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Dedicated to the memory of my father



Preface

The present book started from a set of lecture notes for a course taught to stu-
dents at an intermediate level in the German system (roughly corresponding
to the beginning graduate student level in the US) in the winter term 86/87
in Bochum. The original manuscript has been thoroughly reworked several
times although its essential aim has not been changed.

Traditionally, many graduate courses in mathematics, and in particular those
on Riemann surface theory, develop their subject in a most systematic, co-
herent, and elegant manner from a single point of view and perspective with
great methodological purity. My aim was instead to exhibit the connections
of Riemann surfaces with other areas of mathematics, in particular (two-
dimensional) differential geometry, algebraic topology, algebraic geometry,
the calculus of variations and (linear and nonlinear) elliptic partial differ-
ential equations. I consider Riemann surfaces as an ideal meeting ground
for analysis, geometry, and algebra and as ideally suited for displaying the
unity of mathematics. Therefore, they are perfect for introducing intermedi-
ate students to advanced mathematics. A student who has understood the
material presented in this book knows the fundamental concepts of algebraic
topology (fundamental group, homology and cohomology), the most impor-
tant notions and results of (two-dimensional) Riemannian geometry (metric,
curvature, geodesic lines, Gauss-Bonnet theorem), the regularity theory for
elliptic partial differential equations including the relevant concepts of func-
tional analysis (Hilbert- and Banach spaces and in particular Sobolev spaces),
the basic principles of the calculus of variations and many important ideas
and results from algebraic geometry (divisors, Riemann-Roch theorem, pro-
jective spaces, algebraic curves, valuations, and many others). Also, she or
he has seen the meaning and the power of all these concepts, methods, and
ideas at the interesting and nontrivial example of Riemann surfaces.

There are three fundamental theorems in Riemann surface theory, namely
the uniformization theorem that is concerned with the function theoretic as-
pects, Teichmiiller’s theorem that describes the various conformal structures
on a given topological surface and for that purpose needs methods from real
analysis, and the Riemann-Roch theorem that is basic for the algebraic geo-
metric theory of compact Riemann surfaces. Among those, the Riemann-Roch
theorem is the oldest one as it was rigorously demonstrated and successfully
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applied already by the middle of the last century. The uniformization the-
orem was stated by Riemann as well, but complete proofs were only found
later by Poincaré and Koebe. Riemann himself had used the so-called Dirich-
let principle for the demonstration of that result which, however, did not
withstand Weierstrass’ penetrating criticism and which could be validated
only much later by Hilbert. In any case, it seems that the algebraic geometry
of Riemann surfaces had a better start than the analysis which succeeded
only in our century in developing general methods. Teichmiiller’s theorem
finally is the youngest one among these three. Although the topological result
was already known to Fricke and Klein early this century, it was Teichmiiller
who in the thirties worked out the fundamental relation between the space
that nowadays bears his name and holomorphic quadratic differentials. Teich-
miiller himself was stimulated by earlier work of Grétzsch. Complete proofs
of the results claimed by Teichmiiller were only provided by Ahlfors and Bers
in the fifties and sixties.

In the present book, all three fundamental theorems are demonstrated
(we treat only compact Riemann surfaces; while the Riemann-Roch and
Teichmiiller theorems are naturally concerned with compact surfaces, for the
uniformization theorem this means that we restrict to an easier version, how-
ever). For Riemann-Roch, we give an essentially classical proof. Teichmiiller’s
theorem is usually derived with the help of quasiconformal mappings. Here,
we shall present a different approach using so-called harmonic maps instead.
This method will also be used for the uniformization theorem. While qua-
siconformal maps are defined by a pointwise condition, harmonic maps are
obtained from a global variational principle. Therefore, the analytic prop-
erties of harmonic maps are better controlled than those of quasiconformal
maps. For both classes of maps, one needs the regularity theory of elliptic
partial differential equations, although harmonic maps are perhaps a little
easier to treat because they do not require the Calderon-Zygmund theorem.
What is more important, however, is that harmonic map theory is of great
use in other areas of geometry and analysis. Harmonic mappings are criti-
cal points for one of the simplest nonlinear geometrically defined variational
problems. Such nonlinear methods have led to enormous progress and far-
reaching new developments in geometry. (Let us only mention Yau’s solu-
tion of the Calabi conjecture that is concerned with differential equations of
Monge-Ampere type, with its many applications in algebraic geometry and
complex analysis, the many applications that harmonic maps have found for
Kahler manifolds and symmetric spaces, and the breakthroughs of Donald-
son in four-dimensional differential topology that were made possible by using
Yang-Mills equations, and most recently, the Seiberg-Witten equations.) The
present book therefore is also meant to be an introduction to nonlinear ana-
lysis in geometry, by showing the power of this approach for an important and
interesting example, and by developing the necessary tools. This constitutes
the main new aspect of the present book.
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As already indicated, and as is clear from the title anyway, we only treat com-
pact Riemann surfaces. Although there exists an interesting and rich theory
of noncompact (open) Riemann surfaces as well, for mathematics as a whole,
the theory of compact Riemann surfaces is considerably more important and
more central.

Let us now describe the contents of the present book more systematically.

The first chapter develops some topological material, in particular fundamen-
tal groups and coverings, that will be needed in the second chapter.

The second chapter is mainly concerned with those Riemann surfaces that
are quotients of the Poincaré upper half plane (or, equivalently, the unit disk)
and that are thus equipped with a hyperbolic metric. We develop the foun-
dations of two-dimensional Riemannian geometry. We shall see the meaning
of curvature, and, in particular, we shall discuss the Gauss-Bonnet theorem
in detail, including the Riemann-Hurwitz formula as an application. We also
construct suitable fundamental polygons that carry topological information.
We also treat the Schwarz lemma of Ahlfors and its applications, like the Pi-
card theorem, thus illustrating the importance of negatively curved metrics,
and discussing the concept of hyperbolic geometry in the sense of Kobayashi.
Finally, we discuss conformal structures on tori; apart from its intrinsic in-
terest, this shall serve as a preparation for the construction of Teichmiiller
spaces in the fourth chapter. In any case, one of the main purposes of the
second chapter is to develop the geometric intuition for compact Riemann
surfaces.

The third chapter is of a more analytic nature. We briefly discuss Banach-
and Hilbert space and then introduce the Sobolev space of square integrable
functions with square integrable weak derivatives, i.e. with finite Dirichlet
integral. This is the proper framework for Dirichlet’s principle, i.e. for ob-
taining harmonic functions by minimizing Dirichlet’s integral. One needs to
show differentiability properties of such minimizers, in order to fully justify
Dirichlet’s principle. As an introduction to regularity theory for elliptic par-
tial differential equations, we first derive Weyl’s lemma, i.e. the smoothness
of weakly harmonic functions. For later purposes, we also need to develop
more general results, namely the regularity theory of Korn, Lichtenstein,
and Schauder that works in the C*® Holder spaces. We shall then be pre-
pared to treat harmonic maps, our central tool for Teichmiiller theory and
the uniformization theorem in an entirely elementary manner, we first prove
the existence of energy minimizing maps between hyperbolic Riemann sur-
faces; the previously developed regularity theory will then be applied to show
smoothness of such minimizers. Thus, we have found harmonic maps. Actu-
ally, the energy integral is the natural generalization of Dirichlet’s integral
for maps into a manifold - hence also the name “harmonic maps”. We shall
then show that under appropriate assumptions, harmonic maps are unique
and diffeomorphisms. Incidentally, Hurwitz’ theorem about the finiteness of
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the number of automorphisms of a compact Riemann surface of genus p =1
is a direct consequence of the uniqueness of harmonic maps in that case.

The fourth chapter is concerned with Teichmiiller theory. Our starting point
is the observation that a harmonic map between Riemann surfaces natu-
rally induces some holomorphic object, a so-called holomorphic quadratic
differential on the domain. We investigate how this differential changes if
we vary the target while keeping the domain fixed. As a consequence, we
obtain Teichmiiller’s theorem that Teichmiiller space is diffeomorphic to the
space of holomorphic quadratic differentials on a fixed Riemann surface of
the given genus. This bijection between marked conformal structures and
holomorphic quadratic differentials is different from the one discovered by
Teichmiiller and formulated in terms of extremal quasiconformal maps. We
also introduce Fenchel-Nielsen coordinates on Teichmiiller space as an alter-
native approach for the topological structure of Teichmiiller space. Finally,
using similar harmonic map techniques as in the proof of Teichmiiller’s theo-
rem, we also demonstrate the uniformization for compact Riemann surfaces;
here, the case of surfaces of genus 0 requires a somewhat more involved con-
struction than the remaining ones.

The last chapter finally treats the algebraic geometry of Riemann surfaces,
historically the oldest aspect of the subject. Some of the central results had
already been derived by Abel and Jacobi even before Riemann introduced
the concept of a Riemann surface. We first introduce homology and cohomo-
logy groups of compact Riemann surfaces and building upon that, harmonic,
holomorphic, and meromorphic differential forms. We then introduce divi-
sors and derive the Riemann-Roch theorem. As an application, we compute
the dimensions of the space of holomorphic quadratic differentials on a given
Riemann surfaces, and consequently also the dimension of the correspond-
ing Teichmiiller space that was the subject of the fourth chapter. We also
obtain projective embeddings of compact Riemann surfaces. We then study
the field of meromorphic functions on a compact Riemann surface and re-
alize such surfaces as algebraic curves. We also discuss the connection with
the algebraic concept of a field with a valuation. We then prove Abel’s fam-
ous theorem on elliptic functions and their generalizations or - in different
terminology - on linearly equivalent divisors, as well as the Jacobi inversion
theorem. The final section discusses the preceding results for the beautiful
example of elliptic curves.

Often, we shall use the terminology of modern algebraic geometry instead of
the classical one; however, the notions of sheaf theory have not been used.

The prerequisites are mostly of an elementary nature; clearly, for under-
standing and appreciating the contents of the present book, some previous
exposure to mathematical reasoning is required. We shall need some fun-
damental results from real analysis, including Lebesgue integration theory
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and the LP-spaces, which can be found in my textbook “Postmodern Analy-
sis” (see the bibliography). We shall also obviously require some background
from complex analysis (function theory), but definitely not going beyond
what is contained in Ahlfors’ “Complex Analysis”. In particular, we assume
knowledge of the following topics: holomorphic functions and their elementary
properties, linear transformations (in our book called “Mobius transforma-
tions”), the residue theorem, the Arzela-Ascoli theorem. At some isolated
places, we use some results about doubly periodic meromorphic functions,
and in Sec. 5.10 also some properties of the Weierstrass P-function. Finally,
in Sec. 5.8, for purposes of motivation only, from the last chapter of Ahlfors,
we recall the construction of a Riemann surface of an algebraic function as a
branched cover of the two-sphere. In Sec. 5.1, we require some basic results
about analysis on manifolds, like the Stokes and Frobenius theorems.

For writing the present book, I have used rather diverse sources as detailed
at the end. (All sources, as well as several additional references for further
study, are compiled in the bibliography.) In particular, I have attributed the
more recent theorems derived in the text to their original authors in that
section, instead of the main text. Historical references to the older literature
are sparse since so far, I did not enjoy the leisure required to check this
carefully. At the end of most sections, some exercises are given. The more
demanding ones are marked by an asterisque.

I thank R. R. Simha for his competent translation of my original German
manuscript into English, for his several useful suggestions for improvements,
and in particular for his enthusiasm and good will in spite of several mishaps.
Tilmann Wurzbacher and Wolfgang Medding kindly supplied many useful
and detailed corrections and suggestions for my manuscript. Several correc-
tions were also provided by Marianna Goldcheid and Jochen Lohkamp. The
book benefited extremely from the thorough and penetrating criticism and
the manifold suggestions that were offered by Jiirgen Biiser.

Finally, I am grateful to Isolde Gottschlich, Erol Karakas, Michael Knebel,
and Harald Wenk for typing and retyping various versions of my manuscript.
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The subject of Riemann surfaces is as lively and important as ever. In partic-
ular, Riemann surfaces are the basic geometric objects of string theory, the
physical theory aiming at a unification of all known physical forces. String
theory starts with a one-dimensional object, a string, and as such a string
moves in space-time, it sweeps out a surface. What is relevant about this
surface is its conformal structure, and so we are naturally led to the concept
of a Riemann surface. In fact, much of string theory can be developed on
the basis of the results, constructions, and methods presented in this book,
and I have explored this approach to string theory in my recent monograph
“Bosonic strings: A mathematical treatment”, AMS and International Press,
2001.

For this new edition, I have streamlined the presentation somewhat and
corrected some misprints and minor inaccuracies.

I thank Antje Vandenberg for help with the TEX work.

Leipzig, February 2002 Jurgen Jost



Preface to the 3™ edition

Inspired by the generally quite positive response that my books find, I contin-
uously try to improve them. This is also reflected in the present new edition.
Here, among other things, I have rewritten Section 3.5 on the Holder regu-
larity of solutions of elliptic partial differential equations, like the harmonic
maps employed as an important tool in this book. The present approach
not only overcomes a problem that the previous one had (which, however,
could also have been solved within that approach), but also makes the scal-
ing behavior of the various norms involved and their relationships with ellip-
tic regularity theory transparent. Also, I have discussed the three classes of
Mobius transformations (conformal automorphisms) - elliptic, parabolic, and
hyperbolic - in more detail, with examples inserted in several places. The
discussion of the meaning of the Riemann-Roch theorem, one of the three
central results of Riemann surface theory, has been amplified as well.

I hope that the present edition, like its predecessors, will serve its purpose of
developing a conceptual understanding together with a working knowledge
of technical tools for Riemann surfaces and at the same time introducing the
fundamental theories of modern pure mathematics so that students can both
understand them at an important example, namely Riemann surfaces, and
gain a feeling for their wider scope.

Leipzig, February 2006 Jurgen Jost
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1 Topological Foundations

1.1 Manifolds and Differentiable Manifolds

Definition 1.1.1 A manifold of dimension n is a connected Hausdorff space
M for which every point has a neighbourhood U that is homeomorphic to an
open subset V' of R™. Such a homeomorphism

f:U—=V

is called a (coordinate) chart.
An atlas is a family of charts {Uy, fo} for which the U, constitute an open
covering of M.

Remarks. — The condition that M is Hausdorff means that any two dis-
tinct points of M have disjoint neighbourhoods.

— A point p € U, is uniquely determined by f, (p) and will often be identified
with f,(p). And we may even omit the index «, and call the components
of f(p) € R™ the coordinates of p.

— We shall be mainly interested in the case n = 2. A manifold of dimension
2 is usually called a surface.

Definition 1.1.2 An atlas {U,, fo} on a manifold is called differentiable if
all chart transitions

foofat: falUaNUp) — f3(Us NUp)

are differentiable of class C*° (in case U, N Uz # 0).

A chart is called compatible with a differentiable atlas if adding this chart
to the atlas yields again a differentiable atlas. Taking all charts compatible
with a given differentiable atlas yields a differentiable structure. A differen-
tiable manifold of dimension d is a manifold of dimension d together with a
differentiable structure.

Remark. One could impose a weaker differentiability condition than C*°.

Definition 1.1.3 A continuous map h : M — M’ between differentiable
manifolds M and M’ with charts {U,, fo} and {U., f.} is said to be differ-
entiable if all the maps fjoho f;* are differentiable (of class C*) wherever
they are defined.
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If h is a homeomorphism and if both h and h~! are differentiable, then h is
called a diffeomorphism.

Ezamples. 1) The sphere

S i={(21,. .., ang1) ER™ Y a2 =1}
is a differentiable manifold of dimension n. Charts can be given as follows:
On Up := S™\{(0,...,0,1)}, we set
fl(xlv v ,l’n+1) = (fll(xlv cee axn+1)a N 7f1n(1'17 R aanrl))

L X1 Tn

VTR ey
and on Uy := S™\{(0,...,0,—-1)}

f2($1; e ,.’En+1) = (f21a e 7f2n)

L T T
= 1—|—.73n+1,.“71—|—33n+1 .

2) Let w1, wa € C\{0}, 3L ¢ R. We call 21,25 € C equivalent if there exist
m,n € Z such that

21 — zZ9 = nwi + mws.

Let m be the projection which maps z € C to its equivalence class. The torus
T := w(C) can then be made a differentiable manifold (of dimension two) as
follows: Let A, C C be an open set of which no two points are equivalent.
Then we set

Uy :=7(Ay) and  fo:= (7| As)" .

3) Note that the manifolds of both foregoing examples are compact. Naturally,
there exist non-compact manifolds. The simplest example is R™. Generally,
every open subset of a (differentiable) manifold is again a (differentiable)
manifold.

Exercises for § 1.1

1) Show that the dimension of a differentiable manifold is uniquely de-
termined. (This requires to prove that if M; and M, are differentiable
manifolds, and f : M; — M is a diffeomorphism, meaning that f
is invertible and both f and f~!' are differentiable, then dimension
M, = dimension My).



1.2 Homotopy of Maps. The Fundamental Group 3

2) Generalize the construction of example 2 following Definition 1.1.3 to
define an n-dimensional real torus through an appropriate equivalence
relation on R™. Try also to define a complex n-dimensional torus via an
equivalence relation on C™ (of course, this torus then will have 2n (real)
dimensions). Examples of such complex tori will be encountered in § 5.3
as Jacobian varieties.

1.2 Homotopy of Maps. The Fundamental Group

For the considerations of this section, no differentiability is needed, so that
the manifolds and maps which occur need not to be differentiable.

Definition 1.2.1 Two continuous maps f1, fo : S — M between manifolds
S and M are homotopic, if there exists a continuous map

F:S%x[0,1] - M
with
Flsxqoy = f1,
Flsxi1y = fa-
We write: f1 =~ fa.

In what follows, we need to consider curves in M (or paths - we use the two
words interchangeably); these are continuous maps g : [0,1] — M. We define
the notion of homotopy of curves with the same end-points:

Definition 1.2.2 Let g; : [0,1] = M, i = 1,2, be curves with

91(0) = g2(0) = po,
g1(1) = g2(1) = p1.

We say that g; and g2 are homotopic, if there exists a continuous map
G:[0,1] x[0,1] = M
such that

G‘{O}X[O,l] = Po, G|{1}x[o,1] =P1,
G

0.1x{0} = 91,  Glioax{1} = g2
We again write: g1 &~ go.

Thus the homotopy must keep the endpoints fixed.
For example, any two curves gi,gz2 : [0,1] — R™ with the same end-points
are homotopic, namely via the homotopy
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G(t,s) == (1= 5)g1(t) + s g2(t).

Furthermore, two paths which are reparametrisations of each other are
homotopic:

if 7:[0,1] — [0,1] is continuous and strictly increasing go(t) = ¢1(7(¢)), we
can set

G(t,s) == g1((1 = s)t + s7(t)).

The homotopy class of a map f (or a curve g) is the equivalence class con-
sisting of all maps homotopic to f (or all paths with the same end-points,
homotopic to g); we denote it by {f} (resp. {g}). In particular, as we have
just seen, the homotopy class of g does not change under reparametrisation.

Definition 1.2.3 Let g1,g2 : [0,1] — M be curves with

g1(1) = g2(0)

(i.e. the terminal point of g; is the initial point of go). Then the product
gog1 := g is defined by

(20 for ¢ € [0, 1]
g(t) = {92(% —1) forte[i,1].

It follows from the definition that g1 = g1/, g2 ~ g2’ implies
!
9291 =~ 9291

Thus the homotopy class of g1 g2 depends only on the homotopy classes of g1
and go; we can therefore define a multiplication of homotopy classes as well,

namely by
{91} {92} = {9192}

Definition 1.2.4 For any pg € M, the fundamental group m (M, po) is the
group of homotopy classes of paths g : [0,1] — M with ¢g(0) = g(1) = py, i.e.
closed paths with pg as initial and terminal point.

To justify this definition, we must show that, for closed paths with the same
initial and terminal point, the multiplication of homotopy classes does in fact
define a group:

Theorem 1.2.1 71 (M, pg) is a group with respect to the operation of multi-
plication of homotopy classes. The identity element is the class of the constant

path go = po-

Proof. Since all the paths have the same initial and terminal point, the
product of two homotopy classes is always defined. It is clear that the class
of the constant path gy acts as the identity element, and that the product is
associative. The inverse of a path ¢ is given by the same path described in
the opposite direction:
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gt =g(1—1t), telo,1].
We then have

{g7'}-{g} =1 (the identity element).

1

A homotopy of gy with g=* - g is given e.g. by

L g(2st), rel
g(t,s) == {gl(l +2s(t—1)) =g(2s(1—1¢)), te]

j==)
—_ N

]
.

Remark. In the sequal, we shall often write g in place of {g}, hoping that
this will not confuse the reader.

)

N

Lemma 1.2.1 For any po,p1 € M, the groups w1 (M, po) and 71(M,p1) are
isomorphic.

Proof. We pick a curve v with ¥(0) = pg, v(1) = p1. The map sending a
path g with ¢g(0) = g(1) = p; to the path y~!gvy induces a map

71—I(J\4'7p1) - 7T1(M7p0)'
This map is an isomorphism of groups. a

Definition 1.2.5 The abstract group 71 (M) defined in view of Lemma 1.2.1
is called the fundamental group of M.

Remark. It is important to observe that the isomorphism between w1 (M, pg)
and 71 (M, p1) constructed in Lemma 1.2.1 is not canonical, since it depends
on the choice of the path ~.
A different path not homotopic to v could give rise to a different isomor-
phism.
In particular, consider the case py = p1, so that v € w1 (M, pg). Then conju-
gation by ~

g=7""9v

is in general a non-trivial automorphism of 71 (M, po).
Definition 1.2.6 We say that M is simply-connected if w1 (M) = {1}.

Lemma 1.2.2 If M is simply-connected, then any two paths g1,gs in M
with
91(0) = g2(0) and ¢1(1) = g2(1) are homotopic.

This follows easily from the definitions. ad
Ezample 1 R"™ is simply-connected, so is S™ for n > 2 (Exercise).

Definition 1.2.7 A path g : [0,1] — M with ¢g(0) = ¢g(1) = po which is
homotopic to the constant path go(t) = pg is called null-homotopic.
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Remark. This is generally accepted terminology although it might be more
appropriate to call such a path one-homotopic as the neutral element of our
group is denoted by 1.

Finally, we have:

Lemma 1.2.3 Let f: M — N be a continuous map, and qo := f(po). Then
f induces a homomorphism

firm (M, po) — m1(N, qo)
of fundamental groups.

Proof. If g1 &~ g2, then we also have f(g1) ~ f(g2), since f is continuous.
Thus we obtain a well-defined map between fundamental groups. Clearly,

flgrt-g1) =~ (Fg2) ™" Flgr). O

Exercises for § 1.2

— Show that R™ is simply connected, and so is S™ for n > 2.

—  Determine the fundamental group of S*.
Outline of the solution:
Let St ={2€C: [z|=1} ={e? € C; with§ € R, 0 < 6 < 27}.
Then paths 7, in 71(S, 1) are given by

tese?mint (e 0,1])

for each n € Z.
Show that ~, and -, are not homotopic for n # m and that on the other
hand each v € 71 (S*, 1) is homotopic to some 7.

— Having solved 2), determine the fundamental group of a torus (as defined
in example 2) after Def. 1.1.3). After having read § 1.3, you will know an
argument that gives the result immediately.

1.3 Coverings

Definition 1.3.1 Let M’ and M be manifolds. A map 7 : M’ — M is said
to be a local homeomorphism if each z € M’ has a neighbourhood U such
that m(U) is open in M and 7 | U is a homeomorphism (onto w(U)).

If M is a differentiable manifold with charts {U,, fo}, and 7 : M’ — M
a local homeomorphism, then we can introduce charts {Vj3, g3} on M’ by
requiring that m | V3 be a homeomorphism and that all f, o 7o ggl be
diffeomorphisms whenever they are defined. In this way, M’ too becomes a
differentiable manifold: the differentiable structure of M can be pulled back
to M'. w then becomes a local diffeomorphism.
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Definition 1.3.2 A local homeomorphism 7 : M’ — M is called a covering
if each x € M has a (connected) neighbourhood V' such that every connected
component of 771(V) is mapped by 7 homeomorphically onto V. (If 7 is
clear from the context, we sometimes also call M’ a covering of M.)

Remarks. 1) In the literature on Complex Analysis, often a local homeo-
morphism is already referred to as a covering. A covering in the sense of
Definition 1.3.2 is then called a perfect, or unlimited, covering.

2) The preceding definitions are still meaningful if M’ and M are just topo-
logical spaces instead of manifolds.

Lemma 1.3.1 Ifw: M’ — M is a covering, then each point of M is covered
the same number of times, i.e. 7~1(x) has the same number of elements for
each x € M.

Proof. Let n € N. Then one easily sees that the set of points in M with
precisely n inverse images is both open and closed in M. Since M is connected,
this set is either empty or all of M. Thus either there is an n € N for which
this set is all of M, or every point of M has infinitely many inverse images.

O

Theorem 1.3.1 Let m : M' — M be a covering, S a simply-connected
manifold, and f : S — M a continuous map. Then there exists a continuous
f: 8 — M with

wo f = f.

Definition 1.3.3 An f’ as in the above theorem is called a lift of f.
Remark. Lifts are typically not unique.
We also say in this case that the diagram
M/
f/
Sl
S f M
is commutative. For the proof of Theorem 1.3.1, we shall first prove two
lemmas.

Lemma 1.3.2 Let m: M’ — M be a covering, po € M, pl, € 7 (po), and
g:10,1] — M a curve with g(0) = py. Then g can be lifted (as in Def. 1.3.3)
to a curve g’ : [0,1] — M’ with ¢'(0) = pg, so that

mog =g.

Further, ¢' is uniquely determined by the choice of its initial point pj,.
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Proof. Let
T :={t € [0,1] : g¢|[0,¢] can be lifted to a unique curve ¢’|[0,¢] with ¢’(0) =
Po}-

We have 0 € T, hence T # ().

If t € T, we choose a neighbourhood V of ¢(t) as in Definition 1.3.2, so
that 7 maps each component of 7=1(V) homeomorphically onto V. Let V'
denote the component of 7=1(V) containing ¢’(t). We can choose 7 > 0 so
small that g([¢t,t + 7]) C V. It is then clear that ¢’ can be uniquely extended
as a lift of g to [t,t + 7], since 7 : V/ — V is a homeomorphism. This proves
that 7" is open in [0,1].

Suppose now that (t,) C T, and t,, — to € [0, 1]. We choose a neighbourhood
V of g(to) as before. Then there exists ng € N with g([tn,,t0]) C V. We let V’
be the component of 7~1(V) containing g’ (t,,). We can extend g’ to [t,,, to]-
Hence to € T, so that T is also closed. Thus T = [0, 1]. O

Lemma 1.3.3 Let m: M’ — M be a covering, and I" : [0,1] x [0,1] — M
a homotopy between the paths v := I'(-,0) and vy, := I'(+, 1) with fized end
points py = 70(0) = 71(0) and p1 = ~o(1) =11 (1). Let py € 7 (po).

Then I' can be lifted to a homotopy I'" : [0,1] x [0,1] — M’ with initial
point pjy (i.e. I'(0,s) = py for all s € [0,1]); thus wo I'" = I'. In particular,
the lifted paths ~{ and ~{ with initial point py have the same terminal point
py € 7 Y(p1), and are homotopic.

Proof. Each path I'(-, s) can be lifted to a path +, with initial point p{, by
Lemma 1.3.2. We set
I'(t,s) = 74 (t),

and we must show that I" is continuous.

Let X := {(¢t,s) € [0,1] x [0,1] : I" is continuous at (¢,s)}. We first take a
neighbourhood U’ of pf, such that 7 : U’ — U is a homeomorphism onto a
neighbourhood U of po; let ¢ : U — U’ be its inverse. Since I'({0} x [0, 1]) =
po and I is continuous, there exists an € > 0 such that I'([0,¢] x [0,1]) C U".
By the uniqueness assertion of Lemma 1.3.2, we have

Vs | [0,€] = o5 | [0,€]
for all s € [0,1]. Hence
I'"=pol on [0,¢] x [0,1].

In particular, (0,0) € X.

Now let (to, s0) € X. We choose a neighbourhood U’ of I"(to, s¢) for which
7w : U’ — U is a homeomorphism onto a neighbourhood U of I'(tg, sg); we
denote its inverse again by ¢ : U — U’.

Since I’ is continuous at (s, tg), we have I''(t,s) € U’ for [t—to| < €,|s—s0| <
¢ if € > 0 is small enough. By the uniqueness of lifting we again have
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YL (t) = p o ys(t) for |t —tol,|s — so| < &,

so that
I'"=pol on{|t—to| <e} x{|s—so| <e}.

In particular, I is continuous in a neighbourhood of (¢g, sp). Thus X is open.
The proof that X' is closed is similar. It follows that X' = [0,1] x [0, 1], i.e. I/
is continuous.

Since I'({1} x [0,1]) = p1 and 7w o IV = I', we must have I''({1} x [0,1]) C
7 Y(p1). But 7= 1(py) is discrete since 7 is a covering and I ({1} x [0,1]) is
connected, hence the latter must reduce to a single point.

Thus, all the curves v, have the same end point. a

Proof of Theorem 1.3.1 We pick a yo € S, put po := f(yo), and choose a
Py € (po)-

For any y € S, we can find a path v : [0,1] — S with v(0) = yo,v(1) = y.
By Lemma 1.3.2, the path g := f o can be lifted to a path ¢’ starting at pf.
We set f/(y) := ¢’(1). Since S is simply-connected, any two paths v; and o
in S with 71 (0) = 72(0) = yo and v1(1) = 72(1) = y are homotopic. Hence
f(y1) and f(v2) are also homotopic, since f is continuous. Thus, it follows
from Lemma 1.3.3 that the point f’(y) obtained above is independent of the
choice of the path v joining 1y to y;. The continuity of f’ can be proved
exactly as in the proof of Lemma 1.3.3. a

Corollary 1.3.1 Let ' : M/ — M be a covering, g : [0,1] — M a curve
with g(0) = g(1) = po, and ¢’ : [0,1] — M’ a lift of g. Suppose g is homotopic
to the constant curve y(t) = po. Then ¢’ is closed and homotopic to the
constant curve.

Proof. This follows directly from Lemma 1.3.2. ad

Definition 1.3.4 Letm : M{ — M and 2 : M5 — M be two coverings. We
say that (w2, MJ5) dominates (71, M7) if there exists a covering ma1 : M} — M,
such that o = 71 o me1. The two coverings are said to be equivalent if there
exists a homeomorphism 7oy : M} — M/ such that mo = 71 0 7a;.

Let m: M’ — M be a covering, pg € M, pj, € 7 *(po), g : [0,1] — M a path
with ¢g(0) = g(1) = pg, and ¢’ : [0,1] — M’ the lift of g with ¢’(0) = p{. By
Corollary 1.3.1, if ¢ is null-homotopic, then ¢’ is closed and null-homotopic.

Lemma 1.3.4 G, :={{g}: ¢ is closed} is a subgroup of w1 (M, pg).

Proof. If {g1},{g2} lie in G, so do {g; '} and {g192}. O

The G defined above depends on the choice of p, € 771 (pg), hence we denote
it by G (p) when we want to be precise. If pj is another point of 7=1(py),
and v’ is a path from pj to py, then v := 7(v’) is a closed path at py.
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If g is a closed path at pg, then the lift of g starting at pj, is closed precisely
when the lift of ygy~! starting at p{j is closed. Hence

Gr(py) = {7} G=(0p) - {77}

Thus G- (py) and G (pj) are conjugate subgroups of w1 (M, pg). Conversely,
every subgroup conjugate to Gr(p}) can be obtained in this way. It is also
easy to see that equivalent coverings lead to the same conjugacy class of
subgroups of 7 (M, po).

Theorem 1.3.2 71 (M’) is isomorphic to G, and we obtain in this way
a bijective correspondence between conjugacy classes of subgroups of w1 (M)
and equivalence classes of coverings w: M' — M.

Proof. Let v € m(M’,p;), and v := 7(y'). Since 7' is closed, we have
v € G; also, being a continuous map, ™ maps homotopic curves to homotopic
curves, so that we obtain a map

Tt T (M, p) — G (po)-

This map is a group homomorphism by Lemma 1.2.3, surjective by the defi-
nition of G, and injective since, by Corollary 1.3.1, v’ is null-homotopic if
7 is. Thus 7, is an isomorphism. As already noted, the conjugacy class of G
depends only on the equivalence class of © : M’ — M. Conversely, given a
subgroup G of 71 (M, pg), we now want to construct a corresponding covering
m: M — M. As a set, M’ will be the set of all equivalence classes [] of paths
~vin M with v(0) = pg, two paths 71 and 7, being regarded as equivalent if
71(1) = 2(1) and {117, '} € G. The map 7 : M’ — M is defined by

We wish to make M’ a manifold in such a way that = : M’ — M is a covering,.
Let {Ug, fo} be the charts for M. By covering the U, by smaller open sets
if necessary, we may assume that all the U, are homeomorphic to the ball
{x € R": ||z|| < 1}. Let gy € Uy, and g}, = [y0] € 7 *(qo). For any q € U,, we
can find a path ¢ : [0,1] — U, with g(0) = ¢o,g(1) = ¢q. Then [g70] depends
on go and ¢, but not on g. Let U/ (q}) be the subset of M’ consisting of all
such [g7]. Then 7 : U/, (q() — U, is bijective, and we declare {U/ (¢}), fa o7}
as the charts for M'.

Let us show that, if py # p5, m(py) = 7(p3), and py € U, (q1),py € Uj(ga),

Ua(dr) NUp(gz) = 0. (1.3.1)
Thus, let pi = [g'7],p5 = [9"72], where 71(0) = 72(0) = po, 71(1) = 1, and
Y2(1) = go. Then 5 'g”" "¢’y is closed, and does not lie in G. If now ¢
is any point of Uy (q1) N Uj(g3), then ¢ has two representations [h'y1] and

[P 2], with 5 tg" " g'y1 € G. However, the U, are simply connected, hence
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R & gty so we get v5 L9 g'y1 € G, a contradiction. This proves
(1.3.1). If now r} # rh € M’ with w(r}) = m(r}), it is obvious that ] and
rh have disjoint neighbourhoods. If on the other hand = (r]) = = (r}), this
follows from (1.3.1), so that M’ is a Hausdorff space.
It also follows from (1.3.1) that two distinct sets U/, (q}), UL (¢5) are disjoint.
Hence the U/,(¢) are the connected components of 7=1(U,) and 7 maps each
of them homeomorphically onto U,,. It follows that = : M' — M is a covering,.
It remains only to show the covering w : M’ — M we have constructed has
Gr = G. Let then py = [1], and 7 : [0,1] — M a closed path at pyg. Then
the lift 4" of ~y starting at p{ is given by ~/(¢t) = [y | [0,¢]]. Hence +' is closed
precisely when v € G. ad

Corollary 1.3.2 If M 1is simply connected, then every covering M’ — M
is a homeomorphism.

Proof. Since m1(M) = {1}, the only subgroup is {1} itself. This subgroup
corresponds to the identity covering id : M — M. From Theorem 1.3.2 we
conclude that M’ then is homeomorphic to M. O

Corollary 1.3.3 IfG = {1}, and 7 : M — M the corresponding covering,
then m (M) = {1}, and a path ¥ in M is closed precisely when 7(7) is closed
and null-homotopic.

If m (M) = {1}, then M = M.

Definition 1.3.5 The covering M of M with (M) = {1} - which exists
by Corollary 1.3.2 - is called the universal covering of M.

Theorem 1.3.3 Let f: M — N be a continuous map, and wf:vﬁ — M, 7'
N — N the universal coverings. Then there exists a lift f : M — N, i.e. a
continuous map such that the diagram

M LN

T | 1

M N

is commutative (so that fom =1"o f).
Proof. This follows from Theorem 1.3.1, applied to f o . a

Definition 1.3.6 Let m : M’ — M be a local homeomorphism. Then a
homeomorphism ¢ : M’ — M’ is called a covering transformation if rop = .
The covering transformations form a group H.

Lemma 1.3.5 If ¢ # 1d is a covering transformation, then ¢ has no fized
point.
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Proof. Let X :={p € M’ : ¢(p) = p} be the set of fixed points of ¢. Let
p € X, and U’ a neighbourhood of p such that 7 : U’ — U := #n(U’) is a
homeomorphism. Let V/ C U’ be a neighbourhood of p with (V") C U’. For
g € V', we have w(¢(q)) = 7(q) € U, hence ¢(q) = g, since both ¢ and ¢(q)
lie in U’. Thus X is open. Since X is obviously closed, we must have X = ()
or X = M’'. In the latter case, ¢ = Id. ad

It follows in particular from Lemma 1.3.5 that two covering transformations
1 and o with p1(p) = @a(p) for one p € M’ must be identical. We recall
from group theory:

Definition 1.3.7 Let G C H be groups. Then N(G) ={ge H: g 'Gg=
G} is called the normaliser of G in H. G is called a normal subgroup of H if
N(G)=H.

Theorem 1.3.4 For any covering m : M’ — M, the group of covering
transformations Hy is isomorphic to N(Gr)/Gr. Thus, if m : M — M is the
universal covering of M, then

H, ~m (M) (“~” means isomorphic as groups).

Proof. We choose a base point pg € M and a p) € 7 '(pg). Let v €
N(Gr(po)). For any p’ € M’, let ¢’ : [0,1] — M’ be a path joining p to
p’. We put with g := 7(g’)

o~ (") = (97)'(1).

If ¢} is another path in M’ from pj, to p/, then g7 'g € G, hence v~ g7 tgy €
Gr, since v € N(G,). Thus (¢17)'(1) = (g97y)’(1), i.e. the definition of ¢, (p)
does not depend on the choice of g’. We have

m(05(p) = 7((97)' (1)) = =(g'(1)) = = (),

so that ¢, is a covering transformation. Also,

Pryay (py) = (r2m)' (1) = Pz © Py (o),

hence ¢4, = @+, © ¢, by Lemma (1.3.5), and

¢y =1d <= ¢,(py) =py  (by Lemma (1.3.5))
< 7' (1) = p <= v € G,.

Thus, we have defined a homomorphism of N(G) into H, with kernel G.
Now let ¢ € Hy, and let v : [0,1] — M’ be a path from p{, to ¢(pf). We
set v := w(7’). Then {v} € N(Gx), and ¢ (p;) = ¢(p;). Hence ¢, = ¢ by
Lemma 1.3.5. Hence our homomorphism is also surjective, and our assertion
follows. a
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Corollary 1.3.4 Let G be a normal subgroup of m1(M,po) andw: M' — M
the covering corresponding to G according to Theorem 1.3.2. Let pj, €
7 Y(po). Then, for every pj € w '(po), there exists precisely one covering
transformation ¢ with @(py) = pg. This ¢ corresponds (under the isomor-
phism of Theorem 1.8.4) to w(v') € w1 (M, po), where v is any path from pj
to py.

Remark. H, operates properly discontinuously in the sense of Def. 2.4.1
below, and
M = M’'/H, in the sense of Def. 2.4.2.

Ezample 2 We consider the torus T of Example 2) in § 1.1. By construction
m:C—-T

is a covering. We have
m(C) = {1}

as C (= R? as a manifold) is simply connected, see the Example after Lemma
1.2.2.
Therefore

m:C—-T

is the universal covering of T'. The corresponding covering transformations
are given by
Z = zZ + nwip + mwsy

for n,m € Z. Thus, the group H, of covering transformations is Z2. From
Theorem 1.3.4, we therefore conclude

m(T) = 7% .

Since Z? is an abelian group, conjugate subgroups are identical and therefore
the equivalence classes of coverings of T are in bijective correspondance with
the subgroups of Z2, by Theorem 1.3.2.

Let us consider the subgroup

Gp,q = {(pn,gm): n,m € Z} for given p,q € Z\{0}.
This group corresponds to the covering
Tpg ' Tpg =T

where T), ; is the torus generated by pw; and qws (in the same way as our
original torus T is generated by wi,ws). By Theorem 1.3.4, the group of
covering transformations is Zz/prq =7Zp x Lq. (o, B) € Zp, x Zq operates on
Tp,q via

zZ v 2z 4+ awy + Pws



14 1 Topological Foundations

(here, we consider « as an element of {0,1,...,p — 1}, 8 as an element of
{0,1,...,¢ — 1} and the addition is the one induced from C.)
Let us consider the subgroup

G:= {(n,0): neZ} of Z2.

The corresponding covering this time is a cylinder C' constructed as follows:
We call z1, zo € C equivalent if there exists n € Z with

Z1 — 292 = nNwi.

Let 7’ be the projection which maps z € C to its equivalence class. C' := #'(C)
then becomes a differentiable manifold as in the construction of T'. The group
of covering transformations is Z2?/G = Z, again by Theorem 1.3.4. m € Z
here operates on C by

Z =z + muwa,

with the addition induced from C.
More generally, consider the subgroup

Gp :={(pn,0): neZ} for p € Z\{0}.

The corresponding covering now is the cylinder C), generated by pw;, and
the group of covering transformations is

7?|Gy =7y x Z.
For a € Zy, q € Z, the operations on C), is
Z =z + awy + qua

as above, with a considered as an element of {0,1,...,p — 1}.

Exercises for § 1.3

1) Determine all equivalence classes of coverings of a torus and their covering
transformations.

2) Construct a manifold M with a (nontrivial) covering map 7 : S — M.
Hint: The group SO(4) operates on S considered as the unit sphere in
R*. Find a discrete subgroup I' of SO(4) for which no v € I'\ {identity}
has a fixed point on S3.

3) Let

ab ab) _ (10 _
I’._{(Cd>,a,b,c,d€Z, (cd> = (O 1)mod37 ad—bc-l}

operate on
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H:={z=z+iyeC, y>0}
via
az+b
cz+d

Z

Show that if v € I' is different from , then ~ has no fixed points

10
01
in H. Interpret I' as the group of covering transformations associated
with a manifold H/I" and a covering = : H — H/I'. Construct different

coverings of H/I" associated with conjugacy classes of subgroups of I'.

1.4 Global Continuation of Functions on
Simply-Connected Manifolds

Later on, in §2.2, we shall need the following lemma. The reader might wish
to read §2.2 before the present one, in order to understand the motivation
for this lemma.

Lemma 1.4.1 Let M be a simply connected manifold, and {U,} an open
covering of M, assume that all the U, are connected. Suppose given on each
U, a family F,, of functions (not satisfying F,, = () for all a) with the follow-
ing properties: i) if fo € Fu, f3 € Fg and Vyg is a component of U, N Ug,
then

fo = fp in a neighbourhood of some p € V3

implies

fo = fg on Vug;
it) if fo € Fo and Vag is a component of U,NUg, then there exists a function
fs € Fg with

fo = fg on Vuga.

Then there exists a function f on M such that fiy, € Fo for all a. Indeed,
given fo, € Fa,, there exists a unique such f with fanO = f.

Proof. We consider the set of all pairs (p, f) with p € Uy, f € F, (« arbi-
trary).
We set

(p,f) ~(¢,9) <= p=gqand f = gin some neighbourhood of p.

Let [p, f] be the equivalence class of (p, f), and M* the set of such equivalence
classes; define w : M* — M by «([p, f]) = p.

For f, € Fy, let U'(a, fo) :={[p, fa] : P € Us}. Then 7 : U'(a, fo) — Uy is
bijective. By (i), m(U' (e, fo) NU’(B, f3)) is a union of connected components
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of U, N Ug, hence open in M. Thus the U'(«, f.) define a topology on M*.
(2 C U'(q, fo) is by definition open, if 7(£2) C U, is open. An arbitrary
2 € M*isopenif 2NU'(«, f.) is open for each a.) This topology is Hausdorff
by (i).

Now let M’ be a connected component of M*. We assert that 7 : M’ — M
is a covering. To see this, let p* = (p, f) € 7~ 1(U,), i.e. m(p*) = p € U,. By
definition of M*, there is a 3 such that p € Ug and f € Fjg. Thus p € U,NUg.
By (ii), there exists g € F,, with f(p) = g(p). Thus p* € U'(«, g). Conversely,
each U'(a, g) is contained in 7—*(U,,). Hence

N Uy) = U U'(a, fa)-

fa€Fq

The U'(a, f.) are open, and connected because they are homeomorphic to the
U, under 7. By (i), for distinct f!, f2 € F,,, we have U'(a, f2)NU(a, f2) = 0.
Hence the U’(«, f,) are the connected components of 771(U, ), and those of
them which are contained in M’ are the components of M’ N 7=1(U,). It
follows that 7 : M’ — M is a covering.

But M is simply connected by assumption, hence 7 : M’ — M is a homeomor-
phism by Corollary 1.3.2.. Hence each 7~1(U,) is a single U’(«, fo), fa € Fa.
If Uy NUg # 0, we must have fo, = f3 on Uy N Ug, so that there is a well-
defined function f on M with

fiv, = fa € Fy for all o,

using (ii). If fn, € Fa, is prescribed, we choose M’ as the connected com-
ponent of M* containing U’(«ayp, fo), so that the f obtained above satisfies

f|Ua0 :foco' D

Remark. Constructions of the above kind (the space M* with its topology)
arise frequently in complex analysis under the name “Sheaf Theory”. For our
purposes, the above lemma is sufficient, so there is no need to introduce these
general concepts here.



2 Differential Geometry of Riemann Surfaces

2.1 The Concept of a Riemann Surface

Definition 2.1.1 A two-dimensional manifold is called a surface.

Definition 2.1.2 An atlas on a surface S with charts z,, : U, — C is called
conformal if the transition maps

2502, 1 20 (Ua NUB) — 25Uy NUp)

are holomorphic. A chart is compatible with a given conformal atlas if adding
it to the atlas again yields a conformal atlas. A conformal structure is ob-
tained by adding all compatible charts to a conformal atlas. A Riemann
surface is a surface together with a conformal structure.

Definition 2.1.3 A continuous map h : S; — S5 between Riemann surfaces

is said to be holomorphic! if, in local coordinates {Us, zo } on S1 and {U}, 2}

on S, all the maps 223 ohoz, ! are holomorphic wherever they are defined. A
Oh

holomorphic map ~ with nowhere vanishing derivative 7 is called conformal.

We shall usually identify U, C S with z,(U,). The subscript is usually un-
necessary, and we shall then identify p € U with z(p) € C. This will not
cause any difficulties, since we only study local objects and concepts which
are invariant under conformal maps. For example, this holds for holomorphic
functions and maps, for meromorphic functions, for harmonic and subhar-
monic? functions, and for differentiable or rectifiable curves.

(The conformal invariance of (sub)harmonicity follows from the formula

o o2 o 0-_
%(foh) = ([mawf> (h(Z))@h £h

for smooth f and holomorphic h.). In particular, all the local theorems of
function theory carry over to holomorphic functions on Riemann surfaces
(Riemann’s theorem on removable singularities of holomorphic functions, the
local form of a holomorphic function, local power-series expansions etc.).

! We shall also use the word “analytic” with the same significance.
2 A function f on a Riemann surface is called (sub) harmonic if in a local conformal

2
coordinate z, %f = (>)0.
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2 Differential Geometry of Riemann Surfaces

Ezxzamples.

1)

2)

Here is a trivial example: C and open subsets of C are Riemann surfaces.
(More generally, any open nonempty subset of a Riemann surface is itself
a Riemann surface.)
Here is the most important example of a compact Riemann surface:
The Riemann sphere. 52 C R2. We choose U; and U, as in the discussion
of the sphere in Sec 1.1, and set

T, + 129 1 — 1To

z2n=——onlU;, 2z= Tz
3

Us.
1—I3 on Usg

We then have zo = % on Uy N Us, so that the transition map is indeed
holomorphic.

It is also instructive and useful for the sequel to consider this example
in the following manner: If we consider z; on all of S?, and not only
on S2\{(0,0,1)}, then z; maps S? onto C U {00}, the extended complex
plane (this map z; then is called stereographic projection), in a bijective

manner. While
Zl(Ul) =C= V1

we have
22(Uz) = (C\{0}) U {oo} =: V2.

In that manner, the extended complex plane C U {oo} is equipped with
the structure of a Riemann surface with coordinate charts

id Vl — C
and

Vo= C
1
Z .
z
Thus, we have two equivalent pictures or models of the Riemann sphere,
namely the sphere S? C R? on one hand and the extended complex plane
C U {oc} on the other hand. The stereographic projection z; : S? —
C U {00} is a conformal map. In Chapter 5, we shall see a third model
or interpretation of the Riemann sphere, namely 1-dimensional complex
projective space P!.
The model provided by C U {oo} also offers the interpretation of a
meromorphic function on an open subset of C, or more generally, of
a meromorphic function of a Riemann surface .S, as a holomorphic map

g: S5 —CU{oo}.

Namely, a function g on S is meromorphic precisely if every point p € S
possesses a coordinate neighborhood U such that either g or L is holo-
morphic on U. This, however, is the same as saying that we can find a



2.2 Some Simple Properties of Riemann Surfaces 19

neighborhood U of p for which g maps U holomorphically either to V3
or V.

3) The torus, also introduced in Sec. 1.1, is a Riemann surface; the charts
introduced there satisfy the conditions for a conformal atlas.

4) If S is a Riemann surface with conformal charts {Ugs, 23}, and 7 : S" — S a
local homeomorphism, then there is a unique way of making S’ a Riemann
surface such that 7 becomes holomorphic. The charts {U], 2.} for S’
are constructed such that = | U, is bijective, and the zg o7 o z’;l are
holomorphic wherever they are defined. Thus h o w will be holomorphic
on S’ if and only if h is holomorphic on S.

5) If 7 : S” — S is a (holomorphic) local homeomorphism of Riemann sur-
faces, then every covering transformation ¢ is conformal. Indeed, we can
assume by 4) that 2/, = z, o 7. To say that ¢ is conformal means that

zgopo 27! is conformal wherever it is defined. But zz oo # =

[e3
zgomopom Lozl =zg0z,", which is indeed conformal.

Exercises for § 2.1

1) Let S’ be a Riemann surface, and 7 : S’ — S a covering for which every
covering transformation is conformal. Introduce on S the structure of a
Riemann surface in such a way that © becomes holomorphic.

Discuss a torus and H/I" of exercise 3) in § 1.3 as examples.

2) Let S be a Riemann surface. Show that one may find a conformal atlas
{Ua, 2o} (compatible with the one defining the conformal structure of S)
for which for every «, z, maps U, onto the unit disk D :={z € C: |z| <
1}. Thus, every U, is conformally equivalent to D.

2.2 Some Simple Properties of Riemann Surfaces

Lemma 2.2.1 On a compact Riemann surface S, every subharmonic func-
tion (hence also every harmonic or holomorphic function) is constant.

Proof. Let f: S — R be subharmonic. Since S is compact, f as a continuous
function on S attains its maximum at some p € S. Let z : U — C be a local
chart with p € U. Then f o 27! is subharmonic on 2(U) and attains its
maximum at an interior point, and is therefore constant by the maximum

principle.
Thus the closed subset of S where f attains its maximum is also open, and
hence is all of S. g

Lemma 2.2.2 Let S be a simply-connected surface, and F : S — C a con-
tinuous function, nowhere vanishing on S. Then log F can be defined on S,
i.e. there exists a continuous function f on S with ef = F.
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Proof. Every py € S has an open connected neighbourhood U with

1E(p) = F(po) |l < 1 F'(po) |

for p € U, since F(py) # 0. Let {U,} be the system consisting of these
neighbourhoods, (log F'), a continuous branch of the logarithm of F' in U,,
and F, = {(log F), + 2nmi, n € Z}. Then the assumptions of Lemma 1.4.1
are satisfied, hence there exists an f such that, for all «,

fiv. = (log F)o + ng - 2mi, N € Z.
Then f is continuous, and ef = F. O

Lemma 2.2.2 can also be proved as follows.

We consider the covering exp = ¢* : C — C\{0}. By Theorem 1.3.1, the
continuous map F': S — C\{0} can be lifted to a continuous map f : S — C
with e/ = F, since S is simply connected.

Lemma 2.2.3 Let S be a simply connected Riemann surface, andu : S — R
a harmonic function. Then there exists a harmonic conjugate to u on the
whole of S.

(v is called a harmonic conjugate of w if w+ iv is holomorphic.)

Proof. Let the U, be conformally equivalent to the disc, and v, a harmonic
conjugate of u in U,. Let F, := {vy +¢, ¢ € R}. Then, by Lemma 1.4.1,
there exists v such that, for all «,

VU, = Va + Ca for a ¢, € R.

Such a v is harmonic, and conjugate to w. a

2.3 Metrics on Riemann Surfaces

We begin by introducing some general concepts:

Definition 2.3.1 A conformal Riemannian metric on a Riemann surface X
is given in local coordinates by

N (2) dz dz, Az)>0

(we assume A is C°°; this class of metrics is sufficient for our purposes). If
w — z(w) is a transformation of local coordinates, then the metric should
transform to 97 9%
z 0%
N(z) 7——— dw dw
(2) ow 0w

: . o 1 o : 0 o 1 o : 0
(with w =u+1iv, 50 =35 (50 —1i5y) 35 = 3 (55 T igy)-)
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The length of a rectifiable curve v on X' is given by
)= [ M) e,
¥
and the area of a measurable subset B of X' by

Area (B) := / N2(2) = dz AdZ
5 2

(the factor 1 arises because dzAdz = (dz+idy) A (dz —idy) = —2idz Ady).

We shall usually write
% dz dZ in place of % dz A dz.
The distance between two points z1, zo of X' is defined as
d(z1,22) == inf{l(y) : v:[0,1] > X

a (rectifiable) curve withy(0) = z1, v(1) = 22}.

The metric is said to be complete if every sequence (t)nen in X which
is Cauchy with respect to d(-,-) (i.e. for every e > 0 there exists ng € N
such that d(t,,tn,) < € for all n,m > ng) has a limit in X. We leave it
as an exercise to the reader to verify that the metric topology defined by
the distance function d(-,-) coincides with the original topology of X as a
manifold.

Definition 2.3.2 A potential for the metric A\?(2)dzdz is a function F(z)
such that

The following lemma is immediate:

Lemma 2.3.1 Arc lengths, areas and potentials do not depend on the local
coordinates. a

A metric is most simply described by means of a potential. Since a potential is
invariant under coordinate transformations (and hence also under isometries,
cf. Def. 2.3.5 and Lemma 2.3.2 below), it provides the easiest method of
studying the transformation behaviour of the metric.

Definition 2.3.3 The Laplace-Beltrami operator with respect to the metric
A2(2)dzdz is defined by
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Definition 2.3.4 The curvature of the metric A\?(z) dzdz is defined by
K =—-AlogA\.
Remark. With z = x + iy, we have
M (z) dz dz = A? (da® + dy?).

Thus the metric differs from the Euclidian metric only by the conformal factor
A2. In particular, the angles with respect to A?dzdz are the same as those
with respect to the Euclidian metric.

Definition 2.3.5 A bijective map h : X1 — 35 between Riemann surfaces,
with metrics A2dzdz and o? dwdw respectively, is called an isometry if it
preserves angles and arc-lengths.

Remark. We have assumed here that angles are oriented angles. Thus, anti-
conformal maps cannot be isometries in our sense. Usually, the concept of an
isometry permits orientation-reversing maps as well, for instance reflections.
Thus, what we have called an isometry should be more precisely called an
orientation-preserving isometry.

Lemma 2.3.2 With the notation of Def. 2.3.5, h = w(z) is an isometry if
and only if it is conformal and

ow 0w

2 2

ROV

2(w(=) 2T xe(z)

(in local coordinates). If Fy and Fy are the respective potentials, then Fy(z) =
Fy(w(z)) for an isometry. The Laplace-Beltrami operator and the curvature
K are invariant under isometries.

Remark. An isometry has thus the same effect as a change of coordinates.

Proof. Conformality is equivalent to the preservation of angles, and the
transformation formula of the lemma is equivalent to the preservation of arc-
length. Finally,

400, 4, 5,00 , 0z 0%
2 dwow 8 = NG gz o (A awaw)

4700 )

since the conformality of f implies that
00: 00z
0z0w 0z0w

This is equivalent to the invariance of the curvature. ad
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The trivial example is of course that of the Euclidian metric
dz dz (= d2? + dy?)
on C. This has K = 0.

We also have the following simple

Lemma 2.3.3 FEvery compact Riemann surface X admits a conformal
Riemannian metric.

Proof. For every z € X, there exists a conformal chart on some neighbour-
hood U,
f.:U, — C.

We find some small open disk D, C f,(U,), and we consider the restricted
chart

Yz = fz|f;1(Dz) Ve (:: U. ﬂfz_l(DZ)) - C.

Since X is compact, it can be covered by finitely many such neighbourhoods
V., ©=1,...,m. For each ¢, we choose a smooth function 7; : C — R with

7, >0on D,,, n;=0o0nC\D,,.

On D,,, we then use the conformal metric

n;(w) dw dw.
This then induces a conformal metric on V., = ¢, '(D.,). The sum of all
these local metrics over ¢ = 1,...,n then is positive on all of X', and hence
yields a conformal metric on X. a

We now want to consider the hyperbolic metric. For this purpose, we
make some preparatory remarks.
Let
D:={z€eC: |z| <1} be the open unit disc

and

H:={z=2+4iye C: y> 0} = the upper half plane in C.

For zg € D, (# — z0)/(1 — Zoz) defines a conformal self-map of D carrying zo
to 0.
Similarly, for any z¢ € H,

zZ— 20
zZ —

zZ2—20
is a conformal map of H onto D, mapping 2y to 0. It follows in particular
that H and D are conformally equivalent.
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H and D are Poincaré’s models of non-euclidean, or hyperbolic?, geometry,
of which we now give a brief exposition.
We shall need the following

Definition 2.3.6 A Mobius transformation is a map CU {oco} — CU {o0}
of the form

b

czid witha,b,c,d € C, ad— be # 0.

We first recall the Schwarz lemma (see e.g. [Al]).

Theorem 2.3.1 Let f: D — D be holomorphic, with f(0) = 0. Then
[f(2)| < 2] and |£'(0)] < 1.

If |£(2)] = |z| for one z # 0, or if |f'(0)] = 1, then f(z) = ez for an
a € [0,2m).

An invariant form of this theorem is the theorem of Schwarz-Pick:

Theorem 2.3.2 Let f: D — D be holomorphic. Then, for all z1,z3 € D,

fz) = f(z2) | Jo1 =2l (2.3.1)
L= fz)f(z2) |~ 1 =212l
and, for all z € D ,
1f'(2)] 1 (2.3.2)

=TGR = TP
Equality in (2.3.1) for some two distinct z1,z2 or in (2.3.2) for one z implies
that f is a Mdbius transformation (in which case both (2.58.1) and (2.3.2) are
identities). (More precisely, f is the restriction to D of a Mdébius transfor-
mation that maps D to itself.)

Proof. We reduce the assertions of the theorem to those of Theorem 2.3.1 by
means of Mobius transformations, namely, with w = f(z), and w; = f(21),
let
| — 21— — wp —w
vi=w (2): - ¢(w) : —
Then £ o f o w satisfies the assumptions of Theorem 2.3.1. Hence

o fow(w)] < v,
which is equivalent to (2.3.1). Further we can rewrite (2.3.1) (for z # z1) as
Se)-s@l 11
=zl L= fGE)f() T =7

3 We shall use the words “hyperbolic’ and “non-euclidean” synonymously,
although there exist other geometries (of positive curvature) that deserve the
appellation “non-euclidean” as well; see the remarks on elliptic geometry at the
end of this chapter.
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Letting z tend to z1, we get (2.3.2); observe that
1 —ww| =1 |wf =1~ |w? for |w] < 1.

The assertion regarding equality in (2.3.1) or (2.3.2) also follows from Theo-
rem 2.3.1. ad

Analogously, one can prove

Theorem 2.3.3

f(zl) — f(ZQ) |Zl — 2;2|
|f(Z1) — f(z2)| 21— Za|’ 21,22 € H, (2.3.3)
and o 1
z
nf(z) = Iz 2 (2.3.4)

Equality for some z1 # 2z in (2.3.83) or for some z in (2.8.4) holds if and
only if f is a Mébius transformation (in which case both inequalities become
identities).

Here, in fact, f must have the form z — %+% witha, b, ¢, d € R, ad—be > 0.
cz+d
(|

Corollary 2.3.1 Let f: D — D (or H — H) be biholomorphic (i.e. con-
formal and bijective). Then f is a Mébius transformation.

