to prove that ff'=ff. Let 4 — M7, let B be the module



SIMPLE HOMOTOPY TYPES. 5

generated by mp.,- - -, may and let g be given by (2.5). Then g — (g)%

and
1, h
29 D
g7 = [0 lﬂ] ’
where h — [hpo] and 1, is the unit matrix of order p. Let f— (f)*e

and let
2p ,f11 f12
=g ]

where fi;, f» are square matrices of order p. Let % and fp (A, u—1,2)
be similarly defined in terms of f'= (f')%. We shall write f»=f?» if,
and only if, f==f. Then

o0 o prger = [ S 1]

Similarly a right hand multiple of the second column may be added to the
first. Also f? = g®f%r, and g*2f*? is obtained from f?» by a similar operation
on the rows. ‘

Let f,f C & be given and let p be so large that

f=(DF= (= F= (1= ()=

Let r=fr, ¥ — f». Then r, r’ are regular matrices. Therefore, beginning
with (2.6), with h=r-" and f replaced by f'f, we have

P-4 4107 51=2 1)
-0 2105 =G =6
[ F1=T7 =

Therefore ff/= f’f and the theorem is proved.

Similarly

Since (/3 is Abelian it follows that (I° C 3, where (¢ is the commu-
tator sub-group of (I. Therefore we have the corollary:

CororraRY. If 3 C (A is any sub-group, which contains 3., then S is
wnvariant and A/3 is Abelian.

The totality of automorphisms (f)?e d, for a fixed value of n, is
obviously a sub-group, (Q)»C (. It follows from Theorem 1 that
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(31)"=3, N (@) is an invariant sub-group *2 of ()" and that (&)»/(3,)"
is Abelian. Let (" be the group of (operator) automorphisms, fr: M» — Mn,
and let ¢: (d)"— (" be given by ¢(f)»=f. Then ¢ is obviously an
isomorphism.** It follows from the invariance of (3;)* in ()" that
3," = ¢(3;)" is invariant in ({» and that 3, is independent of the particular
isomorphism ¢: (A)» = (@ Also Ar/3," is Abelian.

Let A be a sub-group of the multiplicative group of regular elements in
R (that is, elements with two-sided inverses), which contains both = 1.
Let g: M — M be given by

(2.7) gmi = Am; +rmj,  gmg = my (7, k ##1),

where Ae A, re RB. Then ge (I and g~ is given by (2.7) with A, r replaced
by A%, —A'r. Let 3, be the sub-group of (I, which is generated by all
automorphisms of the form (2.7), for évery choice of 4, j, A and 7. Clearly
3, C 3,. Therefore 3, is invariant and T = /3, is Abelian. We shall
keep A fixed and shall write 3, T for 34, T,. The elements of 3 will be
called simple automorphisms. We shall write T additively and =(f) e T will
denote the co-set containing a given fe (.

Our “torsion” will be defined in terms of T. An element of torsion
will correspond to an isomorphism of one module, of finite rank, onto another.
In order to classify such isomorphisms in term of T we need a standard class,
which have “ zero torsion.” We therefore proceed to define a class of ““basic
modules” in M, which are related by a standard class of automorphisms,
called permutations.

By a basic module, A C M, we shall mean the one generated by
Mg, * * +,mg, for any (distinet) values of 4y, - -,4,. We shall call
(Mg, + -, ms,) the basis of A. We allow p =0, in which case the set
(migy, -+ +,mi,) is empty and 4 =DM°. Let p=0 and let Ms be the
module generated by the remaining basic elements, m; 5% mi, of M. Then
M is the direct sum M — A 4+ M4. TLet B be a basic module and let
(mj, -+ -, mj,) be its basis. We shall only allow ourselves to form the
direct sum A +B—=B 4 A, if A()B=0. In this case 4 4 B will be the
basic module, whose basis is

(Mg * * + 5 Mgy Mgy - =+, My,),

13 The example I, on p. 1233 of [3] shows that (Z,)" may be a larger group than
the one which is generated by transformations of the form (2.4), with 4,j=n. I see
no reason to suppose that the latter is necessarily an invariant sub-group of (a)”.

14 An isomorphism, without qualification, will always mean an isomorphism onto.
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not the set of all pairs (a,b), with ae 4, be B. Let O be a given basic
module. Then C =4 + B will always mean that A, B are basic modules,
with disjoint bases, of which € is the direct sum.

Let 41, - -, 4y be any permutation of 1,- - -,n, for any n=1. Let
P: M — M be the automorphism, which is given by

Pmj=my,, Pmy = my (j=1,- - -,n;k>n).

We shall call P a permutation. It follows from (2.7), with A\, r—= =1,
that the transformations

(mi, mj) = (— mq 4 my, mj) = (— mi 4 my, mi) — (mj, ms)

determine simple automorphisms. Therefore Pe3. Let A, B be basic
modules of the same rank and let n be so large that the bases of 4, B are
both contained in M". Then there is obviously a permutation, P = (P)~,
such that PA—=B. The totality of permutations is obviously a sub-group
of d.

Let a: A = A, where A, A’ are basic modules. Since A and A’ have
the same rank, accoording to our condition on R, there is a permutation, P,
such that PA’ = A. Let f: M — M be given by

(2.8) f(a 4+ m) = Paa 4+ m (aed,meMy),

and let r(a) =r(f). Let P’ be any other permutation such that P’A" — 4
and let f* be defined by (2.8), with P replaced by P’. Since P/P*4=A
the permutation P’P~* permutes the basis elements of A among themselves.
Therefore P”: M — M, given by

P’(a-+m) =PPa+m (meMy),

is a permutation. Since Pad = A4, it follows from (R.8) that f' = P"f.
Therefore

7(F) =7(P") + 7(f) == (f).

Therefore =(a) does not depend on the choice of P. We shall describe «
as a simple isomorphism, and shall write «: 4 =~ A’ (3), if, and only if,
r(a) =0. It follows from (2.8) that r(¢) =0 if a=1:4=<A4. In
particular r(a) =0 if 4 =A4"= M".

Let a, P, f, mean the same as in (2.8), let a’: A’ = A” and let P’ be a
permutation such that P’A” = A4’. Then (&) =1(f), v(aa) ==(f"),
where f and f” are given by (2.8) with «, P replaced by o, P’ and by a’z,
PP’. Clearly P*M4= My. Therefore
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Pf'Pf(a+ m) — Pf'P-*(Paa + m) — Pf (aa 4+ P-'m)

=P(P'daa + P'm) = PP'd/aa + m —=f"(a 4 m).
Therefore
7(@a) = 7(PfPf) ==(f) + (f) = (&) + 7().
Since 7(1) =0 it follows that 7(a!) = —r(a).

Let a: A = A’ be the isomorphism induced by a permutation, P’: M — M,
such that P’A — A’. Then f, given by (2.8), is a permutation. Therefore
(@) =0.

Let A,B and 4’, B’ be two pairs of basic modules such that 4 (] B
= A"V B =0. Let y:A -+ B-—>A4’+ B be a homomorphism such that

yB C B’. Then y(a + b) = aa + (ha + Bb), where aa e A’, ha, 3b C B’. It
is easily verified that a: 4 — A4’, h: A— B’, B: B— B’ are homomorphisms.

THuEOREM 2. If either:

(1) vy is an isomorphism ** and either « is an isomorphism into or S
is onto, or if

(ii) @, B are isomorphisms, then a, B,y are all isomorphisms and

T(v) =7(a) +7(8).

Let y:A+B=A’+ B'. If Bb =0, then yb = 8b — 0, whence b = 0.
Therefore B is an isomorphism into. Let a’e A’ be given. Then
aa + (ha + Bb) =vy(a -+ b) =a’ for some ae 4, beB. Since ha -+ Bbe B’
we have aa =a’. Therefore a is onto. Let a: 4= A’ and let b’ e B’ be
given. Then aa + (ha 4 Bb) =10’ for some aeAd, beB. Since age A’
we have aa = 0. Therefore a =0, ha = 0 and fb =1b". Therefore 8 is onto.
Let B: B= B’ and let aa = 0. Then y(a —B*ha) = ag + (ha — ha) = 0.
Therefore a — B*ha=0. Since Btha e B it follows that ¢ = 0. Therefore
a: A=~ A’. Thus @, B,y are isomorphisms if (i) is satisfied.

Let a, 8 be isomorphisms. Then y=y*3, where y*: 4 + B—> A"+ B,
:44+B—>A+ B are given by vy*(a+bd)=aa+4B8b, §(a+b)=0a
+ (Btha +b). Obviously y*, & are isomorphisms and so therefore is y.
Moreover g: M — M is of the form (2.5), where

gla+b+m)—=38(a+1b)+m (meMan).

Let P be a permutation such that PA’—= A4, PB’=B. Let f={f, be
defined by (2.8) and let fg, fy, fy» be similarly defined in terms of B, vy, y*
and the same permutation P. Then fob=1", fga=a and

fv(a+b) = Paa + P(ha + Bb) = fa + fg(B*ha +b) = fafeg (a +- b).
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Since g &3 it follows that
7(y) =7(fy) =7(fa) +7(fo) + 7(9) = (@) + +(B)

and the proof is complete.

CoroLLARY. If any two of @, B,y are simple isomorphisms, so is the third.
Let 0: R = R be an automorphism of R and let s;: M — M be the trans-
formation which is given by

(2' 9) 89(7‘1, To5 " ° ) = (6’)‘1, Ors, - - 1),

Obviously sy = s,7* and sgsp = sg¢, where ¢: B = R. Also sy(rm) = (6r)sym,
where re B, me M. Hence it follows that, if f: M — M is an (operator)
endomorphism, then (syfsp)rm = (0¢1) (ssfsp)m.  Therefore for — rf?
where ff =syfs,™.  Since sym; — m; it follows that ffe @ if fed. Let
g:M — M be given by (R.7). Since sym = m; we have gom;— (O\)m;
+ mj, g®my = my. Therefore ¢ is also of the form (2.7) if OAe A. Clearly
(9192)% = ¢:%¢2? and it follows that ffe 3 if fe 3, provided A C A.

We shall describe 6: B =< R as a A-automorphism if, and only if, A — A.
The totality of A-automorphisms is obviously a group ®. Since ffe3 if fe3
and 6e® it follows that T admits ® as a group of operators, according to
the rule

(2.10) o= (f) ==(f%).

Let ze R be any regular element, not necessarily an element of A, and let
0,r = zrz~. 1 say that

(R.11) Opr =
for each reT. For let fe  be given by (2.1). Then
flemi = 84,2 5fsymj = 3 (afu;27") my.
Let f = (f)* and let g, = (go)": M — M be given by
Go (T * s TayToany s+ ) = (Tay* * ©, Pny Pmny * = ).
Then g,m; = am; if 1 =n. Since fem = afm,
fgomi = zfm, =§1wfwmf =§1 (zfijg™)am; = goffemi (i=1,- - -, n).

Therefore f» — g, f¢, and 7(f%) = —1(gs) + =(f) + 7(92) = +(f), which
proves (2.11).
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Let fe & and let f and f» mean the same as in (2.2). Let g be given
by (2.7) and let g be its matrix. Then gf is obtained from f by the
following operations

(2.12) a) multiplying a row from the left by an element X e A,

b) adding a left multiple of one row lo another, the multiplier
being an arbitrary element re R.

Therefore fe 3 if, and only if, f— 1, by a finite sequence of such trans-
formations. Let f—1, by such a sequence, o1, * +,0p, and let f— (f)~
Then there is a k¥ = 0 such that no row of f, after the (n -4 k)-th is involved
in any of oy, - -,0p. Therefore oy, - -, 0, transform® f* into 1,
where

fro0

fn+k —_

Let R be the group ring of a group I' and let A consist of the elements
=+ v, where yeT. If T' is Abelian, the determinant, |f*|, of fr can be
calculated in the ordinary way. Obviously | f* | is unaltered by (2.12b) or
by an “expansion,” f*— fr* and a transformation of the form (2.12a)
changes |f*| into ==y |f*|. Therefore = |f*|eT if feS. TLet T be
cyclic of order 5 and let y<1. Then (1—y—y*)(1—y>—9?) =1
Therefore f: M — M, given by f(ry, 72,75, + + *) = {ri(1—y—y*), 1oy 15, - *}
is in @, but not in 3. Therefore T=%0. On the other hand it follows from
the theory of integral, unimodular matrices, in case I' — 1, and from Theorems
14, 15 in [11], that T=0 if T is of order 1, 2, 3, 4 or is cyclic infinite.

We continue, until Section 9, without the assumption that R is a group
ring.

3. Chain systems. By a chain system, 0 = {C,}, we shall mean a
family of basic modules, C» C M, together with a boundary operator, § — {4,},
which is a family of (operator) homomorphisms, 8,: C»— C,_y, such that
0101 = 0. For the sake of completeness we define 9,0, — C_, = 0. Each
C», being a basic module, is of finite rank. We do not require O, to be of
rank 1, as we did in section 8 of CH(IT). For example, we allow (', — 0. We
assume that C, =0 for all sufficiently large values of n. If C,— 0 when
n>N=0, but Oys£0, we write N =dim (. We write C — 0, and dim
C=—1,if 0, =0 for every n=0. We insist that C;, () C; =0 if p=£gq
and (' shall be the set-theoretic union of the groups Co, C1,- - . Thus ceC
means that ce €, and ¢ + ¢ is only defined if ¢, ¢/ C O, for some n=0.
Also 9 is a map, 0:C— O, of the set C into itself.
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Until Section 9 we shall only consider chain mappings,*® f: ' — , of ¢
into a chain system, ¢V = {C",}, such that each f:C,— (", is an operator
homomorphism. That is to say, in the terminology of CH (II), f is asso-
ciated with the identical isomorphism, B — B. Thus®® f = {0, fr=rf,
where re R is an operator. Also f==g:0 — ¢ will mean that

(3.1) In— fn = Ons1mner + bn (n=0),

where n= {y.} is a chain deformation operator, and f: (C=.C" will mean
that there is a chain mapping, f': 0" — C, such that ff =1, ff’ =1 in the
sense of (3.1). We shall call f: 0 — (" a simple isomorphism, and shall
write f:C =0’ (3), if, and only if, it is a chain mapping such that
fa: On = C’» (), for each n=0.

Let B, C be given chain systems and let B, = B’y + B"n, Cn = "y + C"n,
where, according to our convention, B’y, B”n, "y, (", are basic modules.
Let f: B— C be a chain mapping such that

Full 1) = b+ (! + Pab") (V e B b7 e B,
for each n =0, where /40" € ("n, gab’, f"ub” C .

Lemyma 1. If any two of {fa}, {f'n}, {f’a} are families of simple iso-
morphisms, so is the third.

This follows immediately from the corollary to Theorem 2.

Let €, = ¢’y + 0"y and let 8C”, C ("5, for each n = 0. Let ¢’ = {C’»}
and let 8 : 0’ — C” be defined by #¢’ = d¢’. Then #?’¢’ = 00¢’ = 0. Under
these, and only these conditions, we shall describe (", with the boundary
operator &', as a sub-system of C. If also 80”7, C 0”y; (n=0), so that
(¢’ +¢")=0¢ + "¢ (¢ eCnc”eC”), then 0” = {C”,}, with boun-
dary operator 87, is also a sub-system. In this case we shall call C the
direct sum, C=C" + 0" =0"+ (', of (" and C”. Let ¢V, C” be given,
disjoint,'” chain systems. Then the direct sum, " 4 C”, will be the system
which consists of the groups €’y -+ 0", with (¢’ + ¢”) =0"¢’ + 9”¢”.
Similarly we define the direct sum of any finite set of disjoint chain systems.

