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CHARACTERISTIC INVARIANTS OF FOLIATED BUNDLES*

* k * %
Franz W. Kamber and Philippe Tondeur

This paper gives a construction of characteristic invari-
ants of foliated principal bundles in the category of
smooth and complex manifolds or non-singular algebraic va-
rieties. It contains a generalization of the Chern-Weil
theory requiring no use of global connections. This con-
struction leads for foliated bundles automatically to sec-
ondary characteristic invariants. The generalized Weil-
homomorphism induces a homomorphism of spectral sequences.
On the E,-level this gives rise to further characteristic
invarian%s (derived characteristic classes). The new invar
iants are geometrically interpreted and examples are dis-
cussed.

0. Introduction

In this paper we describe the construction of characteris-
tic invariants for foliated bundles as announced in the
preprints [32][33] and the notes [34] [35].

A generalization of the Chern~Weil theory to foliated
bundles is made which applies as well in the context of
smooth and complex manifolds as for non-~singular algebraic
varieties and which requires no use of global connections.
This construction leads for foliated bundles automatically
to secondary characteristic invariants. The generalized
Weil-homomorphism can be interpreted as a homomorphism of

spectral sequences. On the El—level it leads to the con~

* Text of lectures given during the meeting on "Exotic
Characteristic Classes" in Lille, February 1973.

** This work was partially supported by a grant from the
National Science Foundation and by the Forschungsinsti-
tut flir Mathematik of the ETH in Ziirich.
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2 KAMBER et al.

struction of further characteristic classes. These derived
characteristic classes give a generalization to foliated
bundles of the characteristic invariants considered by
Atiyah for holomorphic bundles [ 1] and which are interpre-
ted by Grothendieck as invariants in the Hodge spectral
sequence of De Rham cohomology [23][27]. The new invariants
are geometrically interpreted and examples are discussed.

This work grew out of our extensive studies of foliated
bundles, called (L,0)-modules in [29][30]. After seeing
the Chern-Simons construction of secondary classes [11],
we realized that Bott's vanishing theorem [5] interpreted
for the Weil-homomorphism of a foliated bundle gave rise
to new invariants in the sense of section 3, i.e. the con~
tractible Weil algebra could be replaced by a cohomologi-
cally non-trivial algebra W/F., The first published an-
nouncement of our construction is [31].

We learned then about the Bott-Milnor construction [ 6]
of characteristic invariants of foliations. The discovery
of Godbillon-Vey [17] showed the interest of the Gelfand-
Fuks cohomology of formal vectorfields [14][15]. Bott-
Haefliger constructed in [ 8] [25] invariants of T'-folia-
tions, generalizing the Godbillon-Vey classes. In this
construction T denotes a transitive pseudogroup of diffeo~
morphisms on open sets of Rq. If the construction here
presented is applied to the transversal bundle of a T-
foliation, it leads to the same invariants in the cases in
which T' is the pseudogroup of all diffeomorphisms of rY
or all holomorphic diffeomorphisms of ¢?. It is known on
the other hand that this is not so in the symplectic case.

At this place we would like to thank W. Greub, S. Hal-
perin, J.L. Koszul and D, Toledo for very helpful discus-
sions. We also would like to thank B. Eckmann for the hos-
pitality extended to us at the Forschungsinstitut flr
Mathematik of the ETH in Zurich, where a large part of this

paper was written.

52



KAMBER et al. 3

Contents Page
1. Foliated bundles. 3

The semi-simplicial Weil algebras. 8
3. The generalized characteristic

homomorphism of a foliated bundle. 12
4, Interpretation and examples of

secondary characteristic classes. 17
5. The spectral sequence of a foliation. 21
6. Derived characteristic classes. 25
7. Atiyah classes. 27
8. Classes of fibre-type. 32

1l. Foliated bundles

We consider the categories of smooth and complex analytic
manifolds (A = R or €) or non-singular algebraic varieties
over a field (alg, closed) A of characteristic zero. Q=QM
denotes the structure sheaf, QM the De Rham complex and EM
the tangent sheaf of M., To allow the discussion of singular

foliations on M, we adopt the following point of view.

1.1 DEFINITION. A foliation on M is an integrable 0. ~module

M
of 1-forms Q@ < @ i.e. generating a differential ideal

M’
Q.Qy in Qu. This means that for we @ locally dw = g ws Aoy
with w, € Q and a. € Q.
i 1 M
Denote by L C:EM the annihilator sheaf of Q, i.e.
L = (Qu/2)* = Hom (Q4/Q,0). The O-submodule L C T, is then

M
clearly a sheaf of A-Lie algebras. If Qy/2 is a locally

free O-module of constant rank, so are 2, L and the trans-
versal sheaf Q = EM/L. This is the case of a non-singular

foliation, which is usually described by the exact sequence

(1.2) 0+L~>T

M > g -+ 0

We do not wish to make this assumption on the foliation
in this paper. The integer which plays a critical r8le for

 throughout this paper is the following. Let for xe M be
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*
- 2 1
vV, = im Qx ®9XA -> QM’X®9XA] o TM,X

The function dimA VX is lower semi-continuous on M. Define

(1.3) q = sup dim, v , 0<g<n
xem MoX

Then any integer q' such that g € g' will be an integer for
which the construction of a generalized characteristic
homomorphism holds in section 3. If e.g. © is locally gene-
rated over 9M by € q' elements, then clearly q € q' and g'
will be an admissible integer. Note that for a non-singular
foliation @ we have g = rankO(Q) for the number g defined
by (1.3).

Let now P 5 M be a G-principal bundle (in one of the

three categories considered). We assume G connected and de-

7P
image sheaf of Q., on which G operates. nfﬂé is the sub-
G . .
*QP = (W*QP)é, since

G is connected. Note also that QM = (W*Qé)g (the g-basic

elements in the sense of [9], see section 2). P(g*) denctes

note by g its Lie algebra (over A). Let 7,0  be the direct

sheaf of G~invariant forms on P and

the bundle Px, g* with sheaf of sections P(g*). Connections
in P are then in bijective correspondence with splittings
of the exact O-module sequence (Atiyah-sequence [1])

%k
A(P): 0 — af T nlal &> p(gr) — 0 |

Consider for an integrable submodule Q < Q!

M the diagram

of Oy~homomorphisms
Q Q
!
*
A(R): 0 — gl ——s nfnlg —2 . p(g*) —— 0
(1.4) e A
JRe (e} Pid [¢]
* + X

VAR 0 —— 1/Q —— 10l/0—— P(g*) — O
= — (g
P
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KAMBER et al. 5

1.5 DEFINITION. A connection mod @ in P is an O-homomor-
phism w_: P(g*) » HEQ%/Q which splits A A(P). It corre-
sponds to a unique O-homomorphism 0yt WEQ; - Q&/Q such
that Goﬂ* = X (see diagram 1.4). The relation between W,

and % is given by

(1.6) To_ +wop = A

Gn1
0 0 P 7 Tr*QP/Q

Dualizing (1.4) we get the diagram of O-homomorphisms

Q
(1.7 0 _>E(§) _)“EEPLEM__’O
B ek *
\\OO ‘X
\\
N
\\\ 1 *
L= (Qu/2)

The O-homomorphism c; lifts vectorfields £¢L to G-invari-
ant vectorfields 0;(5) = £ on P and thus defines what one
may call a partial connection in P along L (see [30] in the
case of vectorbundles). For a non-singular foliation the
latter viewpoint is equivalent to the point of view adopted

here.
In practice a connection mod § in P is represented by
an equivalence class of families of local connections as

follows. First we need the notion of an admissible covering

of M. This is an open covering W= (U,) of M such that
Hq(UG,E) = 0, g > O for every cohereni O-module F, where Uc
is a finite intersection of sets Uj’ Admissible coverings
exist in all categories considered. For a smooth manifold,
a covering by normal convex neighborhoods (with respect to
a Riemannian metric) is admissible. For a complex analytic
manifold a Stein covering is admissible. For an

algebraic variety an affine covering is admissible.

