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ON C'-COMPLEXES

By J. H. C. WHITEHEAD
(Received July 18, 1939)

1. This paper is supplementary to 8. 8. Cairns’ work' on the triangulation of,
and polyhedral approximations to manifolds of class C'. Its aim is to provide
a foundation for theorems® which lnvolve both differential geometry and the
theory of combinatorial equivalence.’ Theorem 8, for example, states that two
C'-triangulations of any manifold of class* C* are combinatorially equivalent.
Thus a manifold of class C' is like a recti-linear polyhedron in that it has a
preferred class of combinatorially equivalent triangulations. This theorem
depends on the definition of a C'-complex given in §2 below, and does not apply,
for example, to the algebraic complexes first considered by B. L. van der
Waerden.” For though two “algebraic triangulations” of the same space have
a common algebraic sub-division, it is not certain that an algebraic triangula-
tion of a recti-linear n-simplex is combinatorially equivalent to an n-simplex.
The C'-complexes, though more closely allied to, also differ essentially from the
complexes considered by Cairns. Therefore we do not use Cairns’ results,
though the main ideas in many of our theorems are due to him.

We shall use R™ to stand for n-dimensional Euclidean space, and it is to be
understood that R is Euclidean not only in its topology, but also in the sense
of metric geometry. By a complex K we shall always mean a recti-linear,
simplicial complex in Euclidean space, and K will stand for the mod 2 boundary
of K. We shall denote a recti-linear, simplicial subdivision of K, but not
necessanly a normal sub-division, by K’, and if K, is any sub-complex of K,
then K, will be the sub-complex of K’ covering K,. By a simplex we shall
always mean a closed simplex (i.e. a simplex with its boundary), and we shall
use the letters A4, B to stand for recti-linear simplexes. By an zsomorphism
t(K1) = K, we shall mean a homeomorphism of K; on K, which maps each
simplex of K; on the whole of one, and only one, simplex of K, and which is
linear throughout each simplex in K;. In §§2 and 3, theorem 5 excepted,
K will always stand for a finite complex. We shall use the summation con-

! Annals of Math., 35(1934), 579-87 (triangulation); 37(1936), 409-15 (approxim ations).

2 See, for example, J. H. C. Whitehead, Annals of Math. 41(1940), 825-832.

3 Here we may take as a definition: two simplicial complexes K; and K, finite or
infinite, are combinatorially equivalent if, and only if, recti-linear models of K; and K, have
isomorphic recti-linear sub-divisions.

¢ See, for example, O. Veblen and J. H. C. Whitehead, The Foundations of Differential
Geometry, Cambridge (1932), Chap VI. By an n-dimensional manifold we shall always
mean one which is covered by a countable set of open n-cells.

§ Math. Ann., 102(1929), 337-62.
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810 J. H. C. WHITEHEAD

vention in analytical formulae, with the additional convention that Roman
indices take on the values 1, ... | n.

2. A map f(U) C R", of a region U C R* (possibly U C R* C R™, where
m > k), is said to be of class C*, or a C*-map, if and only if, it is given by equa-
tion of the form
(21) yl = f(xlr ] xk) = f‘(x)r
where z', ... ,2* and ', - .., ¥" are rectangular Cartesian coordinates for R*
and for R", and the functions f*(x) have continuous derivatives at each point
of U. The map f will be described as non-degenerate if, and only if, the Jacobian
matrix of the transformation (2.1) is of rank k at each point of U. A map
f(A) € R", of a k-simplex A C R* will be described as of class C' (non-degen-
erate) if, and only if, it can be extended throughout some open set in R*, con-
taining A, in which it is of class C* (non-degenerate).

Let fo(A) € R" (a = 1, 2) be two C'-maps of a simplex 4, given by equa-
tions of the form (2.1). We shall describe f; as an (¢, p)-approximation to fi
if, and only if,

lf2 = fill = ¢ and ||dfs = dfi]| = plldfil]

for each z ¢ A and every vector dz, where
i _ Ofa
df,,,=aixxdx* =1, ...,k

and [|y: — wil = (@ — vD@i — DI} |y ]l = W) When we are only
interested in || df; — dfi ||, or in || fo — f1]||, we may refer to f» as an (=, p)-,
or as an (¢, «)-approximation to f;. Let a be the origin of the coordinates y
and let p; and p; be the extremities of the vectors df; and df., situated at a.
If f» is an (o, p)-approximation to fi, it follows from the geometry of the
triangle apip: that ap: < apy + pw: = (1 + p)ap:, and ap: = ap: + popr =
ap: + pap:, whence (1 — p)ap: < ap.. Therefore, if p < 3, we have ap, =
2ap, and f, is an (o, 2p)-approximation to f; . If f;is an (e, p;)-approximation
to f1, fs an (=, ps)-approximation to fs , and if aps is the vector df; , then,

D1Ps = D1p2 + p2p3 = papr + peape: = (Pl + p2 + p1p2)ap1,

since ap: < (1 + p)ap:. Therefore f5 is an (o, ps)-approximation to fi,
where p;s = p1 + p2 + pp2. Notice that p3 < 3p1if pr = p» < 1. Combining
these with the familiar relations for (¢, «)-approximations, we see that, if f;
is an (e , p1)-approximation to f; , where py < 3, and f; is an (ez, p2)-approxima-
tion to fo, then f1 is an (e, 2p1)-approximation to f; and f; an (a + e,
p1 + p2 + pip2)-approximation to f;. Notice also that an (=, p)-approxima-
tion, f2 , to a non-degenerate map, fi , is itself non-degenerate if p < 1. For to
say that f is non-degenerate is to say that df = 0 if dz 0, and ||df: || =
(1 = p)lldfull
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LemMma 1. If f, is a non-degenerate (=, p)-approximation to a non-degenerate
map fy , then the angle’ between the vectors dfy and dfs does not exceed mp.

If p 2 1orif p = 0 this is trivial. So we assume 0 < p < 1. Then, with
the same notation as before, if the lengths ap, and pip, are fixed, the angle
6 = angle piap. is greatest when ap. touches a circle of radius p;p; and center
P1, in which case pp. is perpendicular to ap, . Therefore sin § < pip2/ap: < p,
whence § < i sin 6 < wp and the lemma is established.