15 At this stage we do not impose any restriction such as fom, = Mm; on f,, where
m, is a basis element of ¢,. For example, ¢ =0 is a chain mapping.

16 We shall often use § to denote the boundary operator in each of two or more
systems, C, ¢’,0”,. . ., which occur in the same context. On other occasions we shall
use 9, 9,9",- - - to denote the boundary operators in C,C,C”,. . ..

17 We describe two or more basic modules, or chain systems, as disjoint if, and only
if, 0 e M is their only common element.
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Let C” be a sub-system of C and let 0, = €’ 4+ C”s. Let ju: Cp—> 0",
and 9”7, : 0"y —> ("n_y be defined by

(3.2) Jn(¢ +¢”) =", 0 n¢” = jn_10nc”.
Then 8”njn = jn-10n, since 90" C 0" and §u_1C’ny — 0. Therefore
a”na”nujnu = anjnaml == jn—1anan+1 = 0;

whence 0”770"”n.y = 0. Therefore 0 = {C",}, with 8” = {0”»} as boundary
operator, is a chain system. We call it the residue system, mod C’, and write
C” =(C — (. Notice, however, that an element in C* is an element in the
basic module C”n, for some =0, not a residue class of elements in C.
Notice also that j = {4.} is a chain mapping, j: C — 0”; also that ¢ — jc e (",
whence

(3.3) dc” — 08"¢” = dc” — joc” e C".

Let B’, ¢ be sub-systems of chain systems B, ¢ and let B” —= B — B,
C”=C—C(". Letf:B— C be a chain mapping such that fB’ C (. Then
f/:B"— (’, given by f'b’ = ft’, is obviously a chain mapping. Let

In _ ]nfn B”n N CWn-

Then f”j=jf, where j: B— B” is defined in the same way as j: C — 0”.
Since §”7j = jo we have

170§ = jfo — jof = 0"1”j,

where 0 operates on B, ' and 8” on B”, ¢””. Therefore f” is a chain mapping.
We shall call f: B"— (C’, f’/:B” — C” the chain mappings tnduced by f.
It follows from Lemma 1 that, if any two of £, f/, f are simple isomorphisms,
80 is the third.

Let A be a common sub-system of B and ¢. Then we shall describe a
chain mapping, f: B—C, as rel. A if, and only if, fo = a for each ac A.
We shall say that f=g¢g:B—C, rel. 4, if, and only if, g —f = oy 4 40,
where 5: B— C is a deformation operator such that 4 = 0.

Let Z,(C) =0,"1(0) and let

Hu(C) = Zu(C) — 004101 (n=0).
A chain mapping, f: B— C, obviously induces a family of homomorphisms
f«: Ho(B) = H,(0).

Let 0’ be a sub-system of C, let 1: ¢” — C be the identical map, which is
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obviously a chain mapping, and let j: C — C” mean the same as before.
Let 2”7 eZ,(C”). Then it follows from (3.3) that 92” € Z,,(C’). There-
fore § induces a family of homomorphisms d«: H,(C”) = H,41(C”), where
H_,(C’) =0. It is known *® that the sequence of homomorphisms,

(3.4) > HA(C') = Ho(C) = Ha(C”) =+ - = H4(C"),
[ ix I [ ax

is exact, meaning that the kernel of each homomorphism is the image group
of its predecessor. We prove that d«H,(C”) =1.71(0). Let Ze Hn(X)
(X =0, " or C”) be the residue class containing a given element z € Z,(X).
Let 2”7 e€Z,(C”). Then 02" = 102" ¢ Z,.,(C), and

ieds?! — 1402 — 107" — 02" — 0.

Therefore d«H,(C”) C ix2(0). Conversely, let 1sZ2 = 0, where 2’ € Z,_,((”).
This means that iz’ € 8C,, or that 2’ =0c=0(¢’ +2”) (¢’ Cn, 2" C"y).
Therefore, writing 2’ — 8¢’ = 2’1, we have

Z’=z_;1=a_z,_,=dt2,,,

whence d«+H,(C") =1."(0). It follows from similar arguments that
wHy(0’) = j+1(0) and that j+H,(C) = d«*(0).

4. Deformation retracts. Let (" C ( be a sub-system and let i: ¢ — ('
be the identical chain mapping. A chain mapping, k: C' — ¢”, will be called
a retraction if, and only if, ki= 1. We shall call (" a deformation retract
(D.R.) of C if, and only if, there is a "retraction, k:C — (", such that
ik =1, rel. ¢". Let ik =1, rel. ¢V, and let ¥": C — C’ be any other retraction.
Then 1k’ == ik’ik = 1k = 1, rel. (".

THEOREM 3. A sub-system O’ C C is a D.R. of C if, and only if,
H,(C—C") =0 for every n=0.
Let ¢’ be a D.R. of C and let k: C'— C” be a retraction. Then

(4.1) 1 — ik = 0y -+ 70,

where 5:C— (C is a deformation operator such that »C"=0. Let
0" =C—C" and let 2’ € Z,(C”). Then 82" € ’, whence 502” = 0. Clearly
ji=0, j2” =72", where j: 0 — (" is given by (8.2). Therefore

zl’ _ ]'(1 I ik)z»// _ ]'(07' _|_ na)zll J— janz/’ J— 0]'77z/f.

Therefore H,(C”) =0 (n=0).

18 See Theorem 3. 3 in [15].
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Conversely, let H,(C”) =0 for every n =0. Assume that there are
homomorphisms,

kr:Cr—> 0y prn: Cr = Cryy (r=—1,-+-,n—1),
such that k. =1, 0,k = kr_10, and

(4. 2),- ’l.rrkr — 1= 0r+1"77‘+1 + 7]7"67";

these conditions being vacuous if n=0. Let m”y,- - -, m"”, (m"\=m; )
be the basis of ¢”, and let

(4.3) (1 4+ ) m’\ = ¢\ 4+ ¢\ (c\e C, ¢\=C"y).

It follows from (4.2)n., that
07»(1 + 'f]nan) = (1 + 6n77n) On = (’l:n—1kn-1 — 77n-1an~1)0n = Un-1kn_10p.

Therefore 8n(c’\ + ¢”"2\) = tn-s1kbn-10nm”’\ = ky-10,m”\. Therefore §”nc”\ = 0.
Since H,(C”) =0 we have ¢”’\=8"nua”\, for some a”)e(0”n,. Let
'y = ¢\ — On10”\ € C",. Then it follows from (4.3) that

(4. 4) (1 + nnan) m")\ = 0')\ —|— a’>\ + (9,,,,10&”)\.

Let kn: Cp—> 0”5 and npss: O = COnyy be the operator homomorphisms defined
by ku¢’ = ¢/, quia¢’ =0 and

kym”x = ¢\ a'n,  muam”\=—a"\
Then (4.2)n follows from (4.4). Also
Onfone = 0n¢’ — ky_10nc’
Onfenm = 0n (¢'\ + @\) = On ("N + €¢”\) = Fna0nm\
Therefore, starting with %_; = »_; = 0, the theorem follows by induction on 7.
CororLARY 1. O=0 if, and only if, H,(C) =0 for every n=0.
COROLLARY. 2. C” is a D. R. of C if, and only if, C — " =0.

Lemma 2. If 0’ 4s a D.R. of C then C = (" + C” (2), rel. (7, where
C"=0C—C".

Let C* ="+ C”. Then C0%,—=0, and 0*:0*—C* is given by
(¢’ 4+ ¢”) = 0’c’ +0”c”. Let i, k, n mean the same as in (4.1) and let
f:C*— C be given by

F(¢ 4 &) = (¢ —ke”) + ¢ — ¢ + (B -+ n0)c”.
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Then df¢’ = 0¢’ = fo*c¢’ and
ofc” = 0(0n + 50) ¢” = dpdc”,
fo¥c” = (0n -+ 50)0"¢” = (09 + 79) (0c” + ¢’1) (c1eC).

Since 90" C ¢’ and nC” =0 it follows that fo*c” = Ondc” = 0fc”. Therefore
f is a chain mapping. It follows from Lemma 1 that f:C* = C (2) and
the lemma is proved.

5. Simple equivalence. @We shall describe a chain system, B, as
elementary if, and only if, B,= 0 when ns4r—1, r, for some r =1, and
0r: Br = By_; (2). This being so, it is obvious that H,(B) =0 for every
n=10. Therefore B=0, by Theorem 3, Corollary 1. We shall describe B
as collapsible if, and only if, it is the direct sum of a finite set of elementary
systems. Clearly B==0 if B is collapsible. It is obvious that B’ is collapsible
if B’ =~ B (3), where B is collapsible; also that, if B, B’ are disjoint and
collapsible, then B -+ B’ is collapsible; also that the direct sim of a set of
r-dimensional elementary systems is itself elementary.

Let By = Ay + Zu, let 0 Ay = Z,, (3) and let 9,: B, — By, be given
by 0n¢ = &2, 02Zn =0, (n=1,2,- - -). Then B = {B,}, with = {0.}
as boundary operator, is the direct sum of the elementary systems
(++,0,44,Z44,0, - -). Therefore B is collapsible and any collapsible
system is obviously of this form.

We shall say that ¢, " are in the same simple equivalence class, and
shall write C= (" (3) if, and only if, there are collapsible systems, B, B’
such that

(5.1) FBHC=B 4+ (3).

This being so, it follows from Theorem 3, Corollary 2, that C, (” are D. R.s
of B4+ 0O, B4 C’. Let

1:C—>B4C, 7.0’ —> DB 4 ("
kE:B+4+ C—C, ¥:B +0—C
be the identity maps and any retractions. Let
(5.2) g=kfi:0—C
and let ¢/ = kf%’: (" > C. Then
(5.3) 9’9 == kf Wk'fi = kffi = 1.
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Similarly g¢g’ = 1. Therefore g: 0= (". We shall describe a chain mapping,
g:C— (", as a simple equivalence and shall write g: C= (" (2), if, and
only if, it is related by (5.2) to some simple isomorphism of the type (5.1).
It follows from (5.3) that, if g: C=C" (3) and if ¢”:C”’— C is such that
99”7 =1, then ¢” is a simple equivalence. Obviously g:C=C(C" (3) if
g:0=C (3).

The relation O=C"(3) is obviously reflexive and symmetric. We
proceed to prove that it is transitive; also that, if g:C=C"(3) and
g :0"=0C"(3), then ¢’g: C =" (3). Let C, ¢’ be related by (5.1), let
f¥:B* 4- (" = B” 4- ("’ (2), where B*, B” are collapsible, and assume that

(5.4) BN B*—B*(B4+0) =B (B4 0”) =0.

Then B 4 B* + C =~ B’ + B* + " = B’ + B” + (" (3), whence C = (" (3).
If (5.4) are not satisfied we apply a permutation, Pn: B’y — A’», to each
module B’,, thus transforming B’ into a new system, A’, such that
P:B’= A’ (3), where P — {P,}, and 4’ [) 0 =0. Let

h:B 40 =A+C(3)
be given by & (b’ + ¢’) =PV’ + ¢’. Then
(5.5) Mf:B+C0=A +C (3).

Similarly we can replace B* by A* = P*B* We can choose the basic
modules A’,, A*, in such a way that (5.4) are satisfied when B’, B* are
replaced by A4’, A*. Therefore (= (0" (3), and it follows that 0= (" ()
is an equivalence relation.

Let g: C'— C” be given by (5.2) and let & mean the same as in (5.5).
Then g = (kK’A*) (hf)i: C — 0" and ¥’h*: A’ 4 (" — (” is obviously a retrac-
tion. Also kh' can be extended to a retraction, A’ 4 A* + C’— (", by
mapping A* on zero. Therefore, if ¢g:C=C(’ (3) and ¢’: ("=0" (3) we
lose no generality in assuming that g satisfies (5.2) and that

f:B +0"=B"4+ (0" (3), g=k'fv:0C"— 0",
where &”: B” 4 0" — (" is a retraction. This being so,
ff:B+C=B"+ 0" (3)
and
g9 =K'fikfi=k"ffi:C—C".

Therefore ¢g’g: C=C" (3).
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A non-zero element, which is common to two chain systems, will be
called an accidental intersection, unless it is in a common sub-system, which
is explicitly mentioned in the context. Accidental intersections between any
finite set of systems, C,- - -, can always be eliminated, as in the paragraph
containing (5.5), by replacing C,- - -, by a set of chain systems, PC,- - -,
where P,: Cn— (PC)y, is a suitable set of permutations. When the context
requires it, we shall always assume that this has already been done.

Let C=0" (3), O*=C("*(3). Then B4+ C=<B 4 (" (3), B*4 C*
~ B’* 4 ("* (3), where B, B’ etc. are collapsible. Therefore, in the absence
of accidental intersections, it follows from L.emma 1, in Section 3, that

B+ B* 4 0+ 0% =B + B* 4+ ¢’ + 0"* (3),

whence
(5.6) C+ C*=C" + C* (3).

Let A be a common sub-system of ¢ and ¢”. We shall write C =" (3),
rel. A, if, and only if,
(5.7) f:B+C=B + (" (2),rel. 4,
where B, B’ are collapsible.

THEOREM 4. a) If O=C" (2), rel. A, then O —A=0C"—A4" (3).

b) If C—A=0 (3), then C=A4 (3), rel. A.

Let C, C” be related by (5.%7). Since f induces the identity, 4 —> 4 (3),
it follows from Lemma 1 that

ffe(B4+0)—A= (B +0)—A4(3),
where f’ is the chain mapping induced by f. Obviously
(B+0)—A=B+ (C—4), (B+0)—Ad=B+ (0'—4),
which proves (a).
Let ¢”=0 (2), where (" =C —A. Then B+ C”=DB’ (3), where
B, B’ are collapsible. Since (=0 it follows from Theorem 3, Corollary 2,
that 4 is a D.R. of . Therefore C = A 4 C” (3), rel. A, by Lemma 2.

Therefore
B+C=B4+0"+A=DB + A4 (3),rel. A.

Therefore €= A (3), rel. 4, and the theorem is proved.
By a (p, q)-system, O, we shall mean a chain system such that €, —0
ifn<poritn>qg (p=gq).

R
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Lemma 3. If C=C(" (3), where C, C" are (p, q)-systems, there are
collapsible (p, q)-systems, B, B’, such that B+ C = B’ + (" (3).

Let f:A4+C=A4’+ (" (3), where A, A’ are collapsible. Let
n=dim4 >g¢q. Then n=dim(4 + C) =dim(4’ + ¢”). It follows from
the definition of a collapsible system that

(5.8) A=B'+- . -4 Bm

where each B? is an elementary system. Let E be the direct sum of all the
n-dimensional summands, B% and let D be the direct sum of the others.
Let D7, B’ C A’ be similarly defined. Then B, = (4 4 O)n, E’n = (4’ + C")a,
and. 0,: Ep = Eyy (3), ¥n:E'w = FEn,(3) since E, E’ are elementary
systems. Also fu: En =< E’, (3). Therefore

fEBuy = f0E, — 0'fBy — B’y — E'n_y
and
f'n-l = a’fnan_l : En-1 ~ E’n_l (2)

Therefore f: 4 + C = A’ + (” (3) induces a simple isomorphism F =~ B’ (3).
Since A4+C—E=D+C, A’+C —E =D+ (’, it follows from
Lemma 1 that

(5.9) D+C=D+0C (3).