A connection mod © is then represented on Y| by a family

w = (wj) of connections in PIUj such that on Qu the differ-
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6 KAMBER et al.

ence ws-w; € F(Uij, Homo(g(g*),ﬂ)). A connection mod @ in P
is called flat, if for a representing family w=(w.) the
curvatures K(wj) are elements in F(Uj’(Q'QM)zé%)E(E))s
where Q.QM M The lo-

cal connections wj are then called adapted (to the flat

denotes the ideal generated by 9 in

connection mod @ in P). Our objects of study are then de-

fined as follows.

1.8 DEFINITION. An Q-foliated bundle (P,mo) is a principal

bundle P equipped with a flat connection Wy mod @ .

This notion has been extensively used in [29],[30]. A
similar notion has been used by Molino [42]. In the smooth
or complex analytic case this means that the flow on M of
a vectorfield £e¢ L 1ifts to a flow of G-bundle automor-

phisms of P generated by og(é)e wfg If the sheaf L is de-

fined by a finite-dimensional Lie aigebra L of vectorfields
acting on M, then a 1ift of this action to P defines a
foliation of P. See [29],[30] for more details. We describe
now examples of foliated bundles.

1.9. @ = Q. In this case L = {0} and a foliated bundle is
an ordinary principal bundle with no further data.

1.10. @ = {0}, In this case L = T, and a foliated bundle

is a flat bundle equipped with a flat connection.

1.11. The transversal bundle of a non-singular foliation.

In this case P is the frame-bundle of Q = TM/L, equipped -
with the connection defined by Bott [5].

1.12. Submersions. Let f: M + X be a submersion and

£ = f*a . In this case L = I(f), the sheaf of tangent vec-
torfields along the fibers of f. The pullback P = f*P!' of
any principal G-bundle P' - X admits a canonical foliation
with respect to @ which is obtained as a special case of
the following procedure.

1.13. Let 0 be an open covering of M such that PIW is
trivial. Let sj: Uj + PlU, be trivializations and consider
the corresponding flat connections wj in PIUj (;;mj=0).

With respect to a foliation © on M the family w=(wj) de-
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*

fines an 9-~foliation on P if and only if (g{}ngij)
g* + T(Uij’gﬁ) has values in @, i.e. the coordinate func-

tions gij: U + @ defined by sjzsi-g.. are locally con-

stant along t%e leaves of Q. For a foiiation defined by a
Haefliger I'-cocycle {fi,yij} (QlUj=9,Uj(dfs---df?)) [24],
this procedure defines a canonical Q-foliation on the
transversal frame bundle F(Q).

Consider now the Weil-homomorphism of differential

graded (DG)-algebras
(1.14) k(w): w(é) > F(P,Qé)

defined by a connection w in P [9]. Here W(g) denotes the
Well-algebra of the Lie algebra g of the co;neéted group G
and P(P,Qé) the algebra of globaz forms on P. This is the
homomorphism inducing on the subalgebra of invariant poly-
nomials I(g)< W(g) the Chern-Weil homomorphism which as-
signs to 26 I(é) the De Rham cohomology class
[k(w)2] € Hyp (M),

For a foliated bundle let now w be a connection in P
which is adapted to the foliation Wy of P, i.e. a splitting
of A(P) such that Xewsw_ in diagram (1.4). We observe that

the Weil-homomorphism (1.14) is then a filtration-preser-

ving map in the following sense
2 .
(1.15)  k(w): FPw(g) ~ Fr(r,a}), p>o.

The filtration on W(g) is given by

(1.16) FPu(g) = sP(g*).u(g) , peP7ly = poPy |
Further define [31]
(1.17) FpP(P,Qé) = F(P,(W*Q.Qé)p] ,

where (n*Q.Q;)p denotes the p-th power of the ideal gener-
ated by 7m*Q in Qé. Both (1.16)(1.17) define decreasing ide-
al filtrations and these are preserved by the Weil-homomor-
phism. The fact that FpT(P,Qé) = 0 for p > q, where q is
the integer defined in (1.3), implies by (1.15) that

k(w)Fz(q+l) = 0 and in particular k(w)I(g)z(q+l) = 0. This
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8 KAMBER et al.

is Bott's vanishing theorem [5]. Moreover this fact gives
2(Q+1)W(§)-*T(P,Qé), which in

cohomology gives rise to secondary characteristic classes.

rise to a homomorphism W(g)/F
Since the Weil-homomorphism is filtration-preserving it in-
duces a morphism of the corresponding two spectral se-

quences. This will be studied in sections 6 to 8.

2. The semi-simplicial Weil algebras

The construction of the Weil-homomorphism k(w) and its fil-
tration properties for a foliated bundle depend on the ex-

istence of a global connection w in P adapted to the folia-

tion of P. We wish to generalize the construction of k(w)
80 as to work also in the context of complex manifolds and
non-singular algebraic varieties over a field of character-
istic zero, where the existence of such connections in P
cannot be generally assumed.

Consider an admissible covering W = (Uj) of M and a fam-
ily w = (wj) of local connections wj in P|Uj adapted to the
flat connection in P mod ©. They always exist by (1.4) in
view of the admissibility of VYl . Then w =(wj) is a connec-
tion

At(gs) - COm,may) < 8(n,m,e;)
in the (non-commutative) DG-algebra of Cech cochains
E.(Wl,ﬁ*ﬁé) of fhe covering ¥ with coefficient-system de-
fined by W*Qé. C is an algebra with respect to the assoc.
Alexander-Whitney multiplication of cochains. As W(g) is
universal only for connections in commutative DG—algebras
[ 9], we wish to define an algebra W,(g) which serves as
domain of definition of a multiplicative generalized Weil-
homomorphism with target ¢ and which has the same cohomo-
logical properties as W(g). A construction of the charac-
teristic homomorphism I(é) > HDR(M) using local connections
has been indicated by Baum-Bott [2,p.34].

We need the notion of a g-DG-algebra A with respect to
a Lie algebra g (all algebr;s are over the groundfield A).

This is a (not necessarily commutative) DG-algebra A
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KAMBER et al. 9

equipped with A-derivations of ©(x) of degree zero,
i(x) of degree -1 for xeg, i(x)? = 0 and satisfying formu-
las (1)(2)(3) of [9, exp. 19]. For any subalgebra hcg we

use the notations

[ty

A= = {aehAlo(x)a = 0 for all xeh} ,
JEAe DR Ali(x)a = O for all x€h} and
Ah = AQ n Al(g) (h-basic elements in A).

To explain the construction of wl(g), we consider first

a semi-simplicial object in the category of Lie algebras

defined by g as follows. Let §2+1 denote for 2 > O the

(2+1)~fold product of g with itself. Define for Ogigi+l,

Ogjgh
L, 5L+2_> 2+1 2(X X )= (x x x x )
€1 B R A LA LY S DAL R RS P LRt PSRk 1

Lo gt ghe 2(x x ) = (x X.,X., X X, )
My g g s uj R o2t aXgaXgsXs gaeeisX) ).

Then ¢ and u are the face and degeneracy maps for the semi-
simplicial object in question and satisfy the usual rela-
tions (see e.g. [18,p.271] for the dual relations).

Next consider the Weil-algebra as a contravariant func-
tor from Lie algebras to g-DG-algebras and apply it to the
semi-simplicial object disgussed. This gives rise to a
cosemi-simplicial object wl(g) in the category of g-DG-
algebras. Note that

L 2+1, ~ ®L+]1
wi(g) = Wig" ") = w(ig)
and the face and degeneracy maps e%zW(ei): wi - W§+1,
u§=w(n§): wi*l > Wi are given by the inclusions omitting

the i-th factors and multiplication of the i-th and
(i+l)-th factors.

wl(é) can in turn be given the structure of a (non-
commutative) é—DG—algebra. For this purpose consider wl(é)

as the object

Wi(g) = @ Wig).
- 220 -
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10 KAMBER et al.

