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§1. INTRODUCTION

THE coHOMOLOGY H(A) of the mod 2 Steenrod algebra A is isomorphic to the E, term of

the mod 2 Adams spectral sequence {E(S%} [2]. In this paper we extend the results of [5]

in relating cup-i products in H(A) to the structure of the Adams spectral sequence.

The main result of the paper is contained in
TaeoreM  (1.1). Suppose that o« € E,**** (S°) is a permanent cycle and that both
(i) (k+ D<pt+k+1)and
(i) (¢ + k) =2"*" — 1 mod 2i¥1 §=0,1,2 0r 3.
Then Sqyo is a permanent cycle and SQy 2% survives 10 Ei.1(S®) where
8200 1S4 200 = h(59,9).

(1.1) ocours in this paper as Theorems (5.1) and (5.4). In the statement of (1.1),
p((2a+ 1)2°*4%) = 2° + 8d where 0 < ¢ < 4. Also, Sq,a = a Uy 2. (Sq, o should not be con-

fused with Sq*a.)

For k =0, the differentials given in (1.1) correspond to identities in 745(S°%) = Gx.
For example, if « € G,, then 292 = 0 if £ is even and no? =0 if 1 = 3(4). Identities such as
these are proved using the quadratic construction which is also the main tool in the present
study. The quadratic construction is a functor from pointed spaces to filtered spaces which
has been studied by J. F. Adams, M. G. Barratt and M. Mahowald (unpublished). Theorem
(4.4), our main technical result, was an early conjecture in the study of the quadratic con-
struction. The author is indebted to J. F. Adams, M. G. Barratt and M. Mahowald for con-
versations and correspondence which were helpful in the present work.

This paper is organized as follows:
§2 recalls the construction of the cup-i products in the cohomology of the Steenrod algebra.

§3 outlines the quadratic construction. The main technical results are proved in §4, and the
applications of Theorem (4.4) to the Adams spectral sequence are carried out in §5. The quad-
ratic construction can also be used to define cup-i products in G . §6 discusses the relation
of some of these homotopy operations to the cup-i products in H(4).

t This research was supported in part by NSF GP-5591.
t A preliminary announcement of this research appeared in: D. 8. KamN, Squaring operations in

the Adams spectral sequence, Bull. Am. math. Soc., to appear.
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§2. CUP-; PRODUCTS IN H(A4)

In this section, we recall the definition of squaring operations in the cohomology of A,
the mod 2 Steenrod algebra [6; Chapt. II, §5]. The construction itself a

pplies to any connec-
ted co-commutative Hopf algebra over Z,, but our only concern is with the Steenrod
algebra.

The cohomology of 4 may be calculated from the bar construction B(A)[1, p. 32].
Thus, H*(4) is a subquotient of Hom 4 (B(4), Z,). B4 ® B(A) is made into an 4-module
via the diagonal map : 4 -+ A ® A. Since B(4) ® B(A) is acyclic, 3 an A-map D, : B(A)
— B(4) ® B(A) commuting with the augmentation. D, may be used to compute cup pro-
ducts in H(A).

Since 4 is co-commutative, the twisting map p : B(4) ® B(A4) - B(4) ® B(A) given by
X@y—»y®xisan 4 homomorphism commuting with augmentation. Again using the
acyclicity of B(4) ® B(A), there exists a chain homotopy

D, : B(4) > B(4) ® BA

such that 8D, + D, § = pDgy + Dy. (No signs are needed since we are working mod 2.)
Continuing as in the definition of the Steenrod operations in ordinary topology [8; V, §9],
we obtain a sequence of 4 homomorphisms

Dj : B,,(A) - (B(A) ® B(A))n+j
such that

(2.1) D, commutes with augmentation, and
(22) forj >0, 0D; + D;0+ Dy +pD; , =0.
If {D;} and {D/} are any two such sequences, there exists a sequence of 4 maps
Ej: B(A)~ (B(4) ® B(4)),4,,/ =0
such that
(2.3) E; =0, and

We now define, for u e Hom,*(B,(4), Z,), an element u Ui u € Hom 2(B,,_(4), Z,)
by

(u U; u)o) = (u x u)(D;0),

where ¢ € B,,_ (A). Using (2.1) and (2.2), we see that if u is cocycle, so also is u {J, w and
that the cohomology class of U:  depends only on the cohomology class of u. Using
(2.3) and (2.4) we see that the cohomology class of u {J, u does not depend on the choice of

the sequence {D;} satisfying (2.1) and (2.2). Thus we have defined o (J; « € H2~24(4) for
o € H*(4). We will also write

Sq = Sq* iy = o ;.