Now let 4-540 for some r < p and let s be the least value of r with
this property. Since C’s =0 and 4 4+ C = A4’ + ¢’ (3) it follows that s
has the same property in A’”. Let E now denote the direct sum of the (s ++ 1)-
dimensional summands in (5.8) and let D be the direct sum of the others.
Let D’, B’ C A’ be similarly defined. Then Dy = D’s =0, by the minimal
property of s. Therefore

(5.10) (D + C)e= (D' + C") s =0.
Since E, B’ are elementary systems we have
(5.11) 0: Bepy = Es (2), :EBy = Es (2).

Let ¢ e Cgy1, de Dy,y and let f(d+¢) = ¢’ + d’+ ¢’. Since #(d 4 ¢’) =0,
in consequence of (5.10), we have #¢/ =0 (¢’+ d’+ ') =0f(d+c)
= fd(d + ¢) =0. Therefore it follows from (5.11) that ¢’ =0. Therefore
f(D+C) CD+ (" Let h:E— E’ be the chain mapping induced by f.
Then it follows from (5.10) that hy={f,: B, =~ E’s (3) and also, since
he—fee (D’ 4 (") ss1 if €€ Es.q, that

1% Cf. Theorem 1 on p. 1202 of [3].
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0’hs6 = 0'fs6 = fs0e = hsle.
Therefore
hsiy = 0p hslp: By = Esuy (2),

where 0p =20 | Es.1, 0p =9 | E’s,s. Therefore h:E =~ E’ (2) and (5.9)
again follows from Lemma 1. Lemma 3 now follows by induction on m
in (5.8).

We are now approximately half way through the algebraic preliminaries.
The simple homotopy equivalences will be defined as those which induce
simple chain equivalences, in a sense explained in Section 10 below. But
we have still to relate chain equivalences to the group T, which is defined
in Section 2 above. The first step in this is to associate an element,
7(0) e T, with each system, C, such that C=0. We shall do this by
transforming (' into an (m, m + 1)-system, O™, in which Oy : C™pyy = O™,
and defining 7(C) = (— 1)™r(Oms1). In Section 8 below we define a chain
system called the “mapping cylinder,” C*, of a given chain equivalence
f:0=C". This contains (' as a sub-system and C* —(C=0. We define
(f) =+(C*—C). We shall also need to consider the effect of a A-auto-
morphism, 6: B = R, operating on T, because the chain mapping induced by
a homotopy equivalence, ¢: K =K, is “associated” with an isomorphism
m (K) = m(K’), namely the one induced by ¢.

6. Null-equivalent systems. Let O=0. Then k¥ =1:C— C, where
EC = 0. Therefore there is a chain deformation operator, n: ¢'— C, such that

(6.1) Oy 4 nd = 1.

Let 8 =noy. That is to say, 8§ = {8.}, where 8, = §ulypyn: Cny = C. There-
fore & is also a chain deformation operator. It follows from (6.1) that
O = (1 —70)0 =10. Therefore 08 + 80 = dndy 4 5ind = 0y 4+ n0 = 1. Also
oy = (1 — )y =n(1 —8y) =md. Therefore 85 = yiymdy = ypmddn = 0.
Thus

(6.2) 08+ 80 =1, 38 =0.
Let Py, P,: M — M be permutations and let B be the elementary system

in which
B,=0, B;=P;Cy, B,=0 (t=1,2;n>R)

and 9P,co = Pico (coeCy). Let (/=B -+ C. Then ¢V, =Crif n=%1or 2
and



20 J. H. 0. WHITEHEAD.
{ O’1=P100+01; 0’2=P200+ 00
01 (PICO -+ 61) = a101, 6’2(P200 -+ 02) = Pic -+ 02Cs,

where c;e (5. Let C* be the system which consists of the same groups,
C*, = ("n, with 0%, — 8, if n > 2 and

(6.3) 0% (P1co + ¢1) = ¢y, 0%5(Paco 4 c2) = 810 + 022.
Let f:C"—C* be given by fn=1 if n=£1 and fi(Pico+ ¢1) = Pi0:cy
+ (8:¢0 + ¢1). Then
0%1f1 (P1co + ¢1) = 0161 = fo01 (P1co 4 ¢1)
0%2f 2 (P2co 4 €2) = 81¢o + 0202 = P1010:¢2 + 81¢0 + 0202
= f1(P1co 4 0262) = f102 (P00 +- ¢2)
and 9*,fy — fn10’n = 0 — 0, =0 if n > 2. Therefore f is a chain mapping.
Let ¢4, hy: €’y — C’; be given by
g1(P1co + ¢1) = P1(¢o + 0:161) + €1
hy (P1co 4 ¢1) = — P1co 4+ (8160 + €1).
Since 6,8, = 0,8 + 8,00 =1 we have
gihy (Pi6o + €1) = ga{— Pico + (3160 + 1) }
= P1(— o + co+ 01¢1) + (8160 + ¢1) = f1(P1co + ¢1)-
Therefore f; — g;h:. It follows from Theorem 2 in Section 2 that

g1, hi: 0’y =’y (3) and hence that f:C = (’ (3).
It follows from (6.38) that O* = B’ 4 C*, where B/, =0 if n > 1,

B’y = Cy, B'y = P,(, (0* | Bll) =P "B, =B, (2)
and

(6. 4:) Ol():(), 011=01, 012=P200+02, 01n=0n (n> 2)
with 9': 0*— C* given by 0% =0, if n> 2 and
(6. 5) alz(cho + Cg) = 8100 + 0202.

Let m =1 and assume that there is a system, C™, such that ¢ = O™ (3)
and
Omy =+ + + ="y, =0, C™papsr = Cmapaa (p > 0).

Then it follows from the above argument, with (", playing the part of C4,
that O™ = O™ (3), where O™ satisfies the same conditions as O™, with m
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replaced by m + 1. It follows by induction on m that there is such a
system for each value of m. Moreover (" =(C==0. Therefore equations
analogous to (6.2) are satisfled in O™

Let N—=dim C and let m = N—1. Then O™, —0 unless n — m or
m —+ 1. Therefore (6.2) reduces to

(6. 6) { Oms1Omer = 1: O™y —> C™,,

OmetlOmer = 1::C0Mppy — O™

Therefore Oms1: O™miy = C™m and 8pmyy = 0 ne.  We define the forsion, v(C),
of C as

(6.7) 7(0) = (= D)™ (Onn) = (—1)™*7(8mr)-

In (6.4) and (6.5) let C, C* be replaced by C=, O™+, with O™, =0 if
n>m -4 1. Then (6.4), (6.5) become

Om+1;n+1 == Ommu, Omm+2 = Pomrm,
where P is a permutation, and
Omae = Omyr P71 Omy o — Oy, .

Since 7(P) =0 it follows from (6.7) that +(C) = (—1)™%(8ms1)
= (— 1)™7(0msz). Therefore r(C) does not depend on the choice of
m=N—1. However 7(C) appears to depend on the particular choice of §
in (6.2) and on the construction for (™. The following theorem shows
that it does not.

THEOREM 5. 7(C) depends only on C. Also v(C)=+(C"), if and
only if, C=C" (3), gwen that C = (C"=0.

Let = (" (2), where C =0, and let O™, 0’™ be any given (m, m 4 1)-
systems such that O =C (3), ("*= (" (3). Let 7(C) be defined by (6.7),
where O™ is now this given system, and let ((”) be similarly defined in terms
of C’m. In particular we may have (' = (”. Therefore, when we have proved
that 7(C) =7(C’), it will follow that 7(C) depends only on C and also
that 7(0) =+(C") if C=C" (3).

By Lemma 3 f: B+ O™ = B’ 4 ("™ (3), where B, B’ are collapsible,
and hence elementary (m,m - 1)-systems. It follows from Theorem 3,
Corollary 2, that B+ Cm=B’+ ("=0. Therefore it follows from
relations analogous to (6.6) that

0: (B4 O™ = (B 4+ C™),,
: (B4 C™)ymn = (B + C"™) m.
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Moreover 0 = fun'0'fm.s since f0 = &’f. Since fm, fm.1 are simple isomorphisms
it follows that +(8) =+(9’). Also

{ (b -+ ¢) = 0b + Omiic (b € Binsa, € € O™Mypyy)
(b 4 ¢’) = 0pb + Vmuid,
where 05 =0 | Bmi1, O0pr=0"| B’miss. By the definition of an elementary
system, 7(03) =7(0p’) =0 and it follows from Theorem 2, in Section 2,
that 7(0ms) =7(0) =7(0") = 7(#ms1). Therefore 7(C) =r(C").
Conversely let 7(C) =+(C”) and let C»=C (3), "»= (" (3), where
Cm, C’™ are (m, m - 1)-systems. Let O™, be of rank p and C’™,, of rank p’.
If ps£y/, say p < p’, we replace O™ by B -+ C™, where B is an elementary
(m, m + 1)-system, such that B, is of rank p’— p. Therefore we assume
that p = p’. Moreover, after applying suitable permutations to 0™, C™py,, We
assume that O™y, = O™y, O™pyy = C"™pyy. Then g = 4107 mer s O™ = O™y
and (—1)™r(g) =7(0") —+(C) =0. Therefore g:Cmp = O™y (3). Let
f:0m— O™ be given by fm=¢, fms=1. Then #miifm =mu = fmOm.
Therefore f: ™ =~ ('™ (3) and the theorem is proved.

Obviously 7(0) = 0. Therefore we have the corollary:

CoroLLARY. O=0 (3) if, and only if, 7(C) = 0.
Let ¢” be a sub-system of C, and let 0" = C — (".

THaEOREM 6. If any two of C, C’, C” are chain equivalent to 0, so is
the third and +(0) = (C”) + =(C").

Let X, Y, Z denote C, (¢, (" in any order and let X =Y =0. Then
H,(X) =0, H,(Y) = 0 for every n =0, according to Theorem 3, Corollary
1. Therefore it follows from the exactness of the sequence (3.4) that
H.(Z) =0, for every n =0, and hence that Z =0.

Let O=0"=0"=0. Then 0 = "+ 07 (3), according to Theorem
3, Corollary 2, and Lemma 2, and it “follows from Theorem 5 that
7(0) = +(C¢" + ¢”). For a sufficiently large value of m we have (" = 4’ (3),
0" = A” (3), where A’, A” are (m,m + 1)-systems. Therefore it follows
from (5.6) that €'+ 0”"=A4’+4 A” () and from Theorem 5 that
(0) =7(4" + 4”7). Let &: Amy1—> Am, 0”2 A”mss — A", be the boundary
homomorphisms, which are isomorphisms since-4’ = A" =10. Then it follows
from Theorems 2 and 5 that

H(47 4 A7) = (— 1)) + ()} = () +(47) = (C) +7(0")
and the theorem is proved.

For purposes of calculation we exhibit the structure of the system, Om,
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which is defined by reiterating the construction € — (7, leading to (6.4).
To begin with we do not require m + 1= dim C. Let m =2k or 2%k + 1
(k= 0) and let Do, D; C M be the basic modules

(6.8) {Do=00+01+---+0,-
) D1=01+03+"'+02k+1,

where r—=m if m =2k, r=m 41 if m=2k+4+1. Let D=D,+ D,
=0+ C:1+4 "+ -+ Cui and let 9: D — D be the homomorphism which is
determined by 9:C— C. Let &:D— D be the homomorphism which is
given by

&c =8¢ if ceC, (s<m-41)

=0 if ¢ e Cma.

Then &% = 0. Also it follows from (6.2) that

(6.9) (08 + &d)c=c¢c if ceCs (s<m—+1)
' = §0c if ¢ & COmar.

Also D; C Dj, ¥D; C D; (t54434,§=0,1). Let
(6.10) A=9+&:(D,D,D,)— (D, Dy, D)
and let A;: D; — D; be the homomorphism which is induced by A. Then
(6.11) AiAjd = AAd — AAd (d e Dy).
Since §0.= &¥ = 0 it follows from (6.9) that
AAc= (04 &) (0 4+ &)c

=c ifceCs (s<m--1); =80c if ¢ & Cumas-
Also 800 msz C &¥COmyy = 0, whence AIC ., = 0.

Let i=0, j=1if m =2k and let i =1, j=0 if m =2k 4+ 1. Then
Cma C Dj and it follows from (6.11) and (6.12) that

AjA; =1
AAjc=c¢ if ceCs (s<m41); =8dc if ¢ & Cmas.

Let O™, with boundary operator ™, be the chain system, which is given by 2°
Cmy, =0 if n < m,

(6.12)

(6.13)

Cmy=D;—- - -+ Om—2+0m
(6. 14) Omm+1 == -Dj == + 0m-1 + 0m+1
6mm+1 = Ai;

20 Cf, (5) on p. 205 of [10].
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and O™, = Cy, 0™y =10, if n>m -+ 1. Since A0Cm.. =0 it follows that
9m9™ — 0. Let 8™ be the deformation operator, which is given by

8mm+1 =A;

(6.15) .
My =0 ifceCs (s<m—+1); = 8niec if ce COpmuy

and &y =8, if n > m 4 2. Then 8m,,,8m, — 0 if n > m 4 1 and
8" ms28Mmas (+ + 4+ Cm) = Smsodmarlm — 0,
where ¢ e Cn. Therefore §m6™ — 0. Also it follows from (6.13) that
0™ ma18Mme = 1, 0" m128Mmss + 810"y = 1,
whence 9m6™ - §m9™ = 1.

Let C™* be the system, with boundary operator ™+, which is obtained
from O™ by the construction,- ¢ — C*, leading to (6.4), with C™n.. playing
the part of C, and with P,C, replaced by C, and P, by 1 in (6.4), (6.5).
Then

0m+1m+1 = Omm+1 =" “[‘ 0m—1 + 0m+1

Om+1m+2 = C"y + 0mm+2 = + Om + Om+2

and (6.5) becomes

am+1m+2(cm + Cm+2) = 0mm+10m + a'm+20m+2 = A,;Cm + am+2cm+2 = A¥ (cm + 0m+2);
where ¢ & 0™y, Cmiz € Cmsp and A* is defined by (6.10), with m replaced
by m + 1. Therefore ™+ is defined in the same way as C™ and we define
§m+ by (6.15), with m replaced by m 4 1. Starting with C° = C, it follows
by induction on m that the construction C'— C*, reiterated m times, leads
to C™. Therefore C = (™ (3). We now take m = dim ¢ — 1, thus giving
an explicit definition of Oms1, Smss in (6.7).

Let R’ C R be a sub-ring, which is the image of B in a homomorphism,
¢:R— R’, such that ¢’ =1 if e R’. Let 1e R’ and let A" —=¢A. It is
easily verified that A’ is a (multiplicative) group . Let M’ C M be the sub-
module, which consists of all the elements (77,1, - +), where ;e R/,
and let B’ be such that every admissible automorphism, M’ — M’, is A-simple.
That is to say, every matrix of the form (R.R), with elements in E’, can
be transformed into the unit matrix by a finite sequence of the transformations
(2.12), with Ae A, reR.

Let y:M—> M’ be given by y(ry, 7, - *) = (¢pr, ¢r2,- - ©).  Then
ym; —m; and y(rm) = (¢pr)ym. Let f: M =~ M be an admissible auto-
morphism, which is given by fm; = 3jfiym;, (fij € R). Then yfm; = 3;(¢fi;)m;
and it follows that f;e B if (and only if) yf=fy. Therefore fe3 if
yf =1y
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Let C be a chain system, with boundary operator 9, and let y: M — M’
mean the same as before. Then yC, C C,, since ym; = m;, and dy, Yo are
two families of homomorphisms dy, yd: C, — Cy_y.

Levma 4. If C =0 and if 0y = yd, then C=0 (3).

