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Introduction 

Die hohe Bedeutung bestimmter Probleme fiir 
den Fortschritt der mathematischen Wissen- 
schaft im Allgemeinen und die wichtige Rolle, 
die sic bei der Arbeit des einzelnen Forschers 
spielen, ist unleugbar . . . .  Wie iiberhaupt jedes 
menschliche Unternehmen Ziele verfolgt, so 
braucht die mathematische Forschung Pro- 
bleme. Dutch die L6sung yon Problemen 
st~ihlt sich die Kraft des Forschers; er findet 
neue Methoden und Ausblicke, er gewinnt 
einen weiteren und freieren Horizont. 
-- H I L B E R T ,  'Mathematische Probleme' 
(I900: 253-254) i 

1 References such as 'HILBER'r ... (1900: 253-254)' denote items in the bibliography 
and page numbers or sections in these items. I have used this system of references 
throughout. The quotation from HILBERT may be translated as follows: 

The great significance of specific problems for the progress of mathematics in general 
and the important role which they play in the work of individual researchers is 
undeniable . . . .  Just as every human undertaking strives towards goals, so mathemati- 
cal research needs problems. The power of the researcher is tempered through the 
solution of problems; by them he discovers new methods and points of view and 
opens up a wider and more expansive horizon. 
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Problems, above all, motivate the progress of mathematics and one of the 
most interesting groups of problems in mathematics surrounds the apparently 
simple idea of dimension. Indeed dimension is not so simple an idea after all. 
For in 1877 when GEORG CANTOR showed that the points of geometrical 
figures like squares, 'clearly 2-dimensional', can be put into one-one cor- 
respondence with the points of straight line segments, ' obviously 1-dimensional', 
he thereby rendered the 'simple' idea problematic. Difficulties such as this one 
which CANTOR uncovered demand explanations. In the past they have fed 
mathematicians with a wide variety of challenging research problems. The long 
term result has been the development of an entire branch of topology: dimen- 
sion theory. 

Topological dimension theory has a long and fascinating history and, in 
essence, three problems have been fundamental to its growth into a mature 
theory: (1) the problem of defining the concept of dimension itself and some 
closely related concepts, such as the concept of curve; (2) the problem of 
explaining the number of dimensions of physical space; and (3) the problem of 
proving the invariance of the dimension numbers of mathematical spaces under 
some restricted type of mapping. The first and third problems, mathematical in 
nature, have been the most important direct influence on the growth of the 
topological theory of dimension. The second, a problem of physics or cos- 
mology, has provided an indirect but significant motivation for the development 
of the theory from outside the domain of mathematics. Let us look a little closer 
at these three problems which have formed the basic problem core of dimension 
theory. 

The definition problem has ancient roots which can be detected in some brief 
passages in the writings of Greek philosophers and mathematicians. However, 
dimension theory is primarily a modern subject; its main historical roots start in 
the nineteenth century. At the very beginning of that century BERNARD BOL- 
ZANO examined several facets of the definition problem and proposed some 
interesting tentative solutions to it. I have dealt with BOLZANO'S contributions 
elsewhere (1977). After BOLZANO a few nineteenth-century mathematicians 
took up the definition problem, but they did not resolve it very satisfactorily. 
Interest in the problem arose through the creation of the mathematical theory of 
higher spaces and multi-dimensional geometries and the consequent method- 
ological changes in the whole field of geometry. In the twentieth century 
HENRI POINCARI~ was the first to construct a definition of dimension, one based 
on 'cuts' (1903, 1912). It was soon criticised by L.E.J. BROUWER who replaced it 
by an improved version (1913). In the early 1920's PAUL URYSOHN and then 
KARL MENGER published independently of one another further definitions of 
dimension which turned out to be equivalent and which progressed a step 
beyond BROUWER'S definition. These definitions of BROUWER, URYSOHN, and 
MENGER became the foundation for a wide-ranging theory of dimension which 
began a rapid development in the twenties. 

The cosmological problem of explaining the dimension number of physical 
space, like the definition problem, arose in the speculations of the ancient 
Greeks, and over the centuries many thinkers have puzzled over it. In modern 
times IMMANUEL KANT considered it in his very first published work. For 
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POINCARE this problem was the chief motive for his proposing his cut definition 
of dimension. There can be little doubt that this problem has had a significant 
role in the development of the mathematical theory of dimension. 

The origin of the invariance problem has a precise date, 1877, the year when 
GEORG CANTOR discovered-to his own astonishment!-that  geometrical 
figures of different dimension numbers can have their points arranged in one-one 
correspondence. CANTOR's paradoxical result is a direct blow to our naive 
concept of dimension. When he and RICHARD DEDEKIND discussed it in an 
exchange of letters, they formulated the invariance problem for dimension, 
that is, the problem of showing that for certain continuous mappings di- 
mension remains an invariant concept. Solution of the invariance problem 
quickly became regarded as the way to resolve CARTON'S strange result. As 
soon as CANTOR published his paradoxical correspondence in 1878 a number of 
mathematicians tried to demonstrate the invariance, but the problem proved to 
be refractory. GIUSEPPE PEANO dealt another blow to the naive concept of 
dimension in 1890 when he published the first example of a space-filling curve, a 
continuous mapping of a line segment onto an entire square. By the turn of the 
present century still no one had found a general proof of dimensional in- 
variance. With hindsight we can see why the problem was so difficult to solve. At 
the time there were virtually no adequate tools for the task. Topology was a 
young subject. At last L.E.J. BROUWER achieved success by constructing a full 
and rigorous proof in 1910, which was published in 1911. Two years later he 
published another proof which he rested on his definition of dimension. Un- 
doubtedly the key to BROUWER's success was the new and fruitful ideas that he 
himself introduced into topology. 

The two problems of defining dimension and proving its invariance were the 
primary influences on the creation and growth of modern dimension theory. 
They are the central foci of its history. However, the problem of explaining the 
dimension number of space was also at times a motive from outside mathe- 
matics for the theory's development. Other problems as well had some influence 
on its development and, when the theory came to maturity in the 1920's, further 
problems became the centre of attention. Yet in the period up to about 1925 the 
twin problems of definition and invariance were the central motive forces with 
the cosmological problem as a pervading background force. 

In the present historical work I shall be concentrating on the invariance 
problem, although at times the other two problems will of necessity come to the 
fore. The present work takes dimension theory from the time before CANTOR, 
when it consisted of a few loosely connected ideas and theories, to 1913, the year 
when BROUWER published his second invariance proof. Chapter 1, a prelude so 
to speak, is devoted to the pre-Cantorian ideas. Then chapters 2 through 7 take 
the history of the invariance problem from its conception to its solution by 
BROUWER. Chapter 8 ties up some loose ends, gives a glimpse of later develop- 
ments, and then draws some conclusions about the history. The present part I 
consists of chapters 1-4; chapters 5-8 will constitute part II. 

In this work I examine the mathematics of dimension in considerable detail. 
I think the topic deserves a full history. The mathematical ideas remain 
important to us and some of the greatest mathematicians of the latter half of the 
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nineteenth and the first part  of the twentieth centuries helped develop them. 
Moreover, the rise of dimension theory coincides with the early growth of 
topology. Indeed during the period under review the two subjects were in strong 
interaction. Dimension problems were partly responsible for the birth of modern 
topology. Some of the best-known early topologists were also concerned with 
the problems of dimension, for example, CANTOR, SCHOENFLIES, POINCARI~, 
and BROUWER. So the history of dimension theory throws a great deal of light 
on the history of topology. Hence, it is worth while to look closely at the 
development of the former. 
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Chapter 1. Ideas concerning Dimension before Cantor 

My aim in this chapter is twofold. First I wish to describe some important  
Greek ideas about dimension. Without doubt these are significant when viewed 
in relation to the modern development of dimension theory. Second I want to 
examine the origins of theories of hyperspaces and higher-dimensional geome- 
tries. In these theories and the accompanying changes in the philosophy of 
geometry lies the most important  background to CANTOR'S discovery that figures 
of differing dimensions can be put into one-one correspondence. 

We look to the Greeks for the principal ancient source of the science of 
mathematics. Modern practitioners of the science have a continuing debt to 
these ancient philosophers and mathematicians for its fundamentals. Hence, it 
may come as no surprise to discover that we can follow the roots of dimension 
theory back to them. To be sure, the Greeks did not formulate a detailed theory 
of dimension. Nevertheless, they thought and argued about the conceptual 
problems involved in dimension and so produced ideas and informal theories 
which have had a lasting influence on generations of mathematicians, including 
some in our own century. ARISTOTLE, EUCLID, and PTOLEMY all thought about 
dimension. But even before these men the oldest sect of mathematicians, the 
Pythagoreans, grappled with dimension-theoretic problems in the context of 
their cosmogony. Thus from the mists of early Pythagoreanism to twentieth- 
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century topology there stretches a thread of geometrical ideas concerned with the 
concept of dimension. Let us begin by examining the Greek end of this thread. 1 

When trying to solve their fundamental cosmogonical problem of explaining 
the generation of physical things from numbers (i.e., the positive integers) in 
accordance with their distinctive mathematical philosophy, the early Pytha- 
goreans described how the basic geometrical figures, the point, line, surface, and 
solid, could be produced from numbers as an intermediate stage in the genetic 
process. It was natural for the Pythagoreans to touch upon the dimension 
concept at least incidentally, inasmuch as their problem and resulting theory 
involved a discussion of things having different dimensions. According to 
modern scholars 2 we must distinguish two versions of the intermediate stage, an 
older one and a more recent one which probably constituted an improvement 
on the first. Although the evidence for these pre-Socratic theories is fragmentary, 
the modern rational reconstructions of them do seem convincing. 

Let us have a look at the primitive version of the intermediate stage. The 
most pertinent evidence comes in the following fragments. First there is an 
extensive passage on the Pythagorean ideas in Theologumena Arithmeticae, a 
passage which is ascribed to SPEUSIPPUS 3 (THOMAS (1939:80-83)): 

For 1 is a point, 2 is a line, 3 is a triangle and 4 is a pyramid; all these are 
elements and principles of the figures like to them. In these numbers is seen 
the first of the progressions, that in which the terms exceed by an equal 
amount, and they have 10 for their sum. In surfaces and solids there are the 
e lements-poin t ,  line, triangle, pyramid . . . .  The same result is seen in their 
generation. For  the first principle of magnitude is point, the second is line, 
the third is surface, the fourth is solid. 

Supplementing this text are two passages referring to the Pythagoreans from 
ARISTOTLE (Metaphysics, VII.2, 1028b16; XIV.3, 1090b5; quoted in GUTHRIE 
(i962:259)): 

Some think that the limits of bodies, such as surface and line and point or 
unit, are substances, rather than body and the solid. 

There are some who, because the point is the limit and end of a line, the line 
of a surface and the surface of a solid, hold it to be inescapable that such 
natures exist. 

The intermediate stage of the theory may be described more fully as follows. '~ 
There is a progression from point to line to surface to solid which is the pattern 

l I do not claim to be an expert on Greek investigations concerning the dimension 
concept, but I hope that the following constitutes an improvement of my note 4 in 
(1977: 266-267). 

2 I am relying particularly on  KIRK/RAVEN (1957 : 253-256) and GUTHRIE (1962: 
256-265). 

3 SPEUSIPPUS was the son of PLATO's sister and his immediate successor as head of 
the Academy. He was strongly influenced by Pythagorean philosophy. 

4 I am following KIRK/RAVEN (1957: 254-256) and GUTHRm (1962: 259--262). Cf 
the discussion of SEXTUS EMPIRICUS (I936: 346-347). 
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of generation. In particular, we have the special figures, the point, the line 
segment, the triangle, the tetrahedron, and these are associated with the numbers 
1, 2, 3, 4, in arithmetic progression. In fact, the geometrical figures can be 
described by the minimum number of independent points required to contain 
them: one or the unit for the point itself, two for the line segment, three for the 
triangle, and four for the tetrahedron. According to the passages from ARIS- 
TOTLE the key concept is limit (or extremity, boundary). 

The neo-Pythagorean author NICOMACHUS of Gerasa (ca. A.D. 100) pro- 
vides an embroidered account of the old Pythagorean theory in his Introduction 
to Arithmetic. In this later account the dimension concept is explicitly named 
((1926), quoted in GUTHR[E (1962"261)): 

Unity, then, occupying the place and character of a point, will be the 
beginning of intervals and of numbers, but not itself an interval or a number, 
just as the point is the beginning of a line, or an interval, but is not itself line 
or interval. Indeed, when a point is added to a point, it makes no increase, 
for when a non-dimensional thing is added to another non-dimensional 
thing, it will not thereby have dimension . . . .  Unity, therefore, is non- 
dimensional and elementary, and dimension first is found and seen in 2, then 
in 3, then in 4, and in succession in the following numbers; for 'dimension' is 
that which is conceived of as between two limits. The first dimension is 
called 'line', for a line is that which is extended in one direction. Two 
dimensions are called 'surface', for a surface is that which is extended in two 
directions. Three dimensions are called 'solid', for a solid is that which is 
extended in three directions. 

The point, then, is the beginning of dimension, but not itself a dimension, and 
likewise the beginning of a line, but not itself a line; the line is the beginning 
of surface, but not surface, and the beginning of the two-dimensional, but not 
itself extended in two directions. Naturally, too, surface is the beginning of 
body, but not itself body, and likewise the beginning of the three-dimensional 
but not itself extended in three directions. Exactly the same in numbers, unit 
is the beginning of all number that advances unit by unit in one direction; 
linear number is the beginning of plane number, which spreads out like a 
plane in more than one dimension; and plane number is the beginning of 
solid number, which possesses a depth in the third dimension besides the 
original ones. 

In the second passage NICOMACHUS describes a strong link between the 
dimensions and the Pythagorean figurate numbers, the latter in a sense being a 
part of Greek geometrical algebra. 

The primitive theory of the intermediate stage might be described as static. 
There is no indication of how generation is accomplished in the sequence, point, 
line, surface, solid. Indeed the static concept of limit is the basis of the 
explanation. In what seems to be a later Pythagorean theory 5 we find a more 

5 GUTHRIE (1962:262) casts some doubt on whether this theory is really Pytha- 
gorean. 
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dynamic explanation of generation, for the key concept is motion. This later 
theory is succinctly described in two passages, one from ARISTOTLE (On the 
Soul, 1.4, 409a4; quoted in KIRK/RAVEN (1957." 254)): 

For they say that the movement of a line creates a plane and that of the 
point a line; and likewise the movements of units will be lines. For the point 
is a unit having position. 

and one from SEXTUS EMPIRICUS (1936:346-349): 

But some assert that the body is constructed from one point; for this point 
when it has flowed produces the line, and the line when it has flowed makes 
the plane, and this when it has moved towards depth generates the body 
which has three dimensions. But this view of the (later) Pythagoreans differs 
from that of the earlier ones. For these latter formed the numbers from two 
principles, the One and the Indefinite Dyad, and then, from the numbers, the 
points and the lines and both the plane and the solid forms; but the former 
build up all of them from a single point. For from this the line is produced, 
and from the line the plane, and from this the body. 

In this unified motion theory of generation the basic geometrical sequence, 
point, line segment, triangle, tetrahedron, is replaced by the sequence, point, line 
segment, square, cube. This more advanced theory is usually called the fluxion 
theory. It has had a profound impact on later mathematicians, such as NEWTON 
and RIEMANN (see below). 6 

Moving on to the times of ARISTOTLE (384-322 B.C.) and EUCLID (ca. 300 
B.C.) we find the following definitions concerning the basic objects of geometry 
in EUCLID's Elements (EUCLID/HEATH (1926: 1,153; 111,260)): 

Book I 
1. A point is that which has no part. 
2. A line is breadthless length. 
3. The extremities of a line are points. 
5. A surface is that which has length and breadth only. 
6. The extremities of a surface are lines. 

Book XI 
1. A solid is that which has length, breadth, and depth. 
2. An extremity of a solid is a surface. 

We may distinguish two rudimentary 'theories' of dimension suggested by these 
definitions: a direct theory given by definitions 1.1, 1.2, 1.5, and XI.1 and an 
indirect theory hinted at by definitions 1.3, 1.6, and XI.2. Following his usual 
way of compromise, EUCLID presents both theories, although other sources 
separate them. 

The first theory suggests a direct link between the basic geometrical figures 
and dimension. The definitions in effect nominate and enumerate the dimensions 

6 C f  KIRK/RAVEN (1957: 254-255) and GUTHRIE (1962:262-265). I am not con- 
vinced by GUTHRIE's explanation of why the motion theory was proposed. On the later 
influence of the fluxion theory cf EVANS (1955). 
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of the various figures. Points have no dimension ('no part'); while lines have one 
('length'); surfaces, two ("length and breadth'); and solids, three ('length, breadth, 
and depth').7 However, EUCLID only touches on the concept of dimension 
implicitly. Neither does he provide any explanation of the concept, nor does he 
use any general term for it. Hence, these definitions hardly add up to a genuine 
theory of dimension. 

In the Topics (VI.5, 142b22-29; VI.6, 143bll-144a4; see HEATH (1949:87- 
91)) ARISTOTLE by implication criticises the main definitions of EUCLID'S direct 
theory because of their negative character. He gives his own direct theory of 
dimension based on the notions of divisibility and continuity (linked concepts in 
his System) in On the Heavens (I.1, 268a4-13, 268a20-268b5) and Metaphysics 
(V.6, 1016b23-31; V.13, 1020a7-14) (cf. HEATH (1949: 159-160, 206-207)). He 
even has a special term for dimension. Part of the passage in On the Heavens is 
of special interest (HEATH (1949: 159)): 

Of things constituted by nature some are bodies and magnitudes, some 
possess body and magnitude, and some are the principles of things which 
possess these. That is continuous which is divisible into parts continually 
divisible and that which is divisible every way is body. Of magnitude that 
which (extends) one way is a line, that which (extends) two ways a plane, and 
that which (extends) three ways a body. And there is no magnitude besides 
these, because the three dimensions are all that there are, and thrice extended 
means extended all ways. For, as the Pythagoreans say, the All and all things 
in it are determined by three things; end, middle and beginning give the 
number of the All, and these give the number of the Triad. 

In this text ARISTOTLE explicitly adopts a Pythagorean metaphysical argument 
for the 3-dimensionality of physical bodies, 8 although the argument is hardly 
convincing. The fact that ARISTOTLE relies on Pythagorean ideas suggests that 
possibly these earlier philosopher-mathematicians took an interest in this special 
problem of dimension. According to SIMPLICIUS in a commentary on 
ARISTOTLE'S work, PTOLEMY (ca. A.D, 150) later wrote an entire book On 
Dimension in which he put forward a better argument for the 3-dimensionality of 
bodies and the universe (THOMAS (1941:410-413)). Unfortunately PTOLEMY's 
book is not extant. 9 

EUCLID'S indirect theory, comprised in his subsidiary definitions 1.3, 1.6, and 
XI.2 and based on the concept of extremity, has an affinity with the modern 
recursive definition of dimension using the concept of boundary. EUCLID'S 
subsidiary definitions suggest a progression from points to lines to surfaces to 
solids, or more accurately, the reverse progression. In modern dimension theory 

7 The Euclidean definition of point seems to have derived ultimately from the 
Pythagorean one: the point is a unit (monad) having position. The property of having no 
part is like the indivisibility of the unit. However, EUCLID does not say anything about 
position. Cf. EUCLID/HEATH (1926: I, 155 157). 

s We would say in a more abstract way that it is an argument for the 3-dimension- 
ality of space. 

9 For a history of the problem of explaining the three dimensions of space cf. 
WHITROW (1956) and JAMMER (1969: 174-I86, 205-207). 
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a set or space is n-dimensional according to a recursive definition, whereby n is 
the least integer for which every point has arbitrarily small neighbourhoods with 
boundaries at most ( n -  1)-dimensional (and the empty set is assigned dimension 
-1) .  Creators of the modern theory, such as POINCARt~ and MERGER, have 
stressed the connection between the modern and Euclidean definitions, but I do 
not think we should read too much of the modern theory into the ancient texts. 
The ancient mathematicians did not operate with genuine recursive definitions, 
even if their progressions have a semblance of recursion. 

According to HEATH (EUCLID/HEATH (1926:I,155-156)) the subsidiary 
definitions are older than EUCLID'S main ones and he points to a passage in 
ARISTOTLE (Topics, VI.4, 141b20; HEATH (1949:85-86)) in which the philos- 
opher speaks of the former as the definitions. Moreover, ARISTOTLE gives us a 
supplement to them (Metaphysics, XI.2, 1060b12-17; HEATH (1949: 224)): 

If we suppose lines or what immediately follows them (I mean the primary 
surfaces) to be principles, these are at all events not separable substances but 
are sections and divisions, the one of surfaces, the other of bodies (as points 
are of lines); they are also extremities or limits of the same things; but all of 
them subsist in other things, and no one of them is separable. 

Thus the various geometrical objects can be sections and divisions as well as 
extremities of the next higher ones in the hierarchy. 

ARISTOTLE is, in fact, critical of all the definitions dependent upon the 
concepts of extremity and division (Topics, VI.4, 141b21; HEATH (1949: 85-86)): 

All these definitions explain the prior by means of the posterior, for they say 
that a point is an extremity of a line, a line of a plane, and a plane of a solid. 

To ARISTOTLE'S mind the progression from solid down to point, from posterior 
to prior in the older definitions, is mistaken and so these are unscientific. 

In spite of ARISTOTLE's criticism of the logic of the extremity definitions 
these are the most interesting from the modern dimension-theoretic viewpoint. 
The downwards progression from solid to point is what makes them seem 
recursive to us. HEATH remarks (1926:I,I55-156) that PLATO may well have 
been an object of ARISTOTLE's criticism. Going beyond this criticism, we may 
look for the origins of the Euclidean extremity definitions. It seems very likely to 
me that ultimately these derive from the first Pythagorean theory of generation. 
In that theory the essential concept was limit or extremity and, in particular, the 
line segment was viewed as dependent on its two endpoints. 1° I would conjec- 
ture that there is an indirect historical link between the very early Pythagorean 
theory and the extremity definitions. It would certainly be interesting to trace 
this link further through the intermediate generations of philosophers and 
mathematicians. 11 However, it seems clear to me that just as the early Pytha- 
goreans sought to explain the generation of physical things through numbers 
then points, lines, surfaces, and solids, the later extremity definitions constitute 
an attempt to explain the connections among the geometrical figures and to 

lo See the texts quoted above, especially those of ARISTOTLE. 
1, This task is beyond the scope of the present work. 
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explain in a rudimentary way the dimension concept. Thus I think the ancient 
origins of dimension theory lie in a cosmogonical theory aiming at explaining 
the beginnings of physical things. 

From the brief history just given it should be clear that the Greeks had wide- 
ranging interests in problems connected with dimension. On the cosmological 
side their speculations went from the Pythagorean theories of generation to 
PTOLEMY's proposed demonstration that there are not more than three dimen- 
sions. On the more mathematical side there is the evidence collected in the 
Euclidean definitions. Let me sum up the main theories. The direct theories of 
EUCLID (naming the dimensions of geometrical figures) and ARISTOTLE (based on 
divisibility and continuity) do not offer much information on the dimension 
concept itself. However, the indirect extremity theory found in EUCLID and 
ARISTOTLE is much more explanatory. It tells us how the geometrical figures are 
connected by dimension. With hindsight we recognise something of the modern 
theory in this. It seems likely that this theory goes back to the earliest 
Pythagorean cosmogonical theory. Of course, this latter theory was intended as 
an explanation, specifically of the beginnings of physical bodies and indirectly of 
dimension itself. The later fluxion theory is similarly explanatory. 

Both the Greek extremity theory and fluxion theory have been very in- 
fluential. Not surprisingly we find ISAAC NEWTON (1642-1727) calling upon the 
motion theory as a support for his fluxional principles of the calculus. In his 
Tractatus de Quadratura Curvature (dating from 1693; first published in Latin in 
1704) he begins by relying on its ancient authority (1964:141): 

I don't here consider Mathematical Quantities as composed of Parts ex- 
treamly small, but as generated by a continual motion. Lines are described, 
and by describing are generated, not by any apposition of Parts, but by a 
continual motion of Points. Surfaces are generated by the motion of Lines, 
Solids by the motion of Surfaces, Angles by the Rotation of their Legs, Time 
by a continual flux, and so in the rest. These Geneses are founded upon 
Nature, and are every Day seen in the motion of Bodies. 

And after this manner the Ancients by carrying moveable right Lines 
along immoveable ones in a Normal Position or Situation, have taught us 
the Geneses of Rectangles. 

Later in the eighteenth century we find the two Greek theories given an airing in 
the great Encyclop~die of DENIS DIDEROT and JEAN LE ROND D'ALEMBERT 
(1751-80) and again in the collected mathematical articles of the subsequent 
Encyclop~die Mdthodique. MathOmatiques (1784-89). 12 In his article 'Point' 
D'ALEMBERT (1717-1783) gives most prominence to the extremity theory, 
because he espoused an abstractionist philosophy of geometry. Only 3-dimen- 
sional solids really exist; points, lines, and surfaces merely exist by abstraction 
and are the boundaries of their respective higher-dimensional figures. However, 
he quite naturally includes a statement of the fluxion theory (1751- 
80: XII,871): 

12 See the articles ' Dimension', ' Point', ' Ligne', ' Surface', ' Solide', and ' G6om6trie'. 
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Si l'on se reprdsente qu'un point coule, il tracera une ligne; & une ligne qui 
couleroit engendreroit une surface, &c. Cette maniere de consid6rer la 
gdndration des dimensions ou des propri6t6s des corps, paroit 6tre le premier 
fondement de la Gdom6trie moderne, c'est-/t-dire, de la G6om6trie analytique 
qui fait usage du calcul diff6renciel & intdgral .... 

(If one represents a point as flowing, it will trace a line; and a line which 
flows will engender a surface, etc. This way of considering the generation of 
dimensions or the properties of bodies can be the first foundation of modern 
geometry, i.e., of the analytical geometry which uses the differential and 
integral calculus .... ) 

In the nineteenth century the Greek theories continued to attract the attention 
of certain mathematicians, for example, BOLZANO and RIEMANN. a3 I have 
already mentioned that POINCARI~ and MENGER in the twentieth century have 
looked back to the Greeks for the original source of dimension ideas. Thus 
throughout the entire history of mathematics the ancient knowledge about 
dimension has been a part of geometrical thinking. 

I shall now turn to the history of theories of abstract spaces having dimen- 
sions greater than three, the subject of the second part of this chapter. The main 
history of such theories starts in the 1840's and '50's with the publication in 
rapid succession of works by GRASSMANN, CAYLEY, RIEMANN, and several 
others. The theories in these works clearly demonstrated that geometry and its 
spaces ought to be separated from the usual physical space of our perception. 
Moreover, they forced a radical change in the philosophy of geometry. These 
changes in geometry and its accompanying philosophy are an essential part of 
the trend of arithmetisation of the nineteenth century. They form a prime 
background to CANTOR'S paradoxical discovery about dimension. Yet even 
before 1840 we find a long prehistory of hyperspaces scattered in many sources 
which is intrinsically interesting and worthy of our attention first. 

In a few Greek mathematical works there are traces of higher-dimensional 
thinking. Recall that in Greek geometrical algebra as, for example, expounded 
by EUCLID one has linear, square, plane, and solid numbers and magnitudes. 
Given this geometrical view of quantity there is an automatic prohibition to 
multiplying, say, rectangular by square quantities to get a 4-dimensional quan- 
tity, since space is apparently at most 3-dimensional. Nevertheless, the later 
mathematicians HERON and DIOPHANTUS of Alexandria did such calculations 
in their works. In the case of DIOPHANTUS' algebra he specifically in- 
troduced higher-dimensional unknowns: 6VVel~O6d~l~lg (dynamodynamis, 
square-square) for x 4, 6vve#&co~o; (dynamocubos, square-cube) for x s, and 
tcv~d~cv~o~ (cubocubos, cube-cube) for x 6. Seemingly commenting, on these 
developments, PAPPUS (ca. A.D. 300) says in connection with the famous locus 
problem of five or six lines (THOMAS (1941:600-603)): 

... since no figure can be contained in more than three dimensions. It is true 
that some recent writers have agreed among themselves to use such 

13 Cf my (I977) and below. 
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expressions, but they have no clear meaning when they multiply the rectan- 
gle contained by these straight lines with the square on that or the rectangle 
contained by those. 

Thus PAPPUS' advice is negative: stick to tradition and avoid the impossible! In 
any case it does not seem likely that HERON or DIOPHANTUS really conceived 
of a geometrical space of four or more dimensions. Instead they occasionally 
just abandoned the tradition of geometrical algebra. 

