ON THE K_{-i} -FUNCTORS

ERIK KJÆR PEDERSEN

0. Statement of results

The functors K_0 and K_1 have well-known descriptions in terms of projectives and automorphisms, respectively. The purpose of this paper is to give analogous descriptions of the K_{-i} -functors of Bass [1]. In fact given a ring R, we give two descriptions of $K_{-i}(R)$, $i \ge 0$; one as a Whitehead construction on a certain category of R-modules (elements represented by automorphisms), and one as a Grothendieck construction on a related category of Rmodules (elements represented by objects). The categories in question are associated with the category of \mathbb{Z}^i -graded R-modules and bounded homomorphisms in the following sense:

0.1. **Definition.** Let R be a ring. $\mathcal{A}_i(R)$ denotes the category of \mathbb{Z}^i -graded R-modules and bounded homomorphisms. This means an object A is a direct sum $\bigoplus_{j_1,\ldots,j_i} A(j_1,\ldots,j_i)$ of R-modules, and a morphism $f: A \to B$ is an R-module morphism, such that there exists k = k(f) satisfying

$$f(A(j_1,\ldots,j_i)) \subseteq \bigoplus_{\substack{h_s=-k\\s=1,\ldots,i}}^k (B(j_1+h_1,\ldots,j_i+h_i).$$

Remark. $\mathcal{A}_0(R)$ is just the category of *R*-modules.

We shall be more interested in the full subcategory of $\mathcal{A}_i(R)$ with objects A satisfying $A(j_1, \ldots, j_i)$ are finitely generated free R-modules. This category we denote $\mathcal{C}_i(R)$. We shall some times write \mathcal{A}_i and \mathcal{C}_i instead of $\mathcal{A}_i(R)$ and $\mathcal{C}_i(R)$ when it is clear from the context which ring we are working with. Since $\mathcal{C}_0(R)$ is the category of finitely generated free R-modules, it is helpful to think of $\mathcal{C}_i(R)$ as the category of \mathbb{Z}^i -graded finitely generated free R-modules and bounded homomorphisms.

In \mathcal{A}_i as well as \mathcal{C}_i we have an obvious notion of direct sum (degree-wise). We define a sequence $0 \to A \to B \to C$ to be *exact* if it is split-exact, i. e. , it is equivalent (in the category) to the sequence $0 \to A \to A \oplus B \to B \to 0$. We may now define K_1 of the category $\mathcal{C}_{i+1}(R)$. That is the Abelian group generated by $[A, \alpha]$ where A is an object of $\mathcal{C}_{i+1}(R)$ and α an automorphism of A, subject to the relations

$$[A, \alpha\beta] = [A, \alpha] + [A, \beta] \quad \text{and} \quad [B, \beta] = [A, \alpha] + [C, \gamma]$$

when there is a commutative diagram

with exact rows. Note that this implies that [A, 1] = 0 and further that

$$A \oplus B \xrightarrow{\left\{ \begin{array}{c} 1 & \eta \\ 0 & 1 \end{array} \right\}} A \oplus B,$$

where $\eta: B \to A$ any bounded morphism, represents 0. An isomorphism of this type we shall call an *elementary* isomorphism.

0.2. Definition. $K'_{-i}(R) = K_1(\mathcal{C}_{i+1}(R)).$

Given a category \mathfrak{A} we define the category $P\mathfrak{A}$ as follows: An object is an idempotent in \mathfrak{A} , i. e. $p: A \to A$ with $p^2 = p$, and a morphism $\phi: (A_1, p_1) \to (A_2, p_2)$ is a morphism $\phi: A_1 \to A_2$ so that $\phi p_1 = p_2 \phi$. In $P\mathcal{C}_i(R)$ we have an induced notion of direct sum, so we may form the Grothendieck group of $P\mathcal{C}_i(R)$.

0.3. Definition. We define $K''_{-i}(R)$ to be the Grothendieck group on the category $PC_i(R)$ with the additional relation [A, 0] = 0 if i = 0.

We may now state our

MAIN THEOREM. Let R be a ring. Then there are natural isomorphisms

$$K_{-i}(R) \cong K'_{-i}(R) \cong K''_{-i}(R).$$

This result indicates that $C_{i+1}(R)$ is some kind of nonconnective delooping of the category of finitely generated free *R*-modules. This is indeed the case, and it is the subject of a forthcoming joint work with C. Weibel.

It is a pleasure to acknowledge useful conversations with Hans J. Munkholm and Douglas R. Anderson in connection with this work.

1. The Isomorphism $K'_{-i}(R) \simeq K''_{-i}(R)$

In this section we define isomorphism $\phi^s : K'_{-i}(R) \cong K''_{-i}(R)$, where $s = 1, \ldots, i + 1$. The construction we employ to define ϕ^s is based on a variation of a well-known construction due to Bass, Heller and Swan[2]. First we need some definitions. Let A be an object of $C_i(R)$. We define

$$s^+(A)(j_1,\ldots,j_s,\ldots,j_i) = A(j_1,\ldots,j_s-1,\ldots,j_i)$$
 (1.1)

and

$$s^{-}(A)(j_1,\ldots,j_s,\ldots,j_i) = A(j_1,\ldots,j_s+1,\ldots,j_i)$$
 (1.2)

for $1 \leq s \leq i$. There are obvious bounded isomorphism $A \cong s^+(A)$ and $A \cong s^-(A)$ induced by the identity, which we denote by s^+ and s^- respectively. Also define

$$A^{s^{+}}(j_{1},\ldots,j_{i}) = \begin{cases} A(j_{1},\ldots,j_{i}) & \text{if } j_{s} \ge 0\\ 0 & \text{if } j_{s} < 0, \end{cases}$$
(1.3)

$$A^{s^{-}}(j_{1},\ldots,j_{i}) = \begin{cases} 0 & \text{if } j_{s} \ge 0\\ A(j_{1},\ldots,j_{i}) & \text{if } j_{s} < 0, \end{cases}$$
(1.4)

for $1 \le s \le i$. The following lemma was pointed out by the referee.

