
A CANONICAL QUADRATIC FORM
FOR THE RING OF 2-ADIC INTEGERS

BY BURTON W. JONES

1. Introduction. One of the fundamental problems in the theory of quadratic
forms is the determination of criteria for the arithmetic or rational equivalence
of two forms. Hasse [2] has shown that two quadratic forms with rational co-
efficients are equivalent in K(1) if they are equivalent in the field of reals and
in all K(p) where K(1) is the field of rationals and K(p) is the field of p-adic
numbers. (Two forms are equivalent in K, or R below, if one may be taken into
the other by a transformation in K, or R, whose inverse is also in K, or R.)
Siegel [6] has shown the corresponding result for rings, namely, that two forms
with rational integral coefficients are of the same genus if and only if they are
equivalent in the field of reals and in every R(p) where R(p) is the ring of p-adic
integers. (Two forms are said to be of the same genus if, for any integer q, one
form may be taken in.to the other by a transformation whose determinant is
prime to q and the denominators of whose elements are prime to q. For more
details see [4].) It will be seen that, if the determinants of two forms are equal,
the only R(p) which need to be considered are those for p a prime factor of twice
the determinant of the form.

It therefore is of interest to determine criteria for equivalence of forms in
R(p) and K(p). Hasse [2] has accomplished this for equivalence in the field of
rationals by establishing invariants for K(p) along different lines from Minkow-
ski’s earlier development [5]. Minkowski found the generic invariants which,
however, have the disadvantage of using not only the form but its various con-
comitants. The establishment here of a canonical form for R(p) avoids this
complication and results in a more manageable criterion for equivalence.

Since the derivation of a canonical form for R(p) with p odd is almost trivial,
it is left to the last section; and the bulk of this paper is devoted to finding a
canonical form for the ring R(2) of 2-adic integers. We use the term "canonical
form" in the strict sense that every form shall be equivalent to a unique canonical
form. One invariant is introduced, namely },(I), which is related to Hasse’s
invariant c2(fo) as follows:

where 1 is ghe degerminang of I. (Hasse shows ghe relationship between his
invariant and ghat one of Minkowski denoged by C .)
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2. Preliminary definitions and lemmas. We denote matrices by capital Ger-
man. letters, vectors by lower case German letters and integers in R by lower
case italic letters except that we reserve the letters f and g for quadratic forms
with variables x and coefficients in R. A form and its matrix are said to be
improperly primitive if the matrix has some unit element but has no unit element
on its diagonal. If a matrix or form has a unit diagonal element it is called
properly primitive. If a 2b, where b is a unit and/c a rational integer, we
write v(a)= and call/c the ,alue of a. v(l) is defined to be the value of the
element of l of least value. Ifa t2b, where is a unit in R, write a b.

If f is equivalent tog in R by the above definition we writer g and if and
(9 are the corresponding matrices, --- @. We also denote

by I 1. is the identigy matrix. A magrix is called unimodulr if its
elemengs are in R and igs degerminant is a unig. Thus gwo magriees or forms
are equivaleng if and only if ghere is a unimodular gransformagion aking one
ingo ghe ogher.

Except in 5, all theorems, relate to the ring of 2.adic integers.
The following lemmas have been proved.elsewhere:

LEMMA 1. If is a symmetric matrix th elements in R, then is equivalent
to a matrix

where, for every i, t, < t+ a is a unit. Furthermore each is either a
diagonal form with unit elements or it is one of the follong" {, , } or, , , }, where

= ( )’ : ( 12)"
Prog. See [4; Lemma 6].

COaOLLAnY. If l and are two improperly primitive forms of odd determinant,
.they are equivalent if and only if their determinants are congruent (mod 8).

LEMMA 2. If i8 of the form in Lemma 1 a

,2

where s < s+, and the are of unit determinant, then k n and s, t for
i= 1,...,n.

