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CHARACTERISTIC INVARIANTS OF FOLIATED BUNDLES 

Franz W. Kamber and Philippe Tondeur 

This paper gives a construction of characteristic invari- 
ants of foliated principal bundles in the category of 
smooth and complex manifolds or non-singular algebraic va- 
rieties. It contains a generalization of the Chern-Weil 
theory requiring no use of global connections. This con- 
struction leads for foliated bundles automatically to sec- 
ondary characteristic invariants. The generalized Weil- 
homomorphism induces a homomorphism of spectral sequences. 
On the E.-level this gives rise to further characteristic 
invarian@s (derived characteristic classes). The new invar 
iants are geometrically interpreted and examples are dis- 
c u s s e d .  

O. Introduction 

in this paper we describe the construction of characteris- 

tic invariants for foliated bundles as announced in the 

preprints [32] [33] and the notes [34] [35]. 

A generalization of the Chern-Weil theory to foliated 

bundles is made which applies as well in the context of 

smooth and complex manifolds as for non-singular algebraic 

varieties and which requires no use of global connections. 

This construction leads for foliated bundles automatically 

to secondary characteristic invariants. The generalized 

Weil-homomorphism can be interpreted as a homomorphism of 

spectral sequences. On the El-level it leads to the con- 

* Text of lectures given during the meeting on "Exotic 
Characteristic Classes" in Lille, February 1973. 

** This work was partially supported by a grant from the 
National Science Foundation and by the Forschungsinsti- 
tut fNr Mathematik of the ETH in ZNrich. 
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2 KAMBER et al. 

struction of further characteristic classes. These derived 

characteristic classes give a generalization to foliated 

bundles of the characteristic invariants considered by 

Atiyah for holomorphic bundles [ i] and which are interpre- 

ted by Grothendieck as invariants in the Hodge spectral 

sequence of De Rham cohomology [237 [2~. The new invariants 

are geometrically interpreted and examples are discussed. 

This work grew out of our extensive studies of foliated 

bundles~ called (~,~)-modules in [29] [30]. After seeing 

the Chern-Simons construction of secondary classes ~I], 

we realized that Bott's vanishing theorem [5] interpreted 

for the Weil-homomorphism of a foliated bundle gave rise 

to new invariants in the sense of section 3, i.e. the con ~ 

tractible Weil algebra could be replaced by a cohomologi- 

cally non-trivial algebra W/F. The first published an- 

nouncement of our construction is [317 . 

We learned then about the Bott-Milnor construction [6] 

of characteristic invariants of foliations. The discovery 

of Godbillon-Vey ~7] showed the interest of the Gelfand- 

Fuks cohomo!ogy of formal vectorfields ~4] ~5]. Bott- 

Haefliger constructed in [ 8] [25] invariants of F-folia- 

tions, generalizing the Godbillon-Vey classes. In this 

construction F denotes a transitive pseudogroup of diffeo- 

morphisms on open sets of ~q. If the construction here 

presented is applied to the transversal bundle of a F- 

foliation~ it leads to the same invariants in the cases in 

which F is the pseudogroup of all diffeomorphisms of ~q 

or all holomorphic diffeomorphisms of C q. It is known on 

the other hand that this is not so in the symplectic case. 

At this place we would like to thank W. Greub, S. Hal- 

perin~ J.L. Koszul and D. Toledo for v~ry helpful discus- 

sions. We also would like to thank B. Eckmann for the hos- 

pitality extended to us at the Forschungsinstitut f~r 

Mathematik of the ETH in Zurich, where a large part of this 

paper was written. 
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I. Foliated bundles 

We consider the categories of smooth and complex analytic 

manifolds (A : ~ or ~) or non-singular algebraic varieties 

over a field (alg. closed) A of characteristic zero. ~:~M 

denotes the structure sheaf, ~ the De Rham complex and ~M 

the tangent sheaf of M. To allow the discussion of singular 

foliations on M, we adopt the following point of view. 

I.I DEFINITION. A foliation on M is an integrable ~M-mOdule 

of 1-forms ~C~M, i.e. generating a differential ideal 

~.~ in ~. This means that for ~ E ~ locally dm : [ ~iA ai 
I i 

with ~i s ~ and ale ~M' 

Denote by ~ C ~M the annihilator sheaf of ~, i.e. 

: (~/~)~ : HOmo(~/~,~). The ~-submodule ~ G ~M is then 

clearly a sheaf o~ A-Lie algebras. If ~/~ is a locally 

free O-module of constant rank, so are ~, L and the trans- 

versal sheaf Q : ~M/~. This is the case of a non-singular 

foliation, which is usually described by the exact sequence 

(1.2) 0 + L + TM § Q ~ O _  

We do not wish to make this assumption on the foliation 

in this paper. The integer which plays a critical r61e for 

throughout this paper is the following. Let for x~ M be 
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4 KAMBER et al. 

= [ @OxA + al @~xA ] * V X im 2 x _ Mjx ~ TM,x 

The function dim fl Vx is lower semi-continuous on M. Define 

(1.3) q = sup dim A V x , 0 < q ~ n 
x~M 

Then any integer q' such that q ~ q' will be an integer for 

which the construction of a generalized characteristic 

homomorphism holds in section 3. If e.g. 2 is locally gene- 

rated over ~M by ~ q' elements, then clearly q ~ q' and q' 

will be an admissible integer. Note that for a non-singular 

foliation a we have q = ranko(2) for the number q defined 

by ( 1 . 3 ) .  

L e t  now P ~ M be a G - p r i n c i p a l  b u n d l e  ( i n  one o f  t h e  

three categories considered). We assume G connected and de- 

note by g its Lie algebra (over A). Let w,a~ be the direct 
= G 

image sheaf of a~, on which G operates, w,a~ is the sub- 

sheaf of G-invariant forms on P and ~ , a ~  ( since 

G is connected. Note also that a~ = (w,~)~ (the g-basic 

elements in the sense of [9], see section 2). P(~*) denotes 

the bundle Px G~* with sheaf of sections _P(g*)'= Connections 

in P are then in bijective correspondence with splittings 

of the exact ~-module sequence (Atiyah-sequence [i]) 

_ ~  ~ , ~ p  o_+ ~ ( g , )  _~  o . i ( P )  : o -+ a M = 

i the diagram Consider for an integrable submodule a~2 M 

of ~M-homomorphisms 

a 

l 1 
I ~ *  G I P 

A(P): o ~ a M , ~,ap , ~(~*) , o 

I J l X / /  / (1.4) 

GI 
~ , A ( P ) :  o �9 , a ~ / a  ~* , W,ap /~  ~ P ( ~ * )  ~ 0 

P 
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KAMBER et al. 5 

1.5 DEFINITION. A connection mod ~ in P is an O-homomor- 
G i phism ~o: P(g*) § W,~p/~ which splits ~,A(P). It corre- 

G i sponds to a unique O-homomorphism ~o: ~*~P + ~I/~ such 

that ~ ~* = A (see diagram 1.4). The relation between 
o o 

and ~o is given by 

- -*  G 1 G 1 
+ = ~ ' :  ~r, g~p + W , ~ p / g ~  (1.6) w o" ~ a~op 

Dualizing (1.4) we get the diagram of s 

G T w ( 1 . 7 )  o , ~ ( ~ )  , ~,_p ~ZM ~ 0 

", I x* 

"L = (~�89 

The O-homomorphism ~* lifts vectorfields ~ ~ L to G-invari- 
k O -- 

ant vectorfields ~*(~) = ~ on P and thus defines what one 
o 

may call a partial connection in P along ~ (see [30] in the 

case of vectorbundles). For a non-singular foliation the 

latter viewpoint is equivalent to the point of view adopted 

here. 

In practice a connection mod ~ in P is represented by 

an equivalence class of families of local connections as 

follows. First we need the notion of an admissible covering 

of M. This is an open covering %$= (Uj) of M such that 

Hq(u ,~) = O, q > 0 for every coherent ~-module F, where U 

is a finite intersection of sets U.. Admissible coverings 
J 

exist in all categories considered. For a smooth manifold, 

a covering by normal convex neighborhoods (with respect to 

a Riemannian metric) is admissible. For a complex analytic 

manifold a Stein covering is admissible. For an 

algebraic variety an affine covering is admissible. 