Let C=0 and let 9y =yd. Let n:C — C be a deformation operator,
which satisfies (6.1), and let £: C — C be the deformation operator deter-
mined by &m;=ymym,;, & =rf Since 0y =yd and ym;=m; we have
(0¢ 4 €0)ym; = (0 + nd)m; =m;. Therefore 0+ & =1. Also y&=¢,
since yyy =1y. Therefore &ym; = Em; = yém,;, whence & = y¢&  Moreover
3 = ¢0¢ is a deformation operator such that 8y = y8, which satisfies (6. 2).
It follows from (6.5) and induction on m, or from the explicit formulae
(6.14), that dm.., in (6.6), may be constructed so as to commute with y.
Therefore ., is a simple isomorphism. Therefore r(C) = 0 and the lemma
follows from the corollary to Theorem 5.

Let R be the group ring of a group T, let A consist of the elements
=+ vy (yeT) and let B’ consist of the integral multiples of 1eT. Let
¢: R - R’ be given by ¢I'=1. Then we have the corollary:

CorOLLARY. Let O=0, let (m",- - -, mn",) be the basis of Ca
(m" = m;,) and let

gmmy = Z;d";m"; (n=1,2,-- ),

where dn;; are integers. Then C=0 (3).

7. Conjugate systems. Let C' be a given chain system with boundary
operator . Let 6: R~ R be a given automorphism and let s;: M — M
mean the same 'as in (2.9). We shall also use s, to denote the semi-linear
transformation s’: C, — C,, which is given by?2' s’c¢ =s,¢ for each ceC,
(r=0,1,- - -). Let

0‘9=89689'120n-—?0n_1 (7’L=‘1, 2, ')‘

Then 9% — s,00sy"* — 0. Obviously 8%r — 7 for each operator r & R. There-
fore 9 is a boundary operator. Let C? be the chain system, which consists of
the modules C, with the boundary operator #. We shall describe C? as con-
jugate to C.

Let f: 0 — (” be a chain mapping, let fo = spfusy™: Co — C’, and let
9 — {f%,}. Obviously f'r — rf? and %9’ = s,f0s,™* = sy0fs > = 0°f%. 'There-

21 300, = (, since Sgmy = m; andC; is a basic module in 2f.
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fore f/: 0% — (" is a chain mapping. On transforming the relevant equations
by sy we see that, if f: ' = (", then

(7. 1) f:00=0".
Let =0 and let 9, & satisfy (6.2). Then 9’ and 8 = s48s,~* obviously
satisfy (6.8). It follows from (6.5) and induction on m, or from the

explicit formulae (6.14), that the construction for C™, with 9, § replaced
by @, 8%, leads to the conjugate system (Cm™)?. Therefore

(7.2) 7(0%) = (— 1) (Fman).
Let 6A = A. Then it follows from (7.2) that
(7.3) (0% =6r(C),

where 6: T — T is defined by (2.10).

8. Mapping cylinders. Let C, (" be disjoint chain systems, with boun-
dary operators 9, &, and let f: C'— C’ be a chain mapping. Let «Cy-, be the
image of Oy, in a simple isomorphism a: Cn- = @Cyp_y, which is induced by a
permutation Py_,: M — M. Then aC,, is a basic module. Let C'*, be the
direct sum C*, = C’p + Cp + aCrn_y. Let 9: C*, — C*,_; be defined by

5.1) ga) 0*%c =dc, 0%’ =0c (ceCh,c’eC%)
(8. b) 0*ac= (f—1—ad)c (ceCOny).

We shall write (8.1b) as 0*a =f—1— af, using 1, f as abbreviations for
1, t/f, where ©:Cp—>C%,, ¢:0’y— C*, are the identities. Obviously
0*0*(C’n + Cn) =0 and #*0*a =0'f — 0 — 0% = (f — 1)0— (f —1—ad)d
=0. Therefore C* = {C*,}, with 9* as boundary operator, is a chain
system. We shall call it the mapping cylinder of f. Clearly O, C’ are sub-
systems of C.

LeMMa 5. C* — (7 s collapsible.
Let ¢” = (0% —(’". Then 0", = Cn+ aCp, and

(8. 2) 6”(02 + acl) b 602 i (1 + aa)cl = (602'—‘ 01) - aacl,
where ¢, € Cn, ¢y € Ony. Let 0°: C” — C” be given by
0°c =0, 0%c = c.

Then §°9° — 0 and it follows that {C”,}, with 8° as boundary operator, is a
chain system C°, which is obviously collapsible. Let g: (" — C° be given by
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g(cz 4 acy) =co + a(dco—cy). Then ¢o”7(c; + acy) = g(0cs — ¢, — adey)
= 0c; — ¢y -+ a(—0c, + 0c,) = 0°¢ (¢ + @c;). Therefore it follows from
Lemma 1, Section 3, that g: ¢ = (° (3), and Lemma 5 is proved.

It follows from Lemma 5 and Theorem 4 that C*=C(C" (3), rel. C”.
Therefore ¢ is a D.R. of C* and any retraction ¥':C* — (" is a simple
equivalence. Let &’ be given by k’c = fc, ¥'¢’ =¢’, Kac=0 (ce(C,c e ().
Then it follows from (8.1) that k9% —@’k’. Therefore ¥’ is a chain
mapping, which is a retraction, since k¥’¢’ = ¢’. Also k¢ = fc = fic. There-
fore we have the corollary.

CorOLLARY. k' :(C*=C(" (3), rel. ¢V, and f= k.
Let O(f) =0*—CC. Then Cu(f) = C'n+ aCpy, and it follows from
(8.1) that the boundary operator, o7: C(f) — C(f), is given by

(8.3) ¢ =d'c, fa=f— ad.
Lemma 6. C(f) =0 if, and only if, f: C=C".

Let C(f)=0. Then C is a D.R. of C*, according to Theorem 3,
Corollary 2. Therefore 1:C=(C* and, by the corollary to Lemma 35,
k' :C¥*=(". Therefore f:C=C(".

Conversely, let f: C = ("." Then
fr="F1ie: Hy(C) = H,(C") (n=0,1,- - )

and it follows that 4s: H,(C) = H,(C*). Therefore it follows from the
exactness of the sequence

Hy(0) = Hu(C*) = Hu{CO(f)} > Hpa (C) = Hooy (C*)
that H,{C(f)} =0 for every 22 n =0. Therefore C(f) =0 by Theorem 3,
Corollary 1.

Lemma 7. If f=g:C— (", then O(f) = C(g) (2).

Let g — f = 0y -+ 50, where 5:C — (” is a deformation operator, and
let BC, and B:C, = BC, be the analogues, in" C(g), of aCy, and a. Let
h:CO(f) = C(g) be given by h(c’ + ac) = (¢’ —nc) + Bc, which we write
as h¢/ = ¢/, ha—=pB—=. Then 0h = hd in ¢’ and since hf =f we have #*

ha = 9(B—1) = g— po— (9—f—n0) = f — (B—n)0 = hf — had — hie.

Therefore it follows from Lemma 1 that &: C(f) = C(g) () and the lemma
is proved.

22 Cf, Section 8 in [5].
28 We now use 9 to denote the boundary operator in all our systems.
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Let f: C=(". Then it follows from Lemma 6 that C(f) =0. We
define 7(f) =7{C(f)} and call 7 (f) the torsion of f. It follows from Lemma
v that r(f) depends only on the chain-homotopy class containing f and
we shall also call it the forsion of this class.

Let f: C— (", f/: ¢”— C” be any chain mappings.

Lemma 8. There is a chain system D, containing C(f) as a sub-system,
such that** D — C(f) = C(f) and D=C(ff) (3).

Let o’C’, C C(f’) and «”Cyn C C(f’f) be the analogues of aC,. Let C*
be the mapping cylinder of f* and let D be the direct sum D = C"* 4 C(f)
with the “ united sub-system ” C”. That is to say Dy = C"p + C’n + &/ C’4
+ aCyy and 9: D — D is determined by 9: C"* — C* and 9: C(f) — C(f),
which coincide in ¢”. Thus 8o’ =f — 1 — &’d, da = f — ad. Moreover C(f)
is a sub-system of D and obviously D— C(f) = C(f").

Let D’ be the direct sum I/ = C"* 4 C(f’f), with the united sub-
system C”. Then D/, = C"p + C’'n + &/C’ny + &@”Cry and da” = f/f — a”0.

Let g: D — D’ be given by

g(c* 4 ac) = (¢'* — o'fc) + a”c (ceC,c*e (%),
which we write as g¢’* = ¢’*, ga = o” — a’f. Then dg = gd in C’*. Since
gfc = fc we have

Oga = 0o — da'f = f'f — "0 — (f' —1— &/0) f — f — "0 + o'0f

— f— (" — )= g (f — ob) = gha.
Therefore g: D = D’ (3). Clearly I/ —C(f'f) = C’* — C” and it follows
from Lemma 5 and Theorem 4(b) that C(f'f) =D’=< D (3). This com-
pletes the proof.

Let f: O=C", f: C"=0C".

TueoreM 7. (f’f) ==(f") + 7(f).

Let D mean the same as in Lemma 8. Then it follows from Lemma 8
and Theorems 5, 6 that +{C(ff)} =~(D) ={C(f)} + {C(f)}, and the
theorem is proved.

Lemua 9. If f: C = (" (3) then r(f) =0.

Let f:0 =’ (3) and let O* be the mapping cylinder of f. Let
g:0(f) > 0% — " be given by g(¢’ 4 ac) = f?*c¢’—ac. Then dgc’ — goc’
and it follows from (8.2) that

2¢],e. D—C(f) = O(f’) if the permutations a’: C’, > a’C’, C C(f) are suitably
chosen.
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dga =1+ ad = f'f + ad = g(f — ad) = goa.

Thevefore ¢:C(f) = C* —(’ (3) and the lemma follows from Lemma 5
and the corollary to Theorem 5.

Let f: C = (" and let us discard the (implicit) condition that ¢ [ ¢V = 0.
Let h: A= C (3), where A is a chain system such that 4 (] 0”=0. Then
fh: A=C" and we define =(f) by =(f) = v(fh). Let (A’, A) be any other pair
such that W: A =C (3), A’ (1 0"=0. Let h”:A” = C (3), where A” is
disjoint from A4, 4”, . Then fh: A=C", K" : A” = A (3), fh”7: A7 =C".
Therefore it follows from Theorem 7 and Lemma 9 that 7(fa”) = (fh)
+ 7(W'R”) = (fh). Similarly 7(fr”) =(fr’). Therefore =(f) is inde-
pendent of the choice of h, A.

Let f=g¢:C0=(", where C () ("540. Then fh=gh:A=C(’, and in
consequence of Lemma 7 we have:

TuEOREM 8. If f=g¢:C=C(", then 7(f) =1(9).

Let f:0=0C", f:0"=C". Let h:A=C (3), W: 4’ = (" (3), where
A. A’ are disjoint from C”, C” and from each other. Then f/A':4’=C(C",
Wifh: A=A, f'/fh: A=0", and W1:C" = A’ (3), fh: A= (". Therefore
it follows from Theorem 7, and Lemma 9 that

r(Pf) = r(PFR) = r(FW - WfR) = (PH') + = (W-fh)
— (W) — (W) + 7(fh) = (") + ().

Therefore Theorem 7 is valid, even when C, C’, ¢/ are not disjoint from

cach other.
Similarly Lemma 9 is valid, even if C' [ C” 5% 0.

THEOREM 9. Given ¢:C=CC", then +(g) =0 1if, and only if,
g:0=C0C" (3).

Tt follows from Theorem 7 and Lemma 9 that we may assume C (] C* = 0.
This being so, let 7(g) = 0 and let C* be the mapping cylinder.of g. Since
{0(g)},— 7(g) = 0 it follows from Theorem 5 that C'(g) =0 (X). There-
fore it follows from Theorem 4(b) that C*=0C (3), rel. C, whence
i:0=C* (3). Therefore it follows from Corollary to Lemma 5 that
g: 0= (3).

Conversely, let g: =" (3). Then f:B+ C =B + (" (3), 9 =FkTfi,
where B, B’ are collapsible systems, i:C — B+ C is the identity and
F:B 4+ (¢"—(C is a retraction. Assume that 7(i) =r(i") =0, where
7:0"—>B + (¢’ is the identity. Then r(¥) =0, since (k) + (i)
—r(k) =7(1) =0. Also =(f) =0, according to Lemma 9, and it
follows from Theorems 7, 8 that 7(g) = 0.
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It remains to prove that =(7) =7(¥) =0. Let h: 4 = C (3), where
AN (B+C)=0. Since thAd=C it follows from (8.3) that C(:h)
= B+ C(h), and from Theorems 5, 6 and Lemma 6 that +{C(ih)} = r(B)
+ 7{C(h)} =0. Therefore 7(¢) = r(ih) = 0 and similarly r(¢) = 0. This
completes the proof.

Let A, A’ be sub-systems of C, ¢’ and let h: C — C’ be a chain mapping
such that hACA’. Let B=C—A4, B=0"—A4" and let f:4—> A4,
g:B— B’, be the chain mappings induced by .

TrrorEM 10. If any two of f, g, h are chain equivalences so s the
third, and v(h) =(f) + =(9)-

Assuming that € (] ¢ =0 we have
On(h) = C,n + <zOn-l = A,n + B/" + aA"—l + aB"—l = On(f) + On(g)

Let D= C(h) —C(f). Then D, =Cr(g) and I say that D= C(g). For
let dx denote the boundary operator in X, where X stands for any of the
systems C, ¢”,- - -. Since A’ C C(f) we have *®

0pb’ == Og b’ = 0¢'b’ = 0p'b" = B¢y b, mod. C(f),

where b’ ¢ B’. Since ad C C(f) we have ac; = ac,, mod. C(f), if ¢, =cs,
mod. A4, where ¢y, ¢, C C. Therefore

Opab = 0o ny0b — hb — adeh = gb — adpb = 0¢(¢), mod. C(f),

where beB. Therefore 0pd =0¢d, mod. C(f), for any deD. But
D N C(f) =0. Therefore dp = ¢y, whence D = C(g). The theorem now
follows from Lemma 6 and Theorem 6.

In consequence of Theorem 6 we have:
COROLLARY. If any two of f, g, h are simple equivalences, so is the third.

Using the same notation as in Theorem 10, let 4’=A —=C () ¢’ and
let h:C—C” be rel. A. Then we define the mapping cylinder, 0%, of I
in the same way as when A —0, except that C*,=C"s 4 Bn+ aBns
— B’y + Cn + @B, where a: B, =< aB, (3) is induced by a permutation,
P.:M— M, and 0* is given by (8.1), with ce B and 9 =10z in (8.1b).
Obviously C* —C = C(g). Therefore it follows from Theorem 10, with
f=1, and from Lemma 6, that :C=C" if, and only if, C* —C=0. It

28 1f Y is a sub-system of X, then # = &, mod Y («, ' C X) means that r—ax' ey,
Clearly 0.« = 8,w, mod Y, where Z =X —Y.
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follows from the corollary to Theorem 10 and Theorem 9 that % is a simple
equivalence if, and only if,

(8. 4) 0* —0=0(3).

Let f:0=(C" and let :R=R be any A-automorphism. Then
ff: 0= (", according to (7.1). Since a, in (8.1), is the isomorphism
induced by a permutation it follows that as; = sya. Therefore it follows
from (8.3) that C(f?) = O (f)? and from (7.3) that

(8.5) (f') =607(f).