Proof. This follows from results of Minkowski [5]. A proof may be found in
a paper of W. H. Durfee [1, Lemma 2].

In the next section we establish a canonical form. In 4 we prove it is unique.
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3. The determination of a canonical form. We proceed to specialize still
further the form of Lemma 1, first dealing with those transformations which
change each Ii, if necessary, without changing its neighbors.

LEMMA 3. If ’ I is a properly primitive form in r variables and of odd determi-
nant, then, for r > 2,

: x, -- x2 "- "- ax,_2 -- bx2_l --cx2
where a, b, c take one of the following sets of values:

(1, 1, 1)
(1, 1,5)
(1, 1,3)
(1,1,7)

while if r 2, b and c take

(1’)

(1, 1)
(1, 5)
(1, 3)
(1, 7)

or (1, 3, 3) for [I 1 (mod 8),
or (1, 3, 7) for [I 5 (mod 8),
or (3, 3, 3) for ?ll - 3 (mod 8),
or (3, 3, 7) for I1 7 (mod 8),

one of the following sets of values

or (3, 3) for [I - 1 (mod 8),
or (3, 7) for II 5 (mod 8),

for llt 3 (mod 8),
for lI 7 (mod 8).

If r 1, c =- ?l (mod8) andcisoneofl, 3,5,7.

(2)

.I may be assumed to be in diagonal form.

0 1 1 1

1

1 1

The transformation

(x + x. -- x3 -t- x) (mod 4). Fromtakes xl -t- x2 -t- x3 -t- x4 into a form
athis it cn easily be shown that any form al -- 22 - a33 - a44 with

ba a a a (mod 4) may be taken into a form bx - 2x2 -}- b3x3 -- b4with b b2 b3 b4 --a (mod 4). Hence we may make congruent to 1
(mod 4) all but at most three of the coefficients of the form. Also

(12 --2a/(1 + 4a)(3) 1/(1 -[- 4a) /

takes xl - ax2 into (1 - 4a)x - axe + 4a) which shows that all but at
most one of the coefficients --1 (rood 4) can be made 1 (rood 8) and hence
equal to 1 since, for every a --- 1 (mod 8), x a is solvable in R. Note also
that (3) takes 5x + 3x into xl + 7X2 and 7x + 7X2 into 3x - 3x2 (mod 8).
These considerations enable us to complete the proof.
We shall show in 4 that no two such forms are equivalent and hence justify

the following
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DEFINITION. If (a, b, c) have the values in the first column of (1) or (1’) we
shall call k(A) 1, if in the second column k(A) -1. Note that k(A) 1
ifA 3 (mod4) forr 2orifr 1.
An equivalent definition is the following: If /is any properly primitive matrix

of odd determinant, where ’I
_

a,x, then ),(I) is defined to be 1 if 4t or
4t 1 of the a’s are congruent to 3 (mod 4) and -1 if 4t W 2 or 4t -t- 3 are

congruent to 3 (mod 4).
Next we consider transformations which change I; at the expense.of changing

lk for ] > i.

LEMMA 4. If is a properly primitive matrix of odd determinant and b is a unit,
then

{1, 25} _--__ {/1,251},

where .I =-- 1 (mod 4), (I1) 1 and b is a unit.

Proof. The transformation

(4) (11 2b/(aa/(a -b- :))
takes a, 2b into (a -t- 2b), 2ab/(a - 2b) }. Hence, if l is in the form of Lemma
3, we can by this means make all its coefficients 1 (mod 4) and hence I
X() 1 (mod 4).

LEMMA 5. If a is a unit,

2 1 0

0 0

0 lOa

Proof. Use the transformation

(5)

1 0 2a/31

which takes the first form into (2 -- 2a)x -[-- (2 -- 2a)x -- (2 + 4a)xx2 --[-
2(4a/3 + a)x. Now 4a2/3 + a =- 4 4- a (mod 8) and the form may be reduced
to the desired form by the transformations used in proving the last part of
Lemma 1.

