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HENRY WHITEHEAD was at the height of his powers and of his mathematical 
influence when he died suddenly on 8 May 1960 after a heart-attack. In the 
last months before his death he had written several important papers, which 
showed how much he had still to contribute, and how keenly alive he was to 
the value of the newest work of young contemporaries. 

His life was a happy one, with little for the biographer to chronicle. He was 
born in India on 11 November 1904, the son of the Right Reverend Henry 
Whitehead, for twenty-three years Bishop of Madras and sometime Fellow 
of Trinity College, Oxford; and of Isobel Whitehead daughter of Canon 
Duncan of Calne in Wiltshire. She was one of the early mathematical students 
of Lady Margaret Hall. There were many clerics and teachers among 
earlier generations of Whiteheads; the philosopher A. N. Whitehead was 
Bishop Whitehead's brother. 

At the age of one and a half the young Henry was sent back to England 
and saw little of his parents until their retirement to England in 1920. 
At Eton, and as a Balliol undergraduate, his high spirits and convivial habits 
and his many-sided successes at games gave little grounds for expecting him 
to excel on the academic side. He boxed and played billiards for the Univer- 
sity, and just missed winning a blue for cricket. Even after his rather easily 
won First Classes in both Moderations and Finals, it seemed quite natural 
to his family, and to his College tutor, that he should go off to the City to 
start on a financial career. But after little more than a year he broke away 
and returned to Oxford to do more work in mathematics (1928-1929). 
There he met Professor Oswald Veblen, on leave from Princeton University. 
This meeting, and the award of a Commonwealth Fellowship, were events 
of critical importance in his life, for it was in the next three years, spent at 
Princeton, that the permanence of his interest in mathematics and the 
reality of his talent were established beyond doubt. Many friendships 
were begun during that visit; indeed the declared purpose of the Common- 
wealth Fund, to promote mutual amity and understanding between the 
English-speaking peoples, can rarely have been more thoroughly and satis- 
factorily fulfilled. 

In 1932 he returned to Oxford and soon afterwards was elected to a Fellow- 
ship at Balliol. In 1934 he married Barbara Smyth, a young concert pianist, 
and they set up house in St Giles, in the heart of Oxford. There were two sons 
of the marriage. In their house in Oxford, and later at the Manor Farm in 
Noke, generations of mathematicians, including Whitehead's own students 
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and many visitors from abroad, enjoyed their delightful hospitality and some 
serious mathematical conversation. 

From 1941 to 1945 he was fully engaged in war-work for various govern- 
ment departments. It was during this time that he was elected a Fellow of 
the Royal Society (1944). 

His election to the Wayneflete Chair at Oxford was fortunately timed. 
With a substantial body of work behind him, including his two big papers 
on combinatorial homotopy (28) and the Stiefel manifolds (37), he was 
ready to start building up a school of topology in Oxford. This he set about 
doing, with the brilliant success that is well known to all mathematicians. 

There are few more events to be told. He received many invitations from 
foreign universities, to deliver lectures or to make prolonged stays. Some he 
accepted, but on the whole he preferred to stay in Oxford and entertain 
there his many mathematical friends. He was President of the London 
Mathematical Society in 1953-1955, but held few other offices. Through a 
mixture of good fortune and design his single-minded devotion to mathema- 
tics was never seriously interrupted, except by the four years of war work. 

His mathematical life was spent in a series of long and strenuous cam- 
paigns, in which he attacked and wore down the resistance of large and 
deep problems. The longest of all, which lasted on and off for fifteen years, 
was the characterization of the homotopy-type of complexes and spaces, of 
which the first stage, the search for a combinatorial description, was com- 
pletely successful, and the second stage very nearly so. Among the by-products 
of this campaign were some of the most valuable tools of modern algebraic 
and combinatorial topology: the homotopy sequence of a complex and sub- 
complex, first introduced at the end of paper (37); the 'Whitehead product'; 
the 'regular neighbourhoods', which have been found to be of fundamental 
importance in the brilliant advances in combinatorial topology that have been 
made in the last two years. This revival of geometrical topology made his 
early death doubly tragic, since there were many signs that it had started 
him afresh on that blend of geometrical and algebraical thinking which 
came more naturally to him than the rather rigid formality of his work in 
the later nineteen fifties. 