A connection mod ~ is then represented on ~ by a family 

= (~j) of connections in PIUj such that on Uij the differ- 
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6 KAMBER eta!. 

ence r162 ~ r(uij, Homo(~(g*),2) ) . _  A connection mod ~ in P 

is called flat, if for a representing family w=(r the 

curvatures K(~j) are elements in F(Uj,(~.~)2~0~(~)], 

where 2.2~ denotes the ideal generated by ~ in~. The Io-- 
H 

cal connections r are then called adapted (to the flat 
J 

connection mod 2 in P). Our objects of study are then de- 

fined as follows. 

1.8 DEFINITION. An ~-foliated bundle (P,r is a principal 
o 

bundle P equipped with a flat connection r mod 2. 
o 

This notion has been extensively used in [29], [30]. A 

similar notion has been used by Molino [42]. In the smooth 

or complex analytic case this means that the flow on M of 

a vectorfield [ ~ L lifts to a flow of G-bundle automor- 
G 

phisms of P generated by ~(~)~ W,~p. If the sheaf ~ is de- 

fined by a finite-dimensional Lie algebra s of vectorfields 

acting on M, then a lift of this action to P defines a 

foliation of P. See [2~,[30] for more details. We describe 

now examples of foliated bundles. 

i In this case L = (0} and a foliated bundle is 1.9.~=~ M �9 

an ordinary principal bundle with no further data. 

I.i0. ~ = (0). In this case ~ = ~M and a foliated bundle 

is a flat bundle equipped with a flat connection. 

i.ii. The transversal bundle of a non-singula r foliation. 

In this case P is the frame-bundle of Q = TM/L , equipped 

with the connection defined by Bott [5]. 

1.12. Submersions. Let f: M § X be a submersion and 

= f*~x'1 In this case _L = _T(f), the sheaf of tangent vec- 

torfields along the fibers of f. The pullback P = f*P' of 

any principal G-bundle P' + X admits a canonical foliation 

with respect to 2 which is obtained as a special case of 

the following procedure. 

1.13. Let ~]~ be an open covering of M such that PI~ is 

trivial. Let s.: U. § PIU. be trivializations and consider 
J J 

the corresponding flat connections Cj in PIU~ (s~r 

With respect to a foliation 2 on M the family r162 de- 
J 
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KAMBER et al. 7 

fines an ~-foliation on P if and only if (gY~oDg..) : 
zJ zJ 

~* § r(Uij,~ ~) has values in ~, i.e. the coordinate func- 

tions gij: Uil ~ § G defined by sj:si.gij are locally con- 

stant along the leaves of ~. For a foliation defined by a 

Haefliger F-cocycle {f~,yi.}j J (aIU j=s [24], 

this procedure defines a canonical ~-foliation on the 

transversal frame bundle F(~). 

Consider now the Wei!-homomorphism of differential 

graded (DG)-algebras 

(1.14) k(~): W(~) § r(P,~) 

defined by a connection ~ in P ~]. Here W(g) denotes the 

Weil-algebra of the Lie algebra ~ of the connected group G 

and F(P~) the algebra of global forms on P. This is the 

homomorphism inducing on the subalgebra of invariant poly- 

nomials I(g)c W(g) the Chern-Weil homomorphism which as- 

signs to 9 6 I(g) the De Rham cohomology class 

[k(~)~] ~ HDR(M). 

For a foliated bundle let now ~ be a connection in P 

which is adgpted to the foliation ~ of P, i.e. a splitting 
O 

_ in diagram (1.4). We observe that of A(P) such that ~o~=~ ~ 

the Weil-homomorphism (1.14) is then a filtration-preser- 

ving map in the following sense 

(1 .15 )  k ( ~ ) :  F2Pw(g) § FPF(P ,~<) ,  p ~ O. 
E 

The filtration on W(~) is given by 

(1.16) F2Pw(g) : sP(g*).W(g) , F2p-Iw ~ F2Pw . 

Further define [31] 

(]-.17) FPF(P ,a~)  : F [ P , ( w * a . a ~ )  p] , 

where (w '2 .2~)  p d e n o t e s  t he  p - t h  power o f  t he  i d e a l  gener- 

ated by w*9 in ~. Both (1.16)(1.17) define decreasing ide- 

al filtrations and these are preserved by the Weil-homomor- 

phism. The fact that FPF(P,~) : 0 for p > q, where q is 

the integer defined in (1.3), implies by (1.15) that 

k(~)F2(q +I) = 0 and in particular k(~)I(~) 2(q+l) = O. This 
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8 KAMBER et al. 

is Bott's vanishing theorem [~ . Moreover this fact gives 

rise to a homomorphism W(g)/F2(q+l)w(g)= = § F(P,~), which in 

cohomology gives rise to secondary characteristic classes. 

Since the Weil-homomorphism is filtration-preserving it in- 

duces a morphism of the corresponding two spectral se- 

quences. This will be studied in sections 6 to 8. 

2. The semi-simplicial W eil alsebras 

The construction of the Weil-homomorphism k(~) and its fil- 

tration properties for a foliated bundle depend on the ex- 

istence of a $19bal connection ~ in P adapted to the folia- 

tion of P. We wish to generalize the construction of k(~) 

so as to work also in the context of complex manifolds and 

non-singular algebraic varieties over a field of character- 

istic zero, where the existence of such connections in P 

cannot be generally assumed. 

Consider an admissible covering ~ = (Uj) of M and a fam- 

ily ~ = (~j) of local connections ~j in PIU~ ~ adapted to the 

flat connection in P mod ~. They always exist by (1.4) in 

view of the admissibility of ~. Then ~ = (~j) is a connec- 

tion 

in the (non-commutative) DG-algebra of ~ech cochains 
V 

C'(~ ,w,~) of the covering ~ with coefficient-system de- 

fined by w,~. ~ is an algebra with respect to the assoc. 

Alexander-Whitney multiplication of cochains. As W(~) is 

universal only for connections in commutative DG-algebras 

[ 9], we wish to define an algebra WI(~) which serves as 

domain of definition of a multiplicative generalized Weil- 

homomorphism with target ~ and which has the same cohemo- 

logical properties as W(~). A construction of the charac- 

teristic homomorphism I(~) + HDR(M) using local connections 

has been indicated by Baum-Bott ~,p.34]. 

We need the notion of a ~-DG-algebra A with respect to 

a Lie algebra g (all algebras are over the groundfield A). 

This is a (not necessarily commutative) DG-algebra A 
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KAMBER et al. 9 

equipped with A-derivations of O(x) of degree zero, 

i(x) of degree -I for x~, i(x) 2 : 0 and satisfying formu- 

las (1)(2)(3) of [9, exp. 19]. For any subalgebra hC$ we 

use the notations 

A ~ = {acAlO(x)a = 0 for all x~} , 

A i(~) = {aE Ali(x)a = 0 for all x~ ~} and 

A~ A ~ m A i(h) (h-basic elements in A). 

To explain the construction of WI(~) , we consider first 

a semi-simplicial object in the category of Lie algebras 
~+i 

defined by g as follows. Let g denote for ~ ~ 0 the 

(s product of g with itself. Define for 04i~+i, 

o<j~s 
s ~+i s 

~i: ~ ~ ' ei(Xo'''''Xs 

s s s s ) : (Xo, ~j: ~ +~ , ~j(xo,...,x s ...,xj,xj,xj+l,...,x~). 

Then r and ~ are the face and degeneracy maps for the semi- 

simplicial object in question and satisfy the usual rela- 

tions (see e.g. ~8,p.271] for the dual relations). 

Next consider the Well-algebra as a contravariant func- 

tot from Lie algebras to g-DG-algebras and apply it to the 

semi-simplicial object discussed. This gives rise to a 

cosemi-simplicial object Wl(~) in the category of g-DG- 

algebras. Note that 

w lg(g)= = W(g g+l)= ~ W(g) ~ 
s s 

and the face and degeneracy maps s =W(e~): W I + W I , 
~ Z+I Z 

~i=W(oi): W 1 + W 1 are given by the inclusions omitting 

the i-th factors and multiplication of the i-th and 

(i+l)-th factors. 