LEMMA 6. If l is a properly primitive matrix of unit determinant and if’ =- 4
(mod 8) is solvable, then
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where I 5 ll (mod S) and if ! is properly primitive so is while if
2riCo and 2 o, where !o and hence o have unit elements with O, then
o a o are both properly primitive or both improperly primitive.

Proof. We may assume to be in the form of Lemma 3 and, by Lemma 1,
o {,2}, where has a unit deteinant and is of the fo prescribed
in Lemma 1. Let a be some unit element of and o a solution of ’ 4
(mod 8). The transformation

takes a, into a + go, }, where

o/(a +
Then if {(), a}, {(), a + ol we have 5 g (mod 8).
If is properly primitive take (2, 0, 0) and have (rood 4) which
shows that is properly primitive. On the other hand, if 2’o with > 0,
we have /2’ o (rood 2*) which completes our proof.
The results of these lemmas are collected in

EOREM 1. Every symmetric matrix in R is equivalent in R to a matrix

{2",, 2", ..-,

where, #r every i, t < t+l a is a unit. Furthermore, every is in the
#rm prescribed in Lemma 3 or , , or , , , subject to the
following further coitions

1. If ,+ is properly primitive a t,+ t +1, then , {, , } if
is improperly primitive while () 1 m [, (rood 4) if is properly

primitive.
2. If is properly primitive a Xt{2t’+-’+i 2"+’-t’+2}X 4 (rood 8)

solvable, then , 1 (mod 8).
3. If the initial conditions for both 1 and 2 hold with properly primitive, then, 1 (mod 8) and h(,) 1.

DEFINITION. We call a form or matrix canonical if it satisfies the conditions
of Theorem 1.

4. The uniqueness of the canonical form. To Gordon Pall is due that portion
of the following proof preceding the division into cases.

TItEOREM 2. If a is a unit and either v(!) v(@) > 0 or ! and are both
properly primitive or both improperly primitive, a, ! -- a, } implies ! .

The equation
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is equivalent to

(6) pa + ?f?a a,

(7) pa3. "4- 3f (0),

(8)

If p # 0 we solve (7) for 32 and substitute it in (8) to get

(9) ,o, ,
where o !333!/pa + !3. We then seek a matrix such that

(10) ( + !3’)( + )!) o.
Substitution of the value of !o shows that this search will be ended if

Y + ) + )’3 1/pa.

If is non-singular, multiply the above on the left by ()’)- and on the right
by - to get

(11) )-’ + ()’)-’ +! ())’)-’/pSa.

If -1 pa(+l + p), equation (11) is equivalent to (6).
Then, from (9) and (10), we see that , + 3a!, takes ! into @.

Since the hypothesis of the theorem implies l! q] we see that IE has unit
determinant and if we can show that its elements are in R we will have ! _-- @.
This will be shown if v(3a!3,) > v[pa(::l:l + p)] v(pa) + v(-4-- 1 + p). We
now divide our proof into cases.

1. If v(p) > 0 and p # 0, we have v(-4-1 + p) 0 and (7) shows v(pa)
v(,) _< v().

2. If v(p) 0 and v(!3) > 0, we can choose the ambiguous sign in )- so that
v()-1) 1 and hence v(33f3,) >_ v(-).

3. If p 0, (6) and (7) reduce to 3f333 a and 3!33, 0. The former
equation implies v(3a) 0 which allows us to construct a unimodular matrix

whose first column is 3 takes ! into a form ! whose leading element

is a, and a transformation of the form ( ) takes f1 into {a, 21. Thus

takes f into {a, !} and the first column of is . Thus the transformation
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takes {a, a, 2} into {a, q}. The first column of 9 is (0, 1, 0, 0)’ since
-8 (1, 0, 0)’. Since

is an automorph of {a, a, .}, the transformation :9 takes {a, a, 2} into
{a, {}. Now the first column of 9 is (1, 0, 0)’. We may thus write

with 9 unimodular. The equation corresponding to (7) implies 9. 0 and
hence 4 takes {a, 2 into , that is, .

