C.R. Math. Rep. Acad. Sci. Canada - Vol. VII, No. 4 Aug. 1985 août

δ-ANNEAUX ET λ-ANNEAUX

ANDRE JOYAL

Presented by P. Ribenboim, F.R.S.C.

Résumé

Nous montrons comment obtenir la théorie des λ -anneaux [3] à partir de celle des δ -anneaux [4]. La suite d'opérations (λ^n | neN) est remplacée par une suite d'opérations (δ_p | p nombre premier) satisfaisant à des identités explícites. En conséquence, nous pouvons exhiber pour chaque neN une base remarquable des caractères du groupe symétrique S_n .

l- δ -opérations sur un λ -anneau

Soit $(\forall^n \mid n \ge 1)$ la suite d'opérations d'Adams en théorie des λ -anneaux. On sait que ψ^n est un endomorphisme d'anneau et que

Pour chaque nombre premier p soit c^p l'opération de puissance cyclique d'ordre p [1]. On vérifie l'identité

$$pc_p(x) = x^p + (p-1)y^p(x)$$
.

Posons

$$\delta_p(x) = \Psi^p(x) - c^p(x).$$

On a alors

$$\Psi^{p}(x) = x^{p} + p \delta_{p}(x)$$

Comme le λ -anneau libre sur un générateur est sans p-torsion et que Ψ^p est un endomorphisme, on conclut que l'opération δ_p donne à cet anneau une structure de δ -anneau [4]. Plus généralement, on voit que tout λ -anneau est un δ -anneau relativement à chaque nombre premier p. Nous désirons expliciter les relations entre δ_{p_1} et δ_{p_2} pour des nombres premiers distincts p_1 et p_2 .

Soient $q_1=p_1^{r_1}$ et $q_2=p_2^{r_2}$ où p_1 et p_2 sont des nombres premiers distincts. Soit A un anneau commutatif muni de deux opérations unaires δ_1 et δ_2 . On suppose que (A,δ_1) est un δ -anneau relativement à (p_1,q_1) et que (A,δ_2) est un δ -anneau relativement à (p_2,q_2) .

DEFINITION Les opérations δ_1 et δ_2 sont <u>permutables</u> si l'identité suivante est vérifiée:

$$\delta_{1}(\delta_{2}(x)) + \frac{q_{2}^{-1}}{\frac{p_{1}}{p_{2}}} \delta_{1}(x)^{q_{2}} + \sum_{i=1}^{q_{2}-1} \frac{1}{p_{2}} {q_{2} \choose i} p_{1}^{i-1} \delta_{1}(x)^{i} x^{q_{1}(q_{2}^{-1})}$$

$$= \delta_{2}(\delta_{1}(x)) + \frac{q_{1}^{-1}}{p_{2}^{-1}} \delta_{2}(x)^{q_{1}} + \sum_{\substack{1=1\\1=1}}^{q_{1}-1} \frac{1}{p_{1}} {q_{1}\choose 1} p_{2}^{1-1} \delta_{2}(x)^{1} x^{q_{2}(q_{1}^{-1})}$$

La permutabilité des opérations δ_1 et δ_2 entraîne la commutation des endomorphismes de Frobenius $f_1(x)=x^{q_1}+p_1\delta_1(x)$ et $f_2(x)=x^{q_2}+p_2\delta_2(x)$. Réciproquement, si A est sans p_1p_2 -torsion, la relation $f_1f_2=f_2f_1$ entraîne la permutabilité de δ_1 et δ_2 .

2- P-anneaux

Soit P un ensemble de nombres premièrs.

DEFINITION Un P-anneau A est un anneau commutatif muni d'une opération unaire $\delta_p \colon A \to A$ pour chaque psP. On demande que soient réalisées les conditions suivantes:

- i) A muni de $\delta_{\mathbf{p}}$ est un δ -anneau relativement au couple (p,p)
- ii) δ_p et δ_ℓ sont permutables pour tout couple d'éléments a constant de distincts p, ℓ eP

Exemple 1 Tout λ -anneau est naturellement muni d'une structure de P-anneau ob P est l'ensemble de tous les nombres premiers.

Exemple 2 Soit n un entier ≥ 1 et soit $\zeta_n \in \mathbb{C}$ une racine primitive n-ième de l'unité. Soit R_n l'anneau des entiers du corps cyclotomique $Q(\zeta_n)$. Soit P_n l'ensemble des nombres premiers ne divisant pas n. Pour chaque $p \in P_n$, soit f_p l'unique automorphisme de R_n tel que $f(\zeta_n) = \zeta_n^p$. On a pour tout $x \in R_n$,

$$f_p(x) = x^p \mod pR_n$$

Ceci montre que R_n est un δ -anneau relativement au couple (p,p). Comme $f_p f_\ell = f_\ell f_p$ pour tout p, $\ell \epsilon R_n$, on conclut que R_n est un P_n -anneau.

Un morphisme de P-anneaux est un homomorphisme d'anneaux qui préserve chaque opération $\delta_p(\text{peP})$. On vérifie que chaque endomorphisme de Frobenius $f_p(\text{peP})$ est un morphisme de P-anneaux.