1.5. Lemma. Let A be an object in $C_i(R)$. Then [A, 1] and [A, 0] represent 0 in $K''_{-i}(R)$ if i > 0.

Proof. Clearly $[A, 1] = [A^{1^+}, 1] + [A^{1^-}, 1]$ but

$$A^{1^+} \oplus \bigoplus_{k=1}^{\infty} (1^+)^k (A^{1^+}) = \bigoplus_{k=0}^{\infty} (1^+)^k (A^{1^+})$$

and 1^+ is an isomorphism

$$\bigoplus_{k=0}^{\infty} (1^+)^k (A^{1^+}) \cong \bigoplus_{k=1}^{\infty} (1^+)^k (A^{1^+})$$

Note that even though the sum is infinite, it is finite in each degree since $A^{1^+}(j_1, \ldots, j_i) = 0$ if $j_1 < 0$. This proves $[A^{1^+}, 1] = 0$ in $K''_{-i}(R)$ and $[A^{1^-}, 1]$ is dealt with similarly. Clearly [A, 0] can be treated the same way.

1.6. Remark. Lemma 1.5 proves that any two objects of $C_i(R)$, i > 0, are stably isomorphic.

We now proceed to define the isomorphism $\phi^s : K'_{-i}(R) \cong K''_{-i}(R)$.

Given an object A of $\mathcal{C}_{i+1}(R)$, we have a direct sum decomposition $A = A^{s^-} \oplus A^{s^+}$ (by 1.3 and 1.4 above). We denote the projection on the first factor by

$$p^s_-: A \to A \tag{1.7}$$

(the projection on the negative s-half space). Given an automorphism $\alpha : A \to A$ in $\mathcal{C}_{i+1}(R)$, consider $\alpha p_{-}^{s} \alpha^{-1}$. Assuming α is bounded by k, this is a projection of A which is the identity on $A(j_1, \ldots, j_s, \ldots, j_{i+1})$ if $j_s < -2k$, and the 0-map if $j_s > 2k$. We define $\phi^s[A, \alpha]$ by

$$\overline{A}(j_1, \dots, \widehat{j_s}, \dots, j_{i+1}) = \bigoplus_{\substack{j_s = -2k\\ j_s = -2k}}^{2k} A(j_1, \dots, j_{i+1}),$$

$$\phi^s([A, \alpha]) = [\overline{A}, \alpha p_-^s \alpha^{-1}] - [\overline{A}, p_-^s].$$
(1.8)

Several comments are in order here. The term $[\overline{A}, p_{-}^{s}]$ represents 0 unless i = 0. A nice way to think of $\phi^{s}([A, \alpha])$ is to keep the \mathbb{Z}^{i+1} -grading and notice we are looking at $\alpha p_{-}^{s} \alpha^{-1}$ in a

certain band around $j_s = 0$, the width of the band at least from -2k to 2k. Outside this band $\alpha p_-^s \alpha^{-1}$ is equal to p_-^s ; hence, when we subtract the restrictions of $\alpha p_-^s \alpha^{-1}$ and p_-^s , the width of the band does not matter. Actually it is useful to notice that widening the band corresponds to stabilization.

1.9. Theorem. ϕ^s defines an isomorphism $K'_{-i}(R) \to K''_{-i}(R)$

To prove this theorem we first need to see that ϕ^s respects the relations in the definition of $K'_{-i}(R)$.

1.10. Lemma. Let A and B be objects of $C_{i+1}(R)$ and $\psi : A \oplus B \to A \oplus B$ a bounded projection satisfying

$$\psi|(A \oplus B)(j_1, \dots, j_{i+1}) = \begin{cases} 0 & \text{if } j_s > k \\ 1 & \text{if } j_s < -k \end{cases}$$

for some k. Let $\gamma : A \oplus B \to A \oplus B$ be an elementary isomorphism with matrix

$$\gamma = \begin{pmatrix} 1 & \eta \\ 0 & 1 \end{pmatrix}, \qquad \eta : B \to A$$

Then ψ and $\gamma \psi \gamma^{-1}$ restricted to a sufficiently big band around $j_s = 0$ represent the same element of $K''_{-i}(R)$.

Proof. Assume η is bounded by l > k. Define B' and B" by

$$B'(j_1, \dots, j_{i+1}) = \begin{cases} B(j_1, \dots, j_{i+1} & \text{if } |j_s| \le 2l\\ 0 & \text{if } |j_s| > 2l \end{cases}$$

and $B = B' \oplus B''$. Also define $\eta', \eta'' : B \to A$ as the composites $B \to B' \oplus 0 \to B \xrightarrow{\eta} A$ and $B \to 0 \oplus B'' \to B \xrightarrow{\eta} A$. Letting

$$\gamma' = \begin{pmatrix} 1 & \eta' \\ 0 & 1 \end{pmatrix}$$
 and $\gamma'' = \begin{pmatrix} 1 & \eta'' \\ 0 & 1 \end{pmatrix}$

it is clear that $\gamma = \gamma' \cdot \gamma'' = \gamma'' \cdot \gamma'$. But

$$\gamma\psi\gamma^{-1} = \gamma'\gamma''\psi(\gamma'')^{-1}(\gamma')^{-1} = \gamma'\psi(\gamma')^{-1}.$$