Let f: 0 = (". In order to calculate r(f) we need to know a deformation
operator, £: C(f) = C(f), such that 96 4 & =1. Let f and f/:C"—C be
related by f/f — 1 = 0y 4 40, ff’ — 1 =0y’ + o0, where n: C > C, ¢/ : " >
are deformation operators. Let

(8.6) ;L=f7)—17'f20—)0’.
Then
Op 4 pud = 0fn— On/f + fd — o0 = f (B + 70) — (O’ + 7/0)f
—f(ff—1) — (ff — 1)f=0.

Hence it follows by a straightforward calculation that 8¢+ £ =1, where
£:0(f) = O(f) is given by

o = an— py
(8-7) { £1 0" =af —uf' —".

9. The groupoid @. Let R be the integral group ring of a group T.
We need to consider chain mappings which do not necessarily commute with
the operators re B. By a chain mapping, f:C— C’, associated with an
automorphism, 0:R <R, we shall mean a family of homomorphisms,
fn: Cn—> ", such that f = of and fr = (6r)f. We now insist that C, =0
and that, if m, is a basis element of C,, then fym; shall be a basis element
of ¢”o. This ensures that f is associated with only one automorphism 6
(unlike C— 0, for example). If f’:(”— C” is associated with 6": R = E,
then f’f: 0 — C” is obviously associated with 6’6. Let ze R be any regular
element. Then #z = 28 and z(rc¢) = (ere*)wc. Therefore z: ¢ — O, given
by ¢—> zc, is a chain mapping associated with the inner automorphism 6,.
We shall confine ourselves to chain mappings associated with those auto-
morphisms of R, which are determined by automorphisms of T, and we shall
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use the same symbol to denote 6: T = T and the corresponding automorphism
of B.

We define chain homotopy and chain equivalence as in CH(II), with T
playing the part of p;. Thus f==g¢:(C — (" means that

(9-1) vg — f = 0y +nd,

where yeT and %:C — C” is a chain deformation operator associated with
the same automorphism, 6, as f.. As in CH(II) it follows that g is associated
with 6,710. We shall write f == ¢ if, and only if, f, g are related by (9.1),
with y=1. As in the ordinary theory of homotopy or chain homotopy,
f == ¢ implies fh == gh, h'f == h’g, where h, b’ are any chain mappings of the
form h: C°—C, W:C"— (.

We say that f: 0 — C” is a chain equivalence and write f:C =, if,
and only if there is a chain mapping, g: ¢’ — C, such that gf =1, fg =1.
Let v,y C T be such that ygf == 1, y’fg == 1. Then f’f == 1, where f/ = yg.
On transforming y/fg =1 by y* we have fgy”==1. Therefore ff’ = ff’fgy’
= fgy' =1.

Let f: 0= (", where f is associated with 1: R~ R. That is to say,
fr=rf. Let f/: 0" — C be such that ff =1, ff’ = 1. Since f’f is associated
with only one 6: B = R and since fr = rf it follows that f’r —rf’. Therefore
f:0=C(", in the sense of Lemma 6.

Let f: 0 = (” be associated with §: B = R and let 6,,60,: R = E be given.
Using the same notation as in Section 7 we have

0"%130,f80," = 800’805 = S9.f08p5™ = Sg,f 59570
Therefore
(9.2) Sefsgs s 0% — ("0
is a_chain mapping, which is obviously associated with 6,60,. Let f/: ¢’ —>C
be such that f/f=1, ff/=1. On transforming ff==1 by s, we have
sgffsgt=1:0—C% Also fsg™-spf’ =1:0"— (’. Therefore it follows
from (9.2), with 6, =1, 6, =0, that fs,”*:C?=C". Moreover (fsy™)r
=r(fsyt). We define v(f) by
(9.3) () = 7(fso™)
and call it the torsion of f. Let 6;,0,: B = R be arbitrary. Then s,fsp,™ is
associated with 6,00, and it follows from (9.3) and (8.5) that

(9.4)  T(Safsest) = 7(SqufS057 SouSg 80,) = T(8g, " fsg7t - 8p.7) = Our ().
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Let f7: (" = (" and let ” be associated with ¢’: E =~ R. Then f/f: 0 = 0"
is associated with 6’6, and it follows from Theorem 7 and (9.4) that
T(Ff) = 7(Ffsgse™) = 7(f'sg™ - sgfsg™ sg7)
=7(f") +7(s fsg7 sp7) =7(f) + 6’7 (f).

Let f=g: 0= (" and let f, g be related by (9.1). Then vyg,f and 4
are all associated with the same automorphism, 6, and

(9. 5)

YgSe™r — fsg™t = 0'psg™t - Sy Ise0857t = '€ + £0°,

where § =1ysg™. Therefore fs;* = ygs,™ and it follows from Theorem 8
that +(f) =r7(yg). Also it follows from (9.5) and (2.11) that =(yg)
=1(y) +0y7(9) =7(y) + 7(g), where y:(C”— C” is the chain mapping
¢’ —>yc¢’, which is obviously a chain equivalence. Since ysg,*m;=ym,
where m; is any basis element of (”,, it follows from (2.7) that
vSpy1: O = C” (3), whence 7(y) = 0. Therefore f==g implies

(9.6) =(f) =7(9).

Let ® be the totality of chain homotopy classes of equivalences between
all the chain systems, which are equivalent to a given one. Let f:(C =(",
f/: €’ =0" be such equivalences and f, f’ the corresponding chain homotopy
classes. We define 7f — f’f. It may be verified that, when multiplication
is thus defined, & is a groupoid. Let f be associated with §. Then we define
f:T—T by fr=06r. Let f=g. Then g is associated with 6,710, for some
veT, and it follows from (R.11) that gr = 0,76 = 6 = fr. Therefore a
single-valued map f: T— T is defined by fr —fr. Obviously 1-7=r if 1
is any identical map, C— C. Since f’f, if it exists, is associated with 6,
where f,f” are associated with 6, ¢/, it follows that f’(fr) — (f—’f)-r. There-
fore we say that T admits & as a groupoid of operators.

It follows from (9.6) that a single-valued map r: & — T is defined by
7(f) = 7(f) and from (9.5) that

(9.7) w(gf) =(3) + g=(F)-

Therefore = is what, by a natural extension of the language of group theory,
we call a crossed homomorphism of ® into T. We call 7(f) the torsion of T.
Given C it is easy to construct a chain system ¢”’==C and an equivalence,
f:C=C(C", such that r(f) is a given element 7,eT. For example, let
d: A= B be an isomorphism such that r(d) =, where A, B are basic
modules, which are disjoint from (' and from each other Let m > dim (' and
let 0” be the system which consists of C, with its own boundary operator, and

3
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C'm =B, ("my = A, With #m,; — d. Then it follows from Theorem 10 that
(1) = 7o, Where 1 is the identical map C — (”.

10. Homotopy types of complexes. Let K be a given complex and
let a 0-cell ¢° e K° be taken as base-point for =, (4 ). Let K be the universal
covering complex of K, in which the points are classes of paths joining e° to
points in K. Let ?® C(K) be defined in the same way as C'(K) in Section 12 of
CH(II) and let (¢, - -, c",) be a natural basis for C,(K) — H,(K», K1),
Let B, T, M mean the same as before, with y: =, (K) =~T. Let R(K) be the
group ring of m (K). Let Cu(K) C M be a basic module of rank p,
(n=0,1,- - ), such that Ci(K) ) O;(K) =0 if i 5= j. Let (m",- - -, mn,,)
be the basis of C»(K) and let ky: Co(K) = O (K) be defined by

(10' 1) kn(rlcnl + e + Tpncnpn) = (le)mnl —{— T + (‘y/rpn)mnpnﬁ
where r; e R(K). Let
(10.2) On = kn10nkn™: Cn(K) = Cny (K),

where " is the boundary operator in C'(K). Obviously 8 =0 and or — 79
(reR). Therefore C(K) = {Cn(K)}, with 8 = {4.} as boundary operator,
is a chain system and k= {k,}:C(K) = C(K) is an isomorphism asso-
ciated with v.

The arbitrariness in the definition of C'(K) consists of

a) the choice of the base point e°,
(10.3) b) the choice of y:m (K) =T,
c) the choices of the bases {¢”;} and of the basic modules 0, (K).

Let another 0-cell ¢, € K° be taken as base point and let K, and C(K,)
be the corresponding universal covering complex and chain system. Let

a:m (K, e’) = (K,e), ¢: K, ~K

be the isomorphisms** determined by a path (I,0,1) — (K,¢° ¢,°). Let
h:C0(K,) = O(K) be the isomorphism induced by ¢. Then % is obviously
associated with «, and the same system, C'(K), is defined by

26 Here we reserve the symbol € (K) for a system in which O, (K) is a basic module
in M, as defined by (10.1), (10.2) below. We no longer insist that the elementary
chain ¢° e (,(K), associated with a e-cell which covers e°, shall be associated with the
base point in K.

*7We use the symbol ~ to denote the relation of isomorphism between complexes
as well as between groups and chain systems.
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vya:mw (K, e°) =T, kh: O(K,) =~ (C(K),

as by @ and k. The effect of choosing a different path, (1, 0,1) — (K,e°, ¢,°),
is to replace a, b by 6, ah, where x e m (K, ¢°). Since

B(rich 4+ 1y ",) = (Bars)zcts 4 - (fary,)act,

it follows that the resulting alterations, ya — y8,2 and kh — kzh, are included
in (b) and (c).

Let y be replaced by y:m (K) =T and let § =y’y*:T =I. Then it
follows from (10.1) and (10.2) .that %, is replaced by sskn and 8 by
8 = sy0sg7t. Therefore C(K) is replaced by the conjugate system C?(K).

Any other natural basis for C.(K) is of the form (== ¢y, -+ +, =2p,C",),
where z; e (K). Any other basic module of rank p, is of the form PC,,
where P: M — M is a permutation. Therefore a change in (c) leads to a
new system C"(K) = C(K) (2).

Therefore C'(K) is determined up to a transformation, C(K) — C’(K),
which is the resultant of a semi-linear transformation, C(K) — C/(K),
followed by a simple isomorphism CY(K) = C’(K) (3).

Let K’=K and let ¥’: C(K) = C(K’) be defined in the same way as
k:0(K) =C(K), in terms of an isomorphism y":m (K’) =T. Let
g:0(K)=C(K’) and a:m (K) = =, (K’) be the chain equivalence and the
isomorphism induced by a homotopy equivalence *® ¢: K =K’. Let

10. 4) —kgkt: O(K) - C(K’), 6=yay™:T=T.
9

Then it may be verified that f is a chain equivalence associated with 6. We
describe it as the chain equivalence induced by ¢ and we define v(¢) = r(f).
Let g*:C(K)=C(K’) be the chain equivalence induced by a homotopic
map ¢* = ¢ and let f* — k’g*k*. Then g* =g and it follows that f* = f.
Therefore 7(¢*) — r(¢). Hence, and by the two preceding paragraphs, ()
depends only on the homotopy class, ¢, of maps K — K’, which contains ¢,
on y,y’ and on the choice of base points 2* in K, K. We define (d) =1(9).
Let y and 4’ be replaced by yi:m (K) =T and yy:m(K’) =T. Let
0 —vyiy!, @ —y4y". Then k, ¥ are replaced by sgk, sp¥’ and f by
sgfsp~t. Therefore it follows from (9.4) that r(¢) is replaced by 07 (p).

Let us write r=1+, where =, C T, if, and only if, "= 6r, where

28 All our maps and homotopies of complexes will be cellular and it is always to ‘be
understood that a given map, K - K’, carries ¢° into €’ where e°¢ K’° are the base
points.

20 Actually 7(¢) does not depend on the choice of base points since 8, v =7 for any
vel, reT.
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6:T=T. Obviously r=1+" is an equivalence relation and we shall describe
the corresponding equivalence classes as 6-classes. It follows from the pre-
ceding paragraph that the 6-class, #(¢$), which contains (&), is uniquely
determined by the homotopy class ¢. We call it the torsion of &, or of any
map ¢ € .

We shall describe ¢ : K = K’ as a simple (homotopy) equivalence, and shall
write ¢: K=K’ (3), if, and only if, r(¢) =0. We shall say that K, K’
are of the same simple homotopy type, and shall write K = K’ (3), if, and
only if, there is a simple homotopy equivalence ¢: K = K’ (3).

Let ¢': K= K” and let C(K”) = C(K”) be defined in the same way as
C(K) and O(K’), in terms of an isomorphism y”: = (K”) =T. Let ¢’ be
associated with o’ : 7 (K’) = m (K”) and let ¢/ =y”a/y"*: T =T. Then it
follows from (10.4) and (9.5) that

(10. 5) T(¢'p) = 7(¢) + 0'7(¢)-

Therefore, if ¢, ¢’ are simple equivalences, so is ¢’¢. Obviously =(y) =0 if
¢y=1:K— K. Therefore, taking K” — K and ¢’¢ =1, it follows from
(10. 5) that a homotopy inverse of a simple homotopy equivalence is itself a
simple homotopy equivalence. Therefore K ==K’ (3) is an equivalence
relation.

Let Gg be the aggregate of homotopy classes, ¢, 9, - -, of homotopy
equivalences, ¢,v, - -, of K into itself. Let ¢ =9¢. Then Gx, with this
multiplication, is obviously a group. Let e K° and k: C(K) = C(K) be
fixed and let @x be the sub-group of the groupoid &, which consists of the
chain homotopy classes of chain equivalences C(K)=C(K). Let fs =7,
where f is given by (10.4), with K’ =K, y— 1y, ¥’ =k, and let f3e¢ @ be
the class which contains fg. Then é — f¢ is obviously a homomorphism of
Gx into ®x. Let rx: Gxg — T be the map which is given by rx(¢) = ().
Tt is the resultant of ¢ — F, followed by the crossed homomorphism f— ().
Therefore 7x is a crossed homomorphism, in which G operates on T according
to the rule gr— For.

Let us take T'—m, (K, po), where poe K, and let y:m (K,e°) =T be
the isomorphism determined by a pafh in K, which joins p, to €. Then the
degree of arbitrariness in y is that it may be replaced by 6y, where 6: T =T
is an inner automorphism. In this case fy is replaced by fo/ and rx by
0z : Ggk — T. But 6r = =, according to (2.11), whence frg — rx. Therefore
rr is uniquely determined by K when I'=m, (K, p,). For the reasons given
in discussing (10.3), rx is independent of the choice of e°.

Let K, be a connected sub-complex of K, which contains ¢° and is such
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that ¢:m (Ko) = (K), where ¢ is the injection homomorphism. Then
K,=p'K, may be taken as the universal covering complex of K,, where
p:K — K is the covering map. Let On(K,) C Cn(K) be the sub-module
consisting of the m-chains carried by K, and let %k, mean the same as in
(10.1). A natural basis for C,(K,) is part of a natural basis for 0, (K)
and it follows that C'(K,), with

is a sub-system of C(K). Let U= K — K, and let us denote the residue
system C(K) — C(K,) by C(U) =C(K)—C(K,). Let U= p'U and
let 0n(U) C Cn(K) be the sub-module consisting of the n-chains carried
by U. Then obviously Cu(U) = knCu(T).

When dealing with such a pair of complexes K and K, C K we shall
always assume that C'(K,) is imbedded in C'(K) in the way described above.

Let K, C K, Ly C L be sub-complexes of given complexes K, L. Let
¢: (K, K,) = (L, L,) be a map such that ¢ | K — K, is an isomorphism onto
L — L, and let ¢o: Ko—> L, be the map which is induced by ¢.

THEOREM *° 11. If ¢, is a simple equivalence, so is ¢.

