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FLAT BUNDLES AND CHARACTERISTIC CLASSES 
OF GROUP-REPRESENTATIONS. 

By F. KAMBER and PH. TONDEuR.* 
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0. Introduction. Let e be a principal G-bundle over a space X. e is 
flat if it is induced from the universal covering bundle of X by a homomor- 
phism 7r1X- G. In the differentiable case this is equivalent to the existence 
of a connection with curvature zero [15, Lemma 1]. In (2. 5), various 
characterizations of this notion are given. It is shown in particular (6. 1), 
that an SO(2)-bundle is flat if and only if its rational Euler class vanishes. 
Section 1 is devoted to the definition of a certain homotopy class of H-maps 
OX-> G (1. 1), which in the case of a differentiable bundle reduces to the 
homotopy class of the holonomy map defined by an arbitrary connection on e. 
For the universal G-bundle, this class contains a homotopy equivalence 
2BG-> G (1. 4). In Section 3, after some generalities, a characterization of 

flat U(n)-bundles over an X with finite 7r1X is given (3. 2) by a theorem of 
Brauer on induced representations [6]. 

From (2. 5, iii) it is clear that the characteristic cohomology-homomor- 
phism of a flat GL(n)-bundle e factorizes through H*(7r,X). Thus one 
obtains necessary conditions for the characteristic classes of e. E. g. for finite 
7r,X the rational characteristic classes of e are trivial, and for 7r1X finite of 
odd order (and GL (n) = GL (n, R)) the Stiefel-Whitney classes of e are 
trivial. But many examples of flat bundles with non-trivial characteristic 
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858 F. KAMBER AND PH. TONDEUR. 

classes are known, of which we list a few. The canonical R*-bundle on real 
projective space P"R is flat, and w, C H1' (PJR, Z2) is the generator of 
H* (P12R, Z2). In [10, p. 254] there is the example of the SO (2) -bundle on 
P2R induced from the uni-versal covering bundle by the homomorphism 
Z->SO (2) sending the generator into the antipodal map. The Euler class 
is the generator of H*(P2R,Z) and hence non-zero. The example of [15, 
p. 223, 1. 5] shows the existence of a flat SO (2) -bundle on S5/Z, with non- 
vanishing first Pontrjagin class. The main result of [15] proves the existence 
of flat GL+(2,1R)-bundles with non-vanishing Euler class. In [2] there is 
given a five-dimensional flat Riemannian manifold with w2 0 O. These 
examples suggest the study of characteristic classes of flat bundles. 

In (3. 2), the notion of a a-flat G-bundle with respect to a homomorphism 
cr: - G is introduced, where 4b is an arbitrary discrete group. ar-flat bundles 
are fiat (3. 5) with a holonomy map 7r,X-> G factorizing through a. The 
introduction of of serves as a computational device. 

Next we turn to a detailed study of the characteristic classes of a-flat 
bundles for G = 0(n), SO(n), U(n) and 4) finite abelian. After recalling 
in Section 4 the relevant definitions and facts, in Section 5 the characteristic 
classes ofa E RG]G(4) in the sense of [1] are computed (5. 11) as polynomials 
in 1- and 2-dimensional classes of H* (I), Z) and H* (4), Z2). The main result 
is (5. 13). For G-bundles which are classified by their characteristic classes, 
it gives necessary and sufficient conditions for the a-flatness in terms of these 
classes. This is illustrated by (5. 17) to (5. 20). An explicitation for the case 

=Zp is given in (5.21). 
The last section 6 is concerned with the rational characteristic classes of 

flat bundles. As in all the paper, no differentiability assumptions are made. 
The triviality of the rational Chern classes for flat U (n) -bundles is proved 
by topological methods under some restrictions on the fundamental group. 

Finally we would like to thank J. Milnor and P. E. Thomas for helpful 
conversations.' 