Proof. After composing with a Mébius transformation if necessary, we may
suppose that we have f: D — D and f(0) = 0. Then, by Theorem 2.3.1, we
have

[f/(0)] < Land |[(f71)(0)] < 1.

Hence |f'(0)] =1, so that f must be a Mobius transformation. O
Let now
ab
SL(2,R) := cd ca,b,e,deR ad—bc=1},
10
PSL(2,R) := SL(2,R)/ {:I: (0 1) }
Via z — (az+b)/(cz + d), an element of SL(2,R) defines a Mdbius transfor-
mation which maps H onto itself. Any element of PSL(2,R) can be lifted to

SL(2,R) and thus defines a Mdbius transformation which is independent of
the lift.
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We recall a general definition:

Definition 2.3.7 A group G acts as a group of transformations or trans-
formation group of a manifold FE, if there is given a map

GxE—FE
(9:%) — gz
with
(g192)(x) = g1(ga) for all 1,92 € G, x € F,
and

er == forallz e FE

where e is the identity element of G. (In particular, each g : E — E is a
bijection, since the group inverse g—! of g provides the inverse map).

Specially important for us is the case when E carries a metric, and all the
maps g : E — E are isometries. It is easy to see that the isometries of a
manifold always constitute a group of transformations.

Theorem 2.3.4 PSL(2,R) is a transformation group of H. The operation
is transitive (i.e. for any z1,2z9 € H, there is a g € PSL(2,R) with gz = 22)
and effective (or faithful, i.e. if gz = z for all z € H, then g =¢).

The isotropy group of a z € H (which is by definition {g € PSL(2,R) :
9(z) = z}) is isomorphic to SO(2).

Proof. The transformation group property is clear, and the faithfulness of
the action is a consequence of the fact that we have normalised the determi-
nant ad — bc to 1.

To prove transitivity, we shall show that, given z = v + iv € H, we can find
g with gi = z. Thus we are looking for

(fﬁ Z) € SL(2,R)

with -
a} * =u—+iv
ca+d
or equivalently,
bd +ac 1

i (2:35)

We can always solve (2.3.5) with ad — bc = 1. In particular, if

ai+b
:1,
a+d
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we must have

bd+ac=0
cA+d®=1
ad —bc =1,

so that (up to the freedom in the choice of the sign),
a=d=cosp, b=-—c=sinp.

Thus the isotropy group at i is isomorphic to SO(2). For any other z € H,
any g € PSL(2,R) with gi = z provides an isomorphism between the isotropy
groups at i and z. a

Definition 2.3.8 The hyperbolic metric on H is given by
1 _ .
y—de dz (z =z +1y).

Lemma 2.3.4 log 2 is a potential for the hyperbolic metric. The hyperbolic

metric has curvature K = —1. Also, it is complete. In particular, every curve
with an endpoint on the real axis and otherwise contained in H has infinite
length. a

Lemma 2.3.5 PSL(2,R) is the isometry group of H for the hyperbolic
metric.

Proof. By Lemma 2.3.2, an isometry h : H — H is conformal. For any curve

v in H,
/ |dh(=)] _ / [ (2)]|dz]
h(~) Imh(z) h(v) Imh(z)
|dz|
S T
4 Imz
and equality holds precisely when h € PSL(2,R) (by Theorem 2.3.3). O

Lemma 2.3.6 The hyperbolic metric on D is given by
——— dz dz,
(1—1z?)
and the isometries between H and D are again Mobius transformations.
Proof. This lemma again follows from Schwarz’s lemma, just like Theo-
rems 2.3.2 and 2.3.3. It has of course to be kept in mind that, up to a M&bius

transformation, w = (z —1)/(z +1) is the only transformation which carries
the metric y%dzd? to the metric W dwdw. a
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Consider now the map
z—e% =1w

of H onto D\{0}. This local homeomorphism (which is actually a covering)
induces on D\{0} the metric

1

—— dw dw
[w]? (log w|?)?

with potential i log log |w| =2, i.e. the map becomes a local isometry between
H with its hyperbolic metric and D\{0} with this metric. This metric is
complete; in particular, every curve going to 0 has infinite length. On the
other hand, for every r < 1, {w: |w| < r}\{0} has finite area.

Finally, we consider briefly the sphere
82 = {(on,a2,5) €B*: af b ad+ad =1},

with the metric induced on it by the Euclidean metric dz% +dz3 +dz3 of R3.
If we map S? onto C U {oo} by stereographic projection:

1 +izo

(I17I2,$3) — ﬁ =z
then the metric takes the form
—— dz dz,
(1+[2?)

as a computation shows.

We shall briefly state a few results concerning this case; we omit the
necessary computations, which are straightforward: the curvature is K = 1,
Area (S%) = 4n, the isometries are precisely the Mobius transformations of
the form

az — ¢
Z

=, laP+lef =1
cz+a

We now wish to introduce the concept of geodesic lines.
Let
~v:[0,1] - ¥

be a smooth curve. The length of v then is
1
()= [ A6) )

We have )
PO <0 =5 [ R6amHmi0 @ (236)
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(E(v) is called the energy of v), with equality precisely if
A(y(t)) |¥(t)| = const. (2.3.7)

in which case we say that v is parametrized proportionally to arclength.
Therefore, the minima of ¢ that satisfy (2.3.7) are precisely the minima of
E. In other words, the energy functional F, when compared with ¢, selects
a distinguished parametrization for minimizers. We want to characterize the
minimizers of F/ by a differential equation. In local coordinates, let

v(t) + sn(t)

be a smooth variation of v, —sg < s < sg, for some sg > 0. If v minimizes
FE, we must have

d
0= —F
P (v + sn)

1 ! [ = . — .2
= /0 {)\2(7) (41 +7m) 4+ 2X (Ayn+ As7) 47 } dt (here, A, = g—f‘y etc.)

s=0
2
1 . .
= Re / {N2(v)3m + 2A\, 477} dt.
0

If the variation fixes the end points of 7, i.e. 9(0) = (1) = 0, we may integrate
by parts to obtain

1
0= —Re / {N()F + 2204} 77 dt.
0
If this holds for all such variations 7, we must have

2/\’7(’Y(t)) 20\
7)\(7@)) 4(t) = 0. (2.3.8)

Definition 2.3.9 A curve +y satisfying (2.3.8) is called a geodesic.

J(t) +

We note that (2.3.8) implies (2.3.7) so that any geodesic is parametrized
proportionally to arclength. Since the energy integral is invariant under co-
ordinate chart transformations, so must be its critical points, the geodesics.
Therefore (2.3.8) is also preserved under coordinate changes. Of course, this
may also be verified by direct computation.

Lemma 2.3.7 The geodesics for the hyperbolic metric on H are subarcs
of Euclidean circles or lines intersecting the real axis orthogonally (up to
parametrization,).

Proof. For the hyperbolic metric, (2.3.8) becomes

3(t) + 2(t)=0 (2.3.9)

Z—z
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for a curve z(t) in H. Writing

z(t) = 2(t) +1iy(1),
we obtain

2 i? g
i, g+ Y
Y

=0. (2.3.10)

If £ =0, then x is constant, and so we obtain a straight line intersecting the
real axis orthogonally. If & # 0, the first equations of (2.3.10) yields

T
(2) =0, ie. & =coy®, (co=const. #0),
Yy

Since a geodesic is parametrized proportionally to arclength, we have

1
" (&% +9%) =} (¢c1 = const.).

N

g\ _ d

2] ==
T 5y

This equation is satisfied by the circle

‘We obtain

(x—x0)2+y2:7

that intersects the real axis orthogonally. A careful analysis of the preceding
reasoning shows that we have thus obtained all geodesics of the hyperbolic
metric. O

Correspondingly, the geodesics on the model D of hyperbolic geometry
are the subarcs of circles and straight lines intersecting the unit circle orthog-
onally.

For our metric on the sphere $2%, the geodesics are the great circles on
S2 C R3 or (in our representation) their images under stereographic projec-
tion. Thus, any two geodesics have precisely two points of intersection (which
are diametrically opposite to each other). We can pass to a new space P(2,R)
by identifying each point of S? with its diametrically opposite point. We then
obtain the so-called elliptic geometry. In this space, two geodesics meet in ex-
actly one point.

If we think of geodesics as the analogues of the straight lines of Euclidean
geometry, we thus see that, in elliptic geometry, we cannot draw a parallel
to a given straight line g through a point pg € g, since every straight line
through py does in fact meet g. In hyperbolic geometry on the other hand,
there always exist, for every straight line g, infinitely many parallels to g (i.e.
straight lines which do not meet ¢) passing through a prescribed point py & g.
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However, all the other axioms of Euclidean geometry, with the single excep-
tion of the parallel postulate, are valid in both geometries; this shows that
the parallel postulate is independent of the remaining axioms of Euclidean
geometry.

This discovery, which is of very great significance from a historical point
of view, was made independently by Gauss, Bolyai and Lobacevsky at the
beginning of the 19th century.

Exercises for § 2.3

1) Prove the results about S? stated at the end of § 2.3.
2) Let A be the group of covering transformations for a torus 7. Let A>dzdz
be a metric on C which is invariant under all elements of A (i.e. each
v € A is an isometry for this metric). Then A2dzdz induces a metric on
T. Let K be its curvature.
/ K =0.
T

Show

Having read § 2.5, you will of course be able to deduce this from the
Gauss-Bonnet theorem. The argument needed here actually is a crucial
idea for proving the general Gauss-Bonnet theorem (cf. Cor. 2.5.6).

2.3.A Triangulations of Compact Riemann Surfaces

We let S be a compact surface, i.e. a compact manifold of dimension 2.
A triangulation of S is a subdivision of S into triangles satisfying suitable
properties:

Definition 2.3.A.1 A triangulation of a compact surface S consists of
finitely many “triangles” T;, i = 1,...,n, with

Here, a “triangle” is a closed subset of S homeomorphic to a plane triangle
A, i.e. a compact subset of the plane R? bounded by three distinct straight
lines. For each i, we fix a homeomorphism

from a plane triangle A; onto T;, and we call the images of the vertices and
edges of A; vertices and edges, resp., of T;. We require that any two triangles
T;,T;, i© # j, either be disjoint, or intersect in a single vertex, or intersect in
a line that is an entire edge for each of them.
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Remark. Similarly, one may define a “polygon” on S.

The notion of a triangulation is a topological one. The existence of trian-
gulations may be proved by purely topological methods. This is somewhat
tedious, however, although not principally difficult. For this reason, we shall
use geometric constructions in order to triangulate compact Riemann sur-
faces. This will also allow us to study geodesics which will be useful later on
as well. Only for the purpose of shortening our terminology, we say

Definition 2.3.A.2 A metric surface is a compact Riemann surface
equipped with a conformal Riemannian metric.

The reader should be warned that this definition is not usually standard in
the literature, and therefore, we shall employ it only in the present section.
Let M be a metric surface with metric

M\ (z) dz dz.

We recall the equation (2.3.8) for geodesics in local coordinates
2\ t
2,0(1) A2(t) = 0. (2.3.A.1)

Splitting (t) into its real and imaginary parts, we see that (2.3.A.1) consti-
tutes a system of two ordinary differential equations satisfying the assump-
tions of the Picard-Lindel6f theorem. From that theorem, we therefore obtain

Lemma 2.3.A.1 Let M be a metric surface with a coordinate chart ¢ :
U — V C C. In this chart, let the metric be given by A\?>(z)dzdz. Let p €
V, v € C. There existe > 0 and a unique geodesic (i.e. a solution of (2.3.A.1))
v :[0,e] = M with

~7(0)=p (2.3.A.2)
5(0) = v.

v depends smoothly on p and v. ad

We denote this geodesic by 7, .
If (t) solves (2.3.A.1), so then does y(At) for constant A € R. Thus

t
Ypw(t) = 71,,,\1)(}) for A >0, t €0,¢]. (2.3.A.3)

,%] Since v, depends

smoothly on v as noted in the lemma and since {v € C : [|v||2 := X?(p)vv = 1}
is compact, there exists 9 > 0 with the property that for any v with ||v||, = 1,
Ypw 1s defined on the interval [0,e0]. It follows that for any w € C with
lwll, < €0, Vp,w is defined at least on [0, 1].

In particular, 7, ., is defined on the interval [O
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Let
Vp:={veC: #,, is defined on [0,1]}.

Thus, V,, contains the ball
{weC: ||lwl, <eo}.
We define the so-called exponential map
exp, : V. — M (identifying points in (U) =V
with the corresponding points in M)
v = Ypo(l).

Lemma 2.3.A.2 exp, maps a neighbourhood of 0 € V), diffeomorphically
onto some neighbourhood of p.

Proof.  The derivative of exp, at 0 € V}, applied to v € C is

D exp,(0)(v) = %%ﬂv(l)

t=0

d
= — v t
dt,‘/pu ( )

= ’.Y;v,v (0)

=V

t=0

by definition of 7, .
Thus, the derivative of exp, at 0 € V,, is the identity. The inverse function
theorem may therefore be applied to show the claim. a

In general, however, the map exp, is not holomorphic. Thus, if we use
exp,, ! as a local chart, we preserve only the differentiable, but not the con-
formal structure. For that reason, we need to investigate how our geometric
expressions transform under differentiable coordinate transformations. We
start with the metric. We write

z=z412%, dz=dzt+1d2? dz=dz' —id:?
Then
A (z) dz dz = A% (2) (dz! dz' +dz? d2?).
If we now apply a general differentiable coordinate transformation
z=z(z), ie. 2! =21 (z!, 2?), 2% =22(a', 2?) with z = (2!, 2%)

the metric transforms to the form
2

0z 02" ;
§ 2 k
ijk:1>\ (@) dzd Ok da? da”.




34 2 Differential Geometry of Riemann Surfaces

We therefore consider metric tensors of the form

2
Z gir(x) da? da® (2.3.A.4)
k=1

with a positive definite, symmetric metric (g;x);x=1,2. Again, we require that
gjk(x) depends smoothly on x. The subsequent considerations will hold for
any metric of this type, not necessarily conformal for some Riemann surface
structure. W.r.t. such a metric, the length of a curve v(t) (7 : [a,b] — M) is

b 1
()= [ (ga@) 7 03+0)* a, (2.3.A.5)
and its energy is
1 P _
B0 =5 [ an0®) 050 (23.A6)
As before, one has
(y) < 2(b - a) E(v) (2.3.A.7)
with equality iff _
9k (v(£) 47 (t) 4* (t) = const., (2.3.A.8)

i.e. if v is parametrized proportionally to arclength. The Euler-Lagrange
equations for F, i.e. the equations for v to be geodesic, now become

)+ Y D) ¥ )4 () =0 fori=12, (2.3.A.9)
7,k=1
with
2
k() = % > g (@) (aikgﬂ(x) + %gm(m) - ;xlgjk(w)> (2.3.A.10)

where (g7%(z)) is the inverse matrix of (g;z(z))

2 .
. 1 forj=1
k
ZQJ gkl = { .
P 0 forj #I.
(The derivation of (2.3.A.9) needs the symmetry g;x(z) = gi;(x) for all j, k.)
We now use the local coordinates p € M defined by exp, 1. We introduce
polar coordinates 7, on V), (2! = rcosg, 22 = rsing) on Vp, and call
the resulting coordinates on M geodesic polar coordinates centered at p. By

construction of exp,, in these coordinates the lines r = ¢, ¢ = const. are
geodesic.

jk=1,2 jk=1,20 1-€:
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We thus write the metric as g1 dr? + 2g12 drdg + gao dp?. From (2.3.A.9),
we infer ‘
I, =0 fori=1,2

in these coordinates, i.e. by (2.3.A.10)

2
X 0 0
ng (2 9~ 81911) =0,

=1

hence, since (g%) is invertible,

0 0
2—g1— =9g11=0 for il =1,2. 2.3.A.11
or gu a1 g11 or ) ( )
For [ = 1, we obtain
0
— =0. 2.3.A.12
87,911 ( )
Since by the properties of polar coordinates, ¢ is undetermined for r = 0,
gjk(oa QD)
is independent of ¢, and (2.3.A.12) implies
g11 = const. =: g. (2.3.A.13)

(In fact, g = 1.) Inserting this into (2.3.A.11) yields

0
— =0. 2.3.A.14
ar 912 0 (2.3 )

By the transformation rules for transforming Euclidean coordinates into polar
coordinates, we have

912(0,) =0
(2! = rcosy, 22 = rsing, the metric in the coordinates x!, x? written as
Z? w1 Vik dz?dzF, hence

1

Oxd ok ox? Ok
=D G 92 = Dk G
Ox? Oxk
g22 = Vik %%7

and%i;:Oatr:O).
Thus, (2.3.A.14) implies
g12 = 0. (2.3.A.15)

Since the metric is positive definite, we finally have

g22 >0  forr>0. (2.3.A.16)
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Lemma 2.3.A.3 Let § > 0 be chosen such that
exp,:{veV,: |vl, <0} - M

is injective. Then for every q = exp,(v) with |[v||, < §, the geodesic 7y, is
the unique shortest curve from p to q. In particular

d(p, q) = ||v]lp-
Proof. Let v(t), 0 <t < T be any curve from p to ¢. Let

to := inf {t <T: () ¢ exp,, {llvll, < (5}},
or tg := T if no such t < T can be found.

We shall show that the curve v, is already longer than =, ,, unless
it coincides with the latter one. For that purpose, we represent v(t) as
(r(t),e(t)) for 0 <t <t in our geodesic polar coordinates and compute

{i0.001) :/00 (91172 (t) + 2912 7(£) () + g22 ¢2(t))% dt
> [ @)
=/ g% ()] dt

0

to .
> / b () dt
0

= g% (to) = max (6, ¢(Vp,v)) by definition of ¢y

D=

dt by (2.3.A.13), (2.3.A.15), (2.3.A.16)

r
= £(Vp,w);

with equality only if to = T and ¢(t) = const., 7(t) > 0, i.e. if v coincides

with 7,, up to parametrization. O

Corollary 2.3.A.1 Let M be a compact metric surface. There exists € > 0
with the property that any two points in M of distance < € can be connected
by a unique shortest geodesic (of length < ¢) (up to reparametrization).

(Note, however, that the points may well be connected by further geodesics
of length > ¢.)

Proof. By the last sentence of Lemma 2.3.A.1, exp,, depends smoothly on
p. Thus, if exp, is injective on the open ball {||v[|, < &}, there exists a
neighbourhood {2 of p such that for all ¢ € £2, exp, is injective on {||v[|, < }.
Since M is compact, it may be covered by finitely many such neighbourhoods,
and we then choose ¢ as the smallest such §. Thus, for any p € M, any point
q in exp,{[|v]|, < e} can be connected with p by a unique shortest geodesic,
namely the geodesic Vp,expy(q)? by Lemma 2.3.A.3. ad
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For our purposes, these geodesic arcs are useful because they do not
depend on the choice of local coordinates. While the equation (2.3.A.9) is
written in local coordinates, a solution satisfies it for any choice of local co-
ordinates, as the equation preserves its structure under coordinate changes.
This may be verified by direct computation. It can also be seen from the fact
that these geodesics minimize the length and energy integrals, and these are
readily seen to be coordinate independent.

Theorem 2.3.A.1 Any compact metric surface - and hence by Lemma
2.8.3 any Riemann surface - can be triangulated.

Proof. The idea of the proof is very simple. We select a couple of points and
connect them by geodesics. More precisely, we choose them in such a manner
that each of them has a certain number of other ones that are so close that
the shortest geodesic connection is unique. Those geodesic connections then
subdivide our surface into small pieces. One might now try to choose the
points so carefully that these pieces are already triangles. It seems easier,
however, to simply subdivide those pieces that happen not to be triangles.
Such nontriangular pieces may arise because some of our geodesic connection
may intersect. The subdivision presents no problem because at any such
intersection point, the geodesics intersect at a nonvanishing angle.

We now provide the details.

Let X be a metric surface. Let € be as in Corollary 2.3.A.1. We select
finitely many points p1,...,p, € X with the following properties:
(i) VpeXIie{l,....,n}: dp,pi) <e€
(i) Vie{l,...,n} 35 ke{l,...;n}: i#j,i#k, j#k:

d(pi,pj) <
d(pi,pe) <

d(pj,pr) <

WM W mw| M

Whenever i,j € {1,...,n} and d(p;, p;) < 5, we connect p; and p; by the
unique shortest geodesic ; ; of Corollary 2.3.A.1. By Lemma 2.3.A.2, any two
such geodesics 7; ; and 7y, intersect at most once. Namely, if there were two
points g1 and ¢o of intersection, then g would have two different preimages
under exp,, , namely the two tangent vectors at the two geodesic subarcs of
7vi,; and 7y from ¢ to go; since both these subarcs have length < e by con-
struction, this would contradict the local injectivity of exp,, . For any three
points p;, pj, pr as in (iii), the union of the geodesic arcs v; j,v;k; Vi,k sSubdi-
vides X into a triangle T contained in {p: d(p,p;) < %} and its exterior.

This property may readily be deduced from the following observation. Any
of the three geodesic arcs, say 7; ;, may be extended as a geodesic up to a
distance of length ¢ in both directions from either of its two endpoints, say
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vi,; by Lemma 2.3.A.1. By Lemma 2.3.A.2 this extended geodesic arc then
divides exp,,, {||v||p; < e} into two subsets. T' then is the intersection of three
such sets.

We now enlarge the collection {p1,...,p,} to a collection {p1,...,pn} by in-
cluding all points where any two such geodesics 7; j, V&, intersect (4, j, k,l =
1,...,n).

This subdivides X' into finitely many “polygons” with geodesic sides. All an-
gles at the vertices are different from 0, because by the uniqueness statement
of Lemma 2.3.A.1 any two geodesics with the same initial direction coincide.
Similarly, by Lemma 2.3.A.2, any polygon has at least three vertices. We now
want to subdivide any such polygon P with more than three vertices into tri-
angles in the sense of Def. 2.3.A.1. By construction, any two vertices of P
have distance < 5. In order to carry out the subdivision, we always have to
find two vertices of any such polygon P whose shortest geodesic connection
is contained in the interior of P. Thus, let us suppose that pg is a vertex of
P that cannot be connected in such manner with any other vertex of P. Let
p1 and po be the two vertices adjacent to pg, i.e. connected to py by an edge
of P. Let vp,1 be the edge from pgy to p1, 79,2 the one from py to pa, and let
71,2 be the shortest geodesic from p; to p2. 70,1, 70,2 and 71,2 form a geodesic
triangle T'. We claim that some such T" does not contain any vertices of P in
its interior. Otherwise, let p3 be a point on P in the interior of T' closest to
Do, with geodesic connection 7p 3. The geodesic arcs vo,1,70,2 and 1,2 can be
continued beyond their endpoints up to a length of at least £ in each direc-
tion, by choice of €. By uniqueness of short geodesics, 79,3 cannot intersect
any of these extended arcs, and 7 3 therefore is contained in the interior of
T'. Assume that vy 3 is contained in the interior of P, except for its endpoints.
By choice of ps3, 70,3 does not contain points of P besides py and ps. If p3 is
a vertex, it can thus be connected to pg in the interior of P contrary to the
choice of pg. Thus, let p3 be contained in some edge ¢ of P. Let py be one of
the vertices of . We represent the part of £ between p3 and py4 as a (geodesic)
smooth curve v : [0,1] — M, with 7(0) = p3. Let 7 be the geodesic arc
from pg to y(t). By Lemma 2.3.A.1, -, depends smoothly on ¢. Let ¢y be the
smallest value of ¢ for which the interior of ¢y is not disjoint to OP. If no
such tg exists, then pg can be connected to the vertex py in the interior of P,
contrary to our assumption. If v;, contains a vertex ps, ps can be connected
to po in the interior of P, again a contradiction. Otherwise, however, v;, is
tangent to some edge of P. By the uniqueness statement of Lemma 2.3.A.1,
it then has to coincide with that edge. This is only possible if that edge is
70,1 Or 7o,2. In that case, we perform the same construction with the other
vertex of ¢, reaching the same conclusion. Thus, ¢ has to coincide with v; .
P thus is the triangle 7', and there is nothing to prove. If g 3 is contained in
the exterior of P, we perform the same construction at another vertex that
cannot be connected with any other vertex in the discussed manner, until
we reach the desired conclusion, because it is impossible that for all vertices
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the corresponding triangle T lies in the exterior of P, since P is contained in
some geodesic triangle with vertices as in (ii).
Thus, we may always construct a subdivision of X' into triangles. a

Exercises for § 2.3.A:

1) Show that for the unit disk D with the hyperbolic metric and p € D, the
exponential map exp,, is not holomorphic. Same for S 2,

2.4 Discrete Groups of Hyperbolic Isometries.
Fundamental Polygons. Some Basic Concepts of Surface
Topology and Geometry.

Definition 2.4.1 An action of the transformation group G on the manifold
F is said to be properly discontinuous if every z € E has a neighbourhood U
such that

{g € G: gUNU # (0} is finite, and if 21, 22 are not in the same orbit, i.e.
there is no g € G with gz; = 29, they have neighbourhoods U; and Us,, resp.,
with gU; NU; = for all g € G.

We have obviously:

Lemma 2.4.1 If G acts properly discontinuously, then the orbit {gp: g €
G} of every p € E is discrete (i.e. has no accumulation point in E ).

We now wish to study properly discontinuous subgroups I" of PSL(2,R); I

acts on H as a group of isometries. Being properly discontinuous, I" has to be

a discrete subgroup of PSL(2,R).* Indeed, if g, — g for some sequence (g,,)

in I', then g,29 — gzg for every zy € H, in contradiction to Lemma 2.4.1. In

particular, I" is countable, because every uncountable set in R*, and hence

also any such subset of SL(2,R) or PSL(2,R), has an accumulation point.
We now form the quotient H/I™:

Definition 2.4.2 Two points z1,z2 of H are said to be equivalent with
respect to the action of I' if there exists g € I" with gz; = zo.

H/T is the space of equivalence classes, equipped with the quotient topology.
This means that (g,)nen C H/I" converges to ¢ € H/I' if and only if it is

1 SL(2,R) = { ab :ad — bc = 1} is a subset of R* in a natural way, and thus is
cd

n bn (e b
n dn cd
This then also induces a topology on PSL(2, R). For every z € H, the map g — gz
from PSL(2,R) to H is continuous.

equipped with a topology: (Z if and only if ar, — a,...,dn, — d.
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possible to represent each ¢, by an element z, € H in the equivalence class
defined by g, such that (z,),en converges to some z € H in the equivalence
class of q.

If the action of I' is free from fixed points, i.e. gz # z for all z € H and
all ¢ # id in I', then H/I" becomes a Riemann surface in a natural way.
For pg € H/TI', choose zy € 7 1(pp); since I is fixed-point-free and properly
discontinuous, zy has a neighbourhood U such that g(U)NU = @ for g # id in
I, so that m : U — «(U) is a homeomorphism. But this procedure provides
H/I not only with a Riemann surface structure, but also a hyperbolic metric,
because PSL(2,R) acts by isometries on H.

In order to develop some geometric understanding of such surfaces H/ I,
we start by establishing some elementary results in hyperbolic geometry. Let
SL(2,R) operate as before on the upper half plane H via

az+b
cz+d

A e d

(a,b,¢,d € R, ad —bc=1).

Lemma 2.4.2 FEach v € SL(2,R), v # identity, either has one fized point
in H, one fized point on the extended real line R = RU {oco} = 0H, or two

fized points on OH. If v = ZZ

2, or |try| > 2, resp., with try :=a+d.

), this corresponds to |try| < 2, |[try| =

Proof. 1If z is a fixed point of v, then
e+ (d—a)z—b=0,

ie.

_a—d (a—d)?+4bc a—d 1 JaTdr=i
T e * 42 - 2c :t2ic (a+d)* -4,
using ad — bc = 1, and the conclusion easily follows. O

Definition 2.4.3 An element of SL(2, R) with one fixed point in H is called
elliptic, an element with one fixed point on R parabolic, and one with two
fixed points on R hyperbolic.?

In order to see the geometric relevance of the distinction between elliptic,
parabolic and hyperbolic automorphisms of H, let us discuss some examples:

— In the proof of Theorem 2.3.4, we have already determined all the trans-
formations that fix i,

5 This use of the word “hyperbolic” is not quite compatible with its use in “hy-
perbolic” geometry as now only certain isometries of hyperbolic space are called
“hyperbolic”. This is unfortunate, but we are following customary terminology
here.
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ai+b
=i
ca+d

An example is the transformation z +— —% that also maps 0 to co and, in
fact, is a reflection in the sense that every geodesic through i gets mapped
onto itself, but with the direction reversed. Other such elliptic elements do
not leave geodesics through i invariant. (The elliptic elements are perhaps
even more easily understood when we let them operate on the unit disk D
in place of H as our model space. In fact, the elliptic elements leaving the
origin 0 of D fixed are simply the rotations z — e!“z with real «.)

— The transformation v : z — z + 1 is parabolic as it has a single fixed
point on the boundary, namely co. This is already the typical case: If oo is
a fixed point of v, with v = Zd
Lemma 2.4.1 a + d = 2. Since also ad = 1, it follows that

C(1b
T=\o1)

Likewise, z — %7 has a single fixed point on the boundary, namely 0, and

is thus parabolic.

b), then ¢ = 0, and, if v is parabolic, by

— The transformation of the form

(A0
Y= 0)\71’

i.e. 2 — A2z, with real A # 1, is hyperbolic. It fixes 0 and co. Again, this is
the typical case as by applying an automorphism of H, we may assume that
the two fixed points of our hyperbolic transformation are 0 and oo. Such a ~
leaves the geodesic connected these two points, namely the imaginary axis,
invariant. This can be trivially seen by direct inspection of the operation of
7. A more abstract reason is that automorphisms of H are isometries with
respect to the hyperbolic metric and therefore map geodesics to geodesics,
and geodesics are uniquely determined by their endpoints on the boundary
of H (see Lemma 2.3.6). In particular, since v has no other fixed points,
the imaginary axis is the only geodesic left invariant. On that geodesic, it
operates as a translation, that is, shifts points along it by the distance

A2vi 1
/ —dy = log A\,
vi Yy

Lemma 2.4.3 Let H/I" be a compact Riemann surface for a subgroup I" of
PSL(2,R), as described in 2.4. Then all elements of I' are hyperbolic.

Proof. I cannot contain elliptic elements, because it has to operate without
fixed points in H.
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Let v € I'. Since H/I" is compact, there exists some zp in a fundamental
region with
d(z0,7 20) < d(z,vz) forall z € H, (2.4.1)

where d denotes hyperbolic distance.

Assume now that «y is parabolic. By applying an automorphism of H, we may
assume that oo is the unique fixed point of v, and as we have seen above,
before the statement of the present lemma, v is of the form

= (03):

d(z,vz) =d(z,z +b),

and this goes to zero as Im z — oo. Thus, if v is parabolic there can be no
2o satisfying (2.4.1), as v has no fixed point in H. Therefore, v cannot be
parabolic. a

Then for each z € H,

Lemma 2.4.4 Let again H/I' be a compact Riemann surface. Then for
each v € I,y # identity, the free homotopy class of loops determined by ~y
contains precisely one closed geodesic (w.r.t. the hyperbolic metric).

Proof. By applying an automorphism of H, we may assume that + has 0
and oo as its fixed points (recall that v is hyperbolic by Lemma 2.4.3). Thus,
as we have already seen before Lemma 2.4.3, «y is of the form

(r o0
Y= O)\—la

i.e. z — A? 2z, and there is precisely one geodesic of H which is invariant under
the action of v, namely the imaginary axis. A moment’s reflection shows that
the closed geodesics on H/I" are precisely the projections of geodesics on H
which are invariant under some nontrivial element of I', and this element of
I of course determines the homotopy class of the geodesic. O

From the preceding proof and the discussion before Lemma 2.4.3, we also
observe that the length of that closed geodesic on H/I" is log A?> because ~y
identifies points that distance apart on the imaginary axis.

Definition 2.4.4 An open subset F' of H is called a fundamental domain
for I' if every z € H is equivalent under the action of I" to a point 2’ in the
closure of F', whereas no two points of F' are equivalent.

Definition 2.4.5 A fundamental domain F' is said to be a fundamental
polygon if JF is a finite or countable union of geodesic arcs (together with
their limit points in the latter case), the intersection of two such arcs being
a single common end-point if non-empty.
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We shall now construct a fundamental polygon for a given group I'. For
simplicity, we shall restrict ourselves to the case when I is fixed-point-free
and H/I' is compact; this is also the case we shall be mainly concerned with
in the rest of this book.

Theorem 2.4.1 Suppose I' C PSL(2,R) acts properly discontinuously and
without fized points on H, and that H/I" is compact. Let zo € H be arbitrary.
Then F = {z € H : d(z,20) < d(z,920) for all g € T'} % is a convex 7
fundamental polygon for I' with finitely many sides. For every side o of F,
there exists precisely one other side o’ of F such that go = o’ for a g € I.
Different pairs of such sides are carried to each other by different elements
of I'.

Definition 2.4.6 Such a fundamental polygon is called the metric (or
Dirichlet) fundamental polygon with respect to zg.

Proof of Theorem 2.4.1. Since H/I is compact, F' is bounded. Indeed, if
diam (H/TI') := sup{d(z1,22) : 21,22 € H/T'},
where d(+,-) now denotes the induced hyperbolic metric on H/I", then
diam F' < diam (H/I").
For each g € I, the line
{z€ H: d(z,2z0) = d(2,920)}

is a geodesic. (Actually, for every two 21,20 € H, L={z€ H: d(z,21) =
d(z,22)} is geodesic. In order to see this, we first apply an isometry of H so
that we can assume that z1, zo are symmetric to the imaginary axis. Then
L is the imaginary axis, hence geodesic.) Since F' is bounded (so that F' is
compact), there can exist only finitely many g € I" such that

d(z,2z0) = d(z, g20) for some z € F;

indeed, since I" operates properly discontinuously, Lemma 2.4.1 ensures that,
for every K > 0, there are only finitely many g € I" with d(zo, gz0) < K. Thus
F is the intersection of finitely many half-planes (with respect to hyperbolic
geometry) of the form

{z € H: d(z,20) <d(z,920)};

6 d(-,-) denotes the distance with respect to the hyperbolic metric.
7 “Convex” means that the geodesic segment joining any two points of F' is entirely
contained in F'.
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let g1,...,9m be the elements thus occuring. In particular, F' is convex and
has finitely many sides, all of which are geodesic arcs. The intersection of
two of these arcs (when not empty) is a common end-point, and the interior
angle of F' at the vertex is less than 7.

To prove that every z € H has an equivalent point in F, we first determine
a g € I' such that

d(z,920) < d(z,9'z)  forall g’ €T.

Then ¢~ 'z is equivalent to z, and it lies in F since the action of I, being via
isometries, preserves distances:

dlg~"'z,20) <d(g~'2z,97'g'%)  forallg' €T,

and ¢~ '¢’ runs through all of I" along with ¢'.
Conversely, if z is a point of F', then

d(z,20) < d(z,g20) = d(g_lz,zo)

for all g € I', so that no other point equivalent to z lies in F.
Thus F' is a fundamental polygon.
A side o; of F is given by

o, ={z: d(z,20) = d(z,¢9i20), d(z,20) < d(z,g20) for all g e I'}. (2.4.2)
Since d(g;lz,gzo) = d(z,¢9:920), we have for z € o;

d(g;lz,zo) < d(g;lz,gzo) for all g € I
with equality for g = g; ! Thus 9; ! carries o; to a different side. Since F is
a convex polygon (with interior angles < ), g; ! carries all other sides of F
outside F'. Thus, different pairs of sides are carried to each other by different
transformations. Further, the transformation which carries ¢; to another side
is uniquely determined since, for an interior point of o;, equality holds in
the inequality sign in (2.4.2) only for g = g;. Thus all the assertions of the
theorem have been proved. a

Corollary 2.4.1 The transformations gi,...,gm (defined in the proof of
Theorem 2.4.1) generate I.

Proof. For any g € I', we consider the metric fundamental polygon F(g)
with respect to gzg. Among the F'(g'), only the F'(g;) have a side in common
with F, and g; ! carries F(g;) to F. If now F(g') has a side in common with
F(g;) say, then gi_lF(gi) has a side in common with F, so that there exists
je{l,...,m} with g;lgle(g’) = F. Now, any F'(go) can be joined to F'
by a chain of the F'(g) in which two successive elements have a common side;
hence, by what we have seen above, F(gg) can be carried to F' by a product
of the g, 1 Hence gy is a product of the g;. ad
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Let us emphasize once again that, for a fundamental domain F' of I,

H:Ugf.

Thus the hyperbolic plane is covered without gaps by the closure of the fun-
damental domains gF', and these fundamental domains are pairwise disjoint.
For the fundamental domain F' of Theorem 2.4.1, the adjacent ones are pre-
cisely the g;F', the g; being as in Corollary 2.4.1.

To help visualisation, we shall now discuss some examples, though they are
rather simple compared to the situation considered in Theorem 2.4.1.
Suppose first that I" is a cyclic group. If I is to be fixed-point-free, then its
generator must have its two fixed points (distinct or coincident) on the real
axis. Of course H/I" is not compact in this case, but a metric fundamental
polygon for I' can be constructed exactly as in Theorem 2.4.1.

We consider first the parabolic case, when I' has only one fixed point on
RU{oo}. As explained above, by conjugating with a Mébius transformation,
we may assume that the fixed point is co, so that I" is generated by a trans-
formation of the form z — z+4b (b € R). Thus, for any zo € H, all the points
gzo (g € I') are of the form zy + nb(n € Z), i.e. lie on a line parallel to the
real axis (which can be thought of as a circle with centre at infinity). The F'
of Theorem 2.4.1 is given in this case by

b
F={z=z+1y: |x—RezO|<§},

see Fig.2.4.1.

Similarly, for the group I' generated by the z — 57 the fixed point of I
is the point p = 0 on the real axis. In this case, the gzy lie on a Euclidean
circle around 0, and the sides of the metric fundamental polygon are again
geodesics orthogonal to these circles, see Fig.2.4.2. More generally, given any

2
% has that point p as its unique fixed point and

p € R, the map z — e
generates a parabolic I
If the generator g; of I' is hyperbolic so that it has two fixed points on

R U {oo}, we recall from our above discussion of hyperbolic transformations

20— b 20 zZo+0b

Fig. 2.4.1.
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Fig. 2.4.2.

that wecan by conjugation send the fixed points e.g. to 0 and co. Then g1z =
Az, A > 0. Hence the points equivalent to zy lie on the ray from the origin
through zy, and F' will be bounded by two circles orthogonal to these rays
and the real axis, see Fig.2.4.3.

o )\ZO

Fig. 2.4.3.

Correspondingly, for a generator g; with fixed points 0 and p € R, the
gz lie on the circle through 0, zp and p, and the sides of F' are orthogonal
to this circle, see Fig.2.4.4.
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[ ]

°

P
Fig. 2.4.4.

Finally, we consider groups I" of Euclidean motions. In the compact cases
C/I' is a torus as we shall see later. In this case, a metric fundamental
polygon is in general not a fundamental parallelogram, but a hexagon. If e.g.
r={z—z+n+ mes, n,me 7}, then one obtains a regular hexagon,
see Fig.2.4.5.

e271'1',/3

Fig. 2.4.5.

Theorem 2.4.2 Under the assumptions of Theorem 2.4.1, there exists a
fundamental polygon with finitely many sides, all of whose vertices are equiv-
alent. Here again, every side a is carried by precisely one element of I' to
another side o', and the transformations corresponding in this way to distinct
pairs of equivalent sides are distinct. The sides will be described in the order

Y /7.
arbiajbiasbs - - - aybpay,by;

in particular, the number of sides is divisible by 4.

The proof will be carried out in several steps. We start from the fundamental
polygon F' of Theorem 2.4.1.
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1) Construction of a fundamental domain with finitely many sides, all of
whose vertices are equivalent.

During this step, we shall denote equivalent vertices by the same letter. We
choose some vertex p of F'. If F' has a vertex not equivalent to p, then F' has
also a side a with p as one end-point and ¢ # p as another. We join p to the
other adjacent vertex of ¢, say r, by a curve d in F. Let g be the element of
I" which carries the side b between ¢ and r to another side b’ of F. We then
get a new fundamental domain by replacing the triangle abd by its image
under g; this fundamental domain has one p-vertex more, and one g-vertex
less, than F. After repeating this process finitely many times, we finally get
a fundamental domain with only p-vertices.

Fig. 2.4.6.

(For the curve d above, we could have chosen the geodesic arc from p
to r the first time, since F' was convex. But the modification made could
destroy the convexity, so that it may not be possible to choose a geodesic
diagonal inside the modified fundamental domain. We have therefore taken
an arbitrary Jordan curve for d; thus the resulting fundamental domain is in
general not a polygon. This defect will be rectified only at the very end of
our construction.)

2)

Lemma 2.4.5 With the above notation, a and a’ cannot be adjacent, i.e.
cannot have a common verter.

Proof. Let g be the transformation carrying a to a’. If F is the fundamental
domain under consideration, then F' and g(F) are disjoint. Thus, if @ and o
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have a common end-point, this point must be fixed by g (since g preserves
orientation), in contradiction to our assumption that I" acts without fixed
points. a

3)

Lemma 2.4.6 Let F be a fundamental domain all of whose vertices are
equivalent. Then each g # 1d in I' carries at the most two vertices of F to
vertices of F. In such a case, these two vertices are adjacent, and g carries
the side of F' between them to the side of F' between their g-images.

Proof. Let pg be a vertex of F, which is carried by g € I" to another vertex
po; let ag be a side of F' with pg as an end-point. Then either

g(a1) C OF

or
g(a1) NOF = py,.

In the first case, let p; be the other end-point of a;, and ao the side of
F adjacent to a; at pj. Since g(p;) € OF, there are again the same two
possibilities for as. Continuing in this manner, we arrive at a first vertex
pj—1 and side a; such that

g(a;) NOF = g(pj—1).
Then we have, for p; and a1, either
g(aj41) NOF =10

or
g(aj11) NOF = g(pj+1)-

In the first case, we again continue, till we arrive at the first vertex py_1 and
side a; with
g(ar) NOF = g(px) (k> j).

Continuing cyclically, we must return after finitely many steps to the ver-
tex pm,m = po we started with. We now want to show that the whole chain
k41, k42, - - 0m, 01, ...,0j—1 is mapped by g into OF.
Thus, let F’ be the domain bounded by g(ax41),...,g(a;—1) and the subarc
of OF from g(pi) to g(pj—1); here the latter is to be so chosen that F’ and
F are disjoint. Similarly, let F” be the domain bounded by g(a;),...,g(ax)
and the subarc of OF from g(p;j_1) to g(px). We must show that either F” or
F” has empty interior.
Now,

OF' C Fug(F), OF" Cc FUg(F),
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and J,cp g(F) is the whole of H, while g1 (F") and g»(F") have no interior
point in common if g; # go. Thus if F’ and F” had non-empty interior, we

would have
F' =4 (F)and F" = ¢"(F)

for some ¢’, g” # g; in particular the interiors of F’ and F" would be funda-
mental domains. But g(a;) C OF, hence either F’ or F”' would have at least
two sides fewer than g(F'). This is clearly impossible, since all images of F
by elements of I' of course have the same number of sides. Hence I’ = ) or
F"” =), as asserted. Without loss of generality, let F” = (). Then the chain
Qk41, k42, -, 0j—1 is mapped by g into OF.

If 5 =1 and k = m, this chain is empty, and

Fng(F)=g(po)

in this case.

The important point to understand from the above considerations is however
the following: if ¢ maps two vertices of F' into OF, then it also maps one of
the two chains of sides between these two vertices into JF.

(By the way, we have not so far made use of the assumption that all vertices
of F' are equivalent; hence the above statement holds even if there are several
equivalence classes of vertices).

We shall now show that the assumption that g # id carries more than two
vertices into OF leads to a contradiction. Indeed, what we have proved above
shows that, in such a situation, we can find three successive vertices p1, p2, p3
which, along with the sides a; and as between them, are mapped by ¢ into
OF.

aj p2 a2 / D2 \

D1 b3 Y41 D3
Fig. 2.4.7.

We now modify F slightly: instead of joining a; and ag at the intermediate
vertex ps, we connect them by means of a small arc going around p;. We
modify g(a;Uasg) correspondingly. We then obtain a new fundamental domain
with pa or g(p2) as an interior point. But this is the desired contradiction,
since the closure of this fundamental region contains points equivalent to ps
e.g. as boundary points.

This proves the lemma. a

4) In what follows, we need to use a modification of the fundamental domain
which generalises the one we have already used in 1):
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Let a and o’ be equivalent sides of OF, so that a’ = ga for some g € I'. Let d be
a diagonal curve which joins two vertices of F' but otherwise lies in the interior
of F. Then d divides F into two regions F; and Fy. Let a C F1, a' C Fo.
Then g(F1) has precisely the side ¢’ in common with F; and F» U g(Fy) is
therefore again a fundamental domain (when the common sides are adjoined
to it).

5) We now bring the sides to the desired order. We first choose the ordering
of the sides such that ¢’ is always to the right of c. Let ¢; be a side for which
the number of sides between ¢; and ¢ is minimal: this number is positive by
Lemma 2.4.5. Then the arrangement of the sides looks like

Cieg -y ..y (2.4.3)

where the dots indicate the possible presence of other sides. If there are no
such intermediate sides, we look among the remaining sides for a ¢ with the
distance between ¢ and ¢’ minimal. Continuing this way, we must arrive at
the situation of (2.4.3) with intermediate sides present (unless the sides are
already in the desired order and there is nothing to prove). We now join the
end-point of ¢; with the initial point of ¢} (end-point and initial point with
respect to the chosen orientation of OF) by a diagonal, say by, and apply the
modification of 4) to the pair ¢, ¢} and the diagonal b;. We then obtain a
fundamental domain with sides in the order

clblcﬁ -~'b3.

Without loss of generality, we may suppose that there are again some other
sides between ¢ and bj. We now join the end-point of by with the initial
point of b} by a diagonal a; and again apply the modification of 4) to ¢, ¢}
and a; and obtain the order

a1b1a3b3-~~

for sides of the new fundamental domain.

¢}
1o~

C1 : by Y TN

Fig. 2.4.8.

We repeat the above procedure for the remaining sides; this does not
disturb the portion aibia)b;. After finitely many steps, we thus reach the
desired order

arbraibl - apbpa;b;.
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6) In this last step we move the sides of the fundamental domain F con-
structed in 5) to geodesic arcs:

We fix a side a of I, and consider the geodesic a with the same end-points.
Let A(t, s) be a homotopy with A(-,0) = a and A(+,1) = @ such that none of
the curves A(-, s) has self-intersections.®

We now deform the side a by the homotopy A(-,s) and the equivalent side
a’ = g(a) by the homotopy g(A(:,s)). We wish to say that we obtain in this
way a new fundamental domain Fj.

Suppose first that, as s increases from 0 to 1, the curve A(-, s) meets another
side b without crossing any vertex. Then the domain acquires for example
some points which were previously exterior to the fundamental domain; but
these points (or points equivalent to them) will be taken away at the side b’
equivalent to b. Thus we will always be left with a fundamental domain.

Fig. 2.4.9.

8 The existence of such a homotopy is easy to prove. We would like to remark
however that, in our constructions, the sides a may in any case be taken to lie
in a suitably restricted class of curves (e.g. piecewise geodesic), and this makes
the proof even simpler.
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But the homotopy A(-,-) never passes through a vertex. For suppose for
an s € [0, 1] that the vertex p is an interior point of the curve A(-,s). Then
g would map both the end points of a (and thus also of A(-,s)) as well as p
into OF5. But this is excluded by Lemma 2.4.6.

After performing the above homotopies for all pairs of equivalent sides (a, a’),
we end up with a fundamental polygon with all the desired properties. This
concludes the proof of Theorem 2.4.2. a

Finally, we wish to discuss briefly the structure of the fundamental group
of a surface H/TI.

Theorem 2.4.3 Let H/I' be a compact Riemann surface of genus p (> 1).
Then the fundamental group wi(H/I,py) has 2p generators ay,bi,az, -,
ap, by with the single defining relation

alblal_lbl_lagbg e apbpa;Ib;1 =1.

Proof. We represent H/I' by the fundamental domain given in Theorem
2.4.2. Let pg be a vertex. Suppose e.g. that g € I' carries the side a; to af.
Then, since FNgF = ), and g preserves orientations, g(ay) is a} described in
the opposite direction, i.e. a} = a7 ' in H/I", and similarly for the other sides.
(From Corollary 2.4.1 and Theorem 1.3.4, it follows that aq,b1,--- ,ap,bp
generate 71 (H /I, py).

By Theorem 1.3.2, a path is trivial in 7y (H /I, po) if and only if its lift to H
is closed. It follows that

-1 —1;-1 _
aibia; ---apbpap bp =1

is the only relation among the given generators. That this is indeed a relation
is clear. We show that there are no other ones (apart from trivial ones like
aja;t =1).
This is not hard to see. Let

cr-cp=1

be any such relation. It is then represented by a closed loop based at pg. Since
each cj, j = 1,...,k, is equivalent to a side of our fundamental domain, the
loop is disjoint to the interiors of all translates of this fundamental domain.
We claim that the loop is a multiple of

Clel . 'G;Ibgl.

By what we have just said, it encloses a certain number of fundamental
domains, and we shall see the claim by induction on this number. Let F' be
any such domain whose boundary contains part of the loop. Let ¢ be such a
boundary geodesic forming part of the loop. Replacing ¢ by the remainder of
this boundary, traversed in the opposite direction, yields a homotopic loop as
the boundary represents the trivial loop a1b; - --a, 1b; L. We observe that we
can always choose F'in such a way that this replacement decreases the number
of enclosed fundamental domains by one. This completes the induction step
and the proof of the claim. a
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Corollary 2.4.2 Every compact Riemann surface of the form H/I' has a
non-abelian fundamental group. ad

Fig. 2.4.10.

Exercises for § 2.4

1) Let H/I' be a compact Riemann surface. Show that each nontrivial
abelian subgroup of I' is infinite cyclic.

2) Provide the details of the construction of a metric fundamental polygon
for a group of Euclidean motions.

2.4.A The Topological Classification of Compact
Riemann Surfaces

We start with

Definition 2.4.A.1 A differentiable manifold M is called orientable if it
possesses an atlas whose chart transitions all have positive functional deter-
minant. An orientation of M consists in the choice of such an atlas.

Corollary 2.4.A.1 Any Riemann surface is orientable, and a conformal
atlas provides an orientation.

Proof. All transition maps of a conformal atlas are holomorphic and there-
fore have positive functional determinant. ad
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In this section, we shall classify the possible topological types of two-
dimensional differentiable, orientable, triangulated, compact surfaces S. By
Theorem 2.3.A.1 and Corollary 2.4.A.1, we shall therefore obtain a topologi-
cal classification of compact Riemann surfaces.

Let (T})i=1,...f be a triangulation of S as in Def. 2.3.A.1. We choose an
orientation of S. That orientation then determines an orientation of each
triangle T;, i.e. an ordering of the vertices and we then orient 97; in the
manner induced by the ordering of the vertices. We note that if £ is a common
edge of two adjacent triangle 7; and T}, then the orientations of ¢ induced
by T; and T}, resp., are opposite to each other.

Let

p1: 41 =T

be a homeomorphism of a Euclidean triangle A; C R? onto the triangle T}
as in Def. 2.3.A.1. We now number the triangles T5,...,T, so that T has
an edge in common with T;. We then choose a triangle A, C R? that has
an edge in common with A; so that A; U Ay is a convex quadrilateral and a
homeomorphism

w21 Ay — T

satisfying the requirements of Def. 2.4.A.1.

Renumbering again, 73 has an edge in common with either T} or 75, and we
choose an Euclidean triangle As so that Ay U Ay U Ag forms a regular convex
pentagon and a homeomorphism

p3: Az — T3

as before. We iterate this process in such a manner that each new triangle
A; shares an edge with precisely one of the preceding ones and is disjoint to
all the other ones. We obtain a regular convex polygon I7. The orientations
of the triangles A; induced by the homeomorphism <pj_1 1Ty — Aj in term
induce an orientation of 9II. This orientation will be called positive. Points
in OII that correspond to the same point in S will be called equivalent. IT
has f + 2 edges, where f is the number of triangles T;.

Since each edge of IT belongs to precisely two of the T;, precisely two edges of
II correspond to the same edge of the triangulation. Let a be an edge of IT.
The induced orientation of a allows us to distinguish between an initial point
p and a terminal point g of a. The other edge of IT equivalent to a then has
initial point ¢ and terminal point p because of our convention on orienting
the edges of IT. Therefore, we denote that edge by a=!.

With this convention, the edges of IT are now labeled a,b,c,...,a"',b7!,

¢!, .... By writing down these letters in the order in which the correspond-
ing edges of OII are traversed, we obtain the so-called symbol of IT (cf. Thm.
2.4.3.).

The following process will repeatedly be applied below:
We dissect IT by an interior straight line connecting two edges into two sub-
groups II1, IT;, and we glue II; and I, along a pair of edges a and a—! by



56 2 Differential Geometry of Riemann Surfaces

identifying equivalent points. We thus obtain a new polygon I’ that again
constitutes a model for S. After possibly applying a homeomorphism, we may
again assume that I’ is convex.

This process will now be used in order to transform the symbol of IT into a
particularly simple form as in Thm. 2.4.2. In fact what follows will essentially
be the construction of steps 1), 2), 3), 4), 5) of the proof of that theorem.

1) (Corresponding to step 2 of the proof of Thm. 2.4.2)

In case the symbol of IT contains the sequence aa~' plus some other
letters, these edges a and a~! are now eliminated by identifying, i.e. glueing
equivalent points on them. This step is repeated until either no such sequence
aa~! occurs any more, or the entire symbol is given by aa~!. In the latter

case, we have reached the desired form already.

2) (Corresponding to step 1 of the proof of Thm. 2.4.2)
(Construction of a polygon with finitely many sides, all of whose vertices are
equivalent).

Let p be a vertex of II. If I possesses another vertex not equivalent to p,
then it has an edge a with initial point p and terminal point g # p. We join
p to the terminal vertex r of the edge b with initial point ¢, by a line d in
II. Note that by 1), b # a~. We obtain a triangle T with edges a, b, d. This
triangle is now cut off along d, and its edge b is then glued to the edge b~!
of IT. The resulting II’ then has one more vertex equivalent to p, while the
number of vertices equivalent to ¢ is decreased by one. After finitely many
repetitions, we obtain a polygon with the desired property.

3) (Corresponding to step 4 of the proof of Thm. 2.4.2)
Subsequently, we shall need the following type of modification of II that

generalizes the one employed in 1):

Let a,a™"! be edges of IT, and use an interior line d of IT connecting two of the

vertices, in order to dissect IT into two parts Iy, IT, with a C IT;, ="' C II5.

We glue II; and II, along the edges a,a™*.

4) (Corresponding to step 5 of the proof of Thm. 2.4.2)

We first label the edges of IT in such a manner that ¢~! is always to the
right of ¢. Let ¢; be an edge for which the number of edges between ¢; and
¢yt is minimal.

By 2), this number is positive. Thus, the arrangement looks like

0162...6;1...051.

If there are no intermediate edges in the places denoted by dots, i.e. if we
already have the sequence 010201_102_ Lin our symbol, we look among the
remaining edges for an edge ¢ with minimal number of intermediate edges.
When we arrive at the above situation with intermediate edges present, we
connect the terminal point of ¢; with the initial point of 01_1 by a line by in
F and apply the modification of 3) to the pair ¢y, cl_1 and the diagonal b;.
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The resulting symbol is
clblcl_l tee b1_1

If there are intermediate edges between ¢;* and by ', we join the terminal
point of b; with the initial point of b1_1 by a line a; in IT and apply the
modification of 4) to ¢y, cfl and the diagonal afl. We obtain the symbol

alblal_lbl_l tee
Repeating this process finitely many times, we conclude

Theorem 2.4.A.1 The symbol of a polygon representing the differentiable,
orientable, compact, triangulated surface S may be brought into either the
form

(1) aa™!
or
) arbray tby tagboay byt - - apbpary, byt

In case (i), all vertices are equivalent.
In particular, the number of edges is either 2 or a multiple of 4.

Definition 2.4.A.2 The genus of S as in Theorem 2.4.A.1 is 0 in case (i),
p in case (ii), and the Euler characteristic is

X =2 —2p.

Corollary 2.4.A.2 Two differentiable, orientable, compact, triangulated
surfaces are homeomorphic iff they have the same genus.

Proof. A homeomorphism between two surfaces with the same symbol is
produced by a vertex preserving homeomorphism between the corresponding
polygons. That surfaces of different genus are not homeomorphic follows for
example from Thm. 2.4.3, noting that homeomorphic surfaces must have
isomorphic fundamental groups by Lemma 1.2.3. O

2.5 The Theorems of Gauss-Bonnet and
Riemann-Hurwitz

We now proceed to the Gauss-Bonnet formula for hyperbolic triangles.

Theorem 2.5.1 Let B be a hyperbolic triangle in H (so that the sides of B
are geodesic arcs) with interior angles oy, as,a3. Let K be the curvature of
the hyperbolic metric (thus K = —1). Then

. 3
1i
K——-dzdz = g o — . 2.5.1
/B y? 2 p (25.1)
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Proof. Quite generally, we have

. 42 .
/K~>\2%dzd2:f/ aa log A~ dz dz

o
= — — log A\ |dz
/aB&n g ldz|

(% denotes differentiation in the direction of the outward normal of 0B),
hence in our situation

/ K— dz dz = logf |dz|.
oB on

Now, OB consists of three geodesic arcs ai,asz,as. Thus each a; is either a
Euclidean line segment perpendicular to the real axis, or an arc of a Euclidean
circle with centre on the real axis. In the former case, 8—‘1 logy = 0 on a; in
the latter case, we can write y = rsin ¢ in polar coordinates, so that

2 9 1 #2 ]
/ logf|dz| Elog - rd@z/ ;rdgo:gog—gol,
©

o1 rsin ¢ L

where the angles ¢ and 5 correspond of course to the end-points of a;.
Now an elementary geometric argument keeping in mind the correct orienta-
tions of the sides of B yields (2.5.1).

(By a hyperbolic isometry, we can always assume in thc above that one of
the sides is an interval on the imaginary axis, so that - logy = 0 on this
side.) O

Since K = —1, we get:

Corollary 2.5.1 hyperbolic area of the hyperbolic triangle with interior an-
gles a1, as, ag, we have the formula

3
Area(B) =1~ a;. (2.5.2)

i=1

Although K is constant in our case, there are various reasons for giving the
formula (2.5.1) the more prominent place. One reason is of course that our
proof of (2.5.2) uses (2.5.1). But the most important reason is rather that
(2.5.1) is valid for quite arbitrary metrics. Using the differential equation for
the geodesics with respect to an arbitrary metric (see § 2.3.A), one can prove
the general statement. We shall anyway prove the general Gauss-Bonnet for-
mula for compact surfaces without boundary later on (Corollary 2.5.6). The
Euclidean case is trivial, and the case of the spherical metric can be treated
exactly in the same way as the hyperbolic case by means of the formulae
given above. For this reason, we shall make use of the Gauss-Bonnet formula
for geodesic triangles in all the three geometries.
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Corollary 2.5.2 Let P be a geodesic polygon in H with k vertices, of inte-
rior angles aq, -+ ag. Then

. k
1i
K——-dzdz = a+2—-k)7 2.5.3
R S+ (z-H) (2.5.3)
and
Area(P) = (k—2)7 - a. (2.5.4)

Proof. The proof is by dividing P into geodesic triangles: in every geodesic
polygon which has more than 3 sides, we can find two vertices which can
be joined by a geodesic running in the interior of P. In this way, P will be
divided into two sub-polygons with fewer sides. We repeat this process till P
has been decomposed into (k — 2) triangles. The corollary now follows from
the corresponding assertions for triangles, since the sum of the interior angles
of the triangles at a vertex of P is precisely the interior angle of P at that
vertex. O

Corollary 2.5.3 Suppose I' C PSL(2,R) operates without fized points and
properly discontinuously on H and that H/I" is compact. Then

1i _
K— - dz dz =27 (2 - 2p) (2.5.5)
H/T Y
and
Area(H/T') =27 (2p — 2) (2.5.6)

where 4p is the number of sides of the fundamental polygon for I' constructed
in Theorem 2.4.2.