As a mathematical writer, Whitehead had little time and not much taste 
for elegance. He gave his readers a rough ride, seldom favouring them with 
those informal 'Leitfaden' which help to smooth the way. Even the titles 
of some of his later papers seem designed to discourage the light-minded. The 
style of his mathematical letters, though terse, was much easier, through the 
use of just those colloquial touches and geometrical 'cribs' that were missing, 
or even deliberately taken out, from the published papers. But his preferred 
medium was mathematical talk, for which he never lost his appetite, and 
in which he excelled. If he expected concentrated attention, he gave it in full 
measure himself. At the end of one of these leisurely and searching conver- 
sations he would understand one's story thoroughly, and if it had survived 
without mishap one could feel sure that it was right. 
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The immediate attractiveness of Henry Whitehead's manner, and his 

tremendous high spirits, would not alone have brought him the affection of so 
many mathematicians all over the world if there had not been behind them his 
devotion to mathematics, and his readiness to interest himself deeply in other 
people's problems. His unusually acute perception of the thoughts and moods 
of others enabled him to accept and enjoy every kind of human behaviour, 
except perhaps a certain kind of conscious dignity, which he heartily disliked. 
His own easy informality, though it might be disconcerting to hosts and 
hostesses on formal occasions, when his spirits rose, and he might even break 
into song, enabled him to talk about mathematics on equal terms with one 
and all. It did not conceal the natural authority which in his later years was 
given to him by his mathematical achievement and by his profound belief 
in the importance of winning the mathematical sieges and battles of which 
so much of his work seemed to consist; and it made easy of access the 
generous help which he would give not only to his pupils, but to anyone with 
a mathematical problem to discuss and get right. 

His friends will not soon be consoled for their unexpected loss. 

Scientific Work 

(This section contains an account of Whitehead's major mathematical 
enterprises rather than a review of his complete works, which will soon be 
available in collected form. I am grateful to Dr M. G. Barratt for much 
material on the later work in algebraic topology.) 

When Whitehead reached Princeton in 1929 the 'geometry of paths', 
based on the theory of linear connexions and their generalizations, was 
already nearing the end of its purely formal development. He wrote a few 
papers on the formal side of the theory (1 to 5, 8) but soon turned to more 
geometrical topics. The first outcome was the joint paper (6) and book (7) 
with Oswald Veblen on the foundations of differential geometry. Here for 
the first time an exact definition of a differentiable manifold was given, in 
the form of 'axioms for differential geometry'. Although somewhat difficult 
to read now, owing to changes in terminology and to the mixing in of the 
topology, they contain essentially the definition of a differentiable manifold 
as a Hausdorff space with a system of coverings by neighbourhoods, each 
with an associated homeomorphism, b, on to the closed unit ball in R". 
The class of the differentiable structure is the highest order of existing 
continuous partial derivatives of the maps /iC/-' of subsets of R" into R", 
in so far as these maps exist. Independence proofs of the axioms were provided 
in the paper (6), notably an example to demonstrate the rather surprising 
fact that a locally euclidean space can fail to be a Hausdorff space. 

Under the influence of Marston Morse Whitehead now turned to problems 
of differential geometry in the large. In (9, 10, 11) he showed that simple 
convex regions of finite extent exist in path-geometries, i.e. regions in which 
any two points are joined by one and only one path which does not leave the 
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region. The climax of his work in differential geometry was the paper 
(17, 1935) on the geometry of geodesics (paths of minimal length) in an 
analytic manifold, F, with a Finsler metric. He determined in great detail 
the properties of the locus of characteristic points of a given point O, i.e. of 
the points at which the natural projection, p, of the tangent plane, M, at O 
on to the space F (straight lines through O on to geodesics) fails to be (1,1); 
and he established the existence of an open n-cell G in M such that p(s) - F 
and p I is a homeomorphism. 

This paper, his last before turning away to topology, has remained one of 
the important pioneering works on differential geometry in the large. It is 
the first of his works in which his quality as a mathematician can be clearly 
discerned. 

After two isolated dips into topology (12, and 15 with S. Lefschetz) White- 
head plunged into the midst of the fray with a proof (16, 1934) of the 
Poincar6 hypothesis (that a simply-connected closed* 3-manifold is a topolo- 
gical 3-sphere). The proof contained an error, and the truth of the hypothesis 
is still an open question (for 3-spaces). But it was the reading and experimen- 
tation for the attempted proof, and for his subsequent counter-example for 
open 3-manifolds, that committed him to topology for the rest of his life. 