Avoidance of the impossible is characteristic of the prehistory of higher 
spaces. In the fourteenth century when NICOLE ORESME (13237-1382) proposed 
a theory dealing with the quantitative measure or graphical representation of 
the intensities of qualities in things in his Tractatus de configurationibus qualita- 
turn et motuum (probably composed in the 1350's), he expressly denied the need 
to consider a 4-dimensional space even though his ideas led in that direction. In 
chapter 4 of part I of his magnificent work (ORESME/CLAGETT (1968:172 
177)) graphical representations of intensities of qualities in various geometrical 
subjects are introduced. For a point subject a line segment will represent a 
quantitative measure of a quality of that subject. A bounded surface will 
represent the measure of a quality in a linear subject, while a bounded solid will 
do for a planar subject. In the case of a solid subject ORESME suggests that it be 
broken into an infinite sequence of surfaces, each with a solid 'graph', such that 
the graphs interpenetrate or are in mathematical superposition. However, he 
asserts categorically that this representation does not take place in the fourth 
dimension, since that does not exist and cannot be imagined. Nevertheless, 
ORESME in effect has described a 3-dimensional image of a 4-dimensional solid. 
In all probability this was the first time that anyone did so.1 

Following the lead of DIOPHANTUS' algebra, many Arab and early Western 
algebraists spoke of supersolid magnitudes, although they did not intend to 
introduce spaces of dimensions greater than three. A noteworthy remark on this 
tradition comes in MICHAEL STIFEL's (ca. 1487-1567) commentary to CHRIS- 
TOFF RUDOLFF'S Coss (algebra) (RUDOLFF/ST~FEL (1553-54:folio9)).  STIFEL 
points out that whereas in geometry we cannot progress beyond the 3-dimen- 
sional cube or solid, in algebra we can indeed have a progression (through 
multiplication) which goes beyond the cube to a 'solid line' ('corporliche lini', 
which is 4-dimensional), a 'solid surface' ('corporliche superficies', 5-dimen- 
sional), and so forth. In this possibility lies the great advantage of algebra over 
geometry. Pure algebra can break the bonds of the ancient geometrical for- 
mulation of the subject. However, a century later the Englishman JOHN WALLIS 
(1616-1703) inveighed against the mixing of any geometrical terms or ideas with 
algebra in his important Treatise (1685 : 126):15 

For whereas Nature, in propriety of Speech, doth not admit of more than 
Three (Local) Dimensions, (Length, Breadth and Thickness, in Lines, Sur- 
faces and Solids;) it may justly seem very improper, to talk of a Solid (of 
three Dimensions) drawn into a Fourth, Fifth, Sixth; or further Dimension. 

14 Cf. ORESME'S earlier Quaestiones super geometriam Euclidis in ORESME/CLAGETT 
(1968: 530-531, 544-547). 

x5 Cf (1685:103). 
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A Line drawn into a Line, shall make a Plane or Surface; this drawn into 
a Line, shall make a Solid: But if this Solid be drawn into a Line, or this 
Plane into a Plane, what shall it make? a Piano-plane ? That is a Monster in 
Nature, and less possible than a Chimera or Centaure. For Length, Breadth 
and Thickness, take up the whole of Space. Nor can our Fansie imagine how 
there should be a Fourth Local Dimension beyond these Three. 

WALLIS' more forceful words carry the same message as PAPPUS' of many 
centuries before. 

Notwithstanding WALLIS' rhetoric and good common sense a few men in the 
seventeenth century dared to conceive of the geometrical fourth dimension. No 
less than DESCARTES and PASCAL were among their number, although they 
only flirted with the concept (see WIELEITNER (1925) for references). In quite 
another sphere the Cambridge Platonist HENRY MORE (1614-1687) was attrac- 
ted by the idea of a fourth dimension, since it provided a place for spirits 
(Spissitudo essentialis), as he describes in his Enchiridion Metaphysicum 
(167I:384). In the nineteenth century J.K.F. Z~SLLNER (1834-1882) held a view 
similar to MORE's that led to some amusing consequences. 16 

Around the middle of the eighteenth century a more serious view of the 
possibility of higher-dimensional spaces began to take shape. IMMANUEL KANT 
(1724-1804) touched upon the possibility of a science of hyperspaces in his very 
first publication, Gedanken yon der wahren Schiitzung der lebendigen Krfifte ... 
(1749). In this work dealing mainly with the celebrated question of vis viva ~7 
KANT examines the cosmological problem of the 3-dimensionality of physical 
space, but he feels unable to provide an absolutely convincing explanation for 
this fact of nature. Nonetheless he conjectures that it is probably explained by 
the inverse-square law governing the forces between substances (masses) in the 
universe. However, in another possible world this special law of action could be 
different, so that to cover all possible worlds one would need a general science of 
spaces of diverse dimensions (1749: I3) = (1929: I2): 

Line Wissenschaft yon allen diesen m6glichen Raumes-Arten, w~ire ohnfehl- 
bar die h6chste Geometrie die ein endlicher Verstand unternehmen k6nnte. 
Die Unm6glichkeit, die wir bey uns bemerken, einen Raum yon mehr als 
drey Abmessungen uns vorzustellen, scheinet mir daher zu riihren, weil 
unsere Seele ebenfalls nach dem Gesetze der umgekehrten doppelten Ver- 
h/iltniss der Weiten die Eindriicke von draussen empf~ingt, und weil ihre 
Natur selber dazu gemacht ist, nicht allein so zu leiden, sondern auch auf 
diese Weise ausser sich zu wiirken. 

(A science of all these possible kinds of space would undoubtedly be the 
highest enterprise which a finite understanding could undertake in the field 
of geometry. The impossibility, which we observe in ourselves, of represent- 
ing a space of more than three dimensions seems to me to be due to the fact 
that our soul receives impressions from without according to the law of the 

16 On MORE @ JAMMER (1969: 180-181). On ZI3LLNER'S views cf. his (1878) and 
KLEIN (1926: 169-170). 

17 Cf HANKINS (1965). Unfortunately HANKINS does not discuss KANT'S work. 
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inverse square of the distances, and because its nature is so constituted that 
not only is it thus affected but that in this same manner it likewise acts 
outside itself.) 

In the century before KANT both GALILEO and LEIBNIZ had discussed the 
problem of space's three dimensions, iS KANT was the next important philos- 
opher to grapple with the difficult problem. That his thoughts on the subject 
led him to conceive of a science of n-spaces was certainly prophetic. 

In both his precritical and critical periods KANT had a continuing interest in 
philosophical problems about space and geometry. One may recall his penetrat- 
ing observation in his essay 'Vom den ersten Grunde des Unterschiedes der 
Gegenden im Raume' (1768) that in our 3-dimensional world there exist bodies 
which are similar and have the same distances among all their respective parts, 
and yet they cannot be made directly congruent by superposition on the same 
space. The left and right hands give a simple example of this paradoxical 
phenomenon. We know, unlike KANT, that in 4-space this will no longer 
happen. Finally, before leaving KANT, we should note that for him geometry 
was primarily a science of space as we know it. Although he had some 
conception of other, more abstract geometries, as clearly evidenced by his 
prediction of a science of n-spaces, he still mainly thought of geometry as linked 
to physical space. 

Just a few years after KANT speculated about a geometry of hyperspaces in 
his first published work JEAN D'ALEMBERT inserted a more concrete suggestion 
of a space of more than three dimensions into his article 'Dimension'  in the 
Encyclop~die (1754) (DIDEROT/D'ALEMBERT (1751-80: IV,1010)): 

J'ai dit ... qu'il n'6toit pas possible de concevoir plus de trois dimensions. Un 
homme d'esprit de ma connoissance croit qu'on pourroit cependant regarder 
la dur6e comme une quatrieme dimension, & que le produit du tems par la 
solidit6 seroit en quelque maniere un produit de quatre dimensions; cette id6e 
peut ~tre contest6e, mais elle a, ce me semble, quelque m6rite, quand ce ne 
seroit que celui de la nouveaut6. 

(I have said ... that it is not possible to conceive of more than three 
dimensions. An intelligent man of my acquaintance believes nevertheless that 
one can regard time as a fourth dimension, and that the product of time by a 
solid in this way will be a product of four dimensions; this idea can be 
disputed, but it seems to me to have some merit even though this may only 
be that of novelty.) 

JOSEPH LOUIS LAGRANGE (1736-1813) later followed in the spirit of this 
suggestion, when he asserted in his ThOorie des fonctions analytiques (1797: 223) 
that mechanics could be taken to be a geometry of four dimensions, employing 
x, y, z as coordinates for space and t for the fourth dimension of time. Thus by 
the end of the eighteenth century some truly great thinkers had pronounced on 
the desirability of considering hyperspaces, although no one had yet fashioned a 
genuine science of such unimaginable geometrical objects. 

18 Cf. WHITROW (1956) and JAMMER (1969). 
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The nineteenth century saw the development of the theory of higher- 
dimensional spaces and geometry to maturity. However, as already mentioned 
this did not really begin until nearly half way through the century. During the 
first forty years contributions to the subject were still sporadic and not well 
publicised. In his summary 'Essai' on imaginary quantities in Gergonne's 
Annales JEAN ROBERT ARGAND (1768-1822), after sketching a theory in three 
dimensions, suggests the possibility of extensions to higher dimensions 
(I813:146). Yet he never produced anything beyond this brief remark. Both 
CARL GUSTAV JACOB JACOBI (1804-1851) and GEORGE GREEN (1793-1841) 
used n-dimensional generalisations in the course of their analytical researches 
(e.g., JACOBI (1834), GREEN (I835)). For example, GREEN, after reducing the 
physical problem of the attraction of ellipsoids with variable densities to 
mathematical analysis, says (I835)= (1871:188): 

The original problem being thus brought completely within the pale of 
analysis, is no longer confined as it were to the three dimensions of space. 

Thenceforth he develops his theorems of analysis quite naturally in a space of 
arbitrary finite dimension. 

CARL FRIEDRICH GAUSS (1777-1855) was the most significant mathema- 
tician to consider the geometry of hyperspaces during the first forty years of the 
nineteenth century. However, he published little on the subject and even the 
notes and letters, which only came to light after his death, probably do not 
represent the full scope of his thoughts on this matter. Nevertheless, the hints 
that we do have indicate a lifelong interest in multi-dimensional spaces and it is 
clear that his interest was related to many of his other concerns in mathematics. 
It is appropriate for us to regard GAUSS' thoughts on hyperspace as a bridge 
between the prehistory of the concept and its mature development. He thought 
often and deeply about the abstract foundations of geometry and his last work 
dealing with higher space (1850 51) falls within the initial period of mature 
growth of multi-dimensional geometry. 

The earliest record of GAUSS' knowledge of higher spaces comes from 1816 
in a letter of FRIEDRICH LUDWIG WACHTER tO GAUSS of 12 December (see 
STACKEL (1901), GAUSS (1917:481-482)). This letter refers to a conversation 
which WACHTER had with GAUSS during April of that year. It demonstrates 
GAUSS' (as well as WACHTER's) early understanding of multi-dimensional 
analytic geometry. WACHTER specifically mentions infinite-dimensional spaces 
as well as finite-dimensional ones, so he and GAUSS were apparantly well 
advanced in the theory. 

We find GAUSS' most important references to the problem of defining 1-, 2-, 
and n-dimensional manifolds (Mannigfaltigkeiten) in his two works of 1831 on 
the theory of biquadratic residues: 'Theoria residuorum biquadraticorum. Com- 
mentatio secunda' (1832)=(1863:93-148) and especially the accompanying 
'Selbstanzeige' (183I) = (1863: 169-178). The reference to higher-dimensional 
developments consists of just a single remark. One of GAUSS' concerns in these 
works is the 'metaphysics', i.e., foundations, of the complex number system. 
Although he describes the usual planar representation of complex numbers, 
feeling even as late as 1831 that this number system needed some sort of 
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justification by means of a geometrical model (1863:109-110, 174), in his 
'Anzeige' he puts more emphasis on an abstract approach to the ' true meta- 
physics of imaginary quantities' (1863: 175-178). He only treats the complex 
('Gaussian') integers in detail but presumably an extension to all complex 
numbers can be made easily. The kernel of GAUSS' abstract theory springs from 
his observation that numeration consists in a set of relations. If we have a linear 
sequence of objects, it is the relations among them and their inverse relations 
that are important. From these we can pick an origin, derive the inverse units + 1 
and - 1, and then obtain the usual integers. If we have a sequence of sequences 
or, in other words, a manifold of two dimensions, we must examine the relations 
between one sequence and an immediately neighbouring sequence and thence 
derive the inverse units + i  and - i  and then all the complex integers. In this 
way we abstract the complex integers from a twofold variety of sequence of 
sequences. 

For GAUSS then, number systems in the most proper mathematical sense of 
the term are about relations, their comparison and 'numbering',  and not about 
the objects numbered. But to see these relations intuitively we need to use 
geometrical models. The plane, a well-understood manifold of two dimensions, 
serves this purpose for the complex number system. GAUSS regarded his theory 
of complex quantities as a way of clearing up the 'mysterious obscurity' falsely 
attributed to the imaginary numberS. His abstract theory is a genuine ancestor 
of the rigorous logical theories of numbers proposed during the latter half of the 
nineteenth century. 

At the very end of the 'Anzeige' GAUSS (1863:178) mentions manifolds of 
more than two dimensions, but he does not discuss them. However, it seems 
certain that his specific theory for the complex integers and 2-dimensional 
manifolds is related to a more general theory of manifolds which he held. Such a 
general theory would cover hypernumber systems and n-dimensional manifolds 
and would constitute a branch of abstract geometry. We find a brief indication 
of the more general scope of such a theory in a letter of GAUSS to HANSEN of 11 
December 1825 (1929:8): 

Ich babe mich in diesem Herbst sehr viel mit der allgemeinen Betrachtung 
der krummen Fl~ichen beschiiftigt, welches [sic] in ein unabsehbares Feld 
ftihrt . . . .  Jene Untersuchungen greifen tief in vieles andere, ich m~Schte sogar 
sagen, in die Metaphysik der Raumlehre ein, und nur mit Miihe kann ich 
mich von solchen daraus entspringenden Folgen, wie z.B. die wahre Meta- 
physik der negativen und imagin~iren Gr6ssen ist, losreissen. Der wahre Sinn 

des ~ - - 1  steht mir dabei mit grosser Lebendigkeit vor der Seele, aber es 
wird sehr schwer sein, ihn in Worte zu fassen, die immer nur ein vages, in der 
Luft schwebendes Bild geben k6nnen. 

(During this autumn I have concerned myself very much with the general 
consideration of curved surfaces, which leads into an immense field . . . .  
Those investigations penetrate deeply into many others, I may even say into 
the metaphysics of the theory of space, and only with difficulty can I tear 
myself away from such results arising therefrom, as, for example, the true 

metaphysics of negative and imaginary quantities. The true meaning of ~ - 1  
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stands very vividly before my soul, but it will be very difficult to put it into 
words, which can only give but a vague fleeting image.) 

It is clear that GAUSS' ideas on curved surfaces, negative and imaginary 
quantities, and manifolds and space were all linked. 

During the last years of his life GAUSS did explicitly consider arbitrary n- 
dimensional manifolds in his lectures, 'Uber die Methode der kleinsten Qua- 
drate', delivered during the winter semester of 1850-51. Concerning the content 
of these we have the records of his student AUGUST RrrTER (1826-1908) (in 
GAUSS (1917:469-482)). 19 From these records it is easy to see why GAUSS 
chose abstract manifolds or analytic spaces of n dimensions as the natural 
vehicle for his investigations into the method of least squares. Such spaces 
involve a generalised analytic geometry based on n variable coordinates and the 
usual Euclidean metric which can be applied to the solution of the minimum 
problem. 

GAUSS' ideas on multi-dimensional spaces bring us close to his philosophical 
thoughts on geometry. The 'Anzeige' of 1831 and the letter to HANSEN of 1825 
give definite signs of his abstract view of the subject. There are further in- 
dications of this view from the latter part of his life. In his Jubili~umsschrift of 
1849, 'Beitr~ige zur Theorie der algebraischen Gleichungen' (1850)= (1876: 71- 
102), containing his important revision of his very first attempt to prove the 
fundamental theorem of algebra in his Inaugural Dissertation of 1799, he 
excuses himself for a reliance on geometrical reasoning 2° (1876: 79): 

lch werde die Beweisftihrung in einer der Geometrie der Lage entnommenen 
Einkleidung darstellen, weil jene dadurch die grSsste Anschaulichkeit und 
Einfachheit gewinnt. Im Grunde gehSrt aber der eigentliche Inhalt der ganzen 
Argumentation einem h6hern von R~iumlichem unabh~ingigen Gebiete der 
allgemeinen abstracten Gr6ssenlehre an, dessen Gegenstand die nach der 
Stetigkeit zusammenh~ingenden Gr6ssencombinationen sind, einem Gebiete, 
welches zur Zeit noch wenig angebauet ist, und in welchem man sich auch 
nicht bewegen kann ohne eine von r/iumlichen Bildern entlehnte Sprache. 

(I shall represent the proof in clothing borrowed from the geometry of 
position, because this yields the greatest lucidity and simplicity. However, 
the real content of the entire argument belongs fundamentally to a higher 
domain of the general abstract theory of quantity, independent of spatial 
things, whose subject is the combinations of quantities connected according 
to continuity; a domain which at this time is still little cultivated, and in 
which one cannot express oneself without a language based on spatial 
images.) 

The view of an abstract geometry divorced from spatial intuition expressed in 
this passage must be related to GAUSS' longstanding desire for a development of 
'geornetria situs' (see STXCKEL (1922-33:46-49)). At the end of his life he 
persisted in his hope for a flowering of this subject, as WALTER NARTORIUS VON 

19 Cf. also DEDEKIND (1931:293006). 
2o This geometrical reasoning is related to certain complex functions. 



114 D.M. JOHNSON 

WALTERSHAUSEN has reported from conversations which he had with GAUSS 
during his last years, 1847-1855 (1856: 88): 

... eine ausserordentliche Hoffnung setzte er abet auf die Ausbildung der 
Geometr ia  situs, in der weite giinzlich unangebaute Felder sich bef~inden, die 
durch unsern gegenwiirtigen Calcul noch so gut wie gar nicht beherrscht 
werden kGnnten. 

(... yet he held an extraordinary hope for the development of geometria 
situs, in which there might be extensive but entirely uncultivated fields that 
could hardly be controlled by our present methods.) 

GAUSS thus connected abstract geometry with geometria s i tus - topo logy ,  as we 
would call it. He published virtually nothing on this subject, nor did he even 
write much down on it. Yet he had a vision of its importance. It remained for 
others to transform this vision into a reality. 21 

To be sure, GAUSS felt it was necessary to relate abstract geometry to the 
concrete geometry 22 of physical space. Abstract geometry is concerned with n- 
dimensional manifolds in general, while spatial geometry has a special 3- 
dimensional manifold for its subject. He thought that our knowledge of this 
special manifold is not entirely a priori (letters to BESSEL, GAUSS (1900:200- 
201)). Consequently, he did not subscribe to KANT'S view of space as an outer 
form of our intuition and explicitly said so on a number of occasions (GAUSS 
(1863: 177) 1900: 224)). He believed that space is real and our knowledge of 
space is at least partly empirical. One could even prove this fact from the 
writings of KANT himself: 23 

In spite of the fact that GAUSS disagreed fundamentally with KANT on the 
nature of space and geometry, it is possible that he borrowed one thing from the 
great philosopher of K/Snigsberg: the word 'Mannigfalt igkeit '  ( 'manifold'). This 
word and the related term 'Mannigfalt ige '  occur frequently in KANT'S writings, 
especially in the Critik der reinen Vernunft. Perhaps GAUSS decided to use the 
Kantian term, although not in the way KANT employed it. In GAUSS' papers the 
term 'Mannigfalt igkeit '  denotes the most general objects of geometry. After him 
and his successor RIEMANN it became widely used by mathematicians. 24 

GAUSS' general attitude towards geometry marks the beginning of a new 
philosophical view of the subject which became established during the nine- 
teenth century. For  him geometry in large part  became freed from physical 
space. On one level it became a branch of 'pure  mathematics ' .  One may rely on 

21 For comments on GAUSS' work in topology and the foundations of complex 
numbers cf STA.CKEL (1922-33 : 46-68), FRAENKEL (1920), SCHLESINGER (1922-33 : 
53-57, 202~I0). See GAUSS (1917: 106-107, 396-397, 407-412, 436-437). 

22 We would say, 'applied geometry'. 
2 3 Cf GAUSS (1863 : 177) and SCHLESINGER (1922-33 : 177-18I). 
2,, STALLO (1960: 268-269) suggests that GAUSS borrowed the term 'Mannigfaltig- 

keit' from HERBART, who uses it in his metaphysical works. However, I can find no 
evidence that GAUSS ever took an interest in HERBART'S philosophy. On the contrary, it 
seems much more likely that GAUSS borrowed the term from KANT, whom he criticised. 
Nevertheless, it is only a conjecture that GAUSS borrowed the term; I cannot find any 
direct evidence in GAUSS' writings to confirm that he took it from KANT. 
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spatial intuition and images, but in the final analysis these can be eliminated 
from abstract geometrical theories. While GAUSS cannot be said to have 
completely envisaged the purely logical treatment of geometry, so masterfully 
advocated at the end of the century by the Italian school and HILBERT, he did 
see the subject as encompassing much more than the metrical relations of 
physical space. His notion of n-dimensional manifolds as well as his theory of 
non-Euclidean geometry were a part of this view. As we shall see in a moment, 
GAUSS' philosophical views about the nature of geometry were soon to influence 
the young RIEMANN. 

A host of works published during the 1840's and '50's dealing with hyper- 
spaces mark the beginnings of the mature development of multi-dimensional 
geometry. A wide variety of algebraic, analytic, and geometrical problems 
spurred mathematicians to consider such spaces. 25 The mathematicians who 
started to grapple with the problems of hyperspace geometry at this time were 
ARTHUR CAYLEY (1821-1895), HERMANN GRASSMANN (1809-1877), JULIUS 
PLOCKER (1801-1868), AUGUSTIN LOUIS CAUCHY (1789-1857), JAMES JOSEPH 
SYLVESTER (1814-1897), LUDWIG SCHLXFLI (1814 1895), and BERNHARD R1E- 
MANN (1826 1866). Most of these men simply introduced hyperspaces through 
n-fold systems of coordinates and then investigated the metric and projective 
geometry of the resulting coordinate spaces with analytic techniques. In his first 
paper on the subject, 'Chapters in the Analytical Geometry of (n) Dimensions' 
(1844) (read in 1843), the young CAYLEY proceeds in this way. In this paper as 
elsewhere he is not concerned with giving an explanation of the possible 'meta- 
physics' of higher space. 26 CAUCHY'S very short 'M~moire sur les lieux 
analytiques' (1847), in a similar vein to CAYLEY'S first paper, merely defines 
some geometrical terms for n-dimensional analysis. Presumably following the 
lead of CAYLEY, SYLVESTER began to work with n-dimensional spaces in 1850 
(1850) (1851) (I851a) (etc.). In one of his early papers he makes the following 
apposite methodological remark justifying the geometry of n-spaces 
(1851a: I20) = (1904: 219): 

If the impressions of outward objects came only through the sight, and 
there were no sense of touch or resistance, would not space of three 
dimensions have been physically inconceivable? The geometry of three 
dimensions in ordinary parlance would then have been called transcendental. 
But in very truth the distinction is vain and futile. Geometry, to be properly 
understood, must be studied under a universal point of view; every (even the 
most elementary) proposition must be regarded as a fact, and but as a single 
specimen of an infinite series of homologous facts. 

In this way only (discarding as but the transient outward form of a 
limited portion of an infinite system of ideas, all notion of extension as 
essential to the conception of geometry, however useful as a ,suggestive 
element) we may hope to see accomplished an organic and vital development 
of the science. 

25 Cf. SEG'RE (192I) for an encyclopedic view of the mathematics and an overview of 
the history of hyperspaces. Cf also his (1904). 

26 Some of CAYLEY's other papers on the subject are (1846) (1846a) (1854) 
(1870). 
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GEORGE BOOLE (1815-1864) subscribed to much the same view as SYLVESTER, 
as shown in a brief note in his Laws of Thought (1854: 175). 

LUDWIG SCHL)kFLI, proceeding along the same methodological path as 
CAYLEY, SYLVESTER, and CAUCHY, wrote one of the most extensive accounts of 
the metrical geometry of n coordinate spaces during the years 1850-1852: 
Theorie der vielfachen Kontinuitiit (1901). However, he ran into difficulties with 
the publication of this immense work, so that it was not published in its entirety 
until after his death (cf (1950: 388-390)). The excerpts which did appear soon 
after composition (1855) (1858-60) unfortunately did not attract much atten- 
tion. 

JULIUS PL/.JCKER'S mode of introducing hyperspaces was quite different 
from the methods of CAYLEY, CAUCHY, SYLVESTER, and SCHLAFLI. In a 
remark in his System der Geometrie des Raumes ... (1846:322-323) he shows 
how to create a 4-dimensional geometry in ordinary 3-dimensional space 
through a system of line coordinates. Straight lines in ordinary space defined by 
four parameters become the elements of a hyperspace. This innovative and 
distinctly geometrical way of introducing higher spaces through basic elements 
other than points gave PLIJCKER an entire programme of research which 
culminated in his postumously-published Neue Geometrie des Raumes gegriindet 
auf die Betrachtung der geraden Linie als Raumelement (1868) (1869). 

I now wish to consider the work of GRASSMANN and RIEMANN in more 
detail, because their philosophical attitudes to the foundations of hyperspace 
geometry typify some of the essential changes in ideas concerning space, 
geometry, and dimension which were taking place around the middle of the 
nineteenth century. 

Die lineale Ausdehnungslehre (1844) of HERMANN GRASSMANN has often 
been criticised for its difficult 'metaphysical '  style. Unquestionably the mathe- 
matical theory contained in the book is much obscured by the cloak of 
philosophy which surrounds it. Perhaps GRASSMANN'S father influenced the son 
in his general philosophical view of mathematics a little too strongly. 27 Possibly 
his theological studies at Berlin University had a detrimental effect on his 
mathematical ideas. Indeed he acquired his mathematics without the benefit of 
formal university instruction. It certainly did not aid the first readers of his book 
that GRASSMANN chose to fit his original mathematical theory into an unclear 
philosophical framework, an all-too-metaphysical framework in the German 
idealistic tradition. Partly for this obscurity in presentation he failed to gain 
early recognition for his new "theory of extension' and a much desired university 
post. Even the revised version of his book (1862), far less impregnated with 
philosophy, did not win him full success and praise from the mathematical 
community. However, in spite of the apparent bad features of his mixture of 
philosophy and mathematics in the Ausdehnungslehre we must recognise a most 
valuable philosophical element, giving us a clear sign of the attitudes of some 
mid-nineteenth-century mathematicians to geometry and hyperspaces. It seems 
that it was partly for this element that GAUSS was able to give a measure of 
praise to GRASSMANN's work, for there is a marked affinity between GAUSS' 

27 Cf SCNLt~GEL (1878), who suggests this explanation to me. 
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ideas on the metaphysics of complex quantities and the philosophical tendency 
towards abstraction of GRASSMANN'S book. 2s 

When attempting to place his new theory of extension among the mathemat- 
ical sciences, GRASSMANN expresses the key philosophical judgment of his 
Ausdehnungslehre-that the theory is logically separate from geometry 
(1844: Vorrede, Einleitung)=(1894: 10-11, 22-32). Up to the time of GRASS- 
MANN virtually all mathematicians and philosophers 29 looked upon geometry 
as a science concerned with physical space and therefore derived from our 
knowledge of the external world and limited to the three dimensions of space. 
But in the Ausdehnungslehre GRASSMANN conceives of mathematics as a science 
of pure forms of thought, logically independent of experience. 3° The theory of 
extension as a branch of pure mathematics with continuous quantities as its 
subject matter is divorced from spatial intuitions and free from the constraints 
of 3-dimensionality. Under this view it transcends traditional geometry, which is 
only a small application of the much more general theory of extension. Thus in 
an abstract of his work he writes (1845)=(1894: 297). 

Meine Ausdehnungslehre bildet die abstrakte Grundlage der Raumlehre 
(Geometrie), das heisst, sie ist die von allen r~iumlichen Anschauungen 
gel6ste, rein mathematische Wissenschaft, deren specielle Anwendung auf 
den Raum die Raumlehre ist. 

Dadurch geschieht es nun, dass die S~itze der Raumlehre eine Tendenz 
zur Allgemeinheit haben, die in ihr verm6ge ihrer Beschr/inkung auf drei 
Dimensionen keine Befriedigung findet, sondern erst in der Ausdehnungsleh- 
re zur Ruhe kommt. 

(My theory of extension forms the abstract foundation of the theory of 
space (geometry), i.e., it is a pure mathematical science independent of all 
spatial intuitions, whose special application to space is geometry. 

Thus it is the case that the theorems of geometry tend towards generality, 
but in virtue of their limitation to three dimensions this generality cannot be 
achieved; it can be achieved first in the theory of extension.) 