This follows since ψ is only nontrivial in a small band around $j_s = 0$ and γ'' is the identity in a bigger band around $j_s = 0$. But $\gamma' \psi(\gamma')^{-1}$ and ψ are equivalent projections in the band $|j_s| \leq 3l$ since γ' restricts to an isomorphism of that band,

This immediately leads to

1.11. Lemma. The construction 1.8 gives a well-defined homomorphism

$$\phi^s: K'_{-i}(R) \to K''_{-i}(R)$$

Proof. If we have a diagram in $C_{i+1}(R)$

one easily sees that $\gamma \cdot (\alpha^{-1} \oplus \beta^{-1})$ is an elementary isomorphism. Since ϕ^s commutes with direct sum, Lemma 1.10 shows

$$\phi^{s}([A \oplus B, \gamma]) = \phi^{s}([A, \alpha]) + \phi^{s}([B, \beta]).$$
(1.12)

It follows directly from the definition that

$$\phi^s([A,1]) = 0 \tag{1.13}$$

and now the standard identity

$$\begin{pmatrix} \beta^{-1} & 0 \\ 0 & \beta \end{pmatrix} = \begin{pmatrix} 1 & \beta^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\beta & 1 \end{pmatrix} \begin{pmatrix} 1 & \beta^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
(1.14)
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

and repeated application of Lemma 1.10 shows that if α and β are isomorphisms of A in $\mathcal{C}_{i+1}(R)$, then

$$\phi^{s}([A,\alpha\beta]) = \phi^{s}([A \oplus A,\alpha\beta \oplus 1]) = \phi^{s}([A \oplus A,\alpha \oplus \beta])$$
$$= \phi^{s}([A,\alpha]) + \phi^{s}([A,\beta]).$$

Here we used (1.13) in the first equality. It is easy to see

1.15. Lemma. The map ϕ^s is onto.

Proof. Let B be an object of $C_i(R)$ and $p: B \to B$ a projection. Define $A(j_1, \ldots, j_s, \ldots, j_{i+1}) = B(j_1, \ldots, j_{s-1}, j_{s+1}, \ldots, j_{i+1})$ and $\alpha: A \to A$ by

$$j_{s} = \cdots -2 -1 \quad 0 \quad 1 \quad 2 \quad \cdots$$

$$A_{\alpha} = \cdots \qquad B_{\beta} \quad B_{\beta}$$

This is a standard construction of Swan [5]. We compute $\alpha p_{-}^{s} \alpha^{-1}$ to be

so $\phi^s([\alpha]) = ([B, p])$

The most difficult part of Theorem 1.9 is to prove ϕ^s is 1-1.

For this we need some condition to ensure elements represent 0 in $K'_{-i}(R)$.

1.17. Definition. Let α be an automorphism of A in $\mathcal{C}_{i+1}(R)$. We say α is split at s-degree m if the following holds:

$$j_s \ge m$$
 implies $\alpha(A(j_1, \dots, j_s, \dots, j_{i+1})) \subset \bigoplus_{\substack{k_l; l \ne s \\ k_s \ge m}} A(k_1, \dots, k_s, \dots, k_{i+1})$

and

$$j_s < m$$
 implies $\alpha(A(j_1, \dots, j_s, \dots, j_{i+1})) \subset \bigoplus_{\substack{k_l; l \neq s \\ k_s < m}} A(k_1, \dots, k_s, \dots, k_{i+1})$

Heuristically the point of the definition is that α preserves the two halves of A given by $j_s \ge m$ and $j_s < m$, respectively.

1.18. Lemma. Let α be an automorphism of A in $\mathcal{C}_{i+1}(R)$, which is split at s-degree m. Then $[A, \alpha]$ represents the trivial element of $K'_{-i}(R)$.

Proof. Define A' and A'' in $\mathcal{C}_{i+1}(R)$ by

$$A'(j_1, \dots, j_s, \dots, j_{i+1}) = \begin{cases} A(j_1, \dots, j_s, \dots, j_{i+1}), & j_s \ge m \\ 0, & j_s < m \end{cases}$$

and $A = A' \oplus A''$.

 α restricts to isomorphisms $\alpha' : A' \to A'$ and $\alpha'' : A'' \to A''$ and $(A' \oplus A'', \alpha' \oplus \alpha'') = (A, \alpha)$ \mathbf{SO}

$$[A, \alpha] = [A', \alpha'] + [A'', \alpha'']$$

We show these two terms are 0. Consider $[A', \alpha']$. We define

$$B' = \bigoplus_{l=0}^{\infty} (s^+)^l (A')$$
 and $B'' = \bigoplus_{l=0}^{\infty} (s^+)^{2l} (A')$

and note that $1 \oplus s^+$ is an isomorphism

$$1 \oplus s^+ : B'' \oplus B'' \cong B' \tag{1.19}$$

in $\mathcal{C}_{i+1}(R)$. As usual these infinite sums are finite in each degree, so they do make sense. Conjugating $\alpha' : A' \to A'$ by $(s^+)^l$ gives an automorphism $(s^+)^l(A') \to (s^+)^l A'$ which we will denote by $(\alpha')_l$. We now use a trick due to Farrell and Wagoner, really just the so-called "Eilenberg swindle":

$$[A', \alpha'] = [B', \alpha' \oplus 1]$$

by stabilization and

$$\alpha' \oplus 1 = (\alpha' \oplus 1 \oplus 1 \oplus 1 \oplus \dots)$$

= $(\alpha' \oplus (\alpha')_1^{-1} \oplus (\alpha')_2 \oplus (\alpha')_3^{-1} \oplus \dots)(1 \oplus (\alpha')_1 \oplus (\alpha')_2^{-1} \oplus \dots)_2$

so we shall show these two automorphisms represent 0. But conjugating $(\alpha' \oplus (\alpha')_1^{-1} \oplus \cdots)$ by the isomorphism 1.19 gives $(B'' \oplus B'', \beta \oplus \beta^{-1})$ where $\beta = (\alpha' \oplus (\alpha')_2 \oplus (\alpha')_4 \oplus \cdots)$.

