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subbundles such that E ¢ CS(x), E* C CH(x)y for all x€ T°. Observing that
(Tf)E, = E; and defining £° = E, we have a continuous Tf-invariant splitting 7(T%) =
E* @ E° @ E* and a foliation F* tangent to E° with all leaves dense.

Since F° is a normally hyperbolic foliation for f it follows{4] that f is plaque
expansive. Finally since f, satisfies (a)-(e) with respect to the constants A, g, 8y, . . ., &5
and the sets U, U, it follows from (1) that taking ¢ small enough f satisfy again
conditions (a){c).
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INTRODUCTION

LET M and N be 2n-dimensional compact smooth manifolds. Let »M be the stable
normal bundle of M and let f: (M, 3M)— (N, 8N} be a degree one map covered by a
bundle map b: vM — ¢ where £ is some bundle over N. In the terminology of
Browder[3, p. 31] {f, b): (M, aM) = (N, 3N} is a degree one normal map. Because f
has degree one there exists a homomorphism o: H*(M, aM) > H*(N, 4N} such that
af* = 1. (All homology ‘and cohomology groups will have Z/2 coefficients.) Using e
there is an isomorphism

H*M, aM) = K*{, b) @ f*H*(N, aN)

where K*(f, b) = ker (a: H*(M, aM) - H*(N, 3N)). Furthermore the action of the
Steenrod squares on H*(M, aM) preserves this splitting.

Using the methods of Browder{2,3], and Brown[4], it is possible to define a
quadratic form g: K*(f, )~ Zj2, that is a function g satisfying the following formula:

glx+y)=glx)+qy)+x.y

where x.y is the mod? intersection number of x and y. This quadratic form is
discussed in more detail in §2. The main result of this paper is a formula for q{Sq"y}
valid when the integers n and k satisfy certain conditions and M and N satisfy a
condition concerning their characteristic classes.

This paper is set out as follows: §1 contains the statement of the main theorem and
the deduction of some corollaries one of which is required in [8], another concerns
immersions; §2 contains a discussion of the quadratic form; and §3 an explanation of
how to reduce the proof of the main theorem to two technical results. These results
are proved in §4. Finally §5 contains two examples, motivated by [9], of the use of the
main theorem.

It is a great pleasure to thank Elmer Rees for many helpful observations and
much encouragement. He also pointed out that Corollary 1.4 in §1 was an immediate
consequence of the main theorem and that this corollary should have an application to
immersions.

§1. THE MAIN THEOREM AND SOME COROLLARIES
To state the main theorem requires some notation. Let W be a d-dimensional
compact manifold. From the Poincaré duality theorem the homorr_mrphism
Sq': HY (W, aW) is given by Sg'x = x . v{ W) for a unique class p (W)€ H'(W). By
definition v;,(W) is the i-th Wu-class of W.
Let {(n, k) be a pair of integers, and suppose that 2 divides n + k+ 1, but 2" does
not divide n + k +1:

(1.1) {(n, k) is an exceptional pair if k <2,
It is now possible to state the main theorem.

" TueoreM 1.2. Let q: K'(f,b)—+Z[2 be the quadratic form described above.
Suppose that vAM)=0 for i =2k and that the pair (n, k) is not exceptional. Given
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y € K" b)Y then
k-1 . .
q(Sq“y) = ;ﬂ (Sg™7'y). (Sqy).

Examples of normal maps are provided by framed manifolds and most of the
applications of the above theorem discussed in this paper arise from these examples.
Suppose that M™ is a compact smooth manifold and that »M is stably trivial. Let F
be a stable trivialis. .on, or a framing, of M. If 3M is empty, let f: M™ - 5" be a
degree one map, then the framing F may be used to cover f by a bundle map
br: vM — € where € is a trivial bundle over S™. Similarly if 2M is non-empty there isa
degree one normal map (f, bp): (M, aM)~(D™, 8™"). If m=2n then K"(f,br)=
H"(M, M) and the quadratic form is the quadratic form gr associated to the framing.