Wl(~) can in turn be given the structure of a (non- 

commutative) ~-DG-algebra. For this purpose consider Wl(g)= 

as the object 

wl(g) = O W~(g). 
~0 
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Then W I can be interpreted as a cochain-complex on the 

semi-simplicial complex P (= point in the category of semi 

simplicial complexes) with one ~-simplex ~ for each ~0 

and with coefficients in the system assigning to every ~s 
.~ .| 

the algebra Wl=W . As such it is equipped with the 

associative Alexander-Whitney multiplication. 

The differential in W I is defined as follows. First let 

~=i 
(2.1) ~ : i=o[ (-l)i~:~ Wl~ ~ wl~+l 

(induced from the If d denotes the differential on W 1 

differential on W), then the formula 

(2.2) D = ~ + (-l)~d on W I 

defines a differential D on W I which turns it into a DG- 

algebra. It is a g-DG-algebra with respect to the g- 
~( ) : W(g) ~+I obtained by restricting operations on W I = = 

~+i 
along the diagonal A: g + g . The construction performed 

with the functor W can now obviously be repeated with the 

functor WI, which leads to a sequence of iterated cosemi- 

simplicial Weil-algebras Wo(g)~ : W(g),Wl(g),W2(g) , =  = = .... 

The canonical projections 

(2.3) 0s: Ws(g) § W~ = W (g), s > 0 
= S = S-1 = 

are ~-DG-algebra homomorphisms. 

We proceed now to define inductively even filtrations 

F~(~) with respect to ~ on Ws(g f) (s ~ O, m ~ i) such that 

F~(g) on Wo(~) = W(~) is given by (1.16): 

F~P(g)w(gm)= = : id(W+(~ )m i(g)= ]p 

(2.4) 
F(g)W g m ) s  =  oF <g)w (g - 

:  9oFLl( )Ws_l((2) , s 1 

The odd filtrations are defined by F 2p-I = F 2p. The face 
8 S 

and degeneracy operators of W are filtration-preserving. 
S 

The filtration F s is functorial for maps Ws(~) § Ws(~' ) 
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induced by Lie homomorphisms g' + g. 

2.5 LEMMA. F~W s is an even, bihomogenepus and multiplicati- 

ve filtration by ~-DG-ideals. 

The split exact sequence 

A ~+i 
0 ~ =g --~ =g -+ V~-+ 0 

defines the g-moduleV , whose dual is given by V* = ker~ = 

: {(%'""h)l. [ ~i 2p : 0}. The filtration F 1Wl(~) : 
l:O 

_2p_._~+l~ 
: F_ w[~ j is then given by 

2p s ~ (~s JrJ 
(2.6) F I Wl(~) : (~) A'g*@ (A" * " = v~ | s )) 

~rf ~p 

where the reduced degree Irl is determined by deg AIV~ = 

: deg S1(g ~Z+I) = i. For the graded object we have there- 

fore 

G2pw~ = @(Av~ | s(g*~+l))l pl 
i -i(~ ) : Ag* = 

For every suba!gebra hog the filtrations F" induce fil- 
~ S 

trations on the relative algebras 

(2.7) Ws(~, ~) : (Ws(g))h_ , s ~ o i 

It is immediate that the canonical projections 

§ are filtration-preserving. Define for s ~ 0 Ps: Ws Ws-i 

(2.8) Ws(~,~) k : Ws(~,h)/F~(k+l)ws(~,~) , k > 0 . 

For k : ~ we set F ~ : ~ F 2p = O, so that 
p~o 

(2.9) Ws(g,_h) ~ - -  _ : Ws(g,h)= _- . 

The m a i n  r e s u l t  c o n c e r n i n g  t h e  r e l a t i o n s h i p  b e t w e e n  t h e  W 
s 

is as follows. The proof will appear elsewhere. 

2.10 THEOREM. Let (g,h) be a reductive pair of Lie algebras. 

Th_~e h omomorphisms of spectral sequences induced by the fil- 

tration-preservin~ canonical prpjections Ps: Ws(g'h) + 

Ws_~ _-- =~(g'h) induce isomorphisms on the El-level and hence 
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isomorohisms for every 0 ~ k ~ 

H(%): , S > O .  

The El-term can be computed as follows: 

2.11 THEOREM [34]. Let (g_,h) be a reductive pai_~r of Lie 

al~ebras, 0 ~< k 4 ~. 

(i) E~P'q(w(~,~)k) ~ Hq(~,~)@ 12P(~) k ; 

(ii) d2r+l = 0 and d2r is induced ~ a transgression 

+ l(g) k ; ~g: Pg 

(iii) the terms E2r ~ E and H" (W(g,h)k) ca_~n be compu- 

ted under a mild condition on (g,h). 

Here H(_g,h) denotes H[A'(_g/h)*h), which can be computed 

[9] [I 9] as 

(2.12) 

for pairs (g,h) satisfying the condition 

(2.13) dim $ = rank g - rank h 
a 

for a Sameison space P~Pg of primitive elements of g. The 

condition mentioned under-(iii) is the following [34]: 

(2.14) There exists a transgression T for g such that 
g- = 

ker(~*: l(g) § l(h))__ = idea!(~g~)~l(g)__ ~ S(~gPg). 

This condition is satisfied for all symmetric pairs and 

many interesting examples. Condition (2.14) implies (2.13) 

and has been used for the general computation in [34]. For 

the pairs [g~(n) ,so(n)) , (g~=(n), 0(n)) and k = n the 

algebras H[W(g,h)k] have been computed by Vey [i~. 

3. The generalized characteristic homomorphism 9P a 

foliated bundle 

We return to the geometric situation considered before, 

i.e. a foliated bundle p w M equipped with a family ~=(~j) 
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of adapted connections on PIUj with respect to an admissi- 

ble covering ~ : (Uj) of M. We define then a homomorphism 

(3.1) kl(~): WI(~) + ~(~,~,~p) 

as follows. For ~0, let ~ : (io,...,i s be an s 

of the nerve N(~ ). Consider the compositions 

~i : ~(g*) § r [ u i  '~*~P) ~ r(u , ~ . ~ )  for j : o , . . . , ~ .  
J 

This defines 

(3.2) k(~): W(~ Z+I ) + r(u,~,~p) 

as the universal ~-DG-algebra homomorphism extending 

(3.3)  A(~): A(~ *~+l) ~ r ( u , ~ , 2 p )  

given on the factor j by ~. . We get therefore a homomor- 

c~ zj . phism k!(~): Wl(~) § (~ ,~,2p) by setting kl(~) ~ = 

: k(~). 

(3.1) is a homomorphism of ~-DG-algebras, where the ~- 

operations on ~(~,w,~) are defined simplex-wise by 

(9(x)~]o : @(x)~o and (i(x)~)o : (-l)~i(x)~o f o r  

6 ~s and a s  N(L~)~. (3 .1 )  i s  t he  g e n e r a l i z e d  

Weil-homomorphism o f  P. 

The crucial result for our construction is the follow- 

ing: 

3.4 PROPOSITION. kl(~) is filtration-preservin~ in the 

sense that 

~ PwI 
The filtration on the image complex is defined by 

Similarly ~(~ ,2~) is filtered by 

(3.5') FP6(I/L,2~) : ~(~ ,FP~) = ~(~ ,(2.2M )p) . 

Proposition 3.4 follows by the multip!icativity of k!(~) 

and (2.6) from 
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k(~a)E ~ F(U,F 1 w,flp2), k (~c)a a r (Uc,F~,2  ~ ) 

for ~ e S1(g*~+l),= ~ E AIV~. 

For our construction it is essential to observe that 

this filtration is zero for p > q, where q is the inte- 

ger as defined in (1.3). It follows from (3.4) that kl(~) 

induces a homomorphism kl(m): WI(~) q § ~, which in cohomo- 

logy gives rise to the generalized characteristic homomor- 

phism. 