We finish off using 1.14 and the fact that elementary automorphisms represent 0 in $K'_{-i}(R)$. The other factor is dealt with similarly.

Next we investigate what it means for some elements to be 0 in $K''_{-i}(R)$.

1.20. Lemma. Let A be an object of $C_i(R)$ and p_1, p_2 projections on A. Then $[A, p_1] - [A, p_2] = 0 \in K''_{-i}(R)$ if and only if there are objects A' and A'' in $C_i(R)$ and an automorphism ϕ of $A \oplus A' \oplus A''$ so that $(p_2 \oplus 1 \oplus 0) \cdot \phi = \phi(p_1 \oplus 1 \oplus 0)$.

Proof. The if part is trivial, so assume $[A, p_1] = [A, p_2]$. In case i > 0 we conclude there is a projection $q : A' \to A'$ of some object in $\mathcal{C}_i(R)$ so that $(A \oplus A', p_1 \oplus q)$ is isomorphic to $(A \oplus A', p_2 \oplus q)$. But then $(A \oplus A' \oplus A', p_1 \oplus q \oplus (1-q))$ is isomorphic to $(A \oplus A' \oplus A', p_2, \oplus q \oplus (1-q))$. Conjugating $(A' \oplus A', q \oplus (1-q))$ by $\left\{ \begin{array}{c} q & 1-q \\ 1-q & q \end{array}\right\}$ gives $(A' \oplus A', 1 \oplus 0)$ so we obtain the desired result by letting A'' = A'. In case i = 0 we only conclude $(A \oplus A' \oplus B', p_1 \oplus q \oplus 0)$ is isomorphic to $(A \oplus A' \oplus B'', p_2 \oplus q \oplus 0)$ since in this case we divide out by terms of the form (B, 0). But then B' and B'' are stably isomorphic and we are reduced to considerations as above. \Box

The proof of Theorem 1.9 is completed by

1.21. Lemma. The map ϕ^s is monic.

Proof. Assume $\phi^s([A, \alpha]) = 0$. In the terminology of 1.8 we have $[\overline{A}, \alpha p_-^s \alpha^{-1}] - [\overline{A}, p_-^s] = 0$ in $K_{-i}'(R)$. Thus we may use Lemma 1.20 to determine A' and A'' in $C_i(R)$ so that $(\overline{A} \oplus A' \oplus A'', \alpha p_-^s \alpha^{-1} \oplus 1 \oplus 0)$ is isomorphic to $(\overline{A} \oplus A' \oplus A'', p_-^s \oplus 1 \oplus 0)$. However $(\overline{A} \oplus A' \oplus A'', \alpha p_-^s \alpha^{-1} \oplus 1 \oplus 0) = (\overline{A} \oplus A' \oplus A'', (\alpha \oplus 1 \oplus 1)(p_-^s \oplus 1 \oplus 0)(\alpha \oplus 1 \oplus 1)^{-1})$. Since we can replace (A, α) by $(A \oplus B, \alpha \oplus 1)$ where

$$B(j_1, \dots, j_s, \dots, j_{i+1}) = \begin{cases} A'(j_1, \dots, j_s, \dots, j_{i+1}) & j_s = -1 \\ A''(j_1, \dots, \hat{j_s}, \dots, j_{i+1}) & j_s = 0 \\ 0, & \text{otherwise} \end{cases}$$

we may thus assume there is an isomorphism $\beta : \overline{A} \to \overline{A}$ so that $\beta \alpha p_{-}^{s} \alpha^{-1} = p_{-}^{s} \beta$. Extending β to all A by the identity, we get on all A that $\beta \alpha p_{-}^{s} = p_{-}^{s} \beta \alpha$. This means that $\beta \alpha$ is split at s-degree 0 so $[A, \beta \alpha] = 0$ by Lemma 1.18. However β is the identity outside \overline{A} , so β is split at s-degree 2k + 1 where k is the bound for α , hence $[A, \beta] = 0$ and thus $[A, \alpha] = 0$. \Box

This ends the proof of Theorem 1.9

2. The Bass-Heller-Swan homomorphisms

In this section we define homomorphisms

$$\lambda_t^s : K'_{-i}(R) \to K'_{-i}(R[t, t^{-1}]), \qquad s = 1, 2, \dots, i+1,$$

which will eventually be the Bass-Heller-Swan homomorphisms.