By the radius r(A4), of a simplex A C R" we shall mean the distance from
its centroid to its boundary. Let f.(A) C R" (« = 1, 2) be two linear, non-
degenerate maps of a k-simplex A C R", let ¢ be the maximum of || f2(z) — fi(2) ||
as z varies over A, and let r = r{fi(4)}.

LemmaA 2. Under these conditions f2(A) ts an (e, 2¢/r)-approximation to f1(A).

By definition, f:(A) is an (¢, «)-approximation to f;(4), and we have only
to prove that || dfs — dfi|| = p||dfi]|, where p = 2¢/r. Since f1 and f, are
linear, df; — df1 does not depend on the point z ¢ A, but only on the vector dz.
Therefore we may take = %, the centroid of 4, and we take # + dz e A. Then
f1(Z) is the centroid of f1(4), since f; is linear, and fi + dfy = fi(& + dz) € {fi(4)};
whence || df1|| = r. Therefore

Ndf: — dfi|l = || (2 + dfs) — (i + df)) — (fa — f1) ||
= || {2(Z + d2) — f1(Z + dx)} — {f2(Z) — f(@)} ||

S 1AG + do) — i@ + dn) || + 1 6@ — 1@ || < 2¢ < 2|1 df )|

and the lemma is established.

Let A be a k-simplex in R* and let f(4) C R" be a non-degenerate C'-map,
given by equations of the form (2.1). If b is any point in A these equations
may be rewritten as

(2.2) v — ¢ = a@ — ) + 7),

where ¢ = f(b) and a; are the derivatives 8f*/dz", calculated for z = b. The
image of A in the linear transformation F; , given by

(2.3) ¥t — ¢ = ai(@ — b,

will be called the tangent simplex to f(A) at the point ¢. Since the derivatives
of'/ax* are continuous, and therefore uniformly continuous in the compact
set A, it is an obvious consequence of lemma 2 that, given ¢, p > 0, there is a
& > 0 such that F; is an (e, p)-approximation to Fy(A) provided || b’ — b || < 6.
Since, at the point x = b’, df = dFy , we have:

LeMMA 3. Given ¢, p > 0, there is a positive & such that Fy is an (e, p)-approxi-
mation to f throughout the sub-set of A given by ||z — b|| < §, for any b e A.

By the relative thickness,” r(B), of a simplex B C R™ we shall mean r/I,

¢ By the angle between two vectors we mean the positive angle which does not exceed =-
7 Cf. Cairns’ definition of a 6-set (Triangulation, p. 583).
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where r = r(B) and [ is the diameter,’ I(B), of B, Let f(A) C R" be a non-
degenerate C*-map of a k-simplex A C R, let by, -- - , b, be any points in 4
and let B be the simplex by --- b,. Let L(B) C R" be the linear map of B
such that L(b,) = f(be) (¢ = 0, ---, D).

LemMA’ 4. Given ¢, p, ¢ > 0, there is a positive & such that, if 7(B) = ¢ and
I(B) < &, then L(B) is an (e, p)-approximation to f(B).

By lemma 3 there is a positive 8, such that Fy(B) is an (e/2, p/3)-approxi-
mation to f(B) for any b € B, provided I(B) < é,. Therefore, assuming, as we
obviously may, that p < 1, the lemma will follow, with § = min (&, &), if
there is a positive 8; such that L(B) is an (e/2, p/3)- approximation to Fy(B)
for any b ¢ B, provided I(B) < §;. The transformations Fy(B) and L(B) are
given by

¥ — ¢ = a®y — Ht*
¥ — ¢ = ah — O+ 10N (@=0,---,p),

where 0 < t* < 1,80 + ... + * = 1, b%, .., b are the coordinates of the
vertex b, , and ay and v'(z) mean the same as in (2.2). Since the derivatives
of v'(z) vanish when z = b there is a positive 8(n), such that |y'(z) | <
n||lz — b|| provided ||z — b || < 8(n), for a given n > 0. If I = I(B) = &(n)
and if b € B it follows that | v'(ba) | < 7l. Sincet* = 0Oand ¢’ + ... + " =1
we have | y'(ba)t* | < nl, whence

|| L(z) — Fo(@) || = || vt || = nin’

for any point x = b,t" in B. It follows from lemma 2 that L(B) is an (nlnt,
2qlnt /ry)-approximation to Fy(B), where r, = r{Fs(B)}.

Now let 2, - .. , 2" in (2.3), be rectangular coordinates for R¥ D A, and let
£1(b) be the smallest root of the equation

(2.4) | axa; — ¢oa | = 0.

Then {1(b) is a continuous function of b, and is positive since f is non-degenerate.
Therefore {1(b) has a positive lower bound, «*, as b varies in the compact set 4,
and

|| dFs || = (ale; dz* dz")’ 2 || da ||

for any b e A. Therefore 7, = wr, where r = 7(B), and l/r, £ l/wr £ 1/wa,
since r/l = o, whence

ann%/n < 217n’/wa.

8 J(B) is the length of the longest side of B (P. Alexandroff and H. Hopf, Topologre,
Berlin (1935), 607).
9 Cf. Cairns (Approximations, §4).
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Also !l = I(A) = I, say. Therefore L(B) is an (e/2, p/3)-approximation to
Fy(B) provided I < 8, = 6(n), where

n = min (¢/2lin’,  pwo/6nb),

and the lemma is established.

By a (5, o)-subdivision of K C R™ we shall mean a subdivision K’, such that
I(B) < 6, 7(B) = 7, where B is any simplex in K’ and, as before, [(B) and 7(B)
stand for the diameter and the relative thickness of B.

LemMa' 5. There is a (5, o)-subdivision of K for an arbitrary 6 > 0 and some
o > 0, which does not depend on the choice of 6.

Let the equations (2.3) now represent an arbitrary, non-singular, linear trans-
formation F(R*) C R™. 1If {; and {; are the smallest and greatest roots of the
equation (2.4) we have

dllde|l < lldyll < gtlldz]l.