The counter-example (20, 1935) was based on a geometrical configuration 
of two polygons which has become so familiar through related examples 
made by himself and others (notably Bing and his school, and Mazur, 1961) 
that it seems right to reproduce it here. 

A1 
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I/ / \ 

I I 

\\ // 

/ / 

FIGURE 1. 

The curve A, is clearly null-homotopic (shrinkable to a point, self- 
intersections allowed) in the open set SS--B. Moreover, as experiment will 
show, the positions of A and B can be interchanged by a deformation with- 

* Compact and without boundary. 
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out self-intersections; and so B is null-homotopic in SS--A,. But the polygons 
cannot be pulled away from each other; more precisely, neither is contained 
in a 3-cell not meeting the other. Now A, is embedded in a solid tube not 
meeting B (indicated by the dotted lines). If A1 is itself regarded as a thin 
solid tube, a 'doubled' tube, A2 can be similarly embedded in it; and A3, A4 
can be similarly defined. If X = fl Am, the polygon B and, similarly, any 
other polygon in S--X is null-homotopic in S~-X, i.e. S3--X is simply 
connected; and it is easily seen that H2 (S3--X) = 0. But the compact set B 
is not contained in any 3-cell in the set S--X, which cannot therefore be 
homeomorphic to R3.* 

In the course of this work he became thoroughly familiar with two varieties 
of combinatorial topology, at that time scarcely connected with each other, 
which were to be the basis of his work for the next few years. In some studies 
on knots and linkages (26, 29, 30) arising out of 'the' linkage (figure 1) 
he became acquainted with the Reidemeister theory of homotopy based on 
the group-ring for a complex. From this sprang the important papers (33, 34) 
which will be discussed below. 

The other domain which he now entered was the strictly combinatorial 
kind of topology which had been developed by J. W. Alexander and myself 
in the years 1925 to 1932. The subject of these theories is the skeleton 
complex, which is a set, V, with a designated set of finite subsets, called 
simplexes, satisfying the conditions that the simplexes cover V, and that all 
the subsets (faces) of a simplex are simplexes. Two complexes are com- 
binatorially equivalent, 

KI 
+--+ K,, if one can be changed into the other by a 

succession of allowed transformations, or moves, of certain prescribed 
kinds. 

A skeleton-complex can be 'realized' as a Euclidean complex by taking 
as its vertices points of Rk in general position (k being sufficiently large) and 
replacing each skeleton simplex by the euclidean simplex with the same 
vertices (i.e. their convex cover). The locus Kr, of K is then the point-set 
union of the euclidean simplexes. The aim of such theories is to choose the 
allowed transformations so that the relation K1 +--+ K2 corresponds as closely as 
possible to homeomorphism between K1I and |K2 . It is now known that a 
polyhedron which is not a manifold can have two triangulations which are 
combinatorially inequivalent, under the moves now generally adopted. For 
manifolds the question (the so-called Hauptvermutung) is still open. 

Since the problems of homeomorphism appeared at that time to be quite 
intractable, Hurewicz had in 1935 begun a general change over to an attack 
on the more hopeful problems of homotopy-equivalence (X 

_ 
Y). This he defined 

to mean that continuous maps f: X-+ Y and g: Y -+ X exist such that gf: X-- X 
and fg: Y -+ Y are homotopic to the identical maps in X and Y respectively. 
The simplest kind ofhomotopy-equivalence is retraction by deformation of X on to 

* In this brief outline distinctions between combinatorial and point-set equivalence are sup- 
pressed. The full result, as here stated, was derived in paper (25) from Whitehead's combinatorial 
theorem. 
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a subset, Y, of itself, i.e. a mapf: Xx I-- Xsuch thatf(x,0) = x andf(x,1) e Y 
for all x e X, andf(y,t) =y for ally e Y and 0 < t < 1. 

Whitehead now had the brilliant idea of attacking the theory of homo- 
topy-equivalence by the strictly combinatorial method of allowed transfor- 
mations. This was the subject of his massive paper (28, 1939), 'Simplicial 
spaces, nuclei and m-groups', one of those on which his reputation as a mathe- 
matician will surely rest. As allowed moves he took in the first place the addi- 
tion of a new simplex, auk to a complex K, 

K 

Q 

FIGURE 2. 

when aok is a subcomplex of K but Uk ? K.* The transformation K-- Ku aok 
is then an elementary expansion, and K u auk- K, also allowed, an elementary 
contraction. An expansion is a finite series of elementary expansions, and similarly 
for contractions. A succession of moves of either type is a formal deformation, 
K1 D K,, and two complexes so related have the same nucleus. 