Let $[A, \alpha]$ represent an element of $K'_{-i}(R)$. Consider the automorphism $p_t^s : A[t, t^{-1}] \to A[t, t^{-1}]$ given by

$$p_t^s = tp_-^s + (1 - p_-^s) \tag{2.1}$$

(with inverse $t^{-1}p_{-}^{+} + (1 - p_{-}^{s})$). Consider the commutator between α (extended to a map of $A[t, t^{-1}]$) and p_{t}^{s} , $[\alpha, p_{t}^{s}]$. Since α is bounded and commutes with multiplication by t, this is the identity on $A(j_{1}, \ldots, j_{i+1})$ away from a band $-k \leq j_{s} \leq k$, where k is a bound for α . By restriction as in 1.8 we obtain that $[\alpha, p_{t}^{s}]$ is an *i*-graded bounded $R[t, t^{-1}]$ automorphism of $\overline{A}[t, t^{-1}]$ and we define

$$\lambda_t^s([A,\alpha]) = [\overline{A}[t,t^{-1}], [\alpha, p_t^s]].$$
(2.2)

2.3. Theorem. λ_t^s is a well-defined homomorphism of $K'_{-i}(R) \to K'_{-i+1}(R[t,t^{-1}])$.

To prove λ_t^s respects the relations, we need to consider the following situation: Let A be an object of $C_{i+2}(R)$ and γ an isomorphism of A which is 1 except for some band around $j_s = 0$. Then γ may be thought of as an isomorphism of a \mathbb{Z}^{i+1} -graded object by restriction and thus defines an element of $K'_{-i}(R)$. If β is a bounded isomorphism of A, then $\beta\gamma\beta^{-1}$ is also the identity outside a sufficiently big band around $j_s = 0$ and we have

2.4. Lemma. $[\gamma] = [\beta \gamma \beta^{-1}] \in K'_{-i}(R).$

Proof. We stabilize $\beta \gamma \beta^{-1}$ to $\beta \gamma \beta^{-1} \oplus 1$ on $A \oplus A$ and note that $\beta \gamma \beta^{-1} \oplus 1 = (\beta \oplus \beta^{-1})(\gamma \oplus 1)(\beta^{-1} \oplus \beta)$. Now we proceed exactly as in Lemma 1.10 using 1.14 to complete the proof. \Box

Proof of Theorem 2.3. It is clear that λ_t^s sends exact sequences a to exact sequences. Now consider α and β , two automorphisms of an object $A \in \mathcal{C}_{i+1}(R)$.

$$\lambda_t^s[\beta\alpha] = [\beta\alpha, p_t^s] = \beta\alpha p_t^s \alpha^{-1} \beta^{-1} (p_t^s)^{-1}$$
$$= \beta[\alpha, p_t^s] \beta^{-1} \cdot [\beta, p_t^s]$$

and, by Lemma 2.4, $\beta[\alpha, p_t^s]\beta^{-1}$ represents the same element as $[\alpha, p_t^s]$.

8

2.5. Theorem. If $s_1 < s_2$, then the diagram

is commutative.

Proof. Let p_i represent p_{t_i} for i = 1, 2. Given $[A, \alpha] \in K'_{-i}(R)$ we have to compare

$$[[\alpha, p_1], p_2]$$
 and $[[\alpha, p_2], p_1]$

on $A[t_1, t_1^{-1}, t_2, t_2^{-1}]$ in a band around $j_{s_1} = 0$ and $j_{s_2} = 0$.

Using Lemma 2.4 we see that

$$[\alpha, p_2] = \alpha p_2 \alpha^{-1} p_2^{-1} \sim \alpha^{-1} p_2^{-1} \alpha p_2$$

as an element of $K'_{-i+1}(R[t_2, t_2^{-1}])$, hence

$$[\alpha, p_2] = [\alpha^{-1}, p_2^{-1}]$$

. Now

$$[[\alpha, p_1], p_2] = \alpha p_1 \alpha^{-1} p_2 \alpha p_1^{-1} \alpha^{-1} p_2^{-1}$$

since p_1 and p_2 commute, whereas $[[\alpha^{-1}, p_2^{-1}], p_1] = \alpha^{-1} p_2^{-1} \alpha p_1 \alpha^{-1} p_2 \alpha p_1^{-1}$. This last expression however may be conjugated by $p_2 \alpha$ to give $\alpha p_1 \alpha^{-1} p_2 \alpha p_1^{-1} \alpha^{-1} p_2^{-1}$. So applying Lemma 2.4 once again shows the two terms represent the same element, and we are done.

2.6. Proposition. There is a standard identification of K'_1 with K_1 and of $K'_0 = K''_0$ with K_0 under which $\lambda_t : K_0(R) \to K_1(R[t, t^{-1}])$ is the usual Bass-Heller-Swan homomorphism.

Proof. $K'_1(R)$ is equal to $K_1(R)$ by definition. We have seen $K'_0(R) \simeq K''_0(R)$ and, if we send a projection $p : R^n \to R^n$ to $\operatorname{im}(p) \subset R^n$, this gives a direct summand (the other summand being $\operatorname{im}(1-p)$) and thus a finitely generated projective. On the other hand, if Pis projective, we may find Q such that $P \oplus Q = R^n$ and $1_P \oplus 0_Q$ will define the appropriate projection. If $\phi : P_1 \to P_2$ is an isomorphism of projectives, the diagram

shows that the corresponding projections are equivalent in $K_0''(R)$, so $K_0''(R)$ is isomorphic to $K_0(R)$. The usual Bass-Heller-Swan homomorphism is described as follows: Let P be

a finitely generated projective R-module. Choose Q so that $P \oplus Q = R^n$ and send [P] to $[P[t, t^{-1}] \oplus Q[t, t^{-1}], t \oplus 1]$. In terms of projections this means that $p : R^n \to R^n$ is sent to $tp+1-p: R[t, t^{-1}]^n \to R[t, t^{-1}]^n$. If we are given $[A, \alpha] \in K'_0(R)$, the corresponding element in $K''_0(R)$ is given by $[\overline{A}, \alpha p_- \alpha^{-1}] - [\overline{A}, p_-]$ where $\overline{A} = \bigoplus_{l=-k}^k A(i)$. The Bass-Heller-Swan construction thus gives $t\alpha p_- \alpha^{-1} + 1 - \alpha p_- \alpha^{-1})(tp_- + 1 - p_-)^{-1} =$

The Bass-Heller-Swan construction thus gives $t\alpha p_-\alpha^{-1} + 1 - \alpha p_-\alpha^{-1})(tp_- + 1 - p_-)^{-1} = \alpha(t \cdot p_- + 1 - p_-)\alpha^{-1}(tp_- + 1 - p_-)^{-1} = [\alpha, p_t]$. This completes the proof.