If B is any simplex in R* and C = F(B) it follows that 7(B) = «7(C), where
k = (t/6)}, and k > O since F is non-singular. Therefore, if K = F(K)),
where K; C R” and F is an isomorphism, and if K; is any subdivision of Kj,
there are constants wp , ko , such that I(B) =< wl(By), 7(B) = k7(By), where B,
is any simplex in K; and B = F(B;). Therefore we may replace K by an
isomorphic complex in R”, and shall assume it to be a sub-complex of the
simplex A;, whose vertices have rectangular Cartesian coordinates (0, - - -, 0),
1,0,...,0),--.,(0,...,0,1), where N 4 1 is the number of vertices in K.
Let P be the polyhedral complex consisting of the convex cells into which R"
is divided by the hyperplanes

Y=k B=0,---,N; k=0, £1, +2,...),

where 3, - - -, y" are the coordinates for R” and 4°* = y' + --- + y". Then
P contains a sub-complex covering the simplex A,, whose vertices are the
points (0, ---,0), (¢,0, ---,0), ---, (0, ---,0, q), for any integral value of g.
The complex P also contains a sub-complex @, which covers the hyper-cube
givenby0 <4 <1 ( =1, ..., N), and each cell in P is congruent to a cell
in Q under the group of translations. Let P’ and @’ be the complexes obtained
from P and @ by a normal subdivision, the new vertices being placed at the
centroids of the corresponding cells. Then each simplex in P’ is congruent to
some simplex in @' and its relative thickness is therefore at least o, where o
is the minimum relative thickness of the simplexes in @'. Let E, be the sub-
complex of P’ covering A, and let E; be the image of E, in the transformation
given by 4 = y"/q. Then E, is a subdivision of A, and so contains a sub-
complex K’, which is a subdivision of K. The relative thickness of each
simplex in K’ is at least ¢, since the relative thickness is an invariant of the

10 Cf. Cairns (Triangulation, p. 585).
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similarity group, and its diameter is less than 3N*. Taking ¢ = ;—Ni the

lemma is established.

By a C'-map, f(K) C R", or a map of class C', we shall mean a map which
is of class C* throughout each simplex in K. The map f(K) will be described
as non-degenerate if, and only if, it is non-degenerate throughout each simplex.
We shall also describe f(K) as a C'-complex, or a complex of class C*, and as a
non-degenerate complex if, and only if, the map f is non-degenerate. By an
(&, p)-approximation to f(K), we shall mean a C-map f'(K’) C R", where K’
is any sub-division of K, such that f'(4) is an (e, p)-approximation to f(4)
throughout each simplex A C K’. We shall use L;(K’) to denote the map
which is linear (possibly degenerate) throughout each simplex of K’ and coin-
cides with f at the vertices of K’. Notice that L;(K’) is not, in general, the
image of K’ in L;(K).

THEOREM 1. Given a non-degenerate C*-complex f(K) C R", and ¢, p, ¢ > 0,
there is a positive & such that L;(K’) is an (e, p)-approximation to f(K), where K’
is any (8, o)-sub-division of K.

By lemma 4 there is a (4) > 0 such that, if K’ is any {6(4), ¢}-subdivision
of K, then L;(A’) is an (e, p)-approximation to f(4), where A’ is the subcomplex
of K’ covering A C K. Taking & = min §(4), for any A C K, the theorem
follows.

Let K, be a sub-complex of a given complex K and let K1 be any subdivision
of K. By an extension of K, throughout K we shall mean a subdivision K’
of K, which coincides with Ky in K;. Let f(K) C R" be a non-degenerate
C'-map and let fi(K;) € R" be an (e, pi)-approximation to f(K;). By an
(¢, p)-extension of fi(K;) throughout K we shall mean an (e, p)-approximation,
f'(K’) € R", to f(K), which coincides with f; in K; , where K’ is an extension
of the subdivision Kj .

THEOREM 2. Given a non-degenerate C'-map, f(K) C R", a sub-complex
K, C K and ¢, p > 0, there are positive numbers €, p1, such that any (e, p1)-
approximation to f(K,) has an (e, p)-extension throughout K.

This will follow from an obvious induction on the number of simplexes in
CI(K — K,), the closure of K — K,;, when we have proved it in case K = A,
a single simplex, and K; = A. Let a be the centroid of A, let ¥, be the mid
point of the segment az, , for any z, ¢ 4, and let A, be the simplex bounded by
the locus of z, as z; describes A. Let A’ be any subdivision of A and let P be
the polyhedral complex consisting of the convex cells B X z,r;, swept out
by the segment z,2, as z, varies over the simplexes B C A’. Let z, be the
point on zez; such that zor;:za;, = t:(1 — &) (0 <t < 1)andlet 21, -- -, zh ¢
be taken as coordinates for B X zz;,, where zi , - - - , z} are Cartesian coordi-
nates for any B C A’. Let A be the maximum and § the minimum attained
by || df || for any z, ¢ P and any vector (dz}, ---,dz;, df) whose length is
unity in terms of a Euclidean metric for 4.

Now let fi(4’) € R" be an (e, py)-approximation to f(A4), and, treating f(x;)
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and fi(z,) as vectors in R”, let v(z1) = fi(x)) — f(z1). Then ||y || £ & and,
if dz; is a unit vector, || dy || = a1 || df || £ mA, whence

Y=yl 2 e

2.5) ,~
ldv'| = |ldv[| = pia,

where the index 7 refers to some rectangular Cartesian coordinate system for R".
Let f/(P) be the C'-map given, in vector notation, by

@) = fz) + ty(m) 0=<t=<1;zed).
Then

W =fll=tllvll = e and |ldf' —dfl| = ||tdy + vadt]|.

Taking (dz,, dt) to be a unit vector, in which case | dt | is bounded, it follows
from (2.5) and the continuity of the function ||y || that there are positive
numbers ¢ and p; such that || dff — df || < pd < p||df||. If & < € we have
also ||f/ — f|| = e and f/(P) is an (¢, p)-approximation to f(P). Finally we
take f/ = fin A, and extend the sub-division A’ by starring A, and each of the
cells B X xox;, leaving A’ untouched. The result is an (e, p)-extension of f;
throughout A, and the theorem is established.