Proof. Since all the vertices of the fundamental polygon for I" constructed in
Theorem 2.4.2 are equivalent under I, it follows that the sum of the interior
angles of the polygon is exactly 27. Indeed, if we draw a circle around any of
the vertices of the polygon, we see that each point of the circle is equivalent
to precisely one interior point or to some boundary point of the polygon. But
the second alternative occurs only for finitely many points of the circle, so
we conclude that the sum of the interior angles is indeed 2.

The assertions of the corollary now follow from Corollary 2.5.2. a

Definition 2.5.1 The p of Theorem 2.4.2 is called the genus, and x := 2—2p
the Euler characteristic of the Riemann surface H/I'.
(Note that this coincides with the purely topological Def. 2.4.A.2.)

It follows from Corollary 2.5.3 that p and x are well-defined, since they are
invariants of the surface H/I" and do not depend on the fundamental domain
of Theorem 2.4.2.

(In particular, every fundamental domain with the properties established in
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Theorem 2.4.2 must have the same number of sides.) On the other hand,
it follows from Theorem 2.4.2 that surfaces with the same genus or Euler
characteristic are mutually homeomorphic, since one can directly produce a
homeomorphism between the fundamental polygons given by the theorem
which respects the boundary identifications.

From Corollary 2.5.3 we also get:

Corollary 2.5.4 For a Riemann surface of the form H/T',p>1, i.e. x <0.

As a consequence of the uniformization theorem (Thm. 4.4.1 below), in fact
every compact Riemann surface is conformally equivalent to S?, or a torus
C/M (M a module over Z of rank two, cf. § 2.7) or a surface H/I', since the
universal covering is 52, C or H. But $? admits no non-trivial quotients; and
the compact quotients of C are the tori. We shall have p = 1 for the torus
and p = 0 for S? (so that Y = 0 and x = 2 respectively) if we define the
genus and Euler characteristic for these surfaces in the analogous way. Thus,
the genus of a Riemann surface already determines the conformal type of
the universal covering. Further, we have thus obtained a complete list of the
topological types of compact Riemann surfaces, since the topological type is
already determined by the genus. We recall that in the appendix to Sec. 2.4,
we obtained the topological classification directly by topological methods.
For this, it was necessary to triangulate the surface, i.e. decompose it into
triangles (see 2.3.A), and then dissect the surface to get an abstract polygon
from which the surface could be reconstructed by boundary identifications.
This polygon then was brought to a normal form as in Theorem 2.4.2 - for
this, the steps 1), 2), 4) and 5) of the proof of Theorem 2.4.2 sufficed.

Corollary 2.5.5 Suppose given a decomposition of the Riemann surface
Y into polygons (i.e. X is represented as the union of closed polygons with
disjoint interiors and boundaries consisting of finitely many geodesic arcs)
and suppose the number of polygons occuring is f, the number of sides k, and
the number of vertices e. Then

X(X)=f-k+e (2.5.7)

Proof. This again follows from the Gauss-Bonnet formula. If we sum (2.5.3)
over all the polygons of the decomposition, then the first summand on the
right-hand side contributes the sum of all the interior angles, i.e. 2mwe; the
summand 27 occurs f times, i.e. contributes 27 f, and each edge occurs twice,
hence the contribution from the edges in —27k. By (2.5.5), the left side of
the sum is 27y. (The argument is the same if the universal covering is S? or
C) a

The relation (2.5.7) is valid even if the sides of the polygons of the decom-
position are not necessarily geodesics; it is easy and elementary to reduce the
general case to the case considered above. But the general case also follows
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from the general Gauss-Bonnet formula, in which there will be additional
boundary integrals in general; however, these additional terms cancel on ad-
dition since every edge appears twice in the sum with opposite orientations.
Finally, the topological invariance of f — k 4+ e can also be proved directly by
a combinatorial argument.

The principle of the proof presented above, which consists in represent-
ing a topological quantity as an integral of an analytically defined expression
(here the curvature), so that the invariant nature of the topological quan-
tity on the one hand and the integrality of the integral on the other follow
simultaneously, is of considerable importance in mathematics. A higher di-
mensional generalisation leads to Chern classes. And in the principal index
theorems of mathematics (e.g. that of Atiyah and Singer) one proves likewise
the equality of two expressions, one of which is defined topologically and the
other analytically.

We shall now prove the Gauss-Bonnet theorem for compact surfaces
without boundary with respect to an arbitrary metric.

Corollary 2.5.6 Let X' be a compact Riemann surface without boundary,
of genus p °, with a metric p?(2)dzdz of curvature K,. Then

/ Kpr(z)i dz dz = 27 (2 — 2p).
b, 2

Proof. We put another metric A2dzdz on X, of constant curvature K. For
this second metric, we know by Corollary 2.5.3 that

/ KN~ dz dz = 27 (2 — 2p).
LN

Now the quotient p?(z)/A?(z) is invariant under coordinate transformations,
i.e. behaves like a function, since by Def. 2.3.1 both p?(z) and A?(z) get
multiplied by the same factor. We compute now

/K/\Q% dz dZ—/Kpr% dz dzv

- 4/ O oerld d*—s—4/ P roept e dz
- D20z B p P42 D20z 8P g €2 4%

)

which vanishes by Gauss’ Divergence Theorem (note that p and A are every-
where positive), so that our assertion follows. a

0? p i
log 2L dz dz
920z Ba2 ¥

9 Since we shall prove the Uniformization Theorem only in § 4.4 below, we should
strictly assume at this stage that X is diffeomorphic to S? or a torus, or is a
quotient of H. It follows from the Uniformization Theorem that this assumption
is automatically satisfied.
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It is worthwhile to reflect briefly once again on the above statement and

its proof. We consider an arbitrary metric on a compact surface, and con-
struct from it a quantity, namely the curvature integral, which now no longer
depends on the particular metric, but is determined by the topological type
of the surface. Thus, to compute the Euler characteristic of the surface, we
may choose an arbitrary metric.
For the proof of Corollary 2.5.6, we had only to observe that, for any two
metrics, the integrands differ only by a divergence expression, which inte-
grates to zero. In the terminology introduced later on in Chapter 5, if K, is
the curvature of the metric o2 dzdz,

82
Kpr dz Ndz = _48 ylogp dz ANdz

z0z

defines a cohomology class of X' which does not depend on the special choice
of o (namely the so-called first Chern class of X' up to a factor), cf. § 5.6.

We next consider a (non-constant) holomorphic map f : X1 — X5 bet-
ween compact Riemann surfaces.
According to the local representation theorems for holomorphic functions, we
can find for each p € X local charts around p and f(p) in which (assuming
without loss of generality that p =0 = f(p)) f can be written as

f=2" (2.5.8)

(First, we can write ( = f(w) = Y_,~, axw® with n > 0 and a,, # 0. Since a
non-vanishing function has a logarithm locally, we have ¢ = w"g(w)", with
¢ holomorphic and ¢(0) # 0. Set z = wg(w).)

Definition 2.5.2 p is called a branch point or ramification point of f if
n > 1in (2.5.8). We call n— 1 the order of ramification of f at p (in symbols:

vf(p) :=n—1).
Since X is compact, there are only finitely many points of ramification.

Lemma 2.5.1 Let f : X1 — X5 be a non-constant holomorphic map of
compact Riemann surfaces. Then there exists m € N such that

> (vep)+1)=m
pef=1(q)

forallqg € X5. Thus f takes every value in Xy precisely m times, multiplicities
being taken into account.

Definition 2.5.3 We call m the (mapping) degree of f. If f is constant, we
set m = 0.

The proof of Lemma 2.5.1 follows by a simple open-and-closed argument. O

We now prove the Riemann-Hurwitz formula:
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Theorem 2.5.2 Let f: X1 — X5 be a non-constant holomorphic map of
degree m between compact Riemann surfaces of genera g1 and gs respectively.
Let vy = Zpezl vr(p) be the total order of ramification of f. Then

2—-2g1 =m (2 —2g2) —vy. (2.5.9)
Proof. Let A2 dwdw be a metric on Xy. Then

ow o

N(w(=) 5o 55

dz dz
(where f = w(z) in local coordinates) defines a metric on X outside the
ramification points of f, and f is a local isometry with respect to these two
metrics).
Let p1,- -+, pr be the ramification points. Suppose f is given in a local chart
near p; by w = 2%/, and let B;(r) be a disc of radius r around p; in this
chart.
Since f is a local isometry, we will have, as r — 0,
1 A 9?
2w EI\U;“ZI B;(r) 020Z
0? i
—— 4——(log\) = dw dw
2w El\UBj(T) Owow 2

— m (2 —2g9) by Cor. 2.5.6.

1

log ()\ (wzﬁgF) % dz dz

m

On the other hand, as r — 0,

L i
2 Zl\UBj(T') 020%Z

(log M) % dz dz — 2 —2¢g;

(A?(w(2)) dzdz transforms like a metric except for a factor which is the square

of the absolute value of a non-vanishing holomorphic function; when we form
2

% log A, this factor plays no role, hence Cor. 2.5.6 provides the value of the

limit of the integral).

1 7
2T El\UBj(T’) 020z

1 0 1
== —logw?rd
2 Z/{?Bj(r) 87" ogwz T Ay

1
D) Z(ng —1), since w = 2" in B;(r),
J

(logwé) % dz dz

and similarly for the integral involving Eé. These formulee imply (2.5.9). O

We collect some consequences of (2.5.9) in the following:
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Corollary 2.5.7

(1) vy is always even;

(i) g1 > ga;

(iii) g2 = 0, f unramified = g1 =0, m=1;

(iv) g2 = 1, f unramified = g1 =1 (m arbitrary);

(v) g2 > 1, f unramified = g1 = g and m =1 or g > g2, m > 1;

(vi) go = g1 = 1 = [ unramified;

(vii) go = g1 > 1= m =1, f unramified. O

Exercises for § 2.5

1)  State and prove the Gauss-Bonnet formula for spherical polygons.

2)  We have defined the degree of a holomorphic map between compact
Riemann surfaces in Def. 2.5.3. However, a degree can also be defined for
a continuous map between compact surfaces, and such a definition can
be found in most textbooks on algebraic topology. For a differentiable
map g : X1 — X5 between compact Riemann surfaces, the degree d(g)
is characterized by the following property:
If \2(g)dgdg is a metric on X, and if ¢ : Xy — R is integrable, then

[ el (0.2 - 3.99) ¥(g(2)) 5 dz @z
2

=d(g) /Z o(9) /\2(9)% dg dg

Show that the degree of a holomorphic map as defined in Def. 2.5.3
satisfies this property.

2.6 A General Schwarz Lemma

We begin with the Ahlfors-Schwarz lemma:

Theorem 2.6.1 hyperbolic metric

4
AN(2) dedz = ———— dz dz (cf. Lemma 2.3.6).
(1—=12*)

Let X be a Riemann surface with a metric
p*(w) dw dw
whose curvature K satisfies

K<—k<0 (2.6.1)
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(for some positive constant ). Then, for any holomorphic map f: D — X,
we have

— 1 0
P*(f(2)) f-fz < EAQ(z) (fs = a—JZc etc.). (2.6.2)
Proof. We recall the curvature formulse
4 9?2
and
4 0?

AT B B PR S s ()

at all points where f, # 0, by Lemma 2.3.7 and (2.6.1). We put

u:gmny@VJg

so that )
4 > get 2.6.5
0z0z" = "¢ (2:6:5)
wherever u is defined, i.e. f, # 0. For any 0 < R < 1, we also put
2R
vgr(z) i=log ——, z| < R
R( ) g,‘i%(R2—|Z|2) | |
and compute
02 9
4——wvg = ke, 2.6.
5,55 UR = ¢ (2.6.6)
From (2.6.5) and (2.6.6) we get
52
4%@ —vR) > K (e — e®¥R) (2.6.7)

wherever f, # 0. Let
S:={lz| <R: u(z) >vr(2)}

Since u tends to —oo as f, tends to zero, S cannot contain any zeros of f(z).
Hence (2.6.7) is valid in S. Therefore, by the maximum principle, u — vg
cannot attain an interior maximum in S. But the boundary of S (in C) is
contained in |z| < R, since vg(z) — —oo as |z] — R. Hence u — vg = 0 on
08, by continuity. This means that the maximum of u — vg, which has to be
attained in 05, is zero, i.e. that S is empty.

We conclude:

u(z) <wgr(z), |2| <R,

and letting R tend to 1, we get
2
k3 (1—|2?)
which is equivalent to (2.6.2). O

u(z) < log
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Theorem 2.6.1, of which Theorems 2.3.1 and 2.3.2 are special cases, shows
the importance of negatively curved metrics on Riemann surfaces. In this sec-
tion, we shall exploit the strong connection between the conformal structure
of a Riemann surface and the curvature properties of the metrics which can be
put on it. Often one can construct a metric with suitable properties on a Rie-
mann surface and deduce consequences for the holomorphic structure of the
surface. Such techniques are of even greater importance in higher-dimensional
complex geometry. And, although it is not necessary for our present applica-
tions, we also want to introduce a concept that abstracts the assertion of the
Ahlfors-Schwarz lemma, because it again illustrates ideas that are useful in
the higher dimensional case.

Thus, let X' be a Riemann surface. For any p,q € X', we define

n
dH(p7Q) = lnf{zd('zlawz) T ne N7 PosP1, s Pn S 27 Po =D, Pn =4,
i=1

fi : D — X holomorphic,  fi(2) = pi—1, fi(w;) :pi}-

Here, d(-,-) is the distance on D defined by the hyperbolic metric.
It is easily seen that dy satisfies the triangle inequality

dH(p,Q)SdH(P,T)JFdH(T,Q)a p,q,TEE,
and is symmetric and non-negative.

Definition 2.6.1 X issaid to be hyperbolic if dg defines a distance function
on X i.e.
du(p,q) >0 ifp#q.

Important Note. This usage of the term “hyperbolic”? is obviously different

from its usage in other parts of this book. It has been adopted here because
the same definition is used in the higher-dimensional case. This usage is
restricted to the present section; in all other parts of the book “hyperbolic”
has a different meaning.

Remark. dp is continuous in ¢ for fixed p and if X/ is hyperbolic the topology
on Y defined by the distance function coincides with the original one. If dg is
complete, then bounded sets are relatively compact. We leave it as an exercise
to the reader to check these assertions.

Corollary 2.6.1 Suppose X carries a metric p*(w) dwdw with curvature K
bounded above by a negative constant. Then X is hyperbolic (in the sense of
Definition 2.6.1.).

10 In the literature, it is sometimes called “Kobayashi-hyperbolic”.
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Proof. Letp,q€ X, and let f : D — X be a holomorphic map with f(z1) =
D, f(z2) = q for some 21,29 € D. Let I' be the geodesic arc in D joining z;
to z9. Then

4

d(z1, 22) = / A(z) |dz| (where )\2(2) = m)

e / oD [dz] by (26.2)

e / p(w) |dul
f)

> Cdy(p,q)
where C' > 0 is a constant and d, denotes the distance on 2’ defined by the
metric p?(w)dwdw. The corollary follows easily. O

From the proof of Corollary 2.6.1, we see that, under the assumptions of
Theorem 2.6.1, any holomorphic map f: D — X is distance-decreasing (up
to a fixed factor determined by the curvature of the metric on X). On the
other hand, this is essentially the content of Definition 2.6.1.

Ezamples. 1) On the unit disc, dy coincides with the distance function de-
fined by the hyperbolic metric. This is again a consequence of the Schwarz
lemma.

2) C is not hyperbolic. Namely, if p,q € C, p # ¢, there exist holomorphic
maps f, : D — C with f,,(0) = p, fu(2)=q (n € N). Hence dg(p,q) = 0.
In view of Corollary 2.6.1, it follows that C cannot carry any metric with
curvature bounded above by a negative constant. Thus the conformal struc-
ture puts restrictions on the possible metrics on a Riemann surface even in
the non-compact case.

Lemma 2.6.1 dpy is non-increasing under holomorphic maps: If h : X1 —
Xy is a holomorphic map, then

du (h(p),h(q)) < du(p,q)

for all p,q € X1. In particular, dg is invariant under biholomorphic maps:

du (h(p),h(q)) = du(p, q)

for all p,q € X1 if h is bijective and holomorphic.

Proof. If f; : D — X is holomorphic with f;(z;) = p;—1 and f;(w;) = p;,
then ho f; : D — X is holomorphic with ho f;(z;) = h(p;—1) and ho f;(w;) =
h(pi)-

The lemma follows easily from this. a

Lemma 2.6.2 Let X' be a Riemann surface and X its universal covering.
Then X is hyperbolic if and only if X is.
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Proof. First, suppose X is hyperbolic. Let 7 : Y — X be the covering
projection, and p,q € X, p # q. Then, by Lemma 2.6.1,

du(p,q) > du(n(p),(q)) >0 if 7(p) # m(q). (2.6.8)

To handle the case 7(p) = =w(q), we make a geometric observation. Let
fiy zi,w; be as in the definition of dg(p, q), and ¢; the geodesic in D from z;
to w;. Then

v = U fi(ci)

is a curve joining p to ¢, and
n
du(p,r) < Zd(zi7wi)
i=1

for every r € . Thus, if dg(p, ¢) = 0 for p # ¢, we can find a sequence v, v €
N, of such curves such that the sums of the lengths of the corresponding c;
tends to zero. And for every point r which is a limit point of points on the
%Y, we would have

dg(p,r) <du(p,q) = 0.

In particular, on every sufficiently small circle around p, there would be an r
with dg(p,r) = 0. But in our situation, in view of (2.6.9) and the fact that
the fibres of m are discrete, this is impossible.

Now suppose conversely that X' is hyperbolic. Let p,q € X, p # q. Then,
arguing as above, one shows that, for any p € 7=1(p)

inf{dH(ﬁ,ZD : g€ 7'('_1((])} >0

using the fact that 771(q) is a closed set containing §. Moreover, this infimum
is independent of the choice of p € 7~ !(p) since covering transformations
act transivitely on the fibres of = (Corollary 1.3.3), and are isometries with
respect to dy (Lemma 2.6.1) since they are biholomorphic (cf. the end of
§ 2.1). If now 7, fi, z;,w; are as in the definition of dy(p,q), we know by

Theorem 1.3.1 that there exist holomorphic maps ¢; : D — X with g;(z) =
gi—1(w;_1) for i > 1 (g1(20) = po € 7 (p) arbitrary). Consequently

du(p,q) 2 inf {dp(p.q): pen'(p), e (@)}
Combined with the earlier observations, this proves that X is hyperbolic. O

Theorem 2.6.2 Let S, Y be Riemann surfaces, and zg € S. Assume that
X is hyperbolic in the sense of Definition 2.6.1 and complete with respect
to di. Then any bounded holomorphic map f : S\{z0} — X extends to a
holomorphic map f: S — X.
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Proof. The problem is local near zy, hence it suffices to consider the case
when S is the unit disk D. Then f lifts to a holomorphic map f: D — Y of
the universal coverings of D\{0} and X' (cf. § 2.3). By Lemma (2.6.2), X' is
also hyperbolic . As always, we equip D with its standard hyperbolic metric
and induced distance d. Then, by Lemma (2.6.1),

di (f(wr), f(we)) < d(wi,ws), wy,we € D.

Hence we also have for f:

du(f(21), f(22)) < d(21, 22), 21,22 € D\{0}, (2.6.9)

where d now denotes the distance on D\{0} induced by the hyperbolic metric

1

——— dz dz
22(log [217)2 ©© 7

(cf. § 2.3).

Let now

Ss :={l2| = 6}

for 0 < § < 1. The length of Ss in the hyperbolic metric of D\{0} tends
to zero as ¢ tends to zero, hence the diameter of f(Ss) with respect to dy
tends to zero by (2.6.10). Since f is bounded, and X is complete, there exists
for every sequence 6,, — 0 a subsequence d,, such that f(Ss ) converges to a
point in X. We must show that this limit point is independent of the choice
of (6,) and (8),).

Suppose this is not the case. Then we argue as follows. Let pg be the limit
point for some sequence f(.S5, ). Choose a holomorphic coordinate h : D — X
with h(0) = po, and choose € > 0 so small that

{peX: du(p,po) < be} C h(D).
Now choose dyg > 0 such that
diam(f(Ss)) < € (2.6.10)

for 0 < § < §p. Since we are assuming that the limit point of the f(Ss) is not
unique, we can find
0<51<5Q<53<50

such that, if
K,:={peX: du(p,po) <n},

then

(i) £(Ss,) C Kae,

(11) f(Sg) C K3 for 61 <6 < (53,

(iii) f(Ss,) and f(Ss,) are not contained in Ko..
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We now identify D and h(D) via h; in particular, we regard f | {d; <
|z] < d3} as a holomorphic function. Choose a point p; € f(Ss,) C Ka.. By
(2.6.11) and (iii), p; does not lie on the curves f(Ss,) and f(Ss,). On the
other hand, p; is attained by f at least in {J; < |z| < d3}, namely on |z| = Js.
Hence

f'(2) f'(2)

S5, 1 (2) =1 T 5, ) —m dz # 0. (2.6.11)

But f(Ss,) and f(Ss,) are contained in simply connected regions not contain-
ing p;. Hence the integrand in (2.6.12) can be written as L log(f(z) — p1).
Thus both integrals in (2.6.12) must vanish. This contradiction shows that
the limit point of f(S5) as 6 — 0 is unique. Hence f extends to a continuous
map f : D — X. The proof can now be completed by an application of the
removability of isolated singularities of bounded harmonic functions, which

is recalled in the lemma below. O

Lemma 2.6.3 Let f: D\{0} — R be a bounded harmonic function. Then
f can be extended to a harmonic function on D.

Proof. Let D' = {z € C: |2] < 1} and let h : D’ — R be harmonic
with boundary values fisps (the existence of h is guaranteed by the Poisson
integral formula). For A € R, let

hx(z) = h(z) + Alog 2|z|.

Then h) is a harmonic function on D'\{0}, with hy |ap'= flap’ ; also for
A <0 (resp. A > 0), ha(z) — 400 (resp. —o0) as z — 0. Since f is bounded,
it follows that hy — f, which is a harmonic function on D’\{0}, has boundary
values 0 on 9D’ and +oco at 0, for all A < 0. Hence hy — f > 0 on D’ for all
A < 0, by the maximum principle. Similarly hy — f < 0 on D’ for all A > 0.
Letting A — 0, we conclude

f=hin D'\{0},
hence f extends through 0. a

Theorem 2.6.3 If X' is hyperbolic, then any holomorphic map f: C — X
15 constant.

Proof. As already observed, dg = 0 on C. Hence the theorem follows from
the non-increasing property of dy under holomorphic maps (Lemma 2.6.1).
O

Corollary 2.6.2 An entire holomorphic function omitting two values is
constant.
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Proof. Let f: C — C be holomorphic with f(z) # a,b for all z. To conclude
from Theorem 2.6.3 that f is constant, we must show that C\{a, b} is hyper-
bolic. For that purpose, we construct a metric on C\{a,b} with curvature
bounded above by a negative constant: the metric

lz—al" |z=b" (|]z—al" +1)(|z=b" +1) dz dz

has curvature

2

{7 e a1y

+Hz—ﬂ“+1)3k—w””(v—b“+l)1}

which is bounded above by a negative constant if 0 < u < % Hence the result
follows from Corollary 2.6.1. a

To prove the “big” Picard theorem, we need a slight extension of Theorem
2.6.2.

Theorem 2.6.4 Let X be a compact surface, and X := X\{wy,---wy} for
a finite number of points in Y. Assume that X is hyperbolic. Let S be a
Riemann surface, and zy € S. Then any holomorphic map f : S\{zo} — X
extends to a holomorphic map f: S — X.

Proof. Asin Theorem 2.6.2, we may assume S = D, zg = 0. Now we observe
that, in Theorem 2.5.2, the boundedness of f and the completeness of dg on
X were only used to ensure that, for some sequence z,, — 0, f(z,) converged
in X. In the present situation, the set of limiting values of f(z) as z — 0,
being the intersection of the closures in X of the f(0 < |z| <7), 0 <71 < 1,
is a connected compact set, hence must reduce to one of the w; if contained
entirely in X\ X. Hence f extends continuously to D in any case, and the rest
of the argument is the same as in Theorem 2.6.2. ad

The “big” Picard theorem follows:

Corollary 2.6.3 Let f(z) be holomorphic in the punctured disc 0 < |z| < R,
and have an essential singularity at z = 0. Then there is at the most one value
a for which f(z) = a has only finitely many solutions in 0 < |z| < R.

Proof. 1f f(2) = a has only finitely many solutions in 0 < |z| < R, then
there is also an r, 0 < r < R, such that f(z) = a has no solutions at all
in 0 < |2| < r. Hence it suffices to prove that if f(z) is holomorphic in
0 < |z] < r(r > 0) and omits two finite values a and b, then it has a
removable singularity or a pole at 0 (in other words, that it can be extended
to a meromorphic function on |z| < r. Hence the result follows from Theorem
2.6.4, with ¥ = S? and ¥ = C\{a, b} (which was shown to be hyperbolic in
the proof of Corollary 2.6.2). a
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Exercises for § 2.6

1) Which of the following Riemann surfaces are hyperbolic in the sense of
Def. 2.6.17
S2, a torus T, T\{z0} for some zp € T, an annulus {r; < |z| <
ro}, C\{0}.

2)  Let S, X be Riemann surfaces, and suppose X' is hyperbolic. Show that
the family of all holomorphic maps f : S — X which are uniformly
bounded is normal. (One needs to use the fact that S as a Riemann
surface has countable topology.) If X is complete w.r.t. the hyperbolic
distance dg, then the family of all holomorphic maps f : § — X -
whether bounded or not - is normal.

*3) Write down a ¢omplete metric on C\{a,b} with curvature bounded
from above by a negative constant. (Hint: In punctured neighbour-
hoods of a,b, 00, add a suitable multiple of the hyperbolic metric on
the punctured disk D\{0}, multiplied by a cut-off function. If you are
familiar with elliptic curves, you can also use the modular function
A: H — C\{0,1}, where H is the upper half plane, to get a metric with
constant curvature —1 on C\{0,1}.)

Using the result of 2), conclude Montel’s theorem that the family of all
holomorphic functions f : {2 — C that omit two values a,b is normal
(2cCC).

2.7 Conformal Structures on Tori

We begin by recalling some facts from [A1] (p. 257).
Let f be a meromorphic function on C. An w in C is said to be a period of
fif

fz+w) = f(2) for all z € C. (2.7.1)
The periods of f form a module M over Z (in fact an additive subgroup of
C). If f is non-constant, then M is discrete.
The possible discrete subgroups of C are

M = {0},

M = {nw: n e Z},

M = {n1w1 + Nowa @ Np,Ng € Z}, % gR

1

Here the third case is the interesting one. A module of that form is also called
a lattice.
As we have already seen, such a module defines a torus 7' = T if we identify
the points z and z 4+ njwi + nows; let m: C — T be as before the projection.
The parallelogram in C defined by wy and wy (with vertices 0, w1, wa, wy +ws)
is a fundamental domain for 7.
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By (2.7.1), f becomes a meromorphic function on 7.
If (wj,w)) is another basis for the same module, the change of basis is

described by o
whwh)  [(ab) (we Wz
W) \ed) \w w1

. ab .
with <c d) belonging to

CL(2,Z) = {(3 g) : o,8,7,0 €7, a5—ﬂ'y::|:1}.

Its subgroup SL(2,7Z) consisting of matrices of determinant +1 is called the
modular group; and the elements of SL(2,Z) are called unimodular transfor-

mations.

As in § 2.3, we define PSL(2,7Z) := SL(2,Z)/ {i (é (1)> } As a subgroup of

PSL(2,R), it acts by isometries on H.

Theorem 2.7.1 There is a basis (w1,ws) for M such that, if T := &, we
have

(i) Im7 > 0,

(i) —35 <Ret < 1,

(iii) |7| > 1,

(iv) ReTr >0 if || =1.

T is uniquely determined by these conditions, and the number of such bases
for a given module is 2,4 or 6.

Thus 7 lies in the region sketched in Fig. 2.7.1. Theorem 2.7.1 can also
be interpreted as saying that the interior of the region decribed by (i)—(iv)
is a fundamental polygon for the action of PSL(2,Z) on the upper half-plane
{Im7 > 0}, as in § 2.4.
That there are in general two such bases for a given M is simply because
we can replace (w1,ws) by (—wi, —ws). If 7 = i, then there are 4 bases as
in the theorem; namely we can also replace (w1,w2) by (iw1,iws). Finally we
get 6 bases when 7 = e% , because we can in this case replace (wy,ws) by
(Twi, Tws) (hence also by (72w;, 72ws)). We remark that 7 =i and 7 = e%
are precisely the fixed points of (non-trivial) elements of PSL(2,Z) (in the
closure of the fundamental domain).
The normalisation in Theorem 2.7.1 can also be interpreted as follows: we
choose w; = 1, and then ws lies in the region described by the inequalities
(i)—(iv).
In the sequel, we may always make this normalisation, since multiplication
of the basis of the module by a fixed factor always leads to a conformally
equivalent torus, and we are classifying the different conformal equivalence
classes.
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Fig. 2.7.1.

Let us also mention that by the Uniformization Theorem, every Riemann
surface which is homeomorphic to a torus is in fact conformally equivalent to
a quotient of C, and hence of the form considered here.
As follows from Corollary 1.3.3, and as was explained in § 1.3, m (T') = Z® Z;
indeed, the group of covering transformations of 7 : C — T is Z@Z, generated
by the maps

z— z+w

and
Z— zZ+ wsy.

Thus the fundamental group of T is canonically isomorphic to the module
{n1w1 + Nowg : Np,No € Z}

Lemma 2.7.1 Let f1,fo : T — T’ be continuous maps between tori. Then
f1 and fa are homotopic if and only if the induced maps

fi* : 7T1<T) — 7T1(TI) (Z = 1,2)
coincide.

Remark. We do not need to choose base points in this case, since the fun-
damental groups are abelian (so that all conjugations are the identity map).
(Recall the discussion in §1.3.)
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Proof of Lemma 2.7.1. “=" follows from Lemma 1.2.3, applied to a homo-
topy between fi and fa.

“<”: We consider lifts f; : C — C of the f; (cf. Theorem 1.3.3). Let wq,ws
be a basis of 71(T"). Then we have by assumption

J71(Z + niwy + nows) — fg(z + njwy + nows)
= ]?1(2) — f~’2(z) for all z € C, ny,n; € N. (2.7.2)

It follows that F(z,s) := (1 — s)f1(2) + sfa(z) satisfies

ﬁ(z + njwy + Nows, §) = ]?1(2 + niw + nows) + S(ﬁ(z) — f1(2))-
Hence each ﬁ(, s) induces a map
F(,s):T—T.
This provides the desired homotopy between f; and fs. a0

We now proceed to the classification of conformal structures on tori. Actu-
ally, we shall only be giving a new interpretation of results already discussed.
But it gives us an opportunity to illustrate in this simple case some concepts
which we shall later have to discuss more precisely in the general case (which
is much more difficult).

We shall make use of the normalisation discussed above, according to which
the basis of a torus can be taken in the form 1, 7 (7 as in Theorem 2.7.1).
We denote the corresponding torus by T'(7).

Definition 2.7.1 The moduli space M is the space of equivalence classes
of tori, two tori being regarded as equivalent if there exists a bijective con-
formal map between them. We say that a sequence of equivalence classes,
represented by tori T™ (n € N) converges to the equivalence class of T if we
can find bases (W, w?) for T™ and (w1,w;) for T such that % converges to
2.

Definition 2.7.2 The Teichmiiller space 77 is the space of equivalence
classes of pairs (T, (w1,w2)) where T is a torus, and (wy,ws) is a basis of
T (i.e. of the module M defining T'); here, (T, (w1,ws)) and (17, (wi’,ws"))
are equivalent if there exists a bijective conformal map

f:T—1T

with

fe(wi) = wj.
(Here as before, (w1, ws) has been canonically identified with a basis of 71 (T),
and similarly (w},w}), f« is the map of fundamental groups induced by f.)
We say that (7™, (Wi, w?)) converges to (T, (w1,ws)) if =2 converges to o2,

%
w1
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We shall also call a pair (T, (w1,ws)) as above a marked torus.

The space 77 can also be interpreted as follows. We choose a fixed marked
torus, e.g. T'(i) with basis (1,1). We denote it by Ty, since it serves us as the
underlying topological model. By Lemma 2.7.2, (wy,ws) defines a homotopy
class a(wy,ws) of maps T — Tiop- Namely, a(wi,ws) is that homotopy class
for which the induced map of fundamental groups sends (w1, ws) to the given
basis of Tyop (w1 to 1 and ws to i in our case). The existence of a map
T — Ttop which induces the above map on fundamental groups is clear: the
R-linear map g : C — C with g(w1) = 1, g(wz) = 1 gives rise to one such
map T — Ttop'

Thus, instead of pairs (T, (w1,w2)), we can also consider pairs (T, «), where
« is a homotopy class of maps T" — Ttop which induces an isomorphism of
fundamental groups (thus « should contain a homeomorphism). (7', «) and
(T', ') are now to be regarded as equivalent if the homotopy class (o/) "o«
of maps T' — T” contains a conformal map. 77 is then the space of equivalence
classes of such pairs.

Theorem 2.7.2 7T, = H; M; = H/PSL(2,Z).

We have already seen that every torus is conformally equivalent to a T'(7)
with 7 in the fundamental domain of PSL(2,Z) (Theorem 2.7.1). Similarly,
every marked torus can be identified with an element of H; just normalise so
that w; = 1. Thus we must show that two distinct elements of H/PSL(2,7Z)
(resp. H) are not conformally equivalent (resp. equivalent as marked tori).
There are many ways of doing this. We shall follow a method which illustrates
by a simple example some considerations of great importance in the sequel.

Definition 2.7.3 A map h : T — T’ is said to be harmonic if its lift
h:C—C
(cf. Theorem 1.3.3) is harmonic.

Equivalently, the local expression of & in the charts induced by the projections
C — T, C — T’ should be harmonic, i.e. have harmonic real and imaginary
parts. Here, it is important to observe that the transition functions of such
charts are linear, so that a change of charts in the target torus also preserves
the harmonicity of the map; arbitrary changes of charts in the target do not
preserve harmonicity.

Lemma 2.7.2 Let T, T’ be tori, zg € T, 2z, € T'. Then, in every homotopy
class of maps T — T', there exists a harmonic map h; h is uniquely deter-
mined by requiring that h(zo) = 2. The lift h : C — C of a harmonic map h
is affine linear (as a map R?* — R?).

If normalised by h(0) = 0 (instead of h(z) = 2), it is therefore linear.
h is conformal if and only zfﬁ (normalised by E(O) = 0) is of the form
z— Xz, AeC.
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Proof. Let (w1,w2) be a basis of T, and w},w) the images of w; and ws
determined by the given homotopy class (cf. Lemma 2.7.2). Then the R-
linear map h : C — C with h(w;) = / induces a harmonic map h : T — T"
in the given homotopy class.

Now suppose f is the lift of any map f : T'— T’ in the given homotopy class.
Then

f(z + niwi + nows) = f(z) + nqw] + nowh, (2.7.3)

hence _ _
%(z + njwy + Naws) = %(z) (2.7.4)
and similaily for %. Thus if f (hence f) is harmonic, then so are %, %'

But %, %z]; are then complex-valued harmonic functions on T by (2.7.4),

hence constant by Lemma 2.2.1. Thus f is affine linear. It also follows that
the harmonic map in a given homotopy class is uniquely determined by the
requirement h(zp) = z,. Another way of seeing this is to observe that, by
(2.7.3), the difference between the lifts of two homotopic harmonic maps
becomes a harmonic function on 7', and is therefore constant.

The last assertion is clear. ad

The proof of Theorem 2.7.2 is now immediate: _
A conformal map is harmonic, hence has an affine linear lift 4 by Lemma
2.7.2; we may assume h(0) = 0. We may also assume that the markings have
been normalised by _ _ _
w1 =1 = wj (= h(wy)). But if h is conformal, h(1) = 1 implies h is the
identity.
It follows that 7; = H.
To see that My = H/PSL(2,Z), we observe that we may now choose arbitrary
markings. Thus we need only be able to say when a torus T'(7) with basis
(1,7) is equivalent to the torus T(7) for some choice of a marking on it. But
this, by what has been proved above, is the case precisely when (1, 7') is also
a basis for T'(7).

The rest of the proof is straightforward and left to the reader as an exer-
cise. ad

Exercises for § 2.7
1) Compute the area of a fundamental domain for PSL (2, 7Z).

2)  Determine a fundamental region for the congruence subgroup mod 2 of
PSL (2,7Z), namely
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{(ig) €SL(2,7) : (ZZ) = (é ?) mod2}.

Show that it is a normal subgroup of PSL (2,Z) and compute the num-
ber of elements of the quotient group.
3)  Determine the set of conformal equivalence classes of annuli.



3 Harmonic Maps

3.1 Review: Banach and Hilbert Spaces. The Hilbert
Space L2

This section will recall some basic results about the spaces mentioned in the
title. Readers who already have a basic knowledge about these spaces may
therefore skip the present section.

Definition 3.1.1 A Banach space B is a real vector space equipped with a

norm || - || which has the following properties:

(i) |lz|| > 0 for all  # 0 in B,

(ii) JJaz| = || ||z|| for all @« € R and = € B,

(iii) z+y| < |zl + |ly| for all z,y € B (Triangle Inequality),

(iv) B is complete with respect to || - || (this means that every sequence

(zn)nen C B which is a Cauchy sequence (Ve > 03N € NVn,m > N :
|xn — Zm|| < €) has a limit point z € B (Ve > 03N € NVn > N :
|z — 2| <¢)).

Remark. A complex Banach space is defined analogously.

Definition 3.1.2 A Hilbert space H is a real vector space which is equipped
with a map (called “scalar product”)

(,V:HxH— R
having the following properties:

i)  (z,y) = (y,z) (resp. (v,y) = (y,)) for all z,y € H;
i) (AMz1+ ez, y) = Ai(x1,y) +Aa(z2,y) for all A;, A2 € Rand z1, 20,y €

H;
iii) (z,2) >0 for all z # 0 in H;
iv) H is complete with respect to the norm ||z|| := (z,z)z.

Lemma 3.1.1 In any Hilbert space, the following inequalities hold:

Schwarz inequality: |(x,y)| < | - |y, (3.1.1)
Triangle inequality: ||z + y| < ||z|| + ||lyll, ( )
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Parallelogram law: ||z + y||* + [z — y||> = 2 (||=]* + [[y]|?). (3.1.3)
The proofs are elementary: (3.1.1) follows from ||z+Ay[|? > 0 with A = — ?‘Zﬁ’g,
(3.1.2) follows from (3.1.1), and (3.1.3) by a direct computation. O

Lemma 3.1.2 Fvery Hilbert space is a Banach space with respect to the
norm ||z|| = (z,z)2.

Proof. The triangle inequality is (3.1.2), and the other properties are clear.
O

Definition 3.1.3 Two elements x,y of a Hilbert space H are said to be
orthogonal if (z,y) = 0. For a subspace F' of H, the orthogonal complement
of F' is defined as

Ftr={zxcH: (z,y)=0foralyc F}.

Theorem 3.1.1 Let F be a closed subspace of a Hilbert space H. Then
every x € H has a unique decomposition

r=y+z yeF zeF (3.1.4)

Proof. Let
d:= inf ||z —
Jnf flz =yl

and (yn)nen a minimizing sequence in F, so that
[ = yull — d. (3.1.5)

From (3.1.3), we get

1
Az = 5 m + v lI* + lym = val® =2 (l2 = yml* + 2 = gu*) .~ (3.1.6)

Since yp, ym lie in F, so does 3(ym + yn), it follows that (y,,) is a Cauchy
sequence. Since H is complete, (y,,) has a limit y, which must lie in F' since
F is closed, and we have ||z — y|| = d.

We put z = 2 — y; we shall show that z € '+, For any 3 € F and a € R,
we also have y + ay’ € F, hence

P <|o—y—oy|’=(z-0ay, z—ay)
= ||2]1? = 2a(y’, 2) + [|y/||>.

Since ||z|]| = d, it follows that

(0%
W2l < Sl
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for all o > 0, hence
(v',2) =0 forally € F.

Thus z € F*.

For uniqueness, assume that © = y+2z = 3/ +2' with y,y' € F, 2,2/ € F+.
Then y —y' = 2’ — z and hence (y — ¢,y —v') = (y — ¢/, 2’ — z) = 0 since
y—1y €F, 2,2 € FX. Thus y = ¢ and therefore also z = 2’. This shows the
uniqueness of the decomposition. a

Corollary 3.1.1 For every closed subspace F of a Hilbert space H, there
exists a unique linear map

m:H—F
with
) o= s 12 (3.1.7)
az0 ||z
7% =1 (m is a projection), (3.1.8)
kerm = F*.

Proof. For x =y + z as in (3.1.4), we set w(x) = y. All the assertions are
then immediate. O

The above map 7 is referred to as the orthogonal projection on F.
We shall now prove the Riesz representation theorem:

Theorem 3.1.2 Let L be a bounded linear functional on a Hilbert space H
(i.e. L: H — R is linear with || L[| := sup,_o 1Ll o o0). Then there ezists a

[E]]
unique y € H with
L(z) = (x,y) for all z € H. (3.1.10)

Further,
LIl = Tlyll- (3.1.11)

Proof. Let
N :=kerL:={zx € H: L(z)=0}.

If N = H, we can take y = 0. Thus let N # H. Since |Lx—Ly| < ||L|| |lz—y|,
L is continuous. Therefore, N is closed as the preimage of the point 0 under
a continuous map. Since N is also a linear subspace of H, Thm. 3.1.1 is
applicable. Thus, there exists z € H, z # 0, such that (z,2) =0 for all z €
N. Then L(z) # 0, and we have for all x € H

L(x)
L(z)

so that x — z € N, hence
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L(z) _
( — 5 z, z) 0
Thus L)
x
(@.2) = 7o el
hence, if we set
ko)
ol
we will have
L(z) = (z,y).

If y1,y2 € H both have the property L(z) = (z,y;), then

(1 —y2, 11) = (1 — Y2, ¥2),

so that [|y1 — v/ = (y1 — y2, y1 — ¥2) = 0, proving uniqueness.

Also, by the Schwarz inequality,

(=, y)|

[L]] = sup < lyll;
a0 |||

on the other hand,

lyll® = (y,y) = L(y) < | L[| - [lyll.

Hence finally
lyll = [IL]I.

O

Definition 3.1.4 Let H be a Hilbert space. A sequence (z,)nen in H is

said to converge weakly to x € H if
(n,y) — (2,y) for all y € H.

Notation: z,, — x.

Theorem 3.1.3 Every bounded sequence (2, )nen in a Hilbert space H con-

tains a weakly convergent subsequence.

Proof.  Let |lz,|| < M. To prove z,, — =, it suffices to show that (x,,y) —
(z,y) for all y lying in the closure S of the subspace S spanned by the z,,

since every y € H can be decomposed by Theorem 3.1.1 as

— —L
Y=% +¥y, YES,Nnes,

and
(Tn,y1) =0 for all n.
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Now, for each fixed m, the real numbers (z,,, z,,) are bounded independently
of n, and hence (z,,z,,) contains a convergent subsequence. Thus, by Can-
tor’s diagonal process, we can get a subsequence (x,,) of (x,) for which
(Tny, Tm) converges (as k — oo) for every m € N. Then (z,,,y) converges
forally € S. If y € S, then

|($nj — Tpy,, y)l < ‘(xnp y_y/)‘ + |(:I;n_7 — Tny yl)‘ + |($nk’ y/ _y)‘

for all y’ € S (or H). Given ¢ > 0, we can choose 3’ € S such that ||y’ —y|| <

17> and then j and k so large that

S
|(xn_7~ — Tny, y/)| < 5

It follows that the sequence (z,, ,y) converges for all y € S; set
L(y) := lim (25, y)-

Since |L(y)| < M ||y||, L is a bounded linear function on the Hilbert space S
(with the induced scalar product) and Theorem 3.1.2 yields an = € S such
that

(z,y) = L(y) forally € S.

But then we also have
L(y) = (z,y) =0 forall y € 5t

Hence z,, — =.

O

Corollary 3.1.2 If (z,) converges weakly to x, then

] < liminf 1z, .
Proof. We have
0<(n—, xp—2) = (Tn, Tpn) — 2(xn, ) + (z, ).
Since (zn,x) — (x,x) as n — oo, it follows that
0 < liminf [le 2 — [l

O

Ezample. We consider an orthonormal sequence (e, )nen in H:

1 ., n=m
(en7 6m):§nm <: {O ,n#m)
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(we suppose H is infinite-dimensional). Then (e,) converges weakly to 0.
Otherwise, we would have, after passing to a subsequence of (e,), an x € H
and an € > 0 with

|(z, en)| > € for all n € N. (3.1.12)

But (z,e,,) ey, is the projection of x on the subspace spanned by e, since
(em,  — (T, em)em) = 0; note that (e, en,) = 1.

Similar]
imilarly, N
Z(I’ en) €n
n=1
is the projection of x on the subspace spanned by ey, ..., eyx. Hence
N
I Z(m, en)enl < ||| for all N,
n=1
and (3.1.12) cannot hold. Thus e, — 0 as asserted.
Since |le,|| = 1 for all n, we see that one cannot expect equality to hold

in Corollary 3.1.2. Further, (e, ) does not converge strongly (i.e. in norm) to
0. Thus, in the context of compactness arguments, weak convergence is the
appropriate analog of the usual convergence in finite dimensional spaces. Of
course, for finite dimensional Hilbert spaces, weak and strong convergence
coincide.

Corollary 3.1.3 (Banach-Saks) Let (z,)nen be a bounded sequence in H :
lznl| < K for all n. Then there exists a subsequence (xy;) of (zn) and an

in H such that i
anj - T
j=1

(w.r.t. the norm || -||) as k — oo.

| =

Proof. Let x be the weak limit of a subsequence (z,,) of (x,) (Theorem
3.1.3), and y; := x,, — x. Then y; — 0, and |jy;|| < K’ for some fixed K’.
We now choose inductively for each j an 4; such that |(y;,, yi,,,)| < % for all
(<.

Then
1 & 1 N |
I 2wl < 5 (kK423 55
j=1 j=1
/2

< K™ +2

- k
which tends to 0 as k — oo, and the assertion follows. a

For completeness, we shall finally prove:

Lemma 3.1.3 Fuvery weakly convergent sequence (x,,) in H is bounded.
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Proof. It suffices to show that the bounded linear functionals L, (y) :=
(n,y) are uniformly bounded on {y € H : |y|| < 1}. Again, because of the
linearity of the L,,, we need only verify that they are uniformly bounded on
some ball.

We shall now prove the existence of such a ball by contradiction.
Indeed, if no such ball exists, then we can find a sequence K; of closed balls

Ki={y: lly—uil <ri}
with K;41 C K; and r; — 0, and a subsequence (z,,) of (z,), such that
|Ln, (y)| >4 for all y € K. (3.1.13)

Now (y;) is a Cauchy sequence, and hence has a limit yo € H.
Clearly

(o)
o €[] K,

i=1
so that, by (3.1.13),

|Ln, (yo)| > i for all : € N.

This is not possible since the weak convergence of (z,,) implies that L, (yo)
converges.
O

Let {2 be a bounded open set in R%.
Then L?*(2) := {u : 2 — R measurable, [[ull2(0) := [,u? < oo} is a
Hilbert space with the scalar product

after identifying functions that differ only on a set of measure 0, as usual.
Thus, strictly speaking, L?(§2) is a space of equivalence classes of functions
rather than of functions, two functions being equivalent if they agree on the
complement of a set of measure zero. An element of such an equivalence class
will be called a representative of (the class) u. Properties (i)—(iii) of Def. 3.1.2
are clear. The completeness property (iv) requires a proof for which we refer
for example to [J4] and we do the same for

Lemma 3.1.4 For every u € L?(2) and € > 0, there exists a g € C°(12)
with

[u—9gllz20) <e.
Thus C°(£2) is dense in L?(§2) with respect to the L?-norm. O
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We shall now show that even C°°({2) is dense in L?(£2). To do this, we
make use of so-called smoothing functions, i.e. non-negative functions ¢ €
C(B(0,1)) with [ o= 1.
Here,
B(0,1) :={z € RY: |z| < 1},
Coo(A) == {f € C*°(R?) : the closure of {x : f(z) # 0}
is compact and contained in A}.

The typical example is

o(z) = c exp(w%l), x| <1
~ 1o, lz] > 1"

where ¢ is so chosen that [ o(z) = 1.

For u € L?(£2) and h > 0, we define the mollification or smoothing u, of

u b
' up(x) = % /Rd 0 (x - y) u(y) dy, (3.1.14)

where u(y) is defined as 0 if y ¢ 2. The important property of wy, is that
up € C(?o (Rd).

Lemma 3.1.5 Ifu € C°(£2), then u;, — u as h — 0, uniformly on every
' cC 2 (i.e. on every 2" whose closure is compact and contained in §2).

Proof. We have

up(z) = % /|xy<h9 (x;y> u(y) dy

/||<1 o(z)u(xz — hz) dz, (3.1.15)

where z = ) Thus, if 2/ CC 2 and 2h < dist(£2', O12), then

sup |u — up| < sup / 0(2) |u(z) — u(z — hz)| dz
o ze Jiz1<1

(since /Q(Z) dz=1)

< sup sup |u(z) —u(z — hz)|.
2€Q’ |2|<1

Since u is uniformly continuous on the compact set {z : dist(z, 2') < h}, it
follows that

sup |u—up| — 0

Q/

as h — 0. O
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Lemma 3.1.6 Let u € L*(£2). Then ||u—up|[r2(2) — 0 as h — 0; here we
have simply set uw = 0 outside (2.

Proof. By (3.1.12) and the Schwarz inequality, we have
P [ e e [ o)t ha)P dz
|z|<1 |z]<1
= / 0(2) lu(z — h2)|* dz.
lz[<1

Choose a bounded open set 2 with 2 CC 2. If 2h < dist(£2, 042'), then

/Quh(x)|2d17§/9/z<lg(z) lu(z — hz)|? dzdx

= /Z<1 0(z) (/Q lu(z — hz)|? dz) dz
< [l an (3.1.16)

Given ¢ > 0, we now choose w € C°(§2’) (cf. Lemma 3.1.4) such that
[u—wlrey < e

By Lemma 3.1.5, we have
|w— w20 < €

if h is sufficiently small. Hence, using (3.1.16) for u — w, we get

lu—unllL2) < llu—wllr2e) + |lw—whl|L20) + |un — w20
<2+ ||U — ’UJ”L2(Q/) < 3e.

O
In the same way as L?(2) is a Hilbert space, for 1 < p < oo, the spaces

LP(02) == {u: £2 — R measurable;

full = llzscay = ([ ol az)” < o0}

as well as
L>®(£2) := {u: 2 — R measurable;
llull Lo (o) = ess supg|u(z)| < oo}

are Banach spaces, provided we identify functions that differ only on a set of
measure 0. This identification is needed for property (i) of Def. 3.1.1. Again,
we refer to [J4] or to any other textbook on advanced analysis for details.
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We summarize the relevant results about the LP-spaces in

Lemma 3.1.7 LP is complete with respect to || - ||,, hence a Banach space,
for 1 <p < 0.

For1 < p < oo, CU) is dense in LP(R2), i.e. for every u € LP(£2) and
e > 0, there exists a w € CY(£2) with

lu—wl|, < e (3.1.17)

Hélder’s inequality: if uw € LP(£2), v € L1(£2) and % + % =1, then

[ < Ll ol (3.1.18)

(3.1.18) follows from Young’s inequality:
P
ab < L4 2 (3.1.19)
p q
if a,b >0, p,q>1and%+% =1.
To see this, we set

A= ullp, B:= vllg;

without loss of generality, suppose AB # 0.
Then, with a := &l .= LBIH, we get from (3.1.19)

A9
P q
[l 1w 1z
AB p Ar ¢ BY
which is (3.1.18).

In the sequel, we shall also need the spaces
C*(2):={f:02—R: fis k times continuously differentiable }

for k =0,1,2,... (for k =0, C°(§2) is the space of continuous functions on
2), and the corresponding norms

k
I flleko) = Z sup | D7 f(xz)],
j=1 TES

D7 standing for all the derivatives of f order j. The subspace of those f €
C*(£2) with

[fller (o) < oo
then forms a Banach space as the reader surely will know.
Finally, we put C§(02) := {f € C*(£2) : suppf := closure of {z €2 : f(z)#
0} is a compact subset of .Q} Here, the closure is taken in R¢
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We shall now prove the Implicit Function Theorem in Banach spaces
which will be used in Sect. 4.2. (For our purposes, it would in fact suffice to
prove the theorem in the case of Hilbert spaces.) Let us first introduce the
necessary concepts. A map F' of an open subset U of a Banach space B; into
a Banach space Bj is said to be (Fréchet-) differentiable at x € U if there
exists a continuous linear map D F(z) : By — Bs such that

I F(z +&) = F(z) = DF()(€) [l 5, = o(ll€]]) (3.1.20)
as £ — 0in By. Then D F(z) is called the derivative of F' at x.

Theorem 3.1.4 Let By, B1, B be Banach spaces, and G a map of an open
subset U of By x By into Bs. Suppose that (xo,70) € U has the following
properties:

(i) G(zo,70) =0,

(i) G is continuously differentiable in a neighbourhood of (xg,79) (i.e. the
derivative exists and depends continuously on (x,T)),

(iti) the partial derivative Dy G(xo,70) (i-e. the derivative of the map G
(-,70) : B1 — By at xzq) is invertible, with bounded inverse. Then there
exists a neighbourhood V' of 19 in By such that the equation

G(z,7) =0 (3.1.21)
has a solution x in U N (By X 7), for every 7 € V.

The proof is based on the Banach Fixed Point Theorem, also called the
Contraction Principle:

Lemma 3.1.8 Let B be a Banach space, and T : B — B a map such that

| T2—Tyl < qlz—yl (3.1.22)
for all x,y € B, with a ¢ < 1. Then the equation
Tex=ux (3.1.23)

has a unique solution in B.
Proof. Choose g € B, and define iteratively
Ty =T Tpoq (=T" x0).

Then, for n > m,

n

[2n —2zm || < Z |2y —2p—1 |

v=m-+1
n
SN LT N
v=m-+1
n
< D> ¢ lm (by (3.1.22))
v=m-+1
< m iz =20l

)

1—gq
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which tends to zero as m,m — oo, since ¢ < 1. Thus (z,) is a Cauchy
sequence. Since B is complete, (x,) converges, say to x. Since T' is continuous
(by (3.1.22)), we have

Te=lmTz, =limz,; = .
The uniqueness of the fixed point again follows from (3.1.22) since ¢ < 1. O

Remark. The above proof also works in the following situation: V' is an open
ball in B, with centre yo and radius r say, T : V — B satisfies (3.1.22) for
all z,y € V,yand || Tyo —wo | < r(1—q).

Proof of Theorem 3.1.4. G(x,7) =0 if and only if
r=T,z:=2— L *G(x,1), (3.1.24)

where

L:= D1 G(ZL’(),T()).

Now,
T,o—T,y=L"1 (D1 G(zo,10)(x —y) — (G(x,7) — G(y,7))) .

It follows from the continuous differentiability of G and the boundedness of
L~ that we can achieve

[ Tre =Tyl < qllz—yll (3.1.25)

for [7—7ollg, |2 —m0llp, and [y —yollp, sufficiently small. Also

| Ty 29 — 20 || is then arbitrarily small. Hence Lemma 3.1.8 (cf. the remark
following it) implies the solvability of the equation Tz = x, hence of the
equation G(z,7) = 0 (for all 7 sufficiently near 79). O

Exercises for § 3.1

1) Let (zn)nen be a sequence in a Hilbert space H that converges weakly
to 0. Under which additional conditions does z,, converge to 0 (in the
ordinary sense - one also calls this strong convergence).

2)  Let F be a subset of a Hilbert space H, and let F’ be its weak closure,
i.e. the set of all weak limits of sequences in F'.

Is F’ closed (w.r.t. the ordinary topology of H)? Is F’ weakly closed?
(The latter means that the limit of each weakly convergent subsequence
of F’ is contained in F".)
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3.2 The Sobolev Space W2 = H12

In this section, we shall introduce another Hilbert space, the Sobolev space
W12, that we shall utilize below. A reader who wants the motivation first
might wish to read § 3.3 before the present section.

Definition 3.2.1 Let u € L?({2). Then v € L?(£2) is called the weak deriv-

ative of u in the x'-direction (z = (z*,...,z%) in R?) if
Iy
dr = — - d 3.2.1
/Q pv de , ugi 4% ( )

for all p € C}(£2).1

Notation: v = D;u.

We say that u is weakly differentiable if u has a derivative in the z*-direction
forallie {1,2,...,d}.

It is clear that every u € C1(£2) is weakly differentiable on every 2’ CC 2,
and that the weak derivatives of such a u are just the usual derivatives, (3.2.1)
being the rule for integration by parts. Thus the possibility of integration by
parts is the basis of the concept of weak derivatives.

Lemma 3.2.1 Let u € L?(§2), and suppose D;u(x) exists if dist(x, 02) >
h, then
Djup(x) = (Dyu)p(x).

Proof. By differentiating under the integral sign, we get

D, un(x) = % /gjﬂg(w;y) uly) dy

_% /531 Q@u(y)dy

- % /Q(x;y) Diu(y) dy  (by (3.2.1))
= (D; u)n(x).

Lemmas 3.1.6 and 3.2.1 together with (3.2.1) imply:

Theorem 3.2.1 Let u,v € L?(£2). Then v = D;u if and only if there exist
Uy, € C*°(£2) such that

Uy — U, Dj Uy — U n LQ(Q).

1 Such a ¢ is also called a test-function on 2.
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Definition 3.2.2 The Sobolev space W12(£2) is the space consisting of all
u in L?(£2) which have weak derivatives (lying in L?(2)) in every direction
2t (i=1,...,d).

We define a scalar product and a norm on W12(£2) by

d
(u, v) 1.2 ::/um—l—z D;u-D;v
7} = Jo

and .
Hu||VV1=2 = (u7 u);vl,Q'

We also define H'2(£2) as the closure of C°°(2) N W'2(£2), and H, (1) as
the closure of C§°(£2) (with respect to the W12-norm).

Corollary 3.2.1 W1'2($2) is complete with respect to || - |lw1.2, and hence
a Hilbert space. Also, W12(2) = HY2(02).

Proof. Let (u,) be a Cauchy sequence in W12(£2). Then (u,,) and (D;u,,)
are Cauchy sequences in L?(§2). Since L?(£2) is complete, there exist u, v’ €
L?(£2) such that u,, — v and Dyu, — v* in L?>(£2), i =1,...,d.

Now, for any ¢ € CL(£2), we have

/DiU7L'<p:_/Un'Di<P7

and the left side converges to [ v’ -, while the right side converges to — Ju-
Di ®. ,
Hence D;u = v%, and u € W12(£2). This proves the completeness.

In order to show the equality H2(£2) = W12(£2), we need to verify that
the space C*°(2) N WH2(£2) is dense in W2(£2). For n € N, we put

0, = {x € 2 :||z|| < n,dist(x,062) > 1},
n

with 2 := 2_1 := (. Thus,

2 CC Dy, and | 2, = 2.
neN

We let {e;}en be a partition of unity subordinate to the cover
{Qn+1 \ anl}

of 2. Let u € WH2(£2). By Theorem 3.2.1, for every ¢ > 0, we may find a
positive number h,, for any n € N such that

hn < diSt(Qn, 5Qn+1)
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£

27.

Since the «,, constitute a partition of unity, on any 2 CC 2, at most finitely
many of the smooth functions (a,u)p, are non zero. Consequently,

=Y (anu), € C™(2).

n

|[(ant)n, — CVnu”Wlfz(Q) <

‘We have
= @l < 3 lanuln, — anull <<,
n

and we see that every u € W2(£2) can be approximated by C*°-functions.
O

Ezamples. Let 2 =(-1,1) CR.
1) wu(z):=|z|. Then uw € W2 and

Du(z) = 1, O<z<l,
-1, -1<z<o.