Let h:C(K)—C(L) and f:C(K,) — C(L,) be the chain mappings
which are induced by ¢ and ¢,. Then it is obvious that 2C(K,) C C(L,)
and that f is the chain mapping induced by k. Since ¢ | K — K, is an iso-
morphism onto L — L, it is also obvious that g: C(K — K,) = C(L — L) (3),
where g is the chain mapping induced by k. Therefore the Theorem follows
from Theorem 10.

As an application of Theorem 11 let ¢o: Ky = L,, where L, consists of
a single 0-cell, let L be formed from K by shrinking K, into the point L,
and let ¢: K — L be the “identification map.” Since = (L,) =1 it follows
that ¢, is a simple equivalence and so therefore is ¢. In particular we can
take Ko, C K* to be a tree containing K°. Then L° consists of the single
0-cell L.

11. Combinatorial invariance. In this section we prove:

TurorEM 1R. If K’ is a sub-division of K the identical map, i: K — K’,
18 a simple equivalence.

30 Cf. Theorem 12 in Section 8 of (I). Obviously ¢,: K, = Ly(Z) if K,=e¢°
L, = ¢€'°, where e° ¢ K° ¢’°¢ L° are the base points. In this case the theorem states that
¢: K =L(Z) if ¢: K —~ L.
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Let P be a given complex and ¢ C P a sub-complex, ‘which is a D.R.
of P.

Lemma 10. If every circuit in P— Q 1is contractible to a point in P,
then the identical map, @ — P, is a simple equivalence.

We first prove the theorem, assuming the truth of the lemma. Let
¢’: K’ =L, where L is a new complex, which does not meet K. Let
¢=¢"1: K— L Theni= ¢/ ¢ and ¢’*:L =K’ (3) according to Theorem
11. Therefore it is sufficient to prove that ¢: K =L (3). Let P be the
mapping cylinder of ¢. We regard P as K X I, with (2,0) =2 (ze K) and
K X 1 sub-divided to form L. Let ¢, be a principal cell (i.e. one which is
an open sub-set) of K and let K; = K — ¢, Proceeding by induction we
define a sequence of sub-complexes

K=K0’K1,' * ',Kn=K~1,

such that Ky, = K)—e\, where e\ is a principal cell of K,  Let
Py=FK|J (KxXI). Then Py, is a D.R2 of Py and P)— Py, is the
point-set ex X (0,1>, where (0,1> is the half open interval 0 <= 1.
Therefore m; (Py— Pya) =1 and it follows from .Lemma 10 that
in: Paa== Py (3), where ) is the identical map. Therefore

j=1:o' * 'in_].:P«n:KEP(E).

Similarly k: L==P (3), where k is the identical map. Let y:P— L
be given by y(x,t) = ¢z. Then y: P =L (3), since ¢ is a homotopy inverse
of k. Therefore ¢ —yj: K=1L (3) and Theorem 12 is proved.

It remains to prove Lemma 10. Since @ is a D.R. of P it is easily
proved that the chain system C'(Q) is a D.R. of C(P) and that a retraction
y: P — Q induces a retraction k:C(P) = C(Q). We have to prove that k
is a simple equivalence and this will follow from Theorem 4, Section §,
when we have proved that C(U) =0 (3), where U=P —Q.

Let Uy, - - -, Un be the components of U, which are finite in number
since U is the union of a finite number of (connected) cells. Let P be the
universal covering complex of P and let p: P— P be the covering map.
Let Uy be any component of p=Uy and let U* =T;J- - - U Um. Since
P and P are locally connected, Uy and Uy are open sets. Let ey, - - -, eng,
be the n-cells in U. It follows from the condition on the circuits in U,
which is satisfied a fortiori by the circuits in Up, that p | Ux is a homeo-
morphism onto U). Therefore p | U* is a homeomorphism onto U. Therefore

31 See Theorem 1.4 (ii) in [16].
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U* contains precisely one, ém;, of the cells in P, which cover e7. Let
¢"; & Cn(P) be the element which is represented by a characteristic map for
én. Then (¢, - -, c",) is a basis for C,(T), which is part of a natural
basis for Cn(P). Moreover C,(U*), which consists of the n-chains carried
by U*, is the ordinary free Abelian group, which is freely generated by
c",* -, C",, without the help of the operators in = (P).

Since each component of U is open it follows that no cell in U — U*
meets the closure of é";. Therefore

qn~:
(11.1) dcny = Zldij”()j"'l ~+ ¢,
j=1

where d;;» are integers and ¢/i*'e 0n(Q) (@ =pQ). Let mi» = ke,
where k, means the same as in (10.1). Then it follows from (11.1) that

9:0(U) = C(U) is given by dm» =q§‘1dijnmj”_l. Therefore G(U) =0 (3),
j=1

by the corollary to Lemma 4, in Section 6. This proves Lemma 10.

12. Lens spaces. By way of an example let 4, B be the chain systems
determined by lens spaces of types (m, p), (m,q), where m is the order of
their fundamental groups and g==Fk*p(m). That is to say, 4, B play the
part of C(K) in Section 10 and =, (P), = () in Section 15 of CH(II) are
both replaced by T. The generators &, » in CH (II) are replaced by a generator
y e T and we denote the integer r by h, to avoid confusion with r & B. Other-
wise the notations will be the same as in CH(II). Thus 9:4—>4 and
d: B— B are given by

(12.1) % day = (y — 1) ao, ar = om(vy)a, dag — (Yp'—l)a/z
: 0b1 (‘)I”——l)bo, ab2=0'm(‘)/)b1, 0b3= ('Yq—].)bz,

where O‘t('y ) =1 —|—')/ -+ - ._I_-y(t'-l)e
The Reidemeister-Franz torsion in 4 and B is r4 and rp, where

(12.?) ra=(y—1)G?—1), rm=((r—1)F—1).

Let 6:T =T be given by y=+" and let u: 4 —> B, v: B— A4 be the
chain mappings, associated with  and with 6, which are given by uan, = b,
vby = ay if n =0 or 3 and

(12 3) { ual = O-k(Y) bl) uaz =0’k('ykp)b2

vb1=0'l(‘y)a1, vb2=01('qu)a/2,

where kIl —=1-+mh. As shown in CH(II), vu—1=0y+ %0, uv—1
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== 0n - 50, where yan =nby == 0 if n =41 and na, — ha,, nb; = hb,. Notice
that »y — 0 and sy = s¢, since @, b, are generators, m,,, m;,, of M.
It follows from (12.1) that

(12.4) Pa; = (v —1)ao, ay =om(y)a, ?as—= (y"? —1)a,,
and from (12.3) that
(12.5) $g0by = o1 (%) ay, 8g0by = a1 (¥?) @z,

since kl=1(m). We proceed to calculate r(u) = r{C(uss™*)}, where C(f)
means the same as in Section 8. Let € — C(us,™) and let a’y, — aan, Where
« means the same as in (8.2). Then (b, a/ny) is a basis for O,
(/.o =10b4s=0). Since uss™0, =ua, it follows from (8.2), (12.3) and
(1R.4) that 9: C'— C is given by

Gby— (y—1)bo,  Ba%o=Dho

b2 == o (y) bs, 00’y = ox(y)bs — (¥ —1)a’

0bs = (y2— 1) by, 00", = 01 (¥*?) by — om(y) @'y
00/ = by — (Y — 1) o/,.

It is easily verified that w=— 0, where p is given by (8.6), and similarly
that spvn=—ysgv. Since nm =0 a straightforward caluculation shows that
88 — 0, where & is given by (8.7), with £ =38. It follows from (8.7) and
(12.5) that 8b,=a’, and

Sbl _— hbg + gl (yk)a'l, 8(1/0 = O
sz = Ul(‘)/q)alz, 8(1/1 = ha’Q
Sbg = alg, 80/’2 = 0.

Let Dy = 0o+ C; -+ Cy, Dy = Oy + O, as in (6. 8) with m = dim C — 1
=3. Then D, D, have (b, @1, bs,a’s), (@0, b1,a5,b3) as bases and
Ay=0-+8:Dy— D, is given by

Agby = oy

Do’y =— (¥* —1) @0 + ok(y)bs + ha',

Agb, = om ()b 4 o1 (y9) @'

Aoty = — (y'?—1)a'> + bs.

Let fo: Do = D, f1: D; = D, be the simple automorphisms which are given by

foa"1=a/1 + ('Yk'—l)bo, f00=0 (0=boy by, a’3)
fibs = bs + (y?* — 1) a2, fic=c (c =0, by, 0’5).
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Then A’y = fiA¢fo: Do— D, is given by A%by — @y, Aea’s — by and
Ao’y = 0% (y) b1 + ha';
A'oby = om(y) by + a1 (y9) @'

Let 4, j be any integers and let p = (4,7). If ¢ =4 we have, writing
o5 =0s(y) (00=0),

gj — 'yj"iai = Oj-j.

Therefore it follows by induction on ¢ - j that the matrix [0y, 0;] can be
reduced to [op, 0] by a sequence of transformations of the form

[0, 03] = [o4, 05— y%0i] or [0i —y%0j, 0]

followed, if necessary, by [0,0p] = [0p,0]. Since (k, m) =1 it follows that

[::8; vz?yq)] = [%) 1;___] (r,t C R)

by such elementary transformations of the rows. Since these transformations
alter the determinant by a factor == 1, at most, we have { = = d, where

d=oi(y)or1(y?) — hom(y).
I say that

(12.6) drp = 0ra,

where 74, 7p are given by (1R.2). For let x be the homomorphism of %
into the complex field, which is given by yr=w, where o™ =1. Then
x(drg) = x(0ry) =0 if =1, and if o =1 we have
x(drg) = [(¢*—1) (0" —1)]/[ (e —1) (0? —1)] (0 — 1) («?—1)

= (0" —1) (0¥0—1) = x(0ra).
Therefore yx(drg—r4) =0 and (12.6) follows from the orthogonality

relations between the group characters. Therefore 7(u) is essentially the
same as the inverse of the element = in Lemma 5 on p. 1209 of [3].

13. Formal deformations. As in CH(II) let I* be the n-cube in
Hilbert space, which is given by 0 =1¢;,- - -, ¢, =1, ¢{;, =0 if ¢ > n, with
I°= (0,0, - +). Let

vt — In — (Int — §In-1) (n=1).

Let e® be a principal cell of a complex K and let e"?! be a principal
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cell of K—e® (n=1). We shall describe the transformation K — K,
=K —er— e as an elementary contraction if, and only if, e» has a
characteristic map, f:I" — é», such that fE,»* C K, and f | I** is a charac-
teristic map for e”*. The inverse, K; — K, of an elementary contraction,
K — K,, will be called an elementary expansion. An elementary expansion
may also be defined as follows. Let E” be an n-element, which is disjoint
from a given complex, K, and let E"' be a hemisphere ®? of 9E”. Let
e = F"— 9B, "' = 9E™— K" and let f: (", 0E™"*) — (K™, K"2) be
an arbitrary map. Let K; = K |J e"* |J e" be the complex formed by iden-
tifying each point pe E** with fpe K**. Then K — K, is obviously an
elementary expansion.

Either an elementary expansion or an elementary contraction will be
called an elementary deformation. The resultant, K,— K, of a finite
sequence of elementary deformations,

(13.1) Ki—> K, (1=0,"--,r—1),

will be called a formal deformation. We also include the identical trans-
formation, K — K, of any complex, among the formal deformations. We
shall denote a formal deformation by D: K,— K,, and K, = DK, will mean
that K, is obtained from K, by a formal deformation D. If each K; — K;,;
is an elementary expansion (contraction) then K,— K, will be called an
expansion (contraction) and we shall say that K, expands (contracts) into
K, If D:K,— K, is the resultant of the sequence (13.1), then the resultant
of the sequence Ki,, —> K; is the formal deformation, D*: K, — K,, inverse
to D.

Let D:Ko,— K, be an elementary contraction. Obviously E,*?* is a
D.R. of I». Therefore3® K, is a D.R. of K, and [D] will denote the
homotopy class of maps, K, — K, which contains a retraction. If D: K, — K,
is an elementary expansion then [D] will denote the homotopy class of maps,
K,— K, which contains the identity. Let D =D, - - Do: K, — K, where
D; stands for (13.1). We define [D] by [D]=[Dr.]- - -[Do]. If
1: K — K is the identical formal deformation then [1] will denote the
homotopy class of the identical map K — K. It is obvious that, if
D:K— K’ and D’: K’ — K” are formal deformations, then K" = D’DK and

(13.2) [D’D] = [D’]1LD].
Also it is easily verified that [D-*][D] = [1].

32 ] e, the image of E,"* in some homeomorphism 41" - gE™.
33 See Lemma 2 in Section 4 of [4].
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Let L be a sub-complex of K, which may be empty. By a formal
deformation, D: K — K’, rel. L, we shall mean the resultant of a sequence
of elementary deformations, none of which removes a cell of L. By K’ = DK,
rel. L, we shall mean that K” is the image of K in such a formal deformation,
D. If K'= DK, rel. L, then [D] obviously contains at least one map
¢o: K — K’, rel. L, where rel. L means that ¢y =y if ye L. We restrict
[D] to maps, ¢: K — K’, rel. L, such that ¢ == ¢, rel. L.

We shall describe a map ¢: K — K’, rel. L, as a restricted equivalence,
rel. L, if, and only if, K’ = DK, rel. L, and ¢e[D]. We shall write
K=K’ (3), rel. L, if, and only if, there is a simple equivalence
¢: K=K’ (3), which is rel. L.

TuEOREM 13. K’ = DK, rel. L, if, and only if, K=K’ (3), rel. L,
i which case the restricted equivalences, K — K’, rel. L, are the same as
the simple equivalences, K — K’, rel. L.

In order to prove this we shall need some lemmas, which are proved in
the following section.

14. Lemmas on formal deformations. Let K, K’ be complexes, with
a common sub-complex, L, which may be empty, and let (K — L) () K’ =0.
Let ¢: K — K’ be a map rel. L. By the mapping cylinder of ¢ we mean the
complex, P, which is formed from 3¢ K X I by identifying (z,0) with z,
(z, 1) with ¢z and y X I with g, for each point ze K and ye L. Let

(14. 1) ¢rimr(K) = mr (L) (r=1,---,m),

where ¢, is the homomorphism induced by ¢. Then the argument ® used
in the case L = 0 shows that

(14.2) trimr(K) = m (P) (r=1,---,m),

where i, is the injection. Therefore it follows from the exactness of the

sequence
wr(K) = m(P) > (P, K) > 71 (K) =71 (P),

that =, (P, K) =0 for r=1,- - -, m, where =, (P, K) =0 means that ¢, is
onto 7l'1(P).

3¢ After replacing K X I by a homeomorph, if necessary, we assume that it has no
point in common with K or K.
35 See Section 3 of [5].
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LEMMA 11. P contracts into K’.

Let K=K, |Je¢", where e is a principal cell in K —L. Then
P =P, e* U e, where e = ¢ X (0, 1) and P, is the mapping cylinder
of ¢ |Ko:Ky— K’. Let f:I"—é" be a characteristic map for e”. Then
g: It — g given by g(ty,- * ,tnt) = {f({s,- - *,%a), t}, is obviously a
characteristic map for e¢** and gF,* C P, and go = fo if x e I*. Therefore
P contracts into P,. Therefore the lemma follows by induction on the
number of cells in K — L.

Let y: P— K’ be given by
g | K =1, y(z,t) = ¢z (ze K).