Let K, be the complex consisting of all the simplexes in K which do not
meet K;. As a corollary to theorem 2, replacing f,(K1) by fo(Ki + K») with
fo = fiin K, fo = fin K, , we have the addendum:

ADpDENDUM. The extension f'(K'), referred to in theorem 2, may be chosen so
that the subdwvision K’ leaves K, unaltered and f' = fin K, .

If B is any simplex in K we shall use N(B, K) to stand for the stellar neigh-
bourhood of B in K, consisting of all the simplexes AB C K, where AB is the
join'' of A and B. If b is an internal point of B we shall also describe N (B, K)
as the stellar neighbourhood,”> N(b, K), of b. If f(K) C R" is any C'-complex,
the recti-linear complex in R” which consists of the tangent simplexes at f(b)
to the simplexes in f{N(b, K)}, will be called the tangent star at f(b) to f(K).
Thus the tangent star is the image of N (b, K) in a simplicial transformation F, ,
which coincides with the transformation Fy(AB), defined by (2.3), throughout
each of the simplexes AB, where b is internal to B. By a non-singular C"-com-
plex, or map, f(K) we shall mean a C*-complex such that

1. fis (1 — 1) throughout K,

2. Fyis (1 — 1) throughout N (b, K) for each point b ¢ K.

It follows from the second of these conditions that a non-singular map is non-
degenerate.

THEOREM 3,. To any non-singular C'-complex f(K) C R™ correspond posi-
tive numbers ¢, p, such that any (e, p)-approximation to f(K) s non-singular.

According to a previous observation, any (e, p)-approximation to f is non-

11 Here we allow A to be 1, the empty simplex, in which case AB = B.
12 In general N(B, K) C but = N(b, K) if b « B.
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degenerate if p < 1. Thus, taking p < 1, we may confine ourselves to non-
degenerate approximations. On this understanding we shall prove a similar
theorem with less restrictive hypotheses. A non-degenerate map f'(K’) C R"
will be called an | ¢, « |-approximation to f(K) if, and only if, ||f' — f|| < e
and the angle between df and df’ is at most «, for each z ¢ K’ and non-zero
vector dz, in any simplex of K’. Notice that this relation is symmetric between
fand fi, andif fiis an | &, oy |-approximation to f and f an | €2 , a2 |-approxima-
tion to f;, then fais an | ¢, + €, a1 + a3 |-approximation to f. By lemma 1 an
(¢, p)-approximation is an | ¢, mp |-approximation, but an example of the form
Y=+ esinAr (¢, A > 0;0 < x < m/2)\) shows that an | ¢, 0 |-approximation
need not be an (e, p)-approximation for any given p. Our theorem is:

THEOREM 3, . To any non-singular C*-complex f(K) C R" correspond positive
numbers ¢, o such that any | ¢, a |-approzimation to f(K) is non-singular.

First consider the special case in which K = z;2) + zoz2 , where zory (A = 1, 2)
are linear segments with no common point other than z,, and f(ziry + 2oz2) =
Y19 + Yoy2 is linear throughout each of 2ozx . In this case any (non-degenerate)
| «, 0 |-approximation f'(K’), to f(K), is (1 — 1) provided 20 < angle y1yoye .
For let R* be the plane containing %, 4 and y2, or any plane through these
points if they are collinear, and let I C R® be the external bisector of the angle
Y1YoY2 , or the line y1yoy: if these points are collinear. Then the inclination to
yoyn (A = 1 or 2) of any direction in R" perpendicular to , is at least 1 angle
yiyoye . If 20 < angle yiyoy: it follows that the vector df” is never perpendicular
to [, and its orthogonal projection on ! points away from g,. Therefore the
orthogonal projection of f'(K’) on ! is a non-singular image of K’, whence f’
is (1 —1).

Let A;B and A,B be simplexesin R™(A\ # 1), let by be the centroid of B, and let
60(A1, A2, B) be the minimum attained by the angle a:bop for” a, € 4, , p € 2B,
and let

0(A1, Az,B) = min {00(A1,A2, B), 1I'/2}

It follows from a standard type of argument that 6,(4;, A;, B), and hence
0(A1, Az, B) vary continuously with the vertices of A;, A; and B, provided
the simplexes A:B and A.B remain non-degenerate (and under less stringent
conditions). Let zy e A\B — B (A = 1, 2), let a; be the point in A4, such that
the simplex a;B contains z; , and let the line through z; parallel to a;b, meet B
in b. Then the line through b, parallel to bz, meets 4B in p, say, and angle
zibr; = angle a;bop = 6(A;, A2, B). Notice that the construction for b, given
21, is affine and so invariant under a linear transformation. We shall call b
the A,-projection of z; in B.

If A:B and A.B do not meet except in B we have § = 6(4,, 42, B) > 0,
and I say that || zx — b || = || 22 — 21| cosec 6, where ) and b mean the same

8 A,B = A,if B is a 0-simplex.
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as before. For if angle zbz; = /2 we have |[[zn — b|| < ||2 — 21| =

|| 22 — 21| cosec 6, and if angle z;bz, < 7/2 we have
[lzx — b = || 22 — 21| cosec (zbxs) < || 22 — 21 || cosec 6,

since || zx — b || does not exceed the diameter of the circle through z; , z, and b.
Now let A\B C K, A\ # 1 (A = 1,2; A;-A; = 0) and let

0(p) = 6{F5(41), F5(4s), Fo(B)},

where p € B. Since f is non-singular, 6(p) is a positive, continuous function of
P € B and so attains a positive minimum. Let 7a be the least of these minima,
calculated for every pair of simplexes in K which have a common point though
neither is contained in the other, and let ¢ be the greatest of the numbers cosec
0(A1, A2, B). Letf(K’') be an | =, a|-approximation to f(K). We first show
that the map F} is non-singular™ for each p e K. If F » were singular there
would be two segments pz; and pzs in N(p, K’) with the same image under F,, .
Therefore it is enough to show that F,(z,) # F,(2,) if x, 5 25, where z; and z.
are arbitrarily near p. Let A\B be the simplex of K (not K’) containing x)
as an inner point, where 4B and A4.B do not meet except in B. If one of A,\B
contains the other (i.e. if A, = 1 or A, = 1) let b be the mid-point of the segment.
122 , if not let b be the A;-projection of z;in B. Since||zy — b || S ¢ || 22 — 21 ||,
and by lemmas 3 and 1, we may suppose z; and z; to be so near p that:

1l.aoyb C N(p, K') A = 1, 2),

2. Fp(zib + bxe) is an | o, a |-approximation to f(zib + bzxs),

3. Fo(z;b + bx,) is an | », a |-approximation to f'(x:b + bxs).
Since f’ is an | «, « |-approximation to f it follows that F,(z:b + bzs) is an
| ©, 3a|-approximation to F,(z:b + brs). Since the angle between the seg-
ments F,(bx;) and F,(bx.) is at least 7a it follows from the special case of the
theorem already proved that F,(z;) % F,(2s). Therefore F, is (1 — 1).

We now show that f islocally (1 — 1). By a familiar theorem and lemmas 3
and 1, there is a § > 0 such that:

1.2y eN(O, K) A\ = 1,2), for somebeK,if ||z2 — 71 || £ 9,

2. Fy is an | =, a|-approzimation to f throughout the sub-set of K given by

||z — b|| = cdforanybeK.

This being so, I say that f/(z;) # f/(z2) if 0 < ||22 — 21 || £ 6. Forlet 0 <
l|zs — a1|| < 6 and let A;, A;, B and b mean the same as before. Since
l|2x — bl £ c|| 22 — 21 || < 8, the map f(x1b + bxy) is an | », « |-approxima-
tion to Fy(x:b + bxy). Therefore f'(z:b + bx,) is an | ©, 2a |-approximation to
Fy(xid + bxs), and it follows from the special case of the theorem that f'(x;) =
f’(l‘z).

Finally we show that f’(K’) is (1 — 1) throughout K’ if it is an | ¢, « |-approxi-
mation to f(K), for a sufficiently small ¢ > 0. The sub-set of the topological

4 If f’ is assumed to be recti-linear this step is unnecessary.
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product K> = K X K, for which || 73 — z:|| = & is compact, where § means
the same as in the preceding paragraph. Therefore the continuous function
|| f(xz2) — f(z1) || attains its minimum, say 3¢, on this sub-set, and ¢ > 0 since f
is(1 — 1). Therefore, if ||z, — 21 || = 6 and if f/(K’) is an | ¢, « |-approximation
to f(K), we have

1S/ (@) — (@) || 2 | f(xe) — f(a) || = || f(me) — f'(z2) ||
= | f'() — f@) || = ¢ >0,

whence f’ is non-singular and the proof is complete.

As a corollary to lemma 5 and theorems 1 and 3 we have:

THEOREM 4. Given a non-singular C'-complexr f(K) C R", and ¢, p > 0,
there is a subdivision K', of K, such that L;(K') is a non-singular, (e, p)-approzi-
mation to f(K).

3. Let M" be an n-dimensional manifold of class C'. Without loss of gen-
erality we assume M" to be smoothly imbedded™ in R™, and (¢, p)-approxima-
tions to maps in M" will be measured in terms of the Euclidean metric for B™.
Let f(K) € U C M" be a non-singular C'-complex, where U is the domain of
an allowable coordinate system for M". Then theorem 4 is valid if the term
linear is interpreted in terms of the coordinates for U, provided the sub-division
K’ is so fine that Ly(K’) € U. For f(K) is compact, and the metric taken
from R" by the coordinates is continuous in terms of R™, and the parallelism
taken from R" is a first approximation to the parallelism of R™. If f(K) C M"
is a C'-complex such that f(4) < U(A) for each A C cl(K — K,), where U(4)
is the domain of an allowable coordinate system for M", then the proof of
theorem 2 applies to approximations in M", taking ¢ to be so small that
f'(4h c u).

By a C-triangulation'® of M", we shall mean a non-singular, locally finite"
C'-complex f(K) = M", which covers M". By an (n-dimensional) unbounded,
formal manifold we shall mean a simplicial complex K, such that the complement
of each vertex is combinatorially equivalent to the boundary of an n-simplex.

TrEOREM 5. If f(K) is a C'-triangulation of M", then K is an unbounded
formal manifold.

Let f(K) = M" be a C'-triangulation. Then K, being a homeomorph of M",
is n-dimensional and is a pseudomanifold® (i.e. each (n — 1)-simplex is on the
boundary of precisely two n-simplexes). Therefore the complement, K5 , of any
vertex, b, is a pseudo-manifold and hence a finite (= — 1)-cycle (mod 2). Now
Fy{N(b, K)} = Fs(bK;) = f(b)Fu+(Ks) C R", where R" is the tangent flat n-space
to M™ at f(b). Also F, is an isomorphic map of bK,, since f is non-singular.

18 Hagsler Whitney, Annals of Math., 3(1936), 645-80.

16 It follows very easily from theorems 4 and 2, by Cairns’ piecemeal construction (cf.
lemma 7, below) that M has a C'-triangulation. As we shall see this also follows from
our theorem 6.

17 We recall this is the only passage in §§2 and 3 in which K may be infinite.

18 H, Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig (1934), 125.
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Therefore the radial projection of Fy(K;) from f(b) in the boundary of an
n-simplex A™ C R", of which J(b) is an inner point, is a semi-linear, topological
transformation, #Fy(Ks) C A" Since K, is a finite (n — 1)—cycle it follows
that =Fy(K;) = A", and the theorem is established.