Soit A un P-anneau et soit M(P) l'ensemble des suites finies d'éléments de P. Pour chaque $\sigma = (p_1, \dots, p_n) \in M(P)$, posons

$$\delta_{\sigma} = \delta_{p_1} \circ \delta_{p_2} \circ \dots \circ \delta_{p_n}$$

Designons par C(P)<M(P) le sous-ensemble des suites croissantes pour l'ordre naturel de P.

THEOREME 1 Soit A = $Z[x_{\sigma}|\sigma\varepsilon C(P)]$ l'anneau des polynômes sur des indéterminés $x_{\sigma}(\sigma\varepsilon C(P))$. Il y a une seule structure de P-anneau sur A pour laquelle $\delta_{\sigma}(x_{\sigma})$ = x_{σ} pour tout $\sigma\varepsilon C(P)$. Muni de cette structure, A est le P-anneau libre sur x_{σ} .

Désignons par \underline{A} la catégorie des anneaux et par $\underline{P}\underline{A}$ celle des P-anneaux.

THEOREME 2 Le foncteur oubliant U: PA - A possède un adjoint à droite

COROLLAIRE Le foncteur V est représentable par l'anneau $Z[x_{\sigma} \log C(P)]$. On a une bijection naturelle.

$$V(A) \simeq A^{C(P)}$$

3- A-anneaux

Dans ce qui suit nous supposerons que P est l'ensemble de tous les nombres premiers. Pour tout entier n≥l on définit un endomorphisme de Frobenius

$$f_n = f_{p_1}^{r_1} \cdot \dots \cdot f_{p_k}^{r_k}$$

où $p_1^{\ \ r_k}$ est une décomposition de n en facteurs premiers.

PROPOSITION 1 On peut définir en théorie des P-anneaux une suite unique d'opérations unaires α_1,α_2,\dots vérifiant les identités

$$f_n(x) = \sum_{r \mid n} r \alpha_r(x)^{n/r} \quad (n \ge 1)$$

PROPOSITION 2 If y a sur $Z[A_1, A_2, ...]$ une seule structure de P-anneaux pour laquelle $\alpha_n(A_1) = A_n$ pour tout $n \ge 1$. Muni de cette structure, $Z[A_1, A_2, ...]$ est un P-anneau libre sur A_1 .

THEOREME 3 Lorsque P est l'ensemble de tous les nombres premiers, les concepts de P-anneaux et de λ -anneaux sont équivalents.

La démonstration de ce théorème utilisel'approche de Cartier [2].

Exemple 3 Soit R_n l'anneau de l'exemple 2. On peut munir R_n [1/n] d'une structure de λ -anneau. En effet, il suffit de définir f_p = identité pour p¢ P_n . En particulier, Z[i, $\frac{1}{2}$] est un λ -anneau.

Le λ -anneau $\Lambda[x]$ libre sur un générateur est un anneau de polynômes $Z[x, \lambda x, \lambda^2 x, \ldots]$. On introduit sur $\Lambda[x]$ une graduation naturelle en posant deg $\lambda^n x = n$ pour tout neN. Cet anneau gradué peut encore se décrire en utilisant la théorie des caractères des groupes symétriques $S_n(n\geq 0)$ [1]. Soit $R(S_n)$ le groupe des caractères de S_n . Considérons l'inclusion $S_n\times S_m \cap S_{n+m}$. On définit une opération bilinéaire

$$R(S_n) \times R(S_m) \rightarrow R(S_n \times S_m) \rightarrow R(S_{n+m})$$

et par suite, une structure d'anneau gradué sur

$$\bigoplus_{n\geq 0} R(s_n)$$

Cet anneau est isomorphe à Λ [x] [5]. Soit maintenant $\mathbf{Z}[\delta_{\sigma}(\mathbf{x})]\sigma\epsilon\mathbf{C}(\mathbf{P})$ 3 l'anneau des polynômes mentionné dans le théorème 1. On introduit une graduation sur cet anneau en posant

$$\deg \delta_{\sigma}(x) = p_1 p_2 \dots p_n$$

. No saidelite

lorsque $\sigma = (p_1, p_2, ..., p_n)$.

COROLLAIRE Les anneaux gradués $\bigcap_{n\geq 0} R(S_n)$ et $Z[S_{\sigma}(x)]\sigma \in C(P)]$ sont isomorphes.

<u>BIBLIOGRAPHIE</u>

- [1] M. Atiyah. Power Operations in K-theory. Quart. J. Math. (2) 17 (1966), 165-93.
- [2] P. Cartier. Groupes formels associés aux anneaux de Witt généralisés. C.R. Acad. Sc. Paris, t.265, 1967, A-49-52.
- [3] A. Grothendieck. Classes de Faisceaux et Théorème de Riemann-Roch. Lect. Notes in Math. No 225 (1972) Springer Verlag.
- [4] A. Joyal. 6-anneaux et vecteurs de Witt. C.R. Math. Société Royale du Canada.
- [5] D. Knutson. λ -rings and the representation theory of the symmetric group. Lect. Notes in Math. 308 (1973) Springer Verlag.

Département de Mathématiques et d'informatique Université du Québec à Montréal

Received March 28, 1985