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ABSTRACT. We point out a generalization of the May-Milgram and Se-
gal models for iterated loop spaces (and their mapping space analog
given by F. Cohen and C.F. Bodigheimer). We phrase our result in
terms of labeled configuration spaces of “bounded multiplicity” and in
so doing we answer a question of Carlsson and Milgram posed in the
handbook. We relate this labeled construction to a theory of Lesh and
as a result also obtain a generalization of a theorem of Quillen, Barratt
and Priddy. Finally we point out that the stable splittings that occur in
the classical case do not persist when higher multiplicities are allowed.

§1. Introduction

Ever since the work of Milgram on iterated loop spaces [M] and its gen-
eralization by May [Ma], the May-Milgram configuration space model has
come to play a vital role in homotopy theory. Its applications are too numer-
ous to list. Suffices to say that Nishida’s nilpotence theorem, Mahowald’s
infinite family in stable homotopy groups of spheres and most recently Stolz’s
classification of certain families of constant curvature surfaces [St] make fun-
damental use of it.

We quickly recall what the model is: Let F(R¥,n) C (R*)" be the subset
of n-tuples of disjoint points of R¥, and let X be a connected topological
space with basepoint *. We assume X has the homotopy type of a CW
complex. Observe that both spaces F(RF,n) and X" admit an action by
the symmetric group ¥, given by permuting coordinates. We can then
consider the orbit quotients F(R¥ ,n) xx, X™ for every n > 1 (the term
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corresponding to n = 0 is basepoint) and glue them together as follows

1.1 = [ F®*,n) xs, X"/ ~
n>0

where ~ is a (standard) basepoint identification

(mi,...,mp) X3, (T1,... ,Zy) ~
(ma,..., My ,mp) Xx, 4 (1,0, &iy oo, xn) I 7 = *

(“hat” here means deletion). The theorem of May and Milgram then states
that

Theorem 1.2: There is a map
C(R*; X) —— QFxk X
which is a homotopy equivalence whenever X is connected.

In their paper in the Handbook of algebraic topology, G. Carlsson and J.
Milgram ([CM], §7) consider the following space: Fix d > 1 and let F4(R¥, n)
be the space of ordered n-tuples of vectors in RF so that no vector occurs
more than d times in the n-tuple (when d = 1, F1(R¥ n) = F(R*,n)).
Consider as before the “labeled” construction
1.3 CURY, X) = [] FY®R*,n) x5, X"/ ~

n>0
Notice we have an inclusion of models C(R*, X) — C%¢(R*, X). The authors
in [CM] raise the question of determining the homotopy type of C4(R*, X)
for connected X and d > 1. The case d = 1 being known (see above), an
earlier attempt to answer their question for the case d = 2 was carried out by
Karagueuzian [Kr]. In this paper we give a general answer to this question
for all d > 2.

Let SP%(—) be the d-th symmetric product functor. This we recall
is defined on spaces X as the quotient SP4(X) = X%/, where Z4 acts
by permuting coordinates. We can of course replace R¥ by any (ground)
manifold M in 1.3 above and F¥(R¥,n) by F?(M,n) in the obvious way
(see §2). Our first main result then takes the form.

Theorem 1.4: Let M be a k-dimensional smooth and parallelizable manifold
with non-empty boundary OM, and let X be a connected CW complex.
Then there is a homotopy equivalence

O4M; X) ——— Map(M, dM; SP4(sF X))

where the mapping space on the right corresponds to all maps of M into
SPY(x*X) sending OM to a fixed basepoint.

Remarks and Corollaries 1.5:

e The case d = 1 is due to F. Cohen and F. Bodigheimer and reduces to the
May-Milgram model when M = R¥ (viewed as the closed disc). There are
indications that the full result has been known to them (although this isn’t
recorded in the literature) and in fact our proof is already largely in [B].
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e An analog of theorem 1.4 for M = R™ based on little cubes of Boardman-
Vogt has been obtained by F. Kato [Kt].

e In fact theorem 1.4 admits an extension to stably parallelizable M’s. When
M is closed, there is also an analog after substituting the space of maps with
some appropriate section spaces.

e In the case d = k = 1, the space C'(R; X) := C(R; X) (X connected) is
homotopy equivalent to the James construction J(X) described as the free
monoid on points of X with * as the zero element. The equivalence 1.4 in
this case is simply James’ equivalence J(X) ~ QX X.