It is intuitively obvious, and easily proved, that if K, is contractible to K2, 
KI2 is a deformation retract of K1I. It follows that if K1 D K,, IK I K. 

Simple examples suggest that this implication might be reversible. White- 
head posed this in (28) as a question he was unable to answer, and he there- 
fore introduced another pair of moves, with the help of which he could 
complete the combinatorial characterization of homotopy type. (This step 
was laterjustified when he showed, in (34, 1941), that the answer to his ques- 
tion is 'no': IrK, - K does not imply K1 D K2.) 

The two further allowed moves were the addition to K, or removal from 
it, of a simplex, 

ok, 
of dimension, k, exceeding a fixed number m, when the 

entire boundary rk is in K. If K -+ KX, by a series of moves of any of the four 
types, 

KI 
and K2 have some m-group. By means of the mapping-cylinder, a 

device which he first introduced in this paper, he succeeded in giving a 
thoroughly geometrical treatment of the rather abstract relation of homo- 
topy-equivalence, and he achieved his first main purpose by proving that 

* The join oh-k of two distinct skeleton simplexes, oh and 7k, is the (h +k+ I)-simplex oh U 7k; 
the join KL of two complexes without common vertices is the set of simplexes 0r (a E K, 7 E L). 6 is 
the set of all faces of a except a itself. 
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a necessary and sufficient condition for KI Kr- r is that K, and K2 have the same 
m-group bfor every m. 

(The somewhat bizarre names 'nucleus' and 'm-groups' for abstract equiva- 
lence classes he later (50, 1950) changed to simple homotopy type and m-type 
respectively, generalizing the two definitions at the same time. The more 
familiar name 'simple homotopy type', will be used in this memoir; but as 
'm-type' was still later changed to '(m--1)-type' it seems best to keep to the 
unambiguous 'm-group'.) 

The second part of this paper contains theorems the importance of which 
has only recently been fully appreciated, though their use by Mazur, Stallings, 
Zeeman and others in problems related to the general field of the Poincar6 
hypothesis. They were the first of those theorems which show that certain 
dimension-raising processes obliterate fine distinctions between complexes, or 
between spaces.* A regular neighbourhood of a subcomplex K of a combinatorial 
n-manifold M is a subcomplex U (K,M) of M which (1) is an n-dimensional 
manifold, (2) contracts into K. If M is suitably subdivided, the closure of the 
set of all simplexes meeting K is such a neighbourhood. Whitehead proved the 
fundamental theorem that any two regular neighbourhoods of K in M are combina- 
torially equivalent. Two of the many interesting corollaries of this theorem are: 

(A) if jKIi is an absolute retract rectilinearly embedded in Rk (i.e. if IK"I is of the 
homotopy-type of a point), U(K", Rk) is a k-element if k > 2n + 5; 

(B) (proved in paper 32) if two 3-manifolds My, Mg, (without boundary) have 
smooth differentiable loci, and the same simple homotopy type, then M xa k M- X 

? 
k 

if k>5. 

Among the many applications that have been made of (A) was his proof 
many years later (81, 1957) that a certain n-manifold is a combinatorial 
n-sphere, but admits an involution whose fixed points form an (n--1)-manifold 
well known not to be (even topologically) an (n-i1)-sphere. This was the first 
example of a 'nice' set realizing this possibility. 

The change in Whitehead's interests from strongly geometrical to pre- 
dominantly algebraic topology was not, like the change from differential 
geometry to topology, an abrupt one, but was brought about gradually by his 
search for invariants to characterize the homotopy-type of complexes, and 
for methods of computing their homotopy groups. 