Since y | K’=1 and since any two retractions P — K’ are homotopic to
each other, we have y e [D], where D:P— K’ is any contraction. Also
¢ — yi, where i: K — P is the identical map. If K = D,P, rel. K, then
ie [D;']. Hence, and from (13.2), we have the corollary:

CoroLLARY. If K= D,P, rel. K, then ¢ € [DD;].

Let K, K’ and L be as in Lemma 11, except that K — L and K'— L
may now have points in common. Let ¢: (K, L) = (K’, L), rel. L.

LeMMA 12. ¢ is a restricted equivalence, rel. L.

TFirst let K () K’ = L and let P be the mapping cylinder of ¢. Then
P may also be regarded as the mapping cylinder of ¢* and the Lemma
follows from Lemma 11 and its corollary.

If K’— L meets K we replace the points in K’— L by new ones,
thus forming a complex K”, such that ¢: K” =~ K’, rel. L, and K (| K”
= K’ () K” = L. By what we have already proved, ¢’ and ¢'*¢: K = K”
are restricted equivalences, rel. L. Therefore it follows from (13.2) that ¢
is a restricted equivalence, rel. L, and the lemma is proved.

Let K, K, be complexes with a common sub-complex, K, and let
Ki=K|Jem (1=0,1;n=1). Let fi:I"—e;" be a characteristic map
for e¢;” in K;.

LemmA 13. If fo | 0I* =f, | 0I" in K, then K,= DK,, rel. K.

First assume that e,”[) e, =0 and unite K,, K; in the complex
K*=K,|J K,. Let g::0I»—K be a homotopy of go=7/,|dI" into
g =1 | 0I» and let f:9I** — K* be given by



SIMPLE HOMOTOPY TYPES. 45

f(tly' ' ':tn:i)mf'i(tl)' : ':tn) {i=0>13(t1)' : -,tn)eln}
F(s1, « "5 8nyt) =ge(S1," * *,8n) {tel; (s, - -, 8n) €01}

We attach a new cell, ¢", to K* by means of the map ¢ f, thus forming a
complex, L = K* |J e™?*, in which e™* has a characteristic map, h : I*** — &+
such that h | 0I*"* ={f. Since h(z,0) = for (weI") and > hE" C L — e,
it follows that L — K, is an elementary contraction. Similarly L — K, is
an elementary contraction. Therefore K, — L — K, is a formal deformation,
rel. K.

If e," [ e," %= 0 we attach a new cell, ¢/, to K, by means of the map
fo | 017, taking care that ¢/;" () e =0 (i=0,1). Then K, —> K |J ¢/o—> K,
is a formal deformation, rel. K, and the lemma is proved.

Let P be a given complex, let P, C P be a sub-complex and let kn(P — P,)
denote the number of n-cells in P — P,. Let K be a sub-complex of P, and
let Do: Py — @, be a formal deformation, rel. K. We shall describe a formal
deformation, D: P — @, rel. K, as an extension of D, if, and only if, @, is a
sub-complex of @ and

kn(Q — Qo) = kn(P — Po) (n=0,1,- + ).
LemMMA 14. Do: Py — Qo has an extension D: P — Q.

Let D: P —Q be an extension of D, and let D’: Q — @', rel. K, be an
extension of a formal deformation D’y:Qo—> @’. Then D’'D:P— ¢’ is
obviously an extension of D’oDy: Py —> Q. Let P, CP be a sub-complex,
which contains P,. Let D;: Py — Q,, rel. K, be an extension of D, and let
D:P—(Q be an extension of D;. Then D is obviously an extension of D,.
Therefore the Lemma will follow by a double induction on the number of
elementary deformations in D, and on the number of cells in P — P, when
we have proved it in case D, is an elementary deformation and P — P, is a
single cell.

Let P=P,|J em and let D, be an elémentary expansion Dy: Po—> Qo
=P, Jer* | Jer. If e has a point in common with e?* ] ¢# we apply a
preliminary formal deformation, P — P’, rel. P, as in Lemma 13, so as to
replace e® by a cell which is disjoint from e?-* (J e?. Then P’ and ¢, may
be united in a complex

Q=ryUeye

26 That is to say, we attach an (n + 1)-element, E™ (e = Bt — gE™), to K*
by means of the map fh': 9E™ - K*, where b': §E™ = 9I™" is a homomorphism.
37 We recall that B,** = gI[**— (I"—§I").
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and P— P’ — @ is an extension of D,.

Let D, be an elementary contraction,
Do:Py— Qo=Py— et — e,

and let f: 1" — é» be a characteristic map for e». Since Q, is a D. R. of P,
there is a map, f/: 01" — Q,, which is homotopic, in P,, to f | 0I*. We attach
a new cell, ¢, to P, by means of the map f/, thus forming a complex
P’=P,J ¢m Then P’ = D’'P, rel. Py, by Lemma 13. Since de’» C Q, it
follows that P’— @Q =P’—e¢?— ¢! is an elementary contraction and
P— P — @ is an extension of D,. This proves the lemma.

Let K be a (connected) sub-complex of P such that m,(P,K) =0
(=1, -,r).

Lemma 15. There is a formal deformation D: P — Q, rel. K, such that
ba(Q—K) =0if n<r and kn(Q —K) =kn(P—K) if n>r 4 2.

Let 0=p=r and assume that, if p >0, then k,(P—K) =0 for
n=0,---,p—1. Tor the sake of clarity we consider the case p—=20
separately. Let p =0 and let ¢,% - - -, e&x° be the 0-cells in P— K. Since
P is connected there is a map

gi: (EOI: IO) EOO) g (Pl; e'io; KO)'

Let E.% - - -, E® be a set of 2-elements, which are disjoint from P and from
each other. Let h;:0E;*— 0I* be a homeomorphism and let

e =FE;*—0E?, eit =hit (It —0I*) = h; Y (012 — E ).
We attach F;* to P by means of the map g¢;h;: hy 2Bt — P, thus “forming a
complex P*=P (y [ | (ei* U ;). Then P—P* is an expansion. The
@
complex K* =K (J ) (e® U ei!) contracts into K. By Temma 14 there
i
is an extension, P* — M,, rel. K, of the contraction K* — K. Then
ko(My—K) =ko(P*—K*) =0
En(My— K) = kn(P*—K*) =Fko(P —K) (n>2).
Thus we have eliminated the 0-cells from P — K at the expense of introducing
ko(P— K) new 2-cells.

Now let p>0, let e2- - -,e? be the p-cells in P— K and let
fi: I? — é;? be a characteristic map for e;?. Since k,_, (P — K) = 0, whence
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Pri— Kr' we have f;0I? C K. Since mp(P, K) = 0 and since I?, E. are
two hemispheres of 4E?** = 9I?*1, the map f; can be extended to a map,

(14.3) gi: (B, EP) — (P, K?).

It now follows, in exactly the same way as when p =0, that there is a
complex M, = D,P, rel. K, such that k,(M,—K)=0 if n=p and
ko(Mp— K) =ka(P—K) it n> p -+ 2. Therefore the lemma follows by
induction on p.

15. Proof of Theorem 13. Let D: K K, =K Jer*Jer, (n=1)
be an elementary expansion. Then ¢¢& [D], where 1: K — K, is the identity.
Also K is a D.R. of K, and K, — K is simply connected. Therefore it
follows from Lemma 10 that ¢: K — K, is a simple equivalence. Since
k:K,— K is a homotopy inverse of ¢ if ke [D], it follows that k is also
a simple equivalence. Therefore ¢: K — DK is a simple equivalence, rel. L,
if ¢ £ [D], where D is any elementary deformation, rel L. Therefore it
follows from an inductive argument that ¢ : K =K’ (3), rel. L, if K’ = DK,
rel. L, and ¢ € [D].

Conversely, let ¢: K =K’ (3), rel. L. Then it follows from Theorem 11
and Lemma 12 that we may, without loss of generality, replace K’ by K”,
where K” =~ K’, rel. L. Therefore we assume that K (] K’ = L and also
that ¢® = ¢°¢c L, where ¢ e K° ¢’° e K’ are the base points, thus excluding
the case L — 0. Let P, with base point ¢° be the mapping cylinder of ¢.
Since ¢: K = K’ the relations (14.1), (14.2) hold for every n=1. Also
K’ is a D.R. of P. Therefore 'y:m (K’) = = (P), where ¢y is the injection.
Therefore C(K), C(K’) are sub-systems of C(P), according to the con-
vention (10.6). Let j:C(L)— C(P) be the chain mapping induced by
the identical map L — P. Then A — jO(L) = C(K) () C(K’). Let h:C(K)
— O'(K’) be the chain mapping induced by ¢. Then % is obviously rel. 4,
since ¢ is rel. L. It may be verified *® that C'(P) is the mapping cylinder
of h, as defined in the paragraph containing (8.4). Since, by hypothesis,
h is a simple equivalence we have

(15.1) O(P—K)=0 (3).

according to (8.4).

38 See Section 14 of CH(II), with ve,® =0 if ¢, corresponds to a cell in LC K
(not the L in CH(IT)).
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It follows from (14.1) that = (P, K) =0 for every r =1. Let
(15.2) ¢ = Max{dim(P — K), 3} = Max{dim(K — L) -+ 1, dim(K’ — L), 3}.

Then it follows from Lemma 15 that there is a complex @ — D,P, rel. K,
such that

(15.3) Q=KUeJ---Uer*YJe U+ U el

By the first part of the Theorem, with K, K’, L replaced by P, @, K, we
have C(Q)=C(P) (3), rel. C(K). Therefore it follows from Theorem
4(a) and (15.1) that (" =C(Q —K)=C(P—K) =0 (3), whence
07¢: 0"y = (0”44 (2), by the corollary to Theorem 5. Therefore s —£. Let

8
07 qgm? = dyym9? (dij € R),
j=1
where (m.",- - -, ms") is the basis of 0", (r=¢—1,¢). Since 7(8”;) =0
the matrix d = [d;;] can be annihilated by an expansion

d 0
d—_> 0 17;] ?

followed by a sequence of elementary transformations of the form (R.12),
followed by a contraction 1. —>1,, where 1, is the empty matrix. Since
g—1=2 it follows from arguments on pp. 289, 290 of [1], with
minor alterations,® that the transformation d — 1, can be “copied geo-
metrically ” by a formal deformation ¢ — K, rel. K. Therefore K = D,P,
rel. K, and the Theorem follows from the corollary to Lemma 11.

Let us describe r as the order of an elementary expansion K — K,
=K |J et | e, and also of its inverse, K; > K. Let ¢: K =K’ (3),rel. L
and let K?, K’» C L, for some p=—1. Then the following addendum to
Theorem 13 is implicit in the proofs of Lemmas 11-15 and of Theorem 13.

AppeExpuM. K’ = DK, rel. L, and ¢ e [D], where D is the resullant
of elementary deformations, whose orders lie between p—-+ 2 and g+ 1
inclusive, where q is gwen by (15.2).

This addendum has the following application. It follows from Theorems
11 and 13 that, by means of a formal deformation, we can reduce a given
complex to one which has a given point, ¢°, as its only O-cell. It is some-

39 Tet r(ay,. - -,0a;) mean the same as in Theorem 19 of [1], with K* = Q¢ and
k=s. Then m;* - a; determines an isomorphism 0", =~ r(ay,- - -, ax).
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times convenient to restrict ourselves to a class of complexes, all of which
have the same point, ¢°, as their only 0-cell. Let K,, K, be two such com-
plexes and let K,= DK, Then it follows from Theorem 13 and its
addendum, with p =0, that [D] = [D’], where D’: K, — K, is the resultant
of elementary deformation, K;—> K;,;, whose orders exceed 1. Therefore
K;®=¢° for each j=0,- - -, 1.

16. n-types. By a cluster of n-spheres, attached to a space X, at a
point z, € X, we shall mean a set of n-spheres, {§8;*}, such that X (] §;" = =z,
and S;* — z, does not meet S;» if i55j. If X is a complex and x, e X",
then X | {S;*} is the'complex X [J {e;}, where e;* = S;® —=x,. At this
stage we assume that, X being a finite complex, the number of n-spheres in
a cluster attached to X is finite.

Let K», L™ be complexes of at most » dimensions (n >1) and let

¢:K*— L* be an (n—1)-homotopy equivalence, as defined in Section 2
of CH(I).

THEOREM 14. There is a simple equivalence,

g En U {Sury=Ir U {8"} (),

such that Yz = ¢z if e K™, where {81}, {825} are clusters of n-spheres
attached to K»1, L1,

Assuming that K» [ L* = 0, let P be the mapping cylinder of ¢. Then
Pr is the union of K, L* and the cells e X (0,1), where e"e K». We
attach a cluster of n-spheres,

{Szp"} —_ Sz1n U [ U Szkn;

to a O-cell ¢’°¢e L° where k is to be determined later. TUsing Lemma 13,
we transfer these over P» to a 0O-cell of K”, so that they become a cluster,
{8}, attached to K*'. Since ¢:K"=,,L it follows that (14.1) and
(14.2) are satisfied with m =n—1. Therefore

a) m (Pt K"y =04 r=1,---,n—1,

(16.1) b) the injection, mpy(K") —> mny (P), is an isomorphism (onto).

These conditions are obviously satisfied by K* and P*, where

E*=EK"U {8}, P*=PU {8"}.
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Therefore it follows from (16.1a) and Lemma 15 that there is a formal
deformation

Di:Pr5Q=EK*Ue*U---Ue*Ue U- - U ewm, rel K*.

Now let ¥=a. On considering the effect of a simple elementary
deformation, rel. K*, it follows inductively that (16.1) are also satisfied
by K* and Q. Let

go: (Eo", In*) = (Q, &™) (p=1," - -,a)

mean the same as in (14.3). Since gp | 0I" = g, | E," is homotopic in Q
to a constant map, it follows from Lemma 13 that there is a formal
deformation @ — @', rel. K», which replaces each Sp”—e° by a cell, ep.p",
with a characteristic map g’p : I" — &,p", such that ¢/, | 8I* = g, | 0I". There-
fore it follows, as in the proof of Lemma 15, that there is a formal deformation

Dy:Q»@Q"=EKr " U - - U ewr, rel. Kn.

Let h:I"— ¢ be a characteristic map for ¢;». Then it follows from
(16.1b) that &; | aI* is homotopic in K” to a constant map. Therefore it
follows from Lemma 13 that there is a formal deformation

Dy: Q" >EK*JSu*U- - - USw", rel. Kn,

where {S1;"} is a cluster of n-spheres attached to K»-*. On reversing these
constructions we have

Pn U Smn U N U Szkn=D(Kn U Sun U PN U Slbn), rel. K.

Let P,* C P* be the mapping cylinder of ¢ | K». Then P» is the
union of Py* and the n-cells in K». Let f:I* — é» be a characteristic map
for an m-cell ere K™ Then f|dI* is obviously homotopic in Py to
¢(f | 0I*) : 0I» — L', Since the latter can be extended to ¢f:I"— Ln it
follows that f | aI* is- homotopic in Po* to a constant map. Therefore

Pro—=Pr USu* U - U8 =D (PP Sa® U+ - - USw?), rel. Por,

where ! =k and Syu.,- © -, 82" are n-spheres, attached to ¢ e L», which
correspond to the n-cells in K». It follows from Lemma 11 that

L¥ =L 8™ U - - U Sam = D*P,*,

where D* is a contraction. Let y*:Po* — L* be given by ¢* | L* =1,
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v*(x,t) = ¢x (ze K»*). Then y* e [D*] and the conditions of the theorem
are satisfied by a map ¢ e [D*D’D]. This completes the proof.
It follows from this theorem that any two complexes of the same n-type

can be interchanged by a finite sequence of elementary deformations and
transformations of the form

(16.2) K—-L—=K—e¢, L—>K=Ler (r>n),

where e is a principal cell of K. For the transformations K — K»
—>K*J E*— K |J S* are the resultants of such sequences, where
Ert—e0 (e | emt, S* — 9B —¢° |J e, and K» [ E**t = ¢° e K°. Con-
versely a formal deformation preserves the homotopy type, and hence the
n-type of a complex. Also K* = L», whence K, L are of the same n-type, if
they are related by (16.2). Thus the n-type may be defined in terms of
formal deformations and elementary transformations of the form (16.2).