Remark (2.5). In order to define « U: «, it suffices to define D ; satisfying (2.1) and (2.2)
only forj < i.
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§3. THE QUADRATIC CONSTRUCTION

We describe here the quadratic construction, a functor from pointed spaces to filtered
spaces which has been studied by Adams, Barratt and Mahowald (unpublished). The results
of this section are well known to these authors. For convenience, we shall only discuss the
construction for finite CW complexes with base point.

Let X be a finite CW complex with base point. Denote by Q""(X) the space S"|x
(X A X). (If B is a space with base point by, A|x B shall mean (4 x B)/(4 x b,).) Define
the involution T: Q"(X) — Q"(X) by T(x, y, z) = (~x, z, y), where —x is the point
of S* antipodal to x. This defines an action of Z, on Q'"(X) and we define Q"(X) =
0"™(X)/Z,. @(X) shall mean 0*(X) and is called the quadratic construction on X. 0X)
is naturally filtered by the subspaces {Q"(X)}.
If f: XY is a map of pointed complexes, then Q'(f): Q'(X) — Q'(Y) defined by
(x, », 2)- % f(¥), () induces a map Q(f): Q(X)~ QV) and Q(f)| Q"(X) =
o(f) : @"(X) - Q'(Y). Thus each Q" is a functor and if n <m, Q"isa subfunctor of Q™.
Example (3.1). Q*(S™) is homeomorphic with S™ A P,"*" = "p,t" (By P} we mean
. the stunted projective space RP?/RP*™1)
Proof. Q"(S™) may also be described as the one point compactification of (S" x R™
x R™)/Z, where the action of Z, on S" x R™ X R" is given by T'(x, y, 2) = (=X, z, ¥).
Now S™ A P,™*" can be described as the one point compactification of (S" x R™ x R™)/Z,
where the action of Z, on §* x R™ x R™ is given by T"(x, y, z) = (—x, y, —2)[4, p. 205].
Since, as is easily seen, (S" x R™ x R™, T) and (§" x R™ x R", T") are equivariantly homeo-
morphic, the result follows.
We leave it to the reader to verify the following three elementary properties of the quad-
ratic construction.

ProPOSITION (3.2). If f, g : X — Y are homotopic relative base points, then there exists
a homotopy H : Q(X) x I - Q(Y) of Q(f) to 0(g) such that H| Q"(X) x I gives a homo-
topy of Q'(f) to Q'(9).

COROLLARY (3.3). If X and Y have the same homotopy type as pointed spaces, then
O(X) and Q(Y) have the same homotopy type, preserving Siltration.

PROPOSITION (3.4). Q"(X)/Q" ' (X)~S"AX A X and 0N =S ASfAL

§4. THE MAIN THEOREM
Our discussion of the Adams spectral sequence will follow the exposition given in [2],
with the exception that we will use the smash product rather than the join in treating pro-
ducts. Finite CW approximations through the stable range respecting base points will be
used. We will omit specific mention of the skeletons on which various stable constructions
may be carried out.

Let W, > W, > ... be a realization for B(A) with W, having the homotopy type of
S2" Let Y, o Y; o ... be a realization for B(A) with Y, having the homotopy type of S™.




DANIEL S, KAHN

Then Z, = Yo A ¥, with the
MP T:YAY Y AYis
map for B(4) ® B(A4).

LeMMA (4.1); Ifn=2¢
Proof. [3, 4].
Let ¢, : pontr 0'(S") - §2n

product filtration js a realiza

a realization of p : B(4) ® B(4) -» B(4) ® B(4), the switching

Wwhere q > ¢ (r) BL 8" =P, is a retract of prtr,

be the n-fold suspension of such a retraction. Since
Q'(Yy) =~ Q'(8™), there exists amap @, : Q'(Y,) - W, equivalent to o,.

Let 6,: 8*|x (Y A Yp) > 0/(Y,) be the identificatio

0 map. Denote by E,* (E_") the
upper (lower) hemisphere of §*. Let

s (By'[x (Y, A Yo) > 8'|x (¥, A ¥y
be the inclusion map.

Prorosition (4.2). Let n = 29
= Wy such thas

A) 0,-T=@,,

B) there is an equ
(Yo) = W,), and

O 0,5 x ZYSW,_, fort<r.

Proof. We
for r=1¢.