EXAMPLE: Suppose M is closed, almost parallelizable and A C M a closed
subset. If T'(A) is a tubular neighborhood of A, then (M — A) ~ 9T(A). In
this case C¢(M — A; X) gets identified with Map(M, A; SP4(£*X)). Choose
A = @, to be a finite set of points » > 1. We can identify each point in
Q. with a small closed disk centered at that point. In this case OM — Q,
is the boundary of all r disks. The quotient M/9Q, is obtained from M
(up to homotopy) by attaching segments between a point pg € @, and the
remaining k£ — 1 points. This means that M/0Qy ~ M V \/’“_1 S1 and one
gets the following corollary (compare [V])

Corollary 1.6 : M* is closed and Q, a set of r distinct points in M. Then
r—1
CUM — Q3 X) = Map*(M, SPY(S* X)) x (QSPd(EkX))

where Map®* refers to the space of based maps.

We next discuss the case when X is disconnected. We observe (after
Segal) that C4(R*; X) is homotopy equivalent to an associative topological
monoid C4(R¥; X) (cf. §2). This monoid admits a classifying space BC and
we show (for k >2,d > 1)

Theorem 1.7: BC4(RF; X) ~ QF-1SPd(3kX)
Remarks 1.8:
(a) Notice that when X is connected, C = C¢(R*; X) is also connected and
hence QBC ~ C. This yields 1.4 as a corollary. The case d = 1 is a theorem
of Segal [S].
(b) The case X = S° has been studied in [K1]. One has C4(R",S%) =
[JC4R", k) where C4(R™, k) = F4R", k)/Zx. Up to homotopy this is a
disconnected topological monoid (see §2). If “+” denotes group completion
QB(—), then 1.7 becomes
+

1.9 [[ci® k)| ~arspi(sm)

k>0

+
For n = 2 we recover the equivalence (szo Pol’j) ~ Q%*P? ([GKY], [K2]),

where Pol% is the space of complex (monic) degree k polynomials having
roots of multiplicity not exceeding d.
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In proving the theorems above we avoid entirely the theory of operads
([May]), iterated loop spaces ([CM]) or classifying spaces (as in [S]). Instead
we use an interesting shortcut construction given in the form of the “scan-
ning” map originally due to Segal (cf. [K1]). We refer mainly to [B], [K1]
for the main ideas/arguments we use in the first part of this note.

PART 2: A CLASSIFYING FAMILY OF SUBGROUPS. The second part of this
note ties the above results to work of K. Lesh [L1-2]. First recall that Xy, acts
freely on F(R*, k) and a model for BY is given by C(R*, k). The space
[l;>o Bk has the structure of a disconnected monoid with composition
being induced from the pairings ¥, x ¥,, = X, m. On the other hand we
can “deform and add points marching to infinity” (see §2) and hence get
stabilizing maps C(R*, k)——C(R*, k + 1) the limit of which is denoted
by Ceo(R*®) := BXs. The Baratt-Priddy-Quillen theorem (or a version of
it) is the special case of 1.9 when d = 1 and n = oo; namely it states that

+
1.10 (H sz) =B [ [[ BS: | ~QS° ~ Z x BSw
£>0

where ~}, means homology equivalence (here BY is basepoint). From this
point of view, the space BYXo, = Cx(R™) is closely associated with the
group completion of the “family” of groups X, k > 1.

In the exact same way we can stabilize the spaces Cd(]R"", k) to a space
C% (R*®) and the question is then: what group completion is the space
C% (R®) for d > 1 trying to describe?