We wish to show that the λ_t^s -homomorphisms we have constructed are split monomorphisms. The idea is to define a map $K'_{-i+1}(R[t,t^{-1}]) \to K'_{-i}(R)$ using the *t*-powers to give an extra grading. However given a \mathbb{Z}^i -graded $R[t,t^{-1}]$ isomorphism $\alpha : A[t,t^{-1}] \to A[t,t^{-1}]$, we do not have a bound on the powers of *t* that may occur in expressing α . Hence we may not get a bounded isomorphism when we use the *t*-powers as gradings. This is the reason for the following slightly artificial step.

2.8. **Definition.** Let R be a ring. We define $C_i(R)[J, J^{-1}]$ where $J = (t_1, \ldots, t_r)$ as follows: We denote $R[t_1, t_1^{-1}, \ldots, t_r, t_r^{-1}]$ by $R[J, J^{-1}]$, and given an R-module A, we denote the $R[J, J^{-1}]$ -module $A[t_1, t_1^{-1}, \ldots, t_r, t_r^{-1}]$ by $A[J, J^{-1}]$. An object of $C_i(R)[J, J^{-1}]$ is just an object of $C_i(R)$, but a morphism $A \to B$ is an $R[J, J^{-1}]$ -morphism $A[J, J^{-1}] \to B[J, J^{-1}]$ that can be written as a *finite* sum $\alpha = \sum t_1^{n_1} \cdots t_r^{n_r} \alpha_{n_a, \cdots, n_r}$, where $\alpha_{n_1, \cdots, n_r}$ are morphisms in $C_i(R)$.

We also need the category $P\mathcal{C}_i(R)[J, J^{-1}]$ and the result analogous to Section 1:

2.9. Lemma. $K_1(\mathcal{C}_i(R)[J, J^{-1}]) \cong K_0(\mathcal{PC}_i(R)[J, J^{-1}])$ for i > 0 and $K_1(\mathcal{C}_i(R)[J, J^{-1}])$ is isomorphic to $K_0(\mathcal{PC}_i(R)[J, J^{-1}])$ with the extra relations induced by [A, 0] = 0.

Proof. We define ϕ^s as in section 1, and note there are no infinite compositions, so everything we do in Section 1 (which corresponds to $J = \emptyset$) goes right through.

We define

$$K_{-i}^{J}(R[J, J^{-1}]) = K_{1}(\mathcal{C}_{i+1}(R)[J, J^{-1}]).$$
(2.10)

2.11. Remark. There is an obvious map $K^J_{-i}(R[J, J^{-1}]) \to K'_{-i}(R[J, J^{-1}])$ induced by sending $[A, \alpha]$ to $[A[J, J^{-1}], \alpha]$. By construction $\lambda^s_t : K'_{-i}(R) \to K'_{-i+1}(R[t, t^{-1}])$ factors through $K^t_{-i+1}(R[t, t^{-1}]) \to K'_{-i+1}(R[t, t^{-1}])$. It is also clear that λ^s_t generalizes to

$$\lambda_t^s: K_{-i}^J(R[J, J^{-1}]) \to K_{-i}^{J,t}(R[J, J^{-1}, t, t^{-1}])$$

. Thinking of λ_t^s in this way as a homomorphism $K'_{-i}(R) \to K^t_{-i+1}(R[t, t^{-1}])$ we will be able to define a left inverse, and we shall then eventually show $K^t_{-i+1}(R[t, t^{-1}]) \cong K'_{-i+1}(R[t, t^{-1}])$.

Consider an element $[B,\beta]$ of $K^{J,t}_{-i+1}(R[J,J^{-1},t,t^{-1}])$ where $J = (t_1,\ldots,t_r)$ as above. We define

$$C(j_1, \ldots, j_s, \ldots, j_{i+1}) = B(j_1, \ldots, \hat{j_s}, \ldots, j_{i+1})[J, J^{-1}](t^{j_s}),$$

ON THE K_{-i} -FUNCTORS

the $R[J, J^{-1}]$ -submodule of $B(j_1, \ldots, \hat{j_s}, \ldots, j_{i+1})[J, J^{-1}][t, t^{-1}]$ generated by t^{j_s} . We may clearly consider β an $R[J, J^{-1}]$ -module isomorphism of C. Since the condition that β (and β^{-1}) may be written as a sum only involving finitely many t-powers will ensure that β is a bounded \mathbb{Z}^{i+1} -graded automorphism of C, we may define $\mu_t^s : K_{-i+1}^{J,t}(R[J, J^{-1}, t, t^{-1}]) \to$ $K_{-i}^J(R[J, J^{-1}])$ by

$$\mu_t^s([B,\beta]) = [C,\beta]. \tag{2.12}$$

Popularly speaking μ_t^s is the identity, only we consider the *t*-powers an extra grading placed at the *s*th coordinate.

2.13. Proposition. μ_t^s is a well-defined homomorphism and $\mu_t^s \cdot \lambda_t^s = 1$

Proof. We consider the case $K'_{-i}(R) \xrightarrow{\lambda^s_t} K^t_{-i}(R[t,t^{-1}]) \xrightarrow{\mu^s_t} K'_{-i}(R)$ and note the argument we give carries over to the general case as in the proof of Lemma 2.9.