1. The holonomy map of a principal bundle. For general properties 
of principal bundles we refer to [3] [5] [13] and [22]. If t is a differentiable 
principal bundle over a connected space X with group G, a connection on d 
defines a holonomy map h: OX-> G. The homotopy class of this map is an 
invariant of e, as shown e.g. in [9]. In this section, we construct a natural 
transformation h (X, G): P (X, G) -> [uX, G] such that in the case of a 

IAdded in proof: The results of the paper were announced in the Bulletin of the 
AMS, vol. 72 (1966), pp. 846-849. 
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FLAT BUNDLES AND CHARACTERISTIC CLASSES. 859 

differentiable bundle e the class h (X, G) (4) reduces to the homotopy class of 
the holonomy map.2 

Let X be a space with basepoint *, EX the space of paths beginning at ', 
E: EX -> X the endpoint map and OXA the loop space. &2X is an H-space. 
For a group G, EG is a group by functoriality. In the base space X of a 
G-bundle 4 we choose a fixed basepoint *. For any choice of a basepoint in 
the total space T mapped into * under p: T -> A, we obtain a principal EG- 
bundle E(e) with projection E(p): ET->AEX. A section s: EXA-> ET of 
E (p) is called a path-lifting in 4. We think of s heuristically as a connection 
in 4. s defines a map h: QA -> G as follows. If (o E OX, the endpoint 
(o s) (w) of the lifted path lies over E C X and hence there is a unique 
h (w) C G with *. h (w) = (e o s) (to). Here *. h (w) denotes the right action 
of h (w) on the chosen basepoint in T (over the fixed basepoint in A). It is 
clear that the maps h: Q2 -> G defined for different choices of * in T differ 
by an inner automorphism of G. 

THEOREM 1. 1. (i) h: QX-> G is a map of H-spaces, that is: h carries 
products into products, up to homotopy. 

(ii) The equivalence class (under inner automorphisms of G) of the 
homotopy class of h is an invariant of the bundle 4. It is denoted h(4) and 
called the holonomy map of 4. 

(iii) h(4) is natural in X and G. More precisely, if P((X, G) denotes 
the equivalence classes of G-bundles on X, [OX, G] w the equivalence classes 
(under inner automorphisms of G) of homotopy classes of H-maps OX--> G, 
then h (XA G) (4) = h (4) for C P (X:, G) defines a map h (X, G): P (X, G) 
-> [OX, G] s which is natural in X and G. 

Proof. (i) is proved in Lemma 1. 2. To prove (ii) it is sufficient to 
show that for a choice of * C T over the basepoint of X the homotopy class 
of h is an invariant of the bundle 4. We first observe that any two path 
liftings s5, sl: ET-> ET are homotopic as path liftings, i.e. there is a family 
st, t C I of path liftings beginning with sO and ending with s. 

Let p C EA. By the principality of E (4) there is a unique y (E) C EG 
with sl(Lu) =so() y(,u). Hence sO, si define y: EX->EG. Now let 
1: EG X I-> EG be the contraction of EG along paths, i. e. (4ty) (s) = y(ts) 
for yC EG and s, t E I. Note that 'y- e E G, D,y = y. Hence 

2 Added in proof: The holonomy-map of a fiber space has also been considered by 
E. ]EL Brown, " Twisted tensor products, I," Annals of Mathematics, vol. 69 (1959), pp. 
223-246 and J. D. Stasheff, " Parallel transport in fiber spaces," to appear. 
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860 F. KAMBER AND PH. TONDEUIt. 

St (p) ==sO (/) * (1ty) (ii) 

for jA E EX defines a family st: EX-> ET of path liftings as required. 
Now each path lifting st defines as before a map ht: 2X--> G, charac- 

terized by * ht (&) == (st () ) for o E O2X. We claim that 

ht (o)ho ()y () (t) for o E OX 
Namely 

* ht (wt) - s(St () ) =e (so (w) *((Py) (w)) so S(w) (1 *y( (t) 

and 
**ho() so s(w) (1) *y y() (O) so s(w) (1), 

as y(t) (O)-= e E G. This equation shows that ho, h : Q -> G are homotopic 
and hence (ii) is proved. (iii) follows from the construction of h. We observe 
that strictly speaking the functor [f?X, G] s has to be defined with respect 
to a basepoint * E X and basepoint preserving maps X-> Y. It can be shown 
however that the sets [OX, G] s (equivalence classes-under inner automor- 
phisms of G-of homotopy classes of H-maps OX-* G) for different choices 
of * E X are canonically isomorphic and that arbitrary maps X--> Y induce 
well defined maps [O2Y, G] s -> [QX, G] . 1- 