In §4, we recall after T.tom Dieck the notion of a “family” of subgroups
and of their classifying spaces. It turns out that given “compatible” families
Fn (each consisting of a collection of subgroups of X,,), one can associate to
them a topological monoid [[ BF, of which group completion is an infinite
loop space ([L1]). As a special case, we consider the collection of subgroups

Hi iy = X4 X Bjp X oo X Y4, i1 +ig+--+ipg=n

of ¥,,. We define a “family” F,‘f to consist of all Hy;, . ; with i; < d and
11 + 19 + - -+ + i = n, together with their subgroups. For every n > 1, the
family F¢ affords a classifying space construction EF¢ (that is there is a 3,
space EFZ such that the fixed point set under the action of H;,, . ;, € F2
is contractible, and otherwise it is empty). The quotient spaces BFY =
EF2/%,, n > 1, are compatible in the sense that the disjoint union || BFZ
has the structure of a topological monoid. We shall prove (cf. §4)

Proposition 1.11: For alld > 1, we have the following homology equivalence

+

[IB7| ~=nzZxcCd®)
n>0
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When d = 1, F, is the trivial family (consisting of the trivial subgroup
in ¥,), BF,, = BY, and one recovers 1.10 this way. We note that theorem
1.11 is closely related to proposition 7.4 of [L2].

PART 3: STABLE SPLITTINGS. In this last part we point out that in general
there can be no stable splittings for the labeled configuration space con-
structions in 1.3 whenever the labels have multiplicity d at least 2. This is
in stark contrast with the d = 1 case where these splittings (due to Snaith
and Kahn) are almost a trademark of the May-Milgram construction.

We owe this section to Fred Cohen who first informed the author of
this non-splitting result and to the referee who suggested the line of proof
adopted here.

Given the labeled construction C4(M, X) = [[,.5o F4(M,n) xx, X"/ ~,
we can consider the successive quotients B

Di(X) = Cy/Ci

where C¢ = Hﬁ:o F(M,n) x5, X"/ ~. We define Dg(X) as the basepoint.
A standard argument due originally to Dold and Steenrod shows that the
space C%4(M, X) splits in homology with direct summands H,(D¢(X)). More
precisely we shall give in §5 a short proof of the following proposition

Proposition 1.12: For all d > 1, there is a Steenrod splitting

H,(C*(M, X)) = @) H.(D{(X))
k>0

where homology is taken with untwisted coefficients.

The next step is then to check whether such a homology splitting is
actually induced from a stable splitting. When X is a connected sphere,
this turns out to be the case only when d = 1.

Proposition 1.13: Let M = R¥, k > 1 and X = S? a sphere with j > 1.
Then C%(R¥, S7) stably splits as a bouquet \/;~, D¢ if and only if d = 1.

Of course the arguments we provide can be applied to other choices

of M and X. In fact, this non-stable splitting should be clear in light of
the following example. As d — oo, C%(M, X) is in homotopy more and
more like SP*®(MxX) (where M xX is the half-smash M x X/M x x).
However SP* is a functor modeled over Eilenberg-MacLane spaces and
these abound in cohomology operations which prevent them from splitting.
An obvious example: SP"(S%) = P" the n-th complex projective space,
SP>°(5?) = P> and H.(P®) = @ H.(P",P"~!) while P certainly doesn’t
split as \/(P"/P"~1).
ACKNOWLEDGMENTS: The author is much indebted to Kathryn Lesh, Fred
Cohen and the referee for material related to part 2 and part 3 of this
paper. The family of subgroups F¢ mentioned above and defined in §4 was
suggested to the author by K. Lesh and the results of that section follow
essentially from a discussion with her. We finally thank Denis Sjerve for his
generous support and interest.
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§2. Constructions and Notation

NOTATION: A configuration in M is a formal finite sum ) n;z;, n; € N,
xz; € M (z; # xj,© # j). Such a configuration represents by definition a
point of SP™(M),n =mn;1 + - -- + ng.
Assume M to be a connected manifold (in this paper, M will be either
open or compact with non-empty boundary) and define
FYM,n) = U {(Ecl, s T, T2, -, B2, Ty - - - ,:ck)

-~ ~~

71 i2 ik
| z; € M,x; # x5, # j, and i; <d, i1+ + i = n}.
We write C4(M,n) = F4(M,n)/%, for the unoriented configuration space.
We now consider the labeled construction 1.3. When d =1 and M = R* ,

it is customary to write C*(R*®; X) = QX. A stable version of the theorem
of May and Milgram asserts that

Q(X) ~ Q*°E®X for connected X

and this of course implies that m;(Q(X)) = 77 (X).