His first algebraic attack on the homotopy-equivalence problem was in the 
paper (34, 1941) in which purely algebraic 'L- and L*-equivalences' 
between incidence matrices of complexes, with elements in the Reidemeister 
group-ring, were shown to be necessary conditions for the complexes to have 

* I have not found it possible to state these theorems quite accurately in the absence of definitions 
too elaborate to be given in this memoir. The 'contractions' of this paragraph are nearly, but not quite, 
the same as those defined above. A combinatorial n-element and (n--I)-sphere are complexes combina- 
torially equivalent, respectively, to an n-simplex and its boundary. In a combinatorial n-manifold the 
closure of the simplexes containing any vertex a is the join of a to an (n - I)-sphere or (n - I)-element. 
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the same simple homotopy type, and the same homotopy type, respectively. 
This did not prove a very easy piece of apparatus to handle, but it enabled 
him to construct the example referred to above, showing that two complexes 
may have the same homotopy type but different simple homotopy types; 
and, more important, to give a complete homotopy classification of the 
(3-dimensional) lens-spaces. A necessary and sufficient condition for the lens- 
spaces of types (p,q) and (p,q') to be homotopy-equivalent is (he showed) 
that either qq' or -qq' be a quadratic residue mod p. This result has been the 
basis of many counter-examples constructed since that time, including 
Milnor's for the Hauptvermutung (1961). 

Towards the end of the war there appeared the paper (37), in which he 
computed various homotopy groups of the Stiefel manifold V,,m, the space 
of orthogonal m-tuples at the origin in R". This paper suffered severely 
from various stresses and strains of the times. There are obscurities not only 
in the subject-matter, to which he was unable to give an effective final revi- 
sion, but in the relation of his work to that of Hurewicz, to whom he ascribes 
notions not to be found in Hurewicz's published works. The long delay in 
publication (received 1941, appeared 1944) diminished the direct influence 
of the paper. Finally some of the groups were found to be wrongly computed. 
Nevertheless this paper was of great importance since in it there was intro- 
duced for the first time the homotopy sequence of a space and subspace, which he 
proved to be exact in the last paragraphs of the paper and from which he 
there derived the homotopy sequence for fibre-spaces. 

The misfortunes and mistakes of this paper had a profound effect on White- 
head's later work. He was himself convinced that the rather free geometrical 
style of writing used in it was partly to blame for the troubles, and in the 
autumn of 1946, which both he and I spent in Princeton, he resolved to adopt 
a more algebraic form of statement in his future writings, a resolution which 
he kept, though he never ceased to look for geometrical meanings. It finally 
led him to undertake what amounted to a complete re-statement of his earlier 
work on homotopy, in the papers (46, 47 and 50, 1949-1950). 

The basis of this revision was the notion of the CW-complex (46) which soon 
came to be regarded as the proper category of objects for homotopy theories. 
It was suggested to him by the process of attaching and detaching spheres 
which had played an important part in the proofs of theorems about 'm- 
groups' in the original treatment in (28). 

A CW (i.e. 'closure-finite weak-topology') complex is a Hausdorff space 
presented as the union of disjoint 'cells'. The closure, 

e-, 
of an n-cell e" is 

given as the image of a mapping, f, of the unit ball B", and the following 
conditions are imposed: (1)f| int B" is a homeomorphism on to e"; (2)f(B") 
meets only a finite number of cells, all of dimension < n; (3) (the 'weak 
topology') a subset of X is closed if and only if it meets each 7 in a closed 
set. A CW-complex may be thought of as built up by the addition of successive 
cells, with singular boundaries, but disjoint and non-singular interiors, the 
cells of lower dimension coming first. Subject to (2) and (3), the boundary of 
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a new n-cell may be mapped in any way into the union of cells of dimension 
< n already present. The CW-complexes, though far more flexible than 
polyhedra, have many of their most useful properties. They are locally 
contractible, and (owing to the weak topology) they have the 'homotopy 
extension property', that is, every homotopy defined over a subcomplex can 
be extended over the whole space. This property he used (45) to obtain the 
important and still often used theorem that two connected CW-complexes 
X,r, are homotopy-equivalent if, and only if, a map f: X-+ Y exists which 
induces an isomorphism of the homotopy groups. Moreover if the dimensions 
are finite and < n, the isomorphism of the groups up to nr, suffices. 

In the paper (50, 1950) the theory of simple homotopy type based on the 
Reidemeister invariant (34, above) was recast, with a new definition based 
on the torsion (a generalization of the Reidemeister-Franz torsion). This is a 
certain function, 7, of homotopy-equivalences, #: K - K', between CW- 
complexes, with values in an abelian group. K and K' have now, by definition, 
the same simple homotopy type if there exists a j with 7(#) = 0; and 
this was shown to be so if and only if K -+ K' by transformations which are 
natural generalizations, for CW-complexes, of the 'elementary expansions 
and contractions' of simplicial complexes. Thus the meaning of 'simple 
homotopy type' is substantially unchanged. This version of the theory has not 
been found by others to be much easier to handle than the first; but a 
modified form of the torsion has lately been used by Milnor to prove (as 
part of the counter-example for the Hauptvermutung) that L x S'" and 
L, x S2" are not homeomorphic if L1 and L, are the (7,1) and (7,2) lens- 
spaces, and n is large enough. 