Then Wl can be interpreted as a cochain-complex on the
semi-simplicial complex P (= point in the category of semi

simplicial complexes) with one f%-simplex o, for each £30

L
and with coefficients in the system assigning to every Ty
the algebra W§=W°£+l. As such it is equipped with the

associative Alexander-Whitney multiplication.

The differential in W, is defined as follows. First let

1
2=1
- % L+1
(2.1) §, = lzo( -1t Wy - W

If d denotes the differential on wi (induced from the

differential on W), then the formula

B 2 2
(2.2) D = 62 + (-1)7a on Wl

defines a differential D on wl which turns it into a DG-
algebra, It is a g- -DG-algebra with respect to the g-

operations on W (g) = W(g)2+l obtained by restricting

along the dlagonal At g » §2+l. The construction performed

with the functor W can now obviously be repeated with the
functor Wl, which leads to a sequence of iterated cosemi-
simplicial Weil-algebras WO(E) = W(E),Wng),ngg),... .

The canonical projections

(2.3) P W (g) ~ WZ(é) Wo_,(g)s s >0

o
are g-DG-algebra homomorphisms.

We proceed now to define inductively even filtrations
Fé(g) with respect to g on ws(5@> (s 2 O, m » 1) such that
F;(g) on Wo(g) = W(g) is given by (1.16):

(2.4)
Figm(e™ = @ (guigh
1
= S e,. NGO INEES
2p-1

The odd filtrations are defined by F = sz. The face
and degeneracy operators of ws are flltration-preserving.

The filtration FS is functorial for maps Ws(g) + ws(g')
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KAMBER et al. 11

induced by Lie homomorphisms g' -+ g.

2.5 LEMMA, Féws is an even, bihomogeneous and multiplicati-

ve filtration by g-DG-ideals.

The split exact sequence
A 2+1

0 -~ § — 5 — ij,—> 0]
defines the E-mogule'vl,whose dual is given by V; = kxer X =
= {(ao,...,az)l ) a; = 0}. The filtration FipWi(g) =
i=o =
= ngw(§2+l) is then given by
~s ] . 3 l"’
(2.6) Fipwi(é) Y O Agr@ (A VZ ® 5 (g* 1yy et

irl >p

where the reduced degree |r| is determined by deg AIVE =

L+1

= deg S'(g* ) = 1. For the graded object we have there-

fore

For every subalgebra hcg the filtrations Fé induce fil=-

trations on the relative algebras

(2.7) W (g,h) = (W(g)), s s >0.

s (

[[=x

It is immediate that the canonical projections

Pyt ws > ws_l are filtration-preserving. Define for s > O
2(k+1)
(2.8) W (g,h)) = W (g,h)/F_ W (gsh), k>0.

For k = ® we set F = N F2p = 0, so that

(2.9)  W_(g,h), = W_(g,h) .

The main result concerning the relationship between the Ws
is as follows. The proof will appear elsewhere.

2,10 THEOREM. Let (g,h) be a reductive pair of Lie algebras.

The homomorphisms of spectral seguences induced by the fil-

tration-preserving canonical projections Pyt Ws(g,g) -

-level and hence

Wo_l(g,g) induce isomorphisms on the E;
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(o]

igsomorphisms for every 0 < k

2 A

H(p): E(W (g,h),) — H(W__,(g,h),) , s > 0.

The El—term can be computed as follows:

2.11 THEOREM [3U]. Let (g,h) be a reductive pair of Lie
algebras, 0 € k £ =,
(1) B (g, ) ¥ ENg,n) 8 TP(g),

(i1)  dy.,; = O and d,, 1s induced by a transgression

&’ P_E_ > I(g)y s

(iii) the terms E, , E_ and H’(w(g,g)k) can be compu-

ed under a mild condition on (g,h).

=

<t

Here H(g,h) denotes H{A'{g!g)*g], which can be computed
[9] [19] as

(2.12) H(g,

112

) 2 B@1(0)/1(g) . T(n)

jlag

for pairs (g,h) satisfying the condition
(2.13) dim P = rank g - rank h

A
for a Samelson space PC:Pg of primitive elements of g. The

condition mentioned under” (iii) is the following [34]:

{2.14) There exists a transgression Tg for such that

g
ker (1*¥: I(g) » I(p)) = ideal(r=§)C:I(§) E S(Tng).

This condition is satisfied for all symmetric pairs and
many interesting examples. Condition (2.14) implies (2.13)
and has been used for the general computation in [34]. For
the pairs (g&(n) ,se(n)} , (g&(n), 0(n)) and k = n the
algebras H[W(é,g)k) have been computed by Vey [16].

3. The generalized characteristic homomorphism of a
foliated bundle

We return to the geometric situation considered before,
i.e. a foliated bundle P 2+ M equipped with a family w=(wj)
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KAMBER et al. 13

of adapted connections on P[Uj with respect to an admissi-
ble covering ¥ = (Uj) of M. We define then a homomorphism
(3.1) k() W(g) » Em,me)

as follows. For 220, let o = {ig"‘°’ig) be an f-simplex

of the nerve N(U ). Consider the compositions

wij: A(g*) > F[Uij,ﬂ*ﬂé) > T(U_,mQp) for J = 0,...,8.
This defines
(3.2) k(o ): W™ - r_,men

¢ g’" 2 g? *P

as the universal g~DG-algebra homomorphism extending

(3.3) Mu: At s r,man)

given on the factor j by Wy e We get therefore a homomor-
. ) 2 Jd . . _

phism kl(w). w1<§) = C7 (WY ,W*QP) by setting kl(w)c =

= k(wg).

(3.1) is a homomorphism of g-DG-algebras, where the g
operations on é(lq,w*ﬂé) are dgfined simplex~wise by B
(6(x)e), = 0(x)o_ and (i(x)e) = (-D)*i(x)e  for
9 E éZ(UL,w*Qé) and o€ N(U),. (3.1) is the generalized

Well=-homomorphism of P.

The crucial result for our construction is the follow-

ing:

3.4 PROPOSITION. kl(w) is filtration-preserving in the
sense that
2 v -

ky (w): Flpwl > ch(Ln,n*QP), p » O.
The filtration on the image complex is defined by

¥ . v . Y -
(3.5)  FPE(U,m0p) = can,FPep) = S(U, (e manP)
similarly (U ,0;) is filtered by

pv ey o A p_‘v

(3.5 FPCULLep) = U L,FPa) = C(U,(e.9)P)

Proposition 3.4 follows by the multiplicativity of kl(w}
and (2.6) from
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k(v )i e I’(UO,FIH*Q;), k(w )oe r(UU,Fln*ng)

for & eSl(§*Q+l), o EAIVE.

For our_construction it is essential to observe that
this filtration is zero for p > q, where g is the inte-
ger as defined in (1.3). It follows from (3.4) that kl(w)

induces a homomorphism kl(w): wl(g_)q > é, which in cohomo-

logy gives rise to the generalized characteristic homomor-
phism,
More generally for a (connected) closed subgroup HeG
with Lie algebra hcg we have an induced map between the
A

h-basie algebras of (3.1). If %: P/H > M denotes the proj-
d

. . _ A .
ection induced from m: P - M, then (ﬂ*QP)Q = Mfp,y an

hence

ky(w)e W (g,h) » &(u,h0, 0
Since this map is still filtration-preserving, and the fil
tration on the RHS is zero for degrees exceeding g, we get

an induced homomorphism, also denoted by kl(w):

(3.6) k(W) Wy(g,h) > S ,h0,0 .