LEMMA 1.2. Let s be a path lifting in t and h: 2X-> G the corres- 
ponding map. Then the following diagram is homotopy-commutative 

h X h 
O:X x OX G X G 

h w 

Proof. Let IV0 denote the composition of ,, E EX with c E O2X (first o, 
then 4). Then both s (uVo) and s (,u) * h (0) Vs (w) project under E (p) on 
Vu V EX. By the principality of E(e) there is a unique 7: EX X sX.-EG 
with s(tVo) = {s(@) h(o) Vs(w)} l(~,o). From this follows that for 

h (QO2VW1) =h(2) h(W)r>(W2, WI) (1). 

With the definition 

kt (W2 VW) ==h(W2) h (l)7q(2,W2 ) (t) 

we get ko(o2VOl)- h(fe)h(w1), kil(W2V W) = h(N2Vwi) and the lemma is 
proved. I 
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FLAT BUNDLES AND CHARACTERISTIC CLASSES. 861 

We adopt the point of view of Dold [10] and restrict our attention to 
numerable G-bundles (trivial over a numerable covering of the base). Then 
by [10], [16] for any topological group G there exist a contractible universal 
bundle VG on the classifying space BG of G and the map [X, BG] -> P (X, G) 
sending a (not necessarily basepoint preserving) homotopy class f E [X,BG] 
into the bundle f*G is bijective without any restriction on X. We will denote 
the classifying map of t with the same letter. Put hG = h (n7G). Then from 
(1. 1, iii) folows 

COROLLARY 1.3. For a bundle 6: X->BG 

h(6) --hGoO?Q(e). 

It is known that QBG and G are homotopy equivalent. We prove now 

PROPOSITION 1.4. The H-map ho: ?ZBG-> G is a homotopy equivalence. 

Proof. Let s be a path lifting in the universal bundle 'lG, PG: TG -> BG, 
i. e. s: EBG ->ETG with E (PG) o s = 1. Consider the map kc o s: EGB 
- TG. The diagram 

hG 
Q2BG - G 

EBG - > TG 
E\ PG 

BG 

is commutative (if hG is represented by the map induced from s, otherwise 
homotopy commutative, which is all we need). This says that kc is hG-equi- 
variant and certainly a map of the two fiber spaces. 

Now EBG and TG are contractible. By comparing the homotopy se- 
quences of these two fibrations we obtain for any space X a bijection 

(hG) [X, OB G] I> [V, G] . 

Hence hG: OGB--> G is a homotopy equivalence. I 

Remark 1. 5. That the map h (X, G) of (1. 1, iii) need not be injective 
is seen as follows. Let yoy, y: G -> H be homomorphisms of the groups G, H 
and B (yo), B (.y/): BG -- BH the induced maps of classifying spaces. Then 
by (1.3) h(BG,H) (B(y)) -hHo 2B(y,) for i= 1,2. Consider the homo- 
topy commutative diagram 
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862 F. KAMBER AND PH. TONDEUR. 

QB (Qyi) 
QBG - >> QBH 

(1.6) hG { hH 

G - - H 

where hG, hH are equivalences by (1.4). Assume 7y1L 2. Then ?B( y() 
fQB0(yi) and hence h(BG,H) has the same value on B(-y7), B(y2) . But 

in the example in [10], p. 254, this situation is realised and moreover 
B (7y) -& B (72) (7y and 72 are not homotopic as homomorphisms, but only as 
maps). Hence h (BG, H) is not injective in this example. 

Remark 1. 7. Proposition 1. 4 also shows immediately that a homomor- 
phism y: G -- H inducing a homotopy equivalence B (y): BG -> BH must 
be an (ordinary) homotopy equivalence ([10], one half of Theorem 9. 1). 
This follows from (1. 6), as hG, hH and fB (y) are homotopy equivalences. 

2. Flat bundles. We turn now to a description of flat bundles. Let 
Gd be the underlying discrete group of a topological group G, t: Gd -> G the 
canonical map. Taking induced bundles, t defines a natural map t*: P (X, Gd) 

-> P (X, G) from discrete G-bundles to G-bundles. t also induces a map 
B (t): BGd e BG and the diagram 

l* 

P(X, Gd) - P(X, G) 

B(t){ 
[X, B Gd] -->[X, BG] 

is commutative for any space X (and natural in X and G). 

