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On double points of immersed surfaces
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The purpose of this paper is to give a new proof of the following proposition, which is a
sort of “folklore”.

Proposition 1. Let F be a closed surface,N an oriented4-manifold andf :F → N a
stable map(therefore an immersion). Then

e+ 2D(f )≡ 〈
P̃
(
DNf∗[F ]2

)
, [N]4

〉 + 2χ(F) (mod 4), (1)

wheree is the normal Euler number off , D(f ) denotes the number of double points
of f , P̃ :H 2(N;Z2)→ H 4(N;Z4) is the Pontrjagin square and[N]4 ∈H4(N;Z2) is the
modulo4 fundamental class ofN .

The only properties of the Pontrjagin square we will use are its naturality and that the
Pontrjagin square of the modulo 2 reduction of a classa ∈ H 2(N;Z) is the modulo 4
reduction ofa2 ∈ H 4(N;Z). Recall that the normal Euler number off can be defined
even ifF is nonorientable as the algebraic number of the zeros of a generic section of the
normal bundleνf .

In [1] a more general proposition (Lemma 2.5.2) is stated but no formal proof is given;
only an indication is made that it can be verified by the method of Lannes [3]. This method
is based on the investigation of some cohomology operations in configuration spaces. Li [4,
Theorem 2 (1)] proves the same result for embeddingsM2k →N4k , whereM is closed,N
is oriented, by a formula of Massey [5].

We will need the next lemma of the second author [6]; for the convenience of the reader
we give here a short proof.
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Let g :Mn → R
2n−1 be a self-transverse immersion of a closed manifold and let

θ2(g) ⊂ R
2n−1 denote the double point set ofg. This is the union of immersed circles;

for each such circleC a double covering̃C → C arises naturally. We callC nontrivial,
if this is nontrivial, i.e.,C̃ is connected; otherwiseC is trivial . Let δ(g) ∈ Z2 denote the
parity of the number of nontrivial circles.

Lemma 1. For n even,δ(g)= 〈w1(M)∪wn−1(M), [M]2〉.

Proof. Let ν denote the normal bundle of∆2(g) := g−1(θ2(g)) in M and letε1 be the
trivial line bundle over∆2(g); then obviouslyν ⊕ ε1 = TM

∣∣
∆2(g)

and hencew1(ν) =
w1(M)

∣∣
∆2(g)

. Then we have
〈
w1(ν),

[
∆2(g)

]
2

〉 = 〈
w1(M)∪wn−1(M), [M]2

〉

because the homology class represented by∆2(g) in H1(M;Z2) is the Poincaré dual of
wn−1(M) (see [2]). The left hand side of this equation is precisely the parity of the number
of those components of∆2(g) which have nonorientable normal bundles inM and forn
even this parity coincides withδ(g) (there are two components of∆2(g) belonging to each
trivial double point circle and either both or none of them has nonorientable normal bundle;
to a nontrivial circle belongs one component of∆2(g) and in the case ofn being even this
must have a nonorientable normal bundle).✷

To prove our proposition, we will need several steps.

Proof of Proposition 1. First we consider the caseN = R
4, along with the additional

condition of the existence of a nowhere vanishing section forνf . In this casee = 0 and
obviously the congruenceD(f ) ≡ χ(F) (mod 2) is to be proven. Using Hirsch’s theory
for immersions, we find thatf is regularly homotopic to a self-transverse immersion
g :F → R

3 (R3 ⊂ R
4 being an affine subspace). It is easy to see thatD(f )≡ δ(g) (mod 2).

Then, by Lemma 1,D(f )≡ 〈w1(F )∪w1(F ), [F ]2〉 ≡ 〈w2
1(F ), [F ]2〉 ≡ 〈w2(F ), [F ]2〉 ≡

χ(F) (mod 2).
Another, almost trivial special case is that ofF being orientable. Now〈̃P(DNf∗[F ]2),

[N]4〉 ≡ f∗[F ] · f∗[F ] (mod 4) and of course 2χ(F) ≡ 0 (mod 4) and the proof is easy
using the definition of the normal Euler number. Ifs is a generic section ofνf and
i : νf → N is an immersion onto a tubular neighbourhood off (F ), then bothf andi ◦ s
representf∗[F ], and their intersection points are the following: one for each zero ofs and
two for each double point off . Below, we will reduce our statement to this case.

