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Abstract

Recent computations of UNil-groups by Connolly, Ranicki and Davis are used to study

splittability of homotopy equivalences between 4-dimensional manifolds with infinite di-

hedral fundamental groups.

The problem of splitting a manifold into a connected sum is one of the most natural,

yet one of the most difficult problems in manifold topology. It was extensively studied

by S. Cappell [4–9], who also provided an elegant solution. To be more specific: Let

f : Mn → Xn = Xn
1 #Xn

2 , n ≥ 5, be a homotopy equivalence of closed topological

manifolds, where Xn is a connected sum of manifolds Xn
i , i = 1, 2. The homotopy

equivalence f is splittable if it is homotopic to a map (necessarily a homotopy equivalence

which we continue to call f), transverse regular to the separating sphere Sn−1 ⊂ Xn, such

that the restriction of f to Y = f−1(Sn−1), and the two components of f−1(Xn−Sn−1)

are homotopy equivalences.

Cappell’s solution to the splitting problem for f : Mn → Xn is in terms of certain

exotic UNil groups introduced and studied by him. Despite the fact that these groups

are very difficult to deal with, he was able to perform various computations which lead to

many important topological results ([7, 8]). The simplest example of a group G for which

UNil groups can be nontrivial is that of an infinite dihedral group D∞ ∼= Z/2 ∗ Z/2. In

this case, Cappell was able to show that UNil0(Z/2∗Z/2) = 0 and that UNil2(Z/2∗Z/2)

contains an infinite dimensional vector space over Z/2 (cf. [11]. We here use the notation

UNil∗(Z/2 ∗ Z/2) = UNil∗(Z; Z,Z)). The odd-dimensional UNil groups UNil1(Z/2 ∗

Z/2) and UNil3(Z/2 ∗ Z/2) resisted calculations for quite some time. (It was known,

however ([13]), that in this case the UNil-groups are either trivial or infinitely generated.)

Recently F. Connolly and A. Ranicki, using rather complicated algebraic machinery, have

shown that UNil1(Z/2 ∗Z/2) = 0 and UNil3(Z/2 ∗Z/2) contains an infinite dimensional

vector space over Z/2 [12], and Connolly and Davis [10] have completed the calculation

of UNil in the case of Z/2 ∗ Z/2 in all degrees and for all orientation characters.

The purpose of this paper is to discuss some geometric consequences of these results for
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the topology of 4-dimensional manifolds. The relevant group is then UNil5, which is trivial

in the orientable case and infinitely generated in the non-orientable cases ([10, Theorem

1.10 and semi-periodicity]). Our main results are contained in theorems 1 and 2 below.

The first deals with various stabilizations of exotic homotopy RP 4#RP 4-manifolds, but

as will be clear from the proof, much of this will also be true for many other non-orientable

manifolds with the same fundamental group.

Theorem 1. There exist infinitely many manifolds M 4
i , i = 0, 1, 2, 3, . . . , with

M4
0 := RP 4#RP 4, such that

(a) M4
i 6≈
top

M4
j , for i 6= j, and no M4

i splits topologically into a nontrivial connected sum

for i ≥ 1.

(b) M4
i 'M4

0 for i = 1, 2, 3, . . .

(c) M4
i × Rk ≈

top
M4
0 × Rk for i ≥ 0 and k ≥ 3.

(d) M4
i × Rk 6≈

top
M4

j × Rk for i 6= j and k ≤ 2

(e) M4
i × T k 6≈

top
M4

j × T k for i 6= j, where T k = S1 × . . .× S1︸ ︷︷ ︸
k−times

and k ≥ 1

(f) For every i = 1, 2, . . ., there is an integer k > 0 such that

M4
i #k(S2 × S2) ≈

top
M4
0#k(S2 × S2) .

In sharp contrast to Theorem 1, in the case of orientable 4-manifolds, we will show

Theorem 2. Let f : M4 → X4 = X4
1#X4

2 be a homotopy equivalence of orientable

topological manifolds with π1(X
4
i ) ≈ Z/2, i = 1, 2. Then f is splittable.

Remarks. (1) Lemma 4.2 in [13] implies that all the manifolds Mi, i = 1, 2, . . . in

Theorem 1 are finitely covered by the standard M 4 = RP 4#RP 4.

(2) One consequence of Theorem 1 is a strong failure of the 4-dimensional version of

the classical Kneser Theorem. Namely, there are 4-manifolds simple homotopy equivalent

to a connected sum which do not admit (topologically) corresponding connected sum

splitting. For other results on the 4-dimensional Kneser-conjecture, see [16] and [17].