CoroLLARY 1.3. Let (M™, F) be a framed manifold, and suppose (n, k) is not
exceptional. Let qp: H™(M, 3M)— ZI2 be the quadratic form associated to the fram-
ing. Then if vy € H"*(M, aM)

k-1
ar{Sa’y)= Zﬂ {Sq*7'y) . (Sq'y).

For all { the pair (2' - 1, k) is not exceptional provided k < 2'. Then with {n, k) one
of the pairs (2' =1, 1), (2' —1,2), (2’ — 1, 4) and #M empty this corollary is exactly the
result 1.2 required in {8].

CorRoLLARY 1.4. With the assumptions of 1.3, suppose y € H"*(M, aM) and
Sqfy = 0. Then

k-l
2 (5™ y) - {Sa'y) = 0.

This corollary may be deduced from calculations with secondary cohomology -

operations, in the case k=1 or 2 see [10, Theorem 2.2.1], in the general case it is
necessary to use results contained in {6] and [7].

Corallary 1.4 has an application to immersions (compare Mahowald and Peterson’s
paper[10]). Suppose P is a p-dimensional closed manifoid which immerses in R¥ 2,
Let 7 be the normal bundle of such an immersion. Then the disc bundle D(7) is a
2p — 2k dimensional manifold, with boundary the sphere bundle S(4). and D(x) can
be framed. In the statement of the next corollary #w; stands for the i-th normal
Stiefel-Whitney class of P.

COROLLARY 1.5. Suppose P” immerses in R* 7 and that w, = 0. If (p — k, k) is not
exceptional then

k-1
Wp2k - (2 Waps - wi) =0.
[

Proof. As above let n be the normal bundle of such an immersion and let
U € H" ™ (D(n), S(n)) be the Them class. Write the Thom isomorphism HP->
H*"%(D(n), S(n)) as x— Ux. Note that Sg*U = U#;, =0 by assumption and so
applying 1.4 and writing Sg'UU = Uw, gives

k=1
S Uvpsei. Ui = 0.
i=0

Writing U2 = S§q" *U = UW,_y gives
.

1
Uy (3 e ) =0

and the corollary follows.

_ §2. THE QUADRATIC FORM
Let {f, b): (M, aM)— (N, 3N) be a degree onc normal map of compact 25-mani-
folds. Then as described in Browder’s book[3, p. 64] there is a stable map g: N/aN -

QUADRATIC FORMS AND STEENROD SQUARES 399

M/ aM such that )
g*f*=1: H*(N, dN)— H*(N, aN).
The splitting a is taken to be g*. Adjoint to g is a map g: NfaN - Q(M/IM) where
QX = lim {}"S"X.

Let K, denote an Eilenberg-McLane space of type (Z/2,n). To define the
quadratic form some information concerning the space QK| is required. Applying the
functor 0" to the non-trivial map S"K,— K,.. and letting L tend to infinity gives a
map r: QK,— K,. There is a canonical inclusion i: K, + QK, and ri is homotopic to
the identity, and so r is referred to as the canonical retraction. Brown shows [4,
lemma 2.2} that

(i) 7.QK,=Z2
(ii) there is a short exact sequence

2.n 0— [§™, QK,] — [N/aN, QK,] — H"(N,3N)——0

P L3
where p: N/aN - 8" is a degree one map and [X, Y| stands for homotopy classes of
maps from X to Y.

Now choose any homomorphism k: [NfaN, QK,]— Z/4 such that hp* is injective.
Consider the function

gy H"(N, daN)—> Z|4
defined to be the composite
H"(N, aN)=[N/3N, K,]— [NIéN, QK] — Z/4.
ie h

Brown shows in [4] that g, is quadratic in the following sense. Let 2: Z{2— Z/4 be the
inclusion then ’

qulx + y) = qu(x) + gnly) + 20x. y).

To define the quadratic form g on an element x € K"(f, YT H"(M, M) regard x
as 2 map of M/aM into K,. The functor Q gives a map Q(x): G{M/aM) > QK, and so
a function Q: K"(f, b) > [Q(M/aM), QK, ] Consider the function

K"'(f. b) - [Q(M!aM), QK1 —— [NIaN, QK] — Z/4.