More generally for a (connected) closed subgroup H~G 

with Lie algebra ~g we have an induced map between the 

h-basic algebras of (3.1). If ~: P/H § M denotes the proj- 

: ^ " and ection induced from w: P § M, then (w,~) h ~,2p/H 

hence 

kl(~): WI(~, ~) + ~(1~,~,2p/H) 
Since this map is still filtration-preserving, and the fil 

tration on the RHS is zero for degrees exceeding q, we get 

an induced homomorphism, also denoted by kl(~): 

(3.6) kl(~): WI(~,~) q § ~(~,~,~p/H ) 

To define invariants in the base manifold M, we need an 

H-reduction of P given by a section s: M + P/H of 

~: P/H + M as the pull-back P' = s*P. Before we formulate 

the result, observe that H'(~(~,~,2~/H )) maps canonically 

into the hypercohomology ~'(M,~.2~/H) , ~  which maps under ~* 

into~'(P/H,2~/H) , the De Rham cohomology HDR(P/H) [2~. 

The map (3.6) gives then under observation of Theorem 2.10 

rise to the homomorphism in the following theorem: 

3.7 THEOREM. Let (P,~o) be an 2-foliated pringipal G- 

bundle~H~G a (connected) closed subgroup such that (~,~) 

is a reductive pair of Lie al~ebras, and q the number de- 

fined by (1.3). 

(i) There exists a homomorphism de~ending only on (P,~o) 

(3.8) k,: H(W'(~,~)q] §247 H~R(P/H). 
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(ii) If P admits an H-reduction P' : s*P liven by a sec- 

tion s of ~, there exists a homomorphism 

( 3 . 9 )  A, : s*o k , :  H(W'(g,h)q)= = § HDR(M). 

Thi s i_~s the generalized characteristic homomorphism 

of P (depending o__n P'). 

To establish the independence of k, for two choices 

o =~(~)~j and ~i : (~) of adapted connections on a cover- 

ing (Uj) we consider the commutative diagram 

k2 ( a ~~  1 ) 
w~(~,h)q ~ C'(AI,~) 

(3.10) P2 I lJi (i=O,1) 
kl(~l) 

q 

where C(AI,~) is the cochain-complex on the standard l- 

simplex A I with coefficients in the constant system ~, Ji 

is the restriction to the i-th vertex (i=O,l) and k2(~~ 

is defined analogously to k I. As the vertical maps induce 

isomorphism]in cohomology (2.10), and H(ji) is independent 

of i, it follows that H(kl(~~ ) = H(kl(~1) ). 

The construction of A. is functorial in P. It is also 

functorial in (~,~) in an obvious sense. 

For ~ = ~ we take s = id: M § P/G = M. Then H(W(g,g)q) = 

= l(~)q and 

( 3 . 1 2 )  A, : k , :  I ( ~ ) q  § HDR(M) . 

This is the Chern-Weil homomorphism of P~ but constructed 

without the use of a ~lobal connection on P. Note that on 

the cochain-level it is realized with the help of a family 

= (~j) of adapted connections ~j on PIUj (~= (Uj) an 

admissible covering of M) as a homomorphism 

V 

(3.13) kl(~): Wl([,~) q C' (~t ,~)  �9 
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By theorem 2.17 we have 

H(Wl(_~,~)q) ~- H(W(~,g)q] ~ I(g) -~ I(g)/F2(q+l)I(g). 

For H = {e) we have by Theorem 3.7, (i) a well-defined 

homomorphism 

(3.14) k~: H(W(g)q] + ~'(M,~,a~) § ~DR(P). 

Thus for every ~W(~) + such that dw(~)6 F2(q+I)w(~) there 

is a well-defined De Rham class k~(~)6 HDR(P). This is a 

construction of the type considered by Chern and Simons 

[11][12], where they consider more particularly 9~ l(g) 

such that k(~)@ -- O~ F(M,~M). As mentioned in the introduc- 

tion, this observation was one of the motivations for our 

construction. 

For a non-singular foliation ~ with oriented trans- 

versal bundle Q let P = F(~) = F(Q ~) be the canonically 

foliated GL+(q)-frame bundle of ~ ~ Q~ (i.ii). For 

H--SO(q) the bundle P/H has the contractible fibre 

GL+(q)/SO(q) and hence there exists up to homotopy a unique 

section s of ~. The generalized characteristic homomorphism 

A~ defines then invariants of the foliation ~ in HDR(M). 

Using the Gelfand-Fuks cohomology of formal vectorfields 

[15]~ Bott-Haefliger construct in [8] ~25] invariants of F- 

foliations, generalizing the classes discovered by 

Godbillon-Vey ~17]. Here F denotes a transitive pseudogroup 

of diffeomorphisms on open sets of ~q, and a r-foliation on 

M is defined by a family of submersions fu: U§ 

= {U} an open covering of M, these submersions differing 

on UnV by an element of F. For r the pseudogroup of all 

diffeomorphisms of ~q or all holomorphisms of C q the two 

constructions give the same invariants, but this is known 

not to be so in the symplectic case. 

The following result gives a more detailed description 

of the generalized characteristic homomorphism. 

3.15 THEOREM. Let P be a foliated bundle as in Theorem 3.7 
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and P' = s*P an H-reduction of P. 

(i) There is a s~lit exact s e ~  of .algebras 

(3.16) 0 § H(Kq) § H[W(g,h)q)~"+ I(h)| l(g) + 0 . . . .  (__g) _- q 

and the compositio n A, og is induced by .the characteristic 

homomorshSsm: l(h) § HDR(M) of P' 

(ii) If the foliation of P is induced by a foliation of P', 

then A,IH(~) : o. 

The ideal H(Kq)C H(W(_g_,h)q] is the algebra of universal 

secondary characteristic invariants. By part (ii) in Theo- 

rem 3.15 the secondary invariants A,(H(Kj)) for a foliated ~ 
-% 

bundle (P'~o) are a measure for the non-compatibility of 

the foliation ~ of P with the H-reduction P'. The proof of 
o 

this fact is an immediate consequence of the functoriality 

of A,. Namely under the assumption of (ii) in 3.15 A, fac- 

torizes as follows: 

1 / HDR( ) 
H(W(h,h).q] --- I(h)q" 

But the vertical homomorphism is the composition 

H(W(g,h) ) § I(h) | I(g) ~ I(h) ==q = =q = q 

which implies that A, IH(Kq) : O. More generally underl the 

assumption of (ii) in 3.15 the vanishing of k(~) on F 2(Z+I) 

for some s >i 0 implies A, IH(K i) : O. 

4. Interpreta}ion and ex@mples of secondary characteristic 

classes. 

Before we turn to the discussion of examples of seconda- 

ry characteristic classes, we comment again on the computa- 

tion of H(W(g,h)kl_ for k ~ O. (See also the end of section 

2.) For reductive pairs H[W(g,h)k)=__ can be computed [34] as 

the cohomology of the complex 
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(4 .1)  A = AP ~ I ( ~ ) k @  I (~ )  

denotes the primitive elements off g. The dififieren where Pg 

tial dAVis a derivation of degree i, which is zero in the 

last two factors and is given in P by g 

(4 .2)  dA(X) = i @ Tg(X) ~ 1 - i @ i @ ~*~g(X), 

where ~ : P + l(g) is a transgression for g and i: h~g. g ~ -- --_ _- ~. 
This realization of H" (W(g,h)k):: allows its computation for 

reductive pairs satisfying condition 2.14) [34]. 

The spectral sequence 

E21P,q(wcg,h)k) | I2P( )k  H2p+q(w(g, )k) 
discussed at the end of section 2 arises 

from the filtration of the A-complex (4.1) by l(g). One 

may approximate H(W(g,h)k) by another spectral sequence 

(involving a graded Koszul complex) also deduced from A: 

I r,s _- Torl(g) (l(h),l(g))2r~Hr+s 
E1 r - s  -- -- k (W(g'h)k)'~ 

For k=O we have I ( g )  ~ ~ A (ground f i e l d )  and 

IElr,s ~ Torl(g)r_s (l(h),A)2r--~Hr+S(g,h)~ 

I r:s 
For k = ~ we have l(g): ~ = l(g): : E 1 = 0 for r ~ s and 

since d I = 0 

l_r,sEl = l(h)2r= ---~ H2r(w(g'h)):: 

whereas H 2r+l (W(g:h)) = O. 

4.3 Flat bundles. A flat G-bundle is a G-bundle p w[_~ M fo- 

liated with respect to 2 = (0) C ~, i.e. ~ = ~M and q = 0 

(P is equipped with a curvature free global connection). 

