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A SIMPLE PROOF THAT THE CONCORDANCE GROUP OF
ALGEBRAICALLY SLICE KNOTS
IS INFINITELY GENERATED'

BOJU JIANG (PO-CHU CHIANG)

ABSTRACT. A simple proof of the result stated in the title is obtained by making the
Casson-Gordon invariant additive.

A. J. Casson and C. McA. Gordon proved in [1], [2] that there are algebraically
slice knots which are not slice knots. In other words, the concordance group @ of
algebraically slice knots is nontrivial. A natural question: Is @ infinitely generated?
The author learned from Wu-chung Hsiang that Casson had obtained the affirma-
tive answer to this question for some time; however, Casson has not published his
proof to date. The purpose of this short note is to present a simple proof, which
would possibly be different from Casson’s. The main point in our argument is the
observation that we can make the Casson-Gordon invariant additive by slightly
generalizing its definition, thereby making it possible to detect linear independence
in @. We shall use the language and notation of [2].

1. Additivity of Casson-Gordon invariant for 3-manifolds. In [2], Casson and
Gordon defined, for a closed oriented 3-manifold M and an epimorphism ¢:
H,(M)—Z,, the invariant o,(M, ¢), 0 < r < m. The definition goes as follows.
Suppose M — M is the m-fold cyclic covering induced by ¢. Pick up an m-fold
cyclic branched covering of 4-manifolds W — W, branched over a surface F C
int W, such that 8(1;17—) w) = (ﬂ — M). (The existence of such (W, F) follows
from Lemma 2.2 of [2].) Then define

2[F]2r(m -r) .

o,(M, $) = sign W — &,(W) - ;
m

For our purpose, we have to deal with arbitrary homomorphism ¢. For simplic-
ity, we shall restrict ourselves to the case m = p, a prime, so that a homomorphism
H (M) — Z,, is either epimorphic or trivial.

DEFINITION. Let ¢: H((M) — Z, be a homomorphism, where M is an oriented
closed 3-manifold, p a prime. Define o,(M, ¢) as above if ¢ is epimorphic, and
define o,(M, ¢) = 0 if ¢ is trivial, for 0 < r <p.

This invariant is additive in the following sense. Let M’, M” be two closed
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oriented 3-manifolds. We know H\(M'#M") = H(M’) ® H,(M"), so that every
pair of homomorphisms ¢': H(M') »Z,, ¢": H(M") — Z, determines uniquely a
homomorphism ¢ = ¢’ @ ¢": H(M'#M") - Z,, and vice versa.

LEMMA 1. o (M'#M”", &' ® ¢") = o (M’, &) + o (M", $"),0 < r < p.

PrROOF. Case 1. Both of ¢, ¢” are epimorphic. Let (W’, F’) be the data needed
for defining o0,(M’, ¢"), and (W”, F”) be those for 6 (M”, ¢”). Take (W, M) =
(W, M) # (W', M") and F = F' U F”. Then we may use (W, F) for defining
o (M #M", ¢ @ ¢”). Now W is obtained by pasting W’ and W” together along a
3-disk, and W is obtained by pasting W’ and W” together along p 3-disks, neither
of which intersects the branching set F. By the Mayer-Vietoris sequence, we see
that the intersection form on H,(W) is the orthogonal sum of those on H,(W’) and
Hy(W”) (hence sign W = sign W’ + sign W” and [FP = [F'} + [F"]P), and the
intergection form on Hy( ﬁ’)~is the Z,-equivariant orthogonal sum of H( W’) and
Hy(W") (hence e (W) = e(W’) + ¢(W")). Therefore

o (M#M", ¢ ®¢") =0,(M,¢)+ o, (M", $"), 0<r<p.

Case 2. ¢’ is epimorphic but ¢” is trivial. Let (W’, F’) be the data needed for
defining o,(M’, ¢). Take any W” such that 9W” = M” and H(W") = 0. Take
(W, M)y=(W' M) # (W’,M”) and F = F’. Then we may use (W, F) for
defining o (M'# M", ¢’ @ ¢"). The same argument as in Case 1 still works if we
take F” to be empty and take W” to be the disjoint union of p copies of W”, with
the obvious Z, action by cyclic permutation. So we get sign W = sign W’ +
sign W”, e(W) = e(W’) + e(W”), [FF = [F’}. But for this Z,-action on W” it is
easily seen that ¢,( Vf/") = sign W” for all 0 < r < p. Therefore

o(M'#M", ¢ ®¢") =0(M',¢) =0(M,¢) +0(M",¢"), 0<r<p.