Indeed, for every ¢ € C}, one verifies:

/0 —p(a) dx+/0190(56) dxz—/llsa’<x>-|x| da

—1

1, 0<z<1,
u(x) ==
0, —-1<x<0.
This function is not in W12(£2), since otherwise we would be forced to
have Du(x) = 0 for z # 0, i.e. Du = 0 in L?, but it is not true for
every ¢ € C3(—1,1) that

1 1 1
0= / o(x)-0de = —/ ' (z) u(z) doe = f/ ' (z) dz = ¢(0).
-1 -1 0

We shall now prove a number of technical results about the Sobolev space
W2 that should also be helpful for the reader to familiarize herself or himself
with the calculus of weak derivatives. If the reader, however, fears getting lost
in technicalities, she or he may directly proceed to Theorem 3.2.2 and return
to the lemmas only when they are applied.

Lemma 3.2.2 Let 2y CC §2, and suppose g € WH2(2) and u € WH2(£2)
are such that u—g € Hy?(2). Then

o) = u(z), x € 2,
g(x), x€ 2\
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lies in W12, and

Div(z) = D;u(z), x € o,
! B ng(ﬂf), S Q\QO

Proof. By replacing u by u — g, we may assume g = 0 and u € Hé"Q(.QO).
Hence there exists a sequence (uy,) in C§°(£2y) such that u,, — uin W2(£2).
In particular,

u, =0 in a neighborhood of 02y. (3.2.2)

Hence, if v, v* and v,, denote the extensions by zero of u, D;u and u,, re-
spectively to 2, it is clear that (v,) is a sequence in C§°(§2) converging in
W12(£2) to the element v of H2(£2), with D; v = v®. O

Lemma 3.2.3 Let f € C'(R), with M := sup,cg | f'(y)] < occ.
Then, for every u € W2(£2), we have

fou € WH2(2) and D (f ou) = f'(u) Du.

Proof. Choose (uy) in C*°(£2) converging to u in W12(£2). Then

[ 1) = F@P dz < 222 [~ de 0
(9] 2

and
/ |f/(un)Dun*fl(u)D'UJ|2 dz
0
< M2/Q|Dun—Du|2 dx+/ﬂ|f’(un)—f'(u)\ Duf? dz

By passing to a subsequence of (uy,), we may (in view of a well-known result
on L2—convergence2) assume that (u,) converges pointwise to u almost every-
where in 2. Since f’ is continuous, f’(u,) also converges to f’(u) pointwise
almost everywhere in (2. Hence the second integral above also tends to 0 as
n — o0, by Lebesgue’s dominated convergence theorem.

Thus f(u,) — f(u) and D (f(uyn)) = f'(un) D (un) — f'(u) Du in L?(£2),
proving that fou € W2 with D (f ou) = f'(u) D u. O

The next lemma gives a useful characterization of Sobolev functions. It
may also be used to supply an alternative proof of Lemma 3.2.3.

Lemma 3.2.4 u € L?({2) belongs to the Sobolev space W12(02) if and only
if u has a representative u that is absolutely continuous on almost all line
segments in {2 parallel to the coordinate axes and whose partial derivatives
(in the classical sense) are in L?({2).

2 see e.g. [J4] or any other textbook on advanced analysis
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Proof. “=": Let u € WH2(£2). One may exhaust almost all of 2 by a
countable union of rectangles R := [a',b'] x -+ x [a%,b?]. We shall prove the
claim for such a rectangle R. The general result can then be deduced by a
standard diagonal sequence argument that we leave to the reader. (Anyway,
the case of a rectangle will actually suffice for applications.) By the proof of
Theorem 3.2.1, the regularizations uy, of u converge to u in W1hH2.

W.l.o.g., we shall prove the result for line segments parallel to the 15° axis.
We thus write z € R as

T = (J;l,f), with T € [az,bQ] X - X [ad,bd].
By Fubini’s theorem, we find a sequence h,, — 0 with

bl
lim (|uhn(331,f) - u(wl,f)’2 + |Dup, (z*,7) — Du(xl,f)‘z) dzt =0
al

n—oo

for almost all . By an application of Holder’s inequality, we then also have

bl
nlirréo ( ’uhn(xl,f) — u(xl,f)| + |Duhn(m1,f) — Du(xl,f)| ) dzt =0

=00 Ju1
for almost all .
Finally, we may also assume that uj_ converges to u pointwise almost every-
where, by selecting a subsequence, as noted before in the proof of Lemma
3.2.3. From the preceding inequality, we see that for each such T and for
every € > 0, there exists N € N such that for n > N and z! € [a', b!]

bl
lun, (@', F) — up, (a*,7)] < / |Dup, (', 7)| ¢! since up, is smooth
al

bl
g/ IDu(e",7)| de* + .

Since uy,, converges a.e. to u, we may assume that for some z! € [al,b!],
up, (21, %) converges to u(z', 7). The preceding inequality then implies that
up,, (x1,T) is uniformly bounded for ! € [a!, b!]. Also, the uy,, are absolutely
continuous as functions of z!, uniformly w.r.t. to k. Namely, the L' conver-
gence of D up, to Dwu that we noted above implies that for each n there exists
6 > 0 with

/!Duhn(éﬁ)! a¢' <
I

whenever the measure of I C [al,b'] is smaller than §. We now apply the
Arzela-Ascoli theorem and see that uy, converges uniformly on [al, b'] to an
absolutely continuous function. u therefore agrees with an absolutely contin-
uous function almost everywhere, and thus has the desired property.
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‘e The converse is easier (and less important): Let u have a represen-
tative u with the absolute continuity property. For every ¢ € C§°(£2), ¢u
then shares the same property. Therefore, for i = 1,...,d,

/ uDip=— [ Diuyp
o 17

on almost every line segment in §2 parallel to the i*" axis and with end points
in R%\ supp . One then sees from Fubini’s theorem that D;u satisfies the
properties required for the weak derivative of u. a

We shall next describe the relation between weak derivatives and differ-
ence quotients.

For any function u : 2 — R, we define the difference quotients of u in
the usual way:

u(x + he;) — u(x)

h o
Al u(z) = A

(h #0),

where e; denotes the i-th unit vector of R, i =1,...,d.

Lemma 3.2.5 Suppose u € WH2(92), ' cC 2, and h < dist(£2', 092).
Then Al'w € L2(82'), and

1AY ullrzony < IDiullraqo). (3.2.3)

Proof. By the usual approximation argument, it is enough to prove (3.2.3)

for
u € CH(2) N WH2(£2). In that case, we have

1 h
A?U(:E) = E/ Diu($1,...,$i_1,$i+§,l‘i+1,...,xd) df,
0

hence the Schwarz inequality yields

1 [t
|A?u(w)|2 < E/ |Diu(x1,...,mi+§,...,xd)|2 d¢,
0

so that

h
/ A} u(@)]? dz < l/ /|Diu\2 dxdfz/ |D; u|? da.
o h 0 0 N



3.2 The Sobolev Space W12 = H!2 97

Conversely, we have:

Lemma 3.2.6 Letu € L?(£2), and suppose there exists a K < oo such that
for all 2 cC 2 and all h > 0 with h < dist(£2, 012),

| A} ull 20y < K. (3.2.4)
Then the weak deriwative D;u exists, D;u = limy_,o A?u in L?, and in
particular

|Dsull 20y < K. (3.2.5)

Proof. By Theorem 3.1.3, the L%(£2")-bounded set (A u) contains a weakly
convergent sequence (as h — 0). Since this is true for every 2/ CC 2, by the
standard diagonal sequence argument there exists a sequence h, — 0 and a
v € L*(£2) with |[v]|z2(2) < K and

/goA?"u — /(pv
Q Q

for all ¢ € C}(£2). If h,, < dist(supp p, 3§2) (where supp ¢ is the closure of
the set
{x € 2: ¢(x) #0}), then

/@A?"u: f/uAi_h“gan;oS f/uDiga for ¢ € C(92).
2 2 0]

/SDU: _/UDlSD7
2 2

which means v = D; u. a

Hence

We shall now prove the Poincaré inequality:

Theorem 3.2.2 For any u € Hy>(£2), we have

0\ @
lullzcor < (S20)" 1D ulioco (320

where |§2| denotes the (Lebesque) measure of 2 and wq the measure of the
unit ball in R

Proof. Suppose first that u € C¢(£2), we set u(z) = 0 for x € R4\ (.
For any w € R? with |w| = 1, we have

u(z) = —/OOO %u(m—l—rw) dr.
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Integration over the unit sphere with respect to w yields

=~ do / /w B E u(r + rw) dw dr (3.2.7)

*y
dwd/|w— \dlzaz x—y| d

and therefore

1 1
— —— |D dy.
i | o el a

Lemma 3.2.7 below (with pu = %) then implies the desired estimate for u €
().

Let now u € H}?(£2). By definition of Hy?(£2), there exists a sequence
(un)nen C CE(£2) converging to u in HY?(2), i.e. u, and D u, converge to
u and D u, resp., in L?(£2).

Since (3.2.6) holds for every w,, it then also holds for w. O

ju(2)] <

Lemma 3.2.7 For f € L*(2) and 0 < p < 1, define

:/ o = y| " f(y) d
2

Then 1
17
Vi fll2e) < o i L fll 2 ()

Proof. Let B(x,R):={y € R%: |z —y| < R}; choose R so that
12| = |B(z, R)| = wg RY.

Then
[O\(2N B(z, R))| = |B(z, R)\(£2 N B(z, R))|,
and
|z — g4 < RUD |z —y| > R,
|z —y|* =D > RM=D g —y| < R.
Hence
[le=uieDay < [ ooy ay
0 B(x,R)
1
= —Wwq Rd#
7
1
= ;w;—“ |02~ (3.2.8)

We now write

o — g1 £ ) = (|2 — )27 (o — o7 £ )
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and obtain by the Schwarz inequality

W F)@)] < /Q & — 2D | £(y)] dy

< (/ |z — y| 2D dy> (/ |z — 41 | f(y) P dy) :
(93 (93

Hence by Fubini’s theorem

[t as < ([ oyt dx)2 [1w)P av.

The Lemma now follows from (3.2.8). O

Remark. The procedure adopted in the proof of Lemma 3.2.7, namely re-
placing {2 by a ball of the same measure and comparing the corresponding
integrals, is called symmetrisation, and is an important tool in analysis.

Exercises for § 3.2

1) Let 2= (—1,1) € R. For which o € R is |z|* a function in W12(£2)?
2)  Let
B(0,1) :={z eR?: |z| <1}

be the open unit ball in R?. For which d is % in W?(B(0,1))?

[

3) Let u € WH2(2). Suppose Du = 0 in 2 (weak derivative). Show u =
const..

4)  Let D be the open unit disk in R2. Show that u € H'2(D) need not be
in L°°(D) by considering u(z) = log (—log 1|z|).

5)  With D as before, show that u € H2 N L>°(D) need not be in C°(D)
by considering u(z) = sinlog (— log |z|).

6) Use Lemma 3.2.4 for an alternative proof of Lemma 3.2.3.

3.3 The Dirichlet Principle. Weak Solutions of the
Poisson Equation

For 2 C R% open and u € C2(42), the Laplace operator applied to u is defined

N 9%
Au(zx) := Z @)

i=1

u is called harmonic in 2 if Auw =0 in 2.
Let £2 now be a bounded open set in R and g € H?(f2). The Dirichlet
principle consists in seeking a solution u of the boundary value problem
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Au =0 in 2
u=g on 9 (to be interpreted in the sense that u — g € H}?(£2))

by minimizing the Dirichlet integral

1
D(v) ::§/Q|Dv\2, Dv=(Div,...,Dgv)

among all v € HY2(2) withv—g € Hé’Z(Q). Let us briefly convince ourselves
that this procedure does lead to a solution of the problem.
Let

1
m := inf {2 / |IDv*> : ve HY(2), v—g € H&’Q(Q)},
Q
and let (u,,) be a minimizing sequence, i.e. u,, —g € Hy*(2) and [ |Du,|> —

m.
‘We have

D(un—uk)Z%/Q|D(un—uk)|2

2
0 0 0 2

Uy + Uk
2

= 2D(un)+2D(uk)—4D( (3.3.1)

We also have

m <D (un —2i-u;€> by definition of m
<=-D

(1n) + 5D (ur)

1

-2

and this tends to m for n,k — oo as (u,) is a minimizing sequence. Using
this information in (3.3.1), we see that

D (up, — ug) — 0 for n, k — oo,

and thus (D u,)nen is a Cauchy sequence in L2(£2).
By the Poincaré inequality (Thm. 3.2.2), we also see that

llun — UkHLz(Q) <D (un — Uk)||L2(Q) since up — u € Hé72(9)7

and therefore (u,),en is also a Cauchy sequence in L?. Altogether (uy,)nen is
a Cauchy sequence in H?(§2), and it therefore converges to some u € H?
with

D(u)=m (= lim D (uy,))

n—oo
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and U g € Hy*(02) (since Hy?(£2) and therefore also the affine space
g+ Hy(£2) are closed in HY2(92)).

Now, for every v € Hy? and t € R (recall that Du - Dv = 2?21 D;u-D;v),
we have

mS/ |D(u+tv)|2:/ |Du\2+2t/Du'Dv+t2/ |D %
2 Ie; 2 e

Differentiating with respect to ¢t at t = 0, we get

d
——t/|D(u+tv)\2]t:O:2/Du~Dv
(9] (9]

for all v € Hy?(02).

Definition 3.3.1 u € HY?(£2) is said to be weakly harmonic (or a weak
solution of the Laplace equation) if

/ Du-Dv=0 for all v € Hy?(£2). (3.3.2)
2]

Obviously, a harmonic function satisfies (3.3.2). In order to obtain harmonic
functions by means of the Dirichlet principle, we must conversely show that a
solution of (3.3.2) is automatically of class C?, and hence also harmonic. This
problem will be treated in the next section. Here, we also wish to address the
following more general situation.

Definition 3.3.2 Let f € L?(f2). Then u € H?(£2) is said to be a weak
solution of the Poisson equation Awu = f if, for all v € Hy™(£2),

/Du Dv+/f v=0. (3.3.3)

Remark. For prescribed boundary values g (in the sense u — g € Hy?(£2)),
we can obtain a solution of (3.3.3) by minimizing

1/|Dw|2—&-/f-u)
2 Jo 7

in the class of all w € HY2(2) with w — g € Hy?(£2). Observe that, by
Poincaré’s inequality (Theorem 3.2.2), this expression is bounded from below,
since we have assumed that w has prescribed boundary values g.

Another possibility of finding a solution of (3 3.3) withu—g € H1 2
g fixed, is as follows: if we set w:=u—g € HO then w must satlsfy

Dw-Dv=- | f-v— [ Dg-Dv (3.3.4)
I, L,

for all v € Hy’ 12 Now the Poincaré inequality (Theorem 3.2.2) implies that
H& 2((2) is alrcady a Hilbert space with respect to the scalar product
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(u,v)) = (Du, Dv)2ge :/ Du-Du
o)
Also, again by Theorem 3.2.2, for f € L3(£2), v € Hy*(£),

/fﬂvgnﬂMZMMMQSamwnﬂumHDmum
N

LU::—/f-v—/Dg-Dv
9] 9]

defines a bounded linear functional on Hy*(£2) with respect to ((-,-)). Thus,
by Theorem 3.1.2, there exists a unique w € HS’Q such that

Hence

((w, v)) =Lwv for all v € Hy?
and this w solves (3.3.4).

This argument also shows that the solution of (3.3.2) is unique. This unique-
ness also follows from the more general statement below:

Lemma 3.3.1 (Stability Lemma) Let u;, i = 1,2, be weak solutions of
Au; = f; with up —us € H&’Q(Q). Then

|ur — uzllwrz(g) < const. |[fi1 — fallL2(0).-

In particular the weak solution of the boundary value problem Au = f, u—g €
Hy%(2), is unique.

Proof. We have
/ D(ul—u2)~Dv:—/(f1—f2) v
o) 2
for all v € H)?(£2). In particular,

| Dt =)D~ = = [ (5= 2 0~ )

Ilf1 = falle2co) llur — uallL2(o)
const ||f1 — f2||L2(.Q) HD Uy — D’LLQ”LZ(Q)

IN A

by Theorem 3.2.2. Hence

1D wuy — DUQHLz(Q) < const ||f1 — f2||L2(Q)~
Another application of Theorem 3.2.2 finishes the proof of the lemma. a

We have thus proved the existence and uniqueness of weak solutions of
the Poisson equation in a very simple manner. It is then the task of regularity
theory to show that, for sufficiently good f, a weak solution of Au = f is in
fact of class C2, hence a classical solution. This will be achieved in the next
sections.
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Exercises for § 3.3

1)  Consider (ai;)i j=1,..,a With a;; € R and

,,,,,

d

Z aij§jfj > A¢? for all § = (517 T ’gd) € R,

1,j=1

where A > 0.
Given f € L*(2), g € H“*(2), give the proper definition and show
existence and uniqueness of a weak solution u of

d

82
> i gyt = ™
i,j=1

u=g on 0f2.

3.4 Harmonic and Subharmonic Functions

In this section, we shall present some simple results about harmonic and
subharmonic functions, like the mean value theorem, and we shall show the
smoothness of weakly harmonic functions. More precise and more difficult
regularity theorems will be presented in the next section.

We let 2 be a bounded domain in R? with a smooth boundary, and we
let u be a function that is of class C? on the closure £2 of £2. We denote the
outward normal vector of {2 by v, and % will denote the differentiation in
the direction of v. The divergence theorem (integration by parts) implies the
following formula

0
/ Au(z) de = —u(x) ds(x), (3.4.1)
o} o0 Ov
with ds denoting the surface element of 92, and also for u,v € C?(12)

/ (v(z) Au(z) —u(z) Av(z)) dz
Q

ou v
_ — - . 4.2
[ (40 i@ - o) 5@ ) asta) (3.42)
The latter formula is sometimes called Green’s identity.

Lemma 3.4.1 Let

%log|x—y|, d=2

Glx—vy) = _ .
7d(271d)wd |z —y2~4, d>2
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Then, for any u € C*(2) and any y € 12,

u(y) = /(m <U(:c) % G(r —y) — Gz —y) ag(f) ) ds(z) (3.4.3)

—|—/ Gz —y) Au d,
e

where % denotes differentiation in the direction of the outward normal of {2,
and ds the surface element on Of2.

Proof. We consider only the case d = 2 which is of primary interest to us.
The case d > 2 is handled similarly. Observe that AG(z —y) = 0 for x # y.
Hence for p > 0 sufficiently small, we have by (3.4.2)

/ Gz —y) Au(z) dz
O\B(y,0)

— /an (G(g; —y) 315(;) — u(z) aG(;y_y)) ds (3.4.4)
+ /83(y,g) (G(x —y) 872(5:) —u(x) ('3G(;cy—y)> ds

(here in the second integral, v is the outward normal to 2\ B(y, ¢), hence the
inward normal to B(y, 0)). Now,

/ Glo—y 248 gl = L logg/ %) 45| (3.4.5)
9B(y,e) I @ 0B(y,0) v

< o |logo sup [Dul

B(y,e)

— 0 as o — 0,

and
OG(x — 1
/ u(x) 9G —y) =—— u(z) ds — —u(y) as o — 0.
dB(y,0) v 21 JoB(y.0)
(3.4.6)

Hence (3.4.3) follows from (3.4.4), (3.4.5) and (3.4.6). ad

Corollary 3.4.1 Ifv € C3(£2), then

Y(y) = /Q G(r —y) A¢(r) dz = 4, /Q Gz —y)Y(z) dz (3.4.7)

for all y € £2; here the subscript y on the Laplacian signifies that it operates
on the variable y.
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Proof. The first equation follows from (3.4.3), since the boundary terms
vanish; the second follows from the first by integration by parts, since G is
symmetric in x and y. a

Theorem 3.4.1 (Mean value theorem) Let u € C2(£2) be harmonic, i.e.
Au(z) =01in 2.
Then for any y € 2 and R > 0 with B(y, R) CC {2

), ),
wy) = ——— u(z) ds(z) = u(z) dx. 3.4.8
) dwaR*1 Jopy R (z) delz) waR? [y R) ) ( )

Proof. We put

L Jog|r —y| — & logR d=2
P(e—y) = Talo—9)i={ 7 i
d(2—1d)wd (lz —yP~* = R*7)

= Gz —y) — G(R).

Since I'(z — y) and G(z — y) differ only by a constant, (3.4.1) implies that
(3.4.3) also holds with G replaced by I'. We apply the resulting formula to
B(y, R) in place of {2, to obtain

oG
uts) = [ o 1) =) ) + [ 1@y Au) de

B(y,R)
. or aG
since - = -~ and I'(x —y) =0 for z € 9B(y, R)
; / /
= — u(zx) ds(x) + I'x —y) Au(x) dz (3.4.9
TR oy @@+ [ ) dute) de (3.49)

Since we assume Awu = 0, the last integral vanishes, and the first part of
(3.4.8) results. For the second part, we apply the first part to 0 < o < R to
obtain

dwg 0% 1 u

(y) = faB(y7g) u(z) ds(z) and integrate w.r.t ¢ from 0 to R. O
Definition 3.4.1 u € C?({2) is called subharmonic if

Au(z) > 0in £2. (3.4.10)
Since I'(x — y) > 0 for € B(y, R) (3.4.9) also implies
Corollary 3.4.2 Letu € C%(§2) be subharmonic in 2, B(y, R) CC (2. Then

u y - R;l
d B(yvli)

u(z) da. (3.4.11)

O
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Corollary 3.4.2 in turn implies the strong maximum principle
Corollary 3.4.3 Let u be subharmonic in §2, and assume that there is some

y € 2 with u(y) =suppu =: p. Then u = p in 2.

Proof. Let 2 :={x € 2: u(z) = p}. By assumption, 2’ # . Since u is
continuous, 2’ is closed relative to £2. Let y € 2'. Then by (3.4.11), applied
to u — p, in some ball B(y, R) cC 2

1

wal? Jpy.r)

0<u(y)—pn< (u—p) <0 by definition of u.

Therefore, we must have equality throughout, i.e. v = p in B(y, R). Therefore
2" is also open relative to 2. Altogether, we conclude

=0
which gives the claim. ]

Returning to harmonic functions, we have

Corollary 3.4.4 Let u be harmonic in 2,y € 2. Then, for k1,...,kq € N,
with k := Z?:1 ki, we have

Ok

—u
k1 k?d
Oxy' --- 0z

(y) sup |ul, (3.4.12)

dk
< v
~ dist (y,002) o

with
dist (y,002) :=sup{R>0: B(y,R) C 2}

Proof. 1If u is harmonic, so is each component of the gradient

Du= (g5, o)
By Theorem 3.4.1, for R < dist (y, 012)
Du(y) = — Du(z) dz = — ds(z).  (3.4.13)
u y = ul\xr xr = uvr as\r). A
wal?® Jp(y R) wal?® Jop(y R)

1
Du < —— sup |u|Vol(9B(y,R
Du)| < o s Jul Vol (9B(y. 7))

d
< — sup |ul, (3.4.14)
R B.r)

and since this holds for all R < dist (y, 0R), then also

|D u(y) sup |ul. (3.4.15)

dist (y,082) 0
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Applying (3.4.14) with D w in place of u, we obtain for the second derivatives
D?w of u, with R = 2 dist (y,002)

2d
D40 < Fri 7 0,y o 0
dist (y, 012) B(y,3 dist(y,002))
4d?
< —————5 sup|ul,
dist (y,002)" «

1
applying (3.4.14) again with R = 3 dist (y, 012) .

Higher order derivatives are controlled by the same pattern. a

Corollary 3.4.5 Let (un)nen be a sequence of harmonic functions in {2
with uniformly bounded L*-norms. Then a subsequence converges uniformly
on compact subdomains of {2 to a harmonic function.

Proof. Let
1
2 = {a:e 0 dist (z,00) > o |z] <k‘}.
Then -
2= %
n=1

We shall show the existence of a subsequence of (u,) that converges on (2.
By the same argument, one will find a subsequence of that sequence that also
converges on {25, and so on. In other words, in order to find a subsequence
that converges on all compact subdomains, one just applies the standard
diagonal sequence argument.
Since

[unlpi(o) < K

for some fixed K, and for y € 2

2d
Wda JB(y.3)
by Theorem 3.4.1,
2d
sup |u,| < — K.
25 wd

Therefore, by Cor. 3.4.4, all derivatives of the u,, are uniformly bounded on
£21. Thus, also all derivatives are equicontinuous. By the Arzela-Ascoli the-
orem, for any j € N the j*" derivatives of the u,, then contain a convergent
subsequence, and by the usual diagonal sequence argument again, we find a
subsequence of (u,) that converges on {21 together with all its derivatives.

The limit has to be harmonic, of course, since in particular the second deriv-
atives converge, and so the equation Awu, = 0 persists in the limit. ad
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We may now prove the regularity of weakly harmonic functions, i.e. of
u € WH2(£2) satisfying

/ Du-Dv=0 for all v € H)?(02). (3.4.16)
2

In fact, condition (3.4.16) can be substantially weakened without loosing the
regularity. First, (3.4.16) trivially implies

/ Du-Dp=0 for all p € C§°(£2). (3.4.17)
Q
Integrating (3.4.17) by parts yields
/ uAp=0 for all ¢ € C§°(02). (3.4.18)
Q

In order for the latter relation to be meaningful, we only have to require that
u is integrable. For our purposes, however, it entirely suffices to consider L2-
functions, although the following result (“Weyl’s Lemma”) holds also without
that restriction, with essentially the same proof.

Theorem 3.4.2 Let u € L*(02) satisfy
/ u(z) Ap(x) =0 for all ¢ € C§°(92).
2

Then u € C*(12).

Proof. We consider the mollifications uy, of u as given by (3.1.14), i.e.
wnle) = | anla=w)uly) dy

with on(z —y) = 77 0 (552), with g as in (3.1.14).
Since we are interested in the limit A — 0, we may assume h < dist (z, 012).
We claim that uy is harmonic at = since w is weakly harmonic. Indeed,

Aup(z) = / Ay on(xz —y) uy) dy, since g, is smooth
Q

= / Ay on(z —y) uly) dy,
2
with a subscript « or y denoting the variable w.r.t. which the
Laplace operator is applied
= O,
since u is weakly harmonic and g, (z — y), as a function of y, has compact

support in 2 if h < dist (z, 012).
Since wuy, converges to u in L?(§2) as h — 0 by Lemma 3.1.6, we may assume
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lunllz2(2) < K

for some K independent of h, and therefore for every bounded subset (2, of (2
also
lunllzr(o,) < K.

By Cor. 3.4.5, as h — 0, we may find a sequence (h,,)nen converging to 0 for
which

(uhn )nEN

converges together with all its derivatives on compact subsets of {2 to a
smooth harmonic function v. Since on the other hand, (uy,, ) converges in L?
to u, we must have v = u, and therefore u is smooth since v is. a

We finally need a little lemma about subharmonic functions.

Lemma 3.4.2 Let u € L?(§2) be weakly subharmonic in the sense that
/ u(x) Ap(x) >0 for all p € C§° with ¢ > 0.
Q

Then u satisfies the mean value inequality, i.e. for all y € 2 with R <
dist (y, 042)
1

u(y) < / u(x) dx.
() B 2 (z)

Proof. We consider the mollifications u; of u as in the proof of Theo-
rem 3.4.2. Since u is weakly subharmonic, the u; are subharmonic as in the
proof of Theorem 3.4.2. The uj, therefore all satisfy the mean value inequality

1

waR? Jp(y r)

un(y) < u(z) dz,

and passing to the limit h — 0 yields the inequality for u. ad

Exercises for § 3.4

1)  Let 2 C R? be a domain. I'(x,y), defined for x,y € 2, x # y, is called
Green’s function for §2 if

A I(z,y) =0 for x £y
I'(z,y)=0 forz € 002,y € 12

and I'(z —y) — G(x —y) is bounded, with G as defined in Lemma 3.4.1.
If y is fixed, one also says that I'(z,y) is Green’s function for 2 with
singularity at y.

Show that a Green function for 2 (if it exists) is uniquely determined
by the above requirements.

What is the Green function f of a ball B(y, R) C R%?
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2)  Let 2 C C be a domain in C which has a regular boundary in the sense
that for each continuous ¢ : 92 — {2 there exists a harmonic extension
h: 2 — R with hjgo = ¢. Let 2o € {2, and let f : {2 — R be harmonic
with f(2) = log|z — 2| for all z € 012.
Put

9(z,20) := f(z) —log |z — z0].

Show that g(z, z9) is Green’s function for 2 with singularity at zg.

3)  Carry out the details of the proof of Lemma 3.4.1 for d > 2.

3.5 The C* Regularity Theory

In this section, we shall derive more precise regularity results that will be
needed in §§ 3.8, 3.11.
We begin by recalling the important concept of Holder continuity:

Definition 3.5.1 Let f: 2 — R, 9 € 2 and a € (0,1). Then f is said to
be Holder continuous at zg with exponent « if

sup [f(@) = o) < 00. (3.5.1)

z€2\{zo} |x,x0|a

If f is Holder continuous (with exponent «) at every zo € 2, then f is said
to be Holder continuous in £2; notation: f € C*(£2).

The space C*(£2) is defined similarly: it is the space of f € C*¥(§2) whose
k-th derivatives are Holder continuous with exponent a.

If (3.5.1) holds with a = 1, then f is said to be Lipschitz continuous at
Zg-

We define the Holder seminorm (of exponent «) by

|f|Ca(Q) = sup M

3.5.2
xH#y |$ - y|a ( )

and || f[| . (2) as the sum of || f| ok () and the Holder norms of all the partial
derivatives of f of order k. In place of C%“, we shall mostly simply write C'®.
Finally, C5® := {f € C**(2): supp f CC 2}. (29 CC 2 means that the
closure of {2 is compact and contained in {2y.)

Theorem 3.5.1 Let 2 € RY be - as always - open and bounded, and
uw) = [ Gla =) )y (3.5.3)

with G(xz —y) as defined in § 3.4. Then
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a) if f € L>®(92) (i.e. sup,cq |f(x)] < 00?), then u € CH*, and
llul|c1.e 2y < const. - sup | f] (3.5.4)

for all a € (0,1);
b) if f € C&(82), then u € C*(£2), and

lul|c2.0 2y < const. - || fllca () 0<a<l). (3.5.5)
The constants in (3.5.4) and (3.5.5) depend on a,d and |£2).

Proof. a) The first derivatives of u are given, up to a constant factor, by

- xiiyi dy.
v /Q f) dy

|z —y[?

Now,

T -y Lo —Y

o1 =yl Jap —y[?

jvon) = o' (e)] < supls]- [ dy.  (35.6)

By the Mean Value theorem, there exists an z3 on the segment from x; to
To such that

g const.|x1 — x|

|x3*y\d

I
lz1 —yl* |z —yl] T

(3.5.7)

We now set § := 2|x; — x2|, and choose R > § such that 2 C B(z3, R)
(we can do this because {2 is bounded); we replace the domain of integration
£2in (3.5.6) by B(xs, R) and split the new integral as

[ a5
B(z3,R) B(z3,9) B(z3,R)\B(z3,0)

=0+ L.

Then
1

I <2 / ————— dy=2wyd (3.5.9)
B(z3,6) lzs — yld—t
while, on account of (3.5.7), we have
I < const. 0 (log R — log d); (3.5.10)

hence
Il + IQ S const. |.CC1 — I2|a
for any a € (0,1). This proves a), since obviously we also have

3 sup signifies here the essential supremum
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|v'(z)| < const. sup|f|. (3.5.11)
Q

b) The second derivatives of u are given up to a constant factor by

g _ L , 1
w" (z) = / (\»T - y\25ij —d(z" —y') (2’ — y])) W f(y) dy;

of course, we have yet to show that these integrals exist under the assumption

f e C§(£2), but this will also emerge during the rest of the proof.
We set

K@ —y) =z —y| ™ (Jo —y[?6; —d(z' — y") (27 —y’))

_ 0 (roy
- 0w \Jz—y|?)”

¥ v Yoy
K(y) dy:/ - —/ = (3.5.12)
/Rl<y<R2 =k, B2 [y|¢ =k, 1 |yl

Observe that

=0
since % is homogeneous of degree 1 — d.
Hence also
K(y)dy=0 (3.5.13)
R4

as Cauchy principal value.
We now set f(x) = 0 for z € R?\ (2 (this preserves Holder continuity) and
write

w' (x) = K0 i) dy (3.5.14)

— [ () - @) K —y) dy
R L
(by (3.5.13)). As before, we have for any z1, x5 an x3 on the segment joining
x1 and zo such that

const. |1 — 2|

|K (21 —y) — K(22 —y)| < (3.5.15)

|5 — y|*H!

We again set § := 2|z — 2|, and write (cf. (3.5.14))

w" (1) — w (w2) = Rd{(f(y) — f(z1)) K(21 —y)

—(f(y) = fz2)) K(z2 —y)} dy  (3.5.16)
=1 + I,
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where I; is the integral over B(z1,d) and I that over R4\ B(zy,d). Then,
since

[f(y) = f(@)] < [If]

Ce |T — y‘a’

we have

[l < fllea / . {K(x1 —y) ey —y|* = K(z2 —y) |22 —y["} dy
B(x1,
< const. || f|lce - 6. (3.5.17)

Also,
I = / (F(2) — fla1)) K (a1 — ) dy
]R‘l\B(ml,S)
+ / (F(y) = f(22)) (K (21 — y) — K (2 — ) dy,
R4\ B(z1,5)

and the first integral vanishes by (3.5.12). Using (3.5.15) and the fact that,
for Yy 7& B('1:37 6)7

1 const.
23—yl = |z —y|dH
we thus have
Ia] < const. & fllc- [ -yt dy (3518)
Rd\B(zhé)
< const. 6% || f|lce-
Now (3.5.5) follows from (3.5.16), (3.5.17) and (3.5.18). O

Theorem 3.5.2 Let 2 cC R? be open and 2y CC §2; let u be a weak
solution of Au = f in 2. Then:

a) if f € C°() (meaning f € C°(£2) and sup,cp, |f(z)| < 00), then u €
Ct(92), and

[ulloreay) < comst. (|| flloo) + lullzz()) ; (3.5.19)
b) if f € C¥(82), then u € C*(£2), and

lullo2.a(ay) < const. ([|fllce(a) + llullz2(e)) - (3.5.20)

Proof.  We shall first prove the estimates (3.5.19) and (3.5.20) assuming that
u € C%. Since {2y can be covered by a finite number of balls contained in 2,
it suffices to prove the estimates in the case 29 = B(0,7), 2= B(0,R), 0 <
r < R < oo.

Let 0 < Ry < Ry < R. We choose an n € C§°(B(0, Rz)) such that
n(xz) =1 for |z| < Ry, and
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0]l e (B0,Ry)) < comst. (Ry — Ry)™F2. (3.5.21)
We now consider
pi=nu. (3.5.22)
By Corollary 3.4.1, we have
ply) = /Q Gz —y) Ap(z) de. (3.5.23)
Now
Ap=nAu+2Du-Dn+udn, (3.5.24)
hence
[A¢lco < |Aullco + const [Inllcz - [Jullcr (3.5.25)
and
[A¢loa < comst. [|n]lc2e ([[Aulce + [lullcra), (3.5.26)

all norms being over B(0, Ry). By Theorem 3.5.1, we deduce from (3.5.25)
and (3.5.26) respectively

[ellere < const. ([[Auflco + [Inlle= [ullcr) (3.5.27)
and
[ellcze < const. [[n]lcza ([[Aullce + luflgra). (3.5.28)
Since u(z) = p(z) for |z| < Ry, we thus have, in view of (3.5.21):
1
[ullcra(B(o,r,)) < const. <||Au||CO(B(0,R2)) + (Ra—R1)? [uller(B(0,R.))
(3.5.29)
and
1
llullc2.o(B(0,R,)) < const. B R (3.5.30)

(lullow(B0,r)) + llullcra(B(0,Ra))) -
We now interrupt the proof for some auxiliary results:

Lemma 3.5.1
a) There exists a constant ¢1 such that for every p > 0 and any function
v e C(B(0, )

[vlleo(B(0,0) < [1Dvllco(B(0,0)) + C1llvllL2(B(0,0))- (3.5.31)

b) There exists a constant ca such that for every p > 0 and any function
ve Ch(B(0, p))

[vllcr(B,0) < [Dvlce(Bo,0) + c2llvllLz(B(0,0)) (3.5.32)
(here, |Dv|ca is the Holder seminorm defined in (3.5.2)).
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Proof. 1f a) did not hold, for every n € N, we could find a radius p,, and a
function v, € C*(B(0, p,,)) with

L= ||vnllcoB(0,pn)) = IPUnllcoB(0,pn)) + PllvnllL2(Bo,pn))-  (3.5.33)

We first consider the case where the radii p, stay bounded for n — oo in
which case we may assume that they converge towards some radius py and
we can consider everything on the fixed ball B(0, pg).

Thus, in that situation, we have a sequence v, € C*(B(0, po)) for which
lvnllc1(B(0,p0)) is bounded. This implies that the v, are equicontinuous. By
the theorem of Arzela-Ascoli, after passing to a subsequence, we can as-
sume that the v, converge uniformly towards some vy € C°(B(0,p)) with
lvollco(B(o,pe)y = 1. But (3.5.33) would imply [[vollz2(B(0,00)) = 0, hence
v = 0, a contradiction.

It remains to consider the case where the p, tend to co. In that case, we
use (3.5.33) to choose points z,, € B(0, p,,) with

1

1
[on (zn)] = §||vnHCO(B(O,pn)) =35 (3.5.34)

We then consider wy, (z) := v, (z +z,) so that w,(0) > 1 while (3.5.33) holds
for w, on some fixed neighborhood of 0. We then apply the Arzela-Ascoli
argument to the w, to get a contradiction as before.

b) is proved in the same manner. The crucial point now is that for a
sequence vy, for which the norms ||v,||ci.« are uniformly bounded, both the
v, and their first derivatives are equicontinuous. a

Lemma 3.5.2
a) For e > 0, there exists M(e) (< 00) such that for all u € C*(B(0,1))

lullcoon) < ellullerso,) +M(e) lullL2(s0,1) (3.5.35)
for allu € CH*. Fore — 0,
M (e) < const.e™?. (3.5.36)

b) For every oo € (0,1) and € > 0, there exists N(e) (< 00) such that for all
u € CH*(B(0,1))

lullcrBo,1)) < €llullereso,y) + N(€) llull2(B0,1)) (3.5.37)

for allu € CH*. Fore — 0,

d+1

N(e) < const.e™ = . (3.5.38)
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¢) For every a € (0,1) and € > 0, there exists Q(g) (< 00) such that for all
u e C?*(B(0,1))

[ullera(so,n)) < €llullezaon) + Q) lullz2(so,1) (3.5.39)
for allu € CH*. Fore — 0,
Q(e) < const.e" 4717, (3.5.40)
Proof. We rescale:

uy(x) = u(%), u, : B(0,p) — R. (3.5.41)

(5.3.35) then is equivalent to

lupllco o) < €p luollcrBo.py) + ME)P™* ullr2po,p)).  (3.5.42)

We choose p such that ep = 1, that is, p = e~! and apply a) of Lemma 3.5.1.
This shows (3.5.42), and a) follows. For b), we shall show

|‘Du|‘co(3(071)) S 9 ‘Du|ca(3(071)) + N(E) HUHLQ(B(OJ))- (3543)

Combining this with a) then shows the claim. We again rescale by (3.5.41).
This transforms (3.5.43) into

[1DupllcoB0.0) < 20 [Dulca(so.p) + NE)p~ " ullL2(so,p)- (3:5.44)

We choose p such that ep® = 1, that is, p = e~ and apply a) of Lemma
3.5.1. This shows (3.5.44) and completes the proof of b).

¢) is proved in the same manner. O

We now continue the proof of Theorem 3.5.2:

For homogeneous polynomials p(t), q(t), we define
Ay = sup p(R—r)|lullcre(porm),
0<r<R

Ay = sup q(R—r)|ullczeBo,m)-
0<r<R

For the proof of a), we choose Ry so that

A1 <2p(R— Ry) [[ullcre(mo,rr)) (3.5.45)
while, for the proof of b), we choose it so that

Az <2¢q(R— Ry) [[ullc2e(B(0,r1))- (3.5.46)

(In general, the Ry of (3.5.45) will not be the same as that of (3.5.46).) By
(3.5.29) and (3.5.37), we have, for certain constants cs, ¢y, . ..,
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Ay

>
< c3p(R— Ry) (||A ullco(B(o,rs)) + R Ri)? [uller.e (B0, Ra))

1
— N
+ e VO sy )

p(R — Ry) €
< . - A R—Ry)|A
SRRy (R M + ¢5p( 1) [[AullcoB(o,ry))
p(R— Ri)
N() ——= .
+ce (5) (R2 — R1)2 Hu||L2(B(0,R2))
We choose Ry = RJFQRl € (R, R). Then, because p is homogeneous,

pR-R) _p(R-Ry)
p(R—Ry) — p(f5fh)

is independent of R and R;. Thus,

_ (Ra— R1)’p(R - Ry) 2
T e p(R_Ry ")

and
_2(d+1)

N()~(R—Ri)" =
by Lemmma 3.5.2 b). Thus, when we choose

2(d+1)
2

p(t) =t
the coefficient of ||u|z2(B(0,r,)) in (3.5.47) is controlled. Thus we have finally

1
o m<——-=A 3.5.47
[ullcra (o) < R ( )

< const. ([|Aullcoso,ry + lullr2s0,r))

where the constant now depends on the radii » and R as well. In exactly the
same way, one deduces from (3.5.30) and (3.5.39) that

ull 2. (B0, < const. (|Aullcano,ry) + lullL2(B0,R))) (3.5.48)

for 0 <r < R.

Since Au = f, we have thus proved (3.5.19) and (3.5.20) in the case u € C%.
In the case of a general u € H%2({2), we again consider the smoothings

up, 0 < h < dist(£20,042), as in § 3.1. Since

/Duh-DU:—/th for all v € HY?(12),
N (%}

and the wuy, are C'°° functions, we have
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Aup = f.
By Lemma 3.1.5,
Ifn = flico — 0

if f € C%(§2). Thus the fj, have the Cauchy property in C°(£2) (resp. C(£2)),
and it follows from (3.5.19) (resp. (3.5.20)) applied to up, — up, that the uy,
have the Cauchy property in C*(£2q) (resp. C*%(£2)). Hence their limit u
also lies in C12 ()

(resp. C*%(£2y)) and satisfies (3.5.19) (resp. (3.5.20)). O

For later use, we record the following sharpening of a) of the above theo-
rem:

Theorem 3.5.3 Let u be a weak solution of Au = f in (2, where f € LP
for a p > d. Then u € CY%(2) for an a depending only on p and d. Also,
for every 29 CC §2, we have

HUHCW(QO) < const. (HfHLP(Q) + ||U||L2(Q)) .
Proof. We again consider the Newtonian potential
wia) = [ Gla=9) 1)

Let

V(o) [ NG ) d

|z =yl
By Holder’s inequality,

(p=1)
i 1 ’
@I Wl | [ ——ag @)
(9] |x — y| (p—1)

and this is finite since p > d. One can then show that %w = v, and derive
the Holder estimate as in the proof of Theorems 3.5.1 a) and 3.5.2 a). O

Corollary 3.5.1 If u € WY2(£2) is a weak solution of Au = f with f €
Cke then u € Ck*22(0), (k € N), and

[ull gr+2.0(0y) < const. (|[fllareo) + lullr2(2))
for all 29 CC 2. If [ is C*° in {2, so is u.

Proof. Since u € C%%(£2) by Theorem 3.5.2, D; u € WH2(§2) and is a weak
solution of

Hence D;u € C%%(£2) by Theorem 3.5.2 (i = 1,...,d). Thus u € C3(£2),
and the theorem follows by induction. a
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Exercises for § 3.5

*1) Let 0 < a < B < 1. Show that the embedding
CP(£2) — C*(2)

is compact, i.e. a sequence which is bounded in C” contains a subse-
quence converging in C'*.
2)  Let 0 < a< <y <1.Show that for each € > 0 there exists N(g) < oo
with
lulles ) < € llullerie) + N(e) [lullca o)

for all w € C7({2). Determine the growth behavior of N(¢) as ¢ — 0.
Use 1) and the reasoning in the proof of (3.5.37).
Formulate and prove a general result replacing C7(£2), CP(£2), C*(£2)
by Banach spaces Bi, B, Bs with embeddings B; — By — B satisfy-
ing appropriate conditions. (The result is called Ehrling’s lemma.)

3)  Carry out the proof of Thm. 3.5.3 in detail.

3.6 Maps Between Surfaces. The Energy Integral.
Definition and Simple Properties of Harmonic Maps

Let X7 and X5 be Riemann surfaces; suppose X5 carries a metric, given in
local coordinates by
0% (u) du da.

Let z = x + iy be a local conformal parameter on Y.
Now let
u 21 — 22

be a map, of class C' to start with. We define the energy integral of u as

E(u) ::/ 0 (u) (us Uz + U, uz) Ldzdz
P 2

5 /2 (=) (e Ty + 1y 7)) dz dy (3.6.1)

(u. = 3 (up — iuy), uz = 3 (uy +iuy), etc. , subscripts denoting partial
derivatives.)

Lemma 3.6.1 FE(u) is independent of the choice of conformal parameters
on Xy and Xs.

Proof. If z(w) is a conformal change of parameters on X, and we set
u(w) := u(z(w)), then
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/ 0 ((w)) (i Ty + s, ) 1w
e

= /92 w(z) (Uz Uz 2y Zip + Uz Us T 2) 17272
Zw Fw

= /QZ(U(Z)) (u, Tz + uzTs,) i dz dz.

Similarly, for a change of parameters u — v(u), the transformed metric is
given by
dvdv

0% (u(2)) uy Ty dv dv = 0* (v(u)) ——,
Uy U
hence the invariance of the energy is easily verified. a

Definition 3.6.1 Let X7, X" be Riemann surfaces. A holomorphic map f :
Y — X" is called conformal if its derivative f, is nonzero everywhere on
X, Likewise, an antiholomorphic map with nonvanishing derivative is called
anticonformal.

From the proof of the above lemma, we also have:

Corollary 3.6.1 Ifk: X — X is bijective and conformal, then

E(u) = E(uok). (3.6.2)
Lemma 3.6.2 Foru: Xy — X5 as before, we have

E(u) > Area(Xs),
with equality iff u is conformal or anticonformal.

Proof.

E(u) = / 02 (u) (usTs + Touz) ~ dz dz
>N 2

> / 0% (u) uzﬂg% dz dz, with equality iff u is holomorphic
P

> / Qz(u) % du du, with equality iff u is of degree 1
Yo

= Area (Xs).

The anticonformal case is handled similarly. a

Suppose now that v : Xy — X5 is a map which carries the coordinate
neighbourhood V of Y7 into the coordinate neighbourhood U of X5. Then
we can check whether the restriction w : V — U lies in W2 or not. If U and
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V are bounded, as we shall assume, then u : V' — U is bounded, hence in L?
if it is measurable. To say that « € W12 is then equivalent to requiring that
u have weak derivatives D, u, Dzu, D, uw and Dzu on V, and the integral

E(u,V):= % /ng(u(z)) (D,uDzu+ DzuD,w)idzdz (3.6.3)

be finite.

In particular, we can define the class C°NW12(%;, X,), since small coor-
dinate neighbourhoods are mapped into coordinate neighbourhoods by con-
tinuous maps. We can then also talk of the weak W'2-convergence of a
sequence of continuous maps Xy — X of class W12 4

Lemma 3.6.3 Suppose the sequence (un)nen in C° N WH2(X, X5) con-
verges weakly in W2, and uniformly (i.e. in C°) to u. Then

E(u) < liminf E(uy,). (3.6.4)
n—0oo

Proof. We may compute in local coordinates. Thus

0

< /92 (un(2)) (Dz (4, — u) Dz(u,, — @) + D, (u,, — @) Dz(u, — u))

idz dz
= /QQ(un) (D, up, - Dz, + D, Ty, - Dzuy) i dz dZ
+/92(un) (D,u-Dzu+ D,u-Dzu)idz dz

7/@2(11,”) (Dz Up - Dz + D=0y - Dyu+ Dsuy - DU+ D,y - Dzu>
idz dz.

The first integral above is E(u, ), and the second converges to u uniformly.
We write the third integral [ 0?(u,)(...)idzdz as

/92(u) (..)idzdz+ / (0*(un) — 0°(w)) (...)idz dz
and observe that

‘/(92(%) —0*(w) (...) dz dz

< sup | 2(un(2)) — @*(u()) |- \ [t aa

zeX

4 Tt is possible to formulate the notion of W% —maps without requiring continuity.
However, this is not necessary for our purposes.
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which tends to zero because of uniform convergence.
Finally, because (u,) converges to u weakly in W2,

/Qz(u) (Dzun -Dsu+ Ds%- D, u+ Dzu, - Dzu+Dzun~D2u) idz dz

converges to

2 /QQ(’U,) (D.u-Dzu+ Dzu-D.u)idz dz = 2 E(u).

Thus we conclude that

0 < liminf E(u,) — E(u),

n—oo

which is the assertion of the lemma.

O

In analogy with the Dirichlet principle, we shall now try to look for min-
ima of F(u). If v is such a minimum which is continuous, then, in local

co-ordinates, a variation u; of u can be represented as
u+to, 0 e CONWS 25, 5,).

If u is to be a minimum, we must have

d
—F t =0,
& (u+tp) _
i.e.
d 2 — .
0= X *(u+tp) ((u+tp). (U+tp)z
+(U+t9); (u+tp)z) idz dz)
t=0
= /{@Q(u) (U, Pz + Uz . + U, oz + Uz P,,)
+20 (0w + 0w P) (u Tz + U uz) } idzdz.
If we set

7T 2w

(3.6.5)
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= U 777@ Uz Uz
0—/{z<wz 0 (Qu z T 0w z))

+uz (wz — % (ouus+ Qﬂ%:))

this becomes

2
+1, (z/f - ?w (0w uz + gauz>>
_ 2 _
+uz (1/}2 - ?1/1 (Qu Uy + Qﬂuz)>
2 _ = _ . _
+E (Qu Y+ Qﬂ/)) (u. Tz + 0, Uz)} idz dz
- — 204 —\ . _
= 2Re Uy thy — e uyuz | idz dz (3.6.6)
_ 200 _ _ . _
+2Re/ <uz P, — 7 U, uzz/J> idz dz.
If u € C?, we can integrate by parts in (3.6.6) to get
2 _
OzRe/ (uzz—i-z)uuzuz) Yidz dz
_ 200 _ _ . _
+Re/ (uzz + —u, uz> Pidz dz
0
204 —. _
=2Re Uz + — u, uz | Yidz dz. (3.6.7)
0
Definition 3.6.2 A map u € C?(X, X5) is called harmonic if
204
Uz + % u, uz = 0. (3.6.8)

A map u € C°N WH2(X,5,) is called weakly harmonic if, for all 1 €
CONW,* (2, 5),

/ <u s — 2% u, uzzp) idzdz=0. (3.6.9)

Corollary 3.6.2 Ifu e C°NWY2(Xy, Xy) is a minimum for E, then u is
weakly harmonic. If u € C? is a minimum of E, then u is harmonic.

Proof. Observe first that the two integrals in (3.6.6) are complex conjugates
of each other. Indeed, since g is real, g, = oz. And

/w%z—/W%Zj/W@Z/%%
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for ¢ € C2. Tt follows by approximation that [u, ¥~ = [ 7. 5 for ¢ € W32,
proving the statement made above.
Thus, by what we have already seen above, we must have

— 20, —\ . _
Re/(uzwz—guzuzw) idzdz=0

for a continuous minimum w of E. By replacing ¢ by —it we see that the
imaginary part of the above integral must also vanish, so that (3.6.9) holds.
Suppose now that u is actually in C2. If e.g.

(Uzz + 2% uzz) (ZO) = w(ZO) 7& 07

then we would have, by continuity, a neighbourhood U of zg on which Re w >
0. Then we could choose ¢ € C§°(U) with ¢ > 0 and (%) > 0, and then

2 _
Re/(uzz—i— Zuuzuz) Yidz dz > 0,

in contradiction to (3.6.7). O

Lemma 3.6.4 Under changes of conformal parameters on the source Xy,
(3.6.8) and (3.6.9) are invariant. In particular, if u : Xy — X9 is harmonic
and k : X1 — Xy is conformal, then wok : X{ — X5 is harmonic; similarly
for weakly harmonic maps.

In particular, conformal maps are harmonic.

Proof. By straight-forward verification. ad

Remark. It should be noted however that, if u : Xy — X5 is harmonic and
h: Xy — X is conformal, hou tieed ot in general be harmonic (except when
u is actually conformal). Indeed, in order to ensure that h o u satisfies the
differential equation (3.6.6), one would have to transfer the metric o*(u) to 2}
by means of k. Thus (3.6.8) and (3.6.9) are invariant only under isometries
h : Yy — X%. This should not be confused with the statement of Lemma
3.6.1, because there we have also transformed the metric of the image so that
the conformal parameter change became an isometry.

Finally, let us once again point out that X and Ys enter asymmetrically
in the definition of (weakly) harmonic maps, in the sense that X need carry
only a conformal structure, whereas X5 must be equipped with a metric as
well.

Exercises for § 3.6

1)  Write the equation for harmonic maps v : ¥y — H down explicitly,
where H is the upper half plane equipped with the hyperbolic metric.
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3.7 Existence of Harmonic Maps

The aim of this section is to prove:

Theorem 3.7.1 Let X1 and X5 be compact Riemann surfaces, with Yo be-
ing a quotient of the hyperbolic plane H as explained in Sec. 2.4 and carrying
the hyperbolic metric, and let v : Xy — Yo be a continuous map. Then v is
homotopic to a harmonic map u : X1 — Yo which minimizes the energy in
its homotopy class.

In fact, in the present section, we shall only show the existence of a weakly
harmonic map u. The smoothness of u will then be verified in the next sec-
tion.

The proof of the theorem presented here can also be carried over to the
general case of a metric of non-positive curvature on X5. As an exercise, the
reader may carry out the proof in the (considerably simpler) case of vanishing
curvature. With small modifications, the proof even works for an arbitrary
compact Riemann surface ¥ which is not homeomorphic to S2.

The following lemma (the Courant-Lebesgue lemma) will play an impor-
tant role in the proof:

Lemma 3.7.1 Let 2 be a domain in C, X a surface with a metric, and
uweWh(2,5), E(u)<K.

Let zo € 2, and r € (0,1), with B(zo, \/7) C 2. Then there exists a § €
(r, /1) such that, for all z1,z9 € 0B(2p,9),

d(u(1), ulz)) < (87K)* log (1> . (3.7.1)

r

=

(Here, d(-,-) denotes the distance with respect to the metric on X.)

We shall later apply this lemma only in the case when u is in addition Lip-
schitz continuous. In the general case when u is only of class W12, one needs
Lemma 3.2.4 which says that u| 0B (0,0) is absolutely continuous for almost
all o, and hence the integral of its derivative. If u is Lipschitz continuous,
then this holds for every o, as is well-known.

Proof of Lemma 3.7.1. We introduce polar coordinates (g, ) with center zg
in £2.
Then, for z1, 29 € 0B(29,d), we have

d(u(z1), u(z2)) ) (3.7.2)

< L(u(d,
/0% o(u) ‘ZZ((S,G)' do,
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where ¢?(u) du du is the metric given on X. If u is Lipschitz continuous,
this holds for all 6° as already noted. In the general case of u € W12, it
holds for almost all §, which is all that is needed in the rest of the proof, by
Lemma 3.2.4.

The Schwarz inequality applied to (3.7.2) gives

d(u(z1), u(z2)) < £(u(d,-)) (3.7.3)

(o)
0

Now the energy integral of u over B(zg, v/7) is given in polar coordinates by

00
12 v 0 ?
E(U’B(Zo,\/;))zi /070 /70 0 (u) (01; ) s ds df.

Hence there exists a 6 € (r,4/r) such that

N|=

IN

(2)

S|

52

du
26

2 2
T ou 2 F (u; B(z0,/T))
2 - < )
/0 0°(u) 50 (0,0)] do< fﬁﬁ (3.7.4)
_4E(w;B(20,vr) _ AK
log (7)  log(y)
The lemma follows from (3.7.3) and (3.7.4). O

We remark that a similar assertion is valid for real-valued functions v :
{2 — R whose Dirichlet integrals are majorised:

/ Vul? < K.
17

Of course, the d (u(z1),u(z2)) in (3.7.1) is to be replaced by |u(z1) — u(z2)|.
The proof is the same.

We need some more preparations for the proof of Theorem 3.7.1:

Let m: D — X5 be the universal covering — recall that X5 is assumed to
be carrying the hyperbolic metric, so that D is the unit disc. Let s > 0 be so
small that, for every p € X,

B(p, 3s) :={qe Xy: d(p,q) <3s}

can be lifted to a disc in D (with respect to 7). Let 0 < n < s. We choose a
Lipschitz map
ay : [0,3s] — [0, 7]

5 For then the curve u(d,-) is rectifiable, and of course joins u(z1) and u(z2).
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such that

on(t) =1t, 0<t<ny (3.7.5)
3n—1

Uﬁ(t):Ta n<t<3n

on(t) =0, 3n <t < 3s.

For any p € X5, we introduce polar coordinates (¢, ) in B(p, 3s) (using the
geodesics starting from p as radial lines from p; since B(p, 3s) lifts to a disc
in D, this can also be done in D). Define now (for any n € (0, s))

Up,n : 22 - B(p7 7])
by

opn(t,p) = (on(t),0),  (t,¥) € B(p,3s),
Up,n(CI) =D q € ZQ\B(p738)
Thus 0, is a C! map of ¥y into B(p,n) which is the identity on B(p,n),

“folds back” B(p, 3n)\B(p,n) into B(p,n) and maps X5\ B(p, 3n) to the single
point p.

Lemma 3.7.2 Let 2 CC C, v a Lipschitz map from {2 to X, p € Xy and
n € (0,s), with s as above. Then

E (0py0ov) < E(v), (3.7.6)
with strict inequality, unless op , 0 v = 0.

Proof. Since 0, and v are Lipschitz maps, so is o, , 0 v.

Since B(p, 3s) lifts to a disc in D and o), is constant outside B(p, 3s), we
may without loss of generality think of v as a map to D (rather than X5)°.
To aid geometric visualisation, we may after an isometry of D assume that
p=0€D.

Now the hyperbolic metric on D is given by ¢*(v) = W, and we
compute, using the chain rule (cf. Lemma 3.2.3):

0 0 0 0
(0000 32 (00 00) - 5 (@5 + 32 (00 00) - 5 (500)
4 2 0 o_ 0 0 _
= (1= oy (v])?)? (S“If"gmd”‘“7| ) (az” 2" az" oz ”)

< 4 ﬁ v ﬁ@%— ﬁ v gﬁ

T (1—2)? \9z 0z 0z 0z )
since |grad og,| < 1 (cf. (3.7.5)) and o, (|v]) < |v| < 1. Integration of this
inequality yields (3.7.6). O

6 We may obviously assume that {2 is simply connected, and then v always lifts
to D by Theorem 1.3.3.



128 3 Harmonic Maps

By the same argument, one can also prove:

Lemma 3.7.3 Letp,s andn < s be as above. Then, for any curve vy in Xy,
of length £(7),

C(opy(7)) < L(v), (3.7.7)

with strict inequality unless oy, ,(7) = 7.

Now let v : X1 — X5 be a Lipschitz continuous map. Cover Yy by coordinate
neighbourhoods. Choose Ry < 1 so that, for every zy € X1, a disc of the form

B(zp,Ro) :i={z: |z — 20| < Ro}
is contained inside a coordinate neighbourhood. Assume
E(w) <K (3.7.8)
and define, for r» > 0,

1
2

1 1
P(r):=4(rK)2 <log 7‘) . (3.7.9)
Choose Ry, 0 < Ry < Ry such that

Y() < s, (3.7.10)

with an s as specified earlier.
Finally, choose a dense sequence ((z,,7,)) in {(z,7): z€ Xy, r < Ry }.
By Lemma 3.7.1, there exists a §; € (71, /71) such that

! (v(aB(zl,(Sl))) <mn, (3.7.11)

so that, in particular,
v (0B(z1,01)) C B(p1,m), (3.7.12)
where & is any point in 9B(z1,d1),p1 := v(&1), and n; satisfies n; <

P(r) < s.
We define now a map vy : Xy — Yo by

v1(2) = {v(z), z € X1\B(z1,01)
Oprm (V(2)), 2z € B(z1,61).