The generalized characteristic homomorphism is now a map 

(4 .4)  A,: H ' ( ~ , ~ )  ~ H[W(~,~)o) ~ H~R(M) 

It will be shown in section 8 that A, may be injective in 

certain cases and that A, is rigid in degrees > i. 

For a flat smooth M m the tangent principal bundle F(M) 

is a flat GL(m)-bundle. For H = O(m) there is 
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hence a well-defined homomorphism A.: H(g~=(m),O(m)] § 

HDR(M), defining invariants of the flat structure of M. If 

the primitive elements P_~t_~ transgressing to the Chern 

classes c.i s I[~Z(m)]_. are=denoted xi, then H" (gZ=(m),O(m))= 

A'(Xl,X3,...,Xm,) , m' = 2[T ]m+l - I, and we get the follow- 

ing result : 

4.5 THEOREM. Let M TM b e~ fla____~t smoot_____~h manifold. There are 

well-defined secondary invariants 

a,(x i) ~'2i-l(M) (i = 1,3 ,m') 
nDR ' .... 

For a Riemannian flat manifold these invariants are zero 

(by 3.15, (ii)]. Moreover, if h: Wl(M) + GL(m) denotes the 

holonomy of the frame bundle F(M), we have 

I A(~)Xl : I s*tr(~):- logldet h(y)l 

Y Y 

for y~Wl(M), add s: M § F(M)/O(m) a Riemannian metric on 

M. 

Let M m be a compact affine hyperbolic manifold, i.e. equip- 

ped with a flat and torsionfree connection and such that 

the universal covering is isomorphic to an open convex sub- 

set of ~m containing no complete line. The hyperbolicity of 

the affine structure on M is then characterized according 

to Koszul [37] by the existence of a closed l-form with 

positive definite covariant derivative. The De Rham class 

of this 1-form is precisely the affine invariant A,(x l) of 

Theorem 4.5. 

4.6 The transversal bundle Q of a foliation. This case has 

been discussed already in section 3 and it has been ex- 

plained in which cases our construction furnishes the same 

invariants as the Bott-Haefliger construction [8] [25]. If 

the foliation of Q is induced from a foliation of an H- 

reduction (H~GL(q)], this is called a transverse H-struc- 

ture, Colon [13]. The secondary invariants are then triv- 

ial by Theorem 3.15, (ii). 
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i 
4.7 Characteristic numbers of a foliated bundle. Let ~a M 

be a foliation on a complex manifold M and assume that ~ is 

locally free of rank n-i off the disjoint union N of < n- 

dimensional closed submanifolds, of M, n = dim E M. The num- 

ber q defined in (1.3) for ~ is then necessarily q = n-l, 

since dimAVxis lower semi-continuous. It follows from 

Theorem 3.7 that for a bundle P § M foliated with respect 

to ~, the characteristic numbers necessarily vanish. Con- 

sider on the other hand the annihilator sheaf ~ = (~/~) 

Since P is foliated with respect to ~, P carries in partic- 

ular an action of L by infinitesimal bundle automorphisms. 
m 

If L is of rank i, i.e. the sheaf of sections of a holomor- 

phic line bundle, the characteristic numbers of P can be 

evaluated by Bott ~] as the sum of residua attached to 

the singularities of ~M/~. In the situation described above 

this sum is necessarily zero. 

4.8 Pfaffian systems. (Martinet [4~). Let the submodule 

C~M1 be a Pfaffian system of rank p on M, i.e. the sheaf 

of sections of a subbundle E~T~ of dimension p. Then ~ and 

~/~ are locally free of rank p, n-p respectively (n=dimM). 

The characteristic system ~ of E is a foliation in the 
m 

sense of section i, i.e. generates a differential ideal in 

~'. Martinet's result in [4 4 can be interpreted as showing 
M 

that the frame bundle F(E) of E is foliated with respect to 

and hence gives rise to a homomorphism 

H(W(~(p))q) + HDR(F(E)] 

where q is the number defined in (1.3), the class of the 

system ~. Note that p ~ q and p = q if and only if the ori- 

ginal Pfaffian system E is already involutive. One of the 

features of our localized construction of the characteris- 

tic homomorphism is that this example can be generalized to 

the holomorphic case. The same comment applies to the char- 

acteristic invariants defined recently by Malgrange for 

systems of smooth partial differential equations. 

7O 



KAMBER et al. 21 

~. The spectral sequence associated to a foliation 

From this section on we assume that a non-singular folia- 

tion 

(5.1) 0 + ~ § ~M 

is given on M, i.e. ~/~ -- and hence ~ -- is supposed to 

be locally free (q = rk ~). The finite ideal-filtration 
�9 0 

FP~ = AP~.~ M used in (~.5') determines then a multiplica- 

tive spectral sequence with respect to the hypercohomology 

functor~'(M;-) = R'~ M [21, 0111, 15.6.4]: 

GP~ = FP/F p+I and the final term is equipped with Here 

the filtration FPH~R(M ) : im~'(M;F p) +~(M;O~)). We shall 

determine the E 1 - and E2-terms of this spectral sequence. 

To do so we have to make extensive use of the cohomology 

theory of the twisted sheaf of Lie algebras ~=(~/~) c ~M 

with coefficients in a (~,2)-module. This theory was deveL 

oped in [303 and we refer to this work for details. A 

(~,2)-module is an ~-module ~ equipped with a partial cur- 

vature-free connection along L 

(5.3) n: ~ + ~*@0 ~ " 
i 

Equivalently (~,~)-modules can b e  described as ~(~,~)- 

modules, where ~(~,~) is the universal envelope of the 

twisted Lie algebra ~ [30,w If E is locally free of 

finite rank, a (~,OM)-module structure on E is the same 

as an ~-foliation in the frame bundle F(E). 

5.4 EXAMPLE. ~ is a (~,~)-module by the Lie derivative 

e(~)~ = i(~)d~, ~ ~, ~ ,  (i(~)~ = 0). This is the Bott- 

connection on the dual of the transversal bundle of L. 

AP~, p ~ 0 carry then also (~,~)-structures in an obvious 

way. 

For a (~,~)-module E there is a Chevalley-Eilenberg- 

type differential d L on T~(~) ~ Ho___~m0(A~,E) ~0,4.213 wher~ 

by ~(E) becomes a compleX. It is now easy to verify that 
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(5.5) GPgM ~ ~L-P(AP2) , 

and that under this isomorphism G(d) = d L for the exterior 

differential d in the De Rham complex a M. AP~ has the (~,~) 

structure described in 5.4. In fact for a local splitting 

of (5.1) we obtain a local decomposition ~ ~ A'~ ~0 A'~*. 

As ~ is integrable, the differential d decomposes i~to 

d : d' + d" + d of bidegrees (1,0),(0,1),(2,-1) respective- 

ly. d 2 : 0 is equivalent to the relations d ''2: O, ~2: O, 

d'd" + d"d' O, d'd + d d' = 0 and d"d + d d" + d '2 = = O. 

(5.5) is now immediate and also G(d) : G(d") :• L. Observe 

that the isomorphism (5.5) is independent of the local 

splitting and hence globally defined. Similarly d' in- 

duces a globally defined morphism of sheaf complexes of 

degree 0 

(5.6) d': 2~(APa) + 2s 

satisfying d'2a : -d"d~ for ~(AP2) such that d"a = O. 

We finally mention that ~([) is-a resolvent functor for 

the functor ~([) : HOmU(0~E ) ~ E L (~-invariant elements) 

from (~)-modules to ~belian sheaves [30,4.22] and hence 

by Grothendiecks general theory [20] there are natural 

equivalences 

(5.7) Extu (L,O) (M;~,~), 

(5.8) 
m 

(5.7) and (5.8) are analogous to the cohomology of a Lie 

algebra. However, the groups H'(M,~;[) ~ ExtO(M;~,[) are 

of global nature and involve also the cohomo~ogy of M (cf. 

Examples 5.11-5.147. 