To define invariants in the base manifold M, we need an

H-reduction of P given by a section s: M » P/H of

A

m: P/H » M as the pull-back P' = s*P. Before we formulate

the result, observe that Hxé(vl,ﬁ*ﬂé/H)) maps canonically

into the hypercohomology‘EﬂM,ﬁ*Q%/H), which maps under #*
intoIH(P/H,Qé/H), the De Rham cohomology Hp.(P/H) [22].

The map (3.6) gives then under observation of Theorem 2,10

rise to the homomorphism in the following theorem:

3.7 THEOREM, Let (P,wo) be an Q-foliated principal G-
bundle,H=G a (connected) closed subgroup such that (gsh)

is a reductive pair of Lie algebras, and q the number de-
fined by (1.3).

(1) There exists a homomorphism depending only on (P,wo)

(3.8)  k,: H‘[W'(é,g)q) > B (M, 7,00 0> HYp (P/H).

6l



KAMBER et al. 15

(ii) If P admits an H-reduction P' = s*P given by a sec-

. A . .
tion s of mw, there exists a homomorphism

(3.9) By = s%o ket H(W(g,h) ) » Hpp (D).

This is the generalized characteristic homomorphism
of P (depending on P').

To establish the independence of k, for two choices

w° = (w?) and w! = (wj) of adapted connections on a cover-
ing W= (Uj) we consider the commutative diagram
) kz(wo,wl) . X
—_—
Wo(g,h), C(ay,C)
(3.10) Po l . lJi (i=0,1)
i
k. (w™) .
W.(g,h)  —————
1=,=q

where C(Al,é) is the cochain-complex on the standard 1-

simplex A, with coefficients in the constant system 5, ji

1
is the restriction to the i-th vertex (i=0,1) and kg(wo,wl)

is defined analogously to k.. As the vertical maps induce

isomorphisms in cohomology (%.10), and H(ji) is independent
of i, it follows that H(k (v”)) = H(kl(wl)).

The construction of A, is functorial in P. It is also
functorial in (g,h) in an obvious sense.

For h = g we_take s = id: M » P/G = M. Then H(W(g,g) ) =

= I(é)q and
(3.12) Ay = ky: I(g)q » Hpyp (M) .

This is the Chern-Weil homomorphism of P, but constructed

the cochain~level it is realized with the help of a family

w = (wj) of adapted connections w, on P[Uj e (Uj) an

admissible covering of M) as a homomorphism

(3.13) k(@) Wig,g), = 5'(ML,QM) .
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By theorem 2.17 we have

10

1(g) = Hg/F 3 g,

H(Wl(é’é)q) 2 H(W(g,g)q)

For H = {e} we have by Theorem 3.7, (i) a well~defined

homomorphism
(3.14) K, : H(W(é)q) > BH(M,m,al) - HDR(P).
+ 2(q+1)
Thus for every weW(g) such that dw(w)é F W(g) there

is a well-defined De Rham class k,(w) € HDR(P). This is a
construction of the type considered by Chern and Simons
[11][12], where they consider more particularly ®e I(g)
such that k(w)® = 0€ F(M,QM). As mentioned in the introduc-
tion, this observation was one of the motivations for our
construction,

For a non-singular foliation @ with oriented trans-
versal bundle Q let P = F(Q) = F(Q*) be the canonically
foliated GL+(q)-frame bundle of @ = Q* (1.11)., For
H=S0(q) the bundle P/H has the contractible fibre
GL+(q)/SO(q) and hence there exists up to homotopy a unigue
section s of %. The generalized characteristic homomorphism
A, defines then invariants of the foliation @ in HbR(M)'
Using the Gelfand~Fuks cohomology of formal vectorfields
[15], Bott-Haefliger construct in [8][25] invariants of T-
foliations, generalizing the classes discovered by
Godbillon-Vey [17]. Here T denotes a transitive pseudogroup
of diffeomorphisms on open sets of Eq, and a TI'-foliation on

M is defined by a family of submersions f U-+fU(U)c|Rq,

MW = {U} an open covering of M, these subiersions differing
on UnV by an element of T'. For I' the pseudogroup of all
diffeomorphisms of g? or all holomorphisms of c? the two
constructions give the same invariants, but this is known
not to be so in the symplectic case.

The following result gives a more detailed description

of the generalized characteristic homomorphism.

3.15 THEOREM. Let P be a foliated bundle as in Theorem 3.7

66



KAMBER et al. 17

and P' = s*P an H-reduction of P.

(i) There is a split exact sequence of algebras

o
. &N
(3.16) 0 = H(Kq) - H(W(é,g)q] + I(h) ®I(§)I(§)q + 0

and the composition A,es is induced by the characteristic

homomorphism: I(h) - HDR(M) of P,
(ii) If the foliation of P 1s induced by a foliation of P',
then A*IH(Ké) = 0.

The ideal H(Ké)c:H(w(é,g)q) is the algebra of universal
secondary characteristic invariants. By part (il) in Theo-
rem 3.15 the secondary invariants A*(H(Ké)) for a foliated
bundle (P,wo) are a measure for the non-compatibility of
the foliation W of P with the H~-reduction P'. The proof of
this fact is an immediate consequence of the functoriality
of A,. Namely under the assumption of (ii) in 3.15 A, fac-
torizes as follows:

H(w(ﬁ’ﬁ)q)

l *H(M)
/ DR

Ik,

"

H(W(n,0) )

But the vertical homomorphism is the composition
H{W h I(h
( (§,=>q) -+ (__:) ®I(§) I(g)q > I(g)q

which implies that A*IH(Kq) = 0. More generally under the
assumption of (ii) in 3.15 the vanishing of k(w) on F2(Z+l)

for some & » O implies A*{H(Ki) = 0,

4, Interpretation and examples of secondary characteristic

classes.

Before we turn to the discussion of examples of seconda-
ry characteristic classes, we comment again on the computa-
tion of H(W(§=£)k) for k » O, (See also the end of section
2.) For reductive pairs H(W(g,h),) can be computed [34] as
the cohomology of the complex
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(4.1) A = AP§® (g), ® I(n)

where Pg denotes the primitive elements of g. The differen
tial dA=is a derivation of degree 1, which is zero in the
last two factors and is given in Pg by

(4.2) 0,0 2 1@ T, () @1 - 11 ® v (),

where Tg: P _» I(g) is a transgression for g and i: heg.
This realization of H‘(W(g,g)k) allows its computation for

reductive pairs satisfying condition (2.14) [34].
The spectral sequence

ESP2 % (w(g,n) ) = Ho(g,n) ® T°%(g), = P (u(g,n),)

discussed at the end of section 2 arises

from the filtration of the A-complex (4.1) by I(g). One
may approximate H(W(§’§>k) by another spectral sgéuence
(involving a graded Koszul complex) also deduced from A:

I-Ty8 =~ I(g)
E * Tor = (1(2)’I(§>k

2
1 )=

==>Hr+s(W(§,2)k).

For k=0 we have I(g)o 2 A (ground field) and

'Ei’s z Torif%)(l(g),A)2r==>H

r+
S(g,g) .

I.r,5S

For k = = we have I(g)_ = I(g), El = 0 for r # s and

since d. = O
1 = 2r
= I(n)" — =7 (W(g,h))

whereas HOTVL (W(g,h)) = o.

4.3 Flat bundles. A flat G-bundle is a G-bundle P -~ M fo-
liated with respect to 9 = {0} C:Q&, i.e. L =T,2and q =0
(P is equipped with a curvature free global connection).

The generalized characteristic homomorphism is now a map

(L) Ay: H'(g,h) = H(W(g,h) ) - H (D

DR
Tt will be shown in section 8 that A, may be injective in

certain cases and that A, is rigid in degrees > 1.