Two maps, f(K) and J*(K*), will be described as equivalent if, and only if,
K* is the image of K in an isomorphism ¢, such that f = f*¢. This is obviously
an equivalence relation in the technical sense (i.e. it is symmetric and transitive)
and we shall now identify any two C'-complexes which are given by equivalent
C'-maps. Thus fi(K;) = f2(K3) will mean that the maps fi(K:) and fo(Ks)
are equivalent and the complexes fi(K;) and f;(K:) identical. If*® K =
K, + ... + K, we shall describe a non-singular C'-complex f(K) as the non-
singular union, f(Ki) + ... 4 f(K,), of its sub-complexes f(K), --- , f(K,).
Conversely, a set of non-singular C'-complexes fl(Kl), <o fol(Kg) in MY,
will be said to have a non-smgular union, fi(Ky) + --- + fo(K,), if, and only lf
there is a non-smgular C -complex f*(K*) = fl(Kl) + - + f.(K,), such that
K* ="Ky 4+ ... + K and each map f*(Kx) is equlvalent to AKL) (A =
1, ... ,9. Notlce that, if K = K; 4+ ... + K, and if a given map f(K) is
non-singular throughout each of K, , - . - , Kq , then f(K,), --- , f(K,) may have
a non-singular union even if f(K) is singular. But in this case f(K)) + --- +
J(Kq) # f(K). The following lemma is an obvious consequence of these
definitions.

Lemma 6. If fi(K,) and f(K) are non-singular C'-complexes with a mon-
singular union, and if K = K, + Kj, then fi(K,) and f(K3) have a non-singular
union and

SKY) + f(K) = {i(Ky) + f(K2)} + f(Ks).

Two complexes f1(K;) and fo(K,) in M™ will be said to intersect in a common
sub-complex if, and only if, their intersection, as point sets, coincides with
J1(Kw) = fa(K), where Ko is a sub-complex of K, (e« = 1, 2) and the map
f1(Kw) is equivalent to the map f,(Kx). Let this be the case and, without
altering the notation, let us star each simplex A, if there are any, belonging to
Cl(K: — Ky) but not to Ky and such that fi(4,) has the same vertices as a
simplex fs(42) C fa(K:). Then, replacing K. by an isomorphic complex,” if
necessary, we may first separate K, from K, and then identify each simplex
A C Ky with tA C Ky, where {(Ky) = Ky is an isomorphism such that
fi = fatin Ky. The result is a complex K* = K{ + K;k, where K& is the
image of K, in an isomorphism ¢, such that ¢, = tst in Ky. Therefore fi(Kj)
and f2(K3) are sub-complexes of f*(K*), where f* = f.t5 in K% . If each of the
maps fa(Ka) is (1 — 1) sois f*(K*), since f1(K1) and f>(K3) do not meet except in
Ji(Kw). Let p1eKy, p2 = tpr, p* = tupa and let N, = N(po, Ka), N

1» Here addition is used as in the theory of sets. K and K, may have simplexes in
common and may even coincide.
% e.g. a sub-complex of a k-simplex for an arbitrarily large k.
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N(p*, K*). Then, subject to the above conditions, it is clear that fi(K,) and
f2+(K2) have a non-singular union, namely f*(K*), if, and only if,

1. fi(K1) and f2(K2) are non-singular,

2. f1(N1) and f2(N2) have a non-singular union, namely f*(N*), for each p1 € Ko .
In general the tangent star at f*(p*) to f*(K*) may be singular for some point
p* € Ky even if f1(K,;) and f2(K.) are both non-singular.

Let K = Ko, + E and let f(K) C M" be a C'-complex such that f(K,) and
f(E) are non-singular. Also let f(E) C U, where U is the domain of an allow-
able coordinate system, which we regard as map, (D) = U, of a region
DCR'onU.

LeMMA 7. Under these conditions, given ¢, p > 0 there is an (e, p)-approxima-
tion, f'(K") € M", to f(K), such that f’ (Ko) and f'(E") are non-singular and
have a non-singular union.

Let H C K be the sub-complex consisting of all the simplexes in K whose
images in f meet f(E), let K; = H-K, and let K; = CI(K — H). Then K =
H+ K,,H=E+ K,,and K, = K; + K,. Without altering our notation
we assume, after a suitable sub-division, that f(H) C U and also f(4) < U,
where A C K is any simplex which meets H. By theorem 4, given ¢, p1 > 0,
there is an (e , p1)-approximation, f/(H') C U, to f(H), such that f’ is “z-linear”
throughout each simplex in H' (i.e. f’(4) = z(B) for each A C H’, where B C D
isrecti-linear). We partially extend f’ by writing f = f throughout each simplex
which does not meet H. Then, given e, p» > 0 and assuming ¢ and p; to be
sufficiently small, it follows from theorem 2 that the approximation f'(H’) has
an (e, pz)-extension, f'(K’), throughout K. Since f(E) and f(K,) are non-
singular, it follows from theorem 3 that f’(E’) and f'(K,) are non-singular if
&2 and p; are sufficiently small, which we assume to be the case. We also take
€2 to be so small that f/(K;) does not meet f/(E’). Finally we take e < ¢,
p2 < p, in which case f'(K'’) is an (e, p-approximation to f(K), where K" is any
sub-division of K’.

The sub-set f/(H') € M", besides being the image of H’ in f’ is the homeo-
morph, z(P), of a polyhedron P = F + P, C D, where

F=2YE), P =z"(K),

z'f’ being an 1som0rph1sm throughout each of E’ and K; since K; C K, and
f'(E') and f'(Ks) are non-singular. Let P’ = F’ + Pj be a triangulation of P,
F' and P1 being recti-linear sub-divisions of F and P, which intersect in a com-
mon sub-complex. Since the map = f’ (A) C P is non-degenerate for each
simplex A C H’, the tnangulatlon P’ determines a sub-division H” = E” 4
K{, of H', such that F’ and P1 are isomorphic in 27'f’ to E’" and Ki. There-
fore x(F’) = f(E") and z(P1) = f/(K1). Let K" = H' + K; = Ko + E"
be an extension of the sub-division H"’ throughout K'.

Since z(P) = z(F') + (P1) = f'(E") + f/(KY), and f'(E")-f'(K2) = 0,
the (non-singular) C’-complexes z(P’) and f’ (K), intersect in a common sub-
complex, namely f/(Ky-K3). Also any simplex A C P’, such that z(4) meets
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(K3, belongs to P; and not to F. Therefore, if peKy Ky and q =z f'(p),
then N(g, P') = N(g, P1). Since 2(P1) = f'(Ky) and f'(Ks) = f(K7) +
f'(K3) it follows that z{N (g, P)} and f'{N(p, K, )} have a non-singular union,
namely f'{N(p, Ko)}. Therefore z(P’) and f'(K7) have a non-singular union.
But

z(P') = f'(B") + f'(KY)
and it follows from lemma 6 that
2(P') + f(K3) = f/(B") + {f(KY) + f'(K)} = f(B") + f'(KD),

and the lemma is established.