5.9 THEOREM. The El-term of the multiplicative spectral 

sequence (5.2) is ~iven by 

m 
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Th_._ee differential d I is induced by the homomorphism d' i~n 

(5.6) and hence 

(5.10) E~'q(a ~ H~,Hq(M,L;A'a~---~P+q(M)_ " -DR 

The edge maps of (5.2) are given by 

o , p  o (Ep(M,L;O)) 

The E~'~ are the cohomology groups of L-basic forms 

on M, i.e. forms ~ annihilated by i(~), 8(~), ~ 6~. The 

o,p contain information about the De Rham fibre-terms E 2 

cohomology-groups along the leaves of the foliation. See 

o,p has an explicit geometric inter- example 5.14 where E 2 

pretation. 

This spectral sequence is of a very general nature as 

will be seen from the discussion of a few special cases. 

5.11. Let ~ = O: Then ~ : ~M and [(~,2) is the sheaf ~M 

of differential operators on M. In this case (5.2) col- 

lapses and we obtain the isomorphism 

Eo,q : Ext~M(M;O,O) ~ ~q(M;~M) : H~R(M) " 

I. Then L = O, the filtration F p is the 5.12. Let ~ = ~M" 

Hodge filtration FP~ = ~.~ on ~ and (5.2) 

is the Hodge spectral sequence [22] 

E~ 'q : Hq(M,a~)~H;R(M). 

In the complex-analytic and algebraic categories this 

spectral sequence need not be trivial. 

5.13. Assume that locally free O-Modules E of finite type 

are F-acycli~ on M and that 0 + E L § ~(~) is a resolution 

of ~, E a (~,2)-module of above type.--Then the hyper- 

cohomology spectral sequences for~'(M;~L(~) 1 collapse to 

isomorphisms [20] 

= .m- HP(M'E  ) : 
m 
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The spectral sequence now takes the form 

E 1 

and 

E~'q(2) ~ H~,Hq(M,A'~)---~ P+q HDE (M), 

where d' in (5.6) induces a 0 ~ - linear differential 
D 

d': A'~ ~ + A'+12 ~ 

in the sheaf A'2 ~ of L - basic forms. This is in particular 

the case for the C ~ - category where one has a Poincar@- 

Lemma with parameters ~6]. The groups E~ 'q coincide in 

this case with the groups H~'q(M) and E~'~ 

are the cohomology groups of L-basic forms (see Reinhart 

[4~ and Molino [42], Vaisman [48], [49]). 

5.14. Submersions. Let (M,~M) f---* (X,O_x) be a morphism such 

that 

( 5 . 1 5 )  o § Z ( f )  § ~M § f*~x  § o 

is exact, i.e. f is a submersion (f smooth in the algebraic 

case). The tangentbundle along the fibres ~ = ~(f) is a 

Lie algebra sheaf, the annihilator of the integrable sheaf 

2 = f*2~ of rank q = dimX: 

o ~ ~ ~ ~ .  ~ , x  ~ ~* ~ o. 

Here ~M/X denotes the relative cotangent complex of forms 

along ~(f). In this case we have GP~ ~ f*~ @2~/~. 

Assume now that (quasi-) coherent ~X- 

modules are rX-acyclic. Following [36](in the algebraic 

case) we may then compute the El-term as 

(5.16) E~'q(~) ~ r(x,~ | ~qf,(~ix)], 
where ~qf, is the hyperderived functor of ~of, H o = ef, = 

f,,H ~ . The differential d I (resp. d') is now induced by 

the flat Gauss-Manin connection V in the relative De Rham 

sheaves~R(M/X) = ~qf,(2~/X): 
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: _p+l   R(MJX) ' 

with V 2 = O. Using the acyclicity condition on ~P @~DqR we 

obtain OX 

5.17 PROPOSITION. For a submersion f: M + X the spectral 

sequence (5.10) i_~s isomorphic to the Leray spectral Sgf 

quence for De Rham cohomology 

: x %X'  RCM X) : Plx,  x | x 

HP+q(M) DR 

The acyclicity condition on X is satisfied e.g. for affine 

algebraic varieties X, Stein manifolds X in the complex 

analytic case (Theorem B for coherent modules) and para- 

compact C~-manifolds X (all ~X-mOdules are fine and hence 

rX-aCyclic). 

Proposition 5.17 shows that the spectral sequence (5.10) 

is a proper substitute for the Leray-spectral seqence in 

the case where the foliation is not globally given by a 

submersion. 

5.18. It would be interesting to know criteria for the de- 

generacy of the spectral sequence E(G) in (5.9) either at 

the E 1 - or E2-1evel (dr=O , r~l or r~2). Thus in example 

(5.12) the spectral sequence stops at E 1 if M is a K~hler 

manifold (see also Deligne, IHES, Publ. Math., No. 35, 
I = 1968). For two complementary foliations ~i' ~M ~1@~2 

the differentials ~. of degree (2,-1) are zero, i=l,2. 
1 

Together with the theory of harmonic forms on a foliated 

manifold [47],[48] this might well lead to degeneracy 

results. 

6. Derived characteristic classes 

In this section we relate the constructions of sections 3 

and 5. We want to show that the construction of the char- 
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acteristic homomorphism A~ in section 3 determines a mul- 

t iplicatiy e map of spectral sequences: 

(6.1) Ar: E2p'n-2P(W(g'h)q ) 2 r  = = ~ EP'n-P(~)r , r ~ i. 

To do this we need the following remarks. Let A" be a com- 

plex of ~-modules on M and ~(M;~)' the canonical resolu- 

tion of A' equipped with the total differential and degree. 

For an open covering ~ of M there are canonical chain maps 

(6.2) ~(~;A')' ~'~ K'(~) = ~(~ ;~'(M,~)) t~ r~(M;A)" 

which induce edge maps for the two spectral sequences asso- 

ciated to K. As the second spectral sequence collapses for 

every ~" we obtain a natural homomorphism ~18,Ch. II,5.5.~: 

(6 3) j = (j~)-~o "' " �9 ' 

K(s and F[(M;~) are exact in s and so is ~(~ ;6) for an 

admissible ~ . For a filtered A" it follows that (6.2) de- 

fines a mapping of spectral sequences associated to the 

filtration which on the El-level is given by 

: i ,: ~.(~ ;GPA .) § .) 
Jl (J~)" ~ Jl - - 

Let now (P,~o) be an ~-foliated G-bundle with an H- 

reduction s: M § P/H. The characteristic homomorphism A~ 

in (3.7) is defined as follows by the chain homomorphism 

(6.4) A(~) e s �9 �9 kl(~): Wl(~,~) q § ~($~;C~) 

which is filtration-preserving in the sense of (3.4). Con- 

sider the diagram of filtration-preserving chain maps 

(6.5) IPl lj" 

w(~,~)q r~'(M;~) 

As the vertical maps are isomorphisms on the El-level 

(2.10), there exist unique homomorphisms A as in (6.1) 
r 

and 
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(6.6) A,: H'(W(~,~)q] § m'(M;~) = H~R(M) 

making the diagrams corresponding to (6.5) commutative. 

The homomorphisms A in (6.1) for r ~ i are called the de- 
r 

rived characteristic h0momorphisms of (P,mo). As the spec- 

tral sequence of W(~,~)q is defined by an even filtration, 

we have d2r_ 1 = O for r > O. This, together with the 

property A(F2Pw I) __~ FP~, explains the indices in (6.1). 

Thus a foliated G-bundle (P,~o) with H-structure determines 

a sequence of characteristic homomorphisms {A~,A r) ~ , with 
r~l 

A r approximating A~. 

By (2.11), (5.9) we have for r:l: 

2s § E~,s+t~Hs+t(M,L;At~). -2s't(W)~Ht(g,~)~l(g)q (6.8) A~'t: ~2 = = 

As A I is multiplicative, it is completely determined by 

maps ~,o- and A~ 't^ . These will be computed in the next the 

two sections. 

7. Atiyah classes 

In this section we will give an interpretation of the de- 

rived characteristic classes of basis-type 

(7.1) A~ '~ : I(~)~ p + HP(M,~;AP~) O { p { q. 