For a flat smooth M" the tangent principal bundle F(M)
is a flat GL(m)-bundle. For H = O0(m) there is
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hence a well-defined homomorphism A,: H(gi(m),0(m)) -
HDR(M), defining invariants of the flat structure of M, If
the primitive elements P g (m) transgressing to the Chern

gx ~

classes c; € I(g&(m)) are” denoted X then H'[g&(m),o(m)) ¥

- m+l N
2

~

E A'(xl,xj,...,xm,), m' = 2] -1, and we get the follow-

ing result:

4.5 THEOREM. Let u" be a flat smooth manifold. There are

well-defined secondary invariants

2i-1
DR

For a Riemannian flat manifold these invariants are zero
(by 3.15, (ii)). Moreover, if h: m (M) > GL(m) denotes the
holonomy of the frame bundle F(M), we have

A*(xi)é H (M) (1 = 1,35.00.,m").

J A(w)x1 = J s*tr(w) = - log|det h(y)|
Y Y
for Ye'nl(M), and s: M » F(M)/0(m) a Riemannian metric on

Let M" be a compact affine hyperbolic manifold, i.e. equip-
ped with a flat and torsionfree connection and such that
the universal covering is isomorphic to an open convex sub-
set of R™ containing no complete line. The hyperbolicity of
the affine structure on M is then characterized according
to Koszul [37] by the existence of a closed 1-form with
positive definite covariant derivative. The De Rham class
of this 1-form is precisely the affine invariant A*(xl) of

Theorem 4.5.

4.6 The transversal bundle Q of a foliation. This case has

been discussed already in section 3 and it has been ex-
plained in which cases our construction furnishes the same
invariants as the Bott-Haefliger construction [8][25]. If
the foliation of Q is induced from a foliation of an H-

reduction (H=GL(q)), this is called a transverse H-struc-

ture, Colon [13]. The secondary invariants are then triv-
ial by Theorem 3.15, (ii).
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1
M

be a foliation on a complex manifold M and assume that Q is

4.7 Characteristic numbers of a foliated bundle. Let Q<@

locally free of rank n-1 off the disjoint union N of < n-
dimensional closed submanifplds of M, n = dimC M, The num-
ber q defined in (1.3) for Q is then necessarily q = n-1,
since dinm Vk is lower semi-continuous. It follows from
Theorem 3.7 that for a bundle P - M foliated with respect
to @, the characteristic numbers necessarily vanish. Con-
sider on the other hand the annihilator sheaf L = (Q&/Q)*.

Since P is foliated with respect to Q, P carries in partic-

ular an action of L by infinitesimal bundle automorphisms.
If L is of rank 1, i.e. the sheaf of sections of a holomor-
phic line bundle, the characteristic numbers of P can be
evaluated by Bott [4] as the sum of residua attached to

the singularities of T, /L. In the situation described above

this sum is necessarily zero.

4.8 Pfaffian systems. (Martinet [40]). Let the submodule
g::n& be a Pfaffian system of rank p on M, i.e. the sheaf

of sections of a subbundle E‘=T§ of dimension p. Then E and
Q&/E are locally free of rank p, n-p respectively (n=dim M).
The characteristic system Q of E is a foliation in the

sense of section 1, i.e. generates a differential ideal in
QM. Martinet's result in [40] can be interpreted as showing
that the frame bundle F(E) of E is foliated with respect to

Q2 and hence gives rise to a homomorphism
H(W(gt()) ) - Hpp(F(E))

where g is the number defined in (1.3), the class of the
system E. Note that p € ¢ and p = g if and only if the ori-
ginal Pfaffian system E is already involutive. One of the
features of our localized construction of the characteris-
tic homomorphism is that this example can be generalized to
the holomorphic case. The same comment applies to the char-
acteristic invariants defined recently by Malgrange for

systems of smooth partial differential equations.
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5. The spectral sequence associated to a foliation

From this section on we assume that a non-singular folia-

tion
(5.1) 0~+q ~+ Qﬁ - Q&/Q > 0
is given on M, i.e. Qﬁ/Q -~ and hence Q -- is supposed to

be locally free (q = rkOQ). The finite ideal-filtration
FPQM = ApQ°QM used in (3.5') determines then a multiplica-
tive spectral sequence with respect to the hypercohomology

functor B (M;-) = R']I‘M [21, Or1ys 13.6.4]:

p,q PO o} Jo PRV BN P*d a0y - wP*A
(5.2) El’ (Q) =®W (M;G QM)=]H (M,QM) = HDR (M).

Here GDQM = Fp/Fp+l and the final term is equipped with
the filtration FPH (M) = im{H’ (M;FP) = H(M305)). We shall
determine the El- and Ez—terms of this spectral sequence.
To do so we have to make extensive use of the cochomology
theory of the twisted sheaf of Lie algebras Q=(QM/Q)*C:EM
with coefficients in a (L,0)-module. This theory was devel-
oped in [30] and we refer to this work for details. A
(L,0)-module is an O-module E equipped with a partial cur-

vature~free connection along L

(5.3) i E > L*Q,E .

Equivalently (L,0)-modules can be described as U(L,0)-
modules, where U(L,0) is the universal envelope of the
twisted Lie algebra L [30,§3]. If E is locally free of

finite rank, a (L,QM)—module structure on E is the same

as an Q-foliation in the frame bundle F(E).

5.4 EXAMPLE. Q is a (L,0)-module by the Lie derivative
6(8)a = i(g)da, aeQ, £eL, (i(&)a = 0). This is the Bott-
connection on the dual of the transversal bundle of L.
ApQ, P 2> 0 carry then also (L,0)-structures in an obvious
way.

For a (L,0)-module E there is a Chevalley-Eilenberg-
type differential d. on gé(g) = @Q(Aé,g) [30,4.21] where-
by Ei(g) becomes a complex. It is now easy to verify that
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Pae = TP, ,b
(5.5) Gray * gé (A o) ,
and that under this isomorphism G(d) = dL for the exterior
differential 4 in the De Rham complex QM. APQ has the (L,0)

structure described in 5.4. In fact for a local splitting
of (5.1) we obtain a local decomposition QM T A'Q @% ATL*.
As @ is integrable, the differential d decomposes into

d =d' + d" + d of bidegrees (1,0),(0,1),(2,~1) respective-
ly. d2 = 0 is equivalent to the relations d"*=0, d°= 0,
a'd" + d"d' = 0, a'd + dd' = 0 and 4"d + 44" + 4'%= 0.
(5.5) is now immediate and also G(d) = G(d") =idL. Observe
that the isomorphism (5.5) is independent of the local
splitting and hence globally defined. Similarly 4' in-
duces a globally defined morphism of sheaf complexes of
degree O

(5.6) av: 1P+ 1 (AP,

satisfying d'’a = -d"da for ue:@i(ApQ) such that d"a = O.
We finally mention that Ei(g) is a resolvent functor for
the functor t(E) = Hom (O,E) 2 Eé (L-invariant elements)
from (L,0)-modules to abelian sheaves [30,4.22] and hence
by Grothendiecks general theory [20] there are natural

equivalences
(5.7) H’ (M;Eé(g)) z Exté(é’g)(M;g,_Ei),
(5.8) H (17 (B)) = wé(g@).

(5.7) and (5.8) are analogous to the cohomology of a Lie
algebra. However, the groups H'(M,L;E) = Extﬁ(M;g,g) are
of global nature and involve also the cohomology of M (cf.
Examples 5.11-5.14).

5.9 THEOREM. The El—term of the multiplicative spectral
sequence (5.2) is given by

2 %e) = mi(mr (aPe)) = r4u,LiaPa) .
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The differential d, is induced by the homomorphism d' in
(5.6) and hence

114

(5.10) E*d(a) = mD, i, L0 =213 .