Remark 2.1: One notices that singular homology and stable homotopy sit
at opposite ends of the labeled configuration space construction given in the

form

[ F(r) xs, X"/ ~

n>1
where ~ is the usual basepoint identification. When F'(n) = % and ¥,, acts
trivially, we get SP*(X) = [], * x5, X"/~. The functor SP>(—) gives
singular homology by virtue of the well-known theorem of Dold and Thom

to the effect that m.(SP*(X)) = H,(X;Z). On the other hand and when
M = R*, we get the functor Q(—) and hence 7$(X). The labeled constructs
C%(M, —) for d > 1 provide intermediate functors between stable homotopy
and integral homology and this circle of ideas is discussed in [L1-2].

The labeled construction 2.1 defines a bifunctor C%(—; —) which is a
homotopy functor in X and an isotopy functor in M. When X = 5%, we
write C4(M) := C%(M, S°) = [[150 C4UM, k).

When M has an open end or a boundary, we observe that we can put
a monoidal structure on C%(M, X) up to homotopy. We explain this for
M = RF: Let RF be given as follows

2.2 RF = {(z1,...,2,) €R®, | 0 < 2, < t}
and define as in [S] the space
CUR; X) = {(¢,t) € CHRY; X) x RT}

Again we have that C4(RF, X) ~ C4(R*, X) and this new modified space
has now the structure of an associative (homotopy commutative for k > 2)
topological monoid with a composition law given by juxtaposition

C(Rf; X) x C(Rf; X)——C (R, ; X), (¢,¢) = (C+ T
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where T is translation (0,t'))——(¢,¢ +¢'). In the case d = k = 1 this is
the same up to homotopy as the well-known James construction J(X).
GROUP COMPLETION: Since C?% = C'4(R¥; X) is a monoid (possibly discon-
nected), it admits a “group completion” QBC? (i.e. mo(QBM) is a group
completion of mo(M) for M a monoid). A handy description of the homol-
ogy of this space is given as follows. We shall suppose that X has finitely
many components (the countable case follows from a direct limit argument).
We then have that C%(R¥; X) has N™ components, with m = |mo(X)| — 1.
For each ¢ < |mo(X)| choose a point p; in the i-th component of X (the zero
component is the component containing basepoint * = pg). Let RF be as in
2.2 and choose a point z; € Rﬁiﬂ = Rﬁ_l — Rf, for all 7 > 1. We can then
consider the inclusion

03 CYR:; X). SN CURM X)
(Z(mﬂw?‘)’z) = (Z(mﬁw?“) + (zi’pi)77' + 1)

The direct limit over these maps is denoted by C4(R¥; X). When X is
connected, we have the equivalence C¢(RF; X) ~ C4(RF; X).

= +2z;
EXAMPLE 2.4: We can define maps C4(R¥, i) — C4(RF, 1) —Z>C’d(Rk, i+
1) the direct limit of which we write C% (RF). It is now easy to see that
C4RF; §0) ~ Z x lim; C4(R¥;4) := Z x CL (RF).
Lemma 2.5: Let X CW, k > 2. Then H,(C4(RF; X)) = H,(QBCY(R¥; X)).

PROOF: If we let 7 = mo(C?), then a theorem of Kahn and Priddy (cf. [MS])
states that

2.6 H.(CY[x™Y = H,(QBC?)

where the left hand side means localization with respect to the multiplicative
set 7 (provided that 7 is in the center of H,(C?) which is the case since C¢
is homotopy abelian as pointed out earlier). The idea of 2.6 is of course
that by inverting w, we are “turning” multiplication by elements of 7 into
isomorphisms (that this is necessary is clear since QBC? is a group and
hence the image of 7 under M — QBC? must consist of units.) Now notice
that the point (z;,p;) € C4RF, X) constructed above represents a point
e; € mo(C?). The stabilization maps in 2.3 correspond therefore to maps

G4(R*; X) ~ lim (C’d(]R’“;X);)C’d(R";X)).
E,L'E’ll'

and this direct limit (by construction) must satisfy H,(CYRF; X))
H,.(C%R*; X))[r~!]. The claim follows from 2.6.