We now come to the main theorem.

THEOREM 6. Given ¢, p > 0, and non-singular C'-complexes fi(K)) < M"
A =1,..., q), there are (e, p)-approzimations in M" to f\(K)), whick have a
non-stngular union.

If ¢ = 1 the theorem is trivial and we shall prove it by induction on the
total number of simplexes in K,, --., K,, after an initial sub-division such
that fy(A4) is in the domain of an allowable coordinate system, for each simplex
A CKyandeach\ = 2, ... ,q. Let K, = Ko + A, where 4 is a principal
simplex in K, and™ K, = Cl(K, — A), and let U be the domain of an allowable
coordinate system, which contains f,(4). By the hypothesis of the induction,
given e, p1 > 0 there are non-singular (e , p1)-approximations fo(K&), fo(Kuw) C
M" t0 fo(Ka) and fo(Kp) (@ = 1, .-+, ¢ — 1), such that fi(K1), - - - , fo(Ke)
have a non-singular union. By theorem 2, given e, p» > 0 and pr0v1ded €
and p are sufﬁmently small, there is an (e, ps)-extension, fo(Kj), of fu(Kuw),
where K, = qu‘ + A’ and f,,(A’ ) € U. We take e and p; to be so small that
f«(Ky) is non—smgular according to theorem 3. We also take &, < e, p1 < p2,
so that fi(Ky) is an (€2, pz)-approx1mat10n to fi(K)) for each value of A =

1, ..., g Replacing f/(Kx) A =1, ... , @) by equivalent maps, if necessary,
and taklng care that no internal s1mplex of A’ coincides with a simplex of®
K., (a = 1, , @ — 1) we may, without altering our notation, represent

fq(Kq) and the union fi(Ki) 4 --- + fq(qu) as non-smgular sub-complexes of
a C'-complex g(K), where K = K1 + ...+ K;andg = fiin K. Then K =
Ko+ A’, where Ko = Ki + ... + qu ,and g(Ko) = fi(Ky) + -+ + fu(Kw).
Since g(A’) C U it follows from lemma 7 that, given e, ps > 0, there is an
(es, ps)-approximation, g’(K’), to g(K), such that g’(K,) and ¢’(A”") have a
non-singular union, where K’ = Ko + A” = K{ + ... + K,. Then g (Ko),
and hence ¢'(Ky) (@ = 1, - - , ¢ — 1), are non-singular, and since ¢’(K,) is an
(es, ps)-approximation to the non-singular complex g(K;) (= fi(K.)) we may

2 Ko and fo(Kq) are empty if K, = 4.

2 This may require an internal sub-division of 4’ if there are internal simplexes with
all their vertices in the boundary. However, if the sub-division 4’ is given by the con-
struction in the proof of theorem 2 there are no such simplexes.
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take € and ps to be so small that ¢’(K,) is also non-singular. This being so
g (K3) = ¢(Kw) + ¢g'(A”), and by lemma 6 we have
g(Ko)) + g'(4") = {g/(KY) + -+ + ¢ (K} + ¢'(4")
=g &)+ - + ¢g(Ky).
Finally g(K») (= fi(K»)) is an (ez, ps)-approximation to f(K») and g (Ky) is
an (e, ps)-approximation to ¢’(Kx). Therefore, taking e + e < €, p2 + ps +
peps < p, the theorem is established.

Let V be any open sub-set of M™ and let f(K»o) be the sub-complex consisting
of all the simplexes in fy(K)) which meet CI(V). From the proof of lemma 7,
and by adding to the hypotheses of the induction in theorem 6, we have the
addendum:

AppEnpuM: If fi(Ky), - - -, fo(Kg) have a non-singular union the approrima-
tions in theorem 6 may be chosen so as not to disturb the part of this union which
lies in V.

For in the proof of lemma 7 it is only necessary to sub-divide K, or to alter
the map f, in those simplexes which meet H. If f(E) C M™ — V no simplex
f(A) C M" which meets f(E) is contained in V. If f(E) C M" — CI(V) we may
therefore assume, after an initial sub-division which leaves 4 unaltered if f(4) C
V,that f(H) C M" — V. Then A-H = 0if f(4) C V.

We now require M" to be closed, a restriction which we remove later.

TueoreM 7. There is a C'-triangulation of M".

Since M™" is closed it can be covered by the interiors of a finite set of non-
singular, n-dimensional C'-simplexes fi(A 1), o fo(4 q) By theorem 6, given
e > 0, there are (e, oo)-approx1ma,t10ns HAD) (A =1, -+, ), to A(4)), which
have a non-singular union f(K) = fi(4;) + --- + fq(A ,,) It follows from well
known theorems™ that, provided e is sufﬁmently small, each point of M" is
internal to at least one of the cells fX(4y). Therefore f(K) covers M" and is a
C'-triangulation.

TreEorEM 8. If fi(K)) and fo(Ks) are two C'-triangulations of M", then K,
and K, are combinatorially equivalent.

For, by theorem 6, there are non-singular approximations f)‘(Kx) C M" to
AEY) (A = 1, 2), which have a non-smgular union. Since K, is a pseudo-
manlfold it is a cycle (mod 2). Therefore K is a cycle (mod 2), and since the
map fx is topologlcal it follows that M" is completely covered by fx(Kx). There-
fore fi(K1) = f2(K3), since f1(K1) and f2(K3) intersect in a common sub-complex,
and K is isomorphic to Kj .

With suitable restrictions, similar theorems to theorems 7 and 8 may be
proved for a bounded manifold Mg C M". For example, let M" and also the
frontier, M"™*, of M§ o be manifolds of class 03 and let M" be given a Riemannian
metric ds = g¢;; dz’ dz’, where the functions g;; are of class C? in allowable
coordinate systems for M ", Then, for some § > 0, no two of the geodesic seg-

8 See, for example, Alexandroff and Hopf (loc. cit.), pp. 100 (theorem IV) and 459
(Rouch§’s theorem).
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ments pq, of length 8, will meet each other, where pg C M§ is normal at p e M
to M™. If f(K) € M"'is a C'-triangulation of M"" the sub-set of M"
covered by the segments pq is a non-singular C'-image of the polyhedral complex
K X {0, 1), which may be triangulated by a normal sub-division. It is now
easy to show that, without disturbing f(K), some approximation to this triangu-
lation may be extended throughout My.

Assuming only that M™ and M"" are of class C', let f,(K:) and f2(Ks) be
two C'-triangulations of M§. By theorem 6, applied to the sub-complexes
f1(K), f2(K) covering M™ ', by theorem 2, and since fi(K») is the point-set
frontier of fA(K)), we may assume that f;(Kw) = f:(K2). By adding to the
hypotheses of the induction in theorem 6 we see that, if the maps fi(Ky) (A =
1, ..., q) are equivalent to each other throughout mutually isomorphic sub-
complexes Ky C Ky, then the approximations fy(Ky) < M", which have a
non-singular unign, may be chosen so that fi(K1o) = - -- = fo(Kw). In the case
of the triangulations f\(K)) = M5 (A = 1, 2), with Ky, = K, (mod 2), it follows
that fi(K;) = f2(K3), whence K is isomorphic to K .

4. We conclude by showing how many of these results can be extended to
infinite complexes and open manifolds. An infinite complex f(K) C M" is
to be such that only a finite number of simplexes f(4) (4 C K) meet any com-
pact sub-set of M". A manifold M" C R™ is to be a closed, but not necessarily
compact, sub-set of R™. An (e, p)-approximation to f(X) shall mean the same
as before, except that ¢ and p may now be any non-negative functions, e(p)
and p(p), which are defined for each p € K, and ¢, p > 0 is to mean that e(p)
and p(p) have positive lower limits in each compact sub-set of K. It is often
convenient to define such a function in terms of a particular covering of K by
compact sub-sets [F] (e.g. the simplexes or stellar neighbourhoods), only a finite
number of which meet any one compact sub-set, and a positive function of sets,
7(F), defined for each set in the covering. Then 5(p) may be defined as the
minimum of #(F) for F containing p. Conversely, given 5(p), the function
A#(F) may be defined as the lower limit of n(p) for p e F. For example, in the
proof of theorem 2, with K finite or infinite, we may take ¢(p), p(p) to be defined
in terms of given functions &é(4), 5(4), where A is any simplex in K, and &(p),
p1(p) to be not greater than suitably chosen functions &(4), p:(4) if p € A.
The theorem then follows by induction on the dimensionality of K — K; and
the same construction as in the finite case. In proving theorem 3 we may
define @ in terms of a function &(N) > 0, where N is the stellar neighbourhood of
any vertex in K. If &(V) is suitably chosen, any | «, a |-approximation to a
given non-singular C'-map is locally non-singular and it is easily shown, as in
the finite case, that an | ¢ «|-approximation is non-singular for a suitable
e(p).

In the absence of lemma 5, which seems to be comparatively difficult if K
is infinite, we replace theorem 4 by the less explicit theorem:

THEOREM 9. Given €, p > 0, there is a non-singular, recti-linear (e, p)-approxi-
mation to any non-singular C*-complez f(K) C R".
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This may be proved in the same way as the extension of theorem 6 to infinite
sets of (possibly infinite) complexes A(Ky) €M™ (A = 1,2, ... ), only a finite
number of which meet any one compact sub-set of M". To prove this let M"
be a closed set in R™, referred to Cartesian coordinates ', ---, y™. Let V,
be the sub-set of M" for which || y || < r and, after a suitable sub-division, let
each simplex of fy(K») which meets CI(V,) liein V41, foreach A\, u =1,2, ... .
By theorems 6 and 2 we may assume, after a suitable (e, pr)-approximation
to A(EN) A =1,2,---; &) < ep), p:(p) < p(p)), that the maximal sub-
complexes of fi(K1), fa(K3), - - - whose simplexes all meet Ci(V,) have a non-
singular union, for some®™ r = 1, 2, ... . If follows from theorem 6 and its
addendum that, by a suitable (e, , p;)-approximation to the first (e, , p)-approxi-
mation, this condition can be maintained with r replaced by r + 1, without
disturbing the part of the union, say g(P-), which lies in V,. The result will
be an (41, pr41)-approximation to fA(Ky), for each A = 1,2, ... ) where 41 =
&+ &, prs1 = pr + pr + prpr . Since & < ¢ pr < p, we may choose &, pr
so that e41 < ¢ pry1 < p and the induction is complete. In the succeeding
stages of the construction we may take P, C P41 C - - - and the required union

in g(P), where P = P; + P, ...  This theorem carries with it theorems 7 and
8 for open manifolds.”
Finally, if M™ is a manifold of class C* (k = 2, ..., © orw), a C"*-complex

f(K) € M™ may be defined in the same way as a C'-complex, and we have:

THEOREM 10. Given ¢, p > 0 and a non-degenerate C'-complex f(K) C M",
there is an (e, p)-approximation to f(K) which is of class c*.

If M" be imbedded as a class C* manifold in R™, the flat (m — n)-spaces normal
to M™ form a system of class C*™". It is, however, possible” to define a class
C* system of flat (m — n)-spacés approximately normal to M". By means of
such spaces, we can project back into M" a recti-linear (¢, p’)-approximation
to f(K), thus obtaining a proof of Theorem 10, provided (€, p’) are chosen
sufficiently small.

BaLrior CoLLEGE, OXFORD.

2 Notice that we only need theorem 6 for finite complexes and theorem 2 for finite
K — K,. We may take ¢ (p), pr(p) to be any constants less than the lower limits of ¢(p),
p(p) for p € Kn-Cl(V,;1), and & (p) = pr(p) = 0 for p e Kx — Kx-Cl(Vy41).

% Here again Cairns’ method leads to a more direct proof of the triangulation theorem.

26 Hassler Whitney, loc. cit., §25.