(3) The proof of theorem 1 is purely topological, but (b) and (f) also mean that

all the manifolds can be smoothed after product with R3 or connected sum with enough

S2×S2’s. It would be very interesting to know if any of the exotic RP 4#RP 4’s themselves

can be given a smooth structure. At the end of the paper we indicate a possible geometric

construction which may give smooth examples.

Proof of Theorem 1. Since Z/2∗Z/2 is “good” [14], there is a long, exact Sullivan-Wall

surgery sequence for M4 = RP 4#RP 4.

· · · −→
[
Σ(M4

+);G/Top
] θ
−→ Ls1(Z/2− ∗ Z/2−)

γ
−→ STop(M4)

η
−→

−→
[
M4;G/Top

]
θ
−→ Ls0(Z/2− ∗ Z/2−) .

(The notation Z/2− means the group Z/2 with the nontrivial orientation charac-

ter.) Now Ls1(Z/2− ∗ Z/2−) ∼= Ls1(Z/2−) ⊕ Ls1(Z/2−) ⊕ UNil1(Z/2− ∗ Z/2−) [5]. Since

Ls1(Z/2−) ∼= 0 [26], it then follows from the semi–periodicity of UNil-groups [5] that

Ls1(Z/2− ∗ Z/2−) ∼= UNil3(Z/2 ∗ Z/2). The action of UNil3(Z/2 ∗ Z/2) on STop(M4) is

free, so we get infinitely many non-split homotopy equivalences Mi → M by acting on
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the identity map on M . (a) and (b) then follow if we prove that none of them can be

realized by exotic self-equivalences of M :

Lemma 1. Every homotopy equivalence h : M → M is homotopic to a homeomor-

phism.

(This will be proved after we finish the proof of Theorem 1.) Now let fi : M4
i → M

be one of these homotopy equivalences. Since fi is equivalent to the identity on M

by the action of Ls1(Z/2− ∗ Z/2−), it maps trivially to [M ;G/Top]. This means that

g∗i νMi
≈ νM , where ν is the stable normal bundle, gi is a homotopy inverse of fi and ≈

means stable (linear) equivalence. Hence f ∗i νM ≈ f∗i g
∗
i νMi

≈ νMi
, and it follows that,

stably, f∗i τ(M) ≈ (τ(Mi) + f∗i νM ) + f∗i τ(M) ≈ τ(Mi) + f∗i (νM + τ(M)) ≈ τ(Mi), i. e.

fi is in fact a stable tangential homotopy equivalence. The classical result of B. Mazur

([21], cf. [23]) implies that

M4
i × Rk ≈

top
M4 × Rk for some k > 0.

To improve this result to k = 3, we use the proper surgery theory of S. Maumary and L.

Taylor ([20], [25], see also [22]). Namely, the long surgery exact sequence for M 4 × R3:

· · · −→ Ls,open0 (M4 × R3) γ
−→ Ss,openTop (M4 × R3) η

−→
[
M4 × R3;G/Top

]

θ
−→ Ls,open3 (M4 × R3)

has Ls,open∗ (M4×R3) = 0 ([22, p. 252]). Since by construction η(fi) = 0, η(fi×idR3) = 0

and hence [fi × idR3 ] = 0 in SopenTop (M4 × R3). This means that fi × idR3 is (properly)

homotopic to a homeomorphism — proving (c).

Let T k = S1 × . . .× S1︸ ︷︷ ︸
k−times

be the k-dimensional torus. Assume that there is a homeo-

morphism

f : M4
i × T k

≈
−→M4 × T k for some i, and k > 0 .

Consider the induced isomorphism

f# : π1(M
4
i × T k)

∼=
−→ π1(M

4 × T k)

i.e.,

f# : (Z/2 ∗ Z/2)× Zk ∼=
−→ (Z/2 ∗ Z/2)× Zk .

Since the center of (Z/2 ∗ Z/2) × Zk is Zk, f# induces an isomorphism of Zk given by

some matrix A ∈ GL(Z, k). Using a self-homeomorphism of T k represented by A−1, we

can assume that the induced isomorphism f# is of the form h# × idπ1(Tk) for some h# :

π1(M
4
i ) → π1(M

4
i ). As a consequence, the homeomorphism f lifts to a homeomorphism

f̃ : M4
i × T k−1 × R ≈

−→M4 × T k−1 × R .

This leads to an h-cobordism between M 4
i × T k−1 and M4 × T k−1. We show that this

h-cobordism is an s-cobordism (and hence a product). By iterating this procedure, we

end up with M4
i ≈
top

M4, contradicting (a).