Since @ : Q(y,) = Yo A Yy — W,
use Lemma 3.4 of [2] to obtai

q92¢(r). Then there exists a map @, ; §* IX (¥ A ¥p)

ivariant homotopy H" of ©, to ®o 0, (vielding O/Z,~®,: o

proceed by induction, denoting by A, B, C, conditions A, B, C of 4.2

Is equivalent to the identity map §2n

— 5%, we may
n a map

0, : Vo (B0 x (¥, A YD~ Y, A Yoo W,
such that O Yot (E.0) x Z;) = W, and such that there is a homotopy H ,° of O," with
®,. Define O~ 1y, (E

LIx (¥ A Y)>W, by ©,~ = ©o* o Toyy~. This defines
O,. We define _° by the composite

Vo(BE-2x[(% A ¥) x| 175 5 gt (g0 X (Y A Yp) e
This defines HO. Conditions 4,, B

o and C, are readily verified,

Assume now that O, is defined satisfying 4, , B, and C, where ¢ <. Now since ¢ < r,
0,/Z,: 9Y Yo) = W, extends to amapa: Q'*(y)) -, W, with H YZ, extending to a homo-
topy K of « with ®, . ;. Consider the composite

aef,, ° Yy PE S x (Yo A YY) Wo.
Using an argument similar to one given in Lemma 3.5 of [2], we see that g o Ory oyt
is homotopic relative to S (Y, A Yy to a map /', such that O (B ¢ Z)c
< W (e+1) - Define ©/ by the equation @, , =0 oyt 1- This also yields 4 homotopy
H, ™1 extending HY[S'Ix (Y, A Y) of CH N S 0;+1. Now set 041=0}, 0T
and H_**'= g t+1, (T x| 1). One checks

that conditions 4,44, B
fied. This completes t

t+1 and C,, are satis-
he induction,

tion for B(4) ® B(A). The switching
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1dentifying H *(Wy» Wit ) with B,(A4) and H*(Z s Z,+1) With (BA® B(A))m» WE define
homomorphisms D;: B,(A)— (B(A® B(A)n+ > ogj<sr as follows: Let 0=0,:
st ix (Yo A Yy) > Wo be a map given by Proposition (4.2). The Kiinneth Theorem yields
an jsomorphism

xx H*(E+'> ST O1X (Zons L+ D) ® H* i (Zn» Zut) ® (B(4) ® B(A)n

- Consider the composites

(£l S 1% B T ) Y (st SNX Zs 2 o) W s Wonm ) ™ B £A)-
Then We define D;: Bm- {4 (BA® B(A)n by
Dj=x+° (‘I’j+)* o O%.
Lemma (4.3)- The homomorphisms D; satisfy 2.1) and (2.2) for j& 1
Proof. Since We are working mod 2, it follows by (4.2A) that
pD;j=¥° TR o*.
The result now follows from the cell structure of S".
In the following theorem, we retain the notation of this section.

TreoreM (44)- Let & € Ef*‘“(S°) be a permanent cycle and r an integer. Then there is

an integer n and @ mapping © guttprtts > Wo such that
A) @@“TﬁfﬁCWhﬂﬂsksnam

B) the composite
(Ez(n+t)+k’ SZ(»+t)+k-—1)__6_)(Enl+tp:itt+k, Zu+tp:i§+k—1)2’(W25_k’" W25—-k+1) represents a

cycle of Elzs""z““’(s°) whose image in Ezzs""(s“’(S") is o o (8 denotes the character-
istic map of the top cell of grriputtth)
Remark (4.5)- The integer 7 May be chosen to be as large as one likes. In fact, there is
an integer M SO that we may choose n = 2 qg=M.
Proof. Choose n = 21 where 4 = ¢ (r). We also choose g large enough so that the rele-
vant portion of B(4) is realizable. Then we may find a map @:5Ix (Yo A Yy) > Wo
which satisfies conditions 4, B and C of 4.2).
Now, since & is 2 permanent cycle, it may be represented by 2 mapping f* sHrt o Y.
We define the map ® to be the composite (OfZy) ° oU): or(s*+ — Wo- ‘
By (3.1, (st is homeomorphic with grtpriitr. Proposition 4.20) implies
(4.4A). Note that fAS: srt A S™t! = (Z2s» Z2s-1) represents o % & (4.4B) now follows
from (3.4) and 4.3).

§5. SOME DIFFERENTIALS IN THE ADAMS SPECTRAL SEQUENCE

In this section, we use information concerning the cell structure of P,"** and Theorem
(4.4) to relate the differential in the Adams spectral sequence to some of the squaring Opera-
tions on permanent cycles. The results for Sq; were obtained earlier in {51
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THEOREM (5.1). Let acEsty(
Sq. @ is also permanent cycle.