m R

83. Proof of Theorem 1.4

The correspondence (known as scanning) which associates to configu-
rations on a parallelizable manifold a mapping space has been described
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in a few places (cf. [K1], [GKY]). This scanning procedure extends to la-
beled configuration spaces without modification (and so we refer to [K1] for
the details). Let M be parallelizable with non-empty boundary M and
dim M = k. Given £ € M we can canonically identify a neighborhood D of
it with the closed disc D¥ and hence to every configuration ¢ € C4(M; X)
we have a map
¢ x M——CYD*; X)

which associates to z € M part of the configuration ¢ lying in D¥. We
compose with the map C4(DF; X)——C%(D*, dD¥; X) to make this associ-
ation continuous. Here C4(D* 0D¥; X) is the quotient of C%(D*; X) with
the additional identification

(m1,...,mp) Xx, (T1,... ,Tpn) ~
(ml,. R (T ,mn) X5, (:El,. ey gy ,xn), if m; € BD’“
Equivalently, when points of the ground space D* tend to the boundary
they are discarded together with their labels. To every configuration in
¢ € CYM;X) we then have a map ¢ x M——C%D* D*; X). We can
demand that the points making up ¢ live away from the boundary (or end)
of M and in fact with a bit of care we get a correspondence
S’ : CYM; X)——Map(M,dM; C%DF aD*; X))

where M is sent to basepoint in C¢(D¥, dDF; X). It is not hard to see (by
a standard radial retraction argument, cf. [K1], [McD]) that
3.1 CYD*,aD*; X) ~ SPY((D*/dD*) A X) = SPY(ZFX)
and hence S gives rise to the map

S : CYM; X)——Map(M,dM; SPI(ZFX))
which extends to the stabilized space C4(R; X) (2.3).

Proposition 3.2: For X a topological space, scanning induces an (integral)
homology equivalence

S, : H.(CYUR™ X)) —— H,(Q"SPUE"X))

S is a homotopy equivalence whenever X is connected.

The arguments that go into verifying 3.2 are by now standard. The
idea is to induct on an (ingenious) handle decomposition of the closed unit
cube D" (given for instance by Bodigheimer in [B]) and to use properties
of the functor C?¢. Define C4(M, A) for a closed ANR A C M to be the
quotient of C4(M) by the identification which requires that points be dis-
carded when they are in A (exactly as in the case A = 0D above). The
functor C4(M, A; X) is an isotopy functor in M and A. The following easy
extension of results in [B], [K1] can be shown

Lemma 3.3: Let M and N be connected manifolds, N C M, My C M and
consider the cofibration (N, N N My)—— (M, My)—— (M, N U My). Then
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(a) C4(N, N N My; X)——C4HM, Mo; X)——C4(M, N U My: X) is a quasi-
fibration if N N My # () or X connected.
(b) Assume N N My =0 and N has an end or a boundary, then

CHN; X)——CHM, My; X)——C¥(M, N U My; X)

is a quasifibration if X connected and a homology fibration otherwise.

SKETCH OF PROOF: Let’s consider the case X = S and N N My = 0. The
point in showing that the sequence of spaces in (b) above is a homology
fibration (resp. a quasifibration) boils down to showing that maps

Gd(N)—— &)
given by adjointing a given set of configurations is a homology equivalence
(resp. a weak homotopy equivalence). Because of the very construction
of C, adding configurations simply switches components and since these
components are the same, “addition” induces a homology equivalence. This
is not (necessarily) a homotopy equivalence since there is no obvious map
backwards (“subtraction”) which when composed with addition induces the
identity on components. When either X is connected or N N My # 0 it is

possible to “subtract” by moving labels to * € X or points to N N My where
they get discarded. |

SKETCH OF PROOF OF THEOREM 3.2: We let A¥ = S*~1 x D" * denote
part of the boundary of the unit cube D™ = [0, 1] (note that A® = (}). Now
retracting then scanning gives a map C%(D", AF; X)——Qr~*SPI(EnX)
(cf. [K2]) which in the case k = n (i.e. A™ = dD") is a homotopy equivalence
according to 3.1.