Although GRASSMANN's style may be somewhat opaque, his line of thought is 
transparent. Ausdehnungslehre, or abstract geometry, is not confined to our 
knowledge of physical space, but is prior to such knowledge. It comes before 
physical magnitude. Furthermore, it is even prior to number and arithmetic as 
such, although abstract concepts of number and magnitude are immediately 
derivable from the continuous quantities which are the subject matter of the 

28 See the letter of GAUSS to GRASSMANN, dated 14 December 1844, in GAUSS 
(1917: 436-437). 

29 GAUSS and the non-Euclidean geometers excepted. 
3o Note that GRASSMANN took a psychologistic view of mathematics. This was a 

common view in the nineteenth century, but it is now much discredited. 
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theory. Starting from this assumption about priority, we can envisage geometry 
developing towards its natural generality according to its own internal logic. 31 

Consequently, in his Ausdehnungslehre GRASSMANN goes beyond the or- 
dinary 3-dimensional space to treat higher-dimensional abstract spaces 
(1844:§§13, 14, 16)=(1894:46-49, 51-53). His definition of such spaces is 
based on an analogy with the ancient fluxion theory of the generation of figures, 
whereby a moving point generates a line, a moving line produces a surface, etc. 
Strictly speaking, he tries to draw a sharp boundary between this 'concrete' 
motion theory and his own abstract theory, although I do not think we can 
regard this attempt as very successful. When considering the generation of an 
extension-form of first order (Ausdehnungsgebilde erster Stufe), he conceives an 
abstract element (Element, like a geometrical point) undergoing changes (Aen- 
derungen, like the motion of a point) in a specified direction, thereby producing 
the first-order form (like a straight line segment) (1894: 48): 

Unter einem Ausdehnungsgebilde erster Stufe verstehen wir die Gesammtheit 
der Elemente, in die ein erzeugendes Element bei stetiger Aenderung iiber- 
geht . . . .  

(We understand by an extension-form of first order the totality of elements 
into which a generating element passes through continuous change .... ) 

The totality of all such possible elements extended along one dimension is then 
a system or domain (System, Gebiet) of first order (like an infinite line). 
Proceeding to higher-order forms, he thinks of two distinct and independent 
changes operating on an element. First one change produces a first-order form 
from the element and then the second change produces a sequence of (parallel) 
forms. The infinite set of elements thus generated is a system of second order. 
With additional types of changes it is possible to derive systems of third, fourth, 
.... and any finite order. 

Although GRASSMANN was a founder of modern vector analysis, we may 
well find it difficult to look upon his definition of systems of finite order 
-presumably finite-dimensional vector spaces-as  very revealing. He must 
have had a hard time trying to put his 'inductive' definition of his fundamental 
spaces into words, since he could find hardly anything more than the ancient 
fluxion theory to rely upon. However, in the second edition of his work the 
definition of nth-order domains is significantly improved and much more 
straightforward (1862:514)=(1896:16). A domain of n th order is simply de- 
pendent on coordinates associated with n units (unit vectors). 

BERNHARD RIEMANN'S principal statement concerning the domain of high- 
er-dimensional geometry is his celebrated Habilitationsvortrag, 'f.)ber die Hy- 
pothesen, welche der Geometric zu Grunde liegen'. Like GRASSMANN RIE- 
MANN unfortunately couched his work on hyperspace in rather muddy philo- 
sophical language. Yet in spite of the obscuring mode of expression this lecture, 
delivered in 1854 but not published until 1868 after his death, is well known for 

31 KLEIN (1926: 177--178) emphasises the methodological link between the views of 
GRASSMANN and the mathematicians (such as HILBERT) who developed logical theories 
of pure (nonmetrical) geometry at the end of the century. 
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its profound ideas, so tightly packed into its two dozen paragraphs: the 
generalisation to n dimensions of Gaussian curvature, the foundations of 'Rie- 
mannian'  geometry and the elliptic variety of non-Euclidean geometry, and the 
discussion of the relationship between pure geometry and physical space. We 
now recognise in RIEMANN's short work the seeds for a tradition which led to 
the mathematics behind EINSTEIN's theory of relativity. 

For the present discussion we need only be concerned with the first section 
of the lecture. It is in this section that RIEMANN tries to explain his notion of an 
n-dimensional manifold. When the lecture was first published in 1868, philo- 
sophers took most interest in this section, because the treatment of the manifold 
concept in it is largely philosophical. In fact, the philosophers quickly made 
objections to RIEMANN's unclear methods and presentation. Yet there is a key 
point in the first section which all the early readers of the published lecture 
failed to grasp. RIEMANN primarily aimed at defining n-dimensional manifolds 
as topological objects. His fundamental concern was topology, or analysis situs, 
as he would say. With topology in its infancy it is not surprising that early 
readers did not understand RIEMANN's aim. Still it is worth while for us to 
examine this very early statement of a topological programme, especially in 
order to understand some of the difficulties faced by even a great mathematician 
when presenting original ideas. 

No doubt part of the difficulty with RIEMANN's presentation was the result 
of the hasty preparation of the lecture which was enforced on him. How he came 
to lecture on the foundations of geometry for his habilitation to Privatdozent is a 
curious tale, worth repeating (DEDEKIND in RIEMANN (1953: 547-549)). 32 By 
the end of 1853 RIEMANN had finished and submitted his Habilitationsschrift, 
' ( ]ber  die Darstellbarkeit einer Function durch eine trigonometrische Reihe'; the 
Habilitationsvortrag still had to be arranged. Concerning the prospects for this 
he wrote to his brother WILHELM on 28 December 1853 (RIEMANN (1953: 547)): 

Mit meinen Arbeiten steht es jetzt so ziemlich; ich habe Anfangs December 
meine Habilitationsschrift abgeliefert und musste dabei drei Themata zur 
Probevorlesung vorschlagen, von denen dann die Facultgt eines w~ihlt. Die 
beiden ersten hatte ich fertig und hoffte, dass man eins davon nehmen wiirde; 
Gauss aber hatte das dritte gew~ihlt, und so bin ich nun wieder etwas in der 
Klemme, da ich dies noch ausarbeiten muss. 

(My work is now progressing tolerably well; at the beginning of December I 
submitted my Habilitationsschrift and besides had to propose three subjects 
for the trial lecture, from which the faculty could then choose one. I had the 
first two complete and hoped that they would choose one of them; Gauss, 
however, chose the third and so now I am in something of a quandary, since 
I must still work this one out.) 

Poor RIEMANN ! GAUSS passed over the first two of the suggested themes, one on 
the history of the representation of functions by trigonometric series, the second 
on the solution of two equations of the second degree in two unknowns, in order 

32 RICHARD DEDEKIND'S 'Bernhard Riemann's Lebenslauf' in RIEMANN (1953:539- 
558) is the standard biography of RIEMANN; cf FREUDENTHAL (1975a). 
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that he might hear something on the foundations of geometry, a subject close to 
his heart. 33 During the first part of 1854 RIEMANN was ill much of the time; he 
overworked and suffered from the inclement weather. It was not until a fortnight 
after Easter that he began to prepare his trial lecture in earnest, but nevertheless 
it was complete by Whitsuntide. The preparation time was certainly remarkably 
short, when we consider the stature of the final product. GAUSS himself wanted to 
examine the young geometer, but he was in poor health. Many even thought his 
death was imminent. So he asked that NIEMANN'S lecture be postponed until his 
own health might improve and RIEMANN accepted the inevitable delay. But 
then without warning GAUSS decided to let RIEMANN give the lecture, as the 
latter told his brother in a letter of 26 June 1854 (1953: 548): 

Da entschloss er sich pl/Stzlich auf mein wiederholtes Bitten, ,,urn die Sache 
vom Halse los zu werden", am Freitag nach Pfingsten Mittag das Collo- 
quium auf den anderen Tag um halb elf anzusetzen und so war ich am 
Sonnabend um eins gliicklich damit fertig. 

(Then suddenly, after my repeated requests ' to take the yoke from my neck', 
he decided at noon on the Friday after Whitsun to set the colloquium for the 
next day at 10.30 and so on Saturday at one o'clock I was fortunately 
finished with it.) 

After the lecture, which was given so suddenly on the 10th of June, GAUSS 
highly praised RIEMANN's work to the physicist WILHELM WEBER on their way 
back to the faculty meeting. He expressed himself with unaccustomed excite- 
ment on the depth of RIEMANN'S thought. In the eyes of the Prince of 
Mathematicians the young man was a success. 

Considering the way it was prepared, we must conclude that the lecture was 
only an extended sketch of RIEMANN'S geometrical ideas. Moreover, insofar as 
he had to deliver it to the entire Philosophical Faculty of G~Sttingen, he needed 
to try to make his ideas clear to nonmathematicians (DEDEKIND in RIEMANN 
(1953:549)). Probably if he had had time in his brief life to revise and expand 
the lecture for publication, he would have expressed himself differently on many 
matters. As it was, his only further treatment of part of the material of the 
lecture was in his Paris Academy essay of 1861 (1953:391-404). 34 Thus 
his friend DEDEKIND almost certainly published a work which RIEMANN 
himself would have preferred to put into a better form. It was, of course, wise for 
DEDEKIND to publish the original lecture, but we must be prepared for its 
confusions and infelicitous expressions. 

The overall theme of RIEMANN'S Habilitationsvortrag (1868)= (I953: 272- 
287) is to determine the logical relationship between geometry conceived, more 
or less, as a discipline of 'pure mathematics' and its application to physical 
space. Within the scope of this theme he examines three special problems. The 
first of these is the important one for us (1953:272): 

Ich babe mir daher zun~ichst die Aufgabe gestellt, den Begriff einer mehrfach 
ausgedehnten Gr/Ssse aus allgemeinen Gri3ssenbegriffen zu construiren. 

33 Cf RIEMANN (1953 : Nachtriige, 112). 
34 Cf. the ° Fragment aus der Analysis Situs' (1953: 479-482). 
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(In the first place I have thus set myself the task of constructing the concept 
of a multiply extended magnitude fiom the general concepts of magnitude.) 

R1EMANN thought that a clarification of the notion of multiply extended 
magnitude was a crucial prerequisite for improving our understanding of the 
relationship of geometry to the concept of space. Contained in his discussion of 
n-fold magnitudes given in section I of his lecture is an informal theory of 
topological manifolds and dimension. He intended this theory to serve as a 
general framework ('Vorarbeit', 'preparation') for contributions to analysis situs. 
A statement of this intention is tucked away in a footnote at the end of the 
published version of the lecture (I953: 286). 3s 

When embarking on his discussion of the general notion of manifold, 
RIEMANN asks the indulgence of his audience, f o r - a s  he puts i t - t h e  difficulty 
lies more in the philosophical nature of the subject and he is not practised in 
such investigations (1953:273). He claims besides that there was little back- 
ground for him to rely u p o n -  only a few remarks in papers of Gauss  and some 
philosophical researches of HERBART. He explicitly cites those papers of Gauss  
which he found useful: 'Theoria residuorum biquadraticorum. Commentatio 
secunda' (1832)=(I863:93-148), the accompanying 'Selbstanzeige' (1831) 
= (1863: 169-178), and the Jubiliiumsschrift of 1849, 'Beitr~ige zur Theorie der 
algebraischen Gleichungen' (1850)= (1876: 71-102). Thus Gauss '  hints on the 
abstract and geometrical foundations of the complex number system, on the 
definition of 2- and higher-dimensional manifolds, and on the broader need to 
develop the subject of analysis situs 36 were a direct stimulus for RIEMANN'S 
ideas about manifolds. In his discussion RIEMANN goes so far as to borrow 
some expressions from Gauss .  In the case of the reference to HERBART's works 
he does not say which he found helpful. However, it is known that this German 
philosopher had a significant, if (as we might be inclined to think) detrimental 
influence on the young mathematician. Let us then have a brief look at this 
influence. 

While a university student RIEMANN took a special interest in the philos- 
ophy of JOHANN FRIEDRICH HERBART (1776 1841). In his biography DEDE- 
K I N D  reports that during three semesters at G6ttingen from Easter 1849 through 
1850 RIEMANN attended some philosophical lectures and, in particular, made a 
study of HERBaRT's thought (RIEMANN (1953: 544-545)). In some fragments 
which RIEMaNN left among his papers there is ample evidence of HERBART's 
influence on his thoughts about psychology, epistemology, metaphysics, and 
natural philosophy (1953:509-538). It is even possible that his difficult 'meta- 
physical' style of writing derived partly from HERBART. Unfortunately his style 
often follows the example of the worst German philosophical tradition. Yet, 
while HERBART's ideas were the starting point for his own, he did not remain a 
Herbartian. In the end he criticised HERBART and developed his own philo- 
sophical viewpoint, as an undated fragment in his Nachlass reveals (1953:508): 

35 Many apparently missed this statement of intention. For example, in his English 
translation CLIFFORD fails to include it. 

36 See the discussion above. 
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Der Verfasser ist Herbartianer in Psychologie und Erkenntnisstheorie (Me- 
thodologie und Eidolologie), Herbart's Naturphilosophie und den daraufbeziig- 
lichen metaphysischen Disciplinen (Ontologie und Synechologie) kann er 
meistens nicht sich anschliessen. 

(The author is a Herbartian in psychology and epistemology (methodology 
and eidolology), but for the most part he cannot subscribe to Herbart's 
natural philosophy and the related metaphysical disciplines (ontology and 
synechology).) 

HERBART was KANT's successor at K6nigsberg, but he developed his own 
distinct philosophy. He also taught at G6ttingen from 1833 until his death in 
1841, hence his spiritual influence there over RIEMANN. Strongly interested in 
mathematics throughout his career, HERBART propounded an extensive philos- 
ophy of space and geometry in his works on psychology and metaphysics. 
Judging by the statement of RIEMANN just quoted, we can assume that 
HERBART's psychological theory of space and geometry had more influence over 
RIEMANN'S ideas than his metaphysical theory. However, after examining the 
Habilitationsvortrag for traces of HERBART'S philosophy, I think that the general 
views of HERBART exerted greater influence on RIEMANN's philosophico- 
geometrical ideas than specific points of doctrine. 37 

The most important statements of HERBART'S philosophy of space and 
geometry occur in his two treatises Psychologie als Wissenschaft (1824) (1825) 
and Allgemeine Metaphysik, nebst den Anfiingen der philosophischen Naturlehre 
(1828) (1829), ponderous works in the German metaphysical tradition. In the 
first HERBART investigates the psychological origins of our ideas of 'sensible' 
space (sinnlicher Raum) (1824: 5~100) = (1890: 409-420) (1825: §§109-116, 139, 
143)--(1892:86-112, 191-193, 222-224). An essential part of his doctrine is 
that our idea of space is but one example of a sequence or sequence-form (Reihe, 
Reihenform). We can also regard time, the colours, and the musical tones as 
sequences, though not all as linear sequences. Sensible space is a sequence of 
sequences of sequences; hence, it is 3-dimensional. This characterisation has 
some similarity to GAUSS' theory of 2- and higher-dimensional manifolds in his 
'Anzeige' of 1831. RIEMANN seems to have been attracted to HERBART's theory 
of sequence-forms, as is evident when he too compares the multi-dimensional 
space continuum with the colours. Moreover, RIEMANN, like HERBART, is very 
much an empiricist in his views about space. 

In his Allgemeine Metaphysik under his 'Synechologie' HERBART proposes a 
metaphysical theory of intelligible space and geometry (1829: Drittes Abschnitt) 
=(1893: 110-186). In his system synechology is one of the four branches of 
metaphysics and concerns the theory of the continuous-the continuous as 
exhibited in time, space, matter, and motion. By trying to resolve the con- 
tradiction inherent in the concept of the continuous (synechology's basic prob- 
lem or pseudoproblem !), he successively constructs the straight line, the plane, 
and geometrical space. In effect the resulting philosophy is a defence of 

3v On HERBART'S influence over RIEMANN cf. ERDMANN (1877:29-31) and RUS- 
SEL (1897: 14-I5, 62-63). 
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traditional Euclideanism, but HERBART is often wrong in his mathematics 
-even according to the standards of his day. In particular, he gives a meta- 
physical proof of the impossibility of 4-dimensional intelligible space 
(1893: 152-153). Obviously RIEMANN did not rely very much upon HERBART's 
metaphysics. However, the programme of constructing the geometrical objects of 
various dimensions and the view of them as sequences certainly had an impact 
on NIEMANN, when he was trying to define his manifolds in a recursive or 
inductive manner. 

Apart from the background researches of GAUSS and HERBART, RIEMANN'S 
own work in mathematics, especially in the theory of complex functions and 
algebraic functions, must have motivated his attempt in the Habilitationsvortrag 
to provide a possible framework for contributions to analysis situs through a 
definition of manifold. His investigations in complex function theory as pre- 
sented in his Dissertation, 'Grundlagen ftir eine allgemeine Theorie der Func- 
tionen einer ver~inderlichen complexen Gr/Ssse' (1851)=(1953:3-48), had led 
him to consider the topology of surfaces, i.e., 2-dimensional manifolds, and so it 
was natural for him to contemplate a study of the general case. Thus in his 
lecture of 1854 he briefly refers to his own special way of dealing with multi- 
valued analytic funct ions-by means of R1EMANN surfaces--in order to 
persuade his listeners that a topological treatment of manifolds is important and 
even necessary for an understanding and further development of some parts of 
mathematics. In his magnificent papers collectively known as his °Theorie der 
Abel'schen Functionen' (1857) (1857a) (1857b) (1857c)=(I953:88-i44), 
published three years after delivering the lecture, RIEMANN provides a fairly 
clear statement of his conception of topology (i953: 91): 

Bei der Untersuchung der Functionen, welche aus der Integration vollst~indi- 
ger Differentialien entstehen, sind einige der analysis situs angeh6rige S~itze 
fast unentbehrlich. Mit diesem von Leibnitz, wenn auch vielleicht nicht ganz 
in derselben Bedeutung, gebrauchten Namen darf wohl ein Theil der Lehre 
von den stetigen Gr6ssen bezeichnet werden, welcher die Gr6ssen nicht als 
unabh~ingig vonder Lage existirend und durch einander messbar betrachtet, 
sondern yon den Massverh~iltnissen ganz absehend, nur ihre Orts- und 
Gebietsverh~iltnisse der Untersuchung unterwirft. 

(In the investigation of functions which arise from the integration of total 
differentials several theorems belonging to analysis situs are almost in- 
dispensable. With this name, used by Leibniz, though perhaps not entirely 
with the same significance, one may be permitted to denote a part of the 
theory of continuous quantities which considers such quantities not as 
existing independently of their position or measurable by one another, but, 
on the contrary, which investigates only their local and regional properties 
entirely divorced from measure-relations.) 

With this background in mind we may proceed to examining the details of the 
first section of his lecture, trying to give a sympathetic reading to some of his 
obscure expressions. 

When attempting to construct the concept of a multiply extended magnitude 
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(mehrfach ausgedehnte Gr6sse) from general concepts of magnitude, RIEMANN 
has a great deal to say about the concept of manifold (Mannigfaltigkeit). A close 
reading of the text shows that he regards the manifold concept as more general 
than the concept of magnitude. Most of his early expositors and critics did not 
recognise this important point, probably because it is not declared explicitly. 
JACOBSON (1883) was an exception. By trying to say something about the 
concept of manifold apparently RIEMANN was struggling to define a notion like 
our modern topological manifold or even our general topological space, al- 
though in his work there remains an implicit link between his manifold concept 
and the narrow domain of algebraic functions. In general his results on 
manifolds are not fully successful. 

RIEMANN speaks of discrete and continuous manifolds with elements and 
points as corresponding specialisations (Bestimmungsweisen) (I953:273-274). 
In essence the discrete manifolds are quantified by the integers. However, it is 
the continuous manifolds which are of prime interest to him. But in trying to 
capture their essential nature he gets mixed up with philosophical terms and 
outmoded scholastic methods of concept analysis. Perhaps it is best to say that 
his discussion is just a reflection of his poor philosophical training at G/Sttingen 
and the pernicious influence of HERBART. His distinctions do not seem to 
work. 3 s 

RIEMANN suggests that in most examples manifolds are measured quantities, 
i.e., magnitudes. In this case measure consists in the superposition of the 
magnitudes to be compared. However, there are important examples when this 
method does not apply. He says (1953:274): 

Fehlt dieses, so kann man zwei GrSssen nur vergleichen, wenn die eine ein 
Theil der andern ist, und auch dann nur das Mehr oder Minder, nicht das 
Wieviel entscheiden. Die Untersuchungen, welche sich in diesem Falle fiber 
sie anstellen lassen, bilden einen allgemeinen yon Massbestimmungen unab- 
hiingigen Theil der GrSssenlehre, wo die GrSssen nicht als unabh~ingig yon 
der Lage existirend und nicht als durch eine Einheit ausdfiickbar, sondern 
als Gebiete in einer Mannigfaltigkeit betrachtet werden. 

(In the absence of this, two magnitudes can only be compared when one is a 
part of the other; in which case also we can only determine the more or less 
and not the how much. The researches which can in this case be instituted 
about them form a general part of the science of magnitude in which 
magnitudes are regarded not as existing independently of position and not as 
expressible in terms of a unit, but as regions in a manifold.) 

This is the main passage in which RIEMANN points to the science of analysis 
situs. It is very similar to the one quoted above from his work of 1857 on 
Abelian functions. It is clear that he is referring to topological manifolds, 
because he immediately cites the cases of multi-valued analytic functions and 
problems related to complex analysis. The RIEMANN surfaces are uppermost in 

3s Cf especially the critiques of STALLO (1960: 259-279) and RUSSELL (1897: 13-I6, 
63 -70). 
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his mind. Although he uses the term 'Gr6sse',  it is apparent that he does not 
mean 'magnitude'  in the usual measured sense, but rather in the sense of general 
and not necessarily metrical extension. Perhaps he could have used 
GRASSMANN's term 'Ausdehnung', but given it a broader connotation. 

RIEMANN chooses to examine only two aspects of his general topological 
manifolds. He offers a construction method for producing multi-dimensional 
manifolds and a reduction method for determining points in such manifolds by 
sets of quantities, i.e., real number coordinates. 

RIEMANN'S construction method is hardly more than the ancient fluxion 
theory extended to n dimensions (1953:275). His description has something of 
the form of an inductive definition. The true character of a simply extended or 1- 
dimensional manifold (eine einfach ausgedehnte Mannigfaltigkeit) is that con- 
tinuous progress (motion; stetiger Fortgang) is only possible in two directions, 
forwards and backwards (terms borrowed from Gauss).  If we suppose that an 
entire simply extended manifold passes over into a series of such manifolds in 
point-to-point correspondence, then we obtain a doubly extended (2-dimen- 
sional) manifold. This construction is exactly analogous to the ancient idea that 
a continuously moving line produces a surface. In general we can continue the 
process to give an n-fold or n-dimensional manifold. RIEMANN concludes 
(1953: 275): 

Wenn man, anstatt den Begriff als bestimmbar, seinen Gegenstand als 
ver/inderlich betrachtet, so kann diese Construction bezeichnet werden als 
eine Zusammensetzung einer Ver~inderlichkeit von n +  1 Dimensionen aus 
einer Ver~inderlichkeit von n Dimensionen und aus einer Ver~inderlichkeit 
von Einer Dimension. 

(If instead of considering the concept as determinable, one considers its 
objects as a variable, then this construction can be described as a com- 
position of a variable of n+  1 dimensions from a variable of n dimensions 
and a variable of one dimension.) 

Judging by this passage, one will probably conclude that RIEMANN has only 
succeeded in making the simple and intuitive fluxion theory quite opaque. His 
philosophical expressions do not add much clarity to his thoughts. Yet perhaps 
we can sympathise with his struggle to make his topological objects abstract. 

In order to show how to reduce the positions in an n-dimensional manifold 
to the determination of n real quantities, RIEMANN reverses the construction 
process (1953:275-276). He assumes that there is a 1-dimensional manifold 
which we can use as a device to determine the positions of points in a given 
n-dimensional manifold: a 1-dimensional measuring stick, so to speak. A point on 
the 1-manifold is taken as the origin; other points on it are assigned appropriate 
distances from the origin. Corresponding to any given point on the 1-manifold, 
we assign a whole set of points in the n-manifold in such a way that different points 
on the 1-manifold correspond to distinct submanifolds of the n-manifold. 
Expressing this idea in the language of function theory, RIEMANN says that we 
take a continuous function of positions within the n-manifold to values on the 1- 
manifold, assuming that the function is not constant over an entire (n-dimen- 



126 D.M. JOHNSON 

sional?) a9 region of the manifold. Accordingly every system of points for which 
the function has a constant value forms a continuous submanifold of fewer than 
n dimensions, in fact, of n - 1  dimensions. As the function value on the 1- 
manifold changes these (n-1)-dimensional  manifolds pass over continuously 
into one another. Hence, we may think of one of them as the original ( n -  1)- 
manifold from which the others proceed, such that each point on the original 
manifold corresponds (in a one-one onto manner) to a distinct point on each 
image manifold. This correspondence is part  of the construction process. RIE- 
MANN casually mentions possible exceptional cases, i.e., singularities in the cor- 
respondence; he is apparently thinking of branch points on a RIEMANN surface. 
In fact, most of his ideas about the functional reduction of manifolds can be 
related to complex, or even algebraic, functions. 

The process just described shows that we can reduce the determination of a 
position in an n-manifold to the determination of a number  and an (n -1 ) -  
manifold. Continuing the process, we see that a point in an n-manifold can 
normally be determined by n real numbers:  xl ,  x2, ... x,. However, RIEMANN 
asserts that sometimes n steps/numbers will not suffice to determine a point in a 
manifold. Here we have infinite-dimensional manifolds, and he mentions func- 
tion spaces as examples! 

In brief RIEMANN characterises an n-dimensional manifold as a 1-parameter 
family of (n-1)-dimensional  manifolds. His manifolds are Euclidean in their 
smallest parts and even globally Euclidean (apart from possible singularities 
which he decides to ignore in his lecture). He assumes differentiability in the 
later sections of the Habilitationsvortrag, so apparently Riemannian manifolds 
are intended to be differentiable manifolds. 4° 

Certainly RIEMANN sought a manifold concept of great generality. Nev- 
ertheless, his all-too-brief informal explanations are fraught with several difficul- 
ties. For example, what are we to understand by 'continuity '  or the implicit use of 
motion in his abstract characterisation? He does not tell us. One may suppose 
that these concepts are to have the informal meanings current around 1850. Not  
surprisingly later mathematicians following the critical principles of the arithmet- 
isation programme, especially as laid down by WEIERSTRASS, found it neces- 
sary to probe more deeply into these vague points in RIEMANN's lecture. 

On a very profound level there is a serious problem related to RIEMANN's 
entire approach. Ultimately he links his basic topological objects with numbers 
and coordinate systems. In other words, a Riemannian manifold is always 
reducible to a 'number-manifold '  ( 'Zahlenmannigfaltigkeit ' ,  a term often used 
by LIE and KLEIN). Consequently, when trying to construct a framework for 
nonmetrical analysis situs, he nonetheless seems to fall back on concepts of 
measurement and ordinary analytic geometry. In this way he appears to 
complete a logical circle. If the coordinates of the points in a manifold are given 
by the usual Euclidean distance measure, then a specific metric is already 

39 Presumably the region must be n-dimensional or, as we might say, it must contain 
an open set. 

4o ENRIQUES (1898) attempts to reconstruct RIEMANN's theory of manifolds and 
dimension. 
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assumed for the supposedly nonmetrical structure. How can he then go on to 
consider different possible measure-relations in the second section of his lecture? 
At the heart of this logical problem is a deep issue in the foundations of 
geometry of which RIEMANN'S later followers and critics became acutely aware: 
for example, FELIX KLEIN (1897)=(1921:388-389) and BERTRAND RUSSELL 
(1897:30-33). ~1 Towards the end of the nineteenth century mathematicians 
discerned a directly related problem in the case of projective geometry, osten- 
sibly nonmetrical. They wondered: Is it really permissible to use a coordinate 
system, normally defined by a metric, to study this geometry in a purely 
projective way? KLEIN pointed the way to a solution avoiding the vicious circle, 
through VON STAUDT'S quadrilateral construction. By means of this construc- 
tion we can avoid the usual metric. We can coordinatise the structures in- 
vestigated in projective geometry in such a way that their points are consistently 
assigned numbers by convention without bringing in a metric. 42 By analogy 
what Riemannian manifolds need is a method for arbitrarily assigning coor- 
dinates consistent with the topologies of their structures. In his work RIEMANN 
gives no indication of such a method, although he most probably thought of his 
coordinates as arbitrary. 43 They constitute parametrisations of the manifolds. 
Still, the solution by arbitrary coordinates is only a partial one. What we find 
conspicuously lacking in RIEMANN'S work is the notion of a topological 
mapping. For  modern mathematicians topology is inseparable from homeomor- 
phisms. RIEMANN never contemplated these in his programme of analysis situs. 