It turns out that these classes depend only on the split- 

ting obstruction of a certain short exact sequence of 

~(L,~)-modules associated to a m-foliation ~ in the G- 
o 

bundle P ~ M. Let ~D denote the dual transversal bundle 

of the foliation lifted to P (1.7): 

= {~ ~/i(~)~ = 0}, ~ = ~(~), ~ L. As the foliation 
O G~ on M is non-singular, we have ~ ~ ker(Co) in diagram 

(1.4). Thus we may complete (1.4) in the following way 
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A(P ): 0 ,L0 o 

(7.2) A(P): 

I 
0 

0 

G ~~'- , ~ , ~ , c ,  _P(~*) 

1 I fl 
~T* G i P 

]. , ' "  /-~ -" li 
W .~* 0 

P(g*) 

0 

, 0 

, 0 

In the case of example (1.12), ~(P,mo ) is the pull-back 

by f of the Atiyah sequence ~(P') of P' on X: 

A(P,~ o) : f*A(p'). 
The local sections ~ of ~(P'~o) are exactly the local 

connections in P, adapted to ~o in the sense of section I: 

~ = ~ . Globally there is an obstruction to the existence 
o 

of an adapted connection which is represented by an element 

in H I(M,c| 0 [(~)]. 

The sequence ~(P,~o ) has an intrinsic additional struc- 

ture: it is naturally a sequence of ~(~,2)-modules. 

7.3 LEMMA. The operation {.~ = 0(~)~ = i([)d~, ~ ~, ~ , ~  
~,Op define an U(L,O)-module and the ~ano___nic__~al ma~ ~M § ~ ~-~- . . . . . .  

structure on ~,~ such that ~ w,~ is a submodule and the 

structure induced in ~ coincides with the one defined in 

(5.4). 

The obstruction for a global ~(~,2)-splitting of ~(P,~o ) is 

as usual d e f i n e d  a s  a c o b o u n d a r y :  

(7.4) +Horn U(2(g*),~)§ U(P(g*),~(g*~Ext~(M;~(g*),a]+''" 

~Def. ) )gExt~ (M;p (g,) ,~] ~HI(M,L;~?p (g)]" (7.5) ~(P,m o) -- -~(idp(g, -- -- = _ _ _-- 

To describe ~(P,~o ) on the cochain level, observe that 

for a c o n n e c t i o n  ~ i n  PIU a d a p t e d  t o  m we h a v e  
0 
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(7.6) i(~)K(~)(~)=e(~)~(~)-~(eo(~)~]er(u,s ~ ,  e,?(~*), 

where e ~ denotes the L-action induced on P(~*) by (7.5), 

and K(~)gF(U,(~'~M)Z ~0_ 2(g)]= is the curvature of ~. Let 

be an admissible covering and ~:(~j) a family of connec- 

tions in PI~ adapted to m . We define then a cochain 
o 

{'=({~ g ~' (Z'~s (~ | P(g))]i of total degree 1 by 

o(j)(() = i(~) K(mj) ~eLIu j ~(i,j) = e .  - ~ .  6 

F(Uij'D ~0 [(~)]" Using (7.6) one shows that it is closed 

under the total differential D=g• L in ~ and hence ~' de- 

fines a cohomology class in Hi(~'). Using (5.7) we obtain 

7.7 LEMMA. Under the canonical homomorphism (6.3) 

J: H ~ ( ~ ( ~  ,2 i (~  | ~(~))] § H ~ (M,L;~ |  
- 0 0 

we have j(C') : • ~(P,~o ). 

We define a L-basic connection in (P,~o) as a connection 

satisfying 

(7.8) i(~) ~(~) : o 

(7.9) e(~)~(~)-~(Oo(~)~ ) : i ( ~ )K (~ ) (~ )  : o, v ~ L  , ~ 2 ( g ~ ) .  

It is then clear that ~-basic connections exist if and only 

if ~(P,~o) : O, that they are in a 1-1-correspondence with 

~-splittings of ~(P,~o ) if ~(P,~o ) : 0 and that they form 

a convex set: ~,~' L-basic--->m'-~er(M,(~ @0 ~(~))L). Fur- 

thermore by (7.8),(7.9) ~ is L-basic if an~ only if it is 

in P and i(~)K(~) : 0, ~L, i e. adapted to ~o -- " 

(7.1o) K(~) e r ( M , ( A ~  @o ~ (# ) )L ) .  

There is also a local obstruction for a ~(L,~)-splitting 

of ~(~,~o ) [30;w It is a section ~(P,~o ) 

r[M'E-Z-xt~(2(~ *)'~)) ~ r(M'[1(~s (~ | [(~))]]" If ~(P,~o ) = O, 

there exist L-basic connections in-P 19call~ on a suffi- 

ciently fine covering of M. This is notably so in the C ~ 

case (see example 5.13). 
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To describe A~ p'" let now r ~I(~) 2p be an invariant 

polynomial on g of degree p and consider the mapping 

(711) | + HP(M L ;Ap  )] 

HP(M,~;AD~). 

This defines in turn 

2p + HP(M,L~AP~) (7.12) aP: l({)q _ 

by aP(r = ~r174 The classes aP(r are called the 

Atiyah classes of the ~-foliated bundle (P,~o). 

7.13 THEOREM. The derived characteristic classes of basis- 

coincide with the Ati~ah classes of (P,~o): AP'~ = a p. 

l__nn particular, if ~(P,~o)--O, i.e. if there exists a L- 

basic connection in P, then A p'~ a p : = O, p > O. 

In general the derived characteristic classes in EI(~) are 

not dl-Cocycles. But as the classes I(g)q § W(g~h)q 

are mapped into the cocycles of W(g,h)q,~_ -- we obtain as a 

consequence of 7.13 and the definition of AI: 

7.14 COROLLARY. For r ~I(~) 2p the Atiyah class aP(r sat- 

isfies aP(r Z (El)p'p and the De Rham class k,(r (3.12) 

satisfies k,(r FDH~(M). Moreover the two classes cor- 

regpond to each other via the canonical hompmorphisms 

Z (EI)P'P-->~ EP'P ~ FPH~(M)/F p+I ~<- FPH~(M). 

~p+l,,2p t~ 
ThUs if aP(r we have k,(r 6~ mDR~mj. 

The following examples show that our construction of the 

. o generalizes and unifies some classes ~(P~o ) and a = a I' 

known constructions: 

i (see 5 12): In this case the obstruction 7.15. ~ = a M 

i ~p(g)] coincides with the obstruc- class ~(P) ~H i (M~ M - = 

tion defined by Atiyah ~] for the existence of a global 

holomorphic connection in a holomorphic principal bundle. 

The classes aP(r 6HP(M,~) coincide then by construction 

with the characteristic classes in Hodge cohomology de- 
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fined in [1]; see also Illusie [27,I]. 

7.16. In the C~-case (5.13) the obstruction ~(P,~o ) is an 

element of HI(M,(~ @0 P(g))~) : ~I'I[M'P(g)) and can be 

shown to coincide wi~h the class defined by Molino ~2]. 

The derived characteristic classes A~ '~ : a p induce by 

(7.14) a homomorphism 

7.17. In the case of a submersion f: M § X and ~ = f*~ 

(5.14), the Atiyah classes of a ~-foliated bundle P + M 

induce by (7.14) a homomorphism into the E2-term of the 

Leray spectral sequence of f, ~P: I(~)~ p 
O 

H~(F(X,~ @O ~R (M/X)))' ~(P'~o ) and aP, p>O are zero if 

P : f~P' for a G-principal bundle P' § X, aince the canon- 

ical foliation on P (1.12) is obtained by pull-back ~:f*~' 

of a connection ~' in P'. In fact ~(P,~o ) = f~(P') and 

~(P') : 0 by acyclicity. Connections which locally are of 

this form are the CTP of Molino [42]. 

7.18. By Cor. 7.14 the Atiyah classes aP(r may be consid- 

ered as a first approximation to the De Rham classes 
2p 

k,(r HDR(M) relative to the given foliation ~ on M. In 

some cases they actually determine the De Rham classes (e.g. 

for K~hler manifolds, ~ : ~; compare ~i]). In general the 

question of determinacy of k~(r by aP(r is related to the 

degeneracy (5.18) of the spectral sequence E(~). 

Consider now the special case where ~(P,mo ) : O, i.e. 