Then v; is again Lipschitz continuous, and
E(v) <E(Ww) <K (3.7.13)

by Lemma 3.7.2 (cf. (3.7.8)).
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Further, for any wy,ws € X7 and any rectifiable curve g joining w; and ws,

d (vi(w1), v1(w2)) < L(vi(g)) < L(v(g)) (3.7.14)

by Lemma 3.7.3.
Finally, we have by construction

v1 (B(21,61)) C B(py,m)- (3.7.15)
For the next step, we first find d2 € (rz,/72) such that
4 (1}1 (83(22,(52))) S n2, (3716)

in particular
v1 (0B(22,62)) C B(p2,m2), (3.7.17)

where py := v1(&2), with & an arbitrarily fixed point of 0B(z,d2), and 72 <
P(ra) < s.

We want now to construct a map vy such that
v2 (B(21,61)) C B(g1,m) (3.7.18)
(for some ¢ € X3) and also
vz (B(22,62)) C B(q2,n2) (3.7.19)

(for some g2 € X5). To do this, we set vy 1 := v and

v12(2) = v1,1(2), 2 € 21\B(z2,02)
’ Opams(V1,1(2)), 2 € B(22,02).

(If 8B (21,01) N OB(z2,02) = 0, then vy o already has the desired properties;
but v1 2 may not satisfy (3.7.18) if this intersection is non-empty.)

Set p1,2 :=v1,2(&1).
Then, since

{(012(0B(21,81))) < £ (v1(9B(21,61))) <,

we have
v1,2 (0B(z1,61)) C B(p1,2,m)-
We define
v1,2(2), z € X1\B(z1,01),
’U173(Z) — 12( ) 1\ ( 1 1)
Opy2,m (U1,2(z))’ z € B(21>61);
and set

D23 = 111,3(52)-
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Then
01,3 (0B(22,602)) C B(p2,3,72)-

Thus we can define

via(z) = v1,3(2), z € X1\ B(22,02)
o ' Upz,a,nz(vl,?)(z))? ze B(22a52)

and iterate this process.

The vy, coincide on X1\ (B(z1,d1) N B(zg,d2)) for all n > 3, whereas,
for a z € B(z1,01) N B(29,d2), the image point is alternately subjected to the
transformations o, ., and oy, . 4. Let & € 0B(21,61) N 0B(22,02). The
image of & is the same under all the vy . If v1 py1(2) # v1 0 (2), then

d (V1,041(2), v1,041(&0)) < d(v1,0(2),v1,n(&0)) , (3.7.20)

as follows immediately from the properties of the maps oy, .

The maps vy, are all Lipschitz continuous with the same bound on the
Lipschitz constant. Namely, for all wi, wy € X and an arbitrary path g joining
wiy and wsy, we have by Lemma 3.7.3

d (v1n(wr), 010 (w2)) <L (v1,n(9)) < £ (v(g)). (3.7.21)

Since v is Lipschitz continuous, we can choose g so that
£(v(g)) < const. |wy — wal. (3.7.22)

By the Arzela-Ascoli theorem, a subsequence (v1 5, ) then uniformly converges
to some map vo, and ve has to satisfy the same Lipschitz bound.
Let
¢ = lim vy, (&), 1=1,2.

nj— 00

We now claim that

() {vg(z)7 2 € Zi\(z1,61)

O-Q1,772<’U2(Z))5 S B(Zla(sl)v

as well as the analogously defined map v, must coincide with vs.
If not, there exists some z with

d (v2(2),v2(&0)) — d (v3(2),v5(é0)) = € > 0,

again by Lemma 3.7.3.

Let us assume that the ny, are all even. It then easily follows that (vy 5, +1)
converges to (vh) for my — oo. (If the ny were all odd, (v n,+2) would
converge to (v5), and the argument in the sequel would be analogous.) We
then get for all sufficiently large ny

[ (v2(2), va(80)) = d (V1,00 (2), V1 (80)) | <
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and

|d (v5(2),v5(€0)) = d (v1,n,1+1(2); V1 m41(60)) | < %

The preceding relations and the monotonicity property (3.9.20) then imply

}d('UQ(Z)vUQ(fO)) —d (U17nk+1 (Z)vvl,TLk+1 (50)) | > %

for all sufficiently large ny. This, however, is not compatible with the uniform
convergence of (v, ) to va. This shows that vj, and likewise v}, coincides
with ve. Thus, vy satisfies (3.7.18) and (3.7.19).

We already observed that the vy, are equi-continuous, hence their conver-
gence to vy is uniform. Further, the v; , are all mutually homotopic, hence
also homotopic to the map v from which we started. Indeed, vy ,, arises from
v1,n—1 through modification on the interior of a disc B(z,d). By Theorem
1.3.1, every map f : B(z,0) — X5 can be lifted to a map f: B(z,0) — D,
and any two such maps which agree on 0B(z,0) are homotopic via maps
which preserve the boundary values. (This argument uses the topological
structure of the universal covering of Xy; it is no longer valid if Xy is S2.)

We now can apply the following elementary lemma:

Lemma 3.7.4 Let (w,) be a sequence of mutually homotopic maps Xy —
Y5, converging uniformly to a map w. Then w is homotopic to the wy,.

Proof. We choose € > 0 such that, for any py,ps € X with d(p1,p2) < €,
there exists a unique shortest (hence geodesic) path v,, ,, joining pi to pa:

Yp1.p2 * [07 1] — 2, Yp1,p2 (O) = P1, 7:017102(1) = P2

(This is clear in our special case of a hyperbolic metric. Note, however, that
the result also holds for arbitrary metrics by Cor. 2.3.A.1)

By the uniqueness, v, », depends continuously on p1, ps if d(p1, p2) < €, since
the limit of a sequence of shortest paths is again the shortest path between its
end-points. Also, we can parametrize the v,, ,,, in such a way that v, 5, (t)
depends continuously on p1, ps and t.

Now, since (wy,) converges uniformly to w, w is continuous, and there
exists an N such that, for all n > N and z € Xy, we have d(w,(2), w(z)) < .
Then, for n > N,

h(z,T) == an,(z),w(z)(t)

defines a homotopy between w,, and w. a
Thus it follows that vs is homotopic to v; and v. We already noted that
vg is Lipschitz continuous.

By Theorem 3.1.3, (v1,,) also converges weakly in W2 to ve. Hence, by
(3.7.13) and Lemmas 3.6.2 and 3.7.2, we have

E(vg) < liminf E(v1,,) < E(v;) < E(v) < K. (3.7.23)

By induction, we can then obtain maps v, : X7 — X5 with the following
properties:
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1) vy, is homotopic to v;
2) v, (B(zi,7i)) C B(gi,n;) for all i < n, for some ¢; € X and an 7; <
P(ri);
3) E(v,) <E(w) <K;
4)  (vp) is equi-continuous.
By Theorem 3.1.3 and the Ascoli-Arzela theorem, it follows that a sub-

sequence of (v,) converges uniformly and weakly in W12 to a map v, which
(by Lemma 3.7.4) is homotopic to v. Further,

E@) < E(v) (3.7.24)

by Lemma 3.7.2. Also, since (z,,7,) is dense in X x [0, R;], there exist, for
every z € Xy and r € (0, Ry), a ¢ € X5 and an 7 with

n < Pr)<s (3.7.25)

such that
v (B(z,1)) C B(g;n)- (3.7.26)

The important property of v, expressed by (3.7.26) and (3.7.25), is that
we now have a bound depending only on K for the modulus of continuity of
v, while E(v) < E(v).

We can now begin the proof of Theorem 3.7.1:

Let (u,)nen be an energy minimizing sequence in C° N W12(X, Xy) in
the class of maps X1 — Yo homotopic to v7. This means that

E(u,) — inf {E(w) : w e C®NW"?(Zy, Xy) homotopic to v}  (3.7.27)

as n — o0o. By an approximation argument (cf. Corollary 3.2.1), we may
assume that all the u,, are Lipschitz continuous. By (3.7.27), we may also
assume that

E(u,) < K (3.7.28)

with a constant K independent of n.
As above, we construct for each n a map u, homotopic to u,, such that

E(@,) < E(up) < K (3.7.29)

and u,, has the property: for every z € X; and r € (0, R1), there exist ¢ € X
and 77 > 0 such that

n < (r) (3.7.30)

7 Since the continuous map v can be approximated uniformly by C! maps (which
are then homotopic to v by Lemma 3.9.4), there exist maps of finite energy in
the homotopy class of v.
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and
Un (B(z,7)) C B(g,n). (3.7.31)

Then the u,, are equicontinuous, hence have a subsequence converging uni-
formly to a map w: Xy — X9, which is then homotopic to v (Lemma 3.7.4).
By Theorem 3.1.3, we may (by passing to a further subsequence if necessary)
assume that (i, ) converges weakly in W2, Now Lemma 3.6.3, together with
(3.7.27) and (3.7.29) implies

E(u) < liminf E(w,) (3.7.32)

n—oo

< inf {E(w) : we C®NW"? homotopic to v} .

Since v is homotopic to v, we must have equality in (3.7.32), hence u min-
imizes the energy in the homotopy class of v. Thus u is weakly harmonic
(Corollary 3.6.2), and it remains to show that u is of class C? and hence
harmonic.

This will be achieved in the next section.

Exercises of § 3.7

1) Prove an analogon of Thm. 3.7.1 in case Xy carries a metric with van-
ishing curvature.

*2) Let X be a compact Riemann surface with a hyperbolic metric, and let
¢:S' — X be continuous. Define the energy of ¢ by

where 0?(z) dzdz is the metric of X in local coordinates.

Show that ¢ is homotopic to a closed geodesic vy by finding a curve y
homotopic to ¢ and minimizing the energy in its homotopy class, and
proving that « is parametrized proportional to arclength, i.e.

02 (c(t)) %% = const.,
and that v is the shortest curve in its homotopy class.

Can you prove this result also for more general metrics on X7 (The
differential equation for geodesics was derived in 2.3.A.)

3) Can one use Lemma 3.7.1 to estimate the modulus of continuity of a
Lipschitz continuous map f : X7 — Y5 between Riemann surfaces with
metrics in terms of its energy F(f)?

(Le., given € > 0, can one compute § > 0 in terms of E(f) and the
geometry of Xy and Xy, with d(f(z), f(20)) < € whenever d(z, z) < 67)

You may assume that X5 is hyperbolic, for simplicity.
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*4) Let X be a Riemann surface with oriented boundary curves 71, ..., Vg,
and with a hyperbolic metric for which the curves v;, j =1,...,k are
geodesic. Let S be another Riemann surface with oriented boundary
curves cq,...,c. Let ¢ : S — X be a continuous map, mapping each
c; onto some ;(;) with prescribed orientation, 7 = 1,...1. Minimize
the energy in the class of all such maps and obtain a harmonic map wu.
Note that we are not solving a Dirichlet problem here. u only has to
map each ¢; onto 7;(;) with prescribed orientation, but otherwise the
boundary map is free. Derive a necessary boundary condition for u to
be a solution.

3.8 Regularity of Harmonic Maps

In the preceding section, we have constructed a continuous weakly harmonic
map u from a compact Riemann surface X; into another one Y5 that is a
quotient of the hyperbolic plane H and equipped with the hyperbolic metric.
In order to complete the proof of Theorem 3.7.1, we need to show that wu is
smooth.

The smoothness question is local in nature, and it therefore suffices to con-
sider a weakly harmonic map from a neighbourhood U of a given point
zop € X1 to Xs. As explained in §§ 3.6, 3.7, by conformal invariance of the
energy and after lifting to universal covers, we may therefore restrict our
attention to a weakly harmonic map

u: B(0,R) — H,

where B(0, R) := {z € C: |z| < R} is a disk in the complex plane.
We recall the hyperbolic metric

1 _ _
de dw =: ¢*(w) dw dw

We need some preliminary computations.
For a harmonic map u : B(0, R) — H that is assumed to be smooth for a
moment, and a smooth function A : H — R, we wish to compute

A (how).
With subscripts denoting partial derivatives, we have
1
iAhou:él(hou)zg
= hyy Utz + hyg (U Tz + Tuz) + hgg WUz (3.8.1)

+hu Uzz + hﬂﬂzg
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Since u is harmonic, i.e.

2
Uz = _% U, Uz, (382)

we obtain

1 204 o
1 Ahou= (huu _ 20u hu> U Uz + Py (U Tz + Uuz) (3.8.3)
0
2
+ <huu — 706 hu> U, Uz
Y

Welet d(-,-) : Hx H — R be the distance function defined by the hyperbolic
metric. We choose the function

h(w) = d*(wo, w) for wg € H. (3.8.4)

By applying an isometry of H which, of course, leaves d(-,-) invariant, we
may assume that wg =i and that w is on the imaginary axis with Imw > 1.
In that case, we have

lwl 1
d(i,w) = /1 " dy = log |w|

(using, e.g., Lemma 2.3.6).
We then compute

1
huw = ~—— 8.
v = g (3.8.5)
20w 1 20w 1
how — 222 hy = —— hpw — -2 hy =
o o Y 2uw?’ 0 2w?

Inserting (3.8.5) into (3.8.2), we obtain from the Cauchy-Schwarz inequality
Ahou>0

(for h as in (3.8.4)). Thus how is subharmonic. If u is only weakly harmonic,
i.e. not necessarily smooth, an easy modification of the preceding computa-
tions shows that i o u then is weakly subharmonic, i.e.

/ hou(z) Ap(z) >0  for all C°(B(0, R)). (3.8.6)
B(0,R)

We recall this as

Lemma 3.8.1 Let u be (weakly) harmonic, v : B(0,R) — H, and let, for
wo € H,
h(w) := d*(wo, w).

Then how is (weakly) subharmonic.
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Remark. More generally, a C2-function hou on a Riemann surface X with
metric
0*(w) dwdw is called convex if the so-called covariant Hessian

hwﬁ hww - 28% hw
how — 2Zhg  huw

is positive semidefinite. In the preceding argument, we have verified that
in our case, (3.8.4) defines a convex function on H, and secondly that if
u : B(0,R) — X is harmonic and h : ¥ — R is convex, then h o u is
subharmonic.

We need a slight generalization of the preceding computation. Namely, let
u,v: B(0,R) — H

be two harmonic maps, _
h:HxH—R
defined by _
h(w'w?) = d* (w' w?), (3.8.7)

and consider h (u(z),v(z)) as a function on B(0, R).
As before, we have the general chain rule

Ah(u(2),0(2)) = (Ewlwl - Wﬁuﬂ) Ustiz + hoyign

o(u(2))
e+ Touz) + (i — 2 ED T g
(uZU’Z + z Z) + <hw w Q(U(Z)) hw ) z Wz

+the same terms with w? and v in place of w! and u

1=

+}~lw1w2 (u vz +uzv,) + Ewlma (u,Tz + uzv,)

+}~lﬁlw2 (ﬂzUE + UEUZ) + }NLE1EQ (ﬂﬁz + ﬂEfz) . (3'8'8)

We may evaluate this expression as before. We may assume again that w!
and w? are in special position, namely that they are both imaginary and
Imw! > Imw? > 1. Then

W'l ’ 2
d*(wh, w?) = </ - dy) = (log |w'| — log [w?|)”.

w?| Yy
Thus
= 1 ~ 1
Tt = gy T T g
~ 2 ~ 1
hw1w2 5 1—2° hﬁ1w2 = _772

2wlw
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An application of the Cauchy-Schwarz inequality then shows that the mixed
terms in (3.8.8) are controlled in absolute value by the sum of the remaining
terms, and those are nonnegative by the computation leading to Lemma 3.8.1.
We therefore have

Lemma 3.8.2 Let u,v: B(0,R) — H be (weakly) harmonic. Then
d* (u(z),v(z))

is a (weakly) subharmonic function. O
As a consequence of Lemma 3.8.2, we obtain

Lemma 3.8.3 Let u : B(0,R) — H be a weakly harmonic map of finite
energy. Then for all zg,z1 € B (0, %),

d(u(z0),u(z1)) < 1 % E7 (u) (3.8.9)

for some universal constant cy.

Proof. Let £ := z; — zp. By a rotation of our coordinate system, we may
assume that & is parallel to the first coordinate axis. u(z) and u(z + §) both
are harmonic maps on B (07 %) Therefore, by Lemma 3.8.2,

d* (u(z),u(z +€))

is a weakly subharmonic function of z.
By Lemma 3.4.2

d* (u(z0), u(z1)) = d* (u(z0), u(z0 +€))

4
= 7R? B(m%)d2(u(z)’u<z+f)) (3.8.10)

By Lemma 3.2.4, u is absolutely continuous on almost all lines parallel to the
first corrdinate axis, and on such a line, we therefore have

2

z+€
d* (u(2),u(z +¢€)) < </ o(u(z)) |Du(z)] dx)

z+E€
< [¢l o*(u(z)) [Du(z)|* dz  (3.8.11)
by Holder’s inequality.

If we integrate this estimate w.r.t. z over B (zo, %), we obtain from (3.8.10)

2
d? (u(z0),u(z)) < % 1€1? E(u) for some constant ¢;

which is (3.8.9). O
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We may now derive:

Theorem 3.8.1 Letwu: X, — X5 be a weakly harmonic map of finite energy
between Riemann surfaces where Xy is covered by H and equipped with the
corresponding hyperbolic metric. Then u is smooth.

Proof. Let zy € X1. We choose local conformal coordinates on a neighbour-
hood U of z such that U is represented by a disk B(0,R) € C with z
corresponding to 0. From Lemma 3.8.3 we know in particular that w is rep-
resented by a continuous map. By Lemma 3.2.6, the weak derivatives can be
obtained as

Dyu(z) = Jim u(z + he}i) — u(z)

fori=1,2,

where e; is the ith unit vector. From Lemma 3.8.3, we know that this limit
is bounded as h — 0, and therefore

|D u(z)| < const. (3.8.12)

for z € B (0, £), with the constant depending on the energy of u. Since u is
weakly harmonic, it satisfies in the weak sense

Au = —8% Uz (3.8.13)

and (3.8.12) therefore implies
Au=f (3.8.14)

with f € L™,

From Thm. 3.5.3, we obtain that u has Holder continuous first derivatives.

Therefore, the right hand side of (3.8.13) is Hélder continuous. By Thm. 3.5.2,

u then has Holder continuous second derivatives. Therefore, the right hand

side of (3.8.13) has Hoélder continuous first derivatives. Iterating this argu-

ment as in the proof of Cor. 3.5.1, we obtain that u is smooth of class C*°.
O

3.9 Uniqueness of Harmonic Maps

Before proceeding with the somewhat lengthy computations of this and the
next section, we should like to orient the reader. In the present book, we
do not develop the intrinsic calculus of differential geometry. That approach
would facilitate the computations needed here and make them more transpar-
ent by clarifying their geometric content. The reason why we do not present
that superior approach here is that it needs systematic preparations. These
on one hand might take us a little too far away from our ultimate purpose
of deriving Teichmiiller’s theorem and understand varying Riemann surfaces
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and on the other hand are developed in [EJ] and [J3] to which we refer the
interested reader. So, here we carry out all computations in local coordinates,
and the geometry enters implicitly through the nonlinear terms that occur
in those computations. Those terms reflect the curvature of the surface into
which we map, or on which we consider geodesics (those are also conceived as
maps from an interval or a circle into our surface). The fact that we consider
hyperbolic surfaces, that is, ones with negative curvature, makes those non-
linear terms have the right sign for our inequalities. Therefore, the intuition
underlying the computations is that we can transfer convexity arguments
that are valid in Euclidean space to nonpositively curved Riemann surfaces.
In fact, in some instances, when we only have (weak) convexity in the Euclid-
ean situation, we get strict convexity in the presence of negative curvature.
This leads to sharper uniqueness results for harmonic maps into hyperbolic
Riemann surfaces than for ones into tori that carry a metric of vanishing
curvature.

We begin by computing the second variation of a (not necessarily har-
monic) map
u: X1 — Xy (The first variation was already computed in § 3.6.) In local
coordinates, we consider a variation u(z) + ¢(z,t) of u with ¢(z,0) = 0.
2

Then, setting ¢ := % 0, Q= % p, we have

2

d
@E(u—i-go)

- % (92 (u+ (1) [(u+o®): (@+p(t)

t=0

F @R, (t plt)d] ) 5 d s

:7/ {ez(uw) ((u+w)z¢z+(u+w)zs:0
+HU+ D). oz + (ut 9)z s'oz)

+20 (oup+ 0u9) (u+ ). @+P)z+ (W+), (u+ so>z)}

Lz az
2

t=0
1 i . — .. Py - . - .
=2/ {2 0° () (uz Pz + Uz @. + U Pz +uzp,) + 0% () (B, oz + Pz @2)
+o (Qu@+@i¢) (uz¢?+ﬂf¢z +u, ¢E+UE¢2)
+ (ou @+ 0a®) (0u+ 0a®?) (u: Uz + U uz)
+0 (Quu P+ 200 PP+ 0w PP+ 0u b+ 0aP) (uzuz+uzuz)}

%dz dz
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(evaluated again at t = 0)
= I+II+I1IT+IV+V.

We now integrate the terms in I by parts so that ¢ and @ are no longer
differentiated (with respect to z or Z), complete the terms in II to (0 ¢, +
20, U, @) (0P= + 207Uz P), thereby taking care of half the terms in HI and
integrate the remaining terms in III, which are of the form ¢ oy (¥ )Z, by
parts.

This gives

d2

o5 B+ ()

=2 /{—g (ouuz + o liz) (v P+ . @)
t=0

—0 (Qu Uy + Qﬂﬂz) (E?QO + u?@) - 92 (qu¢ + +uz, L)O)

+o? (sbz +22% sb) (s'oz +22 uzs'o)
0 o
(5 803) ()

—4 (04 0w) ¢ P(u; Uz + U uz)
[(0u uz + 0uTiz) 0wz + 0 (Ouu Uz + Owa Uz) U + 0 0y Uz ¢
[(0utz + 0uTz) 00Tz + 0 (Quu Uz + 0w Tz) Tz + 0 0u Tz <P
—[(ouuz + 0uTz) 0uTz + 0 (Quu Uz + Quu Uz) Tz + 0 0u U] <P
[(0uu: + 07 T:) 0wtz + 0 (Ouw Uz + 0w Us) Uz + 007 uz:] P
+ (Qu 0u P’ +20u0a9P+ Qa@¢2> (u: Uz + U uz)
+ (00w ®* +200m 9P+ 00TPP+ 00uP+ 007P)

(u, Uz + U, uz)}i dz dz

o 2 . Ou . =

=2 o +2=u o) (B +2=10
0 0

+¢ (—0° Uz — 2005 Uz W) + @
(_2 00y Usz — 2(Qu oy + QQuE)ﬂ?ﬂz)
KN 2 -2

+% (—0*u.z —200uus uz) +

(=20 0w u.z — 2(0w 0u + 0 Ouw)Uz Uz)

\ S

+2 W@ (Q OQuu — Ou Qﬂ) (uz uz + UZUZ)} idz dz.

We recall now the formula for the curvature of the metric o? dudu (cf. Defi-
nition 2.3.4):
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4 02
K=-Alogp=—— —— logop,
&8¢ 02 Oudu &0
i.e.

4

Thus, in the terms with ¢? and ¢2 above, we may replace 0 guz by 0u 07 —
o %. We then get

d? w ) . m .
Eure)| =2 f {92 (¢z+2@w) <¢z+2‘ﬂw)
t=0 0 0
402 <¢Z+2£Zuz¢) <¢>Z+2"; ung> (3.9.2)

a2
K
— 47
5

(v — 1. @) (Uz¢ — uzp)
.. . _ 200 _ _
—(*B+200u97) (uzz+§uzuz)

.. . 20 . _
— (92¢+2g@¢2> (uzz+ Quzuz>}1 dz dz.
0

This is the final form of our formula for the second variation of the energy.
Before proceeding to derive some consequences of this formula, we would first
like to interpret the term

O é+2004¢°
occurring in it. For this purpose, we recall (2.3.8): « is geodesic iff

*(V)F+200,5* = 0. (3.9.3)

It is now possible to prove the existence and regularity of geodesics on
surfaces by analogous, but much simpler considerations than those of § 3.7.
However, we are only interested in the case of a hyperbolic surface X5 anyhow,
and we have already determined the geodesics of the hyperbolic metric on H
explicitly in § 2.3. Since the geodesics of a hyperbolic surface are precisely
those which lift to geodesics on the universal covering D, we have:

Lemma 3.9.1 Let X be a compact hyperbolic Riemann surface (so that X
has been provided a metric of constant curvature —1). Let p,q € X. Then
there exists precisely one geodesic in every homotopy class of curves joining
p and q; this is also the shortest path from p to q in the given homotopy class,
and depends continuously on p and q.

Proof. Let m: H — X be the universal covering, and suppose p € 7~ 1(p).
Then a homotopy class of paths from p to ¢ in X is uniquely determined by
the choice of a ¢’ € 71(q); this is because such a homotopy class corresponds
to the paths from p to ¢’ in H (see § 1.3). But we know from Lemma 2.3.6
that there is precisely one geodesic ¥ in H from p to ¢/, and that this is the
shortest path from p to ¢’. Then 7 := 7(7) is the desired geodesic in X. 0O
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Remark. The existence of a geodesic with prescribed end-points in a given
homotopy-class is assured in any surface with a complete metric, and the
uniqueness whenever the curvature is non-positive.

We now return to the interpretation of (3.9.1):

Theorem 3.9.1 Let Xy and X5 be compact Riemann surfaces; suppose Xy
is equipped with a metric of mon-positive curvature K. Let u € C?(X1, X),
and @(z,t) a variation of u with ¢ Z 0. If u is harmonic, or if ¢(z,-) is a
geodesic for every fized z € Xy (it suffices to know that

O ¢+20009° =0 (3.9.4)
att=20), then

2

%E(quga(t)) . > 0. (3.9.5)

If K is actually negative, then either
2

T Blute(t) >0 (3.9.6)

or
Uy, Uz — Uz Uy = O7 (397)

i.e. the real rank of u is < 1 everywhere.

Proof. In view of our assumptions, the last two terms in (3.9.2) vanish, while
the first three are non-negative. Hence (3.9.5) follows.

In the case % E(u+¢p) = 0, the integrand, being pointwise non-negative,
must vanish identically. Thus, if K < 0, we will have

WP p =Tz —uz P =0 (3.9.8)
and
9 9. - 2 . 0\ = 9~ ey
e (Q 9090) = (Q 90z+2QQuuz90) P+ (Q <,0Z—|—2quuz<p) $=0; (3.9.9)
in exactly the same way, we will also have

0

= (¢ ¢9) —o. (3.9.10)

From (3.9.9) and (3.9.10), we conclude
02 9P = const.. (3.9.11)

This constant is not zero, since ¢ # 0 by assumption. Hence ¢ and % are
never zero, so that (3.9.8) implies (3.9.7). O
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We can now prove the uniqueness theorem for harmonic mappings:

Theorem 3.9.2 Let X1 and X5 be compact Riemann surfaces, with Xo car-
rying a hyperbolic metric. Let ug,uy : X — Yo be harmonic maps which are
homotopic to each other. If at least one of the two has a nonvanishing Jaco-
bian somewhere (e.g. if one of the two maps is a diffeomorphism), then

Uy = U1.

Proof. Let
h(Z,t) : 21 X [O, 1] — 22

be a homotopy between uy and wy, so that h(z,0) = ug(z), h(z,1) = ui(2).
Let ¥(z,t) be the geodesic from ug(z) to ui(z) homotopic to h(z,t), para-
metrized such that o (v(t)) |(t)| = const. ( ¥(z,t) exists and is unique, cf.
Lemma 3.9.1 ). Then u:(2) := (2, 1) is also a homotopy between ug and uy
(note that the geodesic v(z,t) depends continuously on z, by Lemma 3.9.1).
We put
f(t) = E(uy).
Then, by Theorem 3.9.1, we have

f(t)>0 (3.9.12)

for all ¢t € [0,1], so that f is a convex function. Also, since uy and u; are
harmonic maps, we have

f(0)=0= f(1). (3.9.13)
Finally, by Theorem 3.9.1, we have
f(0)>0 or f(1)>0, (3.9.14)

since (3.9.7) fails to hold for at least one of ug and u; (by assumption), unless
¥ =0, ie uy=u (observe that the geodesic ¥(u,-) has a fixed arc-length
parametrisation); if e.g. ¥(z,0) = 0, then ¢)(z,t) = 0 for all t € [0,1].

But (3.9.12), (3.9.13) and (3.9.14) cannot all hold simultaneously, since
a non-trivial convex function can have at the most one critical point. Hence
we must have ¢ =0, i.e. ug = u;. ad

Corollary 3.9.1 Let X be a compact hyperbolic surface. Then the only
isometry or conformal mapping of X onto itself homotopic to the identity
is the identity map itself.

Proof. An isometry is harmonic, and hence coincides with the identity map
- also a harmonic map of course - if homotopic to it, by Theorem 3.9.2.

A conformal automorphism of X' can be lifted to one of D. But a conformal
automorphism of D is an isometry with respect to the hyperbolic metric. Thus
every conformal automorphism of X' is an isometry of the hyperbolic metric,
so the first part of the theorem implies the second. Alternately, we could also
have directly applied the uniqueness theorem 3.9.2; since conformal maps are
automatically harmonic. a
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Corollary 3.9.2 A compact hyperbolic surface X has at most finitely many
isometries (or conformal automorphisms).

Proof. By Corollary 3.9.1, different isometries (or conformal automorphisms)
lie in different homotopy classes. On the other hand, every isometry has the
same energy, namely the area of X (= 2w (2p—2), p = genus of X). Hence all
the isometries are uniformly bounded in every C*-norm, in view of the a pri-
ori estimates of Sec. 3.8. Thus, if there were infinitely many isometries, there
would also have to be a convergent sequence of them, by the Arzela-Ascoli
theorem. This would contradict Lemma 3.7.4, since different isometries lie in
different homotopy classes. ad

Exercises for § 3.9

1)  Show uniqueness of geodesics in given homotopy classes for negatively
curved metrics, for closed geodesics as well as for geodesic arcs with fixed
end points. In the latter case, the result already holds for nonpositively
curved metrics.

Give an example of nonuniqueness for closed geodesics on a compact
surface with vanishing curvature.

(Note that for the uniqueness of closed geodesics, one has to exclude
the degenerate trivial case where the curve reduces to a point, and
also that uniqueness only holds up to reparametrization, i.e. if S =
{eig, 0<0< 271'}, and y (eia) is geodesic, then so is v (ei(9+a)) for every
fixed a € R.)

2)  What can you say about uniqueness of harmonic maps v : ¥ — X’
when X’ has vanishing curvature?

3.10 Harmonic Diffeomorphisms

In this section, we wish to show that a harmonic map u : Xy — Yo, with Xy
of nonpositive curvature, is a diffeomorphism, if topology permits.

We begin again with some computations. Thus let X carry a metric
A2(2)dzdz with curvature Ki; the metric on Xy will be denoted as before
by 0%(u) dudu, and its curvature by K. We also set

P
H:= )\2(2) z Uz,
P
L (s T

Lemma 3.10.1 Ifu: X, — X5 is harmonic, then we have

AlogH =2K, —2Ky(H — L) (3.10.1)
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at points where H # 0; similarly
AlogL=2K; +2Ks(H — L) (3.10.2)

where L # 0. Here,
_4 &
T2 0207

is the Laplace-Beltrami operator on X1.

Proof. Observe first that
1
Alog —— =2K;. .10.
og () 1 (3.10.3)

On the other hand, for any nowhere vanishing f of class C?,

Alog f = % (f;j - ffJ;) . (3.10.4)
Now,
% (& (u) u(2)Tz) = 0*(u) uzz Uz + 0% (u) us Uz (3.10.5)

+20 (0wt + 0 tz) u. Uz

= 02(u) Uzz Uz + 200y Uy Uz Uz
since u is harmonic. Similarly,

0

7 (Qz(u) Uz ﬂz) = 0% (u) u, Uzz + 2 0 0u U Tz Uz (3.10.6)
Hence
62
5207 (Q2(u) Uy ﬂg) = 0%(U) Usoz Tz + 0% (U) Uy Tz (3.10.7)

+20 (0w uz + 07 Uz) Uz, Uz

+40 0y Uz Uz Uz + 200y U, U, Uzz
+2 (0 uz + 07 Uz) 0y U U, Uz

+2 0 (Quu Uz + Oun Uz) U U Us.

On the other hand, v being harmonic, we have
0% Uz + 2004 us uz =0, (3.10.8)
hence we get by differentiation

02 uze +20 (0wt + 05T2) Uz + 2 (04 Uz + 05 Ts) 04Uz Uz
+20 (Ouu Uz + 0w Tz) Uz Uz + 20 0y Uzz Uz + 200, U Uz, =0



146 3 Harmonic Maps
Another application of (3.10.8) now yields

92 Uzzz + 2 00y Uz Uzz + 2 QZ Uz Uy Uz — 2 0w Qu ﬂz U, Uz (3109)
+20 (Quu Uy + Quﬁﬂz) Uy Uz + 200y Uz Uz + 2004 Uz uz, = 0.

It follows from (3.10.7) and (3.10.9) that

9? 2 _ 2 20u _ 209 _ _
920% (Q (U) Uz uz) =0 Uzz + 7 Uz Uy Uzz + 0 Uz Uz
+ (20 0uw — 2 0u 0n) (u: Tz — U, uz) U, Us. (3.10.10)
From (3.10.5) and (3.10.6), we get
0 0 _
2% (92 Uy ﬂz) i (92 Uy UE) =
(Q2 Uy ﬂg) 0° (uzz + % U, uz) (uzz + % uzuz) . (3.10.11)

Observe finally that
4
Ko=—7 (0 0uw — 0u 07) - (3.10.12)
Thus, (3.10.4), (3.10.10), (3.10.11) and (3.10.12) yield

2
Alog (0 u.Tz) = A2(z) Ko 0% (u, Tz — U, uz) (3.10.13)
= —2Ky(H - L),

which is (3.10.1), if we use (3.10.3).
The proof of (3.10.2) is similar. O

Lemma 3.10.2 [fu: X, — X5 is harmonic, and
uy(z0) =0 (3.10.14)

(for some zg € X1 ), then
H=s-|h? (3.10.15)

in a neighbourhood of zy, where s is a nowhere-vanishing function of class
C?, and h is a holomorphic function.

Proof. Let f :=u,. Since u is harmonic, we have
Y
f? = -2 = Uz - fa
o

or

F=nf (3.10.16)
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where we have set p = —2 %” uz. Now let 11 be a function with compact
support coinciding with g in a neighbourhood of zg, and consider

1 1 —
=— [ p() —— d¢ d 3.10.17
o) 1= 5 [ () 7 dg &, (3.10.17)
the integration being over the whole complex plane. We have
a(z1) — a(z)
Z1 — 29

1 1 _ N B
~ 2rmi(z1 — 22) /5721 (7€) = B(€ = 21 + 22)) dE€ dE.

Since we may assume that g, like p, is Lipschitz continuous, it follows from
the above that we may differentiate under the integral sign. Hence

0=() = 5 [ H() (i) de d

2ri 3
1 . 0 1 =
= Tom 1i(€) 675 (H) dg dg
1 0 - 1 —
=55 € (r(€)) ()] d¢ d¢.

Now, since 1z has compact support, we see by Stokes’ theorem that

1 0 1 _
— — (n d¢ d 3.10.18
575 o 5 ) g de e (3.1018)
1 ~ 1 ~
= o OBz 1(€) 5? d§ — f(2)

as € — 0 (Cauchy’s formula, since fi is continuous). Hence

p— (3.10.19)
so that
az(z) = p(z) near zp. (3.10.20)
Therefore, h := e~% - f is holomorphic by (3.10.16) and (3.10.20), and our
2
assertion follows with s = &5 [e®|?. O

Lemma 3.10.2 shows that, unless H = 0, the zeroes of H are isolated.
More specifically, near any zero z; of H, we can write

H=a;|z— 7"+ 0z — z|"), (3.10.21)

for an a; > 0 and an n; € N, as follows from the relevant theorems for
holomorphic functions. Naturally, a similar statement also holds for L.
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By the Gauss-Bonnet formula (cf. Cor. 2.5.3), we have

Ky A dz dz = 27 (X)), (3.10.22)
3

where A2 dz dz is the metric on 21, and x(X;) the Euler characteristic of X;.
Similarly,

Ky 0%1 du du = 27 x(Xy), (3.10.23)
X

hence the transformation formula for integrals yields

Ky (H—L)Xidzdz
P

= Ko (u. Tz — 1, uz) 0° (u(2))idz dz (3.10.24)
P
= 2m d(u) x(¥2),

where d(u) denotes the degree of w.
Finally, it follows from (3.10.1) and the local representation (3.10.21) by the
same argument as in the proof of Theorem 2.5.2 that

k
lim AlogH =) n,, (3.10.25)
=0 oL, BGie) ;

(provided H # 0), where z1, ..., 2z are the zeros of H as in (3.10.21).
Putting together (3.10.1), (3.10.22), (3.10.24) and (3.10.25), we obtain

Theorem 3.10.1 Ifu:X; — X5 is harmonic, and H := 92;(;((5)) u, Uz £ 0,
then

k
X(Z1) = d(u) x(£2) = f% Zn (3.10.26)

where d(u) is the degree of u, and the n; are the orders of the zeros of f. In
particular, if
X(&1) = d(u) x(X2), d(u) >0 (3.10.27)

(e.g. d(u) =1 and x(X1) = x(X2)), then
H(z)>0 (3.10.28)
for all z € 3.

Proof. Tt is clear that (3.10.26) follows from the preceding discussion. If
d(u) > 0, then H # 0, since L > 0 and H — L is the Jacobian determinant of
u. Now the rest follows, since H > 0. O

Theorem 3.10.2 Let Xy and X5 be the compact Riemann surfaces of the
same genus, and assume that the curvature Ko of X9 satisfies Ko < 0. Then
any harmonic map u : X1 — X5 of degree one is a diffeomorphism.
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Proof.
2
o)
H-L= /\27(2) (u, Uz — 0, uz)
is the Jacobian determinant of u. We shall show that H — L > 0 everywhere.
It will then follow that w is a diffeomorphism, since it is of degree one.

We begin by proving that
H—L>0. (3.10.29)
Thus, let
B:={zeX;: H(z) — L(z) < 0}.
We already know that H > 0 in Xy (by (3.10.28)). Hence L(z) > 0 on B,
and we can apply (3.10.1) and (3.10.2) to get
L(z)
H(z)

A log = 4K, (H(z) — L(z)) > 0 (3.10.30)

on B, since Ky < 0. Thus log ﬁ((zz)) is subharmonic and > 0 in B, and vanishes

on OB, contradicting the maximum principle. Thus B = (), and (3.10.29) is
proved.

Suppose now that

H(zo) — L(z) = 0 (3.10.31)
for some zg € ¥1. By (3.10.28), we must then have
H(z) >0, L(z)>0 (3.10.32)

in a neighbourhood U of zy. Since H — L > 0, we can find constants ¢y, co
such that, for z € U,

H(z) H(z)
— < — < .10.
(H-L)(2) <& <L(2> 1) < 2 log 7> (3.10.33)
L(z)
= —cy 1 .
“ O HE)
on U (cf. (3.10.32)). By (3.10.1) and (3.10.2), we have in U
Af=A log% — 4Ky (H - L),
so that, by (3.10.33) and recalling that Ky < 0, we get
Af—dey f>0. (3.10.34)

Further, f attains its maximum in U, namely 0, at zg. Hence, by Lemma 3.10.3
below, f =0in U, i.e. H — L =0 in U. This argument shows that the set

{z€ X, : H(z)— L(z) =0}

is open. But this set is obviously closed, and is not the whole of X, since u
has degree one. Hence it must be empty, as we wished to show. ad
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The lemma below, which was used in the proof of Theorem 3.10.2 is a
special case of the strong maximum principle of E. Hopf (the proof of the
general case is similar to that of our special case).

Lemma 3.10.3 Suppose that, with a bounded function, ¢ > 0,
Af—cf>0 (3.10.35)

on a domain 2 in R:. Suppose f attains a non-negative mazimum at an
interior point of 2. Then f is constant.

Proof. We shall prove the following;:
Assertion. Suppose Af —cf >0 on Q2 C RY. Let zy € 0102. Suppose further
that
(i) f is continuous at zo,
(i) f(z0) > 0, )
(iil) f(zo) > f(x) for all z € £2,
(iv) there exists an open ball B(y,R) := {z € R?: |z —y| < R} C 2 with
xo € 0B(y, R). Then
of

ov

if this derivative (in the direction of the outer normal to 2) exists.

(z0) >0 (3.10.36)

To prove this assertion, we consider the auxiliary function

g(z) = eV lemvl _ g B? (3.10.37)

on By, R)\B(y,0), 0 <o <R
Since Ag —cg = (472 |z —y|* —2v —¢) e=7le=vl® 4 ce=7 B we have, for
sufficiently large =,

Ag—cg>0

[e]

in B(y, R)\B(y, 0). By (iii) and (iv),
f(@) = f(z0) <0,  x€0B(y,0)
Hence there exists an € > 0 such that
f(@) = f(zo) + e gla) <0 (3.10.38)

for x € 0B(y, 0). But since g = 0 on dB(y, R), (3.10.38) also holds for z in
0B(y, R), again in view of (ii) and (iv).
On the other hand, we also have

A (f(x) = f(zo) +e9(x)) — c(x) (f(2) = fwo) +eg(x)) (3.10.39)
> c(x) f(zo) = 0

o

on B(y, R)\B(y, 0), since f(xg) > 0.
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Therefore, by the usual strong maximum principle for sub-harmonic func-
tions (Cor. 3.4.3),

f(z)—f(zo)+e g(x) cannot attain a positive maximum inside %(y, R)\B(y, 0).
Since f(z) — f(xo) +eg(z) <0 on I(B(y, R)\B(y, 0)) it follows that

f(x) = f(xo) +eg(x) <0  on B(y, R)\B(y, 0).
Hence

- (f(x) = f(wo) +eg(2)) 20, € IB(y,R).

In particular,

0 0g(xo)
—_— > —
ov (w0) = —¢ ov

=c (nye_'sz) > 0.

This proves (3.10.36).

To deduce Lemma 3.10.3, we assume that f is non-constant and attains
a maximum m > 0 inside (2. Then

Q:={zeR: f(z)<m}#0,

and 802N 2 #0.Lety € (NZ, and B(y, R) the biggest ball around y contained
Q. Then f(zo) = m > 0 for some z € dB(y,R) and f(z) < f(zo) on £2.
Hence we can apply (3.10.36) and get D f(xg) # 0, which is impossible at an
interior maximum. This contradiction proves Lemma 3.10.3. O

Corollary 3.10.1 Let Xy and X be compact Riemann surfaces of the same
genus with Xy equipped with a metric of curvature < 0 and g : X1 — X a
(continuous) map of degree one. Then g is homotopic to a unique harmonic
map u : Xy — Yo, and u is a diffeomorphism.

In particular, compact Riemann surfaces, one of which carries a metric of
nonpositive curvature, and which are homeomorphic, are also diffeomorphic.

Proof. This follows from Theorems 3.7.1, 3.8.2 and 3.10.2. a

We would like to conclude this section with a topological application of
Theorem 3.10.1, originally proved by H. Kneser:

Corollary 3.10.2 Let Xy and X5 be compact Riemann surfaces, with x(X2)
< 0. Then, for any continuous map g : X1 — Xs with d(g) # 0, we have

ld(g)| x(Z2) = x(Z1).

Proof. Since x(X2) < 0, we can put a hyperbolic metric on X5 as will be
shown in § 4.4. Then, by Theorem 3.7.1, g is homotopic to a harmonic map
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u: X — Xo. In particular, d(u) = d(g).
We observe now that, in analogy with (3.10.26), we also have

1

¢
x(21) + d(u) x(22) = —3 Zmi (3.10.40)

where the m; are the orders of the zeros of L = f\—z U, uz, provided L #Z 0.
Thus, if

|d(w)| x(Z2) < x(Z1), (3.10.41)
then it follows from (3.10.26) or (3.10.40) that either H = 0 or L = 0, since
the sums on the right hand side would otherwise be non-positive. Thus u
is either holomorphic or anti-holomorphic. But then the Riemann-Hurwitz
formula Thm. 2.5.2 for a non-constant u gives

ld(u)] x(X2) = x(X1) + 1, r>0.

(In the case H = 0, we have of course to use the analogue of the Riemann-
Hurwitz formula for an anti-holomorphic map.) But this is a contradiction
to (3.10.41), which therefore cannot hold. This proves the corollary. O

Exercises for § 3.10

1) Let a;5,0; € R, 4,5 =1,...,d, with

d
>y = A[EP forall ¢ € RY,
i,j=1

with A > 0. Suppose

d

9 d
Y ey g RS h oL@ e 020 mo,
i,j=1 i=1
with ¢ > 0 and bounded.
Show that if f achieves a nonnegative maximum in the interior of (2,
then f is constant.
What can you say if instead of constant coefficients, we have variable
coefficients a;;(x), b;i(x)?
2)  Is there a continuous map of nonzero degree from S? onto a torus?

3.11 Metrics and Conformal Structures

In this section, we consider a metric given in real form on a two-dimensional
manifold, and show how it automatically determines the structure of a Rie-
mann surface on the two-manifold. This result will also be useful in § 4.2
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when we prove Teichmiiller’s theorem. Recalling the constructions of § 2.3.A,
we state

Definition 3.11.1 Let M be a two-dimensional differentiable manifold
(surface for short). A Riemannian metric on M is given in local coordinates
z = (z,y) by ) ,

g11(2) dz® + 2 g12(2) de dy + g22(2) dy (3.11.1)
with g11 > 0, g11(2) g22(2) — g12(2)* > 0.

We shall always assume that the coefficients g;; of the metric are of class C'*°;
this will be sufficient for our purposes.

The transformation behaviour of a metric is again determined by (3.11.1).
To describe it, let us denote the coordinates on M by 2!, 22. Then (3.11.1)
becomes

2
> gij dz' ded (3.11.2)
ij=1

If (w',w?) — (2! (w',w?),2? (w',w?)) is a transformation of coordinates,

then (3.11.2) becomes

2 2 ) .
0z" 0727
Yo 9 (2(w) Sk Hul dw® duw'. (3.11.3)
i.3=1 k=1

It is not very difficult to see that every surface (satisfying the necessary
condition of being paracompact) carries a Riemannian metric. This is because
local metrics can be patched up together by means of a partition of unity;
however, we do not wish to go into this in detail, as a similar construction
has been performed already for Lemma 2.3.3.

Given a metric, we can again measure lengths and angles. For example,
the length of a tangent vector V = v % +w % is given by

\V|2 = g11 0% + 2120w + gog w?.

Hence we can define the lengths of curves, and surface areas, as in § 2.3. Thus
such a metric is a priori independent of the existence of a conformal structure
(i.e. the structure of a Riemann surface).

However, we shall prove in Theorem 3.11.1 below that every Riemannian
metric does in fact determine a conformal structure on M, with respect to
which the metric has the conformal form A\?(z) dz dz. This result, which goes
back to Gauss, shows that the introduction of real (Riemannian) metrics does
not lead beyond conformal metrics. Real metrics are nevertheless of some
significance, since the conformal structure of a surface is often unknown,
whereas the metric can frequently be analysed through measurements on the
surface. This is for example the case when we are dealing with a surface in
three-dimensional Euclidean space, where measurements on the surface are
determined by measurements in the ambient space.
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Lemma 3.11.1 By introducing complex coordinates z = x +1iy, z = © — iy,
we can bring the metric into the form

o(2) |dz + u(2)dz]* (= 0(2) (dz + pdz) (dz + mdz)) (3.11.4)
with a real-valued o > 0, and a complex-valued p, |p| < 1.
Proof. We have dz = dz + idy, dz = dz — idy, so that

dz? = dz? — dy? 4 2i dz dy,
dz? = dz? — dy? — 21 dz dy,

hence (3.11.4) becomes

(cf+op+o(l+pum) de® + (lop—iop) drdy
+(—ocf—op+o (1+up) dy?
If p:= a+if, then we must solve
gn=20a+o0 (1+a*+p5%),

g12 =20 f3,
g2 =—-20a+0 (1+a*+ )

for o, 3 and o. Thus,

g12 g11 — 922
J12 o = 22 J42

5:207 4o

and

o= Ju + 922 + \/(911 + go2)? _ (911 — g22)* B gig
4 16 16 4

g11 + go2 1
= 1 + 5 g11 922 —9%2'

Since g11 g22 — g5 > 0 by assumption, we can take the positive square root
in the above expression for o. Then

4975+ 951 — 2911 922 + G35

2 2 2
=a"+ 0 <
a (911 + g22)?

<1,
again since g%Q < g11 g22- =

The introduction of complex parameters above has merely a formal mean-
ing, since we do not as yet know whether M admits any conformal structure
at all. In any case a metric in the form (3.11.4) is not conformal so long as

w# 0.
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Theorem 3.11.1 Let M be an oriented surface with a Riemannian metric.
Then M admits a conformal structure, i.e. M can be made into a Riemann
surface. Local holomorphic coordinates are given by (diffeomorphic) solutions
of the equation

Uz = [, (3.11.5)

where p is as in (3.11.4). In such coordinates, the metric has the conformal
form

7G) 4, qu.

Uz Uz

Proof. We write out the differential equation (3.11.5) in real form: (setting
z =z +1y,) as in Lemma 3.11.1 we have

g11dz® + 2 g2 do dy + goo dy® = o'|dz + pdz]?
=0 (dz 4 pdz) (dz + ndz).

With g := (g11 922 — 9%)? and u := v + iw, (3.11.5) becomes

vp = — 82w, + L wy, (3.11.6)
vy = — 2w, + L2,
By differentiating and using vy = vy, we derive the following equation for

w:

a11 Wey — 2 Q12 Wyy + G22 wyy—|—b1 Wy + by Wy =0, (3117)
where
g22 g12 g11
ail = —, a12=—", a22=——,
g g g
b 0 0 b 0 0
= —ay11 — —a12, = —agy — —a12.
1= gpon oy 12 2 oy 22 = 5412

We want to find, in some neighbourhood of an arbitrary point zg, a solution w
of (3.11.7) whose differential at zy does not vanish. We can then determine v
from (3.11.6) (the necessary condition vy, = vy, is satisfied by construction).
Then

(911 wi — 2912 Wy Wy + G22 wi) >0, (3.11.8)

gi11 912
g12 922

is positive definite by assumption. We can thus define a conformal structure
on XY by declaring diffeomorphic solutions u of (3.11.5) as local coordinates:
if u and t are solutions of (3.11.5) and w satisfies (3.11.8), then

Vg Wy — Vy Wy =

Q|+~

since the matrix
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tﬂ = tz Za + t?ZE
1 _
i — (—tz Uy +t§uz) = 0.
Uy Uz — Uy Uz
Thus the transition maps between charts are holomorphic as required.
Since

du =u,dz + uzdz = u, (dz + pdz),
du =7, dz + uzdz = uz (dz + dz),

it is clear that the metric has conformal form with respect to these charts as
asserted.

Thus it remains to show that (3.11.7) has local solutions with non-
vanishing gradient.

Let z9 € X. By a suitable linear change of coordinates, we may assume
that

a11(z0) = a22(20) =1, ai2(z0) = 0. (3.11.9)
Thus, at zg, the principal part of our differential operator
9 0? 0> 0 0
L:= — =2 — — + b — + by — 3.11.10
M1 52 12 Oxdy + a2z Oy? + 01 Ox + 02 Oy ( )

is just the (Euclidean) Laplace operator A.
For any function ¢, we set

Yv=(A-L)p =11+, (3.11.11)
where
¢ % 02
Y= (1—a) 922 2a12 20y + (1 —as) 2
00, O
Va2 = —b Ox b2 oy’

For R > 0, we consider on C*%(B(zp, R)) the norm

1 1 1
— 3 2
lole = (1% vl + 3 1D lcn + 1D vlem + g lolos )

0<a<l).

Since the coefficients 1 — aj1, 2a12 and 1 — agy are Lipschitz continuous (in
fact C*°) and vanish at zg, we have

1 1
(CET) <ar (ID*el+ 5 10% )

C*(B(z0,R)) C(B(z0,R))

(3.11.12)
with a constant c¢; independent of R.
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Also, if ¢ has compact support, we have

(1D el + el )

C*(B(z0,R

1
<ot (10°¢l+ 3 100 )

1
<o (1026l + 3 100l )
)

(3.11.13)

C*(B(z0,R))

C*(B(z0,R))

We assume that ¢, hence also 1, has compact support in B(zg, R). Thus we
may suppose % is defined on the whole of C, and vanishes outside B(z, R).

Let 1
Glz =€) = 5 log|z—¢]

be the Green function. We set
Xe) = [ 6= .
Then by Theorem 3.5.1 b)

|1D? X || oy < const. |1l co Bz, R))

and similarly
I1D? X||a(ey < const. | Dl Bz, r))

Further

1D X2 < ca RI9]| 2,
X2 < e5 R? log R4 2

(see e.g. Lemma 3.2.7).
By Corollary 3.4.1 and (3.11.11),

AX == (A~ L)y,
and (3.11.12) — (3.11.16) imply

IXllr < c6 R log R ¢l s-

We choose now a cut-off function n € CZ(B(z9,R)) with 5

B (0. 5)
1
1Dl < cq I

1
|D277| < csg ﬁ;

(3.11.14)

(3.11.15)

(3.11.16)

(3.11.17)

(3.11.18)

=1 on

(3.11.19)
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we set

P =nw
(for w € C**(B(29, R)), and

X=Tw

(X being the function constructed above for ¢). Then, by (3.11.18) and
(3.11.19), we have
ITwlr < co R log R |Jwl|r. (3.11.20)

Thus T is a bounded linear operator of C*%(B(zg, R)) into itself. If R is
chosen so small that
cgRlogR=:q <1, (3.11.21)

then the series 1 + T + T2 + ... converges (in the norm || ||, as comparison
with > ¢" shows), and clearly

oo

rr=0-1)"

n=0
Let us now take, for example,
£z) =z +y
and
w(z) = (1-T)7 (=)
Then (cf. (3.11.17))
0=A&)=Aw—-Tw)=Aw—-(A-L)nw
=A((1=-nw)+L{nw),

and sincen=1on B (zo, g), we have L w = 0 there.
Also

lw—€llr =11 (1 -T)""=1) &l (3.11.22)

q
< — .
< 7 lele
By choosing R small enough, we can make the right side as small as we please.
Then, since the C3“-norm controls the C'-norm,

|Dw(zo) = D&(20)

will also be arbitrarily small. In particular, D w(&p) # 0.

This finishes the proof for the existence of a solution of (3.11.7) in a neigh-
bourhood of zy with non-vanishing differential at zy, and hence of Theorem
3.11.1. O
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Remark. With a little care, one can show by the above method that there
exists a local solution of (3.11.7) which, together with its differential, has
prescribed values at z.

Finally, we observe that it is sufficient for the coefficients a11, a12,a22 to be
Hélder continuous of some exponent « € (0, 1), though we have used Lipschitz
continuity.



4 Teichmiiller Spaces

4.1 The Basic Definitions

In this chapter, A will denote a compact orientable two-dimensional mani-
fold; for brevity we shall refer to such a A as a surface. If A has been given
a conformal structure g, then the resulting Riemann surface will be denoted
by (4, g). We shall suppose that the genus of A is at least two.

Such a (A, g) will thus be covered by the upper half plane H, and hence
automatically inherits a hyperbolic metric. The hyperbolic metric is uniquely
determined by the conformal structure g, since any conformal map between
hyperbolic metrics is an isometry: any such map lifts to a conformal auto-
morphism of the upper halfplane H, which is an isometry of the hyperbolic
metric on H. Thus two conformally equivalent hyperbolic metrics differ only
by an isometry, and we cannot distinguish between them from the metric
point of view. We therefore have:

Lemma 4.1.1 Let A be a compact surface of genus p > 2. Then there is a
natural bijective correspondence between conformal structures and hyperbolic
metrics on A.

We shall identify a conformal structure on A with the corresponding hyper-
bolic metric, and denote both of them by the same letter (usually g or 7).

Just as we cannot distinguish between isometric metrics, we cannot distin-
guish between conformal structures differing from each other by a conformal
bijection. Hence we define:

Definition 4.1.1 The moduli space' M, is the set of conformal structures
(or hyperbolic metrics) on the given surface A, where (4,¢g1) and (4, g2) are
identified with each other if there exists a conformal (or isometric) diffeomor-
phism between them. Here p = genus (A).

However, the topology? of the space M,, is quite complicated. Thus, M,
is for example not a manifold. Singularities occur at conformal structures
admitting conformal automorphisms.

Lin order to justify the appelation “space” we shall soon introduce a topology on

My

2 as introduced in § 4.2 below
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Teichmiiller therefore introduced a weaker identification than the one
which led us to the definition of moduli space. Namely, (A, g1) and (A, g2) will
now be identified if there is a conformal diffeomorphism between them which
is homotopic to the identity. Another way of formulating this notion of equiva-
lence is to consider triples (4, g, f), where g is a conformal structure on A and
f: A — Ais adiffeomorphism. Two such triples (A, g;, f;), ¢ = 1,2, will now
be considered equivalent if there exists a conformal map & : (A, g1) — (4, g2)
for which the diagram

(A g1)

(Aa 92)

commutes up to homotopy, i.e.
foo ffl and k are homotopic. (4.1.1)

Definition 4.1.2 The space of equivalence classes of triples (4, g, f) under
the above equivalence relation is called Teichmiiller space and is denoted by
7, (p = genus of A).

The diffeomorphism f : A — A is called a marking of A. Thus the moduli
space M), is the quotient space of 7, obtained by “forgetting” the marking.
The marking f tells us how (A, g) has been topologically identified with
the fixed model A. A map h : (A, g1, f1) — (A, ga, f2) is homotopic to the
identity of A if and only if h is homotopic to fy o fi L Thus, a k which
satisfies (4.1.1) is precisely one which is homotopic to the identity. Thus
Teichmiiller space arises when we identify (A, g1, f1) and (4, g2, f2) if there
exists a conformal diffeomorphism between them which is homotopic to the
identity of the underlying topological model.

We shall also need the concept of a holomorphic quadratic differential:

Definition 4.1.3 Let X' = (4, g) be a Riemann surface with a local confor-
mal coordinate z. p(z)dz? is called a holomorphic quadratic differential if ¢
is holomorphic.

(The term dz? above gives the transformation rule for a quadratic dif-
ferential form: if w — z(w) is conformal, then ¢(z)dz? pulls back to
o(=(w) (§5)° dw?)

Q(g) denotes the space of holomorphic quadratic differentials on (4, g).

Q(g) is obviously a vector space, since any linear combination of holomor-
phic quadratic differential forms is again one such. We shall determine the
dimension of Q(g) in Corollary 5.4.2, as a consequence of the Riemann-Roch
theorem.
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Exercises for § 4.1

1)  Determine all holomorphic quadratic differentials on S? and on a torus.
(You can find a solution at the end of § 5.4).

2) Let D = {z =re? 0<r<1,0< ¢ < 27r} be the unit disk, and let
a holomorphic quadratic differential on the closure of D given in polar
coordinates as

¢(2) (dr +ir do)>.
Suppose Im ¢(z) = 0 for r = |z| = 1.
Show that ¢(z) (dr + ir dg)? can be reflected across 9D to become a
holomorphic quadratic differential on C U {oo}, i.e. on S%. What can
you conclude after having solved 1)?

4.2 Harmonic Maps, Conformal Structures and
Holomorphic Quadratic Differentials. Teichmiiller’s
Theorem

Our considerations will depend decisively on the results of Chapter 3 on
harmonic mappings. We collect them here once again (Corollary 3.10.1):

Lemma 4.2.1 Let (A, g) be a compact hyperbolic surface. Then, for every
other hyperbolic surface (A,7), there exists a unique harmonic map

u(g,7) : (4,9) = (4,7)
which is homotopic to the identity of A. This u(g,~y) is a diffeomorphism. O
We now have

Lemma 4.2.2 Let u : (A1,91) — (A2,92) be a harmonic map, where the
metric 0?(u) dudu on (A, g2) is not necessarily hyperbolic.® Let z be a con-
formal parameter on (A1, g1). Then

0?u.T, dz? (4.2.1)
is a holomorphic quadratic differential on (Ay,¢1). Further

?u, dz* =0 (4.2.2)

& u 1s holomorphic or anti-holomorphic.