4. Suppose v(p) 0 v(). By considering the inverse of the transforma-
tion we may assume 4 is unimodular. If v() > 0, that is, v() > 0,
we can use the argument of Case 2 above. Thus we need to consider only
v($g$,) 0 which implies v(.3) 0.
Our theorem trivially holds if and @ have just one variable since --" l-

We assume the theorem for all and smaller than the ones under considera-
tion. Consider and @ in canonical form.

Since is unimodular, represents some unit if is properly primitive
and hence if the first r elements of and are units (r >_ 1), equation (8) shows
that one of the first r elements of is a non-unit. Permute the variables in
and : if necessary to make it the first. Then, b, the leading element of 44,

is congruent (mod 4) to c, the leading element of q. We postpone until the end
the case where and q are improperly primitive.

First, if c a (mod 4), for properly chosen s the transformation

2s s 0

is an automorph of {a, (}, for it may be shown [1; Theorem 2] that a 4s2a
sc and c sa 4sc have solutions. Then the transformation

s 0

2s0 :
takes a, 1 into {a, (} and has a non-unit as its leading element. Then as in
Case 1 or Case 3 we can prove --- .
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Second, if c a (mod 4), it follows that b 6 a (mod 4). There will then be a
unimodular transformation :, whose first column and row -= (1, 0, 0)
(mod 2), taking 3!334 into {b, 1}. If !31 has a unit diagonal element we
may by a unimodular transformation (mod 2) take {b, !11 into {cl !32
where c c (mod 8) and [1; Theorem 3] we can then by a unimodular trans-
formation -= (rood 2) take {cl, 3 into {c, !3a }. Thus we have a transforma-
tion : taking 3!34 into {c, !a}. Then it may be seen that the transformation

-1 -1 -1

takes {a, c, !33 into {a, c, where {c, 1 }" Equation (8) with the leading
element of 32 a non-unit and that of 3!33 a unit implies that the first column
of 3!334 is congruent to (1, 0, 0) (mod 2). Then, writing equation (7)
in the form

(12)

we see that the leading element of 331’ is a non-unit. Furthermore, since the
first row and column of are congruent to (1, 0, 0) (mod 2), the same is
tree of . This shows that the second row and column of 9 are congruent
to (0, 1, 0, 0) (mod 2). Then the transformation

0 1 0 0 1 0

0 0

takes {c, a, ida} into {c, a, 1} and, in this transformation, the first row

(1, 0, 0) (mod 2), that is, the new 32 has positive value which, by the third
sentence of this Case 4, shows {a, a {a, }. Then since !a has a unit

diagonal element if !3 has, we see by the hypothesis of the induction that

a 1 Then, by retracing various steps we find !3 -- .It remains to consider what happens when b c 6 a (mod 4) and ! is

improperly primitive. Then (8) shows that the first r elements of 32 are con-

gruent to (0, 1, 1) (mod 2), where the largest principal minor of odd de-
terminant in C and hence in 3!3 has r rows.

leading r by r minor of 3!B
Thus (8) implies that the

1 0 0 0 0 0

0 0 1 1 1 1

0 1 0 1 1 1

0 1 1 1 1 0

(mod 2).
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Then equation (12) shows that the first r elements of ()--1
(0, t, t) (mod 2) for 1 or 0.