The edge maps of (5.2) are given by

Ps© _ P o oL o)
E5°7 = HY, (P(M,A%0%) » HE (M) » E

3D _ P
2 - Hd'(H (M ]_-“’. 9))

The Eg’o-terms are the cohomology groups of L-basic forms
on M, i.e. forms o annihilated by i(£), 6(&), £eL. The
fibre-terms Eg’p contain information about the De Rham
cohomology-groups along the leaves of the foliation. See
example 5.14 where Eg’p has an explicit geometric inter-
pretation.

This spectral sequence is of a very general nature as

will be seen from the discussion of a few special cases.

5.11. Let @ = O: Then L = I, and U(L,0) is the sheaf D,
of differential operators on M. In this case (5.2) col-

lapses and we obtain the isomorphism

0,4d . q > g Q. - @
E = Ext)) (M;0,0) IH(M,QM) HDR(M).

1 M
5.12. Let Q = Qﬁ: Then L = 0, the filtration FP is the
. . Phne - oP.o* .
Hodge filtration F QM = QM QM on QM and (5.2)

is the Hodge spectral sequence [22]

Psqd - ¢y oP)—s
Ey H=(M,0y) Hig (M) .

In the complex-analytic and algebraic categories this

spectral sequence need not be trivial,

5.13. Assume that locally free O-Modules E of finite type
are F acyclic on M and that 0 » EL > T (E) is a resolution
of E—, E a (L,0)-module of above type. Then the hyper-
cohomology spectral sequences for&?(M;gL(g)) collapse to

isomorphisms [20]

59°0 = P (rOLT; (@) m BP(GL(B)) g EPOnER) = 1eDO
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The spectral sequence now takes the form

EP%(n) ¥ 1%(u,APely —>uBtdan)
and

B> %(q) = Hg,Hq(M,A'QE)=>Hp+q(M),
where 4' in (5.6) induces a 9— - linear differential

ar: pteR - attlgh

in the sheaf A'QL of L - basic forms. This is in particular

the case for the ¢ - category where one has a Poincaré-
Lemma with parameters [46]. The groups Ep,q coincide in
this case with the groups Hg’q(M) and Eg O"Hp (r(mM,A" Q—))
are the cohomology groups of L-basic forms (see Reinhart
[46] and Molino [42], Vaisman [48],[49]).

5.14, Submersions. Let (M,QM)-i* (X’QX) be a morphism such
that

(5.15) 0+ T(f) » Ty > Iy » O

is exact, i.e. f is a submersion (f smooth in the algebraic
case). The tangentbundle along the fibres L = T(f) is a

Lie algebra sheaf, the annihilator of the integrable sheaf
Q = £*Q! of rank q = dim X :

X
1 . > *
0+ Q - Q QM/X L* - O,
Here QM/X denctes the relative cotangent complex of forms
aiong T(f). In this case we have aPar = px Qp Ra:7P

M M/X°®
Assume now that (quasi- ) coherent QX-
modules are I -acyclic. Following [36](in the algebraic

case} we may then compute the El-term as

(5.16) 22 %(e) = r(x, 2 @ RIr, (ay 1)),

where qu* is the hyperderived functor of R® f, = H of, =
f*ogo. The differential dl (resp. d4') is now induced by
the flat Gauss-Manin connection V in the relative De Rham

sheavesﬂC%R(M/X) = rYr (QM/X)
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- 9. p q p+l q
d, = V: @ ®9x '}CDR(M/X) > 0y @QX'}CDR(M/X),

with V2 = 0. Using the acyclicity condition on Q}I; ®'J€gR we

obtain 9X

5.17 PRCPOSITION. For a submersion f: M - X the spectral

sequence (5.10) is isomorphic to the Leray spectral se-
guence for De Rham cohomology

5% (a) = Hg(T(X’QiQQX%%R(M/X) : WP (x50, ®9qugR(M/x))=>
mbrd(m).

The acyclicity condition on X is satisfied e.g. for affine
algebraic varieties X, Stein manifolds X in the complex
analytic case (Theorem B for coherent modules) and para-
compact C -manifolds X (all Oy -modules are fine and hence
FX-acyclic).

Proposition 5.17 shows that the spectral sequence (5.10)
is a proper substitute for the Leray-spectral seqgence in
the case where the foliation is not globally given by a

submersion.

5.18. It would be interesting to know criteria for the de-
generacy of the spectral sequence E(Q) in (5.9) either at
the El— or E2—level (dr=0, r>»l or r»2). Thus in example
(5.12) the spectral sequence stops at El if M is a Kihler
manifold (see also Deligne, IHES, Publ. Math., No. 35,
1968). For two complementary foliations 2, Ql\ﬁ[ = Ql® 2,
the differentials di of degree (2,-1) are zero, i=1,2.
Together with the theory of harmonic forms on a foliated
manifold [47],[48] this might well lead to degeneracy

results.

6. Derived characteristic classes

In this section we relate the constructions of sections 3

and 5. We want to show that the construction of the char-
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acteristic homomorphism A, in section 3 determines a mul-
tiplicative map of spectral sequences:

. 2p,n-2p psn-p
(6.1) 4: E2r’ (W(é,g)q] > EPTN(R) , v 1.

To do this we need the following remarks. Let é' be a com-
plex of 0O-modules on M and C(M;A)" the canonical resolu-
tion of A’ equipped with the total differential and degree.

For an open covering W of M there are canonical chain maps

v e g o v . oy bot J" .
(6.2)  C(U3A") =L x' (&) = C(Y 5" (M, ) " <— rc(m;4)
which induce edge maps for the two spectral sequences asso-

ciated to K. As the second spectral sequence collapses for

every A' we obtain a natural homomorphism [18,Ch.II,5.5.4]:

(6.3) J= G ey HU(WAT) » HI(MAT)

L . k3 » . v L
K(&) and TC(M;A) are exact in A and so is C(U ;&) for an
admissible W . Por a filtered A' it follows that (6.2) de-
fines a mapping of spectral sequences associated to the
filtration which on the El-level is given by

Jy= QD tess BUMETAT) »EI (5P

Let now (P,wo) be an Q-foliated G-bundle with an H-

reduction s: M » P/H. The characteristic homomorphism A,

in (3.7) is defined as follows by the chain homomorphism
(6.4)  8(w) = sreky(w): Wy(gD), » EUsay)

which is filtration-preserving in the sense of (3.4). Con-

sider the diagram of filtration-preserving chain maps

Alw) ¥ PN J!
wl<§:}__1_)q—"‘-—" 0(7/[ ’QM)_-—_’ K (QM)
(6.5) 1”1 i
w(g,g)q PQ'(Miﬁﬁ)

As the vertical maps are isomorphisms on the El—level
(2.10), there exist unique homomorphisms Ar as in (6.1)

and
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(6.6) Ay H (W(é,g)q) + HT(M3Rp) = H)p ()
making the diagrams corresponding to (6.5) commutative.
The homomorphisms Ar in {(6.1) for r > 1 are called the de-

rived characteristic homomorphisms of (P,wo). As the spec-

tral sequence of W(g,g)q is defined by an even filtration,
we have dpp-1 = O for r > 0. This, together with the
property A(Fprl) g;Fpg, explains the indices in (6.1).
Thus a foliated G-bundle (P,wo) with H-structure determines
a sequence of characteristic homomorphisms {A, A } 31’ with

AP approximating A,

By (2.11), (5.9} we have for r=1:

(6.8) Ai’t: 285t (yyzy (g,h)@l(§)§S+Ei’S+t" 12+ o1,1;0%).

As Al is multiplicative, it is completely determined by

the maps Ai’o and Ao’t. These will be computed in the next

1
two sections.