Let G ∼= Z/2 ∗ Z/2. The Whitehead group Wh(G × Zk) can be computed via the
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iterated Bass-Heller-Swan decomposition (cf. [1])

Wh(G× Zk)
∼=
−→

k∑

j=0

(
k

j

)
Wh1−j(G)⊕ Ñil−groups .

Here the Whitehead groups are defined as

Wh1−j(G) ∼=





Wh(G) , if j = 0

K̃0(G) , if j = 1

K1−j(G) , if j ≥ 2 .

Now the decomposition results of Stallings and Gersten for the free products (cf. [15, 24])

imply Wh(G) ∼= K̃0(G) ∼= 0. The corresponding free product decomposition for lower

K-groups follows from lemmas in [3, pp. 19–20 (in particular, the Theorem on p. 20)].

Namely,

K1−j(G) ∼= K1−j(Z/2)⊕K1−j(Z/2)≈ 0 for j ≥ 2 .

It turns out that a corresponding free product decomposition Ñil-terms also exists (cf.

[2, Thm. 8.2, p. 677]). This and the fact that Ñil(Z/2) ∼= 0 (cf. [18]) give

Wh(G× Zk) ∼= 0 .

As a consequence, every h-cobordism is an s-cobordism and hence M 4
i ≈
top

M4 which is a

contradiction. This proves part (e) of Theorem 1.

Part (d) is proved by a method analogous to that in [19]. The case k = 1 has essentially

been delt with in the proof of (e), so we let k = 2 :

A homeomorphism M4
i ×R2 ≈M4×R2 restricts to an embedding M 4

i ×D
2
1

⊂
−−→ M4×

intD22 where D21 and D22 are two disks, and the difference is an h–cobordism M 4
i ×S

1 and

M4×S1. As in the proof of part (e) this is an s–cobordism, so we get M 4
i ×S

1 ≈
top

M4×S1,

and hence, by (e), M4
i ≈M4.

Finally, part (f) of Theorem 1 is true for any two 4–manifolds M and M ′ which are

related by a homotopy equivalence M ′ → M obtained by the action of Ls5(π1(M), w)

(where π1 is ’good’) on the identity map of M , and follows by a standard argument

from the usual description of this action (Cf. the proof of Theorem 11.3A in [14]). An

element of Ls1(π1(M), w) can be realized as the surgery obstruction of a normal map

W 5 F
−−→ M×I, where W 5 is obtained from M4×I by first attaching k trivial 2–handles

and then k 3–handles, for some k. The resulting homotopy equivalence is the restriction

of F to the ’other’ boundary component M ′ of W . The middle stage is homeomorphic to

M# k(S2 × S2), and the reason M ′ → M is a homotopy equivalence is that the 3–cells

are attached along spheres having transverse spheres. (The crucial tool here is Corollary

5.1B in [14].) But then we can, dually, think of M# k(S2 × S2) as being obtained by

surgery on trivial 1-spheres in M ′, hence it is also homeomorphic to M ′# k(S2×S2).

Proof of the Lemma. There are two useful ways of describing M0 = RP 4#RP 4:

(1) Let RP 40 = RP 4 − intD4. Then RP 40 has double cover S4 minus the interiors

of two 4-disks. This is homeomorphic to S3 × I, hence M0 has orientable double cover

S3 × S1, obtained by gluing two copies of S3 × I along the boundaries. (In fact, M0

can be obtained by identifying (x, y) and (−x, ȳ) in S3 × S1.) Hence the first homotopy

groups of M0 are π1 ∼= Z/2 ∗ Z/2, π2 = 0, π3 ∼= Z, generated by the inclusion of the

connecting 3–sphere, and π4 ∼= Z/2.
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(2) We shall also need the following explicit cell structure of M0:
Taking the connected sum of two copies of RP 3 can be thought of as first joining two

copies of RP 30 in a point on the boundary, and then adding a 4-disk, attached by the map

S3
5

−−→ S3∨S3 ⊂ RP 40 ∨RP
4
0 . (5 is the usual pinch map.) But RP 40

p
−−→
'

RP 3 by a map

p restricting to the double cover on the boundary, so we get M0 ' (RP 3 ∨ RP 3) ∪D4,

with attaching map S3
5

−−→ S3 ∨ S3
p∨p
−−→ RP 3 ∨RP 3.