In a broader context mathematicians working towards the end of the 
nineteenth century began to feel the need for a deeper analysis of the foun- 
dations of nonmetrical geometry, in particular, of topology. KLEIN especially saw 
the logical difficulty in basing geometry on number-manifolds and pressed for a 
solution (1897)=(1921:388-389). 44 In effect this difficulty was the immediate 
motivation for the development of the concept of a topological space by 
[-IILBERT (1903), WEYL (1913), and HAUSDORFF (1914). With respect to 
RIEMANN and his much earlier work, we must conclude that he did not found 
the subject of general topology, but only groped towards it. 4s 

In spite of the multiplicity of obscure points in RIEMANN's entire HabiIi- 
tationsvortrag, the work became quite significant in t h e  development of 
geometrical thought after it was published in 1868. It was primarily HERMANN 
VON HELMHOLTZ (1821-1894) who made mathematicians and philosophers 
aware of RIEMANN'S brilliant ideas. Since about 1866 HELMHOLTZ had been 
working on a philosophico-geometrical problem closely related to RIEMANN's, 

45 Cf LIE/ENGEL (1893:394-395, 486). 
42 E.g., cf RUSSELL (1897: I18-119, 123-126) for an exposition of this solution to 

the problem. 
43 Perhaps he had in mind a generalisation of GAUSS' 'arbitrary' parametric coor- 

dinates for surfaces as presented in the 'Disquisitiones generales circa superficies curvas'. 
4,* Cf LIE/ENGEL (1893: 535-537). 
45 Thus RIEMANN'S main achievements in the Habilitationsvortrag really lie in the 

second and third sections, His ideas on differential geometry are especially important and 
soon after publication of the work other mathematicians began investigating them 
further. 
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but derived from a different source. .6 When reading accounts of RIEMANN's 
work in two obituaries by ERNST SCHERING, HELMHOLTZ was surpr ised-and 
d i smayed- to  find that RIEMANN had previously explored fundamental ques- 
tions about space and the geometrical axioms. He quickly obtained a copy of 
the Habilitationsvortrag from SCHERING. Shortly thereafter he presented a paper 
to the Naturhistorisch-medicinischer Verein at Heidelberg on 22 May 1868 
(1868-69) and he sent a further paper to the K6nigliche Gesellschaft der 
Wissenschaften at G6ttingen, which was presented o n  the third of June. The 
second paper, °Uber die Thatsachen, die der Geometrie zum Grunde liegen' 
(1868a), is his most important on the subject. 

In very general terms RIEMANN and HELMHOLTZ had attacked the same 
problem, the so-called RIEMANN-HELMHOLTZ (afterwards RIEMANN-HELM- 
HOLZ-LIE) space problem. However, closer analysis shows that RIEMANN had 
started from a far more general position, a position which we would characterise 
as partly topological. Indeed HELMHOLTZ' much more widely-read and in- 
fluential papers tended to conceal the deeper springs of RIEMANN'S thought. 47 
Because of HELMHOLTZ' greater influence virtually all nineteenth-century think- 
ers lost sight Of RIEMANN'S general topological basis. In his second paper of 
1868 HELMHOLTZ simply reduces RIEMANN's discussion of n-dimensional man- 
ifolds to a succinct assumption or axiom which declares that n real-valued 
continuous coordinates determine the points in such manifolds (1868a: 197- 
I98). Anyone reading RIEMANN and HELMHOLTZ on manifolds must regard 
the latter's account as simpler and clearer. 

After the burst of activity on higher-dimensional geometry of the 1840's and 
'50°s numerous mathematicians proceeded with further developments. 48 They 
investigated hyperspaces both from an analytical and more purely geometrical 
direction. Most attention was given to n-spaces of the Euclidean linear type, 
'homoloidal spaces', like GRASSMANN'S domains. Hence during the final third 
of the nineteenth century hyperspaces became a commonplace in mathematical 
works. Following GAUSS and RIEMANN many employed the term 'Man- 
nigfaltigkeit' ('manifold', and in French, 'vari&6'), but giving it a great diversity 
of meanings. In his Erlanger Programm FELIX KLEIN (1849-1925) prominently 
uses the term to refer to the basic abstract spaces underlying his group-theoretic 
definitions of geometries (1872: §10, Note IV). Mappings or transformations 
are also, of course, a feature of KLEIN'S approach to geometry, something which 
was lacking in RIEMANN'S analysis situs. KARL WEIERSTRASS (1815-1897) 
Commonly used the term 'Mannigfaltigkeit' in his lectures on multi-variable 
analysis (1927: 55-60) (cf PINCHERLE (1880)). He treated his n-fold manifolds 
as arithmetical continua (Euclidean spaces) founded on a logical theory of the 
real numbers and he introduced basic analytical concepts such as limit point, 
continuum, and interior in order to develop analysis rigorously. In this work lies 

46 HELMHOLTZ' source was the physio-psychological problem of spatial perceptions 
(1868a: 193). On HELMHOLTZ' life and work cf KOENIGSBERGER (1902-03) (1906); see 
especially (1906: 254-266). 

4~ Cf WEYL (I923) and FREUDENTHAL (1960). 
48 Cf SEGRE (1921). 
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the true origin of general or analytic topology. CANTOR, taking his cue from 
WEIERSTRASS, then employed the term 'Mannigfaltigkeit' and the related 
topological concepts. However, in several of his important contributions the 
term merely means an arbitrary set of numbers or points; it can even mean just 
an abstract set (Menge). It was only at the very end of the nineteenth century 
and then in the first years of the twentieth that a few mathematicians started to 
propose rigorous definitions of the topological concept of manifold. WALTER 
VON DYCK, HENRI POINCARtS-, HERMANN WEYL, and L. E.J.BROUWER were 
the principal creators of this formal development. Nevertheless, there is some 
historical justice in linking RIEMANN'S earlier 'primitive' ideas with the def- 
initions of these later mathematicians. 

The publications of RIEMANN and especially HELMHOLTZ initiated a wide- 
ranging philosophical discussion of the nature of space and the foundations of 
geometry including its non-Euclidean and multi-dimensional branches. In the 
1870's and '80's the Germans were the most active participants in this dis- 
cussion, while in the 1890's the French took the leading role with BERTRAND 
RUSSELL as a misguided English contributor. ~9 From the beginning philos- 
ophers strongly criticised RIEMANN's entire way of proceeding and implicit 
philosophy, especially his starting point: coordinatised manifolds. The whole 
gamut of philosophical positions from empiricism to idealism, in particular, 
Kantianism, was represented in the discussion. HELMHOLTZ was the principal 
empiricist; his student, BENNO ERDMANN, expanded upon his philosophy at 
great length in the book Die Axiome der Geometrie (1877). Apart from a certain 
amount of almost inevitable polemizing, on the whole the standard of argument 
in this discussion was high. 

The rapid developments in geometry forced philosophers to see the science 
in a new light. It became clear that many significant branches of geometry had 
to be separated from the notion of space. Physical space could no longer be the 
ultimate foundation for the entire discipline. Philosophers and mathematicians 
thus spoke of 'metageometry '  and 'g6om6trie g6ndrale'. Geometry presented a 
more abstract face. To be sure, the geometry of our space still remained 
uppermost in the minds of many philosophers. If ERDMANN or RUSSELL 
discussed the axioms of geometry, in the final analysis they were concerned with 
those assumptions which characterise that 3-fold manifold which is our space. 
The more radical split between pure geometry as an uninterpreted deductive 
system and applied geometry as a way of modelling physical space did not 
become fully understood until after the later work of PASCH and the Italian 
school and the publication of HILt~ERT's GrundIagen der Geometrie (1899). 

The approach to higher space through coordinate manifolds and analytical 
methods begun by geometers of the mid-nineteenth century presents us with a 

49 RUSSELL (1897:54 116) gives a good critical review of philosophies of geometry 
from KANT to 1897. ERDMANN (1877:17--33) also presents a review, covering a shorter 
period of time. For references to the vast philosophical literature concerning the 
problems of geometry and space that was generated principally by the publications of 
R2EMANN and HELMHOLTZ and also the non-Euclidean geometers consult the biblio- 
graphies of HALSTEAD (1878-79) and SOMMERVILLE (1911). 
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definite historical indicator of the developing cleavage between geometry and 
space. Abstract spaces took on a fundamental significance; 'space' became 
arithmetised. This development in geometry is part of the trend of nineteenth- 
century arithmetisation (cf. KLEIN (1895)=(1922:232-240)). The application 
of the new rigorous theories of real numbers (proposed around 1870) then 
brought about a synthesis between the programmes of arithmetisation in 
analysis and in geometry. Geometrico-mechanical continuity based on the 
intuitive idea of motion was thereby replaced by analytically-defined continuity. 
With WEIERSTRASS and CANTOR multi-dimensional coordinate manifolds be- 
came fully arithmetised. 

Nearer the end of the century, however, a trend contrary to the analytic one 
developed. Several mathematicians argued that geometry ought to be con- 
structed as a pure autonomous science and not on the basis of number- 
manifolds. This is the axiomatic-deductive trend. From it arose the criticism of 
RIEMANN, HELMHOLTZ, and LIE for basing geometry on Zahlenmannigfaltig- 
keiten, because ultimately such a use appears to complete a vicious circle. 
Hence, mathematicians initiated a deeper analysis of the foundations of geome- 
try which had important consequences for the subsequent development of a 
genuinely nonmetrical topology, s° RIEMANN (and others) had tried to develop 
this subject, but without success. Only in the twentieth century could this subject 
grow according to its natural principles. 

To conclude this chapter let me turn specifically to the impact of the 
proposal and growth of analytical theories of hyperspaces and n-dimensional 
manifolds on ideas of dimension itself. Without doubt the growth of these 
theories made the dimension concept more easily comprehensible. Implicit in 
them is what we might appropriately call the coordinate idea of dimension. This 
is the simple, naive idea that the dimension of a space is merely the unique 
number of coordinates needed to determine a point in that space. Strictly 
speaking, neither GRASSMANN, nor RIEMANN, nor HELMHOLTZ ever espoused 
this theory of dimension, for they associated continuity and even differentiability 
with their abstract spaces. Yet it must be admitted that they were not very 
definite about their continuity and differentiability assumptions; GRASSMANN 
and RIEMANN really thought of continuity in terms of the ancient fluxion 
theory. However, when GEORG CANTOR probed deeper into the coordinate idea 
of dimension and discovered his paradoxical result showing that the simple idea 
is untenable, he forced mathematicians to take a fresh look at dimension. 
CANTOR's work could only have taken place in the context of the development 
of arithmetised hyperspaces. His discovery, the subject of the next chapter, is 
inconceivable without the prior growth of such ideas. 

so This deeper analysis also affected the development of LI~ group theory. Alongside 
the deeper analysis leading to nonmetrical topology some mathematicians developed 
metrical ideas related to topology further. Thus work in the calculus of variations and 
functional spaces motivated FRI~CHET to put forward a theory of (E) classes or metric 
spaces (the latter being HAUSDORFF's term) (1906). 



Dimension and Modern Topology 131 

Chapter 2. Georg Cantor's 'Paradox' of Dimension 

In 1877 GEORG CANTOR (1845-1918) 1 discovered to his own amazement  
that the points of a unit line segment can be put into one-one correspondence 
with the points of a unit square or more generally with the points of a p- 
dimensional cube. This counterintuitive result immediately called into question 
the concept of dimension. Was it well-defined or even meaningful in mathe- 
matics? CANTOR's discovery marks the origin of the most important  problem of 
dimension, the problem of its invariance. Is dimension invariant with respect to 
any class of mappings? This problem drove mathematicians to conduct a search 
for an invariance proof  for dimension, a search which lasted for over three 
decades. Without question CANTOR's discovery and the closely linked in- 
variance problem together have been the single most important  cause for the 
growth of modern topological dimension theory. In this chapter we shall see 
how CANTOR arrived at his surprising result and examine the implications of 
his find. 2 

CANTOR'S work on set theory arose out of his investigations into the 
uniqueness of representing a function by a trigonometric series. 3 In 1874 he 
published his first purely set-theoretic paper, ' f3ber eine Eigenschaft des Inbe- 
griffes aller reellen algebraischen Zahlen '  (1874), in which there are proofs that 
the set of real algebraic numbers can be conceived in the form of an infinite 
sequence 

( 0 1 , ( - 0 2 ,  . . . ,  (Dr ,  . . .  

(i.e., the set is countable, abz~ihlbar, to use CANTOR's later term), while the set of 
all real numbers cannot be given in the form of an infinite sequence (i.e., the set 
is uncountable, unabz~ihlbar). 4 In fact, he proved the latter result in the stronger 
form: for every sequence of real numbers and every interval of the real line a 
number  can be determined in the interval which is not in the given sequence. 
Through the medium of these results he saw a clear distinction between two 
types of infinite sets of numbers on the real line. It was then perfectly natural for 
him to wonder whether there are other types of infinite sets, say for the plane or 
for higher-dimensional spaces. 

CANTOR discovered the results of his paper of 1874 late in 1873, as his 
correspondence with RICHARD DEDEKIND (1831-1916) 5 clearly shows. The 
letters from CANTOR to DEDEKIND between 29 November  and 27 December 
reveal just how quickly he wrapped up his investigations (CANTOR/DEDEKIND 
(1937: 1220)). 

1 The standard biography of CANTOR is FRAENKEL (1930). Cf MESCHKOWSKI 
(i967) and GRATTAN-GUINNESS (1971). I understand that Prof. J. W. DAUBEN intends 
to publish or has recently published a biography of CANTOR, although I have not yet 
seen it. 

2 The material in this chapter has also been covered by DAUBEN (1974). However, 
my approach is somewhat different and I believe I have added some new insights. To be 
sure, the story of CANTOR'S paradoxical discovery is a crucial part of the origins of 
topological dimension theory and must be included in a full history. 

3 Cf  D A U B E N  (1971). 
4 CANTOR's term 'abz~ihlbar' first appears in his (i882). 
5 For biographical material on DEDEKIND cf LaNDaU (1917) and DUOAC (1976). 
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CANTOR had met DEDEKIND by chance in Gersau during a trip to Switzer- 
land in 1872 (FRAENKEL (1930: 196)), and the famous exchange of letters which 
ensued 6 has become an invaluable source of information about the motivation 
for the mathematical work of these two men. One can almost see CANTOR in the 
act of creating set theory and topology through his letters to DEDEKIND. 

Having investigated the power or cardinality7 of two important linear sets, 
the real algebraic numbers and the real numbers, he turned to an examination of 
higher-dimensional sets. In a letter to DEDEKIND dated 5 January 1874 he posed 
a new research question (CANTOR/DEDEKIND (1937: 20)): 

L~isst sich eine Fl~iche (etwa ein Quadrat  mit Einschluss der Begrenzung) 
eindeutig auf eine Linie (etwa eine gerade Strecke mit Einschluss der 
Endpunkte) eindeutig beziehen, so dass zu jedem Puncte der Fl~iche ein 
Punct der Linie und umgekehrt zu jedem Puncte der Linie ein Punct der 
FEiche geh6rt? 

(Can a surface (perhaps a square including its boundary) be put into one-one 
correspondence with a line (perhaps a straight line segment including its 
endpoints) so that to each point of the surface there corresponds a point of 
the line and conversely to each point of the line there corresponds a point of 
the surface?) 

This problem is basic to the growth of dimension theory. From the start 
CANTOR was convinced of the importance and difficulty of his research ques- 
tion. He realised that some, indeed most, would regard a negative answer to it as 
so obvious that a proof would hardly be necessary. When he discussed it with a 
friend in Berlin some time during the first part of 1874, the friend explained that 
the matter was absurd, so to speak (CANTOR/DEDEKIND (1937: 21)): 

... da es sich von selbst verstiinde, dass zwei unabh~ingige Ver~inderliche sich 
nicht auf eine zurtickfiihren lassen. 

(... since it is obvious that two independent variables cannot be reduced to 
one.) 

In relating this encounter in a letter of 18 May 1874, the young CANTOR sought 
DEDEKIND'S reassurance that he was not chasing after a delusion! However, we 
know that he was not deceived. Even in posing his research question he 
introduced something quite new and important into thinking about dimension. 
He related mappings and correspondences to the dimension of figures and spaces. 
For CANTOR this was a natural relation because he was interested in cardinality. 
In this way he was led to a novel treatment of the dimension concept, having 
surprising consequences. 

We have no record of DEDEKIND's initial reaction to CANTOR'S research 

6 The correspondence has recently been rediscovered; cf KIMBERLING (I972), 
GRATTAN-GUINNESS (1974), DUGAC (1976). 

'7 CANTOR first began to use the term 'M~ichtigkeit' in a letter to DEDEKIND of 
20June 1877 (CANTOR/DEDEKIND (1937: 25)) and then in his (1878). 
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problem and, moreover, no written record of exactly how CANTOR dealt with it 
from May 1874 until April 1877. No letters concerning the matter have come to 
light covering this period; probably nothing on the subject was written. It is 
likely that he only worked intermittently on his research problem from mid- 
1874 to mid-1877 and indeed without success. However, he persisted in regard- 
ing it as important. For  example, when he attended the Gaussjubiliium in 
G6ttingen on 30 April 1877, the one-hundredth anniversary of GAUSS' birth, he 
told various colleagues (among them HEINRICH WEBER and RUDOLPH LIP- 
SCHITZ) of his problem, which he felt was fundamental to geometry. Again 
most of these colleagues thought the answer was obvious; a one-one cor- 
respondence between geometrical figures of differing dimensions is not possible. 
Still CANTOR felt that a proof was needed. 

Subsequent to the GAUSS Jubilee in April CANTOR switched his line of 
attack, employing the usual strategy of the mathematician which advises that if a 
proof of a conjecture seems difficult to find then try to find a counterexample. In 
a letter to DEDEKIND of 20 June 1877 there is a positive solution to the 
problem! In this letter he first states his solution in geometrical terms, namely 
(CANTOR/DEDEKIND (1937: 25)): 

... dass Fl~ichen, K6rper, ja selbst stetige Gebilde von p Dimensionen sich 
eindeutig zuordnen lassen stetigen Linien, also Gebilden von nur einer Dimen- 
sion, dass also Fl~ichen, K6rper, ja sogar Gebilde von p Dimensionen, 
dieselbe Miichtigkeit haben, wie Curven . . . .  

(... that surfaces, solids, even continuous figures of p dimensions can be put 
into one-one correspondence with continuous lines, thus figures of only one 
dimension; therefore, that surfaces, solids, even figures of p dimensions have 
the same power as curves .... ) 

Immediately CANTOR saw his result on the equal power or cardinality of sets of 
various dimensions as a criticism of some assumptions about dimension com- 
monly held by geometers of his time. They casually spoke of simply infinite, 
twofold, threefold, ... p-fold infinite figures; they even regarded the infinity of 
points of a surface as the square of the infinity of points of a line or the infinity 
of points of a solid as the cube of the infinite set of points of the line. Such 
thoughts were prevalent at the time. However, CANTOR changed the situation 
entirely. He injected his new ideas about mappings and correspondences into 
thinking about dimension. Consequently, his proposed proof of equal power was 
to be an attack on the foundations of geometry, on the very concept of 
dimension which geometers were using uncritically. 

However, in the letter of June 20 th CANTOR presents a demonstration which is 
arithmetical, not geometrical, i n  character. First of all, he claims that all 
(connected) figures of the same dimension number can be mapped analytically 
onto one another. By 'figures' he seems to mean just a variety of relatively 
simple geometrical ones, for otherwise the claim would amount to a very broad 
generalisation of the 2-dimensional RIEMANN mapping theorem. But surely he 
does not intend to make such a generalisation, for he must have been well aware 
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of the virtual impossibility of proving such an e x t r e m e - a n d  fa lse-general i -  
sation, s 

Yet CANTOR is really interested in figures as sets of points and of different 
dimensions. He tries to show that systems of values (Xl,X2,...Xp), where 
0 < x ~ <  1, can be put into one-one correspondence with values of a variable y, 
0 < y < 1. We might state this more simply by saying that the aim is to show that 
the points of a unit p-dimensional cube can be put into one-one correspondence 
with the points of a unit line segment. CANTOR'S technique of proof  rests on his 
assertion that every number x, 0_< x_< 1, can be represented uniquely in the form 
of an infinite decimal expansion: 

1 1 1 
x = ~1 i ~ +  % 1-0~+ ... + c ~ v ~ +  "",  

where the e's are digits, 0 . . . .  9. Using simple decimal expansions instead of 
writing CANTOR'S equivalent decimal series, we can write p decimal values for 
each point of the p-cube: 

X l - ~ - ' 0 " ~ 1 1 ~ 1 2 ' " ~ l v ' " 7  

X 2 - - 0 " ~ 2 1 ~ 2 2 ' "  ~ 2 v " ' 7  

Xp -~- O.~pl  0¢p2 . . .  OCpv . . .  

and a single decimal for each value of y: 

y=0.~1]~2 ... fly . . . .  

NOW the x's and the y can be put into correspondence according to the 
following equations: 

f l (n-  1)p+ 1 =O{ln ;  f i (n-  1) P + 2  ~--- O{2n; "'" 

f i(n- 1) p+a =OCan ; "'" fl(n-- 1) p + p  = O~pn" 

We have a kind of ' interlacing' of the x decimals to yield a y number  so that: 

Y ~ 0 " 0 { l l  0~21 " "  ~ p 1 0 ~ 1 2 ~ 2 2 " " ~ p 2 0 { 1 3 ~ 2 3  " ' ~ p 3  . . . .  

Conversely, a y number can be 'unlaced '  to give x numbers. 
DEDEKIND quickly responded in a letter of June 22 na with an objection to 

CANTOR'S proof. First DEDEKIND assumed that CANTOR, by requiring infinite 
decimal expansions, wished to exclude decimal numbers with trailing 0's. Of 
course, these can always be replaced with trailing 9's (with the single exception 
of the number 0 itself). For  example, the finite decimal 

0.3000 . . . .  0.3 

a The DIRICHLET Principle, which RIEMANN used in his proof of the conformal 
mapping theorem (1953:40-42), was severely criticised by WEIERSTRASS (I870) (which 
was not printed until 1895). Around 1870 H.A. SCHWARZ and C. NEUMANN then tried to 
prove the mapping theorem without the DIRICHLET Principle. CANTOR must have 
known about these important mathematical developments, so that it is highly improbable 
that he would wish to generalise the difficult theorem without any proof. 
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can be replaced by the infinite decimal 

0.2999 ....  

With this assumption DEDEKIND's objection amounts to the following. Take the 
simplest case when we lace up two real numbers, x and y: 

X =0'0~1 0~2 ""~v "" ,  
y=0. ,6~/~2  ... P~ . . .  

to derive a third number  z: 
z=0.7172. . .  7~..., 

where 

71=0{1, ~2=~1,  ~3=~2, ~J¢=l~2,...~;2v_l=0{v, ))2v=l~v.... 

Now if we take a specific z number:  

0.478310507090c~70 % 0 % 0 . . .  ~ 0  .. . ,  

then the unlacing process will yield a y number, 

y = 0.730000..., 

which does not have the required infinite decimal form. Moreover, the infinite 
decimal form for this y number  does not correspond to the specified z number. 
In general, there are infintely many of these z numbers which yield inadmissible 
x or y decimal numbers. DEDEKIND concluded this letter with the sentence 
(CANTOR/DEDEKIND (1937." 28)): 

Ich weiss nicht, ob mein Einwurf von wesentlicher Bedeutung fiir Ihre Idee 
ist, doch wollte ich ihn nicht zurtickhalten. 

(I do not know whether my objection is of essential significance for your 
idea; however, I did not want to hold it back from you.) 

CANTOR's reply was swift. In a card postmarked 23.6.77, the day after 
DEDEKIND wrote his objection, he accepted the criticism as a criticism of the 
proof  but not of the theorem itself. CANTOR felt his result could be salvaged. His 
immediate reaction was to claim that he had 'p roved '  more than he intended. 
As given, his interlacing process brings a system of real variables Xl,X 2 . . . .  xp, 
with 0 < x  i<  1, into correspondence with a variable y. Now the variable y does 
not take on all values in the unit interval, but only certain values y' which 
exclude those suggested in DEDEKIND'S objection, viz., those with certain 
patterns of O's. In his postcard CANTOR suggests that to fix up his proof  all that 
is needed is to show how to bring the y' into one-one correspondence with 
another variable t which takes on all real values between 0 and 1. 

As it turned out, CANTOR was not immediately able to repair his proof  as 
suggested in his postcard. 9 Instead in a letter of just two days later 

9 In reality it is quite easy to fix up CANTOR'S first proof. We merely block O's with 
nonzero digits to eliminate the difficulty which DEDEKIND pointed out. Thus we block 
the example of DEDEKIND as follows: 0.47831105107109 .. . .  We then treat blocks as 
single digits for interlacing and unlacing. 
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(25June 1877) he presented DEDEKIND with a completely new proof, which, 
though overcoming DEDEKIND'S objection, is not nearly as simple as the earlier 
proof. He must have been anxious to see his research problem through to an 
acceptable conclusion. In the letter he puts his theorem as follows (CANTOR/DE- 
DEKIND (I937: 29)): 

(A) ,,Eine nach p Dimensionen ausgedehnte stetige Mannigfaltigkeit liisst sich 
eindeutig einer stetigen Mannigfaltigkeit von einer Dimension zuordnen, oder: 
(was nur eine andere Form desselben Satzes ist) die Puncte (Elemente) einer 
nach p Dimensionen ausgedehnten Mannigfaltigkeit lassen sich durch eine 
reelle Coordinate t so bestimmen, dass zu jedem reellen Werth yon t i m  
Intervalle (0 ... 1) ein Punct der Mannigfaltigkeit, aber auch umgekehrt zu 
jedem Puncte der M. ein bestimmter Werth yon t im Intervalle (0... 1) 
geh6rt." 

((A) A continuous manifold extended in/9 dimensions can be put into one- 
one correspondence with a continuous manifold of one dimension, or (what 
is only the same theorem in a different guise) the points (elements) of a 
manifold extended in p dimensions can be determined by one real coordinate 
t so that to every real value of t in the [closed] interval (0... 1) there 
corresponds a point of the manifold and also conversely to every point of the 
manifold there is a definite value of t in the [closed] interval (0... 1).) 

To prove the theorem CANTOR begins by using the fact that every irrational 
number e between 0 and 1 can be represented by a unique infinite continued 

1 
e :  ~ l  : (~Xl' ~x2 . . . .  '0~v' " ' ' ) '  

c q + - -  
c~2+ 

fraction: 

"'. 1 @ - - -  
0~v+ ...  

where the c(s are positive integers. Since we do not have the difficulty with 0 as 
with decimal numbers, it is now possible to salvage the interlacing argument. 
Thus if we have p irrational numbers between 0 and 1, represented by continued 
fractions: 

e l  = (°~11, (x12, ' ' . ,  °~lv, " ' ) ,  

e2 =(c~21, ~ a 2 , . ,  e2~,.-), 

eo -=(~p  l , c~o2, " ' ,  °~pv, " " ) ,  

then we can interlace these to derive another irrational number 0, 0 < ~ < 1: 

0=(Pl,/~2, , / L ,  ) ,  

according to the equations: 

f l (n -  i) p+ i -=O~in, " "  ~ ( n - 1 )  o+~ ~-0~ . . . . . .  ~np=O~pn" 
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Consequently, p irrational numbers can be interlaced to make one irrational 
number and, conversely, one irrational number can be unlaced to give p 
irrationals. 

The problem of giving a correspondence between points of the unit segment 
and points of the p-cube is now driven back to the problem of showing that 
there is a one-one correspondence between the set of irrational numbers in the 
unit interval and the set of all numbers in that interval, i.e., the problem of 
proving (CANTOR/DEDEKIND (1937:30)): 

(B) ,,Eine ver/inderliche Zahl e, welche alle irrationalen Zahlenwerthe des 
Intervalles (0... 1) annehmen kann, l~isst sich eindeutig einer Zahl x, welche 
aIIe Werthe dieses Intervalles ohne Ausnahme erh~ilt, zuordnen." 

((B) A variable number e which can take all irrational number values of the 
[closed] interval (0... 1) can be put in one-one correspondence with a 
number x which takes all values of this interval without exception.) 

For us the proof of this theorem is not difficult, but for CANTOR, the first to 
explore the unknown territory of infinite sets, one-one correspondences, and 
cardinality, the proof did not come easily. The proof given in his letters to 
DEDEKIND of 25 and 29 June 1877 is far from simple. However, it does reveal to 
us how he first grappled with the problems of the cardinality of infinite sets. 

To demonstrate (B) CANTOR begins by considering the rational numbers in 
the closed interval [0, 1] lo given in the form of a sequence: 

rl,r2, ...,r,, ... 

and an arbitrarily chosen infinite sequence of irrational numbers e~ from the 
interval [0, 1] which obey the conditions that e~<e~+ 1 (monotonically 
increasing) and lim e~ = 1. The sequence of rational numbers and the sequence 
of irrational numbers can easily be put into one-one correspondence in the 
obvious way: r v corresponds to e~. On the basis of this correspondence we 
immediately have a correspondence between the real numbers of the unit 
interval minus the rationals (i.e., the irrationals e) and the numbers of [0, 1] 
minus the irrationals e~ and so theorem (B) is reduced to (CANTOR/DEDEKIND 
(1937:31)):  

(C) ,,Eine Zahl f, welche alle Werthe des Intervalles (0... 1) annehmen kann 
mit Ausnahme gewisser e,, die an die Bedingungen gebunden sind: e, < e~+ 
und lim e~ = 1 l~isst sich einer stetigen Ver/inderlichen x eindeutig zuordnen, 
welche alle Werthe des Intervalles (0... 1) ohne Ausnahme erh~ilt." 

((C) A number f which can take all values of the interval (0... 1) with the 
exception of certain e~, which are bound by the conditions e~ <ev+ 1 and lim e~ 
= l, can be put into one-one correspondence with a continuous variable x 
which takes all values of the interval (0... 1) without exception.) 

lo It is convenient to use the modern terminology and symbols, (x,y), Ix, y], (x,y], 
l-x, y), for open, closed, and half-open intervals. 
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Reducing theorem (B) to (C) simplifies the task of finding a correspondence. 
The irrational numbers ~ just break up the unit interval [0, 1] into infinitely 
many subintervals. The first of these is half-open and the remaining are open 
intervals; additionally, there is the single point 1: 

[0, ... . . . ,  1. 