The fact that β may be written as a finite sum $\sum t^j \beta_j$ ensures that β becomes a bounded automorphism of C. Since μ_t^s is essentially the identity, it will respect all relations. To prove that $\mu_t^s \cdot \lambda_t^s$ is the identity, consider an element of $K'_{-i}(R)$. Using Theorem 1.9 (see in particular Lemma 1.15) we may assume α is of the form

$$j_s = \cdots -2 -1 \quad 0 \quad 1 \quad 2 \quad \cdots$$

$$\alpha = \cdots \qquad \stackrel{p}{\longrightarrow} \stackrel{B}{\downarrow} \stackrel{B}{\downarrow} \stackrel{p}{\downarrow} \stackrel{p}{\downarrow} \stackrel{1-p}{\downarrow} \stackrel{p}{\downarrow} \stackrel{p}{\downarrow} \stackrel{1-p}{\downarrow} \stackrel{p}{\downarrow} \stackrel{p}{\downarrow} \stackrel{1-p}{\downarrow} \stackrel{p}{\downarrow} \stackrel{$$

where B is an object of $C_i(R)$ and $p: B \to B$ a projection. It is easy to compute the commutator $[\alpha, p_t^s]$, and we get

$$j_s = \cdots -2 -1 = 0 = 1 = 2 \cdots$$

$$\begin{bmatrix} \alpha, p_t^s \end{bmatrix} = \cdots \begin{bmatrix} B & B & B & B & B \\ \downarrow 1 & \downarrow 1 & \downarrow t_{p+1-p} \downarrow 1 & \downarrow 1 \\ B & B & B & B & B \end{bmatrix} \cdots$$

so $\lambda_t^s([\alpha]) = [B[t, t^{-1}], tp + 1 - p].$

When we turn the *t*-powers into gradings we get back α on the nose, so we are done. \Box As mentioned above (Remark 2.11) we get a map $K^{J}_{-i}(R[J, J^{-1}]) \to K'_{-i}(R[J, J^{-1}])$ sending $[A, \alpha]$ to $[A[J, J^{-1}], \alpha]$. This map induces an isomorphism.

2.14. Proposition. $K_{-i}^{J}(R[J, J^{-1}]) \cong K_{-i}'(R[J, J^{-1}]).$

Proof. The proof is by induction on i, the induction starting with i = -1. In this case the $R[J, J^{-1}]$ -module is finitely generated so it is no restriction to require a bound on the powers of t_i (remember $J = (t_1, \ldots, t_r)$). The slight difference between $A[J, J^{-1}]$ where A is a finitely generated free R-module, and a finitely generated free $R[J, J^{-1}]$ -module causes no trouble. Assume inductively that $K^J_{-i+1}(R[J, J^{-1}]) \to K'_{-i+1}(R[J, J^{-1}])$ is an isomorphism for all rings R. In the commutative diagram

the middle horizontal maps are isomorphisms by induction hypothesis. Since $\mu_t^1 \cdot \lambda_t^1 = 1$, it follows that $K_{-i}^J(R[J, J^{-1}]) \to K_{-i}'(R[J, J^{-1}])$ is an isomorphism.

In view of Proposition 2.13 and 2.14 we have proved the following:

2.16. Theorem. $\lambda_t^s : K'_{-i}(R) \to K'_{-i}(R[t,t^{-1}])$ is a split monomorphism with left inverse given by $K'_{-i}(R[t,t^{-1}]) \cong K^t_{-i}(R[t,t^{-1}]) \xrightarrow{\mu_t^s} K'_{-i}(R)$.

We have not discussed how λ_t^s and μ_t^s depend on s. Note, that if $g \in Gl(i + 1, \mathbb{Z})$ is used to regrade an object A of $\mathcal{C}_{i+1}(R)$ by $A^g(j_1, \ldots, j_{i+1}) = A(g(j_1, \ldots, j_{i+1}))$, the identity $1_g : A^g \to A$ is not a *bounded* automorphism of A^g . But if α is a bounded automorphism of A, $1_g \alpha 1_g^{-1}$ is a bounded automorphism of A^g . This defines an action of $Gl(i + 1, \mathbb{Z})$ on $K_{-i}(R)$ which is given by

2.17. Lemma. $g \in Gl(i+1,\mathbb{Z})$ acts on $K'_{-i}(R)$ by multiplication by det(g).

Proof. First we show that if g is elementary, $g = E_{rs}(a)$, the action is trivial. If $[A, \alpha]$ is regraded by g we get the composite $A^g \xrightarrow{1_g} A \xrightarrow{\alpha} A \xrightarrow{1_g^{-1}} A^g$. But $\lambda_t^s([A^g, 1_g^{-1}\alpha 1_g]) = [A[t, t^{-1}]^g, [1_g^{-1}\alpha 1_g, p_t^s]]$ and since 1_g and p_t^s commute, we get $[A[t, t^{-1}]^g, 1_g^{-1}[\alpha, p_t^s]1_g]$ and restrict to a band around $j_s = 0$. But $g = E_{rs}(a)$, so 1_g is a bounded isomorphism when restricted to a band around $j_s = 0$, hence this last element is equivalent to $[A[t, t^{-1}], [\alpha, p_t^s]]$ which represents $\lambda_t^s([A, \alpha])$. Since λ_t^s is a monomorphism, we are done. We now only need to see how g, which acts on \mathbb{Z}^{i+1} by multiplying the sth coordinate by -1, acts. A typical element $[\alpha] \in K'_{-i}(R)$ may be written (by Theorem 1.9)

which is mirrored about $j_s = 0$ by g to give α^{-1} , so g acts by -1. This completes the proof.

