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V, and suppose that the 4-cycle corresponding to any algebraic surface on
V is dependent on these cycles. We may suppose the cycles arranged so
that F ^ (i=l, ••', Pi) is homologous to a cycle in the Riemannian sub-
manifold corresponding to a prime section of Vx and that no combination
of the cycles Y^ (i> px) is homologous to such a cycle. Finally we may
arrange that

r«>r«>
(* ^Pi'> j > Pi)- Then, if the orientation is such that the effective inter-
section of two surfaces corresponds to an intersection of the 4-cycles to
which a positive sign is attached, there is one positive term in the signature
of the intersection matrix of the cycles Fj^ (i = 1, ..., px) and p2 positive terms
in the signature of the intersection matrix of the cycles
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ON DOUBLED KNOTS

J. H. C. WHITEHEADf.

1. In this section we say what we mean by a doubled knot and give
certain linkages c-\-fp(t) (p = 0, ± 1 , ±2 , ...), in Euclidean space, the
residual spaces of which are topologically equivalent, though c and/0(£) are
unknotted circuits while fp(t) is knotted if p =£ 0. In § 2 we prove a general
theorem on the group of a knot which we use to show that, with the
exception of a "simply doubled" unknotted circuit, and with certain
hypothetical exceptions J, every doubled circuit is knotted. It appears
that every simply doubled knot belongs to the class of knots described by
H. Seifert§, for which Alexander's polynomial|| A(x) is 1. Thus every one
of a certain (infinite) sub-class of Seifert's knots is shown to be knotted^.

t Received 29 September, 1936; read 12 November, 1936.
| These exceptions only appear if Dehn's lemma is false for circuits in Euclidean space

[M. Dehn, Math. Annalen, 69 (1910), 137-68. See also I. Johansson, Math. Annalen,
110 (1934), 312-20].

§ Math. Annalen, 110 (1934), 571-92.
|| J. W. Alexander, Trans. American Math. Soc, 30 (1928), 275-306.
If Seifert gives a process for constructing all knots with a given A (a;) and, using a

special method, proves that a particular knot for which A (a;) = 1 is actually knotted.
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We describe the process of doubling in terms of a recent paper f
by M. H. A. Newman and the present author. Let Ta, la, and ma (a = 0. 1)
mean the same as in N.W., except that To and Tx, regarded as sets of points,
shall be open regions. We recall that TQ is a solid tube and Tx is a tubular
neighbourhood (here an open neighbourhood) of a self-linking % circuit t,
in To. Let k be any simple circuit in a Euclidean 3-space E, let T be an
open tubular neighbourhood of k, and let I and m be circuits on fiT which
cut in a single point, m being a meridian and I a longitudinal circuit which
bounds§ in E—T. Let fp (p = Q, ± 1 , ±2 , ...) be a semi-linear ; topo-
logical transformation of To into T such that

on f3T. Then fp(t) will be described as a circuit obtained by doubling k (see
Fig. 1, where k is unknotted). In particular, we say that k is simply
doubled to obtain fo(t).

If k is unknotted, it follows from an argument given in N.W. that
fo(t) is unknotted^". If k is unknotted and p ^ O the circuit fp(t), with a
suitable convention as to sense, is represented by one or other of the dia-
grams in Fig. 1, according as p is positive or negative. In each case
there are p complete twists, the total number of crossings being 2p-f 2.

Fig. 1.

The absolute value of the determinant f t of fp(t) is seen to be | 4p+ l |
and it follows that fp{t) is knotted if p =£ 0.

t Quart. J. of Math. (Oxford), in the press. This paper will be referred to as N.W.
As in N.W. a meridian circuit on the boundary of a tube means one which bounds
a 2-element inside the tube, but does not bound on the boundary, and $K stands for the
boundary of a complex K. We use R to stand for the closure of a region R.