These can be lined up with the complete closed interval [0, 1]. Thus towards the 
end of his letter of 25 June CANTOR says the proof of (C) is to be carried out by 
successive applications of (CANTOR/DEDEKIND (1937: 32)): 

(D) ,,Eine Zahl y, welche alle Werthe des Intervalles (0 ... 1) mit alleiniger 
Ausnahme des Werthes 0 annehmen kann, l~isst sich einer Zahl x eindeutig 
zuordnen, welche alle Werthe des Intervalles (0... 1) ohne Ausnahme erh~ilt." 

((D) A number y which can take all values of the interval (0... 1) with the 
single exception of the value 0 can be put into one-one correspondence with 
a number x which takes all values of the interval (0... 1) without exception.) 

Hence we want to show that the half-open interval (0, 1] can be put in one-one 
correspondence with the closed interval [0, 1]. CANTOR's proof of (D) proceeds 
by means of a complex diagram defining a c u r v e  (CANTOR/DEDEKIND 
(1937:32)): 

a ~ 

I- ~ 

j l  

. . / /  I X .  I / 
J "  I \ I /  

/I / 

/I/I/I//I// 

b 

C 

.dlV 
ii 
b ~ 

I i bl b2 b3 b4p 

The curve consists of the parallel segments ab, a'b',a"b",..., excluding the 
endpoints b, b', b', . . . ,  plus the point c. The lengths are defined as: 

op=pc=l"  ob -1" , -~ ,  bbl =¼; blba=~; b 2 b 3 - 1 ~  . . . .  

6-d=½; a'd' =¼; a"d'=~; a'"d'" 1 
- - 1 6  . . . .  
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Clearly the curve maps the closed unit interval [0, 1] on the x-axis onto the half- 
open unit interval (0, 1] on the y-axis. 

The curve and theorem (D) do not quite complete the proof  of (C), because, 
first, (D) needs to be generalised to intervals with arbitrary endpoints and, 
second, it is necessary to show the related result that an open interval can be put 
into correspondence with a closed interval. CANTOR soon realised the need to 
fill out his proof  of (C) and sent a completion to DEDEKIND in a letter of 
29 June. In this he makes heavy weather of the completion (CANTOR/DEDEKIND 
(1937: 34-37)). 11 Yet we must remember  that in this work he was first coming 
to grips with correspondences and cardinal equivalences, a subject he was 
'creating out of nothing'.  

During the summer of 1877 CANTOR wrote out the results that he had 
communicated to DEDEKIND in a paper, 'Ein Beitrag zur Mannigfaltigkeits- 
lehre' (1878). In the course of writing this paper  he discovered a much simpler 
proof  of his main theorem (B) and told DEDEKIND of it in a letter of 23 October 
1877. The proof  of this theorem, that the irrational numbers in the unit interval 
(denoted by the variable e) can be put into one-one correspondence with all the 
numbers of the unit interval (variable x), or in CANTOR'S notation: 

e~x~  

is simply carried out as follows (CANTOR/DEDEKIND (1937:40-41)). Let ~v be 
the general member  of the sequence of all rational numbers in [0, 1] and let ~]~ 
be the general member  of a sequence of irrational numbers in the same interval, 

e.g., 1~  
rlv= ~;. 

Also let h represent all the other values of the interval [0,13, except those 
represented by q5 v and G. Then: 

11 Briefly the completion of (C) is accomplished as follows. First we can generalise 
theorem (D) to intervals with arbitrary endpoints in a trivial way by using linear 
substitutions (theorem (F), CANToR/DEDEKIND (1937:35)). Second we can prove the 
following theorem with the help of (F) by aligning appropriate intervals (CANTOR/DE- 
DEKIND (1937 : 35)): 

(G) ,,Eine Zahl w, welche alle Werthe des Intervalles (c~...fl) mit Ausnahme der 
beiden Endwerthe ~, ]~ erhglt, Eisst sich einer ver~tnderlichen Zahl u eindeutig zuord- 
hen, die alle Werthe des Intervalles (~... fl) annimmt." 

((G) A number w which takes all values of the interval (c~... ~) with the exception of 
the two endpoints a,/~ can be put into one-one correspondence with a variable 
number u which takes all values of the interval (c~... ~).) 

Finally we can arrive at a one-one correspondence between all the intervals 

[0, el), (e~, e2) .... (G, G+ ~), .-., 1 

and the entire closed interval [0, 13 by using theorem (G) to give correspondences 
between (e 1,e2) and [g,,g2], (es, ~4) and [es, e43, ... (~2v--1' g2v) and [g2v--1.' g2v]' " ' ' "  
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But 

Hence, it follows that 

What an elegant proof! 

x={h, rl~, ~v}, 

e={h, tlv}=- {h, tlav_ l,tl2~}. 

h~h; / ~ v ~ 2 v - 1 ;  (~v ~"/]2v ' 

x ~ e .  

Having made the paradoxical discovery that 1- and p-dimensional figures 
can be put into one-one correspondence, CANTOR was quick to draw out some 
mathematical and philosophical consequences of his unexpected find. In his 
correspondence with DEDEKIND we get the first reactions of the two men to 
CANTOR's result. In the last paragraphs of his letter of 25 June 1877 (CANTOR/ 
DEDEKIND (1937:33-34)) he remarks about the implications of his discovery. 
He says that he has followed with interest the efforts of GAUSS, RIEMANN, 
HELMHOLTZ, and others directed towards understanding the foundations of 
geometry, but his result has now made him doubt the validity of their work 
(CANTO R/DEDEKIND (1937: 33)): 

Dabei fiel mir auf, dass alle in dieses Feld schlagenden Untersuchungen 
ihrerseits yon einer unbewiesenen Voraussetzung ausgehen, die mir nicht als 
selbstverst~indlich, vielmehr einer Begriindung bedtirftig erschienen ist. Ich 
meine die Voraussetzung, dass eine p fach ausgedehnte stetige Mannigfaltig- 
keit zur Bestimmung ihrer Elemente p yon einander unabh~ingiger reeller 
Coordinaten bedarf, dass diese Zahl der Coordinaten ftir eine und dieselbe 
Mannigfaltigkeit weder vergr6ssert noch verkleinert werden k6nne. 

(It strikes me that all investigations taken up in this field begin for their part 
from an unproved assumption which does not appear to me to be obvious, 
but rather seems to need a proof. I mean the assumption that a p-fold 
extended continuous manifold requires p independent real coordinates for 
the determination of its element and that this number of coordinates can be 
neither increased nor decreased for one and the same manifold.) 

We have seen that at first he had thought that this assumption of geometers was 
correct, but he had differed from them in that he had thought it required a 
rigorous proof and so persisted in trying to find one. However, he was com- 
pletely surprised when he finally found a counterexample: the assumption is 
false. A p-fold manifold can be 'coordinatised' by a single coordinate. He 
ascribed this strange result to the 'wonderful power in the usual real and 
irrational numbers'. Moreover, he recognised that his result can be easily 
extended from p-dimensional manifolds to infinite-dimensional manifolds, as- 
suming that their infinitely many dimensions have the form of a simple infinite 
sequence (i.e., that the dimension is countably infinite). 

CANTOR'S letter ends with the following paragraph (CANTOR/DEDEKIND 
(1937:34)): 

Nun scheint es mir, dass alle philosophischen oder mathematischen Deductio- 
nen, welche yon jener irrthiimlichen Voraussetzung Gebrauch machen, unzu- 
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l~issig sind. Vielmehr wird der Unterschied, welcher zwischen Gebilden von 
verschiedener Dimensionszahlen liegt, in ganz anderen Momenten gesucht 
werden mtissen, als in der ftir characteristisch gehaltenen Zahl der unabh/in- 
gigen Coordinaten. 

(Now it seems to me that all philosophical or mathematical deductions 
which make use of this mistaken assumption are inadmissible. Rather the 
distinction which exists between figures of different dimension numbers must 
be sought in entirely different aspects than in the number of independent 
coordinates, which is normally held to be characteristic.) 

So he saw his result as a direct and devastating blow to the 'coordinate concept 
of dimension'. Another dimension concept is needed. 

DEDEKIND responded to CANTOR'S observations as well as to his proof, first 
in a postcard (now lost) and then more fully in a letter of the second of July. 
DEDEKIND had gone over the second proof and reported that he could find no 
mistakes. However, he was not able to agree with CANTOR'S reading of the 
consequences of his theorem. In spite of the theorem or rather because of 
considerations occasioned by it, he still affirmed his conviction (CANTOR/DE- 
DEKIND (1937: 37)): 

... dass die Dimensionenzahl einer stetigen Mannigfaltigkeit nach wie vor die 
erste und wichtigste Invariante derselben ist .... 

(... that the dimension number of a continuous manifold is now as before the 
first and most important invariant of a manifold . . . .  ) 

In the light of CANTOR's paradoxical result the constancy of the dimension 
number certainly required proof, and as long as this proof was lacking dimen- 
sional invariance was in doubt. But DEDEK1ND was convinced that a proof is 
possible. 

In his important letter of July 2 "a he goes on to give a very penetrating 
explanation of the mathematical situation surrounding dimension and CANTOR'S 
result. Giving the benefit of the doubt to earlier writers and thereby possibly 
deferring to his friend RIEMANN, now deceased, he says that these writers 
clearly (!) made the implicit but quite natural assumption that, when giving a 
new coordinate system to the points of a continuous manifold, one assumes the 
new coordinates are continuous functions of the old coordinates, so that what is 
continuously connected according to the first coordinate system is also con- 
nected according to the second. In consequence, DEDEKIND arrives at the 
following theorem (CANTOR/DEDEKIND (1937: 38)): 

Gelingt es, eine gegenseitige eindeutige und vollst~indige Correspondenz 
zwischen den Puncten einer stetigcn Mannigfaltigkeit A yon a Dimensionen 
einerseits und den Puncten einer stetigen Mannigfaltigkeit B von b Dimen- 
sionen andererseits herzustellen, so ist diese Correspondenz selbst, wenn a 
und b ungleich sind, nothwendig eine durchweg unstetige. 

(If one succeeds in setting up a one-one and complete correspondence 
between the points of a continuous manifold A of a dimensions on the one 
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hand and the points of a continuous manifold B of b dimensions on the 
other, then this correspondence itself must necessarily be discontinuous 
throughout if a and b are unequal.) 

In his letter DEDEKIND probably imputes too much to the 'implicit assump- 
tions' of previous geometers. Surely CANTOR's paradoxical discovery forced a 
new understanding of dimension and the basic assumptions of geometry. Indeed 
the result drove DEDEKIND to conjecture a new theorem, which in reality is a 
very good statement of the invariance of dimension theorem. This is a very 
apposite conjecture for DEDEKIND to make. As we shall see the conjectured 
theorem became the central issue in the subsequent development of dimension 
theory. Unfortunately DEDEKIND himself had no proof of it. 

In his letter DEDEKIND tries to give a specific explanation of CANTOR'S 
correspondence result on the basis of his conjectured theorem. Concerning 
CANTOR'S first attempt using decimal expansions, DEDEKIND claims (albeit 
somewhat hesitantly; see CANTOR/DEDEKIND (1937:38) )  that if it had been 
possible to complete the direct interlacing correspondence from the p-dimen- 
sional cube to all the points of the unit segment, then the correspondence would 
have been continuous. This claim is wrong, as a quick inspection of even the 
incomplete correspondence based on decimals shows. 12 However, he gives a 
good explanation of CANTOR'S second way of setting up a correspondence. He 
asserts that the correspondence between irrational numbers based on con- 
tinued fractions is continuous and this is indeed correct. 13 But then CANTOR'S 
extra machinery to extend the correspondence to include the rationals makes it 
thoroughly discontinuous. 

At the end of his letter DEDEKIND warns CANTOR not to polemize openly 
against the original 'article of faith' of manifold theory unless he (CANTOR) 
examines the conjectured invariance theorem. Clearly DEDEKIND did not read 
the same significance into CANTOR'S counterintuitive discovery as CANTOR 
himself had. In DEDEKIND'S eyes the task now was to save dimension by means 
of an invariance proof and not to criticise the deficiencies of the investigations of 
previous geometers. I think DEDEKIND is a little overprotective of the 'great 
men' of the past. In effect he counsels a, search for 'hidden lemmas' in the 
writings of earlier mathematicians. On the other hand, his topological under- 
standing of the geometrical situation is very acute; his idea of dimensional 
invariance based on continuity is full of insight. He appears somewhat blinded 
to what is new in his own thinking by his refusal to take a more critical attitude 
to the growth of mathematics. 

lz For example, if we consider the correspondence of the unit segment with the 
square and consider on the line the point 0.5=0.4999 ... and any point close to 0.5 but 
slightly greater in value, then in the correspondence these points are unlaced to give points 
in the square which are far apart. So the partial correspondence is not continuous in the 
sense in which DEDEKIND thought of it, viz,, in the sense that nearby points are mapped 
to nearby points. 

13 In fact, the correspondence between the irrationals is bicontinuous and, hence, a 
homeomorphism. However, dimensional invariance prohibits the extension of this ho- 
meomorphism to include the rationals. 
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CANTOR swiftly responded to DEDEKIND'S letter two days later on July 4 th. 
In his reply he immediately concedes DEDEKIND'S points over the interpretation 
of the correspondence result. He says that he overstated his case and did not 
intend to criticise the concept of p-fold extended continuous manifold as such, 
but only to clarify it. He did not intend to deny the 'definiteness of the 
dimension number', but only the invariance of the number of coordinates, which 
some authors seemed to accept too easily as the same as the dimension number. 
So to CANTOP,'S mind coordinate dimension is not viable in mathematics. It 
must be distinguished from some other notion of dimension, not yet made 
explicit. 

CANTOR readily accepted DEDEKIND's conjectured invariance theorem as a 
possible way out of the difficulty over dimension, but, of course, he wanted a 
proof. In his letter he immediately points to some apparent difficulties likely to 
be encountered in any attempt to demonstrate the conjectured theorem. In the 
first place he forsees a problem in defining the concept of continuous cor- 
respondence in full generality; yet all hangs on such a definition. In the second 
place he recognises that there may be some difficulties with the approach to 
dimension number through an invariance proof if we take into account figures 
which are not continuous throughout (i.e. in modern terms, not connected), but 
which may reasonably be assigned a dimension number. This latter point is 
deep. Not only does CANTOR think an invariance proof is required, but also he 
hints at the need for an independent definition of dimension to cover arbitrary 
figures (or, as we would say now, arbitrary point sets). At this stage in their 
critical discussion of the dimension problem we can see that CANTOR and 
DEDEKIND achieved a very high level of understanding and insight. 

CANTOR's important paper, 'Ein Beitrag zur Mannigfaltigkeitslehre' (1878),  
written during the early summer of 1877 and published in the following year, is 
an exposition of his discoveries about correspondence and dimension and 
incorporates all his results largely in the form in which he had related them to 
DEDEKIND. However, certain general points are emphasised in the paper. From 
the beginning he uses the term 'Mannigfaltigkeit' ('manifold') to mean virtually 
any 'well-defined' set of elements; so we are nearly in the realm of general set 
theory. He devotes the first few paragrahs to a delineation of his idea of power 
(M~ichtigkeit) based on one-one correspondence, giving definitions of equal 
power (gleiche Mgchtigkeit; or iiquivalent), lesser and greater power, and 
providing several significant mathematical examples. He emphasises the sharp 
distinction between the power of finite sets and the power of infinite sets. 
The concept of power for finite sets is equivalent to that of positive whole num- 
ber, so that two finite sets are of equal power if and only if they have the same 
number of elements and a proper subset (Bestandteil) of a finite set always has 
smaller power than the set itself. However, the situation is fundamentally 
different for infinite sets. An infinite set can be put into one-one correspondence 
with certain of its infinite subsets, and CANTOR gives the simple example of the 
sequence of positive integers and the sequence of positive even integers which can 
be put into one-one correspondence and which are therefore of equal power. 

Although in his paper CANTOR briefly deals with sets of the power of the 
positive integers, sets of the smallest infinite power (i.e., countable sets), he, of 
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course, concentrates on the power of 'so-called continuous n-fold manifolds'  (i.e., 
the power of the continuum). Near  the beginning of the paper he mentions 
RIEMANN, HELMHOLTZ, and others 14 who first dealt with manifolds, but after 
the discussion in the correspondence with DEDEKIND his criticism of these 
writers is toned down. He only points to the ' taci t '  assumption of most of these 
that the basic correspondence of the elements of an n-dimensional manifold with 
n real coordinates must be continuous and promises in a footnote to return to 
this matter  on another occasion. In fact, a year later he did consider the matter, 
the fundamental problem of dimension. Then he launches into his demon- 
stration that the elements of an n-fold extended continuous manifold can be 
determined by a single coordinate or, more specifically, that the points of an n- 
dimensional cube can be put into one-one correspondence with the points of a 
unit line segment. Thus all continuous manifolds have the same power. His 
proof  is essentially as he communicated it to DEDEKIND. However, one very 
important  new thing is added at the end of the paper: a m e n t i o n - t h e  first by 
CANTOR--Of the celebrated continuum hypothesis! Here he formulates it by 
saying that the infinite linear manifolds (i.e., sets of real numbers) divide into 
two classes according to whether they can be brought  into the form of the 
sequence of the positive integers or into the form of the real numbers in the unit 
interval. In other words, there are only two powers of infinite linear sets. In the 
light of his recent discoveries it is a perfectly natural way to state the continuum 
hypothesis. Thus far he had found only two kinds of infinite sets even among the 
n-dimensional and infinite-dimensional manifolds. 1 s 

CANTOR submitted his paper to Crelles Journal (Journal fiir die reine und 
angewandte Mathematik) on 11 July 1877. It is well known that he felt frustrated 
by delays with its publication (FRAENKEL (1930: 198), GRATTAN-GUINNESS 
(1974 : 111-113)). BORCHARDT, the managing editor of the journal, seemed to 
impede its progress; as he learned from his old friend LAMPE who dealt with 
printer's proofs for the journal, BORCHARDT put other papers submitted later 
before CANTOR's in the order for publication? 6 After three months he com- 
plained to DEDEKIND and sought his advice about publishing the work as a 
separate pamphlet. DEDEKIND thought this was not a wise course, when he 
considered his own difficulties with publishing his pamphlet  Stetigkeit und 
irrationale Zahlen. Finally in November  CANTOR heard that his 'Beitrag '  would 
be published after all. 

In his biography of CANTOR FRAENKEL (1930: 198) suggests that KRONEC- 
KER may have had a hand in the delay over publication in Crelle, although the 

14 He also mentions ROSANES, LIEBMANN, and ERDMANN. 
15 In the paper he implies that he has a proof of the hypothesis. However, we know 

that he struggled for many years to find a proof and in the end failed to find one which 
satisfied him. 

16 However, when one looks at the submission dates of the papers in the 84 th volume 
of the Journal, one realises that the publication of CANTOR'S paper was scarcely delayed 
at all. Nevertheless, there certainly was some difficulty with the paper. DUGAC 
(1976: 122-123,125) seems to think otherwise, but he does not take account of a letter 
from CANTOR to DEDEKIND of 10 November 1877 (GRATTAN-GUINNESS (1974: 112)). 
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evidence is not clear on this point. 17 Whatever the case may be, CANTOR'S 
paper certainly offered a surprising and counterintuitive result in the emerging 
field of set theory. It seems the editors of the journal, most probably including 
KRONECKER, doubted the validity of CARTON's (admittedly long) proof of the 
result. However, if they were not able to detect a specific error in the proof, they 
still must have found the result unsatisfactory. To them it was a monster and 
accordingly to be rejected! 

To conclude this chapter I shall sum up the achievements concerning 
dimension which CANTOR and DEDEKIND made up to 1878. Prior to their work 
RIEMANN and HELMHOLTZ, among others, had put forward a very informal 
theory of continuous manifolds or n-dimensional geometrical objects which 
included an implicit definition or theory of dimension. RIEMANN and HELM- 
HOLTZ only intended their theory of manifolds and dimension as a general 
framework for their investigations into geometry. Objectively one cannot but 
regard the theory as vague in its mathematical details (see chapter 1). 

A few years after the appearance of the publications of RIEMANN, HELM- 
HOLTZ, and other nineteenth-century mathematicians with an early interest in 
multi-dimensional geometry CANTOR approached the basic concept of dimen- 
sion from a position outside of geometry, from the point of view of his work on 
one-one correspondences and power, hence, from the viewpoint of the set theory 
he was in the midst of creating. Consequently, he brought an entirely new set- 
theoretic approach to problems of geometry. After his initial stumblings over a 
proof, he was able to demonstrate that a p-dimensional cube can be put into 
one-one correspondence with a unit line segment, certainly a surprising and 
counterintuitive result. Apparently the editors of CrelIes Journal found this 
result bizarre. They wished to ignore or reject it; to use LAKATOS' (1976) term, 
they were monster-barters. In contrast, CANTOR took the bull by the horns. 
Initially he read into his result a strong criticism of the dimension concept 
implicit in the work of RIEMANN, HELMHOLTZ, and others: the concept of 
dimension based on the number of coordinates needed to determine a point. 
DEDEKIND, while accepting CANTOR'S counterintuitive result whole-heartedly, 
did not read the same message in it. He immediately saw a way out of the 
difficulty through continuity and gave credit to the older geometers for this 
means of escape from the consequences of CANTOR'S result. To a certain extent 
it is true that RIEMANN and HELMHOLTZ included continuity (and differentia- 
bility) in their concept of dimension. However, I think DEDEKIND imputed a 
little too much to their informal theory. He wanted to find 'hidden lemmas' in 
the work of thegreat men of the past. Surely CANTOR'S discovery put an entirely 
new light on the coordinate theory of manifolds and dimension. A fresh 
examination of the vague informal concept of dimension was now an absolute 
necessity. DEDEKIND even realised this: he quickly saw that a proof of some 
kind of theorem about dimensional invariance incorporating the idea of con- 
tinuity was needed. Hence, he came to state very clearly the crucial problem of 
dimension which the paradoxical correspondence result forced upon mathema- 

17 DUGAC (1976: 125) cites evidence to the contrary. 
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ticians. At once CANTOR accepted that DEDEKIND'S reading of the problem 
situation was better than his own initial one. However, he also recognised 
possible difficulties lurking in the background of the proposed dimensional 
invariance theorem. In fact, the subsequent history of the search for a proof of 
invariance of dimension has shown that the theorem was far easier to state than 
to prove. Nevertheless, with hindsight we can see that CANTOR and DEDEKIND 
pinpointed the sensitive spot in the problematic notion of dimension. 

The critical discussion which CANTOR and DEDEKIND had concerning the 
dimension problem was unquestionably of a very high standard. They clearly 
discerned the problems involved in the situation and immediately sought to 
explain the difficulties. Above all their attempted explanation of the paradoxical 
result was acute and must be admired. In this way DEDEKIND was led to 
formulate very succinctly the next problem to be tackled after CANTOR's 
important discovery. Should we not look upon the CANTOR/DEDEKIND dis- 
cussion as a paradigm for good critical discussions of mathematical or scientific 
problems? 

Chapter 3. Early Efforts to Prove the Invariance of Dimension, 1878-1879 

The publication of CANTOR'S 'Beitrag' towards the beginning of 1878 
immediately caused a flurry of mathematical activity. The objective now was to 
save the concept of dimension; the paradoxical correspondence had to be 
explained (one is tempted to say, explained away). During the months July to 
October 1878, when CANTOR'S paper had barely left the presses, five mathema- 
ticians attempted to demonstrate the invariance of dimension through a con- 
sideration of continuity-just as DEDEKIND had suggested in his letters to 
CANTOR. These were JAKOB LOROTH, JOHANNES THOMAE, ENNO JORGENS, 
EUGEN NETTO, as well as CANTOR himself. Then during 1879 both JURGENS 
and CANTOR came back to the problem. JORGENS published a much fuller 
account of his solution and CANTOR gave an entirely new and general approach 
to dimensional invariance after discussing it in correspondence with DEDEKIND. 
These early efforts towards showing dimensional invariance of 1878-79 were 
only partially successful. L~ROTH and JORGENS (and also CANTOR in his first 
work of 1878) only aimed at demonstrating invariance for low dimension 
numbers. The proofs, though interesting, are extremely complex. THOMAE, 
NETTO, and CANTOR all tried to prove dimensional invariance generally, but 
subsequent criticism has revealed flaws in their proofs. Without doubt the 
greatest difficulty which all these mathematicians came up against was the 
primitive state of topology. Topology, at least the part which we now know to 
be most relevant, was virtually nonexistent at the time. The proofs from this 
period mainly use methods of real analysis and simple geometry, since the 
topological tools were not yet available. These tools were only created in the 
later decades of the nineteenth century and the first decades of the twentieth (see 
chapter 4). Thus we cannot entirely blame the mathematicians of this period for 
their lack of complete success. Yet it is worth while examining this early work to 
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see how these mathematicians struggled with a difficult problem. In the history 
of mathematics 'failures'  can be interesting. 

JAKOB Lf3ROTH (1844-1910) 2, in 1878 a young professor at the Technische 
Hochschule in Karlsruhe, was the first off the mark to make a contribution 
towards solving the dimensional invariance problem. He had a paper presented 
to the Physikalisch-medizinische Soziet~it in Erlangen as early as 8 July 1878. In 
this brief note there are proofs of dimensional invariance for two special cases 
only. Later in his career he returned to the problem and extended his results. 
These later contributions date from 1899 and 1906. In all of his papers 
LUROTH'S procedure is to assume that there is a one-one continuous cor- 
respondence between coordinate or number  manifolds M m and M,,, with n <m, 
and then to show that this assumption leads to a contradiction by deducing that 
the correspondence cannot be one-one. In his note of 1878 he does this for 
the cases n = 1 and n = 2, while in his note of 1899 he extends his results to n = 3. 
Finally in a long paper of 1906 which appeared in Mathematische AnnaIen he 
collected all his results and presented them in a more complete form. 

Let us look at some of the details of LUROTH's first note 'Ueber  gegenseitig 
eindeutige und stetige Abbildung von Mannigfaltigkeiten verschiedener Dimen- 
sionen aufeinander'  (1878). Letting x l , x  2 . . . .  x m denote the coordinates of 
points x of the m-dimensional manifold M,= and Yl,Y2, . . .  Y,, denote the coor- 
dinates of points y of the n-dimensional manifold M,,, with n<m,  we assume 
that there is a one-one correspondence between points x and y and that the 
correspondence is continuous. We can think of each y coordinate, Yi, as a 
function of the coordinates of x. 

The proof  for the case n = l  and m > 2  is easy. First let the coordinates 
x 3 . . . .  x,, in M m all be constant so that we consider only a plane section of M m. 
Moreover, let XI=rCOS0 and x ~ = r s i n 0 ,  where r is small, so that we just 
consider a little circle in this plane section. Let A and B be any two points on 
this circle, for which Yl has the values a and b, respectively. Since ya is a 
continuous function of points on the circle, ya must take the value ½(a+b) at 
least once on each of the two arcs from A to B according to the intermediate 
value theorem and, hence, it must take this value at least twice on the circle. But 
this result contradicts the supposition that the function y~ is one-one. According 
to Lf3ROTH ( I878"191)  CANTOR discovered this same simple proof  and told 
him of this fact in a letter. 

The mathematicians trying to prove dimensional invariance at this time 
commonly used the intermediate value theorem as an important  element in their 
proofs. We can formulate the theorem, which goes back as far as BOLZANO 
(1817) and CAUCHY (182i : 460, 463), in the following way: 

Let y = f ( x )  be a continuous real function defined on an interval of R (the 
real numbers). If  the function takes two values f(x~)@f(x2) at two points 

1 The material covered in this chapter has also been dealt with by DAUBEN (1975). 
However, DAUBEN'S paper lacks some topological insights. For example, he does not give 
J~RGENS' work on domain invariance its proper due. 

2 For biographical material on L/,)ROTH cf BRILL/NOETHER (1911) and VOSS 
(1911). 
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x 1, x a, x 1 < x2, in the interval, then for any number c between f(x 1) and f(x2) 
there exists x 3 such that x 1 < x  3 < x  2 and f(x3)=c. 

In the argument given above L~ROTH used the theorem in a more general 
version for a continuous function defined on the arcs of a circle. Others 
employed versions of the theorem covering continuous functions defined on 
curves or arcs of curves. In general the mathematicians of this time recognised 
-somewhat v a g u e l y - t h e  topological significance of this theorem. We now see 
the intermediate value theorem as a special case of a theorem on connectedness: 

If the mapping f:  X ~ Y is a continuous mapping from the topological space 
X to the space g and X is connected, then f(X) is also connected. 