Let I;, C D™ denote the subset of (y',...,4") such that y* =0 ory* =1
for some i = k+1,... ,n, or y* = 1 (that is I} consists of D* x §»~k~1 ¢
O(D™ = DF x D"F), for 1 < k < n, together with one face of D¥; cf.
[B]). Now let Hy, = [0,1]*~! x [0, 3] x [0,1]"7*. Then there is a cofibration
sequence

(Hk, Hk N Ik)—)(Dn, Ik)—)(Dn, Hk U Ik)

The pair (Hy, H, N I1;) can be identified with the pair (D", A*~1), while
(D™, HyUI},) = (D™, S*~1x D" %) represents a “handle” (D", A*). Applying
the functor C?%(—; X) and then scanning yields the commutative diagram for
allk > 1

CYDr, AR X) — Qroktlgpd(sny)

A \
cHD" Ii; X) —— r
A \

cYDm Ak X)) ——  QrhSPd(EnX)
where T is an appropriate section space. When k& > 1, A*~1 £ () and 3.3
asserts that the left vertical sequence is a quasifibration. Note that for k& > 0,
D™ retracts onto I, implying that C4(D", I, X) is contractible (similarly so
is T') and so inductively C%(D™, A¥; X) ~ Q"=*SP4($"X) for k > 1. When
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k=1, A¥"1 = A% = () and we need to pass to group completed spaces cd.
In this case we have the diagram

C4D™X) ——  QUSPYIX)

{ N \
CHD™ %, X) — r
{ !

cY{D", AL X) —— Q'lSPY(EnX)
where the left hand side is now a homology fibration according to 3.3 (or
quasifibration if X connected). Since 2"SP?(X"X) must be the homotopy
fiber of C4(D", %;X) — C4D", A'; X) it follows that H,(C4D™; X)) =
H.(Q"SPY(¥"X)) as asserted. ]
PROOF OF THEOREM 1.4: A manifold M with non-empty boundary can
be obtained from R* by a sequence of attachments of handles of index k,
0 < k < n. Theorem 1.2 now follows by repeated use of lemma 3.3 and an
inductive argument on a handle decomposition for M (cf. [K1], [McD]). 1

Proposition 3.4: For X a CW complex, there is a homotopy equivalence
BC4RF; X) ~ Q¥ 15 Pd(2FX).
PROOF: First of all there is a homotopy commutative diagram

C4RY; X)
/ \

QBC? QkSPi(ZkX)

where the right hand map is the “natural fiber” inclusion (see [MS]) and the
bottom map is induced by scanning C¢——QFSP4(£*X). By combining
2.5 and 3.2 we see that all maps are homology equivalences. The bottom
map is a homology equivalence between two simple spaces (being H-spaces)
and also induces an isomorphism at the level of 71(= H; being abelian).
This is then a homotopy equivalence and the proof is complete (note that
X being a CW complex, Q¥SP?%(£¥X) has the homotopy type of a CW
complex as well). ]

§4. Classifying Families of Subgroups of %,, and BC*

In this section we describe a construction of K. Lesh (cf. [L1-2]) which
associates to a (compatible) family of groups an infinite loop space. We then
describe how our labeled construction fits in and prove proposition 1.11 of
the introduction.

Let G be a group and let F be a collection of subgroups of G which is
closed under conjugation; meaning that
eIf Hc Fand g € G, then g"'Hge F
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o If H € F and K a subgroup of H, then K € F.
Such a collection is called a family.

The prototypical example of a family would be to take all subgroups of
a group G (a variant is to consider only the finite subgroups). A less trivial
example would be to consider the family of elementary abelian p-subgroups
of 3, which are generated by disjoint p-cycles together with their subgroups.
This family is studied in [L1].

It turns out that to a family F of subgroups of a group G there is
associated a classifying space BJF by work of T. tom Dieck. More precisely,
tom Dieck constructs a G-space EF with the property that the fixed point
set EFH of H C G is such that

EFHf ~xfor He F, and EFf =0 for H¢ F

Note that EF is always contractible since * € F for any family. Naturally
one then defines the classifying space BF to be the orbit space of the G
action on EF.

EXAMPLE 4.1: Let F consists only of the trivial subgroup in G. Then
EF = EG.