In the series of substantial papers (43, 47 to 50, 52) Whitehead continued 
to explore the possibility of finding a full algebraic characterization of 
homotopy type. For n-connected complexes* of dimension < n+3 (the so- 
called A"-complexes) he found such a full invariant (43, 49) in the cohomology 
system, a set of cohomology groups and homomorphisms; and he finally came 
very near to success in the general case with an exact sequence, given in its final 
form in (57, 1950). This is the sequence 

where H, is the nth singular homology-group of the space X; r, = r,(X); 
and if X is a CW-complex, P,, is the group of equivalence-classes of maps 
S" -+ X"-~' for homotopies in X".t Since j is the homomorphism used by 
Hurewicz in his fundamental 1935 paper, and ], is trivial when X is (n-1)- 
connected, the exactness of the sequence generalizes Hurewicz's theorem that 
the first non-vanishing homotopy and homology groups are isomorphic. 
Whitehead found an equivalence relation between the sequences (1) of two 
spaces, which does not quite provide the full classification; but when later 

* I.e. rTr(X) -= 0 for r n. 
t Xn = n-section = union of cells of dimension ~ n. For spaces other than C W-complexes the 

definition of rn is more complicated. 
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Postnikov found a full system of invariants for homotopy-type, Whitehead 
was able to show that it could be derived from his sequence. 

A problem to which he returned again and again was the computation of 
the homotopy groups of spheres, one of the principal objects of algebraic 
topologists' activity in the post-war years. His first direct contribution was the 
paper (33, 1941), in which he defined the multiplication which later became 
so generally known as the 'Whitehead product' that he was finally compelled 
to use the name himself (66). By modifying a geometrical argument of 
H. Hopf he showed that, if Sm V S" is the union of two spheres with a single 
common point, r, (Sm V S") is the direct sum 

T,(Sm) +7,(S") +7m. u 

where 
rm.Tnr, 

is the subgroup generated by all the Whitehead products 
a./, (a irm(Sm), 3 e T,(S")), and is (as he also showed) cyclic infinite. 
The Whitehead product was the principal instrument used by Hilton 
(1955) in the subsequent calculation of the homotopy groups of a 'bunch' 
of spheres with a single common point. In the 'Note on suspension' (53, 
1950) the problem of computing homotopy groups is attacked in a combina- 
torial spirit, through a generalization of the Freudenthal suspension theo- 
rems. 

More distantly related to this work was the series of papers with E. H. 
Spanier (64, 74, 79, also Whitehead's presidential address to the London 
Mathematical Society, 78, 1956) in which they were seeking for a duality 
principle in homotopy, as were many others at that time. The results are 
formulated in what they called (64) an 'approximation to homotopy theory', 
or S-theory. 

The suspension, SX, of a space X is its join to two points, a process which 
may evidently be iterated to give a space S'X. 

A map f:X 
-- 

Y determines in an obvious way a map Sf: SX 
-- 

SY. 
By a natural generalization of the notion of homotopy, maps g:S X - SPY 
and f:SPX- S- Y are 'S-homotopic' if S'-Pg - S'-Qh in SrY for some 
r > max. (p,q). By using this equivalence as a classification, an abelian group 
{X, Y} of 'S-mappings' was defined. If P is a polyhedron embedded in S", 
a polyhedron Q in S"-P is an n-dual of P if it is a deformation retract of 
S"-P. The name is justified since the relation is symmetrical. It was shown 
by Spanier and Whitehead that if (P1,Q,) and (P,,Q,) are dual pairs, the 
groups {P1, P,)} and {Q(,, Q~,} are isomorphic. The theory has been applied 
to the problem of embedding manifolds in spheres. 