Referring to {2.1) note that
g Qxy=g*x =0  for x EK"(f, b},

since by definition K"(f, b) = ker (g*: H"(M, aM)— H"(N, 3N)). Thus g*Q(x} is in
the image of p* and so from the definition of A it follows that h(g*((x)) does not
depend on the choice of h and lies in Z/2 C Z{4. Define q(x) by the formula

2q{x) = h(g*Q(x)).

§3. THE MAIN THEOREM

Suppose v € K" (f, b) and x = Sq*y € K"(f, b), then the objective is to evaluate
g(x). Regard Sq* as a map K,_.— K,, then introduce the following notation:

a=g*Q(y): NfoN -~ QK,_,
B = Q(Sq"): @K, = QK,.

Note that Bo = g*Q(Sq*y) = g*Q(x), and so, from §2, there exists a map y: §*"—
QK, such that B = yp where p is as in (2.1). Then the following diagram commutes

NiaN —— QK,._,
/| |

§*— oK,



400 JOHN D. 5. JONES

Again from §2 it follows that
q(Sq*y)=0& v is null-homotopic.

To get further we need to know how to detect the non-zero element of 7,,QK,. It
is known that this map actually induces a non-zero homomorphism in cohomology
and so we need information about H*QK,.

For any pointed space X let X™' denote the n-fold smash product of X with itself.
For any space Y let ¥* denote the space obtained by adding a disjoint base point to
Y. Let EX, be a contractible space on which the symmetric group 2, acts freely.
Define D, X by

DX = EX," a5, X™

where %, acts on X" by permuting the factors. We will always identify D:X with X
without further comment. There is a natural isomorphism
3. e @ H*DX - H*QX.

n=l
This isomorphism is an isomorphism of modules over the Steenrod algebra, however
it does not preserve products. The existence of this isomorphism is proved in [1},
indeed it arises from a stable homotopy equivalence v D.X - QX.

a=l

Suppose ¢: X =Y is a stable map with adjoint ¢: X > QY. Then for all y€
H*D\Y = H*Y
3.2 d*ey = d*y.

We will not need more than H*X + H*D,X in the subsequent work and so we will
only give more details concerning H*D,X. The space E;X is defined as EZ, X5, X x X.
The structare of H*E,X is well-known, a summary of the details is given in {8,
4.6-4.10]. There is a collapsing map E:X - I»X which induces a monomorphism in
cohomology. In the notation of [8] the image of H*DLX in H*E,X is the subalgebra
generated by the classes [x, y] and ¢*® z® z where x, y and z are in H* X We will
always use the notation and results of [8, 4.6—4.10] when dealing with H*D,X.

Referring to the diagram at the beginning-of this section note that y represents the
non-zero element of m,QK, if and only if y*e(1® i, ® ¢} is non-zero, where
i, EH"K, is the fundamental class and 1@t @PuLE H¥»D,K,. However
p*: H"S™ 5> H™(N,3N} is an isomorphism and s0 y*'e(l1®w @) is
non-zero if and only if a*8*e(l ® t, ® t,) is non-zero. From the naturality of the
isomorphism ¢, it follows that A*¢(1® t ® t) = €(1 ® Sqtn ¢ & S$3"ta—s). There-
fore we have shown:

3.3) q(Sq*y) =0 if and only if a*e(1 ® Sq*t+ ® 5q*tn_) = 0.
To compiete the proof of (1.2) the following two technical results are required.

ProrosiTION 3.4. Suppose (n, k) is not an exceptional pair. Then in H*D,K,
k-1 . )
16 Sq% 4« @ Sq%,-i = E (S "tnts SG'te i} + A
=0

where A is decomposable over the Steenrod algebra, that is A=ZE ax; where x €

H*DK,_, and the a; are stable primary cohomology operations of stricily positive
degree.