Proof. Recall that if m = (2a + 1)2¢+44

ift+k+l=2’(2b+l)andq>r, thenp(2"+l+k+1)=p(t+k+1).

eed only show p27+t+k
q is large enough. But it is known that this is t

=p(t+k+1) 3],

We shall use the symbols ho, ki, R, and k5 to denote any elements j
pond to the elements k,, ,, h; and &y in E,(S9),

ator of the 2-component of Gy,

[ . i
Now let £, : S71+2'~1 _, pn+e+2

i
Letg: S"** = Pl prit2

LEMMA (5.2). Let n = 24
2 | mod 2i+1.

rue if and only if (k + D<p+t+k+ 1)

n G, which corres-
respectively. This means that h; is a gener-

~! denote the attaching map of the top cell of prte+ad
~! denote the inclusion map.

»q large enough, and ; = 0, 1, 2 or 3. Then [fil=gh; if t =

Proof. This follows from the fact that Sq?' is non-zero in Piii*2" and that Priita g
S-reducible under the hypothesis of (5.2).

Notation. §, denotes the differential in E,(S9),

THEOREM (5.3). Leti=0, 1, 2 or 3.

If o € E,**+4(8% 45 4 permanent cycle qnd ¢ =
2i+l -1 mod 2i+1

» then 8q,.0 survives to E5i41(S°) and
621+1(Sq21 (x) = hi 062.

Proof: Let ®: 51t Pt S W bea map given by (4.4) with n = 2%, g large. Then by
(5.2) it follows that Sqaia is represented by a map (EX+v+2! N W
(Was-21, Wy such that f | §2¥0r2i=1 _ o0 o homotopic in W,
with a map representing o”. It follows that J' is homotopic thro
S2m+n+2i-1 Was+1 Which represents h;o®. (For i =
proof of this statement fori=1,2and3 is similar.)

to the composite of k,
ugh W, to a map f”:
0, this is Lemma (2.2) of [5]. The

A specific homotopy through W,

of f7 to f” can be used to alter f 5o as to obtain a
mapping
g: (EZ(n+t)+2‘ S2(n+t)+2‘-l

) (W2s-2' s Wasiy)
S0 that g represents Sq,x and g S0t poecents h;o. This completes the proof
of (5.3).

O k+1<pt+k+ 1) and
(i) s+ k=2+1_ mod 2141 ; — 0,1,2o0r3.
Then 8q,., . survives to Ez14 (8% and

Oty 1(SQk+2i°‘) = h(Sq, ).

Proof. Let n = 2%, g large enough. Condition (i) implies that (stably) Pi¥i*k has the
same homotopy type as P+ FHELy etk e

e Qntttkd 201 mtt+k4 2~
f'S —)Pn-(»t

8% be a permanent cycle. Then if k+1 < plt+ k +1),
0<c¢<3, then p(m) = 2° + 84. Observe that
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denote the attaching map of the top cell of prritk+2! [ emma (5.2) implies that fis homo-
topic to a map g : grtetk+2i-1_, prtitk Now

ntt+k ntt+k
Typrkt2i-1Prie )R Tyrpsrs2i-1(S )

D Tytp ks 2t~ 1(P:i:+k_ M.
Using this decomposition write [ g] = ([g11, [g2]). Condition (ii) implies that [g,] = h;.
We proceed as in the proof of (5.3). Let ©: yrteprtikt2l W be a map given by
(44) with n =24 g large. Then, as in (5.3), 8,(Sqy+2:%) is represented by 0.2 9,1
£0,[2""9,] € ne(Wps—y). Now 0,[Z"*'g,] is homotopic in Wy, to an element of
u(Wps—x+1) Which represents  F(Sqy ). Because O (Z"HPILFTY) € Woskass
B (g )52+ 7Y is contained in Waeker and since H*(g,;Z,)=0, it
follows by Lemma (3.3) of [2] that 8, X""’g, is homotopic in W,,_x+; to a map carrying
Sz(n+t)+k+2‘—1 into WZs—k+2 .
Again as in the proof of (5.3), it follows that
0204 1(SQp 4 2:00) = h{(Sq, ).
We conclude this section by observing that the differentials given in (5.3) are “honest .
More precisely:

Definition (5.5). Let B € ny(W,,) such that the image of B in m,(W,) is zero. Denote by
B’ the image of § in E,™*(S°). Then a relation 6,7’ = f' is called honest rel. B if 7' can be
represented by an element y € (W —,, W,) such that 8,y = B, Oy being the boundary
homomorphism of the pair (W,,—,, W)

The condition of honesty of relations occurs in the problem of relating Toda brackets
to Massey products. See, for example, the work of Moss [7]. Tt is clear that the relations of
(5.3) are honest.