2.18. Corollary. $\lambda_t^{s+1} = -\lambda_t^s : K'_{-i}(R) \to K'_{-i+1}(R[t, t^{-1}])$ and $\mu_t^{s+1} = -\mu_t^s : K'_{-i+1}(R[t, t^{-1}]) \to K'_{-i}(R).$

Proof. Let τ be the transposition that interchanges the *s*th and *s* + 1th coordinate. Then $\lambda_t^s \cdot \tau = \lambda_t^{s+1}$ and $\mu_t^{s+1} = \tau \cdot \mu_t^s$.

In view of 2.18 we shall denote λ_t^1, μ_t^1 by λ_t, μ_t , respectively, and note that

$$\mu_t^s = (-1)^{s-1} \mu_t, \qquad \lambda_t^s = (-1)^s \lambda_t.$$
(2.19)

Proof of Main Theorem. One possible definition of $K_{-i-1}(R)$ is by induction as the intersection of the images of the Bass-Heller-Swan homomorphisms

$$K_{-i}(R[t_1, t_1^{-1}]) \to K_{-i+1}(R[t_1, t_1^{-1}, t_2, t_2^{-1}])$$

and

$$K_{-i}(R[t_2, t_2^{-1}]) \to K_{-i+1}(R[t_1, t_1^{-1}, t_2, t_2^{-1}]).$$

Our proof will be by induction on the statement $K'_{-i}(R) \cong K_{-i}(R)$ by an isomorphism under which the image of $\lambda_t : K'_{-i}(R) \to K_{-i+1}(R[t,t^{-1}])$ is sent to the image of the usual Bass-Heller-Swan homomorphism. The start of the induction is proposition 2.6. Denoting $\lambda_{t_1}, \lambda_{t_2}, \mu_{t_1}, \mu_{t_2}$ by $\lambda_1, \lambda_2, \mu_1, \mu_2$ respectively, we have a homomorphism $\lambda_2 \cdot \lambda_1 :$ $K'_{-i-1}(R) \to K_{-i+1}(R[t_1, t_1^{-1}, t_2, t_2^{-1}])$. Theorem 2.5 implies $\lambda_2\lambda_1 = -\lambda_1\lambda_2$ so $\operatorname{im}(\lambda_2\lambda_1)$ is contained in $(\operatorname{im} \lambda_1 \cap (\operatorname{im} \lambda_1) = K_{-i-1}(R)$ (by induction hypothesis). $\lambda_2\lambda_1$ is a monomorphism by Proposition 2.13. To show it is epic let $a \in K_{-i+1}(R)$. Consider a as an element of $K_{-i+1}(R[t_1, t_1^{-1}, t_2, t_2^{-1}])$. By induction hypothesis $a = \lambda_1(b_1) = \lambda_2(b_2)$ and, by 2.13, $b_1 = \mu_1(a), b_2 = \mu_2(a)$. The diagram

is commutative since one way sends $[\alpha]$ to $[\alpha, p_{t_1}^s]$ and then turns t_2 -powers into a grading, whereas the other way around turns t_2 -powers into a grading and then takes the commutator with $p_{t_1}^s$. Hence $\mu_2\lambda_1 = -\lambda_1\mu_2$ and we get $\lambda_2\lambda_1(-\mu_2\mu_1(a)) = \lambda_2\mu_2\lambda_1\mu_1(a) = a$, so $\lambda_2\lambda_1$ is onto. This completes the proof of the Main Theorem.

3. FINAL REMARKS

In geometric applications one is usually not considering an automorphism $\alpha : A \to A$, but rather an isomorphism $\alpha : A \to B$. This, however, only makes a difference in the category $\mathcal{C}_0(R)$ since if $p_-^s : A \to A$ is the projection 1.7 we may consider $\alpha p_-^s \alpha^{-1}$. The restriction to a band around $j_s = 0$ gives a projection, which is 1 if $j_s \ll 0$ and 0 if $j_s \gg 0$. Hence the width of the band only matters in case i = 0; in all other cases we have a well-defined invariant in $K_{-i}(R)$. For i = 0 we have to divide out by identity projections to get a well-defined invariant.

This amounts to getting an invariant in $\widetilde{K}_0(R)$. With the obvious notion of a contractible chain-complex in the category $\mathcal{C}_{i+1}(R)$ we thus get an associated $\widetilde{K}_{-i}(R)$ -invariant ($\widetilde{K}_{-i}(R) = K_{-i}(R)$ for i > 0). Also associated to a homotopy projection of a $\mathcal{C}_i(R)$ chain complex, we get a $\widetilde{K}_{-i}(R)$ -invariant (using the methods of [4], see [3] for a proof). These ideas are further developed in [3]. Altogether a number of results due to Quinn can be given "standard" proofs using this description of the K_{-i} -functors.

References

- 1. H. Bass, Algebraic K-theory, Benjamin, 1968.
- H. Bass, A. Heller, and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 61–80.
- E. K. Pedersen, K_{-i}-invariants of chain complexes, Topology (Leningrad, 1982), Lecture Notes in Mathematics, vol. 1060, Springer, Berlin, 1984, pp. 174–186.
- 4. A. A. Ranicki, The algebraic theory of finiteness obstructions, Math. Scand. 57 (1985), 105–126.
- 5. R. Swan, Algebraic k-theory, Lecture Notes in Mathematics, vol. 76, Springer, 1968.

MATEMATISK INSTITUT, ODENSE UNIVERSITET, ODENSE DENMARK