The next proposition concerns the behaviour of products under the isomorphism
6. ® H*D X - H*QX. .
L
PrOPOSITION 3.5. Let a, b be elements of H*X so that [a, b] is in H*DWX, Then
ea-eb =e(a- b +[a, bl).
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We can now complete the proof of (1.2) using (3.4) and (3.5).
The assumptions on Wu-classes ensure that, in the notation of (3.4), «a *eA =0, -
Therefore using (3.4) and (3.5)

k-1
a*e(l 3 Sq%t,  ® Sq* )= a*e 2 [Sa™ 'ty i Sq'tn ]
=

k=1
=a* ZD (659 "tui - €5 tni + €(Sq¥ 1y 4 - SG'taor)).
From the definition of o, the naturality of € and (3.2) we deduce

a*e8q'tni = E*Q(y)* eSq tms
= g*eSq'y
= 8q'g*y.
However y € K" *(f, b) and so g*y = 0. Therefore

k-1
% el ® 8¢ tni @ SG i) = a*€ 3, 5% i - Stk
=
k=1 ) )
=g* E_:u Sg™~'y - Sq'y

where this equality follows from the definition of ¢, the naturality of € and (3.2).
However g* is an isomorphism in 2n-dimensional cohomology and so using (3.3) the
proof is completed.

§4. DEFERRED PROOFS
This section is devoted to proving (3.4) and (3.5) and therefore finishing the proof
of (1.2). We begin with (3.4).
In any graded vector space V let V, be the subspace of elements of degree . Let
A denote the mod 2 Steenrod algebra.
If p <4(n — k) there is a homomorphism

! H HDDZKn—k"ApHc—n-»I
defined by

8(x, ¥1=0 forx,yEH*K, .,
(€' @ Sq'tn i @ Sqltn—s) = Sg' k1§

where [ is an admissible sequence, so that Sg' is an element of the Cartan—Serre basis
for the Steenrod algebra (see [13]) and {I| stands for the degree of T so that Sg’ € Ay,
The reason for the assumption that p =4(n—-k) is that we have not defined
8(¢'! ®a®a) where a is a product S;'te— S;e,. with [ or J non-trivial. Bt is
straightforward to check from 4.10 of [8] and the Adem relations that 5{Sq‘x) = Sq'5x.

Let B(g) be the left ideal of A consisting of those cohomology operations which
vanish on all cohomology classes of dimension =g. As a Z/2 vector space B(g) has a
basis consisting of those elements Sq' in the Cartan-Serre basis for A with e{l)> g
where e(I} is the excess of T (see [13]).

Let C C H*D,K, ; be the subvector space generated by those classes of the form
e’ %K@)x where ¢ > 0. Note that from 4.10 of [8] C is actually a sub-A-module of
H ke

Lemma 4.1. & maps C, isomorphically onto B{n — k + 1)1, fort <4(n — k).
Proof. This is clear from the definitions.

Althpugh these facts have been presented algebraically there is a topological result
underlylng_ t_hem. This result, due to Milgram, is that if we denote by F, the fibre of
the non-trivial map $*K, , —» K,.,., where L is large, then in dimensions =<3(n — k) —
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2+ L, F, is homotopy equivalent to $“I),K,_;, see [12]. The homomorphism § is in
fact the boundary map in the Serre exact cohomology sequence of this fibration.

Recall that the indecomposable quotient of an A module M is the Z/2 vector space
M/AM where A is the ideal of clements of strictly positive degree. An element of M
is called A-decomposable if it maps to zero in the indecomposable quotient of M. This
notion of decomposability agrees with that used in (3.4). The proof of (3.4) uses a
result due to Harper on the indecomposable quotient of B(qg).

THEOREM 4.2. (See theorem A of {7)). Suppose the pair (n, k) is not exceptional and
thatn + k + 1 # 2 forany L. Then every element of B{n — k + 1)ps14, is A-decomposable. If
n+k+1=2" or (n, k) is exceptional then the indecomposable quotient of B(n —k +
Vaswnr is ZI2. Finally if n+k+1=2" then an element of B(n —k+ Duwsr is A-
decomposable if and only if it is an A-decomposable element of A.