7. Atiyah classes

In this section we will give an interpretation of the de-
rived characteristic classes of basis-type

(7.1) o9° 1@ - PP o< o<

It turns out that these classes depend only on the split-
ting obstruction of a certain short exact sequence of
U(L,0)-modules associated to a (~foliation W in the G-
bundle P I M. Let Jcob denote the dual transversal bundle
of the foliation 1lifted to P (1.7):

O = {¢5§21/1(g)¢ =0}, £ = o*(g), Ee L. As the foliation ©
on M is non-singular, we have 7 Q ker(co) in diagram

(1.4). Thus we may complete (1.4) in the following way
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0
1 o
G &7~ *
A(P,w ): 0 — @ T, 0 > P(g*)— 0O
. , T G _p *) —
(7.2) A(R):  O— Qp— 7m0, — P(g*) 0
Ay e B
Xl ,/’O'O l)\ /’wO”

X I’
0— i/ ~ nal/e— B(g¥) — O

|

0

In the case of example (1.12), A(P,mo) is the pull-back
by f of the Atiyah sequence A(P') of P' on X:

APy ) = LXA(P').

The local sections w of é(P,wo) are exactly the local
Eonnections in P, adapted to W in the sense of section 1:
Aw = W, Globally there is an obstruction to the existence
of an adapted connection which is represented by an element
in Hl(lVI,Q®9 P(g)).

The sequence A(P,wo) has an intrinsic additional struc-

ture: it is naturally a sequence of U(L,0)-modules.

7.3 LEMMA., The operation &+¢ = 6(§)¢= i(g)d¢, £ éli,$€w*§

and the canonical map Oy + m,0p define an U(L,0)-module

structure on W*ﬁ such that Qc:wiﬁ is a submodule and the

structure induced in @ coincides with the one defined in

(5.4).

The obstruction for a global U(L,0)-splitting of A(P,w ) is

as usual defined as a coboundary:
(7.4) +HomU(E(§*),nfﬁ)»HomU(E(g*),E(g*ﬂgExtG(M;E(é*),Q)+...

Def

(7.5) 2(B,u ) = "-23(ia

E(g*))eExté (M;P(g*),0) EHI[M,E;Q%E(é)).

To describe Z(P,wo) on the cochain level, observe that

for a connection w in P|U adapted to w, we have
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(7.6) 1(8)K(w)(0) = 0(E)ulo) ~w(6_(E)e)el(U,0), EeL, oeP(g*),

where 60 denotes the L-action induced on f(é*) by (7.3),
and K(w) € F(U,(Q-QM)2 gh f(é)) is the curvature of w. Let
Y be an admissible covering and w=(wj) a family of connec-
tions in P|w adapted to w_. We define then a cochain

0'=(z%,c) e & (1 SHICE-) B(g)))' of total degree 1 by

0. i3 Lrs sy L .

z (§)(g) = 1i(§) K(wJ.), EELIUJ., zl(i,§) = ws - wge
I‘(Uij,ﬂ ® EB(g)). Using (7.6) one shows that it is closed

under the total differential D=6idL in é and hence z.' de-

v .
fines a cohomology class in H!(C'). Using (5.7) we obtain

7.7 LEMMA. Under the canonical homomorphism (6.3%)

j+ = (?:'(U(,,_T_'(Q ® P(g))) »~ B (M,L;2 ® P(g))
= 0 = 0 =
we have j(z') = % E(P,wo)-

We define a L-basic connection in (P,wo) as a connection

satisfying

(7.8) i(E) w(p) = 0
(7.9) e(8)ule) ~w(6 (E)e) = i(E)K(w)(9) = O, VEeL ,0eP(g*).

It is then clear that L-basic connections exist if and only
if E(P,mo) = 0, that they are in a l-l-correspondence with
U-splittings of A(P,mo) if c(P,wO) = 0 and that they form

a convex set: w,n' L-basic=>w'~wel (M, (Q G% g(g))é). Fur-
thermore by (7.8),(7.9) w is L-basic if and only if it is
adapted to W in P and i(E)K(w) =0, £€l, i.e.

(7.10) K(w) el (M, (A%Q ®o _E(;g_))-L-).

There is also a local obstruction for a U(L,0)-splitting
of A(R,w ) [30;§4]. It is a section z(P,w ) €
T(M,E_X_té(_P(é*),Q)) = r(m,E (T (2 & B(g))]}). If t(P,u) = O,
there exist L-basic connections in P locally on a suffi-
ciently fine covering of M. This is notably so in the o

case (see example 5.13).
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To describe Aip" let now ¢ GI(E)ZP be an invariant
polynomial on g of degree p and consider the mapping
(7.11) ag: B (M,L;2 8 2())®F » 8°(m,L;0P0 @, p(sPg)) —

5P (m,L;4P0).
This defines in turn

(7.12) aP: 1(5)2p ~ P (,L;4P0)

by aP(e) = aQ(E(P,wO)Op). The classes aP(¢) are called the
Atiyah classes of the Q-foliated bundle (P,wo).

7.13 THEOREM. The derived characteristic classes of basis~

type coincide with the Atiyah classes of (P,mo): A?’O =2,
In particular, if ¢(P,w )=0, i.e. if there exists a L-
basic connection in P, then Ai’o =aP =0, p> o,

In general the derived characteristic classes in El(Q) are

not d,-cocycles. But as the classes I(g)q > W(g,g)q

are mapped into the cocycles of W(g,g)q, we obtain as a

consequence of 7.13 and the definiticn of Al:

7.14 COROLLARY. For ¢ éI(§)2p the Atiyah class ap(é) sat-

isfies aP(0)e z_(Ey )PP and the De Rham class k, (&) (3.12)

satisfies k,(¢)E€ FpHgg(M). Moreover the two classes cor-

respond to each other via the canonical homomorphisms

PsP _,y pPsP x P,2P p+l p..2p
Z,(E) E_ FHop (M)/F7 7 <« FrH (M),

Thus if aP(e)=0, we have k*(®)65p+lH§§(M).

The following examples show that our construction of the
classes Z(P,wo) and a = Ai’o generalizes and unifies some
krnown constructions:

7.15. Q = Q& (see 5.12): In this case the obstruction
class Z(P) ZHI(M’QI\I/I ®E(é)) coincides with the obstruc-
tion defined by Atiyah [1] for the existence of a global
holomorphic connection in a holomorphic principal bundle.
The classes ap(Q)e}ﬁ%M,Qﬁ) coincide then by construction
with the characteristic classes in Hodge cohomology de-
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fined in [1]; see also Illusie [27,I].

7.16. In the C -case (5.13) the obstruction Z(P,wo) is an
element of H!'(M,(Q @% 2(5))2] = Hy'(M,2(g)) and can be
shown to coincide with the class defined by Molino [l2].

The derived characteristic classes Ap,o = aP

1 induce by

(7.14) a homomorphism

—P. 2p PsP _ 4P (P S e 3D
a®: I(g) " » Ep°Y = Hy, (H(0,0°07)) = HE, (Hp P (D).

7.17. In the case of a submersion f: M » X and Q = f*0y
(5.14), the Atiyah classes of a Q-foliated bundle P =+ M
induce by (7.14) a homomorphism into the Ez—term of the
Leray spectral sequence of f, aP: I(é)sp >

P . P ~ .
HV(I‘(X,QX @b‘xDR(M/X))]. L(P,w ) and aP, p>0 are zero if

P = f*P' for a G-principal bundle P' » X, since the canon-
ical foliation on P (1.12) is obtained by pull-back w=f*w'
of a connection w!' in P'. In fact E(P,wo) = f*¥(P') and
E(P') = 0 by acyclicity. Connections which locally are of
this form are the CTP of Molino [42].

7.18. By Cor. 7.14 the Atiyah classes aP(¢) may be consid-
ered as a first approximation to the De Rham classes
k,(®)€ HSE(M) relative to the given foliation © on M. In
some cases they actually determine the De Rham classes (e.g.
for Kéhler manifolds, Q = Q&; compare [1]). In general the
question of determinacy of k, (%) by ap(é) is related to the
degeneracy (5.18) of the spectral sequence E(Q).