P admits a $1obal ~-basic connection. It follows from 

(7.10) that A(~) in (6.4) preserves filtrations in the 

strict sense: A(~)F2PwI c F2P~. We therefore obtain for 

q : rko(~) 

7.19 THEOREM. If ~(P,~o ) : 0 there is a factorization of 

the characteristic hpmomorphism A,: 
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H(W(g,h)q) H(W(g,h)q ] 

(7.20) k A* ,/A 
0 ~ *  H R(M) 

where qo : [~] and the horizontal homomorphism is induced 

by the canonical projection W(g~h)~ + W(g,h)~ . Moreover 

Ao, * factorizes by (7.8)~(7.9) as indicated in the diagram 

below 

A : 
O j *  

( 7 . 2 1 )  

, ,, s*,,,, 

t T II 
I(g)qo ' H(F(M,A'~L)) ~ HDR(M). 

Hence in the presence of an L-basic connection on P the 
m 

homomorphism A should be considered the characteristic 

homomorphism of (P,~o). 

For l(g) the improvement of the Bott vanishing theorem 

contained in (7.21) was observed by Molino [43] and 

Pasternack [45]. Diagram (7.20) gives a non-trivial result 

even in the case when ~ = ~$. Let P § M be a holomorphic 

principal bundle which admits a holomorphic connection and 

a holomorphic H-reduction P'. As in this case q:n:dim~M, 

we obtain a characteristic homomorphism 

Ao, ,: H* (W(g,h) n=: ) § H'(M,$), no = [~] 
o 

In particular for H = G this means that the ordinary char- 

acteristic homomorphism k,: I(~) § H'(M,@) breaks off in 

degrees >n. Of course this example is interesting only if M 

is not Stein. 

~. Derived classes of fibre,type 

We will now describe the derived classes of fibre-type: 

n (8.1) a~'~ Hn(g,h)= § Hn(M,L;O) . . . .  = EXtu(M;O,O), n~O. 

First we remark that these classes are always given by 
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global forms on the cochain level, even if they are con- 

structed with respect to a family ~=(~j) of adapted con- 

nections in (P,eo). Using the notation of section 3 we con- 

sider the mapping 
(AI) 

(8.2) b: (A'~*)~ s*o~ ~o(~,al) ~ ~o(I~,2~(!))_ 

S i n c e  ~ . - ~ .  e r(uij ,a | P(~)) we h a v e  b ( } ) j - b ( } )  i : 
0 1 

r k 

k=l 'wJ'mJ-mi'mi'''''wi) = 0,0 ~ (Ar~*)~, and 

h e n c e  ( b ( r  d e f i n e s  a g l o b a l  f o r m  i n  F ( Z [ ( s  ) . _  I t  now f o l -  

lows from ~s ~ ~/F:~ that b is a chain-map 

(8.3) b: (a'$*)~--+ r(M,2s ) _  = r(M,a'~*) 

Using (2.11) one proves 

8.4 PROPOSITION. The derived classes of fibre-type are 

given by the composition 
b, 

A~' : H'(g,~) H'((Ag*)h) �9 : + ~" ( r ( M , A ~ * ) )  ~ H" ( ~ , L ; E )  

where  t h e  s e c o n d  homomorph i sm l ~  i s  t h e  e d g e - m a p  i n  t h e  

h y p e r o o h o m o l o g y  s p e c t r a l  s e q u e n c e  ( c g m p a r e  5 . 1 2 ) .  

We emphasize the importance of the fibre-type classes by 

giving a few examples and applications�9 

8.5. ~=0 (see 4.3, 5.11): In this case P is a flat G- 

bundle and the characteristic homomorphisms A, and A I 

coincide. To exhibit examples of flat bundles with non- 

trivial A,=A I we return to the examples of flat G-bundles 

with non-trivial (topological) characteristic homomorphism 

which we constructed in ~8;4.1~.Let G be a connected semi- 

simple Lie group with finite center which contains no com- 

pact factor, K~G a maximal compact subgroup and (U,K) the 

compact symmetric pair dual to the pair (G,K). By [3] 

there exist discrete uniform torsionfree subgroups F ~ G. 

The flat G-bundle P=(KkG) x G z-~ M =(K\G)/P has a canoni- 
r 
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cal K-reduction given by the isomorphism P ~ (G/F) x G in- 
K 

duced by  ~ ( g , g ' )  = ~ ( g , g g ' ) .  T h e n  B : M = B F § E G c l a s s i -  

f i e s  P and if we denote by _~ : Ma § BK ' ~: U/K § B K the 

classifying maps of the K-bundles G/F § M resp. U § U/K, 

we have 

8.6 PROPOSITION. There is a commutative dia~ra~ 

H ' ( F ,  N) ~ H ' ( M a ,  N) §  H ' ( U / K ~  N) E H ' ( g , k )  
b ,  

where b,=A, is the homomorphis m i__nn (8.4) for ~ = ~M; b, i__ss 

in~ective. 

In fact it follows easily from our construction that b~ 

is injective in top-dimension and hence injective by 

Poincar@-dualityfor H(M ~ ~). In this case the map b, can 

be identified with the map constructed by Matsushima ~0~ 

using harmonic forms and it also coincides with Hirzebruchs 

proportionality map which transforms the characteristic 

classes of the K-bundle U § U/K into those of the K-bundle 

G/F + M . 

8.7. Deformations. Let f: M § X be a submersion as in 

(5.14). A Lie-algebra subsheaf L~T(f) may then be conside- 

red as a deformation of foliations L on the fibers 
--X 

M x = f-1(x), x~ X. Similarly a foliated G-bundle (with re- 

spect to ~ = (~M/~) ) defines a deformation of foliated 

bundles P § M and an H-structure on P defines a deforma- 
X X 

tion of H-structures on P , x ~X. We obtain then a commuta- 
X 

tire diagram: 
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(8.8) 

Hn (W(__g,h)q+m ] 

can 

A, 
HDR(M) 

1 
E2o,n = r (x ,  

, r (x ,    R(MJX)) 
""-..~, (x) 

L 
HDR (M x) 

where q = rk~(~(f)/~], m = rk~x(~} = dim X, and A, is a 

homomorphism defined like A, but with respect to the rela- 

tive De Rham complex ~M/X " A, represents the family of 

characteristic homomorphisms A,(x) of the foliated bundles 

P § M , x ~ X. 
X X 

The commutativity of this diagram implies 

8.9. THEOREM. The classes Z,(u) for u E im(H'(W(~,~)q+ m) § 

H'(W(~,~)q)] are rigid, namely they are invariant in 

~R(M/X) under parallel tran.sport by the Gauss-Manin con- 

nection V. 

d 
For a product family M = N x ~ +~ where V = ~-~, m=l, 

this means the independence of the classes A,(t)u from the 

parameter t ~. This implies in particular the result of 

Heitsch in [26] on the rigidity of characteristic classes 

of a foliation under one-parameter deformations. 

,i 
In the case ~ = ~(f), 2 = s ~X the above situation defi- 

nes a deformation of flat bundles Px + Mx' x~X. As we have 

A, = A 1 for flat bundles (8.5), we may compare ~, with the 

derived characteristic homomorphisms A 1 and A 2 for ~ on M. 

Using (5.17) we obtain a commutative diagram: 
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o,n(w(g,h)m ) A2 o,n(2 ) = F(X,~t~DR(M/x)V ) E4 = = ~ E 2 

(8.1o) N N 

E 2~ m)== ='Hn(g,h)= - ~ : El(C) : F(X,~{DR(M/X) ) 
A,:A I 

o," --" A'~(2s} ~I(h)'/ From (2.11),(2.12) it follows that E2~s§ = 

I(g) += "I(h)CE2''= = H'(g,h),__ = where pC~S~ = {xg~/degx>2s}. 

This gives 

8.11. THEOREM. For a deformation of flat bundles [~=~(f)) 

we hav_e ~, = a I on E~''[W(~,~)m) ~ H'(g,~). Moreover o_~n 

E4O, T A'~t~I(h)/I(g) + . =  = I(h)= cH (g,h~= _ the homomorphism 

~, i_~s rigid, ~.~. maps into the sections of ~R(M/X) which 

are parallel under the Gauss-Manin connection V. 

It follows in particular that the classes A,(x i) 

h2i-l(M) i>l, in Theorem 4 5 are rigid under deformation 
DR ' 

of the flat structure on M. 

We finally want to point out that similar results hold 

for the rigidity of derived characteristic classes in the 

general case (~(f)]. 
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