We complete the cell structure using the standard cell filtration ∗ ⊂ RP 1 ⊂ RP 2 ⊂

RP 3 on each RP 3.
Claim: The automorphism group of Z/2 ∗ Z/2 is generated by conjugations and the

interchange τ of the two copies of Z/2.
To see this, we shall calculate the automorphism group of the infinite dihedral group

D∞ =<s, u; s2 = 1, sus = u−1>, which is isomorphic to Z/2∗Z/2 =< s, t; s2 = t2 = 1 >

by s ↔ s and u ↔ st. Then {ui}i∈Z = [D∞, D∞] ≈ Z, and the remaining elements in

D∞ are the elements {uis}i∈Z , all of order two. It follows easily that an automorphism

φ : D∞
≈

−−→ D∞ must satisfy φ(u) = uε, φ(s) = uis, for some ε ∈ {±1}, i ∈ Z, and

there is a unique such φ = φ(i,ε) for every pair (i, ε).
Now it is atraightforward to check that φ(0,1) = Id, φ(i,ε)φ(i′,ε′) = φ(i+εi′,εε′), and

uisη 7→ φ(i,(−1)η) defines a group isomorphism D∞ ≈ Aut(D∞).
Furthermore, we can calculate the effect of conjugating by an element w, and we obtain:

• Conjugation by ui is φ(2i,1)
• Conjugation by uis is φ(2i,−1)

These automorphisms form (normal) subgroup (also isomorphic to D∞) of Aut(D∞)

with quotient Z/2 generated by any of the remaining automorphisms — e. g. φ(−1,−1). It

now only remains to check that φ(−1,−1) corresponds to the automorphism of Z/2 ∗ Z/2

given by interchanging s and t.
But t ∈ Z/2 ∗ Z/2 corresponds to u−1s ∈ D∞, and we have φ(−1,−1)(s) = u−1s by

definition and φ(−1,−1)(u
−1s) = (φ(−1,−1)(u))−1φ(−1,−1)(s) = uu−1s = s. This proves

the claim.
Both the conjugations and τ can be realized by homeomorphisms of M , so it suffices

to consider the case when h preserves that basepoint and induces the identity on π1. To

analyse h further, we use the cell filtration above, and since π2(M) = 0, we may assume

that h restricts to the inclusion on both RP 2’s.
Extensions to each RP 3 are parametrized by Z = π3(M). Note that both inclusions

RP 3 ⊂ M induce isomorphisms π3(RP
3) ≈ π3(M), but the two isomorphisms differ

by sign. (The gluing in the connected sum is by an orientation reversing homeomor-

phism.) If we act on one of the inclusions by n ∈ π3(M) ≈ π3(RP
3), we obtain the map

RP 3
5

−−→ RP 3∨S3
Id∨n
−−→ RP 3 ⊂M which will take the generator to (±1+2n) ∈ π3(M).

It follows that to get a map RP 3 ∨ RP 3 → M which extends to M , we must act by n

on one and by −n on the other copy of RP 3, for some n. Then the induced homomor-

phism on π3(M) is multiplication by 1 + 2n, so to get an isomorphism we must have n

equal to 0 or -1. Both may be realized by homeomorphisms of RP 3 ∨ RP 3extending to

homeomorphisms of M : n = 0 corresponds to the identity and n = −1 is realized by

the homeomorphism induced by A× Id : S3 × S1 → S3 × S1, where A is an orientation

reversing isometry.
The possible extensions to all of M can now be constructed by action by π4(M) ≈ Z/2,

and the nontrivial element can be realized by a 1-parameter family of rotations of spheres

in a collar neighborhood of the connecting 3-sphere.
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M × I

∆4
0 × I

Σ3 × I

Fig. 1. N5

Proof of Theorem 2. The simplest way to prove this is perhaps to compare the Sullivan–

Wall sequence for X4 with the direct sum of the sequences for X4
1 and X4

2 and use a

version of the five–lemma. However, the geometric arguments in the following proof may

be more illuminating.

Let f : M4 → X4 = X4
1#X4

2 be a homotopy equivalence. Our first observation is that f

splits homologically along the separating S3 ⊂ X4. This means that we may replace f by

a homotopic map such that f−1(S3) = Σ3 is a homology 3-sphere (Z-coefficients). To see

this, one can proceed directly, or one can apply the result of S. Weinberger (i.e., Theorem

A in [27]). In either case one has to use the triviality of UNil1(Z/2 ∗ Z/2). We now use

a simple “neck exchange” trick to improve f to a splittable homotopy equivalence.