In the last three years of Whitehead's life there was a great revival of 
geometrical topology of the kind that he had worked on twenty years before. 
It was due in the first place to the appearance of a proof by Papakyriakopoulos 
(1957) of the long outstanding Dehn lemma, and secondly to the 'collar' 
theorems of Mazur (1958) and Morton Brown (1960) whose methods led on 
eventually to the proof of the Poincard hypothesis for n > 5 (Smale, Stallings, 
Zeeman). The Dehn lemma is a specifically 3-dimensional theorem: if a 
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semi-linear map of a disk into an orientable M3 has no singularity in the boundary 
polygon, C, its singularities can be entirely removed, i.e. C bounds a non-singular 
2-element in M3. Dehn published a faulty proof in 1912; Papakyriakopoulos 
finally proved the lemma in 1957, and, at the same time, his own related 
'sphere theorem'. This says that in an MS of a certain general kind, the 
existence of a singular essential 2-sphere implies the existence of a non-singular 
essential 2-sphere. 

The Papakyriakopoulos theorems aroused Whitehead's deep interest. He 
and A. Shapiro soon produced (84) a greatly simplified version of the proof 
of the Dehn lemma, and Whitehead himself (83) managed to free the sphere 
theorem from Papakyriakopoulos's rather troublesome restriction on M3. 
One of Whitehead's last works (88), a proof that every connected 3-manifold, 
MS3, which is not compact can be immersed in RS, also derived from his work 
on the Dehn lemma. (A map f: MS -* RS is an immersion if each point of 
Ms has a neighbourhood, U, such thatflU is an embedding.) 

But it is the still more recent geometrical theories initiated by the work of 
Mazur and Morton Brown, that have revived the spirit of the early combina- 
torial theories, with applications of many of the results of Whitehead's great 
1939 paper. His last collaborative paper (90) with R. Penrose and E. C. 
Zeeman, deals with the problem of embedding a compact n-dimensional 
manifold in a Euclidean r-space. How small can r be ? That R2" is big enough 
to hold any smooth combinatorial M" has been known since 1944 (Whitney). 
It is shown in (90) that the vanishing of the successive homotopy groups 
allows r to be lowered pari passu : every closed k-connected* n-manifold can be 
embedded in R2n-k if 0 < k < In-1. 

Everything depends on the lemma that if an embedding, h, of a polyhedron 
pm-I, (m < -n) as a subcomplex of the interior of an n-manifold is homotopic to a point, 
there is an n-element, E, such that P c int E c E c int M. The main steps in the 
proof are as follows. The existence of the homotopy to a point implies that 
h can be extended to a mapping of a cone vPm- into int M. It is first shown 
that h can be extended to an embedding h, of vPm-' into int M. (For cells of 
dimension less than m this follows easily from m < in, for cells of the top 
dimension less easily.) Now the 'cone' h (vPm-) is collapsible to its vertex h(v). 
Therefore by Whitehead's theorem (A) above, any regular neighbourhood 
of h(vPm-') in M is the required n-element. This lemma played an essential 
part in Stallings's original proof of the Poincar6 hypothesis for n > 7. 

Simultaneously with his renewed activity in strictly combinatorial topo- 
logy, Whitehead was working in 1959 on the problems of transverse k-fields 
of an n-manifold, M", embedded in Rn+k (89). A mapping, 4, of M' 
into the Grassmann manifold of k-planes through the origin in Rn+k defines 
a transverse k-field if for no three points x, y, z of M sufficiently near to each 
other is the line xy parallel to the k-plane #(z). Whitehead considered particu- 
larly whether the existence of a transverse field implies, or is implied by, the 
existence of a differentiable structure compatible with a given triangulation 

* See footnote p. 357. 
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of M. He showed that the direct implication (existence of field implies 
differentiable structure) holds if M" is a combinatorial manifold rectilinearly 
embedded. The more difficult reversed implication he considered only for 
n < 4, and showed that it is true only of certain embeddings. From such 
theorems the existence of differentiable structures can be inferred for 

rectilinearly embedded combinatorial manifolds. In this paper too, the 
methods are predominantly geometrical, and even analytical. 

The three papers (88, 89, 90) all written within a few months of his death, 
and published after it, give a vivid impression of the intensity and variety 
of his mathematical life up to the moment when it was suddenly broken off. 

I have been helped in the preparation of this memoir by many friends of 
Henry Whitehead. I am particularly grateful to Dr M. G. Barratt for help 
with the section on scientific work, to Professor Hilton for allowing me to see 
his own memoir (to appear in Enseignement Mathidmatique), to Dr Ioan James 
for allowing the use of the bibliography prepared by him, and to Mrs 
Whitehead for many conversations and consultations. 

M. H. A. NEWMAN 
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