It follows from Lemma 2 in Section 9 of CH(I) and from Lemma 13
and Theorem 12 above that, if K is any complex, there is a simplicial com-
plex K* — DK. Moreover, Sections 14-16 may be interpreted as referring
to formal deformations of the kind considered in [3]. Therefore the class
of simplicial complexes, which, when treated as cell-complexes, are of the
same simple homotopy type, or n-type, as a given one, K, is the same as the
“nucleus,” or “n-group,” of K, as defined in [1].

17. Homotopy systems.?® We proceed to the simple equivalence theory
of homotopy systems. In this section we confine ourselves to systems, p,
such that dim p < o and each group p, has a finite basis.

We modify the definition of a homotopy system, p, by associating a
class of preferred bases with each pn. Let (ai,* * -, ap) be a preferred basis
for po. Then (a’s,- - +,a’p) shall be a preferred basis for p, if, and only if,
@y = a;,*t, in case m=1, or &/ = == xa;, if n>1, where z;ep, and
ji,* * *,Jp is a permutation of 1, - -, p. We shall only admit that f:p = p’
if f carries a preferred basis for each p, into a preferred basis for p’s. The
preferred bases for p(K), where K is a complex, shall be the natural bases,
as defined in Section 5 of CH(II). If K° is a single 0-cell, then the natural
bases for p;(K) are uniquely defined. In general they depend on the choice
of a tree T C K*, which contains K°. In this case p(K) is the homotopy

40 The main purpose of this section is to prove Theorem 17, which was announced
in Section 7 of CH (II)..
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system of the pair, (K, T). However we shall continue to write it as p(K).
A complex, K, will be called a (geometrical) realization of a given system, p,
if, and only if, p =< p(K), subject to our condition concerning preferred
bases. The process of realizing p by K will consist of defining a particular
f:p=<p(K). Having (implicitly) done this, we shall use p and aep to
denote p(K) and fa. By a basis for p, we shall always mean a preferred basis.

Let C and h:p—> C be defined as in Section 8 of CH(II). Then C
shall be a chain system of the kind introduced in Section 2 above, R being
the group ring of p; = p1/dp,. We insist that, if (as," - -, ap) is a (preferred)
basis for p, and if (m’y,- - -, m’p) is the basis of Cy, then ha; = =+ Fm’j,,
where Z;ep; and &3 =1 if n=1.

We are going to define a sub-system, p’, of a homotopy system p. This
is not quite so simple as in the case of chain systems, for the following reason.
Let p’s C p; be the sub-group generated by part of a basis for p,.. Let
p’2 C p» be the sub-group generated by p’;, operating on a set of elements,
(1, + *, %), in a basis for p,. Let dp’> C p’; and let d’:p’, —ps be the
homomorphism induced by d:p,—>pi;. Then p’, is not necessarily a free
crossed (p’s, d’)-module. For example, let p, have a single free generator,
x, and p, a pair of basis elements, a,b, such that da—z, db=1. Let
p’s=p: and let p’, be generated by p,, operating on b. Since db=1 we
have ¢ + b =10 + a, whence 2b —b=a -+ b—a—b=0. Therefore p’; is
not a free p;-module.

Let p’y — p’1/d§’s and let 4«: 5’y — p1 be the homorphism induced by the
identical map 1;: p’s = p1.

LeMMA 16. Let i+ 2(1) = 1. Then p’; 1s a free crossed (p'1, d’)-module,
having (@', - * -, %) as a basis.

Let p”, be the free crossed (p’;, d”)-module, which is defined in terms
of the symbolic generators (2’, «;) and the map a;—>da’, (i=1," - -, k;
2’ €p’y). Obviously d”p”,=-dp’>. Let a”i€p”> be the basis element which
corresponds to the generator (1,e;). It follows from Lemma 2 in Section 2
of CH(II) that an operator homomorphism, i,:p”; —> p,, associated with
t1: p'1—> p1, is defined by i,a”; =a’s. Obviously isp”; = p’> and the lemma
will follow when we have proved that ¢,*(0) = 0.

Let Oy = hp,, 0”5 = h"p"”> be ps, p”’> made Abelian and let j: c”,—C,
be the homomorphism induced by 4,. Since a’; =1i.a”; and Jh” = hiy it
follows that (jh”a”,- - -, jh”a”) is part of a basis for C». Since d”p”; = dp’.
and 4.1(1) =1 it follows that j*(0)=0. Let a”e,*(0). Then
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0d"a” = di.a” =1, jh”a” = hisa’”’ — 0. Therefore d”a” =1, V¢’ =0 and
it follows from Lemma 1 in CH(II) that ¢” =0. Therefore i,*(0) =0
and the lemma is proved.

Let p’y, p’2 satisfy the conditions of Lemma 16. Let p’y Cpp (p=3,
4,- - ) be the sub-group which is generated by p’;, operating on part of a
basis for pp, and let dp’p C p’p-i. Let d’:p’p—> p’p-1 be the homomorphism
induced by d: pp—> pp-1. Then p’ = {p’p}, with d’ as boundary operator, is a
homotopy system, which we describe as a sub-system of p, on the under-
standing that a (preferred) basis for p’sy (n=1) is part of a basis for pa.

Let p be a given homotopy system, let Z,(p) = d,"2(0) and let **

Gi(p) =p1,  Gul(p) =Zn(p) — dnipnu (n>1).

A homomorphism, f:p—> p’, obviously induces a family of homomorphisms
fo:Gu(p) = Gu(p’) (n=1,2,- - ). It may be verified in the same way
as in ordinary homology theory that f«: Gn(p) = Gu(p’) if f:p=p’. The
converse is proved below.

Let p’ C p be a sub-system and let Z.(p, p’) = dn"p'n-1s (n>1). Let
aeZs(p,p’), @ €p’s. Then a-+ o/ —a= (da)a’ep’, since daep’;. There-
fore p’, is an invariant sub-group of Z,(p, p’). So therefore is the direct sum
> =+ dps, since dps C Z;(p), which is in the centre of p,. Let

Gu(ps p') = Zu(ps p') — (p'n + dpnsz) (n>1).
Let

(17.1)  Ga(p") = Gulp) > Galpsp) 2 Gra(p”) > - - > Gulp)

be the homomorphisms, which are induced by i:p’ — p, the identical map
Zu(p) = Zn(p,p’) and by d|Zu(p,p’). Then it may be verified, as in
ordinary homology theory, that the sequence (17.1) is exact.

Let f:p—>p’ be a homomorphism of p into a system p’, with boundary
operator d’. Let f.:p; =i We proceed to define a system, p*, which
we shall call the mapping cylinder of f. We realize the systems p* — (p1, p2)
and p> by complexes K= K? and K’= K’?, such that K°=K""=¢°
— K () K’. By Theorem 4 in CH(II), f:p?—> p’* can be realized by a
map ¢: K — K’. Let P be the mapping cylinder of ¢, with ¢° X I shrunk
into the point ¢°. Then P° — ¢°. We define p*, = pu(P) = pu(P?) (n =1,R).

Since ¢ induces fs:p, =’ and since K’ is a D. R. of P, it follows that

alf p=p(K) then G4(p) ~m(K), Gs(p) ~ m(K),Gulp) =~ H.(K) if n> 2.
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Tolpy = p¥*1, Vx:p/y = p*1, where 4, '+ are the injections. Therefore it
follows from the proof of Lemma 16 that the injections

(17.2) i:p2—>p(P2), ’i’:p’z-—>p(P2)
are isomorphisms (into).

Let 8: p> = p(P) be the deformation operator determined by the homotopy
8:: K — P, which is given by 8;p= (p,t) (pe K). Then

(17.3) a8y = faoy — 1 — Sn_ydn (8,d, — 0),

where n = 2, 8 and p*, is written additively. Let n =3 and let 8,pn, be a
free p*;-module, which is the image of pn-, in an operator homomorphism, 3y,
whose kernel is the commutator sub-group of pss. Thus 8,: pn_y = 8npn-yr if
n > 8. We take 8,8, C pg(P) and §; shall mean the same as before. Let p*,
be the direct sum p*, = p’n + pn + Snpn-1 (7= 3). We imbed pn, s in p*» by
means’ of 4: pp—> p*n, 7 : p’n — p*n, Where 4, 7/ mean the same as in (17.2)
it n=1,2, and ie=(0,a,0), va’= (a/,0,0) if n >R  We define
d*,: p¥*n = p*ny by d*na = dua, d*.0’ = d’ne’ and by (17.3), with n = 2.
If {a;"} and {a’;"} are bases for p, and p’y, then the union of {a;"}, {#’;"}
and {8.ax"*} shall be a (preferred) basis for p*,. It follows from an argu-
ment in Section 8 above that d*,d*,,, =0 if n =3. Also d*d* =0 in p(P).
Therefore d*,d*,,;, =0 for every n > 1. Clearly d*, is an operator homo-
morphism and it follows that p* = {p*,}, with d* = {d*,} as boundary
operator, is a homotopy system. We call it the mapping cylinder of f: p— p’.

Let #/: p’ = p* be the identical map and let &’: p* — p’ be given by
-~ ka=fa, Ko =do, Kéa=0 (aep,a’ep’).

Then ¥4 —1 and it is easily verified that d’F’ = k’d* and that 'k —1
= d*8* | §*d*, where 8*a — Sa, §%p’ = 8*8p — 0. Therefore ¥: p* =p’ and
Ke: Gu(p*) = Gu(p’). Clearly f = ki, where i:p—> p* is the identical map,
whence fr = k’+is. Therefore, if each f. is an isomorphism (onto), so is 4.
In this case it follows from the exactness of (17.1) that

(17.4) Gn(p*,p) =0 (n=1),
where G4 (p*, p) = 0 means that p*, = 4«p;.

Let »=2 and let (@ a.® -+ -, ap,") be a preferred basis for p,
(n=r—1,7r). If r=2 let p’y Cps be the sub-group generated by
(ar,* + -, ap) and if #>2 let pi=p;. If n>1 (n=7r—1,7) let
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p’'n C pn be the sub-group which is generated by p’, operating on (a® - - -, ay,).
In any case let

day" = ae"t — a/y, da;" € pry (t=1-"",pr),

where a’oep’r; and p; is written additively if r=2. Then dp’r C p/rs
and the conditions of Lemma 16 are satisfied 2 by p’s, p’2. Therefore
o’ ={p’n}, With p/n=1pn if ns%=r—1 or r, is a sub-system of p. Let
1: p’ = p be the identical map and let &, : pn — p’» the operator homomorphism,
which is given by k. |p’»=1 and k,as" =0, krsas' =a’. Then it is
eagily verified that kd = d’k, whence k: p— p’ is 2 homomorphism. We have
ki=1 and tk—1=d¢ -+ &d, where &:p—>p is the deformation operator
given by

SP’ == 0; faor =Y, éaor_l = a'Or'

Therefore i:p’=p and k:p==p’. Notice that, if f:p—p’ is any homo-
morphism such that fi =1, then f == fik =k.

We shall describe a homomorphism f:p®—> p! as an elementary equi-
valence if, and only if, p° o' are related to each other in the same way as
p, p’ in the preceding paragraph, and f =1 or f ==k, according as p® C p' or
pt C p° We shall describe a homomorphism f:p—>p* as a simple equi-
valence, f: p=p, (3), if, and only if, it is the resultant of a finite sequence
of isomorphisms and elementary equivalences.

Let C, ¢’ be chain systems associated with given homotopy systems p, p*.
Let g: C — C’ be the chain mapping induced by a homomorphism f:p—>p’.

THEOREM 15. f:p=p/(3) if, and only if, g:C=C’ (3).

This follows from the lemmas in Section 14 and the proof of Theorem 13,
restated in terms of homotopy ssytems.

Let p be a homotopy system and o a free p;-module, with a finite basis
(bi,* " +,bg). Let pu®=pn+o0, p°=pp (p=%~=n), for a given value of
n=2. Let d°ip°—>pr.® be defined by d°|p=d, d°%¢—=0. Then*
p® = {ps°}, with d° as boundary operator, is a homotopy system. We say that
p—> p° is the result of attaching a cluster of nm-cycles to p. If {a;} is a
preferred basis for p., then {a;, b;} shall be a preferred basis for p,° and the
preferred bases for py (p %= n) shall be the same in p° as in p.

42 The homomorphism k,: p; = ’;, defined below, induces i,™*: p, ~ p’;.

43 Tf n = 2 then p,° is a free crossed module since d% = 1.
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Let dimp, dimp’=n (n=2) and let f:p—p’ be a homomorphism
such that

(17. 5) fei Ge(p) = Gr(p) (r=1,---,n—1).
Then we have the following generalization of Tietze’s theorem.

THEOREM 16. There is a simple equivalence, f°: p° =p’ (3), such that
fPa=fa if aepr (r <n), where p° p’ are formed by attaching clusters of
n-cycles to p, o’.

Since fe:p, =~ p’y we can construct the mapping cylinder, p*, of f.
Then the theorem follows from the proof of Theorem 14, translated into
algebraic terms.

The following corollary may be deduced from Theorem 16, or proved
directly with the help of (17.4).

CoroLLARY. If dimp, dim o’ =n—1, then (17.5) implies f:p=yp’.

TraEOREM 17. 'If fip(K)=p’, where K is a complex, then p’ can be
realized by a complex, K’, and in such a way** that f has o realization
¢: K=K".

This follows from Theorem 16 and an argument which is essentially the
same as the proof of Theorem 9 on p. 1228 of [3].

18. Infinite complexes. Let K, be a CW-complex, as defined in
CH(I), which may be infinite. Let K, C K; be a sub-complex such that
Ki=K,U U (ea"* U "), where {eq"™*, e,"} is an indexed aggregate of

cells such that e,"* | e,* is an open subset of K; and Ko, — K, | €. | o
is an elementary expansion, for each @« Then K,— K; will be called a
composite expansion and K, — K, a composite contraction. It follows from
the argument used in the finite case, and (I), in Section 5 of CH(I), that K,
is a D.R. of K,. By a formal deformation, D: K — L, we shall mean the
resultant of a finite sequence of composite expansions and contractions. We
restrict ourselves to complexes of finite dimensionality. Then the proofs of
the lemmas in Section 14 and of Theorem 14 apply to infinite complexes, after
a few trivial alterations.

We also admit homotopy systems of finite dimensionality, in which the

4 Tn general p’ can also be realized by a complex, K’, in such a way that f has no
realization K = K’.
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groups may have infinite bases. We define a simple equivalence, f:p=/p/,
where p,p’ are two such systems, by analogy with a formal deformation

D

:K — L. Then Theorems 16, 17 can be extended without difficulty to

systems in which the bases may be infinite.

It remains to be seen whether or not the purely algebraic theory developed

in Section 2-9 can be extended to systems of modules with infinite bases,
in such a way as to yield a generalization of Theorem 13 to infinite complexes.

9.
10.
11.

12.

13.
14.

15.
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