First we reduce it to the caseχ(F) ≡ 0 (mod 2). Fix an immersionRP 2 → R
3

(e.g., Boy’s surface), and by a regular homotopy move it to a self-transverse immersion
α :RP 2 → R

4. If χ(F) is odd then let us choose a ‘small’ set inN , diffeomorphic to
R

4, ‘close’ to im(f ), but disjoint from it and copyα(RP 2) into it. Constructing the
connected sum off (F ) andα(RP 2) we obtain a surface immersed inN with even Euler
characteristic. By the construction ofα, e(να)= 0 and it is easy to see that our operation
does not change the normal Euler numbere of f . It does not change the summand in
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(1) containing the Pontrjagin square either, because the original and modified surfaces are
homological. The only one thing left to prove is that we increased the number of double
points by an odd number, i.e.,α has an odd number of those, but this is obvious by the first
paragraph of the proof.

We can assume now thatχ(F) is even. In this casew1(F ) can be represented by a
single circleC ⊂ F , disjoint from the double points off and embedded with trivial
normal bundleνC . The circlef (C) is embedded inN and its normal bundle is trivial
because of the orientability ofN ; νC can be identified with a trivial subbundle of this
trivial bundle. LetK denote the Klein bottle and letβ :K → S4 be an immersion obtained
by lifting an immersionK → R

3 into R
4 and then embedding the latter intoS4. This map

β and a circleC′ ⊂ K representingw1(K) have the same properties as above, thus we
can identify closed tubular neighbourhoodsU andV of f (C) andβ(C′), respectively, in
such a way thatU ∩ f (F ) andV ∩ β(K) correspond to each other. Now cut out intU and
intV from N andS4, respectively, and attach the resulting two 4-manifolds along their
boundaries using the above identification. As a result we get an orientable 4-manifoldN ′
(∂U ∼= ∂V ∼= S1 ×S2 are connected) and anorientablesurfaceF ′ immersed in it. Trivially
χ(F ′) = χ(F). OrientN ′ by extending the orientation of (the remainder of)N . Sinceβ
can be chosen to be an embedding ande(νβ) = 0, the summands on the left hand side
of (1) do not change and neither does the second term on the right hand side. Again by our
first paragraph,〈̃P(DS4β∗[K]2), [S4]4〉 = 0. Using the fact thatN ′ is cobordant with the
disjoint union ofN andS4, the proof will be completed by the next lemma.✷
Lemma 2. LetA andB be oriented closed4-manifolds andf1 :F1 →A andf2 :F2 →B

be generic immersions of closed surfaces into them. Assume that there is a cobordism
between the pairs of spaces(A,f1(F1)) and (B,f2(F2)), meaning the following. LetW
be an oriented compact5-manifold with boundary andg :X → W an immersion of a
compact3-manifoldX with boundary. Assume that∂W can be identified by the disjoint
unionA∪ B (in such a way that the orientation ofW induces that ofA but the reverse of
that ofB by some fixed convention) and∂X by the disjoint unionF1 ∪F2 and under these
identificationsg|∂X coincides withf1 ∪ f2. Then〈

P̃
(
DAf1∗[F1]2

)
, [A]4

〉 = 〈
P̃
(
DBf2∗[F2]2

)
, [B]4

〉
.

Proof. It is sufficient to show that〈̃P(D∂Wg∗[∂X]2), [∂W ]4〉 = 0. Denoting the identical
embedding∂W →W by j we have

〈
P̃
(
D∂Wg∗[∂X]2

)
, [∂W ]4

〉 = 〈
j∗P̃

(
DWg∗[X]2

)
, [∂W ]4

〉

= 〈
P̃
(
DWg∗[X]2

)
, j∗[∂W ]4

〉 = 〈
P̃
(
DWg∗[X]2

)
,0

〉 = 0,

as we wanted. ✷
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