To be sure, the mathematicians of about 1880 did not possess anything as 
general as this theorem. However, they chose the special case, the intermediate 
value theorem, as the best tool available for attacking the problem of dimen- 
sional invariance. 3 

Returning to L~ROTH'S note of 1878, we find that his proof  for n = 2  and 
m > 3  is considerably harder. The rest of his note is devoted to it (1878: 191- 
195). The bare bones of the proof  are as follows. First of all we confine our 
attention to a 3-dimensional section of M m by holding the coordinates 
x4, xs , . . ,  x~ constant. We take two points of this section, A and B, for which y~ 
has different values, a 1 and bl, respectively, where we assume al > b  1. LOROTH 
considers the sphere with diameter AB and thinks of it as a globe representing 
the surface of the earth with A as the Nor th  pole and B, the South pole. Under 
this representation we regard yl and Y2 as functions of position on this globe. 
The objective of the proof  is to show that there are two points on the globe for 
which YI, Y2 take the same pair of values. Hence, the correspondence is not one- 
o n e .  

Because of the continuity of the function Yl it is possible to describe circles 
around the poles A and B so that the variation of the function is less than 61 
= l ( a  1 - b l )  within these circles; that is, in the circle around A Yl > a ~ - ~ 1  and 
in the circle around B yl<bl+c31. Thinking of the sphere as a geographical 
globe, we give it lines of latitude and longitude so as to divide it up into 2q 2 
surface piecesff If we take q equal to some minimal p, then the two sets of 
triangular pieces close to the North  and South poles, describing two circular 
regions, fall within the circles around the poles. Beginning from the circular 
region covering the North  pole, we can construct a surface over the pole for 
which y~ >c~ =½(a~ +b l )  by adding little square geographical regions with this 
property so long as they are connected on their sides with regions already 
added. We are interested in the southernmost boundary of this covering surface: 
it is a connected path, having no self-intersections and consisting of pieces of 
meridians and parallel circles, and it goes around the North  pole, touching every 
meridian as it passes. 

a There is an excellent paper by H. t-IoPF (1953) on the deeper topological signifi- 
cance of the intermediate value theorem. 

4 To give this subdivision of the globe we need q - l parallel circles of latitude (rather 
than q circles as given in Lr3ROTH (1878)) and 2q equidistant meridians of longitude. 
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We can carry out the construction just described for every q of form p, 2p, 
4p, . . .  2ip, ..., thereby deriving covering surfaces Ro,R1,R2, ... with southern- 
most boundary curves Go, G 1, G 2, . . . .  Since each surface R i includes its prede- 
cessors, the boundary curves G~ in general approach the south or at least do not 
go north. Hence, we can always find a boundary curve such that the points of it 
and all succeeding curves in the sequence are less than a prescribed small 
distance from points for which yl < c 1 . 

Similarly we can construct connected covering surfaces arid boundary curves 
/~ around the South pole for every q with form 2ip. In constructing these 
surfaces covering the South pole we join little square regions on the sides of 
previously added regions under the conditions that none of these touch any of 
the curves G k and that each of the resulting boundary curves F~ does not 
intersect itself. With increasing index the curves F~ proceed northwards or at 
least not southwards and their points come as close as we please to points of 
surfaces R k for sufficiently large k. Yet the curves F~ and G k do not intersect, so 
that between each pair of these there is a ring or ' s t ream'  around the globe 
whose 'banks '  do not cut one another. 

If for each F~ we consider its northermost  point lying on the 0 ° meridian, 
then with increasing i these points proceed north and approach a limit position 
C. There is a similar limit position D on the 180 ° meridian. Lf,)ROTH claims 
without proof  that yl =c~ for these points. Hence, we have points on 'opposi te  
sides' of the globe with the same y~ value c~. Supposing that the function Y2 
has value a 2 at C and value b 2 at D and setting c 2 = l ( a  2 +b2), LUROTH gives in 
the remainder of his paper a lengthy proof  that there are two distinct points 
within the rings with the same Yt,Y2 values, c t, c 2. Consequently, he concludes 
(I878. 195)." 

... wenn auf einer Kugel zwei eindeutige und stetige Functionen gegeben 
sind, so gibt es stets Werthe, welche gleichzeitig von beiden Functionen in 
zwei Punkten der Kugel angenommen werden ....  

(... if on a sphere two single-valued and continuous functions are given, then 
there are always values which are taken simultaneously by both functions in 
two points of the sphere ... .  ) 

Hence, we must conclude that a one-one continuous correspondence between a 
manifold Mm, m > 2, and a manifold M 2 is not possible. 

LfAROTH'S proof  with its strong geometrical flavour is quite interesting. 
Moreover, the tools of real analysis are used fairly carefully to prove the 
existence of the two points on the sphere with the same pair of values.5 

When LfJROTH returned to the problem of dimensional invariance in his 
further note of 1899 with a proof  for the case n--3  and m > 4  (1899), he 
generalised the basic idea of his earlier note. Additionally, in the new case he 
employed GAUSS' integral for the linking of two curves in space (GAUSS 
(I867.605)), although he did n o t u s e  this important  topological idea in any 
brilliant way. In general he found it extremely difficult to extend his work to 
higher-dimensional cases and as a result his proof  in 1889 much more complex. 

5 By later standards of rigour some aspects of the proof are open to criticism. 
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In a sense his Mathematische Annalen paper (1906),  in which he set out proofs 
in full for all the cases he had considered earlier, is an admission of defeat. 
LfJROTH was convinced that his basic idea for a proof could be extended to a 
general demonstration of dimensional invariance, but he could not see how to 
make the extension. His 'geometrical intuition' did not permit him any insight 
into the general case. 

At virtually the same time as LUROTH was first proving special cases of 
dimensional invariance, JOHANNES THOMAE (1840-1921) 6, a prolific writer of 
mathematical books and papers and then ordentlicher Professor at Freiburg, 
tried to prove the invariance in full generality• He presented a note (1878)  to 
the K/3nigliche Gesellschaft der Wissenschaften at G/Attingen in August 1878, 
just a month after L(JROTH's first note. His general proof is based on an 
assumption from analysis situs 'against whose general validity there can be no 
real objections' 7 (1878: 466-467):  

Eine zusammenhiingende continuirliche Mannigfaltigkeit M,, yon n Di- 
mensionen kann dutch eine oder mehrere Mannigfaltigkeiten yon n - 2  oder 
weniger Dimensionen (My, M'~,, M~,,, ... ; v, v', v", ... < n -  2) nicht in getrennte 
Stiicke zerlegt werden. 

Dabei muss allerdings vorausgesetzt werden, dass nicht die Anzahl der 
Mannigfaltigkeiten M~, M'v,, M;',,,... in jedem noch so kleinen Stticke einer 
continuirlichen Mannigfaltigkeit yon n - 1  Dimensionen abziihlbar unend- 
lich gross sei. 

(A connected continuous manifold M n of n dimensions cannot be divided 
into separate pieces by one or several manifolds of n -  2 or fewer dimensions 
(M~,M'~,,M~',,,..., v ,v ,  , . . .  = n - 2 ) .  

However, it must be assumed that the number of manifolds 
M~,M',,  M~',,, ... in each small region of a continuous manifold of n - 1  
dimensions is not countably infinite.) 

Briefly, THOMAE'S proof runs as follows. We suppose that there is a one-one 
continuous correspondence between manifolds M,, (with points x having coor- 
dinates x l , x z , . . . x , )  and M, (with points y having coordinates Yl,Y2 . . . .  Y,), 
re>n, and consider just one coordinate yl as a continuous function of 
x l , x z ,  . . .x , ,  for a bounded region of M~. If A and B are points of this region 
giving maximum and minimum values a and b to y~, then, by a generalisation of 
the intermediate value theorem which THOMAE assumes as proved, on every 
curve connecting A and B there is a point for which y~=c,  c being an 
intermediate value between a and b. In view of his main topological assumption 
he concludes that the infinite set of points for which y~=c  must form a 
continuous (i.e., connected) manifold of n - 1  dimensions in at least one place• 
Hence, a continuous function y~ of a manifold M,, of m dimensions takes a 
certain value along a continuous manifold M,,_ t of m -  1 dimensions. Similarly 

6 On THOMAE'S life cf H. LIEBMANN (1921). 
7 In the original German: 'deren allgemeiner Giltigkeit keine erheblichen Bedenken 

entgegen stehen diirften'. 
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a continuous function Y2 of a manifold of m - 1  dimensions takes some fixed 
value along a manifold M m_ 2 of m - 2  dimensions, and so on. In the end the n 
functions Yl, Y2 .. . .  y,, of points in some region of M m take at least one system of 
values in a continuous manifold of m - n  dimensions. Thus there is a fixed y in 
M n corresponding to infinitely many x points in M~ and the correspondence is 
certainly not one-one. 

THOMAE must have derived his fundamental topological assumption from a 
fragment on analysis situs by RIEMANN (1953:481)(cf CANTOR/DEDEKIND 
(1937: 44)). RIEMANN's separation property for dimension is indeed interesting. 
Something like it figures in the later history of dimension theory beginning with 
POINCARt~ and BROUWER. 8 However, THOMAE'S contemporaries were quick to 
point out that the separation property was no less in need of proof  than the 
invariance of dimension. At a session of the 51 st Versammlung Deutscher 
Naturforscher und Aerzte held in Cassel in September 1878 LOROTH rightly 
criticised THOMAE'S 'proof '  of dimensional invariance, declaring that the 
separation property and invariance were on the same footing with respect to 
their importance and difficulty of proof (cf. J~RGENS (1878:139--140)). 
THOMAE'S 'proof '  was a nonstarter. 9 Still, in defence of THOMAE it is significant 
that he chose to put the problem of dimensional invariance squarely in the 
domain of analysis situs. 

At the same session of the Versammlung Deutscher Naturforscher und 
Aerzte, held on the 13 th of September, ENNO JL~RGENS (1849-1907) l° sketched 
an alternative proof for the 2-dimensional case of invariance (1878). A year 
later he published a full version of his proof. JORGENS was hardly an important 
figure in nineteenth-century mathematics. The bibliography of his publications 
contains only eight items. During 1873 and 1874 he had studied at Berlin, where 
he developed an interest in function theory through WEIERSTRASS. The latter 
advised him to go to Halle University for his habilitation, where he remained 
from 1875 until 1883. Halle was, of course, CANTOR's university, so it is not 
surprising that JURGENS became interested in the problem of dimensional 
invariance. The endproduct of his investigations was a proof whose method is 
especially interesting in the light of later developments. Unfortunately he chose 
to publish the full version of his alternat.ive proof in a separate pamphlet, 
Allgemeine Siitze fiber Systeme yon zwei eindeutigen und stetigen reellen Func- 
tionen yon zwei reellen Veriinderlichen (1879), with the result that it cannot 
have received wide circulation. 

The most significant feature of JI3RGENS' proof of the 2-dimensional case of 
dimensional invariance is the fact that he laid its foundation on a rigorous proof 
of the invariance of domain for the plane. He was the first mathematician to 
discern the close connection between domain invariance and dimensional in- 

s A version of it is provable in modern dimension theories; e.g. cf HUREWICZ/WALL- 
MAN (1948: 48). 

9 LOROTH also criticised THOMAE'S assertion that the point set for which y~ =c must 
form a connected (n- 1)-dimensional manifold in at least one place. Cf also CANTOR/DE- 
DEKIND (1937: 44). 

lo On J~2RGENS' life cf KRAUSE (1908). 
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v a r i a n c e - a n  important observation which gave him a better insight into the 
problem situation than his contemporaries possessed. ~t JURGENS' planar do- 
main invariance theorem is a little more general than usual (1879:3):  

Wenn zwei unabh5ngige reelle Ver~inderliche x~ und x 2 als rechtwinklige 
Punktcoordinaten in der Ebene aufgefasst alle Stellen im Inneren und auf 
einem Kreise durchlaufen, wenn yon ihnen zwei andere reelle Veriinderliche 
Yl und Y2 eindeutig und stetig abh~ingen und dabei dasselbe Werthepaar 
Yl, Y2 zu einer endlichen Anzahl von Werthepaaren xl ,  x 2 geh6rt, so enth~ilt, 
indem auch die Vergnderlichen Yl und Y2 in einer zweiten Ebene als 
rechtwinklige Punktcoordinaten angesehen werden, der yon den Punkten 
Y~,Y2 gebildete Theil dieser Ebene ein zweifach ausgedehntes Stiick der 
Ebene, etwa die ganze Fl~iche eines Kreises, in sich. 

(If two independent real variables x 1 and x2, thought of as rectangular 
coordinates in the plane, range over all points in the interior and on a circle, 
and if two other real variables Yl and Y2 are single-valued and continuous 
functions of them whereby the same value pair Y~,Y2 belongs to a finite 
number of value pairs xa, x2, then, when the variables Yl and Y2 are thought 
of as rectangular coordinates in a second plane, the part of this latter plane 
formed by the points Yl,Yz contains a twofold extended piece of the plane, 
say the entire surface of a circle.) 

The usual domain invariance thorem is a corollary deducible from this theorem. 
J(SRGENS' demonstration of the theorem is complicated and a little 

clumsy. Nevertheless, it is an adequate proof based on Weierstrassian e, 6 
methods of real analysis. Because of the importance of domain invariance in the 
history of dimension theory and topology generally, it is worth while having a 
closer look at the proof (in (1879: 3-9)). 

Let al ,a  2 denote the centre of the given circular region in the xa,x  2 plane 
and let A I , A  2 be the corresponding Ya,Y2 point. Because the point A1,A  2 
corresponds to only a finite number of x l , x  2 points, there must exist a circle, 
say with equation 

(1) (x 1 - a02 + (x 2 - a2) 2 = r 2, 

within the given circular region none of whose points is mapped to the point 
A~, A 2. Let p be the minimum value which the expression 

(*) + 1/(y  -A0  +(y2 -A2) 

takes for points on circle (1). If R is a positive number <p,  then every radius 
emanating from al ,  a 2 to a point on the circumference of circle (1) has a point 
which is mapped by Yl,Y2 to a point which is at a distance R from A I , A 2 - a  
fact guaranteed by the intermediate value theorem. Thus we find that on the 
circle 

(2) (r/1 -A~)  2 +( r /z -A2)  2 = R  2 

11 DAUBEN (1975) does not mention this important point. 
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(where t/1 , t/2 are the coordinates for the second plane) there are infinitely many 
points that are images of points of the surface within circle (1). Jf2RGENS' first 
objective is to show that these Yl,Y2 points fill up an entire connected arc of 
circle (2). 

In order to achieve this objective he borrows LOROTH'S method of carto- 
graphical subdivision and divides the surface of circle (1) into 4q z little ele- 
ments. 12 We are only interested in those elements all of whose points are 
mapped to Yl,Y2 points which lie within circle (2). Provided q is sufficiently 
large, all the little elements around a l , a  2 will be of this type. As L~ROTH 
(1878)  did we construct a surface within circle (1) by successively adding 
elements of the appropriate type to those around a l , a  2, provided they are 
adjacent on a side to previously added elements. We end up with a surface F all 
of whose points are mapped to Yl ,Yz  points within circle (2). Jr3RGENS is 
concerned with the outermost boundary C of F and he takes the trouble to 
prove that the curve C traces a continuous circuit around the point al ,  a 2. C has 
the property that its points are mapped to points Y~,Yz which are less than 
distance R from A1, A 2, but within a well-defined small distance of its points 13 
there are points with images at a distance > R  from A ~ , A  2. 

For an appropriate sequence of increasing q's we derive a sequence of curves 
C~, C2, ..., such that each curve encloses its predecessors unless they coincide. 
Any limit point of the curves C i (i.e., a point xl ,  x 2 which comes arbitrarily close 
to points of the curves Ci) falls within circle (1) and for it the expression (*) has 
the value R. The objective is to show that the y~, Y2 images of these limit points 
form a whole connected arc on circle (2). J~RGENS achieves this first objective 
by giving a rigorous limit argument based on the Yl, Y2 images of the curves C i 
and the intermediate value theorem. 

In the first part of his proof he only required that the radius R of circle (2) be 
less than p. Consequently, he really showed that the image points y l , y z  fill up a 
connected arc on every circle with centre A a , A  z and radius <p.  JQRGENS' 
second objective is to show that these arcs fill up an entire piece of surface. This 
he accomplishes through a modified limit argument, hence, completing his 
demonstration of the invariance theorem. 

JI~RGENS' argument, though of a high standard of rigour, is not very 
attractive. Its complicated applications of methods of Weierstrassian analysis do 
not reveal in a clear way why the theorem should work. Moreover, it is difficult 
to imagine extending the argument to higher dimensions. For  us, having the 
advantage of several more generations of mathematical experience, the proof 
lacks topological insight. Of course, we cannot blame JURGENS for not using 
mathematical tools which did not exist at the time. We must give him credit for 
his skillful handling of the tools he did have at his disposal. A significant 
feature of his proof is its dependence upon the intermediate value theorem, a 
theorem with topological import concerning connectedness. As we have seen 
L~ROTH and THOMAE also employed this theorem in their arguments. Thus all 
these mathematicians recognised an importance in this quasi-topological result. 

12 JURGENS uses q-- 1 equidistant concentric circles and 4q radii at equal angles to 
obtain this subdivision. 

13 distance (r/q)(rc/2 + 1). 
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In his pamphlet JURGENS (1879:9) gives an alternative way of expressing 
his result: the system of image points Yl,Y2 of the circular region in the first 
plane must contain an interior point in the second plane. However, this does not 
mean that interior points of the region in the first plane are necessarily mapped 
to interior points in the second. A simple e x a m p l e - a  circle folded along one of 
its diameters - shows that this need not be the case. In this example some interior 
points become boundary points. Yet the JI~RGENS theorem does guarantee that 
there are interior points arbitrarily close to images of interior points. Motivated 
by these considerations, he strengthens the conditions of his theorem in order to 
prove the usual domain invariance theorem for the plane as a corollary 
(1879:11)." 

Wenn zwei eindeutige und stetige reelle Functionen yon zwei reellen Ver~in- 
derlichen dasselbe Werthepaar nicht wiederholt annehmen, so entspricht einer 
inneren Stelle des Gebietes der unabh~ingigen Ver~inderlichen eine innere 
Stelle im Gebiete der abhgngigen Ver~inderlichen. 

(If two single-valued and continuous real functions of two real variables do 
not take the same pair of values more than once, then to an interior point of 
the domain of the independent variables there corresponds an interior point 
in the domain of the dependent variables.) 

In other words, a one-one continuous mapping of a region in one plane to 
another takes interior points to interior points. Moreover, as JI~IRGENS adds 
(1879:11) the inverse mapping must be continuous: so in modern terms we 
have a topological (i.e., one-one bicontinuous onto) mapping. 

It is an easy step to deduce the invariance of dimension theorem for n = 2  
from the planar domain invariance theorem (1879: I7-18). JOP, GENS expresses 
the former theorem in the following way (1879:17): 

Kein Theil des dreifach ausgedehnten Raumes, welcher eine Kugel ganz 
enthiilt, kann auf irgend einen Theil der Ebene eindeutig und stetig abgebil- 
det werden. 

(No part of threefold extended space which contains an entire sphere can be 
mapped onto any part of the plane in a single-valued and continuous way.) 

For the proof suppose that we can map a sphere continuously onto a part of the 
plane and assume that the mapping is one-one. 14 Then an equatorial planar 
section of the sphere will be mapped onto a part of the plane in such a way that 
interior points are mapped to interior points. Hence, the centre of the sphere, 
al,a2,a3, which is an interior point in the equatorial plane, will be mapped to 
an interior point, B1,B z, in the image plane. But then points not in the 
equatorial plane but close to aa,a2,a 3 cannot be mapped to points close to 

14 The assumption that the mapping is one-one is a slight simplication of JCIRGENS' 
argument. He only assumes that the mapping is of the type described in his first theorem, 
viz., that the mapping is such that each image point corresponds to at most finitely many 
preimage points. 
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B1,B 2-cOntrary to the assumption of continuity. Thus from this contradiction 
the invariance of dimension for dimension two follows. 15 

Following close on the heels of the contributions of LOROTH, THOMAE, and 
JORGENS, EUGEN NETTO (1846-1919) ~6 completed a general proof  of dimen- 
sional invariance in October 1878 which was published in Crelles Journal at the 
very end of the year. NETTO is best remembered for his contributions to the 
development of group theory; his textbook Substitutionentheorie und ihre An- 
wendung aufdie Algebra (1882) is a minor classic in the subject. From 1866 until 
1870 he had studied at Berlin under the great masters KUMMER, KRONECKER, 
and WEIERSTRASS; WEIERSTRASS had been the chief examiner for his disser- 
tation. During the '70's he was a teacher at the Friedrich-Werder'sches Gym- 
nasium in Berlin. While there he wrote his paper on dimensional invariance, 
virtually his only contribution to Mannigfaltigkeitslehre. 

NETTO'S 'Beitrag zur Mannigfaltigkeitslehre' (1879), setting out his attempt 
to prove dimensional invariance in general, is an important paper for its time. 
Even though the attempt fails, it possesses interesting facets. NETTO put the 
problem firmly in the realm of topology and in a much better way than 
THOMAE had. In particular, NETTO'S topological concepts are largely borrowed 
f rom WEIERSTRASS, who used them in function-theoretic work. 

NETTO'S proof is inductive. He starts by examining the three simplest cases 
(1879:264-265). First, a one-one correspondence between a 1-dimensional 
manifold, a line, and a 0-dimensional manifold, which he takes to be a single 
point, is obviously not possible. So dearly a one-one correspondence between a 
manifold M,,(n>_ 1) and M o is impossible. Second, a correspondence between 
manifolds M,(n__>2) and M t is not possible either. Suppose we can map a 2- 
dimensional manifold M 2 one-one continuously onto a simple manifold M t. 
Consider a simple closed line 9.1 in M E and its image A in M t. Since A cannot 
be a point, NETTO asserts it must be a certain piece of the line M1, although it 
cannot be the entire line. Consider an interior point of A. In order to pass from 
this point to a point not belonging to A, we must pass over one of the boundary 
points (Grenzpunkte) of A, say a t. Let cq correspond to a~ in M 2. Now in M E in 
order to pass from points of 9 / t o  points not belonging to this figure it is by no 
means necessary to pass through a 1. But given the continuous correspondence, 
it should be necessary. Hence, the supposed correspondence between M 1 and 
M E is impossible, and also one between M~ and M,(n>2) .  Third, consider the 
possibility of mapping a continuous threefold manifold M 3 one-one con- 
tinuously onto a continuous twofold manifold M 2. Choose a surface 92 in M a 
which will be mapped to a surface A in M 2. Surface A will be bounded by one 
or more curves cq, e2 . . . .  such that it is impossible to go from a point of A to a 
point not in A without passing through one of these curves. Yet the correspond- 
ing curves at,a 2 .... in 92 do not have this bounding property. It is always 

15 JfJRGENS (1879) contains another interesting application of his main theorem: a 
proof of the fundamental theorem of algebra. The connection between this theorem and 
domain invariance is now well known. 

16 On NETTO's life cf BIERMANN (1974). 
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possible to go from a point of a surface in space immediately to a point not on 
the surface. Hence, a correspondence between M 2 and M,(n>3) is not possible. 

The modern topologist will certainly find the proofs above unsatisfactory. 
Indeed they are not proofs at all from our standpoint. NETTO just accepts ideas 
and facts related to the JORDAN curve theorem (1887) and its analogues for other 
dimensions. Yet in his defence we should recognise that he displays a good 
intuitive understanding of the topological situation, although he expresses no 
need to prove his most significant assumptions about separation. It must be 
emphasised again that topology was in a very primitive state when NETTO wrote 
his paper. He could only indicate the topological problem situation without 
really proving anything as we would expect today. 

In his paper NETTO proceeds to the inductive step of his general invariance 
proof, trying to demonstrate the impossibility of a one-one continuous mapping 
from an n-dimensional manifold M, onto an (n - 1)-dimensional manifold M,_ i. 
His demonstration continues the line of thought of his first three cases which he 
connects with the following principle (1879: 265): 

In einer Mannigfaltigkeit vten Grades wird jedes Gebilde vten Grades dutch 
ein anderes yon geringerem Grade begrenzt; in einer Mannigfaltigkeit 
(v+ 1)ten Grades f~illt jedes Gebilde vten Grades mit seiner Grenze zu- 
sammen. 

(In a manifold of v th degree [i.e., dimension] every figure of v th degree is 
bounded by another of lesser degree; in a manifold of (v+ 1) th degree every 
figure of v th degree coincides with its boundary.) 

In tackling the general case he clearly recognises the need to define rigorously 
the geometrico-topological concepts to be used. Hence, he adopts Weier- 
strassian neighbourhood topology, although he does not credit WEIERSTRASS 
explicitly. Iv To be sure, these topological ideas were the best tools which NETTO 
had available. His use of them probably constitutes the most important feature 
of his entire paper. Thus he gives reasonable definitions of interior point (ein 
Punkt im Innern) and boundary point (ein Punkt auf der Grenze) and takes 
connectedness in the Weierstrassian sense that a figure will be connected if every 
pair of points of it can be joined by a line belonging entirely to the figure. 
Unfortunately these basic tools from general topology were quite insufficient 
means for NETTO to construct a cogent inductive step for his proof. 

JORGENS was very quick to detect an important error in NETTO'S general 
invariance proof. He included a very astute criticism of the proof in his 
pamphlet of 1879 (1879:17), which appeared a few months after NETTO'S 
paper. Having proved the 2-dimensional domain invariance theorem himself, 
JQRGENS realised quite correctly that NETTO merely assumed the general in- 
variance of domain theorem in his proof. For example, in his third special case 

17 C f  WEIERSTRASS (1894 : 70-71, 83-84) (1880: 721) = (1895 : 203) (1927: 56--58), 
PINCHERLE (1880:234-237). In my opinion DAUBEN (1975) wrongly credits these 
topological ideas to NETTO. WEIERSTRASS certainly used such ideas in his lectures 
around 1879. However, in the case of connectedness NETTO'S definition appears to be 
slightly more general than that of WEIERSTRASS. 
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he took it for granted that the surface in M 3 will be mapped to a surface in M 2 
which possesses interior points. Yet only a proof of something like J10RGENS' 
planar domain invariance theorem will guarantee that this is the case. Con- 
sequently, JURGENS was fully justified in further condemning NETTO's proof 
(1879: 17): 

... der ... Inductionsschluss ist nuT dann richtig, wenn auch die Unm6glich- 
keit einer eindeutigen und stetigen Abbildung einer stetigen Mannigfaltigkeit 
nter Dimension auf einen unstetigen Theil einer zweiten stetigen Mannigfaltig- 
keit nter Dimension, d.h. auf einen Theil ohne innere Punkte, nachgewiesen 
wird. 

(... the induction step is then only correct if the impossibility of a single- 
valued and continuous mapping [of the type J~RGENS had considered~ of 
a continuous manifold of the n th dimension onto a discontinuous part of a 
second continuous manifold of the n th dimension, i.e., onto a part without 
interior points, is also proved.) 

JI~RGENS, equipped with a demonstration of a special domain invariance 
theorem, had a good insight into the close connection between any attempt to 
prove dimensional invariance in general and the invariance of domain. ~ 8 

During the time that LUROTH, THOMAE, JQRGENS, and NETTO were busily 
trying to prove dimensional invariance in the last months of 1878, CANTOR did 
not remain inactive over the problem to which his own paradoxical discovery 
had given birth. Several times in his correspondence he gently urged DEDEKIND 
to prove the conjecture on the invariance of dimension which DEDEKIND 
himself had put forward. But DEDEKIND did not seem to have the time or 
inclination to think about a proof (CANTOR/DEDEKIND (I937:37,40,41,42), 
GRATTAN-GUINNESS (1974: 111)). CANTOR also kept up with the publications 
on the subject and cited all that had appeared thus far in a letter to DEDEKIND 
of the 29 th of December 1878. Yet he was not completely satisfied with the 
published proofs (CANTOR/DEDEKIND (1937: 43)): 

... es scheint mir jedoch die Sache noch nicht ganz fertig gestellt zu sein. 

(... it seems to me, however, that the situation is still not entirely resolved.) 

NETTO's proof interested him most, undoubtedly because it was the only 
reasonably good attempt at a general proof. Nevertheless, it did not make him 
feel that the problem was solved, as he admitted in a letter of 5 January 1879 
(GRATTAN-GUINNESS (1974: 1 I4)): 

... so dankenswerth auch dieser mit Scharfsinn unternommene Beweisver- 
such mir erscheint, so kann ich dennoch gewisse Bedenken an demselben 
nicht verscheuchen und fiirchte, dass es nut ein Versuch ist, der zur K1/irung 
fiber die Sache aber gewiss beitragen wiirde. 

(... No matter how commendable this penetrating attempt at a proof appears 
to me, I still cannot banish certain doubts about it and I fear that it is 

18 Jf3RGENS (1899:52-53) also contains this criticism. 



158 D.M. JOHNSON 

only an attempt, which nonetheless will certainly contribute to clarifying 
the situation.) 

In view of these lingering doubts he presented his own proof of dimensional 
invariance to DEDEKIND in a letter date 17 January 1879. 

In his letter CANTOR expresses the theorem to be proved in the following 
terms (CANTO R/DEDEKIND (1937: 45)): 

Eine stetige M,  und eine stetige M~ lassen sich, falls #<v ,  nicht stetig so 
einander zuordnen, dass zu jedem Elemente yon M~ ein einziges Element yon 
M v und zu jedem Elemente yon M~ ein oder mehrere Elemente von M,  
gehiSren. 