X Cf. J. H. C. Whitehead, Quart. J. of Math. (Oxford), 6 (1935), 268-79; Proc. Nat.
Academy of Sciences, 21 (1935), 364-6.

§ Cf.. Dehn, loc. cit., 154.
|| It is to be understood that everything in this note refers to semi-linear analysis situs.
|̂ See the second foot-note in § 3 of N.W.

ft See K. Reidemeister, Knotentheorie (Berlin, 1932), Chap. II, §4. Alternatively, it
is easy to see that the group of fp(t) is not a free cyclic group if p zfz 0. (Cf. § 3, below.)
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Let Q be a point in T and let/p be such that Q =fp(Q0) for every value of
p, where Qo is a fixed point in To, not on t. Let E be converted into a
3-sphere S by the addition of an ideal point at infinity. If k is unknotted
the region R— 8—T may be regarded as an open tubular neighbourhood,
of an unknotted circuit c, and we further require fp to be such that all the
circuits fp(t) lie outside some open tubular neighbourhood of R, say i2:i:,.
which, we may assume, does not contain Q. Then there is a semi-linear
topological transformation 0, of T = 8—R into 8—c, which leaves fixed
each point of S—R:tf, and hence Q and every circuit fp(t). Let gp be the
resultant of/p, operating on To, followed by <j>, and let 8 be again represented.
cas a Euclidean space E°, by taking Q as the point at infinity. Then

Collecting these results, we have

THEOREM 1. If his unknotted the residual space of the linkage c-\-fo(t) is
equivalent, in the sense of semi-linear analysis situs, to the residual space of
c-\-fp(t) ( / o=± l , ±2 , ...), though the former consists of two unknotted
circuits while fp{t) is knotted if p ^ O .

2. Using the same notation as in § 1, let the point in which I cuts m be
taken as the base point of the fundamental group of E—k and let A be the
element corresponding to the circuit I, arbitrarily oriented.

LEMMAJ. If Ar=l (r=£ 0), then A = l.

If Ar = 1 we have A~r — 1, and we may therefore suppose that r > 0..
If r = 1 there is nothing to prove; we prove the lemma by induction on r.

Let fiT be cut along I and m to form a rectangle R, of which \x and /// are
the sides corresponding to m. Let pv ..., pr (r > 1) be a series of points on
m, let 7r,- and TT/ be the images of p( on p and \x! respectively, and let TT±, ..., -nr

lie in this order on \i. If Ar = 1, the circuit on f$T corresponding to the
rectilinear segments 7r,-7r,'+1 (i=l, ..., r—1), T^TT/ bounds a 2-cell e2, in
E— T. Let the singularities on e2

 De normalized in the way described by

t Cf. H. Kneser, Jahresb. d. Devi. Math.-Verein., 38 (1929), 248-60, §§ 1 and 2. We
give a separate proof, since the first paragraph on p. 251 of Kneser's paper does not seem to-

.be conclusive.

JOTXR. 45. 3F
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Dehn|, and first suppose that there are no branch points. Let xt be the
double point on jSe2 corresponding to the point £,-, in which T^TT^ cuts
TTTTTI, and let xxy be the double edge of e2 which is incident with xx.
After a subdivision, if necessary, we suppose that y does not lie on /?e2,
and that xxy does not contain a triple point. We transform e2 into a
singular surface c2, by cutting J along the edge xxy in such a way as
to disconnect /?e2. The segment irxgx in B will then be joined to IITT'D

the segment irrt;x to ^ T V , and one of the two circuits in /?c2 will be
represented by the segment ITX €XTTX and the other by the segments TTKTT{+1

(A = 2, ..., r— 1, if r > 2), TTT £XTT2'. Let B% be the non-singular image, or
'pattern of e2, and let Xa Ya (a = 1, 2) be the two images of the edge xx y. To
•construct a pattern for c2 we cut Xa Ya into Xal Ya and Xa2 Ya and identify
the segment X1171Z12 with X21Y2X22 in such a way as to form two circuits
out of j3E2. Thus O2, the pattern of c2, is a cylinder, rather than a Mobius
band, and c2 is a singular cylinder. If r ~> 2 notice that both the
images of xa (a = 2, ..., r—1) lie on the same circuit in fiC2.