We now give the proof of (3.4).
Proof of 3.4. Consider Sg™(1 ® ta—i @ ta_y)} in H"DK, ;. By 4.10 of [8]

Sa%(1 @ taek B tai) = 1 ® Sa'1at @ 5q* 1,
+kz_l(n7k-i)e2k—2:'®sit ®SEL
= 2‘(*2! qtn—z q Lok

k-1

+ 2 [qu‘_'.‘m—kv sqf“‘n—k]-

i=0

k=1 —k—=i " . N
Write Z for the class ¥ ("2k k 2[.‘)(:2"'2‘ ® 8q‘tai ® Sq'tns, then ZE C,, and so
-0 -

8Z € Bin—k+ 1),.441. Suppose n+k+1#2 then the assumption that (n, k) is not
exceptional gives us, from (4.2), that 6Z is A-decomposabte. If n + k + 1 =2 then we
see from the definition of & and (4.2) that 82 is A-decomposable if and only if

n—kY_
( 2k )=0m0d2.

However 7 — k = 2 — 1 — 2k and one checks that

(zhl—zk

2% )EO mod 2.

So we have shown that 8Z is A-decomposable in B(n—k+1) if (1, &) is not
exceptional and in view of (4.1} we have completed the proof of (3.4).

We come now to the proof of (3.5). The sirategy is obvious: we use known
information about the homology of QX and the homomorphism induced by the
diagonal map to deduce the result.

Using the Pontryagin product H,QX becomes an algebra; given x, y € H,.QX
denote their product by x o y. The map i: X - QX induces an injection in homology
and H,QX is generated, as an algebra, by iterated Dyer-Lashof operations evaluated
on i+ H ¢ X, see [5}and [11, pp. 40-42]. Let e*: H,0X > @] H.D.X be the dual to (3.1).

n=

We require the following facts concerning €*, see [1].
(4.3) e*iy: HoX — @ H.D,X is the embedding of the direct summand H.X.
n=i
Let 7: HQX — H.X be the composite of e* and the projection onto the direct
summand H.X.
(4.4) For x € H,QX, then 7Q'x =0, here Q' is the Dyer—Lashof operation.

The usual maps DX x D, X - D, . X provide & 24 + DX with an algebra struc-
n=]
ture.

{4.5) e* is an isomorphism of algebras.
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The following facts concerning the Kronecker pairing between HyQX and H*QXx
can be deduced from (4.3)}-{4.5). :

(4.6) Let a € H*X and x € H,QX, then {ea, x} = {a, 7x).
(4.7} Let a, bE H*X and x, y € H,.QX, then
{ela, b]. x = y}={a, mx)}b, my) + (a, myXb, nx).
Next we show:
(4.8) If a, bE H*X and x, y € H,OX, then
(ea - €b, x o y}=(a, wx)¥b, wy)+{a, my)}b, wx).
This follows since (ea - €b, x o y}= {ea (0 eb, Aulx = y)) where A: QX — QX x QX is
the diagonal map. However

Ao} =x @y +yYRx+2 @

where at least one of u;, v; € H,QX is decomposable under the Pontryagin product,
From (4.5) we conclude that either 7u; or #v; = 0 and (4.8) follows from (4.6).

Now suppose xu € H , QX and Axx = X x;(® x7, then (see [11, p. 6))

8:Qx =3 Q"X ® Qxl.

)
From this formula and (4.4) we deduce:
(4.9) Fora,bE H*X and xc H,QX,
(€a - b, Q'x)=10.

One more result is required.

(4.10) For a, b €E H*X and x € H, X,
" (ea - eb, i x)={a - b, x).
This compietes the proof of (3.5) for (4.7)-(4.10) show that
{€a - b, x)={e[a, b], x} + (elab), x)

for all x € H,QX.

§5. TWO EXAMPLES

The purpose of this section is to show how to apply the main theorem of this paper
to the study of the connectivity of Arf-changeable manifolds. For the terminology and
the context in which to set these examples the reader is referred to [9], particularly §3
of that paper.

Suppose k=2"—1 and that M* is a stably parallelizable closed manifold. Let
¥, € H¥'SO be the class defined by y, = Ow, where wy & HTBSO is the universal
Stiefel-Whitney class. The manifold M™ is called Arf-changeable if there exists a
map f: M — SO and a framing F of M such that ge(f*y,) = 1. If M is Arf changeable
then it has two framings F, and F, such that the quadratic forms qr, and gg, have
different Arf invariants, see [9].