(A continuous [i.e., connected] M~ and a continuous M~, in case g<v ,  
cannot be put into continuous correspondence with one another such that to 
each element of M,  there belongs a single element of M~ and to each element 
of M~ there belongs one or more elements of M,.) 

He claims that he had a proof of this for over a year, but previously had serious 
doubts about its validity since it depends upon a multi-valued correspondence. 
Only now has he resolved the doubts in his own mind. 19 

CANTOR's proof is complex (CANTOR/DEDEKIND (1937:44-46)). It pro- 
ceeds by induction on v. According to him the theorem is obvious for v = 1, since 
like NETTO he thinks of M o as a single point. For  the induction step we assume 
the case v= n - 1  and try to deduce the case v = n. To this end we suppose that 
there can be a continuous many-one correspondence as described between M,  
and M,,, #<n. CANTOR'S objective is to show that this supposition leads to a 
clash with the intermediate value theorem. As we have already seen the 
intermediate value theorem figures in nearly all the dimensional invariance 
proofs from the years 1878-1879. CANTOR'S intention is to use the theorem in a 
modified form, as the 'JORDAN-BROUWER separation theorem' for the simple 
case of the hypersphere. Taking a distance function from the centre of the hyper- 
sphere relative to its surface so that points within have a negative distance, while 
points outside have a positive distance, and points on the sphere have zero 
distance, we derive the result that a connected figure with points on both the 
inside and outside must cut the sphere. This result follows, since a continuous 
function with a positive and a negative value must have a zero in between. 

For the main body of CANTOR'S proof let a and b be two interior points of 
M,  with A and B the corresponding points of M n. In M,  construct an (n -1 ) -  
dimensional sphere K n_ 1 around A sufficiently small to exclude B, while in M,  
construct a sphere K ,_  1 around a sufficiently small so that it excludes b and so 
that its image in M,, a figure G~_ 1 (which is ( # -  1)-dimensional by the inductive 
hypothesis), lies entirely within K,_  1. The latter condition can be met according 
to CANTOR because of the continuity of the correspondence. Letting ~ be the 

t9 CANTOR'S invariance 'theorem' as stated above can be falsified by a counterex- 
ample: PEANO'S space-filling curve. However, PEANO'S example was not published until 
eleven years later and by then the problem situation in topology and dimension theory 
had changed considerably. Cf. chapter 4. 
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point (of G~_ 1) corresponding to an arbitrary point z of Ku_ a, draw a straight 
line segment from A to ( and extend it so that it cuts the sphere K,,_ 1 in a 
determined point Z. Carrying out this construction with respect to all points z of 
Ku_l furnishes a continuous correspondence between points z of K , _ I  and 
certain points Z o f / ( , _  1. The points Z cannot cover all of K,,_ 1, for otherwise 
the inductive hypothesis would be contradicted. Hence, there must be a point P 
of K,_  1 which is not a Z point. If we draw segment AP, it does not touch the 
figure G,_ 1. Moreover, if we connect P to the point B lying outside K n_ 1 by a 
curve, then we obtain a connected line APB which has no point in common with 
Gu_ 1. But this line corresponds to one or more curves in M,  which run 
continuously from a to b and according to CANTOR'S intermediate value/sep- 
aration theorem these curves must cut the sphere K~_ 1. However, it is im- 
possible for the curves to cut K~_I,  since they correspond to line APB which 
does not cut G~_ 1. Thus by reductio ad absurdum the result follows. 

Two days after CANTOR wrote out his proof (i.e., 19January) DEDEKIND 
responded with two specific Objections (CANTOR/DEDEKIND (1937:46-48)). 
First it is conceivable that a point ( of G,_ 1 corresponding to a point z of K ,_  
is A, since several points of M,  can correspond to one and the same point of M,,. 
In this case the image Z would be indeterminate. DEDEKIND immediately saw a 
way out of this difficulty if it is assumed that the number of points a' in M,  
which correspond to point A in M n is finite. Under this assumption we can 
make the sphere K~_ i sufficiently small to exclude the other points a'. However, 
if the number of corresponding points can be infinite, then he could see no exit 
from the  difficulty and, moreover, he then discerned a second difficulty. Accord- 
ing to CANTOR the line APB corresponds to one or more continuous lines in M,  
going from a to b. But if B can correspond to infinitely many points b', then he 
was doubtful about the existence of a particular line from a to b which has the 
image APB. Hence, what concerned DEDEKIND most was the possibility of an 
infinite many-one correspondence in CANTOR'S proof. 

Beyond his specific criticisms DEDEKIND had some interesting program- 
matic ideas about Mannigfaltigkeitslehre or Gebietslehre (his preferred term). In 
his letter he calls for a more rigorous development of the subject, saying 
(CANTOR/DEDEKIND (1937: 47)): 

... es w/ire sehr verdienstlich, wenn diese ganze ,Gebietslehre' ab ovo darge- 
stellt wiirde, ohne die geometrische Anschauung zuzuziehen, und dabei 
mtisste z.B. der Begriff einer von dem Puncte a nach dem Puncte b innerhalb 
des Gebietes G stetig fiihrenden Linie recht bestimmt und deutlich definiert 
werden. 

(... It would be very meritorious if this entire 'domain theory'  were 
developed ab ovo without bringing in geometrical intuition and in doing that, 
e.g., the concept of a line proceeding continuously from the point a to the 
point b within the domain G would have to be defined quite definitely and 
precisely.) 

Is this not a proposal for a programme of topology based on arithmetical or 
analytical principles? Indeed DEDEKIND's remark foreshadows the subsequent 
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development of point set topology which CANTOR above all initiated (see 
chapter 4). 

In his letter DEDEKIND praises NETTO's paper, saying NETTO'S definitions 
form a good kernel for further developments. At the same time he reveals to 
CANTOR some of his own attempts to elaborate the basic concepts of the theory 
of domains. He seems to be referring to a little paper, 'Allgemeine S~itze fiber 
R~iume', probably written in the early 1870's but not published until 1931 
(1931:353-355). This paper is certainly brief; it contains just a few theorems on 
open sets (K6rper) and their boundaries (Begrenzungen). In his letter DEDEKIND 
tells CANTOR that his motivation for writing such a paper was to shore up the 
DIRICHLET Principle for a contemplated edition of DIRICHLET's lectures on 
potential theory. He thought that an analytic theory of domains could be used 
to avoid WEIERSTRASS' devastating critique (1870). 2° 

CANTOR partly anticipated the objections which DEDEKIND included in his 
letter. This is evidenced by a postcard of 20 January (CANTOR/DEDEKIND 
(1937:48)). There CANTOR suggests that it would be better to think of the 
correspondence as proceeding from points A and B of M n to points of M,. If we 
consider just one of the points a corresponding to A and yet all of the points 
b,b',b",.. ,  corresponding to B, then the sphere Ku_l around a can be made 
sufficiently small so that all points b, b', b",.., will fall outside K ,_  1.21 According 
to CANTOR this is possible because of the continuity of the correspondence 
which prevents the points b,b',b",..,  from coming 'infinitely close' to a. Now 
there can be no doubt that one of the curves corresponding to APB goes from a 
to at least one of the points b,b',b", ... thus cutting the sphere Ku_ 1. Hence, 
DEDEKIND'S second objection is overcome. 

When CANTOR heard from DEDEKIND, he was not immediately sure how to 
overcome the first objection (CANTOR/DEDEKIND (1937:49)). Yet he was 
certain that he did not want to limit his theorem to finite many-one cor- 
respondences with the consequent loss of generality. Then a little while later he 
found a way around the first objection. This discovery led him to write out a 
fuller version of his proof in a paper which was presented to the K/Snigliche 
Gesellschaft der Wissenschaften at G6ttingen on 12 February 1879. Having only 
recently been elected a Corresponding Member of the society, he felt the 
society's Nachrichten was a good medium for publication. In this paper, ' l~ber 
einen Satz aus der Theorie der stetigen Mannigfaltigkeiten' (1879), his theorem 
appears in a slightly more general form (1932:136): 

Hat man zwischen zwei stetigen Gebieten M,  und M v eine solche Abh/in- 
gigkeit, dass zu jedem Punkte z yon M~ h6chstens ein Punkt Z yon My, zu 
jedem Punkte Z yon M~ mindestens ein Punkt z yon Mu geh6rt, und ist ferner 
diese Beziehung eine stetige, so dass unendlich kleinen Anderungen yon z 
unendlich kleine .Knderungen yon Z und auch umgekehrt unendlich kleinen 

2o In the end someone else edited DIRICHLET'S lectures, viz., P. GRUBE (P. LEJEUNE 
DIRICHLET, Uber Krfifte, die im umgekehrten Verhiiltnis des Quadrates der Entfernung 
wirken, Leipzig, 1876 and 1887). However, DEDEKIND continued working out his ideas on 
analytic topology in another paper of about 1892, published in (1931:356-370). 

21 We still insure that G,_ t corresponding to K u_ 1 falls within K,_ 1- 
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Anderungen yon Z unendlich kleine Anderungen von z entsprechen, so ist 
#>=v. 

(If one has a correspondence between two continuous domains M u and M~ 
such that to each point z of M r at most one point Z of M~ corresponds and 
to each point Z of M~ at least one point z of M u corresponds, and further if 
this relation is continuous so that infinitely small changes of Z correspond to 
infinitely small changes of z and also, conversely, infinitely small changes of z 
correspond to infinitely small changes of Z, then # > v.) 

The fact that in this version of the theorem CANTOR just assumes that the many- 
one correspondence from Mu to M~ is partial does not affect the proof  in any 
way. 22 His published proof  is in essence the same as the one he communicat-  
ed to DEDEK1ND by letter. It differs only by including attempts to overcome 
DEDEKIND'S tWO objections. The second objection is dealt with in the way 
suggested above. With regard to the first he became convinced that he could 
ignore the possibility that points ~ may coincide with A (inasmuch as some of 
the a's associated with A may be on the sphere Ku_ 1)- We still get a continuous 
correspondence between those points of Ku_ 1 which have corresponding points 
in M, and yet are not mapped to A and certain points Z '  on K,~_ 1. We can still 
form the line APB in M,.  It corresponds to a continuous domain N in M u that 
runs from a to one or more of the b's associated with B and that has no point in 
common with K~_ 1- Indeed N includes no a points even if some of these happen 
to be on Ku_l ,  because the line APB does not return to A after leaving A. 
Hence, when it came to publication CANTOR had no qualms about the validity 
of his theorem and proof, 

In spite of CANTOR'S convinctions his final proof  is still open to criticism; it 
is flawed. DEDEKIND put his finger on a sensitive place in the proof  when he 
drew attention to the possibility of an infinite many-one correspondence, 
especially in his second objection. In this case he wondered whether there would 
always be a curve leading from a to b corresponding to APB. However, when 
CANTOR'S paper  appeared no one redeveloped or continued the line of criticism 
which DEDEKIND had put to CANTOR in their private correspondence. It seems 
the paper  of 1879 attracted little attention. It was not until 1899 that JI~RGENS 
published a direct criticism of CANTOR's proof  in a review of the problem 
situation concerning dimensional invariance (1899:53). He refuted the inter- 
mediate value theorem upon which the proof  is based by providing the following 
counterexample. Consider the mapping from points x in the open interval (1, 2) 
to all irrational numbers y for which 3/8x<y<5/Sx. In an intuitive sense this 
function is continuous, although as JI~RGENS pointed out there are difficulties 
with defining continuity for multi-valued functions. 23 Yet the intermediate value 
theorem does not hold, because y does not take the rational values. Further- 
more, if we consider the images of the interval (1, 2), there is no continuous path 
stretching from an image point of an x close to 1 to an image point of an x close 

22 Note that in this version of the theorem he has now spelt out the requirement that 
his correspondence be continuous in both directions, i.e., that it be bicontinuous. 

23 To be sure, CANTOR did not reckon with these difficulties explicitly. 
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to 2. However, CANTOR required a similar path in his proof, since he relied on 
the existence of a continuous path from a to one of the b's corresponding to the 
line APB. J1DRGENS' counterexample shows that such a path need not exist. So 
CANTOR'S proof fails. 

From our present vantage point the attempted proofs of dimensional in- 
variance put forward during 1878 and 1879 do not appear very satisfactory. 
Having the great benefit of hindsight, we can see that the mathematicians of the 
period were struggling to subdue a difficult problem with inadequate weapons. 
Fully developed topological methods and ideas were not available to them. 
Their best means of attack lay in analysis. Indeed with only these means they 
handled their problem very skillfully. It must be conceded that the standard of 
rigour and critical argument among them was high, given the poverty of their 
methods. Of course, some topological ideas were implicit in the Weierstrassian 
analysis of their day. For example, there were reasonable definitions of interior 
point, boundary point, and connectedness. Also they could and did use the 
intermediate value theorem together with its implications with a certain amount 
of topological understanding. Yet we can see that the mathematicians of 1878- 
1879 frequently felt the need to go beyond the slender means at their disposal. 
The general proofs of THOMAE and NETTO give evidence of this fact. However, 
their contemporaries quickly sensed the lack of rigour in these proofs. They soon 
realised that much more was required to make them cogent. 

In my judgment the best proof of all from this period is JORGENS'. His 
linking of a demonstration of the planar domain invariance theorem with 
dimensional invariance gave him a deep insight into the problem situation. 
Unfortunately he was not a first-class mathematician, so that he was not able to 
develop his important line of thought into more general results. He was no 
BROUWER. Perhaps if he had chosen a better way of publishing his re- 
search, his work might have received more attention. Then others might have 
taken it up and developed it further. 

It is clear that around 1880 adequate topological tools in mathematics were 
badly needed. The attempts to prove invariance provided some motivation for 
these to be fashioned. Other parts of mathematics cried out for their develop- 
ment. DEDEKIND's letter to CANTOR of 19 January 1879 is a definite expression 
of the need for a full programme of analytic topology. Thus, before considering 
later efforts towards solving the dimensional invariance problem, we must take 
account of the earlier development of point set topology in the next chapter. 
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Chapter 4. The Rise of Point Set TopoLogy 

By the 1880's most mathematicians thought that CANTOR's paradox about 
dimension had been explained away by either NETTO'S or CANTOR'S proof of 
dimensional invariance. JORGENS was virtually the only one to voice dissent, 
but his acute criticism of the NETTO proof went largely unnoticed. The con- 
sensus was that the invariance problem for dimension had been solved. For 
example, we find FELIX KLEIN drawing attention to CANTOR'S paradoxical 
result in his important little booklet of 1882, Uber Riemanns Theorie der alge- 
braischen Funktionen und ihrer Integrale (1882)=(1923:527), but he was not 
overly concerned about the difficulties that it presented. Indeed he was examin- 
ing RIEMANN's function theory on the intuitive geometrical level. WALTER VON 
DYCK (1856-1934) in his first 'Beitr~ige zur Analysis situs' pointed to the result 
of CANTOR, but then he immediately held up LOROTH's special proof and 
CANTOR'S general proof of invariance as guarantees for the soundness of the 
dimension concept (1888:457-458). In a short paper published in 1887 GINO 
LORIA (1862-1939) described the situation concerning dimension and its in- 
variance for an Italian readership. In the paper he summarised CANTOR'S 
correspondence result between the unit interval and the unit cube of n dimen- 
sions and then repeated NETTO's general invariance proof (1887). ~ Hence, 
among mathematicians the generally held opinion during the last two decades of 
the nineteenth century was that the invariance of dimension had been proved. 
This opinion is echoed in ARTHUR SCHOENFLIES' Encyklopi~die article, 
'Mengenlehre', submitted in November 1898 (1898: I87). However, from our 
vantage point we know that the situation with regard to dimensional invariance 
was not as satisfactory as it then seemed to most. 

It was a revolution which changed attitudes to the dimension problem-a  
revolution in topology brought about by the rise of the theory of sets and 
particularly the theory of sets of points. Point set theory (Punktmannigfaltigkeits- 
lehre) is the creation of one man: GEORG CANTOR. Although he did not 
contribute very much to topology directly, his point set theory added an entirely 
new perspective to topological thinking. Today we regard dimension theory 
primarily as a branch of set-theoretic topology and so the development of point 
set theory eventually had the most profound effect on the subject. In this chapter 
we must go beyond the confines of the history of dimension theory and take 
account of the rise of set theory and point set theory. 

CANTOR published his most important investigations into the theory of sets 
of points in a series of six papers entitled 'Ueber unendliche, lineare Punktman- 
nichfaltigkeiten' (1879a) (1880) (1882) (1883) (1883a) (1884)=(1932:139- 
246). These brilliant papers constitute the 'quintessence of CANTOR'S lifework' (as 
ZERMELO has said in CANTOR (1932: 246)). Much of the material concerns the 
founding of the theory of transfinite cardinals and ordinals. However, CANTOR'S 
main object of study is linear point sets and point sets in the n-dimensional 
arithmetic continuum (Euclidean n-space) and their properties. The resulting 

1 Cf also the invariance proofs of F. GIUDICE (1891) and M. DEL GIUDICE (1904), 
which, however, are not very successful. 
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theory became the basis for point set topology. The fundamental concept is that 
of limit point (Grenzpunkt; or in later terminology, H~iufungspunkt: accumu- 
lation point): a point p is a limit point of a set P if every neighbourhood 
(Umgebung) of the point, however small, contains several points of the set 
(1932:149) (cf. (I872)= (1932:98)). The fundamental theorem is the so-called 
BOLZANO-WEIERSTRASS theorem, used by WEIERSTRASS in his lectures and 
known to CANTOR from these, which states (1932: 149) that every infinite set of 
points in a bounded region of n-space possesses at least one limit point. 2 From 
this fundamental concept and theorem flow all of CANTOR'S deep point set- 
theoretic concepts. Among these are the notions of a derived set (abgeleitete 
Punktmenge, Ableitung) (1932: 98, 139-140), an everywhere dense set in a given 
interval (iiberall-dichte in einem gegebenen Intervalle Punktmenge) (1932:140- 
141), an isolated point set (isolierte Punktmenge) (1932: 158), and a nowhere 
dense set (in keinem Intervalle tiberall-dichte Punktmenge) (1932:161). By 
introducing these notions CANTOR opened up a whole new world of ideas for 
the emerging field of topology. 

As an example of his procedure let us see how CANTOR investigates the 
concept of continuum in the tenth section of his Grundlagen einer allgemeinen 
Mannigfahigkeitslehre (I883a). CANTOR was very proud of his definition of 
continuum (1883a)= (1932: 190-194) as he felt it solved an ancient problem of 
both mathematical and philosophical importance. In the Grundlagen he gives his 
solution within the scope of the 'n-dimensional plane arithmetic space G,' ('der 
n-dimensionale ebene arithmetische Raum', i.e., n-dimensional Eucludean space), 
consisting of the set of all value systems (points) 

(X1 IX2l . . .  IXn) 

of real numbers x i (under the definition of CANTOR) provided with the usual 
Euclidean metric or measure of distance between points. The question then is: 
When is a set of points of G, a continuum or a continuous set? 

In order to answer this question, CANTOR first introduces the concept of a 
perfect set (perfekte Punktmenge): a perfect set is one which is identical with the 
set of all its limit points, i.e., its first derived set, 

S ~ S (1), 

and hence is identical with its derived sets of all orders. Very perceptively he 
realises that a perfect set need not be dense in any interval and in a footnote 
(1932:207) he gives the classic example of a nowhere dense perfect set, the 
famous Cantor ternary set or discontinuum: the set of all real numbers of the 
form 

C 1 C 2 C v 

where the coefficients can only take the values 0 and 2. CANTOR then introduces 
the concept of connectedness (zusammenh~ingende Punktmenge). Previously 

2 Cf. BOLZANO (1817) and WEIERSTRASS (1927:56). 
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WEIERSTRASS had used the notion that a set is connected if every pair of points 
of it can be joined by a polygonal path in the set. 3 However, CANTOR wanted a 
concept within the domain of his new theory of sets. A set T is connected in 
CANTOR'S sense if for every pair of points t, t' of T and every given 
arbitrarily small number e we can choose a finite number of points tl, t2, ... t~ in 

T such that the distances tti, tit2, t2t3, ... t~t' are all less then e. This form 
of metric connectedness, sometimes called the property of being well-chained, 
remained a part of point set theory for a long time after CANTOR, until RIESZ, 
LENNES, and HAUSDORFF put forward the 'modern '  concept of connectedness 
in the first years of the twentieth century. 

Finally CANTOR asserts that a point set of G, will be a continuum (Kon- 
tinuum) if it is both perfect and connected. In a footnote he adds (1932:208) 
the definition of a semicontinuum as an imperfect connected set of the second 
number class (N1) with the property that every pair of points can be joined by a 
complete continuum. He boasts that his conception of continuum is superior to 
those of BOLZANO and DEDEKIND, although his criticism of the BOLZANO 
notion is founded on a misunderstanding of BOLZANO'S ideas. 4 In any case, 
CANTOR'S new set-theoretic idea of continuum was of major significance in the 
early development of analytic topology. It constituted a new insight into a 
traditional informal concept. 

In the course of analysing the continuum concept CANTOR asserted a false 
proposition (1932: 193) which the Scandinavian mathematician IVAR BENDIX- 
SON (1861-1935) swiftly criticised. 5 The revision of the offending proposition led 
CANTOR to define the extremely important notion of a closed set (abge- 
schlossene Menge) (1932: 226): a closed set is one which contains all of its limit 
points. On the other hand, a dense-in-itself set (in sich dichte Menge) 
(1932: 228) is one which is contained in its set of limit points or its first derived 
set. A perfect set is then both closed and dense-in-itself. 

When investigating the concept of continuum, CANTOR (1932:207-208) 
noted that his notion was independent of the idea of dimension. He promised to 
take up the problem of defining the dimension concept for continua, but he 
never did. Perhaps his mental illness prevented him from doing so. Nevertheless, 
he had a clear interest in the definition problem for dimension motivated by his 
own paradoxical discovery. 

CANTOR'S imaginative ideas had the most profound effect on the growth of 
mathematics. Analysts were the first to see their usefulness. Point set theory 
offered wonderful new instruments for a detailed study of the nature of func- 
tions, with the result that the growth of real and complex function theory was 
greatly accelerated in the years after the publication of CANTOR'S great papers. 
Applications of the Cantorian toolkit to the fundamental notions of geometry 
came a little later. GIUSEPPE PEANO and CAMILLE JORDAN were among the 

3 Cf. WEIERSTRASS (1895: 203) (1927: 57). However, he only defined connectedness 
in conjunction with his concept of continuum (connected open set). 

Cf my (1977: 283-284). 
5 During 1883 CANTOR and BENDIXSON had a substantial correspondence concern- 

ing the difficulty. Cf BENDIXSON (1883). 
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first to take the Cantorian ideas into the domain of geometry, so their work 
became a vital background to the development of point set topology. 

Among topologists CAMILLE JORDAN (1838-1922) 6 is best known for his 
celebrated theorem on closed curves in the plane. He first enunciated this result 
in a 'Note '  at the end of the first edition of his Cours d'Analyse. In order to 
understand why JORDAN wanted to state and prove this theorem, we must 
consider a few aspects of his analysis text. 7 

The differences between the first and second editions of Jordan's Cours 
d'Analyse could hardly be greater. In terms of the state of mathematics and 
standards of rigour of the 1880's and '90's the editions are worlds apart. 
JORDAN's attempt to prove the curve theorem is bound up with these differ- 
ences. The first edition, published in three volumes between 1882 and 1887, is 
very much a Cours d'Analyse de l'Ecole Polytechnique (1882) (1883) (1887). It 
is not a research treatise, but a textbook for students with an emphasis on 
methods. However, in the ' Preface' JORDAN writes (1882: v): 

Nous avons apport6 un soin particulier ~t l'6tablissement des th6or6mes 
fondamentaux. I1 n'en est aucun dont la d6monstration ne soit subordonn6e 
h certaines restrictions. Nous nous sommes efforc6 d'apporter darts cette 
discussion, parfois d61icate, toute la pr6cision et la rigueur compatibles avec 
un enseignement 416mentaire. 

(We have taken particular care in the establishing of fundamental theorems. 
There is none for which the demonstration has not been subordinated to 
certain restrictions. We have tried to bring into the discussion, at times 
delicate, all the precision and rigour compatible with an elementary edu- 
cation.) 

In spite of this declaration of intended rigour 8 the first Cours is virtually pre- 
Weierstrassian on the fundamentals of analysis. Of course, JORDAN was well 
aware of the new Weierstrassian ideas, which by the 1880's were having a 
powerful impact in France, but apparently he did not wish to expose his 
students to their full force. Nevertheless, in order to assuage his conscience 
about matters of rigour JORDAN appended a 'Note  sur quelques points de la 
th6orie des fonctions' at the end of the last volume of the first edition 
(1887: 549-615). In this place he revises proofs of the main text according to the 
highest standards of rigour then current. It is in this 'Note '  that the closed curve 
theorem first appeared. 

The second edition of fhe Cours, published between 1893 and 1896, contrasts 
markedly with the first in content and style. In 1883 JORDAN succeeded 
LIOUVILLE tO the chair of mathematics at the Coll6ge de France; he had been 
suppliant to SERRET at the Coll6ge since 1875. At this ancient institution he 
could lecture on his own research interests and this fact is reflected in the second 
edition of his book. It should really be entitled Cours d'Analyse du Collkge de 

6 The standard biography of JORDAN is LEBESGUE (1926). 
v I intend to examine the origins of the JORDAN curve theorem more fully in a future 

paper. GUGGENHEIMER (1977) has analysed some of the history of the theorem. 
8 J O R D A N ' S  declaration harks back to the opening of CAUCHY'S Gouts d'Analyse. 
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France, for it more accurately describes his analysis lectures at the Coll6ge than 
at the t~cole Polytechnique. 9 It is much more a research treatise; the standard of 
rigour is far higher. JORDAN incorporates the material of the earlier 'No t e '  into 
the main text of the first volume and includes much new research material. ~° 

The curve theorem is a part  of this radical transformation from the first to 
the second edition and, in particular, it is connected with proofs of CAUCHY'S 
integral theorem in complex analysis. In the first edition JORDAN (1884:275- 
277) proves the CAUCHY theorem in much the same way as CAUCHY himself 
had done in 1 8 2 5 - b y  a variational calculus technique showing that the first 
variation of the integral is zero. This proof  hardly comes up to standards being 
expected in the 1880's, when quite a few mathematicians were scrutinising the 
theorem and subjecting it to further proof  analysis, although it is probably 
sufficient for a student text. ~1 However, in the ' N o t e '  JORDAN reexamines the 
CAUCHY theorem, stating it in the following form (1887: 605): 

Soit C u n e  ligne continue ferm6e et sans points multiples, ne contenant/~ son 
int6rieur aucun point critique de la fonction f(z). L'int6grale ~f(z) dz, prise le 
long d'une ligne ferm6e et rectifiable quelconque K int6rieure/t C, est nulle. 

(Let C be a closed continuous line without multiple points, not containing 
any critical points of the function f(z) on its interior. The integral ~f(z) dz, 
taken along any closed and rectifiable line K, is zero.) 

From the very statement of the theorem one can discern that JORDAN had 
himself subjected the theorem and its proof  to a detailed analysis. For  example, 
simple closed lines or curves, which are assumed to have interiors, figure in the 
restatement of the old theorem. Moreover,  in the 'No t e '  he provides his own 
definition of rectifiability (1887: 594-598), which he immediately links with his 
earlier defined concept of a function of bounded variation (1881). He also takes 
the trouble to prove the existence of the integral of a complex function 
(1887: 603-605). 

Thus while previous mathematicians hardly saw the need to prove the 
obviously true statement that a simple closed curve divides the plane into an 
inside region and an outside region, JORDAN required aproof,  and a lengthy one 
at that (I887:587-594), as a consequence of his analysis of the CAUCHY 
theorem.I 2 In the ' N o t e '  he defines a curve as the sequence of points represented 
by the equations 

x = f  (t), y = ~b (t), 

9 The student editions of JORDAN's analysis courses at the t~cole Polytechnique 
reveal that he never treated analysis there as rigorously as in his published second 
edition. The second edition owes much to a course which he gave at the Coll6ge de 
France during the year 1891-92 entitled, 'Principes du calcul infinit6simal'. 

lo LEBESGUE (I926) essentially makes the point of this paragraph. 
11 Probably the most important new proof of the CAUCHY theorem to appear during 

the 1880's was GOURSAT (1884). This led to his celebrated improvement of the theorem 
(1900). 

12 BOLZANO was actually the first to state the JORDAN curve theorem and he did so 
many years before JORDAN, but he gave no proof. Cf my (1977). 
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where f and ~b are functions of the parameter t. If the functions are continous, 
the curve is said to be continuous and if they have a common period, the curve 
is said to be closed. If for certain distinct values of t within the period the values 
of x are the same and the values of y are the same, then the closed curve has 
multiple points. However, JORDAN only considers continuous closed curves 
without multiple points, i.e., simple closed curves, and so states the theorem 
(1887: 593): 

... toute courbe continue C divise le plan en deux r6gions, l'une ext6rieure, 
l'autre int6rieure, cette derni6re ne pouvant se r6duire /t z6ro, car elle 
contient un cercle de rayon fini. 

(... Every continuous curve C divides the plane into two regions, the one 
exterior, the other interior; the latter cannot be reduced to zero, because it 
contains a circle of finite radius.) 