Censider now the special case where E(P,wo) = 0, i.e.
P admits a global L-basic connection. It follows from
(7.10) that A(w) in (6.4) preserves filtrations in the
strict sense: A(w)szW1 c FZPE. We therefore obtain for

q = rkg(n)

7.19 THEOREM. If Z(P,wo) = O there is a factorization of

the characteristic homomorphism A,:

81



32 KAMBER et al.

H(W(g,p_}q)-——————a-}i W(g,k_})q )
- == Mo
A .~
(7.29) \\\&* x’,ﬁo,*
HDR(M)
where q, = Eﬂ and the horizontal homomorphism is induced

by the canonlcal projection W(g,h)q - W(g,h) . Moreover
AO factorizes by (7.8),(7.9) as indicated 1n the diagram

s %
below
vzL g*
By, H(W(%,_}_l.)q) — H{T(P,A"8=) ) = Hp (M)

(-4

(7.21) I I ”

I(g) —— H(T(M,A" Q—-)}————» HLp ().
= qo

Hence in the presence of an L-basic connection on P the
homomorphism Ao,* should be considered the characteristic
homemorphism of (P,wo).

For I(g) the improvement of the Bott vanishing theorem
contained in (7.21) was observed by Molino [43] and
Pasternack [4#5]. Diagram (7.20) gives a non-trivial result
even in the case when § = Q&. Let P » M be a holomorphic
principal bundle which admits a holomorphic connection and
a holomorphic H-reduction P', As in this case q:n=dim@M,
we obtain a characteristic homomorphism

Ao,*: H‘(W(E_,g)no) ~ H'(M,8), n = H

In particular for H = G this means that the ordinary char-
acteristic homomorphism k,: I(g) +~ H'(M,C) breaks off in
degrees »n. Of course this example is interesting only if M

is not Stein.

8. Derived classes of fibre-type

We will now describe the derived classes of fibre-type:
(8.1) 49°": #'(g,h) » H(M,L;0) = Ext;(4;0,0), n0.

First we remark that these classes are always given by
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global forms on the cochain level, even if they are con-
structed with respect to a family wz(wj) of adapted con-
nections in (P,wo). Using the notation of section 3 we con-

sider the mapping (
‘e AX) .
(8.2) br (Mg, T B0y, — (U1, (D) .

Since wiw; € r(u;,.2 @ P(g)) we have b(@)j—b(cb)i =

r k
= A*s*d(w, Wy g BB s, pees wg ) = 0,0 e(A *) and
kZI ( J I} J’ J 2% [} >

hence (b(@) ) defines a global form in T(gi(g)). It now fol-

lows from 2 (0) % QM/F‘QM

=

n

that b is a chafn—map

(8.3) b: (A'g*), — T(M,I;(0)) = I(M,A°L*) .

=

Using (2.11) one proves

8.4 PROPOSITION. The derived classes of fibre-type are
given by the composition

O".
1 .

where the second homomorphism !l is the edge-map in the

b*
A H(§ag> = H.((Ag*)h) — H'(T(M,AL*)) _BC» H'(M,L;0)

hypercohomology spectral sequence (compare 5.12).

We emphasize the importance of the fibre-type classes by

giving a few examples and applications.

8.5. Q=0 (see 4.3, 5.11)% In this case P is a flat G-
bundle and the characteristic homomorphisms A, and Ay
coincide. To exhibit examples of flat bundles with non-
trivial A*=Al we return to the examples of flat G-bundles
with non-trivial (topological) characteristic homomorphism
which we constructed in [28;L4.14].Let G be a connected semi-
simple Lie group with finite center which contains no com-
pact factor, K« G a maximal compact subgroup and (U,K) the
compact symmetric pair dual to the pair (G,K). By [3]

there exist discrete uniform torsionfree subgroups T g G.

The flat G-bundle P=(X\G) x G — M_=(K\G)/T has a canoni-
r
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RS

(G/T) x G in-
K

duced by o(g,g') = o(g,gg'). Then Ba: Ma = BF > BG classi-~

g 2 Pt U/K - BK the

classifying maps of the K-bundles G/T = Ma resp. U = U/K,

cal K-reduction given by the isomorphism P

fies P and if we denote by Ea: Ma -~ B
we have

8.6 PROPOSTTION. There is a commutative diagram

~

H'(By, R) —— H'(B,, R) ¥ I(k)

% / I

E'(I,R) ¥ H (M, R) «==2 H'(U/K, R)
b*

where b,=A, 1s the homomorphism in (8.4) for L = 21; b, is
injective.

e

H' (g,k)

In fact it follows easily from our construction that b,

is injective in top-dimension and hence injective by
Poincaré-duality for H(Ma’ R). In this case the map b, can
be identified with the map constructed by Matsushima [L40]
using harmonic forms and it also coincides with Hirzebruchs
proportionality map which transforms the characteristic
classes of the K-bundle U » U/K into those of the K-bundle
G/T ~ Mu'

8.7. Deformations. Let f: M -+ X be a submersion as in
(5.14). A Lie-algebra subsheaf LeT(f) may then be conside-
red as a deformation of foliations Ex on the fibers

M_ = £ 1(x), x€X. Similarly a foliated G-bundle (with re-

X
spect to Q

*
(Iy/L) ) defines a deformation of foliated
bundles PX -+ IVIX and an H-structure on P defines a deforma-
tion of H-structures on Px’ x €X. We obtain then a commuta-

tive diagram:
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* n
Epr (M)

(8.8) can Eg’n(f*ﬂ;() = T(X,’}CBR(M/X)V)
|
By
H“(W(é,g)q) r(x, fpp (/X))

By (x) l ev
%

n
DR(MX)

Hn(w(é,h)q+m]

H

X

where q = rkg(z(f)/é), m = rKQX(QI) = dim X, and A, is a
homomorphism defined iike A, but with respect to the rela-

tive De Rham complex QM/X . A

characteristic homomorphisms A, (x) of the foliated bundles

« represents the family of

PX -+ Mx’ x e X.

The commutativity of this diagram implies

8.9. THEOREM. The classes h,(u) for u éim[H'(W(E,E)Q+m) -

H-(w(g,g)q)] are rigid, namely they are invariant in

ﬁ{bR(M/X) under parallel transport by the Gauss-Manin con-

nection V.

For a product family M = N x R - IR where V = %E’ m=1,
this means the independence of the classes A,(t)u from the
parameter t éIR. This implies in particular the result of
Heitsch in [26] on the rigidity of characteristic classes

of a foliation under one-parameter deformations.

In the case L = T(f), @ = f*0, the above situation defi-
nes a deformation of flat bundles PX -+ Mx’ x € X. As we have
A, = Al

derived characteristic homomorphisms A

for flat bundles (8.5), we may compare Z* with the
1 and A2 for  on M.
Using (5.17) we obtain a commutative diagram:
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A
By " (W(g,h) ) == ES* (@)

r(x, #2 0vx)7)

(8.10) (\

o,n

Eo*" (W(g,h) ) TH (g,h) = E,(Q) = T(X, ¥ (/X))
2 g8 g:8) T % DR
Bo=ty
From (2.11),(2.12) it follows that Ey2 ¥ A*B(2 @1(n)"/
I(g)+ 'I(Q)CES" = H'(g,h), where P28 = [x¢B/degx>2s).

This gives

8.11. THEOREM. For a deformation of flat bundles (L=T(f))

we have A, = 4, on Ei’ [W(g,g)m) £ H'(g,h). Moreover on
EZ,‘ z A'%(zwbl(g)/l(§)+' I(h)<H'(g,h) the homomorphism

A, is rigid, i.e. maps into the sections of ¥ (M/X) which

are parallel under the Gauss-Manin connection V.

It follows in particular that the classes A,(x;) €
H;;-l(M), i>1, in Theorem 4.5 are rigid under deformation

of the flat structure on M.
We finally want to point out that similar results hold

for the rigidity of derived characteristic classes in the

general case (LgT(f)).
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