We now specialize to the symmetric groups X, and we suppose that for
each n we are given a family F,, of subgroups for G = %,,. We recall that
given two subgroups H € ¥, and K € ¥,,, we have a group H x K € ¥,
obtained as the image of the composite

HxK—Y, XXy = Xhim.

DEFINITION 4.2: The families {F,},cz+ are compatible if whenever H € F,
and K € F,, then H x K € Fp .

Theorem 4.3 (Lesh): Let {F,},cz+ be a compatible choice of families, then
[I BF,, has a monoid structure whose group completion is an infinite loop
space LF. Such a space comes equipped with (natural) maps

QS"—LF—7.

EXAMPLE 4.4: Let F, be the family consisting of the trivial subgroup in
¥n. Then BF, = B3, and so LF in this case is the group completion of
[ BX,, which is known to correspond by a theorem of Barratt-Priddy and
Quillen to the infinite loop space QS°.

We now relate the above constructions to the spaces C%(R*,n) and
their stable version C¢(R>) constructed in §3. Given n > 1 we consider the
following subgroups of X,,;

Hi1,...,ik =% X Xy X -0 X Eik C X, ij <nandi +ig+ -+ =n.
Each such subgroup H;,,. ; acts on F4(R*®,n) by permuting points. Let
.7-",‘5 ={Hi,,. i | i; <d, i1+i2+- - -+ip = n, together with their subgroups}.
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It is not hard to see that F¢ satisfies the conditions of a family, and that
the newly obtained families {F2},cz+ form a compatible collection.

Lemma 4.5: EF2 ~ F4(R® n).
PRrROOF: Pick H = H;,,...;, € F2 (i <d and 3 i; =n.) Then

(Efg)Hilv---vik = {(EL‘l, ,1‘1},5{:2,... ,l‘z},--- ,iL‘k,... ,.’L‘k) | x; € Roo}

-~ -~

11 22 2]
where the z; need not be distinct. If we let X (R’) be the subset of (EFd)H
consisting of the z; € R C R™®, then we see that X(IR’) is open in RI"
and is the complement of hyperplanes of codimension at least j (implying
in particular that it is j — 2 connected). Since (EF2)H is the direct limit
of X(R7) — X (R/*1) it must be contractible and (EF%)H ~ x as desired.
What is left to show is that the fixed point set of H ¢ F is empty. Observe
that any such H must contain a cycle on (at least) d + 1 letters. The fixed
points of such a cycle consists of configurations containing a d+1 (or maybe
more) repeated point. Such a configuration cannot exist in F4(R*®,n) (by
definition) and (EF4)H = 0. ]

Proposition 4.6: For all d > 1, we have the following equivalence

B I B | = 0= 'sPi(s™).
n>0

PrOOF: By lemma 4.5, [],5 BF? = >0 CHR*®,n) = C4R®;S80%) ~
C?(R>; S%). On the other hand, it is easy to see that theorem 1.7 still holds
true for k£ = oo and the claim follows. 1

Combining now 3.2 with the above proposition yields 1.11 immediately.
Note that by construction C4(R®, 00) = Z x C% (R*®) (cf. 2.4).

§5. Stable Splittings

As discussed in the introduction we are concerned with the existence
of stable splittings for C¢(M, X) and more generally for the (filtration n)
subspace

k
CHM, X) =[] F4(M,n) x5, X"/ ~
n=0

in terms of successive quotients as in

n
C4(M, X) ~, \/ DM, X)
k=0
where D¢(M, X) = * and D{(M,X) = C¢/CZ | for k > 1. As far as
homology is concerned, this splitting always occurs; i.e.
Proposition 5.1: H.(C3(M, X)) = @j_, H« (DM, X))
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PROOF:(compare [C]) There are transfer maps
Lj : CH(M, X)——SP>(C(M, X))——SP>®(DF)

for all 7 < n given in the standard way: the first map associates to each n-
tuple in C4(M, X) all choices of j-subtuples and then concatenates them in
S P, while the second map is collapsing C’;-i 1 in Cj‘-i. The maps ¢; combine

to give a map

cd(M,X)— [[ sP=(Dd)=5P>(\/ D)
0<j<k 0<j<k

which in turn can be extended multiplicatively to a map

L SPP(CHM, X))——SP>( \/ D§(M,X))
0<j<k
We need then show that ¢ is a weak equivalence (for then the proposition
will follow from the known correspondence: 7, (SP>(X)) = H(X;Z)).
To see that ¢ is a weak equivalence, we use again the fact that SP*>
converts cofibrations to fibrations. As in the proof of 3.2 we get the following
diagram of fibrations