3 At this point, we are violating our own convention of identifying a conformal
structure with its associated hyperbolic metric.
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Proof. We have

0
% (QQUZEZ) = (Q2uz2+299uu2uz) Uy
+ (0° Uz + 200Uz ) us
=0

since v is harmonic. Also, it is clear that o?u,u.dz? transforms like a
quadratic differential. It only remains to check that u cannot be holomor-
phic on some subset of A;, and antiholomorphic on the complement, and
then (4.2.2) will also be proved. But w is holomorphic precisely where L van-
ishes identically, and anti-holomorphic precisely where H vanishes identically,
and we know that the zeros of H (or L) are isolated unless it vanishes iden-
tically on A; (see Lemma 3.10.2 and the remark following). Hence u must be
holomorphic or anti-holomorphic (on all of A;) if o?u.7, dz? = 0. ad

Remark. We shall be considering only harmonic maps homotopic to the
identity; since such maps preserve orientation, they can never be anti-
holomorphic.

In view of Lemmas 4.2.1 and 4.2.2, we have a map

q(g) : T, — Q(9)

which sends a (4,7, f) to the quadratic differential determined by the har-
monic map u(g,7y) : (A4,9) — (A,v) homotopic to the identity. This map
is well-defined since u(g,7) is unique. Clearly ¢(g) ((A4,¢9,I1d)) = 0 since
u(g, g) = Id is conformal.

Theorem 4.2.1 For every g, the map

q(9) : Ty — Q(g)
is bijective.
As a preparation for the proof of this theorem, we shall now look more closely

at how the harmonic map u(g,7) depends on ~.
Let therefore

u: (A,9) — (A,7)

be a harmonic diffeomorphism with positive Jacobian determinant; let o2
dudw@ denote the hyperbolic metric v, and z a local conformal parameter on
(A, g). Then

0 du du = ¢* (u(2)) du(z) d(u(z)) (4.2.3)
= 0% u, u, dz% + o? (u, Uz +u,uz) dz dz + 0% uzuz dz°.

Thus we have pulled back the metric v to (A, g) by means of the map . Since
u may not be conformal, this metric is no more of the form o?(2) dzdz, i.e.
need not be compatible with the conformal structure g.
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Let now ¢ dz?, ¢ dz? € Q(g), and let v(¢) be a path in 7, such that, for
the associated harmonic maps

u' s (A, g) = (4,7(1)
and hyperbolic metrics o7 dutdu’,
o ul W = h +tep. (4.2.4)
We define

a0 = L5

L(t)(z) := Qt}(\Z(S)) ul uk.

Then (4.2.3) becomes
of du' du' = (v +tp) dz®+A* (H(t) + L(t)) dz dz+ (¢ + tp) dz° (4.2.5)

We wish to compute the derivatives of H(t) and L(t) with respect to t at
t = 0. This can be done by using the relations

H()- L) = 5 (0 +1¢) (F+17) (4.2.6)

and
AlogH(t) = -2+ 2(H(t) — L(t)) (4.2.7)

(cf. (3.10.1): both the curvatures K; and Ks are —1 in the present case).
Observe that
H(t) >0on (4,9) (4.2.8)

since u? is a diffeomorphism with Jacobian determinant H(t) — L(t) > 0,
and L(t) > 0 by definition. Using a dot on top to denote differentiation with
respect to t, we see from (4.2.6) and (4.2.7) that, at t = 0:

HL—i—HL':% (Vo +1ve) (4.2.9)

and

A

T/ -

-9 (H - L), (4.2.10)

Proof of Theorem 4.2.6.
Let us begin by proving that ¢(g) is injective. Thus let us suppose that the
harmonic maps

ui:<A’g)_>(A77i)7 i:172
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lead to the same quadratic differential. If we set (as above)

2,8 i 200 i
i._ Qi Uy Uz i._ QiU Uz i i i
H' .= )\7;, L' = lTa d) = Q?uzuza
then, ! = 1?2, so that (by (4.2.6))
H'-L'=H? 12 (4.2.11)
Also, by (4.2.7) and (4.2.8), we have
Hl
Alog— =2 (H' - H*+L*-L"). (4.2.12)

2
By (4.2.11) and (4.2.12), it follows that

1

H

since otherwise A log g—; would be positive at the maximum of log Z—; Since

the argument is symmetric in H' and H?, we also have max g—? < 1, hence
H' = H? and then also L' = L? by (4.2.11). It follows from (4.2.5) (with
t =0) that

0 du' du' = o3 du? du’.
Thus (A4,~') and (A,72) have the same hyperbolic metric. If ' and u? are
both homotopic to the identity, the two structures will therefore be identified.
This proves the injectivity of ¢(g).

Observe that, at this point, we have made crucial use of the assumption
that the curvature of the target surface is constant (and negative), since it
was necessary to know the precise form of (4.2.7) in order to prove (4.2.13).

We now come to the proof of the surjectivity of ¢(g).

Let then ¢ dz? € Q(g). We consider the path tp, t € [0,1], in Q(g). We
wish to find for each t € [0,1] a hyperbolic metric 4* on A, and a harmonic
diffeomorphism

u' (4, 9) = (4,9")
such that
?(u)ul @t =to. (4.2.14)
Let us suppose that this can be done for a certain 7 € [0, 1]. It follows from
(4.2.7) that
H(r)>1 (4.2.15)

since H(7) never vanishes, so that we must have A log H(7) > 0 at a mini-
mum of H(7)(z). Here, as before

_ 0 (u'(2)) ot Tt
H(t) - A2(Z) z Yz
L(t) = g (W'(2) 4

)\2(2) U, Uz
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Moreover,

H(r)-L(r) =7° % 0P, (4.2.16)

so that we have, by differentiation with respect to 7,

. 1
H(r)L(r)+ H(t)L(1) = QTFQO(,O. (4.2.17)
Substitution from (4.2.16) and (4.2.17) in (4.2.7) yields

H(r) ( P )_ AT0p
M H(T) MH(T)

(4.2.18)

Let us look at the system of equations (4.2.17), (4.2.18) more closely. As

always, we must have A% < 0 at a maximum of % (2), and A gg:; >0

at a minimum. Because of (4.2.15), it follows that

Hence
0<H(r)(2) < cH(7)(2) (4.2.19)

with some constant c as (4.2.17) and (4.2.18) are also solvable for all 7" € [0, 7]
and the solutions H(7') depend sufficiently well on 7/. Our object now is to
show that

10 :=sup{7 €[0,1] : (4.2.7) and (4.2.16) are solvable for all 7" < 7}
(4.2.20)
is in fact equal to 1. Observe that the subset of [0, 1] over which the supremum
above is taken is non-empty: it contains 0 (7 = g, u® = Id). We shall show
that this set is both open and closed in [0,1], and it will follow that 79 = 1.

To prove the closedness, assume that (4.2.17) and (4.2.18) are solvable
for all 7 < 7. Then (4.2.19) shows that the H(7'), 7/ < 7, are uniformly
bounded. Consider now (4.2.7), i.e.

Alog H(r') = =2+ 2 (H(r') — L(7')), (4.2.21)

and )
H(7') - L(t") = 7" TP (4.2.22)

We know by (4.2.15) that H(7') > 1, hence L(7') is also bounded uniformly
for 7' < 7, by (4.2.22). Thus the right side of (4.2.21) is bounded by a constant
independent of 7/.

We can thus apply the regularity theory developed in Chapter 3 to obtain
bounds (independent of 7/) for H(7') and L(7’). We can get C'*“-bounds
for H(7'") from Theorem 3.5.2. Then (4.2.22) will give similar bounds for
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the L(7'). Thus the right side of (4.2.21) is in C*®. We then have C3°-
bounds for the H(7') by Corollary 3.5.1. By iteration, we obtain in this way
C** bounds for the H(7') and L(7') for all k € N. In particular, we obtain
C?*-estimates. These estimates being uniform in 7/ < 7, it follows by the
Ascoli-Arzela theorem that, for some sequence 7/, — 7, H(7,) converges to a
solution H(7) of (4.2.21). L(7) then is obtained from (4.2.22).

This finishes the proof of the closedness assertion.

To prove the openness, let us suppose that (4.2.7) and (4.2.16) are solvable
for all 7 < 7. We must show that the system of equations is still solvable in
a neighbourhood of 7. In order to do this, we shall solve the corresponding
infinitesimal system (4.2.17)-(4.2.18) and apply the implicit function theorem
(Theorem 3.1.4). Setting

h:= H(T) ,
H(7)
we must solve the equation
Ah=g-h+f (4.2.23)

for h,g and f being given bounded C'*° functions. But this is easy to do by
the methods of § 3.3. For example, one can minimize

1 1
3 /\Dv|2+§ /g~v2+/f-v
over v € H2(X). Since

272<p¢
MH(T) —

g:=2H(T)+

(cf. 4.2.15), the above quantity which we want to minimize is bounded below.
Hence Theorem 3.1.3 and Corollary 3.1.1 ensure (as in § 3.3) the existence
of a minimum h. Alternatively, one could solve the linear equation

/Dv-Dgp:—/gmp—/f-go, @ € HY? arbitrary,

exactly as described in § 3.3, and obtain a solution of (4.2.23). The regularity
theory of § 3.5 then implies in the usual way that h € C°°. We have thus
found a solution H(7) of (4.2.18), and L(7) is then determined by (4.2.17).
By the Implicit Function Theorem 3.1.4, it follows that (4.2.7) and (4.2.16)
are solvable in a neighbourhood of 7. We have thus proved the openness
assertion we needed, and it follows that (4.2.7) and (4.2.16) can be solved for
all 7 € [0,1], in particular for 7 = 1.

Thus we have solutions H, L of the system of equations
AlogH = —-2+2(H - L), (4.2.24)
r _
H- L= IR (4.2.25)
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And the metric we are looking for has the description
odz? + X2(2) (H + L) dz dz + pdz?, (4.2.26)

with respect to the z-co-ordinates. We must introduce a conformal structure
on A in which this metric takes the conformal form

0 (u) du du (4.2.27)

such that u is harmonic with respect to this metric.

By the results of § 3.11, we know that the conformal structure in which
the metric (4.2.26) takes the form (4.2.27) is got by writing (4.2.26) in the
form o(2) |dz + pdz |2; the conformal local parameters for the new structure
are then local diffeomorphic solutions of the equation uz = pu.. In our case,
an easy calculation gives 1 = y3%;, so that the u should satisfy

[
Uz = vy Ye- (4.2.28)
Observe that
lul <1 (4.2.29)
as required, since
W=
H

by (4.2.25), and H > L as the considerations in the proof of Theorem 3.10.2
show, since H never vanishes. This conformal structure has the required
properties. Namely, writing du = u, dz 4+ uz dZ etc., we see that

H
0dz? + N\ (H + L)dzdz +9dz” = —— dudu

ZuZ

=: ¢*(u) dud7,

so that
QQ(u) Uy Uy = .

But ¢ is holomorphic, hence

20, 200 _ _
Ozwgng(u)ﬂz (uzz—i—guzuz) +g2(u)uz (uzz—i— Wuzuz).
0 0

Since the Jacobian determinant of v with respect to z, namely u, uz—7u, uz, is
always positive, it follows from the above that u is harmonic. Comparison of
the formulas (4.2.24) and (3.11.1) then shows that the metric ¢?(u) du du has
curvature —1, i.e. is hyperbolic. This concludes the proof of the surjectivity
of ¢(g), and hence of the proof of Theorem 4.2.1. a
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We now return to the map

q(9) : T, — Q(g)

which was proved to be bijective in Theorem 4.2.1. We consider the composite
map

a(g2) - a(g1) ™"+ Qg1) — Qlgz)
for two different g1, g2 € 7.
Lemma 4.2.3 The transition maps q(gs)-q(g1) "
Cc>).

are differentiable (of class

Proof. Let ¢dz?, 1 dz? € Q(g1). We consider

q(g2) - alg) ™" (¥ +tp)dz?)

as a function of ¢ (€ R) near t = 0.
Let A\? dzdz be a conformal metric on (4, g1), and

ut s (A, g1) — (A,q(g) " (0 + tp)d2?))

the harmonic diffeomorphism with energy density H(¢) + L(t). Then the
hyperbolic metric of ¢(g1) ™! ((¢ + t ) d2?) is

(p+ty) de® + X2 (H(t) + L(t)) dz dz + (¥ +tp) dz°. (4.2.30)

We have already seen (during the proof of the surjectivity of ¢(g)) that H(t)
and L(t) depend differentiably on t.

Let v' : (A,92) — (A4,q(g1)7" (( +ty)dz?)) again be the harmonic
diffeomorphism (homotopic to the identity). We wish to show that v! de-
pends differentiably on . But we know the metric corresponding to q(g;)~!
((¥ +t ) dz?) only in the non-conformal form (4.2.30). We must therefore
express the differential equation satisfied by v* in terms of this non-conformal
metric.

To do this, we write z = z 4 iy and transform (4.2.30) to the real form

911 dz? + 247, de dy + g3, dy?, (4.2.31)
and set
. -1
(gu,t )i,j:1,2 = ( (gfj)i,jzlﬂ) (matrix equation),
and
3 1 : it t t t
k=5 D9 (Ghew+ gheg — i)
=1
where

t . t 1, 2 bt
Gij k= Dok 9ijy V=0 A+, gor 1= Gia-
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Then the differential equation which v* must satisfy as a harmonic map is

Avt 4 % ) (vt oltopt)y =0, i=1,2. (4.2.32)
We suppress the computations leading to (4.2.32); they are somewhat labo-
rious, but completely trivial.

What is important is that the *I’j;, depend differentiably on ¢.

We know from Theorem 3.9.2 that the solution v* of (4.2.32) (in the given
homotopy class) is uniquely determined by t. Further, as the considerations
of § 3.8 show, we can estimate the modulus of continuity of v uniformly as
t varies in a bounded set. Namely, we can control the energy of v?,

B = [(HO)6) + LOE)N () dudz,

and so, since v" is a harmonic map with values in a hyperbolic surface,
Lemma 3.8.3 controls the Lipschitz constant of v*. Using the line of reasoning
of the proof of Theorem 3.8.1, we may then employ the results of § 3.5 to
also derive estimates independent of ¢ for the C*® norms (k € N, « € (0,1))
of the v?.

Let now t,, — to. By the Arzela-Ascoli theorem, (v'") is then a compact
family in C*. Hence a subsequence of (v*») will converge in C* (k > 2) to a
solution v’ of (4.2.32) for t = to. Since v' is unique, the sequence (v') itself
must converge to v'°, rather than a subsequence. This shows that v! depends
continuously on ¢, and in fact does so in every C*¥-norm (k € N).

To show that v’ is actually differentiable in ¢, we differentiate (4.2.32)
with respect to t, and find that, with At := %f, the % (i = 1,2) must sati-
sfy the system of equations

t

(fori=1,2)
it | RO RN
ARY = _ﬁaljjk(v)(v;v7 Uy’ +’Uy’ Uy’ ) (4233)
1 0 ;. ; j
=32 5ot T (0t RO (0l okt olt o)
2

_F tF;k(,Ut) (’U%’t hi,t 4 ,UZJJ',t hl;,t)

(taking into account the symmetry F;k = [',i j). This system of equations is
linear in h!. Hence it follows in the usual way from the regularity theory
developed in § 3.5 that h! is of class C*°. The uniqueness of the v! shows
that h? is well-defined.

The higher t-derivatives of v* can be handled similarly. It follows that v® is
(infinitely) differentiable with respect to ¢. Hence the holomorphic quadratic
differential on (A, g3) defined by v! is also C* in t, (A, g2) defined by v? is
also C* in ¢, i.e. ¢(g2) - q(91) ™" (¥ + t ) dz?) is C> in t. O
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We have thus shown that the transition maps q(gs) - g(g1) " are of class
C*°. Thus 7, becomes a differentiable manifold in a canonical way, since the
differentiable structure induced by ¢(g) on 7, is independent of the choice of
g. In particular, 7, becomes equipped with a topology.

We have thus proved the following sharpening of the so-called Teichmiiller
theorem:

Theorem 4.2.2 7T, is diffeomorphic to the space Q(g) of holomorphic
quadratic differentials on an arbitrary (A, g) € 7,.

We shall see in the next chapter (as a consequence of the Riemann-Roch
theorem) that the dimension of Q(g) (over R) is 6p — 6 (see Cor. 5.4.3).

We conclude this section by an alternative argument based on the regu-
larity theory of Chapter 3 implying that Q(g) is finite dimensional. We may
introduce a natural L2-metric on the vector space Q(g) by putting

(¢1dz?,1had2?) = V1 (2)1a(2)

Ag A%(z2)
1

where A\?(z) dzdz represents the metric g. (We multiply by 20 in the inte-
grand in order to get the correct transformation behaviour, i.e. in order to
make the integrand independent of the choice of local coordinates.)

% dz A dZ (4.2.34)

Definition 4.2.1 The Hermitian product on (Q(g) defined by (4.2.34) is
called the Weil-Petersson product.

The Weil-Petersson product yields a Hermitian metric on Q(g). It is an impor-
tant object for studying 7,. Here, however, we shall not explore its properties
any further?, but only use it as an auxiliary tool for the finite dimensionality
of T,.

Corollary 4.2.1 Q(g), and hence also T,,, is finite dimensional.
Proof. Let (wndZQ)neN be a sequence in Q(g) that is bounded w.r.t. (4.2.34)
(wnsz, wnsz) <K forallme N .

1y, is holomorphic, i.e.

oY
0z 0,
hence also
Ay, = 0.

Thus, 1, satisfies an elliptic differential equation, and therefore, the regu-
larity theory established in Chapter 3 (see § 3.4 or 3.5) implies that the v,
are also uniformly bounded for example w.r.t. the C2-norm. Therefore, after

4 See [Tt] in this regard.
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selection of a subsequence, (¢,d2%) converges to a holomorphic quadratic
differential vdz2. In particular, Q(g) is complete w.r.t. the norm defined by
(4.2.34). Thus, Q(g) becomes a complex Hilbert space. If Q(g) were infinite
dimensional we could construct an orthonormal sequence (1,,dz?) with

(wnd227 wmdzz) = Onm-

Such a subsequence, however, could not contain a convergent subsequence,
in contradiction to what we have just shown. ad

Exercises for § 4.2

1)  As an exercise in tensor calculus, derive (4.2.32).

4.3 Fenchel-Nielsen Coordinates. An Alternative
Approach to the Topology of Teichmiiller Space

In this section, we shall construct Fenchel-Nielsen coordinates on Teichmiiller
space. They yield global coordinates and thus allow a different and easier
proof of Teichmiiller’s theorem than in the previous section. The previous
approach, however, has the advantage of displaying the important connection
between Teichmiiller space and holomorphic quadratic differentials.

The construction proceeds by decomposing a given compact Riemann
surface into simple geometric pieces. We now define the building block for
this decomposition.

Definition 4.3.1 A three-circle domain is a domain homeomorphic to
S:={z€C: |z|<1, |z—3|>1% |2+3]| >3} (adisk with two holes)
and equipped with a hyperbolic metric for which all three boundary curves are
geodesic. (“Hyperbolic” here means that each point of S has a neighbourhood
in C which is isometric to a subset of H equipped with its hyperbolic metric.)
In this section, d(-,-) will denote the distance function of the hyperbolic

metric of H.

Remark. In the literature, a three-circle domain is often called a “Y-piece”
or a “pair of pants”.

Theorem 4.3.1 The conformal (and hyperbolic) structure of a three-circle
domain S is uniquely determined by the lengths of its three boundary curves
c1,co,c3. Conversely, for any l1,1s,l3 > 0, there exists a three-circle domain
S with boundary curves ci,ca,cs of lengths 1y, 12,13, Tesp.
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For the proof of Theorem 4.3.1, we need some lemmas:

Lemma 4.3.1 Let S be a three-circle domain with boundary curves c1, ca, c3.
For eachi # j (i,j € {1,2,3}), there exists a unique shortest geodesic arc c;;
from c; to c;. c;; meets ¢; and c; orthogonally and has no self-intersections.
Obviously c;; = c;;, but different ¢;; do not intersect.

Proof. We denote the hyperbolic metric on S by

M\ (z) dz dz.
For given 4, j, we minimize:
I(y) = A(v(®) [7(8)] de
(0,1]
among all curves
~v:[0,1] — S

with v(0) € ¢;, v(1) € ¢;.

Let (vn)nen be a minimizing sequence. We may assume that each =, is
parametrised proportionally to arclength as the length is independent of the
parametrization. Moreover, [(v,) is bounded independent of n. Therefore,
the curves 7, : [0,1] — S have a uniform Lipschitz bound, and therefore, by
the Arzela-Ascoli theorem, after selection of a subsequence converge to some
curve ¢;; : [0,1] — S with ¢;;(0) € ¢;, ¢;;(1) € ¢;. By Fatou’s lemma

l(cij) < liminfi(7y,).
n—oo

Since (7,) was a minimizing sequence, equality has to hold, and ¢;; is length
minimizing.
Since S is locally isometric to H, local pieces of ¢;; can be identified with
geodesic arcs in H. In particular, c¢;; is smooth. By the same argument as in
Euclidean geometry, c;; has to meet ¢; and c¢; orthogonally, as otherwise one
could construct an even shorter curve joining ¢; and c;.
In order to show that c;; has no self-intersections, suppose that there exists
0 <t; <ty <1 with ¢ (t1) = Cij (t2). Then ng = Cij|[0,t1] Y Cij|[ta,1] defines
a curve connecting ¢; and c; which is shorter than c;;. This contradiction
shows that c¢;; has no self-intersections.

Similarly, suppose there exist t1, ¢y € (0,1) with ¢;;(t1) = ¢x(t2) for j # k.
Suppose without loss of generality that I(c;jjjo.¢,)) < [(Cikjo,t,])- Then the
curve ¢, := Cij|[0,t,] U Cik|[t,,1] JjOins ¢; and ¢ and satisfies I(cj,) < l(cix),
hence is a shortest curve in its class, and is therefore a smooth geodesic. On
the other hand, c¢;; and c¢;; have to intersect at a nonzero angle, because
a hyperbolic geodesic through a given point is uniquely determined by its
tangent direction at this point so that c;; and c;; have to have different
tangent directions at their point of intersections as they do not coincide.
Therefore, ¢}, is not smooth, and this contradiction shows that ¢;; and ¢
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cannot intersect. Similarly, ¢;;(0) # ¢;x(0) because otherwise they would have
to coincide as they both meet ¢; at a right angle.

Finally, let us show that ¢;; is unique. Suppose there exist two shortest curves
¢;; and cgj connecting ¢; and c¢;. By a similar argument as before, ¢;; and c;j
cannot intersect.

S

Fig. 4.3.1.

Therefore, there exists a geodesic quadrilateral in S with sides ¢y, ¢}
and suitable subarcs of ¢; and ¢y with four right angles, contradicting the
Gauss-Bonnet theorem (Cor. 2.5.2).

This proves uniqueness of ¢;;. a

As a consequence of Lemma 4.3.1, we can cut a three-circle domain S
along the geodesic arcs cy9, €23, ¢31 and obtain two hyperbolic hexagons with
right angles.

Fig. 4.3.2.
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Lemma 4.3.2 For each A, A2, 3 > 0, there exists a unique hyperbolic
hexagon with sides ai,dy,as,ds,as,ds (in this order) with length (a;) =
Ai, ©=1,2,3, and all right angles.

Proof. Let by, by, ba be three hyperbolic geodesics intersecting at right angles
in this order. Let the length of the segment of b; between by and by be A;
(i.e. A1 is the distance between by and by).

\ bz
A1
B :
bo z(A1)
by
Fig. 4.3.3.

For each z € by, let b(z) be the geodesic through z perpendicular to by. Let
2o be the point of intersection of by and by, and let z(A;) be a point on by
closest to zg with

b (2(A1)) N by = 0.

We put
(A1) :=d (20,2(A1))

We now let b} be another geodesic intersecting by orthogonally, and likewise
let bY intersect b} orthogonally, with distance Ay between by and b, and we
define §(\2) in the same manner as before.

In the diagram above, Greek letters always denote lengths between end-
points of sides, whereas Latin minuscules label the sides. p = p(\) is
the distance between by and b). p is a continuous function of A, with
1(0) =0, p(o0) = oo.

Hence p attains every positive value, in particular As. This implies the exis-
tence of a hexagon with specified side lengths A1, Ao, As.

It remains to show uniqueness.

Assume that there exist two hexagons H, H' with sides a1,d1, as, ds2, as, ds
and af,d}, ab, db, a%, db, resp., with A; =1 (a;) =1(a}), i = 1,2,3, (I denoting
length), but I (d5) > 1 (ds), say.
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/a‘u]) / A \ 5(\2) \

Fig. 4.3.4.

In a similar manner as in the proof of Lemma 4.3.1, one shows that there
exists a unique shortest geodesic arc from as to ds, and this arc is contained
inside the hexagon H and meets as and dz orthogonally. It thus divides as
and ds each into two subarcs of lengths o, o’ and 4, d’, resp..

dy
Fig. 4.3.5.

In H’, we construct perpendicular geodesics e;, e; through ds at distances
8,0" from the corner points.

Since l(a}) = l(a;) (i =1,2,3), the distance between dj and e; is «, and
the distance between d} and eg is o’.
Therefore, the length of the subarc of a}, between dj and e; is at least «, and
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Fig. 4.3.6.

the length of the subarc of a}, between dj and ey is at least o. Since there is
a third subarc of a}, namely the one between e; and ey, we conclude

l(ay) > a+a =1(az),
a contradiction. This shows uniqueness. a

We can now prove Theorem 4.3.1:

Given S, we cut it into two hexagons along the geodesic arcs ci2, ca3, €31
of Lemma 4.3.1. Both hexagons are isometric by Lemma 4.3.2, as they have
the sides c19, €23, 31 in common. Hence the lengths of the remaining sides are
%, %, %3 Applying Lemma 4.3.2 again, we conclude that these hexagons are
uniquely determined by Iy, 12,13, and so then is S as their union. Conversely,
given ly, 15,13 > 0, we form two corresponding hexagons with lengths %7 %7 %3
of alternating sides by the existence part of Lemma 4.3.2 and glue them
together along the remaining sides to form a three-circle domain S with side

lengths ll, 127 lg. O

Theorem 4.3.2 Let H/I" be a compact Riemann surface.

Then each closed curve vy : S' — H/I' is homotopic to a unique closed
geodesic c: S* — H/I'. If vo has no self-intersections, then c is likewise free
from self-intersections.

Proof. Theorem 4.3.2 follows from Lemma 2.4.4 above, except for the ab-
sence of self-intersections. It can also be obtained from our familiar mini-
mization scheme. We thus minimize

27
I(7) = / A1) ()] dt
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(A2 dz dz denoting the hyperbolic metric on H/I') among all curves
v:8'— H/T

which are homotopic to v and (w.l.o.g) parametrized proportional to ar-
clength. As before, a minimizing sequence (7,,) satisfies a uniform Lipschitz
bound and converges to a curve ¢ which is locally length minimizing and
hence smooth and geodesic as H/I" is locally isometric to H.

If g has no self-intersections, we minimize length in the subclass of all curves
without self-intersection. Again, a minimizing sequence tends to a geodesic ¢;
¢ is free from self-intersections as a limit of embedded curves. Also, it is not
possible that different subarcs of ¢ go through the same point with a common
tangent direction, since a geodesic in H is uniquely determined by a point
and a tangent direction at this point. ad

Finally, we need a little glueing lemma:

Lemma 4.3.3 Let S, 55 be surfaces with a hyperbolic metric, and let them
have boundary curves cy,ca resp. which are geodesic w.r.t. this metric, and
suppose length (¢1) = length (c2). Then one can obtain a new surface S by
glueing S1 and So via identifying ¢1 and co according to a common arclength
parameter, with arbitrary choice of initial point. S carries a hyperbolic metric
which restricts to the hyperbolic metrics S1 and Ss.

Proof. The claim is easily reduced to a local situation. Hence we can work
in H and have to glue subregions of H along geodesic arcs of equal length.
Since geodesic arcs in H are pieces of circles or straight lines, the possibil-
ity to perform this glueing is an easy consequence of the Schwarz reflection
principle. a

We can now introduce Fenchel-Nielsen coordinates on Teichmiiller space
7, as defined in § 4.1 for hyperbolic surfaces of genus p > 2. Thus, let A be
a surface of genus p; as before in this chapter, A only carries the structure of
a differentiable manifold and serves as the topological model in order to fix
the marking.

We decompose A into 2p — 2 pieces homeomorphic to three-circle domains by
cutting along simple® closed curves d1, ... ,03p—3 as indicated in the following
picture.

Let now (4, g, f) be an element of 7, as in § 4.1. Then the above cut curves
are homotopic to simple closed geodesics on (4, g, f) by Theorem 4.3.2. Tt
is important to note that we use the marking here to select the homotopy
classes of these geodesics. We then cut (4, g, f) along these geodesics (in the
same manner as /A was cut) into 2p — 2 three-circle domains Si, ..., S2p—2.
Each of them is uniquely determined by the lengths of its boundary curves.

5 “simple” means embedded, without self-intersections
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Since each of the cut geodesics occurs twice in the collection of boundary
curves of the S, we obtain 3p — 3 length functions

ll,...,lgp_gltz;ﬁR-i_.

On A, we then choose 3p — 3 other closed curves €1, ...,e3,_3 as indicated in
the following picture

In particular, €, intersects d twice and is disjoint from §, for u # A
Also, in each S with boundary curves ¢y, ca, c3, we choose curves ¢} in such a
way that ¢} has its end points on ¢;, has no self-intersections and divides S,
into two subregions, each of them containing one of the remaining boundary
curves.

We also orient ¢ in such a way that ¢; 1 where the index is taken mod 3p—
3 is in the left subregion. Likewise, each ¢; is oriented in such a way that S
is to the left.

By a similar argument as in the proof of Lemma 4.3.1, ¢} is homotopic to a
unique shortest geodesic arc meeting c; orthogonally.

Therefore, we may and shall assume that ¢} is this geodesic. We denote the
initial and terminal point of ¢, on ¢; by w; and w}, resp..

As before in Lemma 4.3.1, we also consider the shortest geodesic arc ¢;; from
¢; to ¢; with initial point z; on ¢; and terminal point z; on c;. As the curves
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wy

C2 C3

4]

w1y

Fig. 4.3.9.

¢, ¢;j are unique, they depend continuously on the boundary lengths Iy, I3, I3
of ¢1,co,c3.

Given positive numbers [y, ..., l3,_3, we then construct
A(lla .. -713;0—3’0’ .. aO) = (A7907f0) € 7;0

as follows: We assemble three-circle domains S,, v = 1,...,2p — 2, in the
pattern described by the above decomposition of A. We choose S, in such a
way that the boundary curves corresponding to dy (A = 1,...,3p — 3) have
hyperbolic length ). Utilizing the glueing lemma 4.3.3, boundary curves are
identified according to the following prescription: If two boundary curves c¢; ,,
and c;, of the same S, are to be identified as a geodesic vy, we identify them
in such a way that z;, is identified with z;l’l, and the curve ny given by c¢;;,
is homotopic to fo(ex). If two boundary curves ¢;, and ¢;, with v < u are
to be identified as a geodesic vy, we identify w;, and w; ., and require that
the curve n) obtained by first traversing c;,y, then moving along ¢; ,, in the
direction given by its orientation from wau to wj,, and then traversing c;», u

becomes homotopic to fo(ex).

Let then ly,...,l3,-3 > 0 and 6,...,603,_3 € R be given. We first con-
struct (4, go, fo) = A(l1,...,1l3p—3,0,...,0) as described. Each geodesic 7y
is parametrized proportionally to arclength by [0, 27]. (In order to make this
consistent, we have to choose an orientation for each §y.) For each A\, we cut
A(l1,...,0) along 7, obtaining two copies ¢; ,, ¢, and rotate the one with
higher index ((4,v) > (j, p) if either v > p or v = p and ¢ > j) against the
other one by 6, and then glue them together again. If we rotate by an integer
multiple of 27 along each 7y, non zero for at least one \g, we obtain a surface
which is isometric to A (l4,...,l3p—3,0,...,0), but has a different marking
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f. Namely, we change the homotopy class of ny,: If 5, = 27 n, then ny, is
homotopic to fo (ex, 0%, )-

Conversely, let (A, g,h) € T, be given. As already described, with the help
of the marking, we determine 3p — 3 hyperbolic lengths {1, ...,l3,_3, by cut-
ting it into 2p — 2 three-circle domains S,. We obtain distinguished points
Wi s Wi Ziw, 2, (0= 1,2,3, v =1,...,2p — 2). For each hyperbolic geo-
desic vy, A =1,...,3p — 3, we can directly determine 6, mod2x as the ori-
ented angle between appropriate distinguished points as above. In order to
determine 0, completely and not only mod 2w, we choose 69 € [0,27] with
0% = 0xmod 27 and construct A (Iy, ..., lsp—3,609,...,03, 3) =: (A,g,ho) as
before. For each A\, we then determine n = n) € Z such that n) is homo-
topic to ho (€5 6%). Since the homotopy class of the arc determining n, inside
each S, is fixed, the only way the homotopy class of ny can possibly vary
is through the glueing operation of boundaries of S,’s. This glueing, how-
ever, can affect the homotopy class only by multiples of vy, which is in the
homotopy class determined by dy. We then put 6, = 6§ + 27 n,, and obtain

(A,g,h) = A(ll,...,lgp_3,91,...,93p_3).

As a consequence, we have a well-defined map

3p—3

(I, l3p—3,01,...,03,_3) : T, — (RT) x R*73,

and obtain
Theorem 4.3.3
3p—3 _
(ll,...7l3p,3791,...,93p,3):7;,—>(R+) P XR3P 3
is bijective.

Proof. Let us again summarize the main steps of the proof:

The map is surjective, because given I, ..., 03,_3, we can construct A(lq,...,
03p—3) with these data.

It is injective, because the lengths parameters determine the geometry of the
three-circle domains into which the surface is cut by Theorem 4.3.1, and the

angle parameters determine the glueing of the three-circle domains. ad
Definition 4.3.2 [;,...,l3,-3,01,...,03,_3 are called Fenchel-Nielsen co-
ordinates.

Our introduction of Fenchel-Nielsen coordinates depends on certain choices.
It is however not too hard (but quite lengthy) to verify that for different
choices we get transition maps from (R+)** ™ x R3~3 which are homeo-
morphisms. (Actually, they are even real analytic diffeomorphisms.) Thus,
one can use Fenchel-Nielsen coordinates to define a topological structure on
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Teichmiiller space. Again, it is possible to verify that this topological struc-
ture coincides with the one defined in the previous section. We defer all
relevant proofs to the exercises.

Let us mention one further piece of terminology:

Definition 4.3.3 The operation of cutting a surface along a closed curve
v without self-intersections, rotating the two resulting curves against each
other by an integer multiple of 27 and glueing them together again, is called
a Dehn twist along ~.

Fenchel-Nielsen coordinates yield a partial compactification of 7, by allowing
the length parameters [, to become zero. If [\ tends to 0, the hyperbolic
geodesic v, degenerates to a point, and the limiting surface either becomes
disconnected or has one fewer handle than the original one. Also, for [, = 0, 8
becomes indetermined in polar coordinates when the radius is zero. (Actually,
by allowing some [y to become negative, we may even include nonorientable
surfaces.)

Here, however, we cannot pursue this interesting topic any further, but refer
instead to [Ab].

Exercises for § 4.3

1)  List all choices involved in our construction of Fenchel-Nielsen coordi-
nates. Show that one can use Fenchel-Nielsen coordinates to define a
topological structure on
Teichmiiller space independent of all such choices.

*2) Show that Fenchel-Nielsen coordinates yield a homeomorphism from
Teichmiiller space 7, onto (RT)3P=3 x R3P=3,

4.4 Uniformization of Compact Riemann Surfaces

The uniformization theorem for compact Riemann surfaces is

Theorem 4.4.1 Let Xy be a compact Riemann surface of genus p. Then
there exists a conformal diffeomorphism

f221—>22

where Xg is

(i) a compact Riemann surface of the form H/I' as in Thm. 2.4.5. in case
p>2

(i) a compact Riemann surface C/M as in § 2.7 in case p =1

(iii) the Riemann sphere S? in case p = 0.
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A direct corollary of Thm. 4.4.1 is

Corollary 4.4.1 The universal cover of a compact Riemann surface is con-
formally equivalent to S?, C or the unit disk D. ad

Proof of Theorem 4.4.1.

We know from Cor. 2.4.A.2 that X is always homeomorphic to one of the
types occuring in the statement. We start with case (i): p > 2. By Thm. 2.4.3,
X1 then is homeomorphic to a hyperbolic Riemann surface S. S thus carries
a metric of constant negative curvature. By Thm. 3.7.1, a homeomorphism
from Xy to S can be deformed into a harmonic map

u: Xy — S

u then has degree +1, since a homeomorphism has degree +1 and the de-
gree is not changed under homotopies. In fact, one easily verifies that there
always exists a homeomorphism ig : S — S of degree —1, and if the original
homeomorphism had degree —1, its composition with iy then has degree 1.
Thus, we may always find a harmonic

u:X; — S

of degree 1. By Thm. 3.10.2, u then is a diffeomorphism. As before u induces
a holomorphic quadratic differential v on X;. We put S = Si, u =: u',
and the strategy now is to find a harmonic diffeomorphism u? : Xy — 9
onto a hyperbolic Riemann surface S; with induced holomorphic quadratic

differential ¢ for all ¢ € [0, 1]. For t = 0 the map
uO : 21 — So

then is a conformal diffeomorphism, since the associated holomorphic qua-
dratic differential vanishes (cf. Lemma 4.2.2). Putting Xs = S} then finishes
the proof in case (i).

Similar to the proof of Thm. 4.2.1, we are going to show that

to := inf {t €0,1]: u', Sy exist for all ¢/ > t} =0. (4.4.1)

Again, the set over which the infimum is taken, is nonempty because it con-
tains t = 1. This set is again open by an implicit function theorem argument.
The interesting point is closedness.

We equip X7 with an arbitrary smooth conformal Riemannian metric which
we write again as A?(z) dzdz in local coordinates, although its curvature need
no longer be —1. The image metric again is denoted by ¢?(u?) dutdu’ and with

ut, we again associate the expressions



4.4 Uniformization of Compact Riemann Surfaces 185

We have .
H(t) L(t) = t> Y P (4.4.2)

as in (4.2.16).
Differentiating w.r.t. ¢ yields

F(t) L(t) + H(t) L(t) = 2 % WP = % H(t) L(b). (4.4.3)
Lemma 3.10.1 gives
Alog H(t) = 2K, +2 (H(t) — L(t) (4.4.4)

since the curvature of Sy is —1. K3 here denotes the curvature of Y. Differ-
entiating (4.4.4) w.r.t ¢t and using (4.4.3) yields

A% =2 (HO+LO) - % L(t). (4.4.5)

Again, we must have A %(zl) > 0 at a point z; where %(zl) achieves

its minimum. Since L(t) > 0 by definition of L, we conclude
H(t)(z) >0 (4.4.6)
for all z. Therefore
H(t) < H(1) whenever 0 < ¢t < 1. (4.4.7)
From the proof of Thm. 3.10.2, we also know
0 < L(t) < H(t).

Therefore, we may use regularity theory as in the proof of Thm. 4.2.1, in
order to obtain higher order bounds for solutions H(t), L(t) of the system
(4.4.2), (4.4.4) uniformly for all ¢ € [0,1] and conclude closedness of the set
occuring in (4.4.1). We infer ¢y = 0 as desired. This concludes the proof in
case (i).

Case (ii) is simpler than case (i). We may use the same strategy as before.
This time, the surfaces S; may all be represented by quotients of C and hence
carry metrics with curvature = 0. Therefore instead of (4.4.4), we have in the
preceding notations

Alog H(t) = 2K; (4.4.8)

and consequently

A =0. (4.4.9)
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H(t) . . . .
Thus, % is a harmonic function on the compact Riemann surface Xy, hence
constant. This means

H(t)(z) = cH(t)(2) for some constant c.

We again obtain bounds for H(¢) and L(t) and may proceed as in case (i).
(It might be a good exercise for the reader to write down all the details of
the reasoning for case (ii).)

Case (iii) will be shown in Cor. 5.4.1 below as a consequence of the
Riemann-Roch Theorem. O

Remark. The case p = 1 of the uniformization theorem can also be deduced
from the Jacobi Inversion Theorem in § 5.9 below (see the exercises for that

§)-

Exercises for § 4.4

1)  Carry out the details of the proof of Thm. 4.4.1 for the case p = 1.

2) Let X be a Riemann surface with boundary curves v1,...,v;. Show
that there
exists a constant curvature metric on X' for which all v; (j =1,...,k)

are geodesic. Conclude that there exists a compact Riemann surface
Y without boundary with an anti-conformal involution i : ¥ — X,
obtained by identifying X and a copy X’ of X’ with the opposite confor-
mal structure along their boundaries, with i(X) = X’. X is called the
Schottky double of X.

*3) Let (X, g) be a Riemann surface with boundary curves 7, ...,y and a
hyperbolic metric g, for which all boundary curves are geodesic. Define
a Schottky double X as in exercise 2).

Define a Teichmiiller space for surfaces of the topological type of X,
always requiring that the boundary curves are geodesic w.r.t. a hyper-
bolic metric. If (X, g) and (X’,¢’) are two such surfaces look at har-
monic diffeomorphisms u between the Schottky doubles. If i : ¥ — X
and i : ¥ — % are the corresponding involutions show that if u o4
and 7' o u are homotopic, they have to coincide. Use this to define har-
monic maps (X, g) — (X', ¢') (alternatively, you can also make use of
the result of exercise 4) in § 3.7). Show that the associated holomorphic
quadratic differential is real on 90X if u satisfies the reflection property
uoi=1 ou.

On the basis of these observations, develop a Teichmiiller theory for
surfaces with boundary in an analogous way as in § 4.2.



5 Geometric Structures on Riemann Surfaces

5.1 Preliminaries: Cohomology and Homology Groups

Let M be a differentiable manifold of dimension d. We would first like to
recall some basic properties of differential forms on such a manifold.
A differential form is an object of the form

w = g Wiy dat A Adat
1<y <+ <i;<d
where 2!, ..., 2% are local coordinates on M; j is called the degree of w.

The wj, .., are real-valued differentiable functions. The transformation be-
haviour under coordinate changes is determined by the transformation rules
for exterior differential forms. If y',...,y? are other local coordinates, then
dz’ = Zizl g—;;dyk , and w then is represented in these coordinates as

d d ; ;
oz™" Ox*i ,
w = E E A E Wiy ...i, aykl dylﬁ A A 8ykj dykj .

1<iy<--<dki=1  k;=1

The exterior derivative of w is the form of degree j + 1 defined by

dw := Z Z %wil_,” dz®o A dz Ao A da.

io=1,...,d 1<i;<--<i;<d
We have (by a somewhat tedious, but straightforward computation)
d* = 0. (5.1.1)

(d? of course simply is an abbreviation of d o d, the operator d on j-forms
composed with the operator d on (j 4 1)-forms.)
A differential form w is said to be closed if

dw =0,
and exact if there exists a form « (of degree j — 1) such that
do =w.

By (5.1.1), every exact form is closed.



188 5 Geometric Structures on Riemann Surfaces

Definition 5.1.1 The j-th (de Rham) cohomology group of M is defined

as

HI(M,R) = {closed differential forms of degree j}

~ {exact differential forms of degree j}

This means that we consider equivalence classes of differential forms of de-
gree j, where two such forms wi,ws are equivalent iff there exists a form
a with w; — we = da. Thus, H7(M,R) is constructed by identifying closed
differential forms which differ from each other by an exact form. H7(M,R)
is indeed a group because the exact differential forms constitute a normal
subgroup of the closed ones. Naturally, the group of operation is addition.
H’(M,R) is in fact a vector space over R, since a form can be multiplied by
real scalars, and closedness and exactness are not affected. Also, d induces a
group homomorphism d : H/(M,R) — H/T*(M,R).

The homology groups are defined in a manner dual to the above. A j-chain of
M is a finite linear combination (with real coefficients) of differentiable maps
of a j-dimensional simplex into M. A simplex carries an orientation; using
this, we can define a boundary operator 0 on chains. Let us explain this:

If e.g. (Py, P2, Ps) is the oriented triangle bounded by the oriented edges
(Pl,PQ), (PQ,Pg) and (Pg,fjl)7 then

O(Py, Py, P3) = (P2, P3) — (P1, P3) + (P1, P3).
Here, the minus sign denotes reversal of orientation; thus
— (P, P3) = (P35, Py).
Similarly,
O(Py, Py) = (P2) — (P1).

The 0 thus defined on simplices can be extended by linearity to a boundary
operator on chains of M, and satisfies

0* = 0. (5.1.2)

A chain C with 9C = 0 is called a cycle, and a chain of the form C' = 9C" a
boundary.

Definition 5.1.2 The j-th homology group of M (with coefficients in R) is

defined as

{j-dimensional cycles }
H;(M,R) := .
MR {j-dimensional boundaries }

Instead of real coefficients, we can also take the coefficients in an arbi-
trary abelian group G. We then obtain the corresponding homology group
H;(M,G). Specially important for us are the groups H;(M,Z), the homo-
logy groups with integral coefficients. Let us also note that the homology and
cohomology groups defined above are always abelian.
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The relation between chains and cochains is given by Stokes’ theorem:

/acwz /de (5.1.3)

for any form w of degree j, and any (5 + 1)-chain C. The so-called Poincaré
lemma asserts that a closed form on a star-shaped open set in R? is always
exact. Thus closed forms are locally exact, since every point of M has neigh-
borhoods diffeomorphic to star-shaped open sets. We examine this briefly in
the case of 1-forms (which is the only case of interest to us):

Let w =% | wida'. If dw = 0, then

ow' 0w’
—_— = — ) ] == 1 DREEY d.
81:] axl ) 7/7 J ) )
By Frobenius’ theorem, there exists locally a function f such that
) 8f
b= - 5.1.4
W= o (5.1.4)

Such an f is unique up to an additive constant. If now v : [0,1] — M is a
differentiable path, we can find a function f in a neighborhood of ([0, 1])
with df = w (i.e. f satisfies (5.1.4)), assuming of course that dw = 0. By
Stokes’ theorem, we will then have

/wszu»—ﬂwm»

However, the function f above need not be single-valued if v has double
points. If v is closed, i.e. v(0) = (1), then we call [ w the period of w
along . If however w is exact, so that w = df with a single-valued f, then
all periods of w must vanish, since

/w:fwu»—fwm»:o

Conversely, a (closed) form w all of whose periods vanish is in fact exact, since
any f with df = w in the neighborhood of a path is in fact single-valued.
The important point about this criterion for exactness is that the period
J,w of a closed form w depends only on the homology class of the closed
v .
path ~. For, if 7, and 7» are homologous, so that v; — v, = §C, then

/ w—/ w:/ dw (by Stokes’ theorem)
71 Y2 C
=0

since w is closed.
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We shall restrict ourselves from now on to the case when M is two-
dimensional, i.e. a surface. The constructions presented below can in fact
be suitably generalised to the higher-dimensional case, but there are some
technical complications.

Let then v be an oriented, two-sided, double-point free, differentiable closed
curve on M (“two-sided” means that we can distinguish globally along ~
between normal vectors pointing to the left and those pointing to the right;
“double-point free” means that v has no self-intersections).

Since 7y is compact, we can find an annular region A containing + in its in-
terior. Since + is two-sided, A will be separated by « into a left side A~ and
a right side A*. We choose another annular region A containing v and con-
tained in the interior of A; let A, denote the region to the left of v in Ay.
We now choose a real-valued C*° function on M\~ such that

1, zeAj
f(z)—{07 z € M\A™,

and define
df(z), ze€ A\y
m(z) = O/ ZEA
, z€vyorze M\A.

Then 7, is a 1-form of class C*° on M (1-form just means a differential form
of degree 1), although the function f itself has a jump of height 1 across ~.
Although 7, is closed, it is not in general exact (it will turn out that 7, is
exact if and only if «y is null-homologous, i.e. represents 0 in H;(M,R)). We
shall refer to 7, as the 1-form dual to .

If v is not double-pointfree, one can still construct such a dual 1-form 7,; in
a neighborhood of a double point, one simply adds up the local dual 1-forms
coming from the different branches of ~.

This notion of duality is justified by the following lemma:

Lemma 5.1.1 Letw be a closed 1-form, and 1, the 1-form dual to the closed

two-sided curve . Then
/w :/ Ny A w. (5.1.5)
¥ M

/ Ny Aw = df Nw
M A=

= d(fw) — fAdw
A~ A~

= /7 d(fw) (since dw = 0)

o

Proof.
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Suppose now that g : [0,1] — A is a differentiable curve with

g(0) € 9ANOA™,

g(1) € 9AN DA™,

Then g N A~ breaks up into finitely many sub-arcs go, g1, - - - , gm, Where gg
has initial point g(0), while all the other g; have both their initial and end
points on «. Hence

/m:/ df =1-0=1,
go go
/n’Y:/dle—lz()’ i:l,...,m7

/gmi/gml

j=0"9;

so that

If on the other hand g had its initial point on §ANJAT and its end-point on
0ANJA—, we would have had
/ ny = —1.
g

If ¥ is a second closed curve on M, then the number

/~777
ol

measures how often 4 intersects -y, an intersection being considered positive
when a sub-arc of 7 goes from ANJA™ to JANIA™, and negative otherwise.
However, this geometric interpretation is valid only when all the intersections
of ¥ and v are transversal, i.e. at a non-zero angle.

Since 7, is closed, f; 7y depends only on the homology class of 7. If ¥ is also
two-sided, then we can construct U too, and

/NnV:/ 77;/\%:—/77; (5.1.6)
Y M ol

by Lemma 5.1.1. Hence f; 1y depends likewise only on the homology class
of ~.

We shall say that a surface is orientable if all closed curves on it are two-
sided!. For example, a Riemann surface is always orientable, since one can

! Tt is not hard to check that this is equivalent to the requirement of Def. 2.4.A.1
(for the case of a surface) although this will not be needed in the sequel.
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always distinguish a left and a right side for an oriented arc in C, hence for an
(oriented) arc in a local chart, and since all coordinate changes are conformal
(and therefore cannot interchange left and right).

We may thus make the following definition:

Definition 5.1.3 Let M be an oriented differentiable surface, and a,b €
H1(M,Z), represented by closed curves v; and ~2 respectively. Then the
intersection number of a and b is defined as

a'b::/ 7772 (:/ 77’)’1 /\n’Yz = _/ 77’)’1)' (517)
71 M V2

It is clear from the preceding discussion that

a-bez, (5.1.8)
a-b=-b-a, (5.1.9)

and
(a+b)-c=a-c+b-c (5.1.10)

(“4+” on the left side of (5.1.10) stands for addition in Hy (M, Z), that on the
right for addition in Z). We have thus constructed by means of the intersection
number a bilinear anti-symmetric map

Hl(M,Z) X Hl(M,Z) — 7.

We shall now determine the first homology group of a compact Riemann
surface X' of genus p.

To this end, we begin by observing that freely homotopic closed curves are
homologous. Indeed, let 7o : ST — X and ~; : S! — X be two closed curves
in X (S* being the interval [0, 1] with its end-points identified), and

H:A(=8"x[0,1])— X

a homotopy between them (so that H(t,0) = vo(t) and H(t,1) = v, (¢) for
all t € S'). Then
Yo — 1 = dH(A),

so that vy and ~; are homologous as asserted.

The converse is however false in general: since homology groups are al-
ways abelian, any curve v whose homotopy class is of the form aba='b~!
(a,b € m (X, 20)) is always null-homologous, but not necessarily null-homo-
topic, since the fundamental group of a surface of genus p > 2 is not
abelian (Corollary 2.4.2). If p = 0, then 7 (X, 29) = 0, hence we also have
H(X,Z)=0.If p > 1, then X can be described by a fundamental polygon
(cf. Theorem 2.4.2 if p > 2; the case p = 1 is similar, but easier):

By moving the side a; slightly, we can get rid of its intersections with all the
other sides except b;; a; and b; intersect exactly once, transversally and with
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Fig. 5.1.1.

intersection number 1. Conversely, one can also arrange that b; meets only
a;; the intersection number will naturally be —1 (cf.(5.1.9)).

Thus
1, i=3j
ai~aj:bi'bj:0
foralli,j =1,2,...,p. In particular, a1, ...,ap,b1,...,by, all represent differ-

ent homology classes, since they are distinguished from one another by the
intersection numbers. Now, we know that the a;, b; generate 71 (X, zg), and
we have already observed that homotopic curves are also homologous. Hence
ai,...,by, also generate Hy (X, Z), and it follows from (5.1.11) that

H\(2,7) =7°. (5.1.12)
(This is a special case of a theorem of van Kampen, according to which

71 (M, po)
{{aba=1b~1) 1 a,b € m (M, po)}

HI(M,Z> =

for all manifolds M; here the denominator is the commutator subgroup,
namely the subgroup of w1 (M, py) generated by all elements of the form
aba~'b~!. Thus the first homology group is the fundamental group “made
commutative”.)
Similarly, we also have

H(Z,R) = R?, (5.1.13)

We shall refer to the a;, b;, t = 1,...,p, as a canonical basis for the homology
of X.

We can now also determine the first cohomology group H'(X,R). To do
this, we consider the map

P:H'Y(X,R) - R*
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Pw) i (////)

Thus P(w) is the vector of periods of w with respect to a canonical homology
basis. The map P is obviously a linear map of vector spaces. It is injective,
since a closed 1-form all of whose periods vanish is exact, i.e. represents the
zero element of H'(X,R), as already observed. But it is also surjective, since
the images of the n,,, ms, generate R??, where 7, denotes as before the 1-form
dual to the closed curve «y. This follows from the definition of the intersection
number (cf. (5.1.7)), and the relations (5.1.11). Explicitly,

/ 77a]~ - 0 = / nij
a; bL

i

/ Moy = 0ij = — /b TNay
(i,j=1,...,p).

To summarize, we have proved:

defined by

Theorem 5.1.1 Let X' be a compact orientable surface of genus p. Then
H{(X,R) and H'(X,R) are both isomorphic to R?P; they are dual to each
other via integration, in the sense that every linear functional on Hy (X, R)

is of the form
a — /w
a

for a (unique) w € HY(X,R). 0
Also, the intersection pairing
H(X,72) x Hi(X,Z) > Z
is unimodular, i.e. every homomorphism H;(X,Z) — Z is of the form
a—a-b

with a b € Hy(X,Z). The map a — [, n; corresponds to b.
Finally, the exterior product of differential forms is dual to the intersection
pairing of homology classes:

/na/\nb:a'b
X

(This is a special case of Poincaré duality: on any compact orientable differ-
entiable manifold of dimension d (we have defined the concept of orientability
only for d = 2), one can define an intersection pairing

Hk(Mv Z) X Hd—k(M7 Z) — L
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this pairing is unimodular in the sense that every homomorphism Hy (M, Z) —
Z can be realised as the intersection with an o € Hy_;(M,Z). And again
H*(M,R) is isomorphic to the space of linear functionals Hy(M,R) — R.
We note by the way that H*(M,Z) is usually defined as the group of homo-
morphisms Hy,(M,Z) — Z. That the de Rham cohomology group H*(M,R)
defined by means of differential forms coincides with the space of linear func-
tionals Hy(M,R) — R is the content of de Rham’s theorem. We must also
mention that, in the general case, one should be somewhat more careful when
comparing cohomology with coefficients in Z with that with coefficients in R.
For example, there exist (for suitable manifolds M) homology classes o # 0
in Hi(M,Z) with ma = 0 for some m (# 0) in Z. Such an « necessarily
represents the zero element of Hy(M,R), since o = %(ma) in Hy(M,R)

(because - € R). Such an o is called a torsion class.)

Exercises for § 5.1

1)  Determine the first homology group of a k-circle domain, i.e. a domain
homeomorphic to a disk with k£ — 1 disjoint interior subdisks removed.

2)  Show that if f : M; — My is a smooth map between compact manifolds,
then for each k, there are natural group homomorphisms

f* : Hk(MhZ) - Hk(MQaZ)
[ H*(Msy,Z) — H* (M, 7)

5.2 Harmonic and Holomorphic Differential Forms on
Riemann Surfaces

In the previous section, we did not need a complex structure on Y. We shall
now start making essential use of the complex structure.
Let then X be a Riemann surface,

z=x+1y
a local conformal parameter, and
M\ (z) dz dz

a metric on Y. (The existence of such a metric was shown in § 2.3.) We use
the usual conventions for differential forms. Thus

dz =dr+idy
dz =dz —idy,
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so that
dz Adz = —2i dz A dy.

From now on, we shall be working with complex-valued forms. We shall refer
to

w:=M(2)dz Ady = % N (z) dz AdZ (5.2.1)

as the fundamental 2-form or the Kahler form of the metric.
The conjugation operator, or x-operator, on forms is defined as follows: for a
function f: ¥ — C,

*f(2) == f(2)A\%(2) dz A dy = fuw; (5.2.2)
for a one-form o = fdx + gdy,
*a:=—gdr+ fdy (5.2.3)
or, in complex notation, with a = u dz + v dz,
*a = —iu dz + iv dz; (5.2.4)

and for a 2-form n = h(z)dz A dy,

*n(z) = )\2(Z)h(z) (5.2.5)

It is easy to verify, for example, that x« is indeed a 1-form, i.e. transforms
correctly under coordinate changes. Observe that the x of a 1-form is defined
independently of the metric. Thus, for some of the following considerations
(which are concerned only with one-forms), the existence of a metric on X is
not relevant.

We can define a scalar product on the vector space of k-forms by

(051,042) ;:/ a1 N\ *Qig, (526)
X

and thus obtain the Hilbert space
A? .= {k-forms « with measurable coefficients and (o, ) < oo}
of square-integrable k-forms. For instance, if « is a 1-form,
a=udz+vdz
in local coordinates, then

aAN*xa =1 (uu+vv) dz Adz (5.2.7)
=2 ([uf* + [o[*) dz A dy,
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so that the scalar product is indeed positive definite. It is also easy to check
by simple computation that (-,-) is bilinear, and that

(a1, a2) = Moz, a1), (5.2.8)

as also
(kap, *az) = (a1, ). (5.2.9)

Thus the x-operator is an isometry of A% into A3 . It is also onto, since

clearly
*ox = (—=1)F. (5.2.10)

Further, if a; € A7 and ay € A7, are differentiable, and X is compact, then

(dai, az) = /E das A <35
:(71)k+1/20¢1Ad(*ag)+Ld(alA*62)
:(—1)k+1/2a1Ad(*62)

= —/ a1 A *(*d * @)
=

= — (a1, *d *x ag) (5.2.11)
(we have used (5.2.10) for (2 — k)-forms). Thus, setting
d* = — * dx, (5.2.12)

we have, under the above assumptions,
(qu, 042) = (041, d*ag). (5213)

Hence d* is the operator adjoint to d with respect to (-,-), although only
in a formal sense, since d : A7 — A?_ | is an unbounded (densely defined)
operator. It should be noted that even for one-forms, the definition of d*
depends on the choice of a metric.
We compute for a C? function f on X:
d* df =d*(f. dz + fz dz) (5.2.14)
= —xd(—if, dz +ifz dz)
= — % (2if,z dz A dZ)
[z
A2
Thus, on functions, d*d is up to sign just the Laplace-Beltrami operator.
A form « is said to be co-closed if

d*a =0,

=4
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and co-exact if
a=d*ny

(for some 7).
A 1-form « is said to be harmonic if it is locally of the form

a=df
with f a harmonic function, and holomorphic if it is locally of the form
a=dh

with h holomorphic.

Lemma 5.2.1 « represented locally as udz+wvdZ is holomorphic if and only
if v =0 and u is a holomorphic function.