We shall need another criterion of honesty in the next section.
Definition (5.6). A relation
6rs—r,t+1+s—r.yl — ﬁle Ers,s+t
is called visibly honest rel. p if
S itttk = 0fork >0,/ 1
and B is represented by an element B € n,(W,) whose image in m,(Wo) is zero.
The nomenclature of (5.6) is justified by the following:

LemMa (5.7). If 8,9" = B is visibly honest rel. B, it is honest rel. B, for any B € T(W))
which maps to zero in n(W,) and to ©' in B,.

Proof. [7}.

§6. CUP-i PRODUCTS IN HOMOTOPY

The quadratic construction has been used by Adams, Barratt, B. Gray and Mahowald
to define cup-i products in G,. We do not attempt a systematic discussion of these opera-
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tions. Rather, we just treat some illustrative cases and their relation to the Adams spectral
sequence.

Let f: S"** - S" represent « € G, where n = 29, g large. Then from (4.1) we obtain a
mapping
6r : Qr(Sn-H) = E"+tP:I:+r—* S2n
which is the composition of a retraction ¥ :X"P,**" - §2" with Q'(f). Denote by g¢:
gryetr—1_, prttdr—1 the attaching map of the top cell. Since W o Q" '(f) extends to
¥ o O°(f), it follows that ©,_, o Z"*'g has a null-homotopy H. Now if for “different”

reasons, there exists a null-homotopy K of ®,_, o "*'g, wé define « {J, « to contain the
difference element d(H, K). Thus o |, & = G,,,. (¢ Uo & = &*.) We consider a few examples.

Examples (6.1). A) If r + 1 < p(¢ + r + 1), then g itself is null-homotopic. In this case
o |, o is defined by demanding that the null-homotopy K be the composite of ¥ with a null-
homotopy K’ of Z"**g. The indeterminacy of & {J, « comes from varying the null-homotopy
K' and the retraction V.

B) Let t=2"*! — 1 mod 2'*! and r =2 for i = 0, 1, 2 or 3. Then we may suppose
that g : S"**+2'~1 1 §"*¢ Assume that o> = 0. Let K’ be a null-homotopy of f A f.In this
case, we define o (J, o by demanding that K be the composite of K’ with the cone on g.
The indeterminacy comes from varying the compression of g into $"**, varying K’ and again
varying the retraction V.

C.) We retain the hypothesis of (6.1B) with the exception that we replace the condition
a?* =0 by the condition that fog is null-homotopic for some choice of compression
g: St 2i-1 L, gnHe of the attaching map. Let K’ be such a null-homotopy. We define
o |, « in this case by demanding that K be of the form K’ A f.

THEOREM (6.2). Let & € E,* *%(S°) and suppose that r + 1 < p(t + r + 1). Then there is
an element of &\, @ as defined in (6.1A) which corresponds to o ), o € E,*~"**2{(S0),

Proof. Defining d(H, K) € & {J, &, by (4.4) H may be chosen so as to represent a {J, «
and K may be compressed into W,,_,, ;. Thus d(H, K) represents « {J, « in E,2~"2+2¢(S?),

THEOREM (6.3). Suppose that & € G, corresponds to o € E,****(S°) and that t = 2'*' — 1
mod 2'*1. Suppose also that & =0 and that there is a visibly honest differential
0. B = o® rel. o*. Then Sqy: & contains an element which corresponds to Sqy:0 ¥ h;f.

Notation. If y € E,>*** and y’ € E5"¥'*¥, then y ¥y’ denotes y, y + 7" or ¢’ as s </,
s =s"or § > ¢, respectively.

Proof. Let r = 2. Using (4.4) and the proof of (5.3), we compress ©,_; o £**’g into
W,,+4 With a null-homotopy into W,,_, representing o |J, «. By (5.7), 8,8 = o* is honest.
It follows that §,,/;6 = h,a? is honest rel. h,a%. Use a representative K of h; § which gives
null-homotopy of ®,_, « **’g into Wy,,,_,,. K exists because of the honesty of the
differential. Now d(H, K) represents & |, & in G4 and « {J, « F &, 8 in E,(S°).

THEOREM (6.4). Suppose that & € G* corresponds to o € E,**+*(S°) and that t = 2'*' — 1
mod 2%, Suppose also that Sq,:& is defined as in (6.1C) and that there is a visibly honest
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differential 8, B = h;o rel. hyo. Then Sq5:@ contains an element which corresponds to

Sqy F o
The proof is similar to that of (6.3).
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