1 1 1

0

are congruent to
Furthermore, the transformation

2takesbx T dx2 T 2x2x3 + 2dx into a form -= -bx + ex. + hx3 (mod4)
and hence there is a transformation

l1 1 1

9- 1 1 0

1 0 1
(mod 2),

where 9 is a null matrix, taking !4 into {bl }, where !. is properly
primitive and b --= -b a (mod 4). Hence the transformation

takes {a, bl 2} into {a, c, 1 }, where, in virtue of the fact that the first r
elements of 1, are congruent to (0, t, t) (mod 2), the leading element
of 9-1513 is a non-unit. Then, since we can find an automorph

281 82 )s3 2s4
of {a, bl we have a transformation

2Sl 82

2 J S3 2S4 1

taking {a, bl, !2 into {a, c, 1 }, where the leading element of 2 is a non-unit.
We proceed then as in Case 1 or Case 3.
We now consider the postponed case, namely, ! and improperly primitive.
4 unimodular implies that !4 is also improperly primitive. (8) shows that
the principal diagonal terms of2 are all of positive value and hence v(2) > 0
which implies v(!4) > 0, which can be dealt with as in Case 2.

COROLL.RY 1. If a, !
_

b, }, where and satisfy the conditions of the
theorem, if a b (mod 8) and a and b are units, then ! -- .This holds since ax b then has a solution in

COROLLARY 2. If al a2 !D -- b b }, where and sa.tisfy the condi-
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tions of the theorem and if al bl a2 b2 =- 0 or 4 (mod 8) with a, and b,
units, then f .. .

This follows from Corollary 1 if a b (mod 8). If a, b - 4 (mod 8)
apply first the transformation (3) which takes {a a} into {c c} with
c, a, T4 b, (modS).

If and are the matrices of two equivalent canonical forms we may from
Lemmas 1 and 2 write

= 22
22 2.(13) {2,, ,’"

Furthermore, since both or neither fo represents a unit multiple of 2’ it
follows that both or neither ’,’ represent units. We then prove

THEOREM 3. If and are two equivalent canonical matrices (13) and or
represent a unit, then

Proof. Suppose and, for simplicity, take t 0.
First, if () () we may assume by condition 1 of Theorem 1 that

either t2 ) 1 or one of , 2 is improperly primitive. Now if were properly
primitive and t2 1 we could, by the transformation used in Lemma 4, make
() () and successive applications of Theorem 2 would show

’{2*’2, 2.} ’{2 2’’.} (rood 4)

which would imply that 2 is properly primitive. Hence 2 and 2 are both
improperly primitive or t2 ) 1. Then’ ’ (rood 4) which, by Theorem

3x + 3x (rood 4), which is false.2, would lead to x + x2
Second, if (rood 4) we proceed as in the above case.
Third, if () () and [ 5 (rood 8) we may assume by

condition 2 of Theorem 1 that

’{2’22,2t’2a} 4 (mod 8)

is not solvable and similarly for . Then Theorem 2 would lead to

’{a, 2’, 2", } ’{b, 2", }r

with a 5b (rood 8). The first form would then represent no numbers congruent
to b (rood 8) which would deny the equivalence.

EOREM 4. f a are improperly primitive equivalent forms of odd
determinant a a and b are units, then { ,.a, 2} { b, } im-
plies {a, } {b, }.

Proof. We may identify and and notice that it is sucient to prove
the theorem for a 2 by 2 matrix of one of the forms
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First, suppose I :. The transformation

1 1 -a

1 -a a-t-1

1 0 -a

takes ’{a, I} into a form ’{(a -t- 2), a, -(2 + a)} (mod 8) and we have
{a + 2, -(2 + a), a, I} - {b + 2, -(2 + b), b, }. Ifb - a(mod4),
(b + 2) (a + 2) ---- -(2 + b) + 2 + a 0or4 (modS) and Corollary 2
of Theorem 2 applies to prove our theorem. If b - -a (mod 4), b 2 -I- 2
a -(2 + b) (a + 2) --- 0 or 4 (mod 8) and, as before, our proof is complete.