Proof. Trivial. O
Lemma 5.2.2 A 1-form n is harmonic if and only if
dn=0=d"n

Proof. If n = df (locally), then dny = 0; if, moreover, f is harmonic, then
d*n = d*df = 0 by (5.2.14). Conversely, if dn = 0, then = df locally. If
d*n also vanishes, then d*df = 0, so that f is harmonic by (5.2.14). a

Lemma 5.2.3 A 1-form n is harmonic if and only if it is of the form
n = oy + g, a1, o holomorphic.
A 1-form « is holomorphic if and only if it is of the form
a=n+ixn, 7 harmonic.
Proof. Let n =wudz + vdz. Then

dn = —(uz —v,) dz A dz,
2
d'n = *ﬁ(UEWL V),
hence 7 is harmonic precisely when both u and v are holomorphic.
Suppose now that « is holomorphic. Then o and @ are harmonic, and
a—a | —la—ia

a=g i

Finally, if n is harmonic, then n = a; + @y with the «; holomorphic as we
have seen above, and then

n+ixn=2q

is indeed holomorphic. ad
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We now wish to give an L2-characterisation of harmonic 1-forms. For this
purpose, let B be the L?-closure of

{df : f e C°(¥,C)},

and B* that of
{xdf : f e C(X,C)}.

Then
Bt ={a € A3(%): (a,df)=0 VfeCr(X,C)}

and
Bt ={ac A2(D): (a,xdf) =0 VfeCF (X, C)}.

Lemma 5.2.4 Let a € A? be of class C*. Then:
a € B & da=0, (5.2.15)
a€ Bt e da=0. (5.2.16)

Proof. If f has compact support, then

Oz/zd(fa):/xdf/\aJr/Zfda.

Hence, if da = 0, then

0= /Edf/\a = —(df,*a) = —(*df,* *x @)
= (xdf,@) = A(@,+df) (5.2.17)
= (a, xdf)

(cf. (5.2.8), (5.2.9) and (5.2.10), and note that x and d are real operators).
Conversely, if « € B*L, then Jdf A =0 for all f with compact support,
hence also [ fda = 0 for all such f, so that da = 0.

The proof of (5.2.16) is similar. O

Corollary 5.2.1 B and B* are orthogonal to each other.
Thus we have an orthogonal decomposition

A3(X)=BeB*®H (5.2.18)
with H = B+ n B*+.

Theorem 5.2.1 H consists precisely of the harmonic 1-forms a with (o, ) <
00.

Proof. If o is harmonic, then it is in particular of class C!, and closed as
well as co-closed. Hence « € H if (o, @) < 0o, by Lemma 5.2.4.
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Conversely suppose a € H. The argument employed in § 3.4 (Weyl’s
lemma) then shows that « is smooth and harmonic. Let us briefly recall
the construction. Let U be a coordinate neighborhood with local parameter
z=z+1y, f € Cg°(U,C),

QO:: f:C7 11[}:: fy

(so that ¢, = ¢,). Let
a=pdr+qdy

in U. Since o € B+, we have

0= (a,dyp) = / (pez + qpy) dz A dy, (5.2.19)
U

and similarly, since a € B**,

0= (e xd) = [ (=py +aqv) da n (5.2.20)

therefore
0 = (a,dp — xdvp) (5.2.21)
= / p(%-ﬁ-%) dﬂ?/\dyZ/pAf dl‘/\dy
U U

We now wish to verify that these relations continue to hold for the smoothings

of a.. Since we are considering only those f with compact support in U, we
need to do the smoothing only in U. As in § 3.1, let

1
cexp( 7 )7 |z| < 1,
Q(Z) = |z| 1
{0, 2] > 1

with [ o(z) =1 (we may assume without loss of generality that {|z| <1} C
U). For h > 0, we have

(o) =g [ o(F55) w05 acndc

Here we are letting the integration range over all of R? since, if we assume
say |z| < 1, then the integrand above vanishes outside U if h is sufficiently
small. We have

pr(z) = / - o(w) p(z — hw) % dw A dw.
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Hence

/ (2)(a(2) + 1y (2)) % dz A dz (5.2.22)
U

= [ ot (] 900 (oulGot b = (¢ b)) G 0C) G

SNince (5.2.19) holds for all f with compact support in~U , it holds also for
f(2) := f(z + hw) if h is so small that the support of f is still contained in
U. Then ¢(z + hw) = f(2), (2 + hw) = fy(2), hence (5.2.20) yields

o:lguawxa+%@»
:AfMdAﬂ@
_ / Apn(2) - £(2)
U

(since pp € C). Since this holds for all f € C5°(U), it follows that py, is
harmonic.

As in § 3.4 the regularity properties of the harmonic p; imply convergence
to a smooth harmonic limit which then has to agree with the L2-limit p of
the Ph-

The same argument applied to x« (which is also in H) shows that ¢ is also
harmonic. Hence « is in particular of class C', hence closed and co-closed
by Lemma 5.2.4, hence harmonic. (Of course one could also conclude the
harmonicity of o = pda 4 ¢gdy directly from that of p and q.) ad
Theorem 5.2.2 Let X be a Riemann surface. Then, for every closed (dif-
ferentiable) o € A3(X), there exists a harmonic & € A3 (X)) with

/a: /a (5.2.23)

for all closed curves v on X (i.e. & is cohomologous to ).

Proof. Since a € A2(Y) is closed, we have a € B*t = B @ H by (5.2.15)
and (5.2.18), hence

a=d +a, o € B, a€H.

Observe that o/ € B is differentiable since o and & are. If o/ = limdf, in
A2, then, for any closed curve 7,

/o/z/nfy/\o/zlim/ Ny Adfy
¥ Py X

= lim/ dfn, =0,
v
proving (5.2.23). O
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Corollary 5.2.2 Let X be a compact Riemann surface of genus p. Then
H=H'(¥,C)=C?>.
Thus every cohomology class is represented by a unique harmonic form.

Proof. Since X' is compact, every differentiable 1-form « is square-integrable.
If « is closed, Theorem 5.2.2 yields a harmonic & with the same periods, i.e.
in the same cohomology class, as a (cf. Theorem 5.1.1). Since X' is compact, &
is uniquely determined: on a compact Riemann surface, every harmonic func-
tion is constant (Lemma 2.2.1), hence every exact harmonic 1-form vanishes
identically. ad

Corollary 5.2.2 is a special case of a theorem of Hodge, which states that
an analogous assertion is true for any cohomology class on any compact
oriented Riemannian manifold.

We conclude this section by observing that we could also have obtained a
harmonic form in a given cohomology class by the Dirichlet principle of mini-
mizing (o, ) over the class. Namely, if « is minimal, then

d
T (a+tdy, a + tdgp)’tzo =0

for all p € C§°(X), hence

0= /aA*d¢+/d<pA*a: 2R(a, dp),
so that « is a weak solution of
d*a = 0.

Regularity theory now implies as in the proof of Theorem 5.2.1 that « is
differentiable, since we also have da = 0. Conversely, if d*a = 0, then

(a+dp,a+dy) = (a,a) + (dp,de) + 2R(a, dp)
= (o, @) + (dp, de) + 2R(d* e, )
= (a,a) + (dy, dy)

> (o, @),

so that « is minimal.

Exercises for § 5.2

1)  Let S be a Riemann surface with boundary. What boundary conditions
need one impose on ay, oy for

(doq, 042) = (041, d*ag)

to hold?
2)  Determine the harmonic and holomorphic 1-forms on S? and on a torus.
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5.3 The Periods of Holomorphic and Meromorphic
Differential Forms

We shall denote by H?(X, £2!) the space of holomorphic 1-forms on our com-
pact Riemann surface X, and set

RY(2, 21 := dime HY(X, 2V).

(We shall not explain here the motivation for this notation, which comes from
algebraic geometry.) It follows from Lemma 5.2.3 and Corollary 5.2.2 that

W8, 04 =p (5.3.1)

where p is as usual the genus of X.
Let ai,...,a, be a basis of HY(X,2'), and ay,b1,...,a,,b, a canonical
homology basis for Y. Then the period matrix of X is defined as

j‘alal... fbpal
fal Oép fbpap

The column vectors of 7,

P; = (/ al,...,/ ap) P, = (/ al,...,/ap) 1=1,...,p,
a; a; bi b;

are called the periods of X.
By Theorem 5.2.2 and Lemma 5.2.3, these vectors are linearly independent
over R. Hence P, ..., P, generate a lattice

A= {TL1P1 —+ . —l—nszgp, n; € Z}
in CP.

Definition 5.3.1 The Jacobian variety J(X) of X is the complex torus
CP/A (J(X) is got from CP by identifying vectors which differ only by ele-
ments of A).

If we choose a point zy in X, then we get a well-defined map

j: X —=JX)

Jj(z) = (/ 041,...,/ ap> mod A.
z0 z0

Here j(z) is independent of the choice of the path from z; to z, since a
different choice changes the vector of integrals only by an element of A.

by setting
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It is necessary to consider the more general notion of meromorphic 1-forms,
i.e. objects which, in local coordinates, have the form

n(z) = f(z) dz

with meromorphic f. If 2y corresponds in the local coordinate to z = 0, we
can consider the Laurent expansion

f(z)= Z an2"

n=ng
of f(2); a—y is called the residue of n at zp:
Res,, n:=a_1. (5.3.2)

This number is independent of the choice of the local coordinate at zg € X,
since 1

Res, n = — 5.3.3

s =5 [ 902) (533

for any v which is the boundary of a disc B containing zo in its interior, with
71 holomorphic on B\{%}. The residue of n can thus be non-zero at the most
at the singularities of 7.

Lemma 5.3.1 Let n be a meromorphic 1-form on the compact Riemann

surface X. Let z1, ..., zm be the singularities of 7. Then
Z Res., n = 0. (5.3.4)
j=1

Proof. Let B; be a small disc around z; such that B;\{z;} contains no
singularity of 7. Then 7 is holomorphic on X\ 377", B;, hence closed (cf.
Lemmas 5.2.2 and 5.2.3). Therefore Stokes’ theorem gives

1 m
0:/ dn:—/ n:——,ZReszjn.
E\UBj 3(UBJ') 2mi j=1

O

Corollary 5.3.1 A meromorphic function f on X has the same number
(counted with multiplicity) of zeroes and poles.

Proof. Apply Lemma 5.3.1 to n = %. a

In classical terminology, a differential of the first kind on X' is a holomor-
phic 1-form, a differential of the second kind is a meromorphic 1-form all of
whose residues vanish, and a differential of the third kind is a meromorphic
1-form whose poles are all simple.
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Let now a be a holomorphic 1-form, and 7 a meromorphic 1-form, on our
compact Riemann surface X of genus p. Let my,...,mo, and 01,..., 02p de-
note respectively the periods of  and n with respect to a canonical basis
ai,...,b, of Hi(X,Z). Here it is understood that X' has been represented as
in Theorem 2.4.2 by a fundamental polygon F in H (if p = 1, one takes a
similar fundamental polygon in C; if p = 0, there are no holomorphic forms
on X except 0), where §F has the form

alblaflbflag s bp_l

And F is to be so chosen that 1 has no poles on §F.
Since F' is simply connected, and « is holomorphic, we can define

f(2) = /a

to obtain a holomorphic function f on F' with df = «. (Here zg € F is an
arbitrarily chosen point.)
Suppose now that z € a; and 2’ € a; L are equivalent points in F. Then

f(Z’)—f(Z)=/:lo<:/zpia+/bia+/:a

where p; and p} are the initial and end points of b; respectively.

Fig. 5.3.1.

Since p; and p; are also equivalent, the first and third integrals above
cancel, and we get

f@@—f@%iéa=wmr (5.3.5)

Similarly, for equivalent points z € b;, 2’ € b, ! we will have

(&) = f(2) = —m. (5.3.6)
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Since 7 has the same value at equivalent points, is follows that

/ fem +/ L fn= —7Tp+1/ N = —Tpti0i, (5.3.7)
a; a; a;

and similarly
/f7]+/ 1f-77:7rigp+1 (538)
b; b7

(to get the correct signs in the above formulas, one must keep in mind that
a; and a; ' correspond to opposite orientations in X). Tt follows from (5.3.7)
and (5.3.8) that

P
/ fon= Z (Ti0p+i — Tp+i0i) - (5.3.9)
oF i=1

But we also have

fem=2mY Res(f n). (5.3.10)

OF

We shall now specialise the above results to the case of an 7 of the second or
third kind. If 5 is of the second kind, so that all its residues vanish, we set,
in a neighborhood of a pole z, of n,

n(z) = (a2 "+ +af +ajz+--) dz, (5.3.11)

and
alz) = (bg+biz+---) dz. (5.3.12)

We have a”; = 0 for all poles z, of by assumption, and
Zy 1 )
f(z) = a:bgzv+§blfzy+~-~,
20

hence

v k=2

> Res., (f-n)=) (Z kila’ikbz_2> . (5.3.13)

If n is of the third kind, so that all its poles are simple, then

Z Res,, (f-n) = Z Res,, n - /ZV a. (5.3.14)

We have thus proved the following reciprocity laws:

Theorem 5.3.1 Let X' be a compact Riemann surface of genus p, a a holo-
morphic one-form and n a meromorphic one-form on X. Let w1, ..., T, and
01,-..,02p be the periods of a and n respectively with respect to a canonical
homology basis of X. Then:
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(i) if n is of the second kind (so that all its residues vanish), we have, with
the local representations (5.3.11) and (5.3.12) at the poles z, of n

P m
1 1 v 14
Z (Ti0p+i — Tpti0i) = 2i Z (Z 1 a_kbk_2>; (5.3.15)
k=2

i=1 v

(i) if n is of the third kind, so that all its poles are simple, we have
p Zy

(T 0p+i — Tp4i0i) = 27l ZReszu - / Q; (5.3.16)
- v 20

i=1

here, zy is an arbitrarily fized point of the fundamental polygon F', and
the integrals are along curves inside F'.

Proof. Cf. (5.3.9), (5.3.10), (5.3.13) and (5.3.14). O

We now consider the case when the 17 above is also a holomorphic form o/,
with periods 77, ..., m,. Then the above procedure yields (with f(z) = fzzo @

as before)
p

. fa =" (w0 — Ty, (5.3.17)
i=1

Hence Stokes’ theorem, and the fact that

d(fay=df Na =aAd,

yield
P
/ a AT =) (Wi — TppaT) - (5.3.18)
F i=1
In particular, if o’ = a # 0, then
P
0<i / ANT =1 (MiTpyi — TpaiTi) . (5.3.19)
z i=1
Thus, for a # 0, the first p periods m,...,m, cannot all vanish. It follows

that the first p columns of the period matrix 7 defined above are linearly
independent over C. We can therefore find a basis of H°(X, 21), which we
shall still denote by a1, ..., ap, such that

/ aj =6y 1<ij<p (5.3.20)

i

Thus, the period matrix is now of the form
m=Ip,7Z), (5.3.21)

where I, is the p x p identity matrix.
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We can analyse Z by means of the reciprocity laws proved earlier. Namely,

with 17 = o/ a holomorphic form with periods 7, ..., 73, (5.3.15) or (5.3.16)

yields

P
(i — Tptim;) = 0. (5.3.22)

=1

3

Thus, if @ = a; and o/ = «; are elements of a normalised basis, then

/ Qi —/ Q5 =0. (5323)
bi bj

Hence the matrix Z is symmetric. Further, by (5.3.18),
(ai,aj) = /Oti /\X*Ozj =i / o /\XOéj (5324)
x

— v — i XY .
—1/)\047 1/041—20/ o
bi b bi

(using (5.3.23)). Hence SZ is positive definite.

We collect the above results, also known as Riemann’s Bilinear Relations, in
the following theorem.

Theorem 5.3.2 We can find a basis for HO(X, '), the space of holomor-
phic 1-forms on X (called a normalised basis), with respect to which the period
matriz of X has the form

r=,2), Z=2') SZ>0. (5.3.25)

a

Exercises for § 5.3

1)  Write down the map j: X' — J(X) explicitely in case X' is a torus.

5.4 Divisors. The Riemann-Roch Theorem

Definition 5.4.1 Let X be a Riemann surface. A divisor on X' is a locally
finite formal linear combination

D= Zs,,z,, (5.4.1)

with s, € Z and z, € Y.



5.4 Divisors. The Riemann-Roch Theorem 209

If X is compact (and we shall be exclusively interested in the compact case),
the sum (5.4.1), being locally finite, has in fact to be finite.

The set of divisors on X' forms an additive abelian group, denoted by Div(X).
(Occassionally, Div(X) is also written multiplicatively; both conventions have
their advantages and disadvantages.)

The divisor D is said to be effective if

s, >0
for all v. We write
D>D

if D — D’ is effective. Thus D > 0 means that D is effective.
If g # 0 is a meromorphic function on X, and z € X, then ord,g = k (> 0)
if g has a zero of order k at z, and ord,g = —k (< 0) if g has a pole of order
k at z. Otherwise ord,g = 0.

We define the divisor of the meromorphic function g (# 0) by

(9) == (ord,g) 2, (5.4.2)

the sum extending over all poles and zeros of g. If n # 0 is a meromorphic
differential, we can write n = fdz locally and define ord,n as ord, f. In this
way, we can again associate to n (£ 0) the divisor

(n) ==Y (ord.,n) 2 (5.4.3)

Definition 5.4.2 A canonical divisor, always to be denoted by K, is the
divisor () of a meromorphic 1-form 7 # 0 on X.

Definition 5.4.3 A meromorphic function g Z 0 is said to be a multiple of
the divisor D if
D+ (g) = 0. (5.4.4)

A divisor D is called a principal divisor if it is the divisor (g) of a meromorphic
function g # 0:
D = (g). (5.4.5)

Two divisors Dy and D are said to be linearly equivalent if their difference
is a principal divisor:
Di—=Dy=(g9) (9#0). (5.4.6)

We also define:

£(D) := {g meromorphic function on X :g=0or D+ (g) > 0},

(this is a complex vector space)
R%(D) := dim¢ £(D),
|D| :={D" € Div(X) : D’ >0, D’linearly equivalent to D}.
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Some remarks regarding the above definitions:
g # 0 is holomorphic if and only if

(9) > 0. (5.4.7)

Any two canonical divisors are linearly equivalent: if K = () and K' =
(n') are the divisors of the meromorphic forms n,n’, then n/n’ =: g is a
meromorphic function, and

K- K'=(9).
Finally, observe that, if X' is compact, then
h°(D) = dim¢ |D| + 1 (5.4.8)

in the sense that | D| can be identified with the projective space of the h%(D)-
dimensional vector space £(D). This is because, if D’ is linearly equivalent
to D, then the meromorphic function g such that

D'=D+(g)

is unique up to a multiplicative constant (£ 0), since the quotient of two such
functions would be a (nowhere-vanishing) holomorphic function on X', hence
a (non-zero) constant.

Definition 5.4.4 Let X be a compact Riemann surface, and D € Div(3):

D= Z Sy 2.

Then the degree of D is defined as

deg D := Z Sy (5.4.9)
Clearly,

deg : Div(X) — Z
is a homomorphism of groups. By Corollary 5.3.1, we have

Lemma 5.4.1 For a meromorphic function g % 0 on a compact Riemann
surface X,
deg(g) = 0. (5.4.10)

O
In turn, this implies:

Lemma 5.4.2 Suppose again that X is compact. Then, for D € Div(X)
with,
deg D < 0,

we have
h%(D) = 0.
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Proof. For an f # 0 in £(D), we would have

(f) Z 7Da
hence
deg(f) 2 _degD > Oa
which is impossible by Lemma 5.4.1. a

The central theorem on divisors is the theorem of Riemann-Roch:

Theorem 5.4.1 Let X be a compact Riemann surface of genus p, and D a
divisor of X. Then

h°(D) = degD — p+ 1+ h°(K — D). (5.4.11)

The Riemann-Roch theorem says that the number of linearly independent
meromorphic functions g on X satisfying (g) > —D equals the degree of
D — (genus of X) + 1 + the number of linearly independent meromorphic
1-forms n on X satisfying (n) > D). We shall see several applications of the
Riemann-Roch theorem in the sequel.

Foremost, it should be seen as an existence theorem for meromorphic func-
tions with poles at most at those z, where s, >0 (D =>"s,2,).

In particular, if deg D > p, the theorem says that one can always find such a
meromorphic function.

The proof of Theorem 5.4.1 depends decisively on the following

Lemma 5.4.3 Let z1,...,z, € X; suppose a local chart has been chosen
around each z,. Then, for any t1,...,t, € C, there exists a unique meromor-
phic 1-form n; on X with the following properties:

n

(i) mt is holomorphic on X\ | {z,};
v=1
(ii) for each v,

ne(2) = {t,z=2 + terms of order > 0} dz

near z,, where z is the chosen local parameter at z, with z, = 0;

(iii)
/77t:07 Z:].,,p

(ai,...,ap,b1,...,by being as usual a canonical homology basis for X).

Proof. We assume without essential loss of generality that the chosen coor-
dinate chart contains the disk

D={z:]z| <1}

with z, corresponding to 0 € D.
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1
'19 = tV;

then is holomorphic in D\{0}. We have

1
9 =d(—t,-),
(~t7)
9 is thus exact in {z : |z| > %} We wish to construct a differential w which

is harmonic in X\{z,} and for which w — ¢ is harmonic in D.
We choose a cut-off function n € C§°(D,R) with

nz)=1 for |z|<3
0<n(z)<1 for \z|2%

and put

d (—ntl,l) for z € D
a(z) = z
0 for z € Z\D.

Then a(z) = ¥(z) for |z| < 3, and since ¥ is meromorphic in that region,
*a(z) = —ia(z) for |2| <3
as in Lemma 5.2.3, i.e.
a(z) —i*a(z)=0 for |z < 3.
Thus, this expression is everywhere smooth and, in particular, square inte-
grable. We now apply the orthogonal decomposition (5.2.18):

a—ixa=wy+dg++df

with wg € H, xdf € B*, dg € B. Since the left hand is C*°, f and g are
smooth as well. We put

pi=a—dg=ixa+wy++df.
Then p € C*°(X\{z,}). Moreover dy = daw — ddg = 0, since « is closed in
IN\{z}, and d*p = —ida+ dxwy — dd f = 0, since wy is harmonic (Theorem

5.2.1).
For |z| < 1,

hence in that region

is smooth.
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then is a real valued harmonic differential with singularity %(t,,z%) at z,.

By + 1% By
then is a meromorphic differential with singularity

1
tyzﬁ
in our coordinate chart at z, = 0.
n

Z (B, +ixBy)

v=1
then satisfies the first two conditions of the lemma. Clearly two such forms
differ only by a holomorphic form, and it follows by Theorem 5.3.2 that the
periods along aq,...,a, can be made to vanish; and conversely the form is
then uniquely determined. a

Remark. The same reasoning will be used for the proof of Lemma 5.9.1
below.

Proof of Theorem 5.4.1. We first prove the theorem for an effective divisor
D. For simplicity of notation, we assume that

D= Z 2z, (2, distinct ).
v=1

The general case requires no essential additional work, but the notation
becomes complicated.
Let then f € £(D), so that

(f)+D=0.

Then df is a meromorphic 1-form, holomorphic on X\ [J{z,}, having no
periods and residues, and having at the worst poles of order two at the z,.
Conversely, if 1 is a meromorphic form with these properties, then

f(z):= / n (z0 € X fixed arbitrarily )
Z0
is well-defined, and f € £(D). Clearly df = df’ if and only if f and f’ differ
by an additive constant.
We are thus led to consider the vector space

V := {meromorphic 1-forms on X with no periods
and residues, holomorphic on X\ [ J{z,}, with
poles of order < 2 at the z,}.
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It is clear from the above considerations that

RY(D) = dim¢ V + 1. (5.4.12)
To compute dimc V', we apply Lemma 5.4.3 and construct for every ¢t =
(t1,...,t,) the 1-form 7; of that lemma, and consider the linear map

£:C"—CP
defined by
g(t) = (/ ’I]t7,/ 7’]t>
by by
Then clearly
V =kerl. (5.4.13)

If now o, . .., a, is a normalised basis of H°(X, 21), so that fa a; =05, we

have, by (5.3.15) (note that p; = [, 7, = 0)

/bj = 2 Z:ty (%) (), (5.4.14)

where z is again the local parameter at z, vanishing at z, and where the

notation (52) (z,) means the following: If a; = b;(2)dz in our local coordinate

z, then (%; (2,) = b;(2,). Thus ¢ is defined by the matrix
() (1) s (§2) (2n)
2mi : :

(82) (21), -+ (52) (20)

The number of independent linear relations between the rows of this matrix
is precisely the dimension of the space of holomorphic 1-forms which vanish
at all the z,. But this dimension is just h°(K — D): if K is represented by a
meromorphic form 7, then g # 0 € H°(K — D) if and only if

(9)+m—-D=0

i.e.
(gn) > D

or, in other words, gn is holomorphic and vanishes at all the z,. Thus, we
have by (5.4.12) and (5.4.13)

hY(D) = dim(ker £) + 1
=n—rankl+1 (5.4.15)
=n—p+h'(K —-D)+1,

which is (5.4.11) for the effective divisor D, since n = deg D.
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Of course we have also proved (5.4.11) more generally for all divisors linearly
equivalent to an effective divisor, since h°(D), h°(K — D) and deg D are not
affected if D is replaced by a linearly equivalent divisor.

To treat the general case, we need

Lemma 5.4.4 For a canonical divisor K on a compact Riemann surface of
genus p, we have
deg K = 2p — 2.

Proof. Asremarked above, linearly equivalent divisors have the same degree,
and all canonical divisors are linearly equivalent. Hence it is enough to prove
the assertion of the lemma for any one canonical divisor.
We choose a non-constant meromorphic function g on X with only simple
poles (such a g can be obtained by integrating an n (£ 0) € V, the vector
space introduced above; V' #£ (0) for n > p, by (5.4.13)). We shall prove the
lemma for K = (dg).

If z € X is not a pole of g, it is clear that

ord, dg = vy(2) (5.4.16)

where v,4(2) is the order of ramification of g at z (cf. Definition 2.5.2). If
however g(z) = oo, then

ord, dg=ord, g — 1= -2, (5.4.17)
since g has only simple poles. It follows from (5.4.16) and (5.4.17) that
deg(dg) = Z vg(2) — 2n, (5.4.18)
zeX

where n is the number of poles of g.
On the other hand, we can think of g as a holomorphic map

g: X — 52
of degree n and apply the Riemann-Hurwitz formula (Theorem 2.5.2) to get
2—-2p=2n— Z vg(2). (5.4.19)

zeX

Comparing (5.4.18) and (5.4.19), we obtain the assertion of the lemma. 0O

We now continue with the proof of Theorem 5.4.1. If D € Div(X) is such
that K — D is linearly equivalent to an effective divisor, then using (5.4.15)
with D replaced by (K — D) and Lemma 5.4.4, we get

(K —-D)=(2p—2-n)—p+1+hr°(D),
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hence again
(D) =n—p+1+h°(K — D).

Thus the only case left to handle is when neither D nor K — D is linearly
equivalent to an effective divisor, i.e. when h®(D) = 0 = h°(K — D). We must
then prove that deg D =p — 1.
We write

D =Dy — D,

with Dy, Dy effective and having no point in common. Then
deg D = deg D, — deg Ds>.
We may apply (5.4.11) to Dy; we get
h?(Dy) > deg Dy —p+1
=degD +degDs —p+1.
If now deg D > p, then

h(D;) > deg Dy + 1, (5.4.20)

and there will exist a g # 0 in £(D7) vanishing at all points of Dy, since vani-
shing at points of Dy imposes at the most deg Dy conditions on an element
of £(Dy). For such a g, we would have

(9)+D=(9)+D1—Dy>D; >0,

i.e. g € £(D). This would mean that h°(D) > 0, in contradiction to our
assumption.
It follows that we must have

degD <p-—1.
But the same argument applies to K — D also, so we must also have
deg(K — D) <p-—1,

hence
degD >p—1,

since deg K = 2p — 2 (Lemma 5.4.4). Hence deg D = p — 1 as required. O

The Riemann-Roch Theorem allows us to provide the uniformization of
compact Riemann surfaces of genus 0, thereby completing the proof of the
Uniformization Theorem 4.4.1.

Corollary 5.4.1 Let X be a compact Riemann surface of genus 0. Then X
is conformally equivalent to the unit sphere S2.
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Proof. We need to construct a holomorphic diffeomorphism
h:X— S%

For that purpose, we shall use the Riemann-Roch theorem to construct a
meromorphic function g on X' with a single and simple pole and then interpret
g as such a holomorphic diffeomorphism.

So, we choose any zg € X and consider the divisor

D = z,.
Since p = 0, by Lemma 5.4.4, deg K = —2, and so in particular
deg (K — D) =-3<0,
and thus, by Lemma 5.4.2,
(K — D) = 0.
The Riemann-Roch Theorem 5.4.1 therefore yields
r°(D) = 2.

Therefore, we can find a nonconstant meromorphic function g with D+ (g) >
0, i.e. with at most a simple pole at 2y, and as g is nonconstant, it must have
a pole somewhere, and so it does have a pole at z.

As explained in § 2.1, such a meromorphic function can be considered as

a holomorphic map
h:X — S%

Since we have a single simple pole at zp, the mapping degree of h is 1 (see
Def. 2.5.3).

By the Riemann-Hurwitz Theorem 2.5.2, since the genus of X' and the
genus of S? are 0, h has no branch points, and being of degree 1, it therefore
is a diffeomorphism. a

We now deduce another consequence of the Riemann-Roch Theorem that
allows us to complete a line of reasoning of Chapter 4.

Corollary 5.4.2 Let X' be a compact Riemann surface of genus p, and let
Q(X) be the vector space of holomorphic quadratic differentials on X. Then:

dimcQ(X)=0 ifp=0, (5.4.21)
dimeQ(X)=1 ifp=1, (5.4.22)
dimc Q(X)=3p—3 if p>2. (5.4.23)
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Proof. We first observe that Q(X) can be identified with £(2K). Namely, if
fdz is a 1-form with
(fdz) = K,

and if g € £(2K), so that
(9) +2K >0,

then gf2dz? € Q(X). Conversely, if ¢dz? € Q(X), then g = + € L£(2K).
Now, by Lemma 5.4.4,
deg(2K) = 4p — 4.

Hence, if p = 0, we have by Lemma 5.4.2
0 = h°(2K) = dimc¢ £(2K) = dime Q(X) (5.4.24)

which is (5.4.21).
If p =1, then, by Lemma 5.4.4

deg K = 0 = deg2K. (5.4.25)

Also, since p = dim¢ H°(X, 21) = 1, there exists a holomorphic 1-form fdz #
0 on X. Since deg(fdz) = deg K = 0, fdz cannot have any zeros. Hence
f?dz? € Q(X) is nowhere zero on X. Hence, for any ¢ € Q(X), 2z is a

holomorphic function on X, hence a constant. It follows that dim¢ Q(X) = 1,
i.e. (5.4.22) is proved.
Finally, let p > 2. Then

deg(—K)=2-2p <0,

hence
RO(-K)=0

by Lemma 5.4.2. Now the Riemann-Roch theorem ((5.4.11)) yields
R°(2K)=4p—4—p+1=3p—3.
Since we have already identified £(2K) and Q(X), this proves (5.4.23). O

Corollary 5.4.3 Ifp > 2, then the Teichmiller space T, is diffeomorphic
to R6P—6,

Proof. This follows from Theorem 4.2.3 and Corollary 5.4.2. ad

Remark. The cases p =0 and p =1 of Corollary 5.4.2 can also be deduced
elementarily from Liouville’s theorem, as we know that they correspond res-
pectively to S? and the complex tori.
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Consider for instance the case p = 0, i.e. ¥ = S2%. Let w € Q(X). Then, via
stereographic projection, w gives a quadratic differential fdz? on C. Under
the coordinate change

we must have
f(2) d2* = f(2(w)) (20)" dw?
= f(z(w)) é dw?.

Since w — 0 as z — 0o, and f(z(w))/w* must remain bounded as w — 0, f(z)
must tend to zero as z — oo. Since f(z) is an entire function, we conclude
by Liouville’s theorem that f = 0, hence w = 0.

If p = 1, we represent X as C/A, then a holomorphic quadratic differential on
X can be lifted to one on C. For such a lifted quadratic differential f(z)dz2,
f(2) is obviously a bounded entire function, hence constant.

Corollary 5.4.4 If X is a compact Riemann surface of genus > 1, then
there is no z € X at which all holomorphic 1-forms vanish.

Proof. Suppose all holomorphic forms on X vanish at z € Y. This means
that £(K — z) = £(K), hence the Riemann-Roch theorem gives

() =1-p+1+p=2,
so that there exists a non-constant meromorphic function g with
(9)+z>0.

(For any effective divisor D, the constants are always in £(D), so that h°(D)
is always > 1 for an effective D.) But then g has only a single simple pole
at z. Therefore, g has degree one as a map X — S2. In particular, g has no
branch points. However, since p > 1, this contradicts the Riemann-Hurwitz
formula (Theorem 2.5.2). ad

Exercises for § 5.4

1) Show that two divisors Dy, Dy on S? are linearly equivalent if and only
if deg D; = deg D> (Hint: Prove and use that for any py, ps € S?, there
exists a meromorphic function g on S? with (g) = p1 — p2.)

2)  Define a holomorphic n-differential to be an object of the form

f(z) dz",

with holomorphic f.
Determine the dimension of the space of holomorphic n-differentials on
a compact Riemann surface of genus p.
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3)  Prove the Brill-Noether reciprocity theorem: If g is a meromorphic 1-
form on the compact Riemann surface X, with divisor (g), and if D is
any divisor on X', then

2 (h°(K — D) — h°(K — (9) + D)) = deg ((9) — D) — deg D.

4) Let X be a compact Riemann surface of genus p, and let n > 2p — 2.
Show that there exists a 2n + 1 — p (complex) parameter family of
conformal maps of X onto n-sheeted covers of S2. (Of course, one has
to vary the position of the poles!)

*5) Let X be a Riemann surface with boundary dX. Let ¢ dz? be a holo-
morphic quadratic differential which is real on 9X. (This means that if
we have a local coordinate z = = + iy, y = 0 corresponding to 90X, and
if pdz? = (¢1 +ig2) (dz +idy)? with real ¢1, ¢o in this coordinate, then
ng:Ofory:O).

Compute the dimension of the (real) vector space of all holomorphic
quadratic differentials which are real on 9.

6) Interpret the Riemann-Hurwitz formula (Thm. 2.5.2) in terms of the
constructions of this section (Hint: If f : Xy — X5 is a holomorphic
map between compact Riemann surface, and if « is a holomorphic 1-
form on X5, then f*« is a holomorphic 1-form on Y. Relate the divisor
(f*«) and the divisor f*(a), the preimage of the divisor of «).

5.5 Holomorphic 1-Forms and Metrics on Compact
Riemann Surfaces

Theorem 5.5.1 Let X be a compact Riemann surface of genus p > 1, and
let a1, ...,y be a basis of the space of holomorphic 1-forms on X. Then

Z a;(z) @;(2)

=1

defines a metric on X with nonpositive curvature, the so-called Bergman-
metric. If p > 2, then the curvature vanishes at most in a finite number of
points.

Proof. YP_| a;(2)a;(z) transforms as dzdz and is everywhere positive def-
inite by Corollary 5.4.4, hence defines a metric.

In a local coordinate, we write «;(z) = f;(2)dz with holomorphic f; (i =
1,...,p). The metric then is
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with f = (f1,..., fp). Using that the f; are holomorphic, one computes for
the curvature

K — _iilo (f. f)
T oz 5
2
= 7(f-7f)3 (( 7f) ! (fZ7fZ) - (fZaf) ! (fvfz))
<0.

K vanishes precisely where f and f, = (%7 ey %) are linearly dependent.
Since the 1-forms fidz, ..., f,dz are linearly independent (and holomorphic),
this can happen at most at a finite number of points for p > 2. ad

In case p > 2, we now want to modify the metric
P
N dz dz = Zai(z)m(z)
i=1

in neighborhoods of the finitely many points z1,...,2z; € X where the cur-
vature K vanishes in such a way that the new metric has negative curvature
everywhere. For this purpose, we choose disjoint coordinate neighborhoods
V; with z; € V;, 7 = 1,...,k, and for each V; a local coordinate z with z;
corresponding to z = 0 and {|z| < 1} C V;. We then choose a real valued
nonnegative C*°-function n(z) with

and put

and finally in V}, for ¢t > 0,
A (z) dz dz == (X*(2) + té(2)) dz dz.
Outside the union of the Vj, we leave A?(z)dzdz unchanged. We put
Vi (sl < $h e v

If ¢ is sufficiently small, the new metric has negative curvature in X'\ U?Zl Vj’ ,
because the original metric had negative curvature there and the curvature
depends continuously on ¢.

Inside each Vj, we write again «;(z) = f;(2)dz, hence

M (z) dz dz (5.5.1)
= (AT + HF () + ViV + (VE2) (Vi) ) dz dz
=:(g,9) dz dz.
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Since the vectors g = (f1,..., fp, Vt,Vt2) and g, = (%, ol %,0, V) are
everywhere linearly independent for ¢ > 0, it follows from the consideration
in the proof of Theorem 5.5.1, that A\?(z)dzdz has negative curvature inside
V; for each ¢ > 0. Thus, choosing ¢ > 0 small enough, we obtain

Theorem 5.5.2 Fach compact Riemann surface of genus p > 2 admits a
metric with negative curvature. a

Of course, each such Riemann surface even admits a metric with constant
curvature —1 as a consequence of the uniformization theorem, but the point
of the preceding construction is that it is completely elementary. Although
we have used the Riemann-Roch theorem in the proof of Theorem 5.5.1, we
do not need this for the construction of a negatively curved metric. Namely,
points where Y7 a;(z)@;(z) would vanish could also be handled by adding
a term of the form ¢ ¢(z) as in the preceding proof.

5.6 Divisors and Line Bundles

Let X be a compact Riemann surface. On X, we define the Zariski topology:

Definition 5.6.1 The open sets of the Zariski topology consist of the empty
set and all complements of divisors, i.e. sets of the form X\{wy,...,w,},
where wy, ..., w, are points on Y. (The divisor may be empty.)

It is clear that the finite intersections and countable unions of (Zariski) open
sets are again open. We point out that this topology does not satisfy the
Hausdorff property, i.e. different points on X do not have disjoint neigh-
borhoods. During this section, X' will always be equipped with the Zariski
topology. We shall use the following notation:

M := {meromorphic functions on X'}

M* = M\{0} = {not identically vanishing meromorphic functions},

and for an open subset U of X

MU) :=A{flv: feM},
M U) = {flv: feM},

OWU) :={f € M: fholomorphic on U},
O"(U):={feOU): f(z2)#0 forall zecU}.

We have seen e.g. in the proof of the Riemann-Roch theorem that there
exist nonconstant meromorphic functions on Y. For each z € X, we can also
find a nonconstant meromorphic function vanishing at z to first order, as
a consequence of Lemma 5.4.3 (see again the proof of the Riemann-Roch
theorem).
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Let now
n

D:Zsyzy (sy €Z,2, € X)
v=1
be a divisor on X. For each v, we can find some open set U,, z, € U, and
fv € O(U,), vanishing to first order at z,, but f,(z) # 0 for z € U,\{z,}.
On Vi :=U,_, Uy, g1 := [[,_; f5 then defines the divisor D. We can also
find other such sets V5, Vs, ..., V,, and functions go, g3, . . ., gm defining D on
the corresponding sets, with the property that

Gm:g

i=1

Conversely, given a finite open covering {V;};—1.m of X and g; € M*(V;),
satisfying
9i * ..
;j e 0"(V;nV;) for all 1,7, (5.6.1)
the zero and polar set of the collection {g;} is well defined (i.e. on V; NV}, g;
and g; have the same zero and polar sets because of (5.6.1)). Consequently,
such a collection {(V;, g;)} defines a divisor D on X. The divisor is not changed
if each g is multiplied by an arbitrary ¢; € O*(V;). In this section, we shall
always identify a divisor on X with such a collection {(V;, ;) : % e 0O*(Vin
V;) for all 4,5}, where each g; is determined up to multiplication by some
element of O*(V;).

We shall now introduce a concept that identifies linearly equivalent divi-
sors, namely the concept of a line bundle on the Riemann surface X.

Definition 5.6.2 A line bundle L on X is given by an open covering
{Ui}i=1,....m of X and transition functions g;; € O*(U; N U;) satistying

9ij " 9jk - ki = 1 on Ul N Uj N Uk for all i,j, k. (563)

The geometric intuition behind this concept can be described as follows. One
takes the union of U; x C over all ¢ and identifies for z € U; N U; the fibres
{#z} xCin U; x C and U; x C via multiplication by g;;(z). In other words
(z,w) € U; x C is identified with (z, g;;(z)w) € U; x C. Thus, one thinks of
a line bundle as a collection of complex lines indexed by the points in X' and
varying holomorphically over 2. We shall not need this interpretation in the
sequel, but it motivates

Definition 5.6.3 Two line bundles L, L’ with transition functions g;; and
gij» resp., are called isomorphic if there exist functions ¢; € O*(U;) for each
i, with
gz/'j = %gij’ on each Uz N Uj. (564)
J
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(We may assume that L and L’ are defined through the same open covering
{U;}; namely if L is defined through {V;}, and L’ through {V}'}, then they can
both be defined through the covering consisting of all intersections V; N V}.)

In the sequel, we shall always identify isomorphic line bundles. We can equip
the set of line bundles with an Abelian group structure: If L, L’ are line
bundles with transition functions g;; and g;;, resp., we let L' ® L~ be the
line bundle with transition functions ggjgi_jl. Of course, the neutral element
is given by the trivial line bundle with transition functions g;; = 1.

Definition 5.6.4 The Abelian group of line bundles on X is called the
Picard group of X, Pic(X).

Theorem 5.6.1 The Picard group Pic(X) is isomorphic to the group of
divisors Div(X) modulo linear equivalence.

Proof. Let the divisor D be given by

{(quz) : & e O (Ul n Uj)}
fi
We put
o
i f]
Then obviously g;; € O*(U;NUj), and (5.6.2) and (5.6.3) are satisfied. Thus,
to D, we have associated a line bundle [D]. This is welldefined. Namely, if D
is described by some other local data {(U;, f!)} (as remarked after Definition
5.6.3, we may assume that the underlying open coverings of X are the same),
we get transition functions

on Uz ﬂUj.

R S
i — Y
(%] f]/ ]¢j

with ¢; = ;—{ € O*(U;), and we therefore get isomorphic line bundles.
If D and D’ are divisors with defining functions f; and g;, resp., then D — D’
is defined by f;g, ! and hence

ID- D)= [D]@ D] .

Therefore, we obtain a group homomorphism.
If D = (g) for a nonvanishing meromorphic function g on X, then D is given
by the datum {(X,¢)}, and thus [D] is given by the transition function 1 for
any open covering of X, hence trivial. As D — [D] is a group homomorphism,
we conclude that if D and D’ are linearly equivalent, then [D] = [D’].

Let now L € Pic(X) be given by transition functions g;; € O*(U; N U;).
Then there exists some f; € M*(U;) with fi|v,nv, = g12. Having defined

fi, we find f,'+1 S M*(Ui+1) with .fi+1|UiﬂUi+1 = % Since the 9ij satisfy
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(5.6.2) and (5.6.3), the collection {(U;, f;)} defines some divisor D with [D] =
L, and D is determined up to linear equivalence. Finally, the line bundle L
with transition functions g;; is trivial (as an element of Pic(X')) if and only
if there exist ¢; € O*(U;) with

gij:@ on all U; N Uj;.
;
If D, given by {(U;, f;)}, satisfies [D] = L, then
fi Pi
=g = — on U; NU;,
fi 7Y ey ’
and hence % = i—;, so that we can define a global meromorphic g with

D = (g) by requiring
f= fi on each U;.
i
Therefore, if [D] is trivial, then D is linearly equivalent to 0.
This concludes the proof. a

Definition 5.6.5 Let L be a line bundle with transition functions g;;. A
meromorphic section h of L is given by a collection {h; € M(U;)} of mero-
morphic functions on U; satisfying

hi = gijh; on U; NU;. (5.6.5)

If U is open, and if all h; are holomorphic on U N U;, the section is called
holomorphic on U.

We observe that the quotient h/h’ of two meromorphic sections is a mero-
morphic function on U. Likewise, if h and h’ are holomorphic and A’ has no
zeroes on U, then h/h’ is a holomorphic function on U. In particular, if L
admits a holomorphic section ¢ without zeroes, then L is a trivial line bundle:
We have g;; = %‘_17 and 1 is the transition function for the trivial bundle,
compare (5.6.4).

For a meromorphic section h of L, Z—] € O*(U;NU;j) for all ¢ and j, and thus
for each z € ¥

ord,h := ord,h;, if z € U;,

is well defined.
Therefore, a meromorphic section h of L defines a divisor

(h) := Z(orsz h)z,,

where the summation is over all zeroes and poles of h. We observe that h is
holomorphic if and only if () is an effective divisor.
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Theorem 5.6.2 Let D be a divisor on X. Then the line bundle [D] has a
meromorphic section h with (h) = D. Conversely, for any meromorphic sec-
tion h of a line bundle L, L = [(h)]. Thus, the meromorphic sections of [D)]
correspond to the divisors that are linearly equivalent to D.

In particular, L is the line bundle associated with an effective divisor if and
only if it admits a global nonconstant holomorphic section. Thus, the holo-
morphic sections of [D] correspond to the effective divisors linearly equivalent
to D, that is, to the meromorphic functions g with D + (g) > 0.

Proof. If D is defined by

fi
then {f;} defines a meromorphic section f of the line bundle [D], recalling
that [D] has transition functions g;; = Jf—; Obviously, (f) = D.
If, conversely, L is given by transition functions g;;, and if {h;} defines a
meromorphic section h of L, then L = [(h)], since

The second-to-last claim was already observed before the statement of the
theorem, and the last one then is a consequence of the rest of the theorem
and the definition of linear equivalence of divisors. a

We have thus established a correspondence between divisors and mero-
morphic sections of line bundles.
In the above geometric interpretation of line bundles, a meromorphic section
of L associates to each z € X an element of {2} x (CU{o0}), the closure of the
fibre over z. The transformation property (5.6.5) was required to make this
compatible with the identification of fibres over U; and U, via the transition
functions g;;. We also remark that in this interpretation a trivial line bundle
is considered as X' x C, and it consequently has only constant holomorphic
sections. This, however, can also be seen directly from the definitions.
For a line bundle L, we define

h°(L) := {h holomorphic section of L}.
A direct consequence of the preceding theorem then is
Corollary 5.6.1 For a line bundle L = [D]

h%(L) = h°(D).
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Definition 5.6.6 Let L be a line bundle over X with transition functions
gi;j- A Hermitian metric A? on L is a collection of positive smooth real valued
functions A? on U; with

A2 = NgijAgi;  onU;NUj. (5.6.6)
Definition 5.6.7 Let L be a line bundle on ¥ with Hermitian metric A\2.
The first Chern form of L w.r.t. A2 is defined as

1 92
L) = — log A7 dz A dz 6.
c(L, A7) 5 920 08N dz N dZ on U, (5.6.7)
Because of the transformation formula (5.6.6) and the fact that g;; € O*(U;N

U;), c1(L, A?) is well defined.

Lemma 5.6.1 The cohomology class defined by c1(L,\?) is independent of
the choice of Hermitian metric on L. It is denoted by

ci(L) € H*(X,0) (5.6.8)
and called the first Chern class of L.
Proof. If another metric 12 is given by local functions p?, then

A2

2

5 = on U;
2 My

is a globally defined positive function on Y. Then
2

1 0 _ 1
c1 (L,)\Q) —c1 (L,,uQ) = %828210150 dz/\dz:d<

0 _

is exact. O

Theorem 5.6.3 Let D be a divisor on X. Then the first Chern class c1([D])
1s Poincaré dual to D in the sense that

/ ¢1 ([D]) = deg D. (5.6.9)
X

Proof. We first observe that if L and L’ are line bundles with metrics \?

and p?, resp., then ‘;—2 defines a metric on L' ® L™, and for the Chern forms
we then have

2
c1 (L/ ® L7, /;2) =c (L’,,uQ) —a (L, )\2) . (5.6.10)

Since D — [D] is a group homomorphism (Theorem 5.6.1), it therefore suf-
fices to treat the case
D= 21,
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i.e. where D is given by a single point with multiplicity one. Let, then, h be
a global holomorphic section of [D] = [z;] vanishing precisely at z; (to first
order) (cf. Theorem 5.6.2). We let B(r) be a disk in a local coordinate chart
with center z; and radius r.

Then, equipping [D] with A2,

/ r([D]. ) = lim er([D], A2)
x =Y JS\B(r)

ol a
r—0 271 S\B(r) 020%Z

log A% dz A dz.

For a section s of [D], given by s; on U;, we put
Is|* := A2s;5; on U,

A? representing A? on Uj. It follows from the transformation rules for A* and
s that |s|? is well defined, since

/\?Sigi = )\?Sjgj on U; N Uj.
Then
1 02 1 0? 9
— log\2 dz dz = — log |h|” dz dz
2mi S\B(r) 8285 08 = 2mi /E\B(T’) 8285 Og| | 6%

since h is holomorphic and nonzero on X\B(r). While %22 log A? is well
defined on Y, in general this is not the case for % log \2. |h|2, however, is
globally defined on X\ B(r), and therefore, we can integrate by parts to obtain

1 i
2mi X\B(r) 020%

1 ) )
log [h|? dz dz = — ~log |n|* r db
oxlhf dzdz= o [ oalnl® s

using polar coordinates on B(r).

Now

i h|? = A2hi\hi, assuming B(r) C U;, U;open),

(i) | i g

ii lim, _g 2 1og A2 r df = 0, since A? is positive,
OB(r) or % v

(iii) lim, .0 faB(r) % log h;  df = lim,_.g faB(r) % log \h; r df = 2,
since h; has a first order zero at the center of B(r).
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Altogether, we obtain

/Ecqum =1,

which is the formula we had to show. O

Remark. We see from the preceding result that we may define the degree of
a line bundle L on X as

deg(L) := / c1(L).
=
Then, for a divisor D,
deg ([D]) = deg D. (5.6.11)
The proof of Theorem 5.6.3 yields an alternative way to see Lemma 5.4.2:
Corollary 5.6.2 Let L be a line bundle of deg L < 0. Then L has no non-
trivial holomorphic section.

Proof. Let h be a holomorphic section with zeroes pi,--- ,pg. Take small
balls B(p;,r) as in the proof of Thm. 5.6.3.
We compute

! / o log A2z A dF — — / o log |h|?dz A dz
271 020z o8 “Rdz= 271 020z o8 =z
k X B(pj,r
2\ U Blwsr) ‘Ut
j=1 A
As 7 — 0, the lhs tends to deg L, whereas the rhs tends to ) ord, h >0,
j=1
by the proof of Thm. 5.6.3. a

The preceding concepts allow the reformulation of the Riemann-Roch
theorem in terms of holomorphic sections of line bundles:

Corollary 5.6.3 Let L be a line bundle on the compact Riemann surface
X of genus p. Then the dimension of the space of holomorphic sections of L
satisfies the relation

RO(L) =degL—p+1+h°(K® L")
where K, as always, is the canonical bundle of X.

Proof. (From Theorem 5.4.1 and the identifications observed in Theorems
5.6.1 and 5.6.2 and (5.6.10). O

Let us discuss some examples to remind ourselves of this fundamental
theorem and to check the consistency. When L is the trivial line bundle
we know from our previous discussion that deg L = 0, and also h°(L) = 1
since the holomorphic sections are the constants. The Riemann-Roch theorem
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then yields h°(K) = p. Taking now L = K in Riemann-Roch, we obtain
deg K = 2p — 2. Of course, this is not a new derivation of this result already
obtained in Lemma 5.4.4 because that lemma had been used as an ingredient
in the proof of Riemann-Roch.

We now want to interpret some of the constructions of § 2.3 and § 2.5
in the light of the preceding results. For this purpose, we also need to con-
sider transformation properties of line bundles, metrics, etc. w.r.t. sets that
are open in the standard topology on Y, but not necessarily in the Zariski
topology.

We first look at a canonical divisor K, the divisor of a holomorphic 1-form
a = ¢1(21) dz1, 21 being defined in a coordinate chart O;. In a different local
coordinate chart Os, with coordinate zo,

o = ¢2(2’2) dZQ.

Thus 5
¢1(zl) = ¢2(22> 3722 in O1 NOs.
21

Therefore, the transition function for the canonical bundle [K] w.r.t. coordi-
nate transformations is

822
= — f. (5.6.5).
912 921 C (5 6 5)

A Hermitian metric on [K], given by A? on O;, then has to transform via

_ —1
A2 = A2 (gigii) . cf. (5.6.6).

We then define the holomorphic tangent bundle 7"% of X as the inverse of
the canonical bundle:
7'y .= [K]'.

A Hermitian metric on 7”X then has to transform with %%' This is pre-

cisely the transformation behaviour of a conformal Riemannian metric on X
as defined in Definition 2.3.1.
We also recall that if A\?(z)dzdz is such a metric, its curvature is

2 92
K=—-= log \?
N2 920z B
cf. Definition 2.3.4. We thus observe
1 92
) = — log\? dz Adz
a(l'¥) =52 5 57 log A" dzndz
1
=——— KX\ dzAdz.

47i
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The Gauss-Bonnet theorem, Corollary 2.5.6, then says

~1
2-2p=— KX dz Adz = / c1(T'Y) = deg T’ = — deg[K]
X X

i
(cf. Lemma 5.4.4).

Let us conclude this section with a simple example:
We consider the Riemann surface

5% = {(z1,22,23) ER®: 2] + 23+ 23 =1}
with the Zariski open sets
Uy = S*\ {(0,0,1)}, Uy = S*\ {(0,0,-1)} asin§ 1.1,

and the divisor
D =(0,0,1)

with deg D = 1. '
We also choose the local coordinates z; = rlljﬁ on Uy, 29 =
as in § 2.1. In these coordinates, D is defined by

f1:10nU1, f2=20nU2.

(The point (0,0, 1) corresponds to z; = oo and z3 = 0.)
The associated line bundle [D] then has transition function

1
g12 = — on Uy NUsy in these coordinates.
z
We may equip [D] with a Hermitian metric by putting

1
AN =14z% M=1+ e in our coordinates.

On Uy, the first Chern class ¢; ([D]) then is given by

1 11
— —_log (1+]2P) dendz= -—— ——.
2 90z 08 (1 1EF) dendz = o o

‘We have

1 e 1 2
/ cl([D]):—,27r/ —_Zyan
52 2mi o (1+7r2)”1

using polar coordinates with r = |z|,
1

SN
o (I+s)
=1

which coincides with deg D as it should be.

] 7i1122
x3 1+x3

231

on U,
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On S? with the preceding local coordinates, we also consider the mero-
morphic 1-form 7 that is given by
dz
-t on Ul.
zZ1
Since the transformation for the local coordinates is zo = % (see § 2.1), n is

also given by

dZQ
—= on Us.
22

Therefore, a canonical divisor K is obtained as
(77) = _(07 0, _1) - (0707 1)'

The holomorphic tangent bundle 77,52 then is the line bundle defined by the
divisor

E = (0,0,—1) + (0,0, 1).

(From the preceding computation, we conclude that

[ =2 [ ap) -2

which again agrees with the result that the general theory requires.
Of course, we may also consider the meromorphic 1-form that is given by dz;

on U; and by % on Usy. Then (n) is linearly equivalent to (w), namely
2

with the meromorphic function f given by z; on U; and by i on Us, and
also
(w) =-2(0,0,1).

In particular, we also have
E-2D = (f).

This again confirmes the formula for [g, ¢1([K]™") computed above.

Exercises for § 5.6

1) Interpret the Riemann-Hurwitz formula (Theorem 2.5.2) in terms of the
constructions of this section.
Hint: If f: 3y — X5 is a holomorphic map between compact Riemann
surfaces, and if « is a holomorphic 1-form on X5, then f*« is a holo-
morphic 1-form on Y. Relate the divisor (f*«) and the divisor f*(«),
the preimage of the divisor of a.
(Note that the same exercise was already asked in § 5.4. Compare your
present answer with the previously given onel!)
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5.7 Projective Embeddings

We begin by introducing complex projective space P%; it is the space of com-
plex one-dimensional subspaces of C?*!. Such a subspace L is uniquely de-
termined by any one Z € L\{0}, so that

P! = {[Z]: Z e CT\{0}, Z ~ \Z}, (5.7.1)

i.e. we identify Z and AZ (A € C\{0}).
One usually considers on P? the so-called homogeneous coordinates

Z=1(Z,....74);

here, the Z; should not all vanish, and Z is identified with AZ = (AZy, ...,
AZg) for all A € C\{0}. Hence, on the subset U; := {(Zy,...,Zq) : Z; # 0}
of P4, we may divide by Z; and obtain a bijection

(% Zia | Zun Zi) _ (% Zia Zin Za
3 Zi,..., Zi , 1, Zi ,...,Zi : Zi,..., Zl s ZZ ,...,Zi .

The coordinates defined by the u; are called euclidean coordinates. The coor-
dinate transformations u; oui_1 are holomorphic on their domains of definition
u;(U; N U;) (which are open sets in C%). Hence P? can be made a complex
manifold.

It can also be seen that P! is just the Riemann sphere. Namely, for d = 1,
we have the coordinate charts

U()ZUOZ{(ZQ7Z1)ZZO7£0}—>(C

and
U12U1 :{(Zo,Zl)ZZ1 750} — C

Zy
20,2 —
( 05 1) = Z17

and the transformation between them is given by

_1 1
UL O Uy 2> —,
z

and so we recover the representation of S? obtained in § 2.1.

For all d, P? is compact, since we have a continuous map of the unit sphere
in C?*1 onto P,
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Let now X be a compact Riemann surface of genus p, and K its canonical
divisor.

Suppose p > 0, and let a1, ..., a, be a basis for H°(X, 21). By Corollary
5.4.3, the «; do not all vanish at any point of X, hence we get a well-defined
map

ix: X —Pprt

by writing the «; locally as a; = f;dz and setting
i = (fi(z),..., fp(2)). (5.7.3)

This map is well-defined independently of the choice of the local charts, since
all the f;(z) get multiplied by the same (non-zero) factor when we go to a
different local parameter, so that the point i (2) remains the same in PP~
The map if is called the canonical map of X, and its image ix (X) C PP~!
the canonical curve.

We now wish to investigate the conditions under which ix will be an
embedding. It is not hard to see that iy is injective precisely when, for any
two distinct 21,20 € X, there exists « € H(X,2') such that a(z1) = 0,
a(z9) # 0. Similarly, ix will have maximal rank at z € X precisely when
there exists an o in HY(X, ') for which z is a simple zero.

Hence i is an embedding precisely when, for any two not necessarily distinct
points 21,29 € 3,
hO(K — 2 — 29) < h°(K — 21). (5.7.4)

Now we know already by Corollary 5.4.3 (since p > 0) that
RO(K —2) =p— 1. (5.7.5)
On the other hand, the Riemann-Roch theorem yields
RO(21 + 29) =2 —p+ 1+ hO(K — 2, — 29). (5.7.6)
Hence (5.7.4) is equivalent to
RO(z1 4+ 22) = 1 (5.7.7)

(recall that h®(D) > 1 for D effective). And (5.7.4) fails, i.e. h%(K — 21 — 2)
= h%(K — z,) = p — 1, precisely when

RO (21 + 29) = 2. (5.7.8)

But (5.7.8) means precisely that there exists a non-constant meromorphic
function g with
(9)+21+22>0, (5.7.9)

i.e. g has at the most two simple poles or one double pole (according as
z1, 22 are distinct or not). In any case, such a g exhibits X' as a (branched)
holomorphic two-sheeted covering of S? via the map g : X — S2.



5.7 Projective Embeddings 235

Definition 5.7.1 A compact Riemann surface X' of genus p > 1 which
admits a two-sheeted holomorphic map ¢ : X — S?2 is said to be hyperelliptic.

Remark. Riemann surfaces of genus one are called elliptic; they always ad-
mit a two-sheeted map to S2.