SP®(CHM, X)) —— SP®(\i_oD9)

l

SP®(CL (M, X)) — SP>(\¥) DY)

l

00 d id 00 d
SP*(Di, 1) —  SP*(Dy.,)

The upper part of the diagram commutes because the transfer map is com-
patible with the inclusions C¢(M, X) < C{, (M, X) in a natural way. The
proof now proceeds by easy induction. |

Remark 5.2: A direct limit argument shows that the homology splitting
extends to H,.(C4(M, X)) = Di>o H.(DY(M, X)).

Remark 5.3: One can also consider the directed system ¢4 : C4(M, X)—
C¥Y(M, X) with direct limit SP>(M x X) where M x X be the half smash
M x X/M x = (which can also be written as M} A X where M, is M
with a disjoint point added). The homology splitting for C¢(M, X) is com-
patible (as is easy to see) with the corresponding homology splitting for
SP>®(MxX) (a fact we use in the proof of 5.4 below).

Consider the inclusion C4(M, X) — SP®(MxX). Again X has the
homotopy type of CW-complex. We claim that this inclusion is a homotopy
equivalence through a range depending on d. To see this, first write

D{(M, X) = F{(M, k), As, X®)



14 SADOK KALLEL

where X(*) is the smash product of X A --- A X (k-times) and F4(M, k),

is F4(M, k) with a disjoint basepoint adjointed. From this it follows di-

rectly that if M is r-connected, then D¢(M, k) is kr-connected (which is the

connectivity of X (*)).

Proposition 5.4: Suppose X is r-connected with v > 1, then the inclusion
a:C4YM,X)—SP®(MxX)

is a homotopy equivalence up to dimension r(d + 1).

PRrROOF: We first show that o induces an isomorphism in homology up to
[s3

dimension 7(d + 1). Remark 5.3 implies that the inclusion C4(M, X) —
SP>®(MxX) is stably equivalent to the map

\/ Di——\/ SP*(MxX)/SP* ! (Mx X)

Clearly D¢ = SP*/SP*! for k < d and the map above is the identity on
those summands. Homology may then differ starting with the term Dg 11
which has non-trivial homology (possibly) in r(d+1)+1 but not before. This
implies right away that a, is an isomorphism in homology up to dimension
r(d+1).

To see that this is a homotopy equivalence through that range, it is
enough to show C?¢(M, X) is simply-connected if X itself is simply con-
nected. To see this, we can apply theorem 1.4 and get that

m(C4M, X)) = m (Map(M, OM; SPd(EkX))
= m (Map*(M/aM, SPd(E’“X))
= [E(M/@M),SPd(E’“X)L

where k = dim M and [——]« means based homotopy classes of maps. Now
Y(M/OM) is a CW complex of dimension k + 1 whereas SP%($¥X) is k+1
connected (which is the connectivity of ¥¥X). The set of based homotopy
classes is therefore trivial and the proof follows. |

We are now in a position to prove proposition 1.13 of the introduction
Proposition 5.5: Let M = R*¥ and X = §7 with j > 1. Then C4(RF, §7)
stably splits as a bouquet \/;~, D¢ if and only if d = 1.

PROOF: C4(RF, S7) is SP®(R*¥xS7) = SP®(S7) = K(Z,7) up to homotopy
and through dimension j(d+1) > 2j (provided d > 1). If 1; € HI(SP>(S7))
denotes the fundamental class, then Sq*(¢;) # 0 € HY(SP?(S7)) =
H?(SP*>(S7)) which means that SP%(57)/S? = D4(S7) (when d > 1)
cannot split off SP*(S7) and hence off C4(RF, S7). 1

Remark 5.6: When X is not connected, stable splittings can occur for
d > 1. For instance [GKY] verify that C¢(R¥; S%) (cf. 1.9) stably splits for
all d.
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