LEMMA 2. 1. BGd is an Eilenb erg MacLane space K(Gd, 1). 

Proof. BGd is the base of the universal Gd-bundle OGda with pGd TGd 
-> BGd, where TGd is contractible [10]. The homotopy sequence of this 
fibration shows 7r4(BGd)- 0 for n> 1 and 7rl(BGd) 7ro(GGd) - Gd, which 
proves the lemma. I 

PROPOSITION 2.2. There is a natural map 

7rt: [X,B Gd] -> Hom(7r,X, Gd) i- H'(7r,X, Gd) 

where the right hand side denotes the set of equivalence classes (under inner 
automorphisms of G) of homomorphisms 7r1X -- Gd. 

Proof. This follows from Lemma 2. 1, as r,BGd -Gd. Note that 
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FLAT BUNDLES AND CHARACTERISTIC CLASSES. 863 

[X, BGd] are ordinary homotopy classes (not necessarily basepoint preserving). 
See also the comment at the end of the proof of 1. 1. I 

PROPOSITION 2. 3. The canonical map q: OX - 7r1X induces a bijection 
q*: Horn (1rX, Gd) -e [OX, Gd]s . 

Proof. As Gd is discrete, any homotopy class of maps QX-- Gd contains 
a single element. Hence [OX, Gd] &is the set of equivalence classes (under 
inner automorphisms of Gd) of continuous maps S2X-- Gd. Now a continuous 
map Q2X-- Gd is constant on any homotopy class of loops. But 7r1X -7roOX, 
from which the bijectivity of q* follows. I 

With these notations we can state 

THEOREM 2.4. The following diagram is commutative (and natural in 
X and G) 

h (X, G) 
P (XG) -> [f2 G] S 

[XBG] 

h(X, Gd) 
P(X, Gd) n[X, Gd] 

/ 7r:{q* 
[X, B Gd] >Homt (OrX, Gd) 

All vertical maps are bijective. 

Proof. The only fact which remains to prove is the commutativity of 
the front square, which follows from a simple argument. I 

Observe that the map s = h (X, Gd)-1 o q* is the map of [22, thm. 13. 91. 
According to this theorem, s is bijective (and hence also h (X, Gd) and X,) 
if X is arewise connected, arc-wise locally connected, and semi locally 1- 
connected. From now on we assume that X satisfies these conditions. Then 
X has a universal covering space -> X, which is a principal 7r,X-bundle, 
the universal covering bundle g. Its classifying map is also denoted by 
C: X<-- B71X. Any homomorphism y: I1X -- G induces a G-bundle yg 
over X with classifying map B(y) og. Observe that the "identification" 
l*: lom (7rX, Gd) --? Hom (rL, G) is bijective. Then it is clear that the 
map sending y into -y*C is just the bijection s. 
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864 F. KAMBER AND PH. TONDEUR. 

COROLLARY 2. 5. For $ E P (X, G) the following conditions are equivalent. 

(i) ?1t*-q for some v E P(X:, Gd). 

(ii) 3Bq: X -+ BGd, such that the following diagram is homotopy com- 
mutative 

B(l) 
BGd > BG 

x 
(iii) 3 a homomorphism y: 7r,X-> G, such that the following diagram 

is homotopy commutative 

B(y) 
B7r-X -> BG 

x 
(iv) $= -y* for some homomorphism y: 7r1X -e G. 
(v) h (e): OX -* G factorizes through q: OX ->7r,X, up to homotopy. 

Proof. (ii) > (iii). Define y-=7r,(-). Then B(y)t 7? by the men- 
tioned interpretation of the map s. Hence with y = toy we have B (y)g 
B(t)>=$. The rest of (2.5) follows from (2.4). 1 

Definition 2. 6. $ C P(X, G) is called flat if one (and hence any) of the 
conditions of (2. 5) is satisfied. 

Remarkc 2. 7'. If e is a differentiable G-bundle, Lemma 1 of [15] shows 
that $ is flat if and only if it possesses a connection with curvature zero. 

The main point of (