JORDAN'S proof is based on polygons approximating the curve C from the 
inside and from the outside. He assumes the theorem for simple polygons, i.e., he 
assumes that a polygon without multiple points divides the plane into an 
interior and an exterior region. First, according to JORDAN we can construct a 
simple polygon P' which approximates C to any degree of accuracy. Then he 
offers a way to  construct simple polygons S and S' from P' which are inside and 
outside of C, respectively. These approximate C and contain it within an 
annular region. Indeed an entire sequence of interior polygons S, $1, ..., each 
inside the next, and an entire sequence of exterior polygons S', S'1, ..., each 
outside the next, can be constructed. These approximate C with increasing 
accuracy and corresponding pairs form smaller and smaller annular regions 
which squeeze down to C. Hence, the theorem follows according to JORDAN. 

Later generations of mathematicians have come to regard the closed curve 
theorem as a difficult part of elementary topology. As a first attempt JORDAN's 
proof is quite good, although it was not many years before mathematicians 
began to point out flaws. 13 ARTHUR SCHOENFLIES was the first critic, but 
initially he only criticised the proof for its complication. He followed his 
criticism with a proof of a less general version of the t h e o r e m -  a proof which is 
not completely adequate (1896). SCHOENFLIES was also the first to draw 
attention to the topological significance of the result. JORDAN was interested in 
the theorem for its immediate applications in analysis. In fact, the reason why he 
employed polygonal approximations in the proof is to be found in his appli- 
cation of the result to the CAUCHY integral theorem. For that theorem he 
wanted a polygonal path of integration on the interior of the simple closed curve 
(1887:605). Yet even if JORDAN did not fully understand the topological 
significance of the closed curve theorem, in the end we must credit him with 
stating and trying to prove something of great importance. 

3 It is now well known that the method of polygonal approximations is an inefficient 
way of proving the JORDAN curve theorem. VEBLEN (1905) initiated the direct method of 
proving the theorem; cf BROUWER (1910g). Early criticisms of JORDAN'S proof are to be 
found in: SCHOENFLIES (1896), VEBLEN (1905), AMES (1905), NCHOENFLIES (1906) 
(i908: I69) (1925). Cf GUGGENHEIMER (I977). 
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Mathematicians thinking about the dimensional invariance problem soon 
realised that the JORDAN curve theorem could be useful to them, because they 
perceived that an n-dimensional genera l isa t ion- the  theorem that states that an 
(n-1)-dimensional  sphere and its homeomorphs divide an n-space into two 
regions-yie lds  an n-dimensional domain invariance theorem and then the 
invariance of dimension. However, no one genuinely understood the difficulty of 
proving an n-dimensional JORDAN separation theorem until BROUWER. 

In the first volume of the second edition of his Cours d'Analyse JORDAN 
included a slightly revised proof of the curve theorem (1893: 90-100). This is 
where most mathematicians first came across the theorem. He also included a 
full section (1893:18-31) on Cantorian set theory, incorporating material from 
a research paper on the integral of the previous year (1892). He based the set 
theory on n-spaces provided with an dcart (distance measure). 1~ Within t h e  
section on set theory there is a new definition of connectedness (d'un seul tenant) 
(1893: 25): a set is connected if it cannot be separated into several closed sets. 
This definition is equivalent to CANTOR'S inasmuch as JORDAN only considered 
closed and bounded (i.e., compact) sets. In this special case it is also equivalent 
to the usual definition (due to RIESZ, LENNES, and HAUSDORFF). JORDAN's 
overall contribution to point set topology was substantial, although he only saw 
the subject in the context of analysis. Numerous mathematicians read the 
second Cours d'Analyse and through it learned about the set-theoretic foun- 
dations of modern analysis. 

GIUSEPPE PEANO (1858-1932) is was in many ways JORDAN's rival in 
mathematics. PEANO and JORDAN separately attacked the problems of measure 
and integration, but their results were remarkably close (PEANO (1887), JOR- 
DAN (1892)). They proposed similar definitions of rectifiability (JORDAN 
(1887: 594), PEANO (1890b)), although PEANO'S is somewhat more general. It 
is interesting to find an early criticism by PEANO of a result in the first edition of 
JORDAN'S Cours. The dispute over JORDAN'S mistake occupies several pages of 
the 1884 volume of the Nouvelles Annales de Mathdmatiques. ~6 From the point 
of view of the development of topology both saw the importance of applying 
Cantorian set theory to intuitive geometrical ideas. 

PEANO's example of a space-filling curve, a curve which covers all the points 
of a square (1890), is the most spectacular example he ever devised. It 
completely upset the 'geometrical intuitions' of the mathematicians of the day. 
It is not known precisely how PEANO came to devise such a counterintuitive 
curve, but we can see that much of his earlier work of the 1880's was directed 
towards a critical appraisal of commonly-held mathematical notions. His analy- 
sis text Calcolo Differenziale e Principii di Calcolo Integrale (1884) abounds with 
examples demonstrating the need to revise the fundamentals of the subject then 
taken for granted. In his Applicazioni Geometriche del CalcoIo Infinitesimale 

a4 JORDAN'S ~cart idea seems to have been an important source of inspiration for 
FR~;CHET when defining the concept of (E) class (metric space) in (1906). 

15 PEANO (1973) contains a good biography by H.C. KENNEDY. 
16 Cf. Nouvelles Annales de MathOmatiques (3)3(1884), 45-47,. 153-155, 252-256, 

475M82. 
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(1887:152-259) PEANO devotes a chapter to the study of geometrical magni- 
tudes, giving definitions of the interior and exterior measure of linear sets, plane 
areas, and spatial volumes. One would expect that the curve bounding an area 
would contribute nothing to the measure of that area, i.e., that the curve itself 
could be squeezed within an arbitrarily small region. However, taking a set- 
theoretic view, PEANO realises that the interior area and the exterior area of a 
planar region can be different. Possibly these ideas motivated PEANO's in- 
vestigation of planar curves defined by continuous functions. 

In the short paper 'Sur une courbe, qui remplit toute une aire plane' (1890) 
PEANO defines his curve in a purely analytic way without reference to geometri- 
cal considerations. This procedure accords with his critical 'antigeometrical '  
attitude to analysis. For  the construction we consider x and y as continuous 
functions of the parameter t in the interval [0, 1]; as numbers between 0 and 1,x, 
y, and t are given ternary (base 3) representations, av The aim is to put the 
ternary fractions 

t=0 .a  1 a 2 a3 ..., 

representing points of the unit interval, into continuous correspondence with the 
ternary fractions 

x = 0.b 1 b2 b3 . . . .  

y=O.c 1 c2c3 ..., 

representing points in the unit square. To achieve this aim we let ka (the 
'complement of a') denote the digit 2 - a ,  where a is one of the digits 0, 1, or 2. 
Thus 

k0=2 ,  k l = l ,  k2=0 .  

k" a is the result of applying the operation k n times to a and it has the value a, if 
n is even, and ka, if n is odd. The correspondence between t and (x, y) is given by 
the following equations: 

bl-~al,  

b 2 = ka2 aa, 
b 3 - -  ka2+a4 a s ,  

bn = k a 2  + a 4  + "'" + a 2 n - 2  a2n_ 1~ 

c 1 = ka~ a2, 
C 2  : kal + a 3  a4 ' 

C3 : kal + a 3 + a 5  a6 ' 

C n : k a l + a 3 + . . . + a 2 n  1 a2n. 

It is easy to see that every point of the square is covered and that the 
correspondence is continuous by the very way the ternary representation 
proceeds. In his paper PEANO briefly indicates how the correspondence can be 
generalised to the cube. In fact, extending it to an n-cube is not difficult. 

Although PEANO described his curve analytically, soon after the publication 
of his paper HILBERT (1891) presented a geometrical method for constructing a 
space-filling curve as the limit of a sequence of polygonal paths. Later SCHOEN- 

17 PEANO carefully distinguishes between a numeral and the number it represents, 
but to simplify the exposition I have not emphasised this distinction. 
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FLIES (1900:121-123) and the American mathematician E.H. MooRE 
(i900: 77) showed how to 'visualise' a construction of PEANO'S original exam- 
ple. The basic figure is the following: 

S / 

/ \ /  
E I J I I I I I r 

0 1 2 3 4 5 6 7 8 9 

As the first step of the construction we divide the unit square into 9 subsquares 
and draw a polygonal line (corresponding to the unit segment) through the 
square, as shown in the figure. In the second step we subdivide each small 
square and draw similar polygonal lines in each. If we continue in this manner, 
the limit curve is PEANO'S example; the entire square is covered. 

PEANO'S curve was a second blow to the naive concept of dimension after 
CANTOR'S one-one correspondence, for it provides a continuous mapping be- 
tween a 1-dimensional object and a 2-dimensional one. However, PEANO himself 
was quick to explain away the difficulty. Because some numbers have two 
distinct ternary representations, certain points of the square are covered twice 
and certain others are covered four times by the curve. Thus the PEANO curve 
describes a continuous, but not a one-one correspondence. PEANO interpreted 
this fact as a confirmation of NETTO'S proof of the invariance of dimension, 
which is cited in his paper. Hence, we see that even PEANO, usually a very 
perceptive critic, detected no flaw in the earlier general invariance proofs. 

HILBERT in his paper (1891:461) noted that it is possible to devise space- 
filling curves which cover the points of the square at most three times. Much 
later LEBESGUE found that it is not possible to give such curves with the 
points covered at most twice. He discerned in this fact a key to proving dimen- 
sional invariance ! (See chapter 7.) 

PEANO's 'curve'  clearly demonstrates that the usual way of defining a curve 
through a pair of continuous functions of a parameter leads to counterintuitive 
results. Presumably no one wants to think of a square as a curve. It is not 
surprising that PEANO'S example immediately captured the attention of mathe- 
maticians and soon they were proposing new definitions of the curve concept in 
order to exclude the PEANO monsters. This work marks a starting place in the 
history of topological curve theory, a subject closely related to dimension theory. 
JORDAN, however, never publicly recognised PEANO'S strange result. In the first 
Cours (1887:587) he had defined curves through continuous functions and in 
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subsequent editions he never bothered to change his old definition. Moreover, he 
had an interest in determining when a closed curve encloses a well-defined area 
in the sense of measure theory and proved in the 'Note '  (1887: 599-600) that 
the area will certainly be defined in the case of a rectifiable curve. A few years 
later in 1894 he asked the following question in EInterm~diaire des Math~ma- 
ticiens (1894a): 

Pourrait-on signaler une courbe 

x=f(t), y=qS(t) 

( f  et ~b &ant des fonctions continues) dont l'aire fut ind6termin6e? 

(Can one describe a curve 

x=f(t), y=qS(t) 

( f  and q5 being continuous functions) for which the area is indeterminate?) 

PEANO (1896) responded to JORDAN's question by pointing to his space-filling 
curve. If we take any arc of the curve and connect the endpoints with an 
ordinary curve so as to give a closed curve, then we have a curve with an 
interior area strictly less than its exterior area. But JORDAN never acknowl- 
edged PEANO'S response and did not alter his definition of continuous curve 
in the third edition of the Cours d'Analyse. 

PEANO's spectacular example is but one in a long list of strange curves and 
point sets which run counter to 'naive geometrical intuition'. Set theory has 
been the main breeding ground for such examples. Two other striking entries in 
this list may be mentioned. In 1903 WILLIAM OSGOOD (1903) and HENR~ 
LEBESGUE (1903-05) each published an example of a JORDAN curve (i.e., a 
simple closed curve) possessing a positive exterior measure, i.e., the curve itself 
has a measurable area. This curve is even stranger than the one which PEANO 
suggested in his response to JORDAN'S question, because it has no multiple 
points. In 1910 L.E.J.  BROUWER (1910d) published the first examples of 
indecomposable continua and curves which divide the plane into three or more 
regions but which are the common boundaries of all the regions. One might say 
that in the years around 1900 set theory bred a plethora of topological monsters. 
An early catalogue of these is contained in the first book in English on set 
theory, WILLIAM H. and GRACE CHISHOLM YOUNG'S Theory of Sets of Points 
(1906). 18 Of course, for mathematicians well trained in Cantorian methods the 
monsters became manageable, indeed friendly, and they guided the way to quite 
a few new results. Thus pathological oddities were an important spur to growth 
in set-theoretic topology. 

Given the wealth of results from the papers of CANTOR and many others, 
certain mathematicians recognised the need for an entire programme of explo- 
ration in set-theoretic topology. At the First International Congress of Mathe- 
maticians, held in Ztirich from 9 to 11 August 1897, ADOLF HURWITZ (1859- 
1919) sketched such a plan of investigation (1898). In his lecture reviewing 

18 Cf. NCHOENFLIES (I906a). 
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progress in analytic function theory HURWITZ (1898:101-104) tries to de- 
termine the precise domain of validity of the CAUCHY integral theorem and in 
so doing points to the important work of JORDAN. He asks the highly relevant 
general questions (1898: 101): 

... was ist eine einfach geschlossene Linie, was ist eine Linie, insbesondere 
eine geschlossene Linie tiberhaupt, und sind alle oder nur gewisse geschlosse- 
ne Linien in dem Ausspruch des Cauchy'schen Satzes zul~issig? 

(... What is a simple closed line, what is a line, especially, a closed line in 
general, and are all or only some closed lines admissible in the enunciation 
of the Cauchy theorem?) 

In attempting to grapple with these questions he puts them into the general 
context of the topology of closed sets. In a way similar to CANTOR'S definition 
of cardinals and ordinals, we can assign closed point sets to classes: each class 
containing those sets which can be mapped one-one continuously onto ~one 
another. The sets in each class will be called 'equivalent'. Then (1898: 102): 

Diese Einteilung der Punktmengen in Klassen bildet ... die allgemeinste 
Grundlage der Analysis situs. Die Aufgabe der Analysis situs ist es, die 
Invarianten der einzelnen Klassen von Punktmengen aufzusuchen. 

(This distribution of point sets into classes forms ... the most general 
foundation of analysis situs. The task of analysis situs is to search for the 
invariants of the single classes of point sets.) 

HURWITZ gives a specific example: a geometrico-set-theoretic definition of 
JORDAN's idea of a simple closed curve, as a point set (in the plane) which 
belongs to the class of the boundary of a square. In essence, he states the KLEIN 
Erlanger Programm (1872) for analysis situs in a sharper form by placing the 
central problem into the framework of point set theory. 

HURWITZ never contributed to the programme adumbrated in his Ziirich 
lecture. It was ARTHUR SCHOENFLIES (1853-1928) 19 who first embarked upon 
such a programme. At the turn of the century SCHOENFLIES was the foremost 
propagandist for CANTOR'S set theory. He wrote the article on 'Mengenlehre'  
for the Encyklopiidie der mathematischen Wissenschaften (1898) and composed 
Berichte (1900) (1908) on progress in the field in response to a commission by 
the Deutsche Mathematiker-Vereinigung. As noted above he was the first mathe- 
matician to draw attention to JORDAN's curve theorem by suggesting its 
topological significance and giving an alternative proof. 

There is a short early paper by SCHOENFLIES, 'Ueber einen Satz der 
Analysis Situs' (1899), in which he reproves the planar domain invariance 
theorem in the formulation (1899: 282): 

... dass das umkehrbar eindeutige und stetige Abbild der Fl~iche eines 
Quadrats wieder ein einfach zusammenh~ingendes F1/ichenstiick ist, dass es 

19 There is little biographical material on SCHOENFLIES. However, cf BIEBERBACH 
(1923). 
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n~imlich aus der Gesamtheit aller Punkte besteht, die dem Innern einer 
geschlossenen Curve angeh6ren. 

(... that the one-one continuous image of the surface of a square is again a 
simply connected piece of surface, viz., that it consists of the totality of all 
points which belong to the interior of a closed curve.) 

At the time this paper was presented (13 January 1900) SCHOENFLIES was 
unaware of JURGENS' proof of 1878-79 of this same result. However, in contrast 
to JURGENS' way of proceeding SCHOENFLIES relies heavily on JORDAN'S 
demonstration of the curve theorem. 2° At the end of his paper he deduces the 
special case of dimensional invariance from the planar domain invariance 
theorem (1899: 289-290). For this he uses a theorem of CANTOR (1882:117) 
=(1932:153) to the effect that a collection of closed planar surfaces (having 
interior points) for which no two have interior points in common is at most 
countable. The goal is to show that a 3-dimensional or an n-dimensional cube 
cannot be mapped in a one-one continuous manner onto a planar surface. 
Suppose such a mapping is possible. Then by the domain invariance theorem 
parallel square slices of the cube will be mapped onto simply connected regions 
bounded by JORDAN curves, with interior points corresponding to interior 
points. Because the mapping is one-one, the images of the square slices cannot 
overlap. But as there are uncountably many square sections we have a con- 
tradiction with CANTOR'S theorem. 21 In the last paragraph of his paper SCHOEN- 
FLIES suggests that his method of proof for domain invariance is capable of 
generalisation to arbitrary spaces; he hardly realises the difficulties of such a 
generalisation. 

It was around 1902 that SCHOENFLIES began an intensive and rapid develop- 
ment of a programme of set-theoretic topology. In that year he published a 
paper containing a statement and proof of a converse of JORDAN'S theorem 
(1902). This little paper led to three long 'Beitr~ige zur Theorie der Punkt- 
mengen' (1904) (1904a) (1906) (cf (1908a)), having as their central theme 
the topology of closed curves and simple closed curves in the plane. The opening 
paragraph of the first 'Beitr~ige' paper sets the scene (1904: I95): 

Als eines der allgemeinsten Probleme aus der Theorie der Punktmengen 
kann man die Aufgabe bezeichnen, die grundlegenden Siitze der Analysis 
Situs mengentheoretisch zu formulieren und zu begriinden und die Beziehun- 
gen darzulegen, die zwischen den mengentheoretisch-geometrischen und den 
analytischen Ausdrucksweisen derselben Begriffe und S~itze obwalten. Die 
paradoxen Resultate, wie sic z.B. in der eineindeutigen Abbildung der 
Continua und in der Peanoschen Kurve vorliegen, haben die naiven Vorstel- 
lungen der Analysis Situs griindlich zerst/Srt. Um so mehr muss man verlan- 
gen, dass die Mengentheorie wiederum Ersatz schafft und die geometrischen 
Grundbegriffe in einer Weise definiert, die ihnen ihren natiirlichen fliT die 
Analysis Situs charakteristischen Inhalt wieder zurtickgibt. Ist auch die 

2o Cf two subsequent proofs by OSGOOD (1900) and BERNSTEIN (1900). 
21Cf a similar earlier proof of MILESI (I892); criticised by SCHOENFLIES 

(1908: 165). 
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vielgeschm~ihte Anschauung keine Quelle des Beweises, so scheint es mir 
doch - wenigstens im Gebiet der Analysis Situs - ein Ziel der Forschung 
zu sein, den Inhalt der geometrischen Definitionen mit dem Anschauungsin- 
halt in Ubereinstimmung zu bringen. 

(As one of the most general problems of the theory of point sets we can point 
to the task of formulating and establishing the fundamental theorems of 
analysis situs set-theoretically and setting forth the relationships which exist 
between the set-theoretico-geometric and the analytic modes of expressing 
these concepts and theorems. The paradoxical results, as they occur, e.g., in 
the one-one mapping of continua and in the Peano curve, have completely 
destroyed the naive ideas of analysis situs. All the more we must demand 
that set theory provide a substitute and define the basic geometrical concepts 
in a way that gives back to them their natural content characteristic of 
analysis situs. Even if the much maligned intuition is no source of proof, it 
still seems to me that it is a goal of research to reconcile the content of 
geometrical definitions with the content of i n tu i t i o n -a t  least in the domain 
of analysis situs.) 

When submitting his first 'Beitr~ige', NCHOENFLIES put the following method- 
ological point into the accompanying letter to his friend HILBERT (letter of 28 
April 1903): 22 

Wir stehen mit dem, was den Inhalt der Analysis Situs ausmacht, grossenteils 
noch auf dem Boden der Anschauung, die zugleich als Beweisgrund dienen 
muss. Aber es diirfte n6tig sein, auch auf diesem Gebiet nach gr6sserer 
Exactheit zu streben, und seine S~itze aus den geometrischen und mengen- 
theoretischen Grundtatsachen abzuleiten. Dies allm/ihlich zu tun, ist mein 
lebhafter Wunsch. Ich habe wieder Lust bekommen, hieriiber intensiver zu 
arbeiten, und hoffe, es wird mir mit der Zeit gelingen. 

(With regard to what constitutes the content of analysis situs, to a large 
extent we still rely on intuition which at the same time must serve as a basis 
of proof. Yet it may be necessary to strive for even greater exactness in this 
domain and derive its theorems fl'om geometric and set-theoretic fundamen- 
tals. It is my keen wish to do this at last. I have felt like working on this 
more intensively and I hope that I shall succeed in time.) 

NCHOENFLIES was certainly aware of the difficulties of 'naive geometrical 
intuition' and sought to put topology on a sound, purely set-theoretic footing. 
However, in view of the fate which befell his theory the methodological remark 
in the letter to HILBERT has an ironic ring. 

In executing his programme SCHOENFLIES had most success with the 
converse to the JORDAN curve theorem. For  this he introduced the concept of 
accessibility (Erreichbarkeit), at first implicitly (1902) (1904), then explicitly 
(1904b) (1906). If M is a connected domain (open set) and t is one of its 
boundary points, then we say that t is accessible from M if for every point m of 

22 This letter is in the I-IILBERT Nachlass in the Nieders~ichsische Staats- und 
Universitiitsbibliothek, G6ttingen (signature: HII~BERT 355, no. 15). 
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M there is a simple path (einfacher Weg) in M leading from m to t (1906: 296- 
1 

297). 23 The example that motivates SCHOENFLIES' definition is the curve s i n - ,  
x 

- 1 _< x _< + 1, together with its limit points on the y-axis which lie between - 1 
and + 1. The points on the y-axis, - 1 < y < + 1, are not accessible from an open 
domain surrounding the curve. However, SCHOENFLIES recognised that all the 
points of a JORDAN curve, i.e., a homeomorphic image of a circle, are accessible 
from both the interior domain and the exterior domain and that this fact is the 
key to giving a converse to JORDAN's theorem. In SCHOENFLIES' terminology a 
closed curve is a bounded nowhere dense perfect connected point set which 
divides the plane into two connected domains having the point set as their 
common boundary (1904a:146-147) and a simple closed curve is a closed 
curve with all of its points accessible from each of the two domains (1904:217) 
(1906: 305). Then the converse of the JORDAN curve theorem states that every 
simple closed curve can be mapped in a one-one continuous manner onto the 
points of a circle (proofs in (1902) (I904) (1906)). This result is the high point 
of SCHOENFLIES' topological investigations. 

SCHOENFLIES gathered the results of his 'Beitr~ige' series and other papers 
(1907) (1907a) into the second part of his Bericht for the Deutsche Mathemati- 
ker-Vereinigung: Die Entwickelung der Lehre yon den Punktmannigfaltigkeiten 
(I908). In his eyes he had completed a beautiful chapter in topology, meeting 
the highest standards of set-theoretic rigour. However, it was scarcely a year 
after the appearance of this 'complete manual '  of planar analysis situs that 
L. E. J. BROUWER delivered a resounding critique of the theory through a set of 
ingenious counterexamples (1910d). 24 Nearly all of the theory of closed curves 
suffered destruction. Only the converse to the JORDAN theorem based on 
accessibility escaped unharmed. It turned out that the topology of the plane was 
more subtle than SCHOENFLIES had ever imagined. 

In spite of the BROUWER critique we still must recognise SCHOENFLIES as a 
pioneer. He strove for a high standard of rigour and had a good set of Cantorian 
tools to aid him in this struggle. He also had some good insights into the 
pathology of curves. However, many times he was careless and disorganised in 
his research. 'Chaotic '  is not an unfair description for some of his books and 
papers. More importantly, we now know that the backbone of his topological 
investigations, polygonal approximations, is a very inefficient device. Thus in the 
end the work of SCHOENFLIES in topology has been completely overshadowed 
by that of BROUWER and others. 

To conclude this chapter I should like to describe the problem situation 
concerning dimensional invariance around the beginning of the twentieth cen- 
tury. As noted above, after the intensive work of 1878-79 most mathematicians 
forgot about the problem during the last two decades of the nineteenth century; 
they simply believed that it had been solved by NETTO and CANTOR. However, 

23 In this definition a simple path is just a polygonal path which does not cross itself. 
It may have infinitely many edges, in which case the only limit point of the vertices is an 
endpoint. 

24 Cf also DENJOY (1910). 
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JI~RGENS had never been convinced by the earlier general proofs and so in 1899 
he published his note on 'Der Begriff der n-fachen stetigen Mannigfaltigkeit' 
(1899) in which he thoroughly criticised the old proofs and thereby reopened 
the general problem. JfJRGENS was acutely aware of the difficulties in proving 
the invariance of dimension. As one of the major stumbling blocks he discerned 
the difficulty of providing an adequate definition of continuous connection and 
small displacement (stetiger Zusammenhang; kleine Verschiebung) for man- 
ifolds, i.e., the property of nearness of points in manifolds. Thus he saw the 
need for a better definition of the very notion of continuous manifold. This is a 
problem which BROUWER later attacked and solved (see chapters 6 and 7). In a 
sense, only after this problem had been solved can we assign a dimension 
number to a manifold and then consider the invariance problem. Related to 
these questions is the problem of assigning dimension numbers to arbitrary 
subsets of a manifold. Jf.)RGENS realised that, apart from associating the 
numbers 1 through n to most subsets as their dimension numbers, there are 
certain subsets for which the notion of extension is inapplicable. He thought of 
these sets as consisting of infinite systems of separate points; we would call them 
0-dimensional. By thus recognising the existence of 0-dimensional sets, however 
vaguely, he was able to criticise the proof of NETTO (see chapter 3) and also 
clarify the general definition problem for dimension. Overall in his short article 
JORGENS put the problems of dimension into sharper focus and so prepared the 
way for the work of the twentieth century topologists. In particular, he em- 
phasised the close relation between domain and dimensional invariance. 

In the same year as JORGENS published his critical note JACOB LOROTH 
returned to the invariance problem and proved another special case (1899). 
Then a few years later he brought together all of his results, fully worked out, in 
a final contribution to the subject (1906). In the second part of his Bericht 
SCHOENFLIES (I908:164-168) drew attention to the open problem of dimen- 
sional invariance, which just a few years before he had considered closed. He 
suggested in the second Bericht that the best way to tackle the problem would 
be through a general proof of domain invariance in n dimensions. 

Solutions to the problems of dimensional and domain invariance were all the 
more urgent at this time, because mathematicians were recognising their rel- 
evance to certain 'higher' branches of mathematics. ROBERT FRICKE (1861- 
1930), the expert on automorphic functions at the beginning of the century and 
co-author with KLEIN of the classic treatise on the subject (1897) (1912), 
underlined the pressing need to solve these problems, for their solution would 
help to shore up the continuity method of proof employed in the theory of 
automorphic functions and in uniformising analytic functions. 25 POINCARI2 and 
KLEIN had first introduced the method in the 1880's, but by about 1900 FRICKE 
became convinced that it required further justification. In a lecture delivered to 
the Third International Congress of Mathematicians held in Heidelberg during 
August 1904 FRICKE declared that the development of the theory of automor- 
phic functions had come to a virtual standstill over this difficult point (1905). 

25Cf the details in FRICKE (i913:445 452). Also cf FREUDENTHAL's historical 
remarks in BROUWER (1976: 572--573) and the remarks of KLEIN in his (i923: 731-741). 
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The method was used for proving some fundamental theorems on the existence 
of inverse functions to the automorphic functions (the so-called linear polymor- 
phic functions). The leading idea of the method was to compare two manifolds 
of equal dimension, one of all the groups or fundamental domains of a given 
signature associated with a set of automorphic functions and the other of all the 
related RIEMANN surfaces of the same signature. The dimension of the mani- 
folds was determined by counting the parameters given in the signature. Hence, 
the method partly rested on the simple coordinate or parameter idea of 
dimension. In the light of CANTOR'S paradoxical discovery FRICKE saw that it 
was not completely rigorous. Domain or dimensional invariance was needed in 
some form. Although he did not expect that the continuity method would be 
invalidated over this point, he wanted to see a full topological foundation for the 
fundamental existence theorems. When he had struggled earlier to obtain partial 
proofs of the existence theorems (1904),  he had been reassured by SCHOEN- 
FLIES' proof of the planar domain invariance theorem that full rigour could be 
attained. Consequently, at Heidelberg he urged set theorists to bring the 
problems of domain and dimensional invariance to a satisfactory conclusion by 
proving the general n-dimensional cases. 

We can now see that at the start of the twentieth century the problem of the 
invariance of dimension was wide open; it begged for solution. To be sure, 
mathematicians expected a positive solution. The rapid developments in set- 
theoretic topology seemed to give strong hints towards this end. The theory had 
become a very helpful tool for clarifying the basic notions and difficulties 
surrounding the problem. Partial solutions also seemed to open up the way to a 
full solution. Undoubtedly the most promising route appeared to be through 
invariance of domain. Yet in spite of the hopeful expectations which mathema- 
ticians held at the time, the road to success turned out to be more difficult than 
imagined, as we shall see in the ensuing chapters. 
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