Case 3. Both of ¢’, ¢” are trivial. This case is trivial.

2. Additivity of Casson-Gordon invariant for knots. Let K be a knot in S, M, (K)
be the 2"-fold branched covering of (S, K), ¢: H,(M,(K)) —Z,, be a homomor-
phism. By composition with the surjection induced by branched covering projec-
tion M, (K)—> M(K), ¢ determines ¢,: H(M,(K))—>Z,,. The Casson-Gordon
invariant for (X, ¢) is 0,(M,(K), ¢,), 0 < r < m. It was originally defined in [2] for
epimorphic ¢, but now it also makes sense for arbitrary ¢ when m = p.

This invariant is additive in the following sense. Let K’, K” be two oriented
knots in S>. Then M (K'#K")= M/(K') # M/(K"), so that every pair of
homomorphisms ¢: M(K')—Z, and ¢": M,(K")—Z, determines a unique
¢=¢' D®¢": H(M(K'#K"))>Z,, and ¢, = ¢, D ¢,;. Now, a direct conse-
quence of Lemma 1 is

LEMMA 2. o, (M (K'# K"), ¢, D ¢,)) = 0,(M,(K"), ¢,) + 0, (M (K"), ), for 0 <
r<p.-

3. Doubled knots of the trivial knot. Let us quote from [2] some results about
doubled knots. Let K, be the k-twisted double of the unknot, as depicted on [2, p.
46). K, is known to be algebraically slice iff 4k + 1 = /2 for some integer /. Let us
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rewrite K, as K@ if 4k + 1 = /% Then K©, | taking odd values, are algebraically
slice knots and represent elements of the concordance group @. K is a slice knot
iff / = 1 or 3. The computation in [2, §5] can be summarized as

LeMMA 3. Let i, be the generator of H(M(K®)) (= Z,) specified on [2, p. 48].
Suppose an epimorphism ¢: H(M(K®)) - Z,, sends i, to q € Z,,,. Then

2m
for0 <r <m,

where 0 < r' < (m — 1)/2 satisfies r' = * qr (mod m). If | > S, the right-hand side
is always negative.

In fact, the computation in [2] is carried out for ¢ = 1. But we can use the
following general fact which can be easily proved by means of Novikov additivity:
For a closed 3-manifold M and two epimorphisms ¢, ¢": H,(M) — Z,,, related by
¢ = g¢’ where g is coprime to m, we have ¢,(M, ¢) = 0,(M, ¢'), 0 < r < m, where
r=qr(modm)and 0 <r < m.

4. Infinite-generatedness of @.

THEOREM. Let P be the set of prime numbers > 5. Then, the set {K (1”)}1,.E pis
linearly independent in & .

For a proof, let us consider a knot
K= le(Pl) # ... # k,K(”'),

where py, ...,p, € P, p; #p; for i #j, k,, . . ., k, are nonzero integers. We want
to prove that X is not slice. But in view of Theorem 4.1 of [2], it suffices to prove
the following.

LEMMA 4. (1) For any subgroup G of H,(M(K)) with |G|* = |H(M(K))|, there
exists an epimorphism ¢: H\(M(K)) — Z,, satisfying $(G) = 0.

(2) For any epimorphism ¢: H\(M(K)) —> Z,,

lim o, (M(K), ) <O ik >0,

2"
>0  ifk <0.
PROOF. (1) The factor group H,(M,(K))/G has order |G| = pl¥l - - . pl%|, hence
it has Z,, as a factor group. So there exists an epimorphism ¢: H (M l('K )—Z,.
(2) For short, let us write M, for M,(K), k,M® for M (k,K?), K¢ for the jth
copy of =K® in k,K», M®) for M (K®“?),1 < j < |k, 1 <i < t. Then
M, = kMO # - # kMO,
H\(M,) = H(kkM{") ® - - - ®@H (k,MP)
~ Ikll |kr|
=)Mo © 2"
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Recall that —K means the mirror image of K, changing the sign of a knot also
changes the sign of its Casson-Gordon invariant. Hence we only have to consider
the k, > 0 case.

Write ¢@ = ¢|H,(k,M?), ¢©? = ¢|H(M®?). Then, for i > 1, $? is trivial
because p; is coprime to p,. By Lemma 2,

ki
o(M,, $,) = o,(kiMP, $0) = 3 o (M, ${1).
j=1
But ¢ is epimorphic, so that at least one of ¢, 1 < j < k,, will be epimorphic.
The conclusion of the lemma then follows from Lemma 3.
The proof of the Theorem is now complete.
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