In order to construct projective imbeddings for hyperelliptic surfaces as well,
we consider instead of K the divisors mK, m > 2. As in the proof of Corollary
5.4.1, we see that, quite generally,

RP(mK)=0, p=0 (5.7.10)
RO(mK)=1, p=1 (5.7.11)
R(mK)=(2m—1)(p—1), p>2,m>2. (5.7.12)

We have also seen that, if p > 1, then there exists for each z € X an « €
HO(X, Q') with
a(z) #0. (5.7.13)

And then a™(z), defined locally by f™(z)dz" if a(z) = f(z)dz, is a so-called
m-~canonical form, with divisor

(a™) =mK. (5.7.14)

Thus, for each z € X' there also exists an m-canonical form which does not
vanish at z. (Remark. A 2-canonical form is just a holomorphic quadratic
differential.) Now let (51,...,0k (K = (2m — 1)(p — 1)) be a basis for the
vector space of m-canonical forms. Then, by what has been said above,

imp : X — PR (5.7.15)

ImK = (ﬁl(z)a s ,ﬁk(Z))

gives a well-defined map. The condition that i,,x be an embedding is, as
before, that
RO (mK — 21 — 2z9) < h® (mK — 21) (5.7.16)

for all (not necessarily distinct) 21,20 € X.
We know already that

R (mK — z1) = h° (mK) — 1, (5.7.17)
since not all m-canonical forms vanish at z;. Also

deg (MK — 21 — z9) =m(2p —2) — 2. (5.7.18)
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Hence by Riemann-Roch

RO (mK — 2y — 2) (5.7.19)
=m2p—2) —2—p+ 1+ (—=(m — 1)K + 2, + 20).
Thus, if (5.7.16) fails, i.e.
RO (mK — 21 — 20) = h? (mK — z1) = 2m — 1)(p — 1) — 1, (5.7.20)
then (5.7.19) yields:
Y (—=(m — 1)K + 21 + 2) = 1,
hence by Lemma 5.4.2
deg (—(m — 1)K + z1 + 2z2) > 0,

i.e.

deg ((m — 1)K — 21 — z2) <0. (5.7.21)

This is equivalent to
(m—-1)2p—-2)—2<0,

e (m—1)(p—1) < 1. (5.7.22)

Since we are assuming m > 2, p > 2, this happens only if
m=2 p=2 (5.7.23)
Thus we see that, if p > 2,
igr 1 X — POPO
is always an embedding.
We can now state:

Theorem 5.7.1 FEwvery compact Riemann surface admits a (holomorphic)
embedding in a complex projective space. In fact, a surface of genus zero is
biholomorphic to Pt, a surface of genus one can be embedded in P?, and a
surface X of genus p > 2 can be embedded by the tri-canonical map isx in
P5P=6. If ¥ is not hyperelliptic, then the canonical map ix embeds X in PP~1,

Proof. Only the case p = 1 remains to be treated.
Fix any zo € X. Since p = 1, we know deg K = 0, hence

R° (K —229) = h° (K — 2) = 0. (5.7.24)

Hence
R0 (2z9) = 2

by Riemann-Roch. Hence there exists a non-constant meromorphic function
g on X, holomorphic on X\{zp}, with a pole of order two at zp.
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As we have seen already, because h?(X, 1) = 1 and deg K = 0, there
exists a holomorphic 1-form « on X which has no zeroes at all.
Consider the meromorphic 1-form ga. This is holomorphic on X\ {2y}, hence

Res,, (ga) =0

by Lemma 5.3.1. Fixing a local parameter z around z (vanishing at zp), we
may, by replacing g by ag + b, a,b € C, if necessary, assume that g has the
Laurent expansion

1
gzz—2+a12+---. (5.7.25)
We now consider the meromorphic function
dg
o~

Since « has no zeroes, % is also holomorphic on X\{zp}, and has a pole of

order three at zg. Hence for suitable constants cq, co, c3 we can ensure that
d
g = C1£ +c2g +c3
@
has the Laurent expansion
, 2
We can now define a map
i:X —P?
i(2) = (1,9(2),9'(2)).-

(Near zg, we think of i as the map i(z) = (23, 2%g(2), 23¢'(2)).) We claim that
i is an embedding. First observe that 1,¢,¢’ € L(D), where

D = 32’0.

In fact they span £(D), since h®(D) = 3 by Riemann-Roch, and 1, ¢, ¢ are
obviously linearly independent. Again by Riemann-Roch we can check the

condition
hO(D—Zl—Zg) <hO(D—21)

which ensures that ¢ is an embedding.
This completes the proof of Theorem 5.7.1. a

We wish to draw a corollary of the above proof for surfaces of genus one.
With the notation of the proof of Theorem 5.7.1, we compute

g2 =42 +y22+ (ac1z7 H+ag+ ) (5.7.27)
9(2)° =2ty P sz 4 (boiz +bo+-00) . (5.7.28)
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Hence the meromorphic function

9'(2)? = 2729/ (2) — 49(2) + (473 — 1) 9(2),

which is holomorphic on X'\{z,} and has a pole of order < 1 at zp, must
reduce to a constant (otherwise we would have a holomorphic map X — S2
of degree one).

Thus (X)) can be described by an equation of the form

vV ey =4z 4+azx+0b
(c= -2y, a=7v —4vy3; = %, Yy = % inhomogenous coordinates in P?).
By affine coordinate changes in z and in y, we can reduce this to

y? =23 +ax +b, (5.7.29)

or even

v =z(z—1)(x —N\) (5.7.30)

since two of the roots of the right side of (5.7.29) may be assumed to be 0
and 1 by a further linear change of coordinates.
Thus we have proved:

Theorem 5.7.2 FEvery compact Riemann surface of genus one is the set of
zeroes of a cubic polynomial

v =z(x—1)(x —N), MAeC\{0,1}
in P2. O

We now want to show that every compact Riemann surface can even be
embedded in P3. For this purpose, we first make some remarks about the
geometry of P?. We begin by observing that the non-singular linear trans-
formations of C4*! induce transformations of P%: A = (a;5), i,j =0,...,d,
det A # 0, operates by

d d
(ZO7 ey Zd) — (Z aiOZi7 ooy ZaidZi> .
=0 =0

Obviously these transformations operate transitively on P¢, and are the
higher dimensional analogs of the Mdbius transformations on S2.
Now let py be any point of P%. After a linear transformation, we may assume

po = (1,0,...,0). (5.7.31)
Then we can project P?\{po} onto a subspace P4~

p=(Zo,...,2q) = (Z1,...,2q) € P41,
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Clearly this map is well-defined for p # pg.
Further, given two distinct points

p=(25,....25), p2=(23,....23)

of P4, there exists a unique “line” (i.e. a subspace of P? isomorphic to P!)
containing p; and ps, namely

{(NMZ5 4+ AZ,.. ., MZ5 + A Z]) : (A1, A2) € C\{0}}.

Similarly, for every p € P? and every tangential direction at p, there is a line
through p in that direction.
Suppose now that X is a Riemann surface embedded in P? (also briefly called
a “nonsingular curve” in P?). For distinct points p and ¢ on X, the line
through p and ¢ is called the secant of X' determined by p and g. Similarly,
the line through p € X which is tangential to X at p is called the tangent to
X at p.
Now suppose py € P? is contained in no secant or tangent of ¥, and let 7 :
P9\ {po} — P9~1 denote the projection defined above. Then 7|5 is injective
and has maximal rank everywhere on Y. Indeed, the injectivity is clear. Also,
7|x has maximal rank at p € X precisely when the line through pg and p
intersects X transversally at p, i.e. is not tangent to X at p.

We can now easily prove

Theorem 5.7.3 FEvery compact Riemann surface X can be embedded in P3.

Proof. By Theorem 5.7.1, X can be embedded in some P?. The union of all
secants and tangents of X has complex dimension < 3. Thus, if d > 4, we can
always find pg € P? through which no secant or tangent of X passes. Hence
we can project from pg to P?~!, and obtain an embedding of X in P41, We
can repeat this procedure till we get an embedding in P3. a

To conclude this section, we note:

Theorem 5.7.4 FEvery compact Riemann surface of genus p can be repre-
sented as a branched covering of S* (=P') with at the most p + 1 sheets.

Proof. For any zy € X, consider the divisor D = (p + 1)zp. Then, by
Riemann-Roch,

(D) >2 .
Hence there exists a non-constant meromorphic function g : X — S? with
only one pole, of order < p + 1. a

In many cases, the minimal number of sheets is obviously less than p+ 1.

We have seen for instance that hyperelliptic surfaces (which exist in every
genus) can be represented as two-sheeted coverings of S2.
Theorem 5.7.4 says in particular that every abstract Riemann surface has a
concrete realisation as a ramified covering of S2. The number of branch points
(counted with multiplicity) can be calculated from the Riemann-Hurwitz for-
mula.
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Exercises for § 5.7

1)  Let h: X — X be a conformal self-map, different from the identity, of a
compact Riemann surface X' of genus p. Show that i has at most 2p+ 2
fixed points. (Hint: Consider a meromorphic function f : X — S? with
a single pole of order < p + 1 at some zy which is not a fixed point of

h, and study f(z) — f(h(z2))).

5.8 Algebraic Curves

Let ¥ again be a compact Riemann surface, and z = z(w) a non-constant
meromorphic function of degree n on 3. By Theorem 5.7.4, there exists for
example such a function z for some n < p+ 1, p = genus of X.

Let f be any other meromorphic function on X. We remove from S? the point
z = 00, the z-images of the branch points of z and those points whose inverse
images by z contain poles of f. Let S’ denote the punctured sphere thus
obtained. Then each point in S’ has n distinct inverse images under z, say
w1, ..., Wy, and the f(w;) are finite. Hence we can form the v-th elementary
symmetric function of the f(w;):

oy(2) = (=1)" Z f(wny) - f (wn,).
1<n;<---<n,<n
Then we have

Theorem 5.8.1 Let z = z(w) be a meromorphic function of degree n on a
compact Riemann surface X, and f any other meromorphic function on X.
Then f satisfies an algebraic equation

P 4@ et 01 (2)f + () = 0 (5.8.1)
of degree n, where the o, v=1,...,n are rational functions.

Proof. We use the notation of the discussion preceding the theorem. Con-
sider first a point z € S’. Since the 0, (z) do not depend on the order in which
the w; are taken, they are well-defined on 5’.

Consider now the polynomial

P(z,z) = 2™ +o1(2)2" 4+ -+ 0,(2) (5.8.2)
“ L f )

(by definition of the o). It is clear that
Pz, f)=0 (5.8.3)

over S’.
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It is clear that the o, are holomorphic on S’; since z is locally biholomor-
phic over S’, and f is also holomorphic over S’. We claim that the singularities
of the o, at the (finitely many) points outside S’ are at worst poles. Indeed,
if 20 ¢ S, then for kK = maximum of the orders of the poles of f lying over
20, it is clear that (2 — 2°) f is holomorphic at each w € ¥ with z(w) = 2°.
It follows that (z — 2°)*"¢, (for example) is bounded, hence holomorphic at
2o as well. (If 2° = oo, we must argue with z=! instead of z — 2Y.) It follows
that the o, are meromorphic functions on S2, hence rational functions. Of
course (5.8.3) continues to hold over S\S’ as well. O

Theorem 5.8.2 Let z = z(w) be a meromorphic function of degree n on X.
Then there exists a meromorphic function f on X for which the polynomial
P(z,x) of degree n constructed above (cf. (5.8.1) and (5.8.3)) is irreducible,
i.e. is not the product of two polynomials of degrees > 0 with rational functions
as coefficients.

Proof. Let 2° € S% be such that z7!(2°) consists of n distinct points
wf, ..., wd of X.

By the Riemann-Roch theorem, there exists for each p € {1,...,n} a
meromorphic function g, which has a pole at w2 and zeros at all the w?\,
X # p. (Of course g, will in general have further zeros and poles as well.)
In order to obtain an example of such a g,, one simply takes the divisor
D= (p+n—1)w)—37,,,w} in Thm. 5.4.1. Then deg D > p, and therefore
there exists a meromorphic function with zeroes at the w§ (A # u) and a pole
of order > n —1 at wg, since wg is the only point where a pole is permitted.
Now choose n distinct complex numbers cq, ..., c,, and set

f(w) = (Z C#g#(w)> / <Zgu(w)>-

Then f is a meromorphic function on X with
f(wy) = e,

so that f takes distinct finite values at the wg.
We shall now show that the polynomial P(z,z) corresponding to this f
is irreducible. Suppose if possible that

P(Z,.’t) = Pl(Z,SU) : P2(Zax)

Then Pi(z, f) - Py(z, f) = P(z,f) =0 on X, hence Pi(z, f) =0or Py(z, f) =
0. Let us suppose that Pi(z, f) = 0. We can find a point 2! in S? arbitrarily
close to 2z which is not a pole of any of the coefficients of Py(z,z). The
function f still takes n distinct values over z! by continuity, and these will
be roots of the polynomial P;(z!,z). Hence deg P, = n, and deg P> = 0, so
that we have proved the irreducibility of P(z,z). O
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We now recall that, conversely, given any irreducible polynomial
P(z,x) = 2" + 51(2)2" "t + -+ 5,(2)

with rational functions s, (z) as coefficients, one constructs in classical func-
tion theory an associated Riemann surface. (In fact this idea, which goes
back to Riemann, was the starting point of the whole theory). We shall only
briefly sketch the procedure here, and refer the reader to [Al] for details.
As before, one first discards from S? the poles of the s,(z) and also the
points where the discriminant of P(z,z) vanishes (i.e. the points 2z’ at which
the equation

P(Z,z)=0 (5.8.4)

has fewer than n distinct roots). Let us denote the sphere punctured in this
way again by S’. Then, in a neighborhood of each z° € §’, we can find n
different function elements, f1(2),..., fn(2), all of which satisfy the equation

P(z, fu(2)) = 0.

Each f,(z) can be analytically continued along every curve in S’; by the
monodromy theorem, the element contained by continuation depends only on
the homotopy class of the curve in S’, and continues to satisfy the equation
(5.8.4). Thus all these function elements can be put together in a natural
way into a Riemann surface. This Riemann surface will be an unbranched
n-sheeted covering of S’. To obtain a compact Riemann surface, one has only
to study what happens around the excluded points of S. It turns out that
the function elements around such a point 2’ can be expanded in a Laurent
series (with at the most finitely many negative powers) in (z — 2/)*; here k
is an integer, 1 < k < n. (Such a series is also termed a Puiseux series.) The
points where k > 1 will be branch points of the completed Riemann surface
lying over S2.

We now return to our Riemann surface X' (of Theorem 5.8.2), on which,
given the meromorphic function z of degree n, we found a meromorphic
function f satisfying as irreducible equation P(z,z) = 0 of degree n. It is
now easy to see that X' is bijective with the Riemann surface corresponding
to the irreducible equation P(z,x) = 0. This is clear over S’ (the subset of S?
over which there are no branch points of z : ¥ — S$2), since different points
of X over S’ yield different function elements (z, f) satisfying P(z,z) = 0.
This bijection is in fact conformal since (over S’) both Riemann surfaces are
unbranched holomorphic coverings. Indeed, at any w € X with z(w) = 2°, we
can take (z — zo)% or z=% for some k, 1 < k < n, as a local parameter at w,
and this is also a conformal parameter on the Riemann surface constructed
from the algebraic equation. Thus X is in fact conformally equivalent to
the Riemann surface constructed from the irreducible equation P(z,2) = 0
satisfied by f.
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We have thus proved:

Theorem 5.8.3 Fuvery compact Riemann surface X can be represented as
the Riemann surface of an irreducible algebraic equation

P(z,z) =0. (5.8.5)

More precisely, for any non-constant meromorphic function z(w) on X, we
can construct a meromorphic function f(w) as in Theorem 5.8.2, and then

the ma
g w = (2(w), f(w))

is a conformal bijection of X onto the compact Riemann surface associated
to the irreducible equation satisfied by f (over the field of rational functions
inz). O

Thus the abstractly defined Riemann surface (cf. Definition 2.1.2), as intro-
duced and studied by Klein and especially Weyl following Riemann’s original
concrete construction of Riemann surfaces, has again led us back to the idea
which inspired Riemann, and the circle is complete.

Theorems 5.7.1 and 5.8.1 have the following consequence:

Theorem 5.8.4 Fuvery compact Riemann surface X can be represented as
an algebraic curve, i.e. X can be holomorphically embedded in some P?, and
the image of X can be described by algebraic equations.

Proof. In the proof of Theorem 5.7.1, X' has been embedded into some
P? via a canonical (or a 3-canonical) map, i.e. by holomorphic differential
forms of type f(2)dz (or f(z)dz3, resp.). The quotient of two such forms is
a meromorphic function, and thus the embedding is given by d meromorphic
functions on Y. By Theorem 5.8.1, any two of these meromorphic functions
are related by an algebraic equation

Pz, f) = 0.
The collections of these equations then describe the embedding. d

Remark. (d — 1) algebraic equations actually suffice to describe a compact
curve in P%. The argument of the preceding proof does not yield this minimal
number, however. Although selecting one meromorphic function z(w) among
the ones describing the embedding and taking the (d — 1) equations

P(Z’f):O

satisfied by the other meromorphic functions defines a curve in P4 containing
the given one, in general this curve may contain other irreducible components.
In order to see this, consider the embedding

t (t,1%,1%)
C—C° = {(z,y,2)}.
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Selecting ¢? as initial meromorphic function, we obtain the equations

These equations are not only solved by the original curve, but also by the
curve

t (=t 1%,t%)
C — C3.

Corollary 5.8.1 Fwvery compact Riemann surface can be represented as an
algebraic space-curve, i.e. an algebraic curve in P3.

Proof. We have already seen that an embedding of a compact Riemann
surface in any P? leads by repeated projections to one in P3. The argument
of the proof of Theorem 5.8.4 now yields our assertion. ad

Remark. An algebraic curve in P2 is called a plane curve.

We shall now consider some examples to illustrate the above discussion. We
have seen in § 5.7 that an elliptic curve X (i.e. a Riemann surface of genus
one) can always be described by an equation

y? —a(r —1)(x — \) =0, A e C\{0,1}. (5.8.6)

Thus X becomes (via z) a branched covering of degree two of S2. Branch
points lie over x = 0, z = 1 and « = A. Since the total ramification is 4 by
the Riemann-Hurwitz formula, and since a map of degree two can have only
simple ramifications, we must have a branch point over z = oc.

In homogeneous coordinates (x,y, z), (5.8.6) becomes

yiz — 2% + (1 + N2z — \z2? = 0. (5.8.7)

Thus X will now be described by this algebraic equation in P?. But we
must still check that the curve described by (5.8.7) in P? is everywhere non-
singular. For this, we must check that the partial derivatives of

P(z,y,2) = y*z — 2® + (1 + N2z — A\z2?

do not all vanish at any point of Y. Now

g—]; = 327+ 2(1 + Nz — \2?,
oP

= _9

8y yz?

oP

e y?+ (1 + N)z? — 2\zz,
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and these three expressions have no (non-trivial) common zero, since A # 0, 1.
For purposes of comparison, we also consider a curve X of the form

2 — (=A@ =) (x—A3)(x —M\) =0 (5.8.8)

(\; € C distinct). This curve is again a two-sheeted covering of S?. There is
ramification over the \;. The branch points have again to be simple, and the
total order of ramification has to be even (Corollary 2.5.6), hence there can
be no ramification over oo in this case. It follows from the Riemann-Hurwitz
formula (Theorem 2.5.2) that the genus of X must again be one.

The equation (5.8.8) in homogeneous coordinates, namely

y222 - .734 e — /\1/\2/\3)\42’4 =0 (589)

no longer describes an embedding of X in P2, since all the partial derivatives of
the polynomial on the left in (5.8.9) vanish at (0, 1,0). This point corresponds
to the point oo of S?, and we had indeed seen already that this point should
have two different points over it in X

Let us also note that Theorem 5.8.4 is a special case of a theorem of Chow,
according to which every complex-analytic subvariety of P% can be described
by algebraic equations. The proof of Chow’s theorem is quite simple, but
naturally requires notions of higher-dimensional complex analysis, and cannot
be presented here.

We now wish to study the field £(X) of meromorphic functions on a
compact Riemann surface Y. First of all we have:

Theorem 5.8.5 £&(X) is a finite algebraic extension of the field of rational
functions C(z) in one variable over C; in fact if z € R(X) is non-constant,
then R(X) is got by adjoining an f as in Theorem 5.8.2 to C(z). Thus if
P(z,x) is the irreducible polynomial satisfied by f over C(z) (Theorem 5.8.2),
then

R(X) =2 C(2)[x]/P(z,x) (5.8.10)

under the map f < x.

Proof. With the notation of Theorem 5.8.2, we have a homomorphism
C(2)[z]/P(z,z) — R(X) (5.8.11)

mapping x to f, since P(z, f) = 0 by construction. Since P(z, x) is irreducible,
C(2)[z]/P(z,x) is a field; hence it is isomorphic under the above map to the
subfield L of R(X') generated by z and f over C. Clearly the degree of L over
C(z) =n =deg P(z,z) (= deg(z : ¥ — S?)), since P(z,z) is irreducible. We
know by Theorem 5.8.1 that each g € R(X) is algebraic of degree < n over
C(z). Hence we must have £(X) = L (otherwise any g € £(X)\ L would have
degree > n over C(z)). O
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A non-constant holomorphic map
h: 21 — 22

of compact Riemann surfaces induces a (C-linear) homomorphism (hence
injection)

R R(5s) — R(5)) (5.8.12)

of fields, defined by
h*(f)(w) := f(h(w)) (5.8.13)

for w € Xy, f € R(X3). From the algebraic point of view, it is thus natural to
reverse the procedure, and directly consider homomorphisms between such
function-fields.

As is clear from Theorem 5.8.5, the representation of £(X) as C(z)[z]/P(z, x)
is far from unique. Instead of z (Theorem 5.8.5) we could have chosen some
other (non-constant) ¢ € R(X), of degree m say, and then found a g € £(X)
satisfying an irreducible equation

R(C,9) =0 (5.8.14)

of degree m. And then every meromorphic function on X can also be ex-
pressed in terms of ¢ and g. In particular we will have relations of the type

Z:7‘1(<,g), fZTQ(Cag)a
n= sl(zvf)v 9= 52(2,f)7

where 71,72, 81, 8o are rational functions of two variables over C.

We shall now consider this algebraic point of view in some detail, i.e. we
shall study algebraic function-fields of one variable over C. These fields are, by
definition, finitely generated fields of transcendence degree one over C, and are
hence in fact generated by two elements. That the transcendence degree is one
therefore just means that the fields are of the form C(z2)[z]/P(z,z). And we
have just seen that such a field is precisely the field of meromorphic functions
on the compact Riemann surface determined by the equation P(z,z) = 0.

The important algebraic notion in this context is the following:

(5.8.15)

Definition 5.8.1 A (discrete, non-archimedian) valuation of a field K, (in
exponent-notation,) is a function w on K such that, for all a,b € K,

(i) w(a) € Zif a #0,

(i) w(0) = oo,

(iii) w(ab) = w(a) + w(b),

(iv) w(a + b) > min(w(a) + w(b)).

It is obvious from (i) and (ii) that w(1) =0, w(—1) =0, and w(a) = w(—a).
The following remark is sometimes useful: If w(a) # w(b), then
)-

w(a + b) = min(w(a), w(b) (5.8.16)
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Proof. Let e.g. w(a) < w(b); we must show that w(a 4+ b) = w(a). Suppose
now that
w(a+b) > w(a).
Then w(a + b) and w(—b) = w(b) are both greater than w(a), contradicting
the inequality
w(a) > min(w(a + b), w(=b)).
O

We shall first study the valuations of the field of rational functions C(z).
Note that, for all ¢ € C\{0},
w(e) =0, (5.8.17)
since w(c) = nw(c'/™) by (iii), and w(c'/") € Z.
Let us discard the uninteresting case when w(f) = 0 for all polynomials (for
then w(f/g) = 0 for all quotients as well, so that the valuation is trivial).
Then there are two possibilities:

(1) w(f) > 0 for all polynomials f,
(2) there exists a polynomial f with w(f) < 0.

In case 1), there exists a polynomial f with w(f) > 0 (since w is not trivial).
We can decompose f into irreducible factors, and then (by (iii)) we must
have

w(p) =1 wy >0

for at least one irreducible factor p of f.
We now claim that

w(g) =0

for every polynomial ¢ not divisible by p. Indeed, since p and ¢ are relatively
prime, we can find polynomials r; and 75 such that

rp+rag=1
(Euclidean algorithm). Then
w(l) = w(rip + r2q) = min (w(r1p), w(r2q))

and
w(rip) = w(ry) +w(p) > 0.

Thus, if w(q) > 0, we would also have
w(r2q) = w(rz) +w(g) > 1,

hence
w(l) >0,

which is a contradiction.
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An arbitrary polynomial ¢ can be written uniquely as
f=p"q
where ¢ is not divisible by p, and then
w(f) = mw(p) +w(q) = mwo.
Similarly, for a quotient f/g, we have
w(f/g) = w(f) —w(g).
Now, all irreducible polynomials in C(z) are of the form
p(2) =z — 2o, z0 € C;
thus, if we normalise the valuation by assuming wg = 1, then we will have
w(r)=m>0
for a rational function r if » has a zero of order m at zg,
w(r)=-m<0

if r has a pole of order m at zp, and w(r) = 0 otherwise.

In case 2), let p by a polynomial of smallest degree with w(p) < 0. Since
w(c) =0 for all ¢ € C, p must have degree > 0, so that we can write

p(z) =agz" + -+ ap, n>1, ag #0.
If n > 2, we would have
w(alzn_l +~--+an) >0, w(z) >0,
since p is a polynomial of smallest degree with negative w, hence

w(p) > min (U)(ao,z”),w(al,z"_1 +- 4 an))
= min (nw(z), w(a1z"~' + -+ a,))

>0

in contradiction to our choice of p. Hence p is again linear:
p(2) =z — 20, zo € C.
For any other linear polynomial

q(z) =z—21=(2—20) — (21 — 20),
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we still have
w(g) = min (w(p),w (21 — 20) ) = w(p),

since w(z1 — 29) = 0 > w(p) (cf. the remark above). Thus we may again
normalise w by assuming w(g) = —1 for all linear polynomials ¢, and then
we will have

w(f) = —n

for a polynomial f of degree n. We see therefore that in case 2) the valuation
w gives the order of a zero or pole at oo; it can be reduced to case 1) by a

substitution )

=G’

z =

¢ € C.

Thus we have proved:

Theorem 5.8.6 Let w be a non-trivial valuation of C(z); we may assume
(without loss of generality) that w(p) = 1 for some p € C(z). Then there
exists a unique zp € C U {oo} with

w(r) = ord,,r (5.8.18)
for all r € C(z). O

Corollary 5.8.2 Let X be a compact Riemann surface, and w a non-trivial
valuation of R(X) which is normalized in the sense that there exists some
h € R(X) with w(h) = 1. Then there exists a unique wy € X with

w(f) = ordw, f (5.8.19)
for all f € R(X).

Proof. For each f € £(X), we have a (not necessarily normalised) valuation
of C(z) induced by f:

wy(r) :=w(ro f), r e C(z). (5.8.20)
Hence there exists zy € CU {oo} and a k (= ky) € N with
wy =k ord,,r (5.8.21)

for all » € C(z) (Theorem 5.8.6).
We now choose an h € R(X) with

w(h) =1;
this is possible since w is normalised by assumption. Then clearly
wp(r) = ordor

for all r € C(2).
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By Theorem 5.8.1, every f in R(X) satisfies an equation
fr a4+ an(h) = 0;

this is because h is not a constant. Here, the «; are the elementary symmetric
functions of f(wn),..., f(w,), where wy,...,w, are the inverse images by h
(of a point of S?). Hence

Thus, if w(f) < 0, then at least one of the ordpa, must be negative. And
this means by the definition of the «, that f must have a pole at one of the
zeros W), ..., w2 of h.

If w(f) > 0, then the above argument applied to 1/f shows that f must have
a zero at one of the w?.

Now choose (as in the proof of Theorem 5.8.2) a g € £(X) which assumes
distinct values at the wy. Then, as observed above (cf. (5.8.21)), there exists
a unique z, (€ S?) such that

wy(r) = k ord,, .
Hence there exists a unique A € {1,...,n} such that

Zg = 9(“’3)

(observe that wy(z — z4) = w(g — z4) > 0, which means that g — z, vanishes
at one of the w? as shown above.) It follows that, for any f € &(X), w(f) # 0
if and only if f has a zero or a pole at w?\. Thus it remains only to verify
that w(f) is indeed just the order of f at w9.

To do this, we choose an ¢ € £(X) which has a simple zero at w§. Since
h(wl) = 0, we have

0 <w(h/l) = w(h) —w(l) =1 —w(l);

since w(¢) > 0, it follows that w(¢) = 1. The above inequality now implies
w(h/l) = 0, so that h has only a simple pole at w{. Hence, if f € &(X)
has order k at w§, then h=% - f has neither a pole nor a zero at w9, i.e.
w(h™" - f) =0, so that w(f) = k. O

As already mentioned, from the algebraic point of view one is dealing with
a finitely generated extension-field K of C of transcendence degree one. For
a valuation w of K,

Ry, ={ze K: w(x)>0tu{0}

is a subring of K; it is called the valuation ring of w. By the above considera-
tions, R, consists precisely of those meromorphic functions on the Riemann



5.8 Algebraic Curves 251

surface X' determined by K, which are holomorphic in some neighborhood of
the “place” wy € X determined by w (cf. Corollary 5.8.2). Further,

I,:={zx e K :w(x)>0}U{0},

consisting of the functions which have a zero at wy, is the unique maximal
ideal of R,,. Hence we can simply identify the place wq defined by the valu-
ation w with R,,.
We may therefore define an abstract non-singular curve as a finitely gener-
ated extension-field K of C of transcendence degree one, together with the
collection Ck of all its valuation subrings R,,. This algebraic notion has the
advantage that it can be greatly generalised: for example, we can replace C
by an arbitrary algebraically closed field k.
Incidentally, this algebraic way of looking at a compact Riemann surface goes
back to Dedekind and Weber.

As an application of the above algebraic considerations, we prove in con-
clusion:

Theorem 5.8.7 Let Yy, Y5 be compact Riemann surfaces, and
@ : R(X2) — R(Z)

a homomorphism of fields whose restriction to C is the identity. Then there
exists a unique holomorphic map

h: 21 — 22
such that, for all z € X1 and f € R(Xy),
o(f)(2) = f(h(2)). (5.8.22)

Proof. For any z € Xy, we define a valuation w, on K(X5) by

w;(f) = ord.(f), f e 8’(X,).
By Corollary 5.8.2, there exists a unique h(z) € Xy such that

w(f) = ordp(z) f

for all f € R(X3). We must show that the map h : Xy — Xy thus defined is
holomorphic and satisfies (5.8.22); that a holomorphic h satisfying (5.8.22)
is uniquely determined is obvious, since, for distinct p1, ps € Yo, there exists

g € R(X2) with g(p1) # g(p2).
We proceed to prove that h satisfies (5.8.22). Observe that, for any ¢ € C,
P = =0
ord ((f) — ) > 0
ord,p(f —¢) >0 (since ¢(c) = ¢)
ordpz)(f —¢) >0 (by definition of h)
< f(h(z))—c=0.
Thus (5.8.22) follows.

t o0
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Suppose now that h is not continuous. Then, (since Xy is compact,) we
will have a sequence (z,) € X such that z,, — 20 € X, and h(z,) — p € s,
and

p % po := h(zp). (5.8.23)

But (5.8.22) shows that, for every g € &(Xs),

9(p) = lim g (h(z4)) = lim o(g) (2n)
= ¢(9) (z0) = g (h (20)) = 9 (Po) ,

which is a contradiction since there exist g € £(X3) with g(p) # g(po). We
have therefore proved that h is continuous.

To prove that h is holomorphic, we choose for any z € X an f € K(Xs)
which is holomorphic and one-one in a neighborhood U of h(z). Then ¢(f)
is not a constant (since ¢ as a homomorphism of fields is injective, and is the
identity on C). We now choose a neighborhood V of z in X such that A(V) C
U (h is continuous), and ¢(f)(V) C f(U) (note that o(f)(z) = f(h(z)) by
(5.8.22)). Then, again by (5.8.22), we have

W)= fTop(f)z), eV

Hence h is holomorphic. ad

Exercises for § 5.8

1)  Study the hyperelliptic Riemann surface y = (x — Ay)(x — Ag) -+ (x —
Aopt1) with distinct ;. In particular, show that f = (z — A;)~! has
a pole of order two at x = A;, y = 0, and is otherwise regular (j =
1,...2p+1).

2)  Study the hyperelliptic Riemann surface y? = (z — A1)(z — A2) -+ - (z —
Aopr2) with distinct A;. As a special case, assume A; # 0 for j =
1,...2p+2 and Ajipp1 = Aj for j = 1,...p+ 1. In addition to the
hyperelliptic involution (z,y) — (z,—y), we then also have the auto-
morphism (z,y) — (—z,y). What are the fixed points of this latter
automorphism? (The answer depends on the parity of p.)

3)  Study the Riemann surface given by the equation

Y= (= )z =) (=N,

where r > 2, and Aq, ..., A\, are distinct. Compute its genus (the answer
will depend on whether » = 2 mod 3 or not). Determine the number of
fixed points of the automorphism (z,y) — (z,e>™/3y).

4)  What is the genus of the Riemann surface defined by the equation y* =
xt — 17
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5.9 Abel’s Theorem and the Jacobi Inversion Theorem

Let X be as before a compact Riemann surface of genus p, and a1,..., 0
a basis for HO(X,2'). Let A C CP be the associated period lattice, and
J(X) = CP/A the Jacobian variety of X (Definition 5.3.1).

We have already seen (Lemma 5.4.1) that the degree of the divisor of a
meromorphic function on X' is always zero. The theorem below, due to Abel,
gives a necessary and sufficient condition for a given divisor of degree zero to
be the divisor of a meromorphic function.

Theorem 5.9.1 (Abel) Let D be a divisor on X with
deg(D) = 0;

write

D =Y (z—w), (5.9.1)

v

the z,,w, € X not necessarily distinct. Then there exists a meromorphic
function g on X with

D = (g)
if and only if

(D) == (Z / ap., Y / ap> =0 mod A. (5.9.2)

Like the map j discussed in Section 5.3, ¢ is here a map
¢ :DIVO(X) — J(%),
where Div?(X) is the group of divisors of degree zero on X.

Proof. If p =0, then H°(X, ') = {0}, hence (5.9.2) is vacuous. Thus the
assertion of the theorem reduces to the known result that, on the sphere, the
zeros and poles of a rational function can be arbitrarily prescribed, subject
only to the condition that the sum of the orders of the zeros be equal to the
sum of the orders of the poles.

We proceed to the case p > 1, and first prove the necessity of (5.9.2).
Thus let

D = (9);
g € R(X)\C. Consider the map

b Pl (%)
[Xo, A1) = @ ((Aog + A1),
where [\, A1] denotes the point of P! with homogeneous co-ordinates (\g, A1).

Then 1) is continuous. Since P* = S? is simply connected, 1 lifts (by Theorem
1.3.1) to a continuous map
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QZ : Pt — CP.
Since the zeros and poles of A\og — A1 depend holomorphically on [Ag, A1]
(i.e. on Ag/A1 or A1/Ag as the case may be), all the components of ) are

holomorphic functions, hence constant by the maximum principle (cf. Lemma
2.2.1). Hence % is also constant. It follows that

p(D) = ¥([0,1]) = 0.

Thus (5.9.2) is necessary.
To prove the sufficiency of (5.9.2), we need the following:

Lemma 5.9.1 For any q1,92,...,qn € X and c1,...,¢, € C\{0} with
Z?zl c; = 0, there exists a meromorphic form of the third kind on X which is
holomorphic except at the q;, and has a simple pole at each q; with residue c;.

Remark. The proof will use the same method as the proof of Lemma 5.4.3.

Proof. We first consider a parameter disc D = {z : |z| < 1} in X, and
suppose
p,q € {z: |2| < i}. In D\{p.q}, we have the holomorphic 1-form

d d
=" = (5.9.3)
Z=p z2—4q
Note that L
0= d log p’
Z—q

and log =2 is single-valued in {z € D : [z| > 11}; hence 6 is exact there. We
now want to construct a holomorphic 1-form w on ¥\{p, ¢} such that w — 6
is holomorphic in D; thus w will be a differential of the third kind on X', with
poles only at p and ¢, of residue +1 and —1 respectively.

We choose a cut-off function n € C§°(D,R) with

n(z)=1, |z <

=l N

n(z) =0, 2| >
and 0 <7 <1, and set

alz) = {d (?7(2) log §:§) , 2€D
0, z€ X\D

Then a(z) = 6(z) for |2| < 1, and since 6 is holomorphic in {|z| < 1}\{p, ¢},
we have
*xa(z) = —ia(z)
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there. Hence
a(z) —ixa(z) =0, 2| < 4.

In particular this form is C'*° on all of X’. We can therefore apply the orthogo-
nal decomposition (5.2.16) to it:

o —ixa=wy+ dg+ xdf, (5.9.4)
with wg € H, *df € B*, dg € B. Since a —i* «a is C*, so are f and g. Set
pi=a—dg=ixa+wy++df.
Then p (like @) is C*° on X\{p, ¢}. Also,
dpy=da—ddg=0
since « is closed, and
dxpu=—-ida+d*wy—ddf =0

since wp is harmonic. Thus y is harmonic on X\{p,q}. Also, for |z| < 3,
ixa(z) = 0(z). Hence
pw—0=—dg=wo+*df

is C*° on X. Hence p — @, which is harmonic on D — {p, ¢} since p and 6 are,
is actually harmonic in D.

Hence = %(,u + 1) is a real harmonic differential, singular like d log

zZ—p ‘
z—q |’
Hence B +i% ( is a meromorphic differential with singularity d log z%z.

If now p and ¢ do not lie in the same parameter-disc, we can choose pg = p,
P1y--.,Pn = ¢ in X such that each pair (p;—1,p;), ¢ = 1,...,n, lies in such a
disc. We can then construct meromorphic forms w; on X as above, singular
like d log ((z — p;—1)/(z — p;)) in the respective coordinates. Keeping in mind
that the order of a pole and the residue of a meromorphic form at a pole are
independent of the choice of a local parameter at the pole, we see that

n
w = g wj
i=1

is a meromorphic form on X', holomorphic on X\ {p, ¢}, with simple poles at
p and ¢ (of residues +1 and —1 respectively).

We can now easily finish the proof of Lemma 5.9.1. Choose p € X\{q1, .
gn} and construct w; as above for the pair ¢; and p. Now set

ey

w = chwj. (5.9.5)
j=1

Then p is no more a pole of w, since > ¢; = 0, and the only singularities of
w are simple poles at the g; with residue c;. a
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We now proceed with the proof of the sufficiency part of Theorem 5.9.1.
Choose a canonical homology basis a1, ..., ap, b1, ..., b, for X' which avoids all
the z,, w,. By Lemma 5.9.1, there exists a differential of the third kind w on ¥’
whose only poles are the z,,w,, with residues 1/27¢ and —1/27i respectively.
(If e.g. two of the z, coincide, at { € X' say, this means that Res;w = %)
Since w is unique up to forms of the first kind, we can determine w uniquely
by requiring that

gi:/ w =0, 1<i<p. (5.9.6)
a;
(Recall that dim HO(X, 2') = p.)

Let now aq,...,q, be the normalized basis of HY(X, 2) with respect
to the chosen canonical homology basis (cf. (5.3.20)). We wish to add an
integral linear combination of the a; to w so that all the b;-periods of the
resulting form are also integers; this modification of w will of course preserve
the residues, and the a;-periods will be integers.

Since the g;, 1 < ¢ < p vanish and (o, ..., ®p) is normalised, we have by the
reciprocity law (5.3.16)

Qp+i (: A w) = Z/ZV oG — Z/wV (673 (597)
i v 20 v 20
= Z/ZV (67

where the paths of integration ¢, in the second line of (5.9.7) are suitably
composed of the paths in the first.
Our assumption ¢(D) = 0 mod A means therefore that

(Qp+17 RS Qp+p) € A7

i.e. there exists a closed path ¢ in Y, whose homology class can be written as

p
Z(miai + nibi), mg,n; € 7, (598)
i=1
such that
Op+i = /ai, 1< <p. (5.9.9)
Thus, if we set
P
wi=w — Z Ny,
k=1

then @ has a;-periods
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while its b;-periods are

Qp+z = Op+i — k/ (677
k=1 bi
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Thus all the periods of W are integers, as desired.

We can now set ;
g(z) :==exp <27Ti/ J}) . (5.9.10)
£

Then g is a well-defined (nowhere-vanishing) holomorphic function on X ex-
cept at the z,,w,, since the periods of W are integers. And ¢ is in fact mero-
morphic on X' with divisor D = ¥(z, — w, ), since

— dlog—w

has residues +1 at the z, and —1 at the w,. O

The essential idea of the above proof was that we converted the problem
of the existence of a meromorphic function with prescribed zeros and poles to
the problem of the existence of a differential of the third kind with prescribed
residues (with sum zero); thus we have first constructed @ instead of g, and
then defined g by (5.9.10). The existence of @ was proved using Lemma 5.9.1
and linear algebra (and the results of § 5.3).

Corollary 5.9.1 Let

¢ : Di’(X2) — J(X)
be the map defined above. Then p(D1) = w(Ds) if and only if Dy is linearly
equivalent to Ds. In other words, if we let Pic® be the group of line bundles of

degree 0 (cf. Def.5.6.4) which by Theorem 5.6.1 is isomorphic to Div® modulo
linear equivalence, then we obtain an injective map ¢ from Pic® to J(X).

Proof. If we note that ¢ is a homomorphism of abelian groups, this is merely
a reformulation of Theorem 5.9.1. O

We now want to show that conversely every point of J(X) is in the image
of the above map ¢; this is the so-called Jacobi Inversion Theorem.



258 5 Geometric Structures on Riemann Surfaces

Theorem 5.9.2 Let X be a compact Riemann surface of genus p, and zg €
Y. Let aq,...,q, be a basis of HY(X, 2'). Then, for every X\ € J(X), there
ezists an effective divisor D =Y " _, z, on X with

o (Z(zy - 20)> =\ (5.9.11)

i.e. for every (M,...,A\p) € CP, there exist z1,...,2, € X (not necessarily
distinct), and paths ¢, from zg to z, such that

Z/ aj=X, 1<j<p (5.9.12)

Proof. We consider the map

(p/(zp...,zp)z (Z/Zua1,...,2/zuap>.
v %0 v Y0

Thus ¢’ is a map of X x --- x X (p times) into J(X). We can compute the
differential of ¢':

D g (2 [ 2 [
82«'#80 1y---5%p) — 82# w0 17"')82# n0 P
(% Y
= (GG @)

so that the Jacobian determinant of ¢’ is

(=) - G2 (z)
det : : : (5.9.13)

() ... S2(z,)

(This should be compared to the similar expression in the proof of the
Riemann-Roch theorem; as for the notation, the same letter z denotes a
local coordinate at the various z,, and dz the corresponding local 1-form.)
Now we choose a point z; € X such that a1(z1) # 0. By subtracting
suitable multiples of o from o, ..., a,, we may assume that «;(z;) = 0 for
j > 1. Then we choose z5 € X with as(z22) # 0, and again arrange as above
that oj(22) = 0 for j > 2, while ;(21) continues to vanish for j > 1. After p
such steps, we will have found (z1,...,%,) € X' x --- x X at which the matrix
in (5.9.13) will be an upper-triangular matrix with non-zero diagonal entries.
Hence the Jacobian determinant of ¢ at (z1,..., %) will be non-singular.

Remark. The above argument also shows that, for a generic (effective) di-
visor of degree p,

(K — D) = 0;
for, as we saw during the proof of the Riemann-Roch theorem, h’(K — D) =
p — (the rank of the matrix in (5.9.13)).
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It follows from the implicit function theorem that ¢’ maps a neighborhood
of (z1,..., %) (bijectively) onto a neighborhood V of

D= (21,...,2p).

Now let X = (Aq,.. ., Ap) € CP be arbitrary. Then there exists n € N such
that

A
P+ —-€V;
n

suppose

A
o' (w,...,wp) =D+ .

Thus \ = n(¢' (w1, ..., wp) — P), so we must find (¢1,...,() € X x -+ x X
such that

O, Q) =n (@ (wr, ... wpy) — D). (5.9.14)

To do this, we consider the divisor

D' = niwy fnizy + pzo
v=1 v=1

which has degree p. By Riemann-Roch,

RO(DY=1+r"(K-D')>1
so that D’ is linearly equivalent to an effective divisor D = Y-?_ (,. Hence
(Theorem 5.9.1 or Corollary 5.9.1)

@(D" = pz9) = (D — pz).

Here (D — pzo) = ¢'((1, - - -, (p) by the definition of ¢ and ¢’. And

p

@(D' = pzo) = nyp (Z(wu —20) =Y (a2 - zo))

v=1 v=1

=n{y (w,...,wy) — B}

by the homomorphism property of ¢; thus (5.9.14) holds. O

Exercises for § 5.9

1) Discuss the theorems of Abel and Jacobi in explicit terms for a Rie-
mann surface of genus 1. In particular, deduce the case p = 1 of the
Uniformization Theorem 4.4.1.

2)  Show that every divisor of degree > p on a compact Riemann surface
of genus p is linearly equivalent to an effective divisor.
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5.10 Elliptic Curves

Definition 5.10.1 An elliptic curve is a compact Riemann surface of genus
one.

A surface of genus one is called elliptic because, as we shall soon see, it can
be uniformised by elliptic integrals.

We have come across elliptic curves several times already: in Chapter 2 es-
pecially as tori C/A, where A is a lattice in the complex plane, and again in
the preceding sections as plane algebraic curves defined by equations of the
form

v =x(x—1)(z = \), AeC\{o0,1} (5.10.1)

(or y?z = 2(x — z)(z — A\2) in homogeneous coordinates). The aim of this
section is to clarify the relations between these representations a little more
precisely.

We start out from a torus C/A, where the lattice A is generated by 1
and a point 7 of the upper half-plane H, as described in § 2.6. Meromorphic
functions on T'= C/A correspond precisely to doubly periodic meromorphic
functions on C with periods 1 and 7. We had seen in the proof of Theorem
5.7.1 that there exists on every elliptic curve a meromorphic function with
a single pole of order two at an arbitrarily prescribed point. Now, on T', we
can explicitly exhibit such a function: namely, (if we choose 0 as the pole,)
the Weierstrass p-function

weA\{0}

The fact that this indeed converges uniformly on compact subsets of C\ A is
proved e.g. in [Al].
The derivative

p'(2) = Z *ﬁ

weA

of p(z) is also a meromorphic function on T, and satisfies the equation
p'(2)* = 4p(2)° — g2p(2) — g3 (5.10.2)

with

g2=60 Y W

weA\{0}

gz =140 > w7 "

weA\{0}

(see [A1] for the calculations). The relation (5.10.2) is analogous to (5.7.37).
The equation (5.10.2) is irreducible; it follows from Theorem 5.8.5 that p and
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p’ generate the field of meromorphic functions on C/A; these meromorphic
functions are also called elliptic functions.
As in Theorem 5.7.1, it can be shown that
z— (1,p(2),p'(2)) (5.10.3)

defines an embedding of T'= C/A in P2. The image of T is then (by (5.10.2))
the plane algebraic curve defined by the equation

y? = 4a3 — gox — g3. (5.10.4)
As already discussed in § 5.7, we can bring (5.10.4) into the form
v =z(z—1)(x —\) (5.10.5)
by a linear change of the variable z; computation shows
41/3
p=s (oA,
1
g3 = 2—7(>\ +1)(2A% = 5+ 2).
We set finally
A= g5 —27g5 = N2 (\ — 1)% (5.10.6)

Thus A # 0 if and only if A # 0, 1.

On the other hand we have seen (§ 5.8) that A # 0, 1 is also the condition
for (5.10.5) to define a non-singular curve.

Since we know by the Uniformization Theorem 4.4.1 that every compact
Riemann surface of genus one can be represented as a torus C/A, we can
state:

Theorem 5.10.1 Suppose given A € C\ {0,1} or equivalently g2, g3 € C
with
A= gd— 272 £ 0.

Then there exists a T € H for which the lattice A in C spanned by 1 and
7 defines a torus C/A which is conformally equivalent to the plane algebraic
curve defined by (5.10.5) or (5.10.4) respectively. The conformal equivalence
is defined by (5.10.3).

Let us look more closely at the inverse map of the conformal equivalence
(5.10.3). Observe first that z = 0 maps under (5.10.3) to (0,0, 1). This point
will also be called the point at infinity in P? of the curve (5.10.5).

For every zg € C/A, we trivially have

20
zoz/ dz (mod A), (5.10.7)
0

the integration being along any path from 0 to any point equivalent to zgp mod
A, and the result being interpreted mod A.
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Now
_P(2)de _dp(z) _ dz
dz = D) ) ” (5.10.8)

in the notation of (5.10.4). Set therefore

(5.10.9)

B (w;y)dgi x d¢
O e

Here the first integral is along a path in the algebraic curve defined by
(5.10.4); in the second integral, this curve is being regarded as a two-sheeted
covering of the sphere, and the path of integration is a path in this covering.
An integral of this form is called an elliptic integral. The value of the
integral depends of course on the path of integration, and is determined
only mod A by its end point.
It is clear from (5.10.7)—(5.10.9) that the elliptic integral provides the inverse
to the map (5.10.3). Thus:

Theorem 5.10.2 An elliptic curve in the form (5.10.4) can be uniformised
(i.e. mapped conformally onto a torus C/A) by means of elliptic integrals. O

The fact that an elliptic curve X of the form (5.10.4) can be mapped con-
formally onto a torus C/A by means of the elliptic integral E can also be
seen without using the uniformization theorem. For example, either from the
Riemann-Hurwitz formula (as explained in § 5.8) or from the fact that df is
a holomorphic form with no zeros on Y, it follows that X has genus one, and
that H°(X, ') is generated by d—; Now, if we set

dz

m(y) = L

for any v € Hy(X,Z), there are many ways of seeing that A = 7w(H;y(X,Z))
is a lattice in C. And then it is clear that E defines a holomorphic map
Y — C/A which is bijective.

Finally, the fact that any Riemann surface of genus one is conformally
equivalent to a torus follows also from the Abel-Jacobi theorems. Indeed the
map ¢’ of Theorem 5.9.2 reduces in this case to the map

M(Z)/Z:w

of X' to the one-dimensional torus J(X) = C/A, where w is any holomorphic
1-form (# 0) on X; note that dim¢e H°(X, £21) = 1. This map is holomorphic
and surjective by Theorem 5.9.2, and injective by Abel’s theorem (Theorem
5.9.1): pu(21) = p(22), 21 # 22 would imply that there would by a meromorphic
function on X with divisor z; — 2z, i.e. with just one simple pole, and this
cannot happen except for X = 52,
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A torus C/A has a group structure in an obvious way, since it is the
quotient of the additive group C by the discrete subgroup A. Therefore, as
follows by the preceding considerations, every elliptic curve given in the form
(5.10.4) or (5.10.5) carries a group structure. This is an interesting and deep
fact, which we now wish to study more closely.

We first look at the point 0 € C/A which is the identity element of the group
structure; under the map (5.10.3), it corresponds to py = (0,0,1) € P? (the
point at oo of the curve), which should now act as the identity of the group.

Let now 21, 22, 23 be (not necessarily distinct) points of C/A, and p1, pa, p3
their images under the map (5.10.3). In order to avoid confusion in the no-
tation for divisors, let us set zg := 0. Consider now the divisor

D= 21+ 29 + 23 — 32’0 (51010)
=p1+p2+p3 —3po

By Abel’s theorem, D = (g) for a meromorphic function g : D = (g), if and
only if
21+ 29+ 23 —320 = 0mod A

(since ffa dz =( —zp on C), i.e.
21 + 29 + 23 = 0 mod A. (51011)

Then g will have a triple pole at pg, and zeros at p1, p2,p3. The important
point here is that the addition in (5.10.11) is with respect to the group on
C/A. We may thus write (instead of (5.10.11))

D1+ p2 = —ps. (5.10.12)

We shall now explain the geometric meaning of the fact that —(p; + p2) is
the third zero of the function with triple pole at py vanishing at p; and ps.
As discussed in § 5.7, there is a unique line S in P? joining p; and p,. Let its
equation be

g(z,y) == ax + By +v=0.

Restricting g(z,y) to our curve X, we obtain a meromorphic function

9(2) :==9(p(2),9'(2))

on X. Then (assuming 3 # 0), g(z) is the (up to constant factors unique)
meromorphic function on X with a triple pole at pg and zeros at p; and ps.
The third zero ps of g(z) is thus the third point of intersection of S and X,
and it must satisfy (5.10.12) by our earlier discussion.

We can thus state:

Theorem 5.10.3 In the group structure on the elliptic curve X given by
(5.10.4), we will have
p1+p2+p3=0

if and only if p1,pa2, p3 lie on a line in P2, i.e. when py, pa, p3 are collinear.O
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Fig. 5.10.1.

Our figure shows the group structure of (the real points of) the curve X
defined by
v +y=12°—z. (5.10.13)

The identity element is at infinity. We denote the point (0,0) by 1; it can be
shown that this point generates the group of rational points of the curve, i.e.
the subgroup consisting of points with rational coordinates.

From 1, we obtain —1 from the relation

1+0+(-1) =0,

i.e. —1 is the third point of intersection with X of the line joining 1 with
0. Since 0 has homogeneous coordinates (0,1,0), while 1 has homogeneous
coordinates (0,0,1), this line is just the line z = 0, i.e. the y-axis. Hence
—1=(0,-1).

To obtain 2 =1+ 1, we can now use the relation

-1-1+2=0.
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Thus the line determining 2 must have double intersection with X' at —1 =
(0, —1), i.e. is the tangent to X at —1. In this way one can easily construct
more (rational) points of X.

Let us also note that p1, ps, ps € X are collinear if and only if

1p(z1) p'(21)
det | 1 p(22) p'(22) | =0. (5.10.14)
p

1p(23) p'(23)
Thus (5.10.14) is equivalent to
214+ 29 +23=0 mod A. (5.10.15)

If we note further that p(z) is an even function, while p’(z) is odd, so that

p(z3) = p(—21 — 22) = p(21 + 22)
p'(23) = p' (=21 — 22) = —p'(21 + 22)

if (5.10.15) holds, we see that p(z1 + 22) and p’(z1 + 22) can be expressed ra-
tionally in terms of p(z1), p(22), p’(21) and p’(z3). This is the famous addition
theorem for elliptic functions. (We again point out that p and p’ generate the
field R(X') of meromorphic functions on X.)

Finally, we shall express the group structure once more in terms of divi-
sors. By Abel’s theorem, every divisor of degree one on an elliptic curve is
linearly equivalent to precisely one effective divisor z;. If as before we fix a
zg € X, then every divisor of degree zero is thus linearly equivalent to pre-
cisely one divisor of the form z; — zg.

Now the divisors of degree zero modulo linear equivalence form a group (as
described in the beginning of § 5.4), and the map z; — (21 — 29) mod linear
equivalence is an isomorphism of groups.

For surfaces of higher genus, one has a similar homomorphism between the
Jacobi variety J(X) and the group Div’(¥) of divisors on X of degree zero
modulo linear equivalence (cf. Theorems 5.9.1 and 5.9.2).

Exercises for § 5.10

1)  Describe in geometric and analytic terms what happens if for an elliptic
curve
y* =a(x —1)(z - ),

A tends 0,1 or oo.
2)  Take any elliptic curve (different from (5.10.13)) and draw its real points
and group law.



Sources and References

Chapter 1 contains some basic material from algebraic topology that can be
found in most textbooks on that subject, e.g. in [Do]. Some of the material,
adapted to suit the needs of Riemann surface theory, can also be found in
[A2].

In Chapter 2, for the treatment of fundamental polygons, in particular
Thm. 2.4.2, T first consulted Nevanlinna’s book [N] on uniformisation. It
seems to me, however that the treatment given there is not entirely complete
in as much as it is not shown how to obtain a fundamental polygon with
mutually equivalent corners (of the form given in Thm. 2.4.2).

Section 2.6 is based on the work of Grauert-Reckziegel [GR] and Kobayashi
[K]. A more recent book on hyperbolic geometry is [La].

References for the regularity theory for solutions of linear elliptic partial

differential equations as developed in the first part of Chapter 3 are [BJS],
[GT], and [J5].
The theory of harmonic maps that forms the content of the second part
of Chapter 3 is treated in more detail in my books [J1], [J3] where also
many further results and references can be found. (The existence result for
harmonic maps of Chapter 3 is a special case of more general results originally
due to Al'ber [Al] and Eells-Sampson [ES], and to Lemaire [L] and Sacks-
Uhlenbeck [SUJ. For a more abstract and conceptual treatment, we refer to
[J2]. The uniqueness is a result of Al'ber [Al] and Hartman [Hm]|, while the
diffeomorphism property was found by Sampson [Sa] and Schoen-Yau [SY].
The proof of Kneser’s theorem presented in § 3.10 was found by Eells-Wood
[EW].)

The approach to Teichmiiller theory presented in Chapter 4 is based on
investigations of Wolf [W] and the author [J1]; in particular, the important
asymptotic expansions (4.2.5) ff. are due to Wolf. In [J1], the relation between
harmonic maps and Teichmiiller theory is explored further, and the complex,
metric, and Kéhlerian structures on Teichmiiller spaces are investigated. [Tr]
presents a treatment of Teichmiiller theory from the point of view of global
analysis. Our construction of Fenchel-Nielsen coordinates in § 4.3 is indirect as
the existence proof for hyperbolic hexagons in Lemma 4.3.2 is not contructive.
An explicit construction of such hexagons is presented in [LJ]. References for
further study for the subject of § 4.3 are [T] and [Ab].
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The uniformization theorem was found by Riemann although his proof was
based on a version of Dirichlet’s principle that was ill-founded in his time.
A proof of the uniformization theorem for compact Riemann surfaces was
given by Poincaré. A complete proof of the general uniformization theorem
was first found by Koebe. A proof using a method of Heins can be found in
[A2].

Chapter 5 contains rather classical material; it can be found in textbooks
on Riemann surfaces, e.g. the ones of Springer [Sp], Forster [F], and Farkas-
Kra [FK] as well as in textbooks on algebraic geometry, e.g. the ones of
Griffiths-Harris [GH], Shafarevitch [S], Hartshorne [H] or Mumford [M].
The knowledgeable reader will realize that I have used the presentation con-
tained in those textbooks in several places. In any case, this material has by
now been reworked and presented so many times that it is difficult to achieve
any kind of originality here.

For the treatment of fields with valuations, I have also consulted van der Waer-
den’s “Modern Algebra” [vW]. The construction of Sec. 5.5 is due to Grauert-
Reckziegel [GR].

For a treatment of the differential geometric aspects of Riemann surfaces
in more intrinsic terms, we recommend [EJ], [J3]. All necessary background
material from analysis can be found in [J4].
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canonical map, 234, 236

chain, 188

change of coordinates, 22

chart, 1

Chern class, 227

closed, 187, 189, 190
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co-exact, 198

cohomologous, 201

cohomology class, 62

commutator subgroup, 193

complete, 21, 27, 68, 72

complex manifold, 233

complex projective space, 233

complex structure, 195

complex torus, 203

conformal, 17, 19, 22, 120

conformal atlas, 17, 54
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congruence subgroup, 77

conjugation operator, 196

contraction principle, 89
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Courant-Lebesgue lemma, 125
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covering transformation, 11, 19
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curve, 3, 239
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elliptic function, 261
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energy functional, 29
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intersection pairing, 194
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isometry group, 27
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Jacobi variety, 265
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Kahler form, 196
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Laplace operator, 99, 156

Laplace-Beltrami operator, 21, 22, 197

lattice, 72, 203, 260, 261

Laurent expansion, 204, 237

length, 21, 27, 28, 34, 153

lift, 11

line bundle, 223, 225-227

linear transformation, 238
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Lipschitz continuous, 110

Lobacevsky, 31
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mean value inequality, 109
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Montel’s theorem, 72
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Newtonian potential, 118
non-Euclidean, 24
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normal subgroup, 12
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orthogonal projection, 81
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Poincaré duality, 194, 227
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smoothing function, 86
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stability lemma, 102
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Stokes’ theorem, 189, 204
strong convergence, 84

strong maximum principle, 106, 150
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symbol, 56, 57
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Teichmiiller theorem, 172
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theorem of Hodge, 202
theorem of Schwarz-Pick, 24
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three-circle domain, 173
topological classification, 55
torsion class, 195

torus, 2, 13, 19, 31, 47, 60, 72, 152, 163,
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transcendence degree, 246

transformation behaviour, 172, 187, 230
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triangle inequality, 79 weak solution, 202
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Weierstrass p-function, 260
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