Second, suppose { @. The transformation

1 1 -2 3a/
1 --3a 1 a
1 0 --3a )

takes ’{a, } into ’{(a 2), (a + 2), -a} (mod 8). We may consider
and both of positive value or having a unit diagonal element since {a,
is equivalent to {a, }, where l has the property required.
Ifb-a(mod8),b- 2- (a- 2) b+2- (a-2) --- 0(modS) and, by

corollaries 1 and 2 of Theorem 2, I
_

which implies our theorem.
Ifb 5a(mod8),b- 2 a-2(mod8) andb-t- 2- (a- 2) -b

a 0 or 4 (mod 8). Thus Corollary 2 of Theorem 2 implies {b 2, } ._
{a -t- 2, 1.} and Corollary 1 implies . which proves our theorem.
Otherwise, suppose b a (mod 4). Then , {a, X {b, , }. We see

first that’ --- ’ 0 (mod 4) is not possible, for if it were, the proof of
Theorem 1 would show that we could put {l, a, Il and { b, 1 into
canonical form without altering k{I, a} or X{, b}. This would then contra-
dict Theorem 3. Also suppose ’ {a, I} b (mod 4) were solvable; we could
find a I a, with a, =-- b (mod 4) and deal with it as above.

It thus remains to consider the case b --- -a (mod 4), v() 0 v() with
neither of the following solvable: ’ a, l b (mod 4) or ’ b, --- a (mod
4). This implies ’ a, I -= ax + ax (mod 4) and ’ {b, } --= bx - bx22
(mod 4). Thus ’ a, I2 is equivalent to a form -= ’ a, a, a, a
(rood 4) while ’{ I, b,} to a form ’{-b, -b, -b, b} =- ’{a, a, a, -a}
(rood 4). Thus the X invariants are not equal and by the above discussion the
hypothesis of our theorem is contradicted.
We have the almost obvious

LEMM. 7. /.f {:, , , , } and : {, :,
T., , }, where
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THEOREM 5.
determinant and

and, though I and ! are of the same order, one need not contain the same number
of l[.’s as the other, then ’?1 ’! (rood 4) implies

Proof. I =- ’ (mod 4) implies I (0).

If and 1 are improperly primitive equivalent matrices of odd

then

provided v([) v(!,) > 0 or 1 and ! are both properly primitive or both im-
properly primitive.

Proof. The hypothesis of our theorem implies {0/, a, I, {!, a, !. for
any unit a. Then Theorem 4 implies {a, } {a, ,} and the conditions of
our theorem with Theorem 2 imply .
Our principal result is embodied in

THEOREM 6. If a are canonical matrices with

= {2",, ,.
then , for i 1, n.

Proof. By Theorem 3, if t or represents a unit and by Theorem
2 we have

{2’., ,2’-.} {2’, ,2’-},

where each matrix is canonical, and so we proceed. Suppose $ is improperly
primitive for i 1, k with 1 k < n and +1 is properly primitive. If
t+ 1 + t, Theorem 1 implies and Theorem 5 and Lemma 7 apply
to show for i k and

2k+(14) {2"*’+,, ,2 } ’+,

Now and canonical imply and the forms in (14) are canonical.
Hence + + and we proceed with the proof.

Finally, if , . are improperly primitive, we have by the above process. .. In fact, for this case we have the

COROLLARY. U and are of the forms above, where the , and are not
necessarily canonical but are all improperly primitive, then for all i.

5. Supplementary results. It is easily shown along lines similar to the proof
of Lemma 1 that, in any R(p), a matrix is equivalent to
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where each l has determinant prime to p and t < t/l for i 1, n 1.
Furthermore (see for example [6; Lemma 3]), if p is odd, each

(16)

This shows that any two forms of equal determinants are equivalent in every R(p)
for which p is an odd prime not a divisor of the determinant. Furthermore, since
[3] in any R(p), p odd, /, !} -- {I, ] implies -- ., it may be seen that (15)
is made a unique canonical form by replacing (16) by the condition

(17)

whee q is 1 if / is a quadratic residue of p and the least positive non-residue
of p if I is a non-residue of p.
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