Let J = [−1, 1] and identify a neighborhood of Σ3 ⊂ M4 with Σ3 × J . Similarly we

can identify a neighborhood of the connecting S3 in X4 with S3×J , and we may assume

that via these identifications f |(Σ3 × J) = (f |Σ3)× J .

Let ∆4 be a contractible manifold bounding Σ3 and let ∆4
0 be ∆4 with the interior of

a 4–disk removed. Then ∂∆4
0 is a 4–manifold homotopy equivalent to S3 with boundary

components Σ3 and S3, and ∂(∆4
0×J) = (Σ×J)∪W 4, where W 4 is a manifold which can

be thought of as the (interior) connected sum of two copies of ∆4, and with boundary

two copies of Σ3. Let N5 be M4 × I ∪ ∆4
0 × J , where we glue Σ3 × J ⊂ ∆4

0 × J to

Σ3× J ⊂M4×{1}. Then N5 has two boundary components M = M 4×{0} and M . M

is clearly a connected sum, obtained by replacing the “neck” Σ3 × J in M by W . (See

fig. 1.)

To finish the proof of the theorem, we need the following two assertions:

(1) f extends to a map F : N 5 → X4 such that F−1(S3) = Σ3 × I ∪Σ×{1} ∆4
0. Hence

the map f = F |M : M → X splits.

(2) N5 is an s-cobordism. Then, since the fundamental group is “good”, N 5 is a product

by Freedman’s 5-dimensional h-cobordism theorem [14]. Hence M ≈M and F becomes

a homotopy from f to a split map.

Assertion (1) is the simplest: Using that ∆4
0 ' S3 it is easy to extend f |Σ3 : Σ3 → S3

to, say, f ′ : ∆4
0 → S3. Then define F to be f ◦ projM on M × I and f ′ × J on ∆4

0 × J .

(2) needs more work. First observe that since π1(Σ
3) is perfect and the commutator

subgroup of Z/2 ∗ Z/2 is Z, the map induced on π1 by the inclusion Σ3 ⊂ M4 must be

trivial. By the van Kampen theorem it then follows that π1(N
5) ∼= π1(M

4). A Mayer–

Vietoris argument (arbitrary local coefficients) then shows that M 4 ⊂ N5 also induces

an isomorphism in homology with all coefficients — hence is a homotopy equivalence.

Lefschetz duality then shows that M ⊂ N 5 also induces an isomorphism on all homology,
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so it only remains to prove that it induces an isomorphism on π1. This is the same as

showing that f induces an isomorphism on π1, Since it has degree one, we know that

it induces an epimorphism, hence it suffices to prove that π1(M) ∼= Z/2 ∗ Z/2. (Any

epimorphism of this group on itself is clearly an isomorphism.)

Write M = M1 ∪S3 M2 such that f maps M i to Xi, and similarly M = M1 ∪Σ3 M2.

By construction, M i = Mi ∪Σ3 ∆4
0. If H → G is a homomorphism of groups, we denote

by G//H the quotient of G by the normal closure of the image of H. Then, by the van

Kampen theorem, π1(M i) ∼= π1(Mi)//π1(Σ
3).

We now use the following algebraic observation:

Let H → Gi, i = 1, 2 be two group homomorphisms and form the pushout G =

G1 ∗H G2. If the composed map H → G is trivial, then

G ∼= G1//H ∗ G2//H .

(In fact, by universal properties there is always a canonical homomorphism G→ G1//H ∗

G2//H. The assumption implies that there is also one going the other way, and they are

easily seen to be inverses of each other.) We apply this to the two homomorphisms

π1(Σ
3) → π1(Mi) : by van Kampen the pushout is π1(M), and by the observation above

π1(Σ
3) → π1(M

4) is trivial.

Remarks. It would be interesting to have a more explicit construction of the exotic

homotopy RP 4#RP 4–manifolds in Theorem 1. One possible attempt could be based

on the construction of exotic 4-dimensional s-cobordisms of Cappell and Shaneson [9].

RP 4#RP 4 can be represented as a union of two D2-bundles over the Klein bottle K.

Each such bundle can also be represented as an (S1 ×D2)-bundle over S1. Now, in the

spirit of [9], one might try to replace the fiber (in one or both bundles) by a complement

of an appropriately selected knot in S3 and try to recover the right homotopy type of the

constructed manifold by a 4-dimensional topological surgery. Of course the main problem

left to deal with would be to show the exoticity of these constructed manifolds via some

invariants from classical knot theory. This problem is of considerable interest in its own

right, since the geometric aspects of the computation of UNil3(Z/2 ∗ Z/2) are rather

mysterious as of now.
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