The vertex y is a branch on c2, and is the only one, since there was no
branch point on e2. Therefore the double segment d, beginning at y,
terminates at one of the points x2, ..., xr_x and r > 2. If d cuts itself we
prolong the cut until we are left with a double segment which does not
cut itself and joins the branch point to xa, say§. We now complete the cut
in such a way as to disconnect the circuit in /Sc2 which contains #„.,
transforming it into s and sr. Since the two images of xa lie on the same
circuit of j8C2 it follows that the final cut severs C2 into another cylinder
and a 2-element. Therefore c2 is severed into another cylinder and a
2-cell e2*.

The segment 77V £<r in R will finally be joined to the segment ^ £x 7r2', the
segment irr £;„ to £ffTT'v+1, and one of the circuits 5 and s' will be represented in
B by the segments TTK 7T'X+1 (A = 2, ..., a— 1, if a > 2) and TTV ^ ^ 772', and the
other by TTJTT'J+1 (j = a + 1 , ..., r—1, if a < r—1) and vr ^TT'^^. Therefore
one of s and s' is homotopic on f$T to (CT—1) I and the other to (r—a) Z. But
jSe2

:i: = s or 5'. Therefore ^4 m = l , where m = a—1 or r—a, and, since
1 < <r < r, it follows from induction on r that A = \.

If e2 contains w, branch points we cut along a segment beginning at any

f Loc. cit., 147-8. After this normalization, brought about by slight deformation,
the singularities consist of double lines, along which two sheets cross, triple points, at which
three sheets cut, and, in general, branch points. A point y is called a branch point if ea cuts
a small sphere with y as its centre in a single singular circuit.

\ Cf. M. Dehn, loc. cit., 149 (our "cu t" is the same as Dehn's " Umschaltung "). See
also E. Pannwitz, Math. Annalen, 108 (1933), 629-72, § 3.

§ See E. Pannwitz, loc. cit. The connectivity of C2 is obviously irrelevant to this argument.
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branch point and complete the cut in such a way as to disconnect e2. Let
the final cut be along a double segment d. Ifd joins two branch points the
lemma follows from a second induction onn, If d joins a branch point to
one of the points xx, ..., xr_x the lemma follows from induction on r and an
•argument similar to one used above. Thus the proof is complete.

By an ordinary circuit we shall mean a simple circuit which is either
unknotted or is such thatf A^l, where A means the same as in the lemma.
If A means the same as in the lemma and if b is the element in the group
•corresponding to the circuit m, arbitrarily oriented, we have

THEOREM 2. Ifk is an ordinary knotted circuit, the sub-group of its group
generated by A and b is a free Abelian group, freely generated by A and b.

The sub-group generated by A and 6 is Abelian, since I and m lie on a
torus in E—k, and we have to show tha t

••(2.1) A*>bz=l

implies p = q = 0. The Abelian group associated with (Abelsch gemachte
•Gruppe) the group of k is the free cyclic group generated by b. Also
A = 1 if multiplication is commutative, since l<^0 in E—k. Therefore
(2.1) implies q = 0 at least. Therefore (2.1) implies Ap = 1, and if p ^ 0
it follows from the lemma that A = 1, contrary to hypothesis. Therefore
p — 0 and the theorem is established.

THEOREM 3. Except in the case of an unknotted circuit, simply doubled,
•every circuit fp(t), obtained by doubling an ordinary circuit k, is knotted.
Moreover fp(t) is an ordinary knot and its group contains a sub-group which is
(simply) isomorphic to the group of k.

Using the same notation as in § ], let Gx be the fundamental group of
the region To— Tx, and let the intersection of l0 and ra0 be taken as the base
point for Gx. According to N.W., § 2, Gx is generated by a0 and bx, subject
to the relation

(2.2) [ao,bo] = l,

where [x, y] — xyx~1y-1 and 6 0 = [a^1, bx] [a^1, &r1], the elements aQ and
60 correspond to the circuits Zo and m0 respectively, and b± corresponds to
a certain circuit which links t.

f The Dehn lemma, for Euclidean space, can be stated in the form " every simple
-=circuit is an ordinary circuit ".

F2
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First let k be unknotted. In this case we have seen that/p(£) is knotted
unless p = 0. Also the group of fc is a free cyclic group and the group of any
knot contains a free cyclic group as a sub-group. Therefore the group of
fp(t) contains a sub-group which is isomorphic to the group of k.

It remains to show that/p(i) is an ordinary knot when p=£0. Since the
circuit I bounds a 2-cell in E—k and the group of k is the free cyclic group
generated by b, the group Y, offp(t), is generated by a0 and 6l5 subject to
(2.2) and the additional relationf

(2.3) aobp=l.

This relation implies (2.2). Therefore we have to show that a t =£ 1 in
consequence of (2.3), where J

ax = bix a0 bx a^1 bj1
 CLQ

The element ax belongs to the self-conjugate sub-group of F which is
generated by b-^a^bi71 {n = 0, ± 1 , ± 2 , ...). The latter is isomorphic to
the group F*, generated by «o/ra> subject to the relations §

(2.4) a O / n W = l .

where 6O/n = «o/«»o/n+iafl7«ao/n-iJ
 a n d «o/n and bQ/n are the elements in

F* corresponding to the elements 61™a06fn and 61
n606;f?l in F. Thus we

have to show that a1/n ^ 1 in F*, where a1/n, given by

al/n = ia0/n-l> a0/nL

is the element corresponding to b^a^bi71.
Let Tn be the group generated by aQ/n_v aQ/n, and a0/n+1 subject to the

relation (2.4), with a given value of n. Then it follows from the Dehn-
Magnus|| " Freiheitsatz " that ao/n_x and aQ/n are free generators of a free
sub-group of F ^ i and also of Tn. Therefore F* is the infinite free product^

f H. Siefert and W. Threlfall, Lehrbuch der Topologie (Leipzig, 1934), § 52.
J N.W., § 2.
§ W. Magnus, Math. Annalen, 105 (1931), 52-74, Theorem 4, and 106 (1932), 295-307.
|| W. Magnus, Journal fur Math., 163 (1930). 141-65.
Tf Here we use the term "free product" in the sense explained in a foot-note at the end

of § 3 in N.W.
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and ao/n_! and aQ/n are free generators of a free sub-group of F*. Therefore
a\ln T^ 1 in F:J:, and/p(£) is an ordinary knot.

In general, k being knotted, if 0 is the group of k it follows from
Theorem 2 above, and from N.W., Theorem 2, that the group of fp(t) is the
free product GOG^ with the identification of sub-groups determined by

ao = Ab", bo = b,

the sub-group (̂ 4, 6) of G coinciding with the sub-group (a0, b0) of Ov

Therefore b0 ̂  1 in the group of fp(t), since b0 ^ 1 in Gv Therefore fp(t) is
knotted, since its group would otherwise be Abelian and b0 would reduce
to 1. Also ax =£ 1 in Olt by N.W., Theorem 2. Therefore ax ^ 1 in the
group of fp(t) and/p(t) is an ordinary knot. Finally, the group offp(t) con-
tains a sub-group which is isomorphic to G, since it is the free product
GOGX with identification of sub-groups, and the theorem is established.

3. I t is easy to verify that a doubled knot/p(£) may be represented by
a diagramf of the form indicated in.Fig. 2, where a2 = k is the original

Fig. 2.

knot and the ribbon r2, bordering a2, is twisted £ through a suitable multiple
of 2TT. The knot fp(t) is the boundary of the "punctured torus " bordering
the circuits a± and a2, and the lower edge of the ribbon r2, together with the
dotted segment in the neighbourhood of the intersection av a2, is isotopic to
Jp{l0) in E—k. Since fp(l0) ~l-\-pm, and since I does not link k, we have

L{fp(l0),k} = P,

t Cf. H. Seifert, Math. Annalen, 110 (1934), 571-92. We refer to Seifeit'o paper as H.S.
X The twists may be replaced by loops, as indicated in H.S., fig. 7.
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where L(x, y) stands for the looping coefficient of circuits x and y and
orientations are such that L(m, k)=l. By Seifert's method of calcu-
lation, it follows that v22 = p, where v{j (i, j=l, 2) mean the same as in H.S.
(p. 585). Also vxl= — 1, v12 = v2 1+l = 0, and from H.S., pp. 286-7, we
have

THEOREM 4. The polynomial of a doubled knot fp(t) does not depend on
the original knot k, but only on p. It is given by

±() p(p+)+p if
(3 .1 )

L A ( a ; ) = l if P = 0.

We conclude with an alternative method of calculating A(#). Let F
be the group of any knot, F' and F" its first and second commutator groupsf,
and let Fc' be the commutative factor group F'/F". We shall calculate
Fc' for a doubled knot/p(£).

Let the group G, of a given knot k, be generated by 6, u, ...,v, subject to
relations

(3.2) RK(b,u,...,v)=l,

where 6 is the same element as in § 2 and u, ..., v belong to the commutator
group! of 0. Let

A = ip(b, u, ..., v),

where A means the same as in § 2. If we write s instead of bv the group
F, of fp(t), is generated by b, u, .... v, s, and a0, subject to the relations
(3.2), (2. 2), with b1 replaced by 5, and

If we eliminate the generator a0 by means of the relation a0 = Abp and
replace 60 by b, the relation (2.2) is replaced by [A bp, 6] = 1, which is a
consequence of (3 . 2) since [A, b] = 1 in G. Therefore F is generated by

f r ' consists of the elements whose representative circuits bound in the residual space,
i.e. do not link the knot. If r is indexed as in § 10 of Alexander's paper (loc. cil.), it follows
that r* = r', where the asterisk means the same as in Alexander, § 9.

\ We may suppose u, ..., v to be of the form cb~l, where c is the element determined,
by a circuit which links k once in the same sense as m.
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6, u, ..., v, and 5, subject to (3.2) and the relation

(3.3) 6 = 6O

= b~p A-1 sAbp s"1 b~p A-1 s"1 Abps.

If we make multiplication commutative (3.3) gives 6 = 1 and from (3.2)
we have u = ... = v = 1, since u, ..., v belong to the commutator group of
0. Therefore I" is generated by 6, u, ..., v and their transforms by s.
Writing

bn — snbs~n, un = s11 us~n, ..., v.n = snvs~n,

An = snAs~n

= ip{bn, un, ..., vn),

we see that Vis generated by bn, un, ...,vn (n = 0, i l , +2 , ...), subject to
the relations

f(a) • RK(bn, un, ..., vn)=l,
(3.4)

If multiplication is made commutative in 0, we have u— ...—v = A = l
in consequence of (3. 2). If multiplication is made commutative in V, it
follows that un= ... = vn = An= 1 in consequence of (3.4a), and that
(3.46) is equivalent to

(3.5) b*p+1 = bP,,bP v

Thus i y is generated by bn (n — 0, ± 1 , ± 2 , ...) with commutative
multiplication, subject to the relations (3.5).

If we replace commutative multiplication by commutative addition,
and write xn 6 for bn, (3.5) becomes

tf*-x{p— (2p+1) x+px2} 6 = 0,

in agreement with (3.1).

Balliol College,
Oxford.