. Suppose M is s-connected and f: M — SO, then a result due to Stong[14] shows
that

(i) If ${s + 1) = r+1 then f*y, =0.

(i} I ¢(s + 1) = r then there exists a stable primary cohomology operation a, such
that f*y, = a.x for some x € H**'M. ‘

" Here ¢(m) is the number of integers ! in the range 0 < ! = m such that { =0, 1,2,4
mod 8.
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The main result of this paper can be used to give evidence for the following
conjecture:

(5.1} Suppose k= 2" ~1 with r=4, and M™ is stably parallelizable and s-connected
where ¢{(s + 1) = r. Then M is not Arf-changeable.

If the condition r = 4 is relaxed then (5.1) is trivially false as the examples S'x §',
%% 5% and 87 x §7 show. Here (5.1} will be verified for r=4 and 3.

In any case Stong's result shows that (5.1) is true if ¢(s + 1)=r + 1. Consiler the
case ¢(s+ 1) = r, in the first instance when r =4 and so s =7. Let f: M¥ 580 bea
map of a 7-connected manifold into SO, then

f*y4=(Sa’ + Sq'Sq*Sq')x
for some x € H*M with Sg®x =0, see [14, p. 526, p. 543].
Let F be a framing of M, then :
(5.2) qr(5q'x + 54°$9°5q’x) = qr(Sa"%) + q#(Sq*Sq*Sq'x)+ Sq'x - Sq*Sq*Sq'x.
Note that (15,7) and (15, 4) are not exceptional pairs and so using (1.3} we deduce
ar(Sq'x) = i 8q""x - Sq'x
(5.3) S
qr(S5q*Sq*Sq'x) = ,2(, Sq%'8Sq°Sq"x - Sq'Sq*Sq'x.
Note that x is an B-dimensional class so the first formula in (5.3) reduces to
.49 ar(Sq'x) = Sqx - Sq°x.
From the Adem relations we can conclude that
Sq’5q°5q' =90 Sq’°Sq*Sq' =0
and so the second formula in (5.3) reduces to
(5.5)  qe(Sq*Sq*Sq'x) = Sq°Sq*Sq'x - §¢°Sq'x + 84'Sq*Sq'x - Sq'54°5q'x.

We now use the following fact concerning products and cohomology operations in
the cohomology of a stably parallelizable manifold N*. Let x € H"™'N, y € H*N and
a € A, Then x - ay = (xa)x) - y where x: A— A is the canonical antiautomorphism of
A. Therefore, referring to (5.5), we see that

Sq75q’Sqa'x - $9'(Sq’Sq'x) = (xSq")8q’5q’Sq’x - 5¢’Sq'x =0
since xSq' = Sq' and Sq'Sq” = 0. So (5.5) reduces to
(5.6) qr(Sq*Sq*Sa'x) = 5q°Sa*Sq'x - Sq°Sq'x.
Putting (5.2}, (5.4) and (5.6) together and using the above remark about products and
cohomology operations gives
6.7 ge(Sq'x + 54°5¢°Sq'x) = x - (xSa*)Sq’x + x(59Sq")Sq"Sq’Sq'x
+{xSq"Sq"Sq*Sq'x).

After a straightforward calculation with x the Adem relations, and using the fact that
S4%°x = 0 we deduce the right hand side of (5.7) is zero. This verifies (5.1} in this case
r=4.

Now consider the case ¢(s+ 1)=r when r=73 and so s =8. Let f: M®5>80bea
map of an 8-connected manifold into SO, then

f*yo=(5q4"54°59°Sq" + Sq"'S¢°Sq’ + Sq*°Sq"Sq"Sq' + 59"°Sq + $q"*Sa'Sq’)x

for some x in H*M with Sg'x =0, see [14, p. 526, p. 543].
A similar argument to the one given above, but one involving a much longer
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calcuiation with y and the Adem relations will show that

ar(f*ys)=0

for any framing F of M and so will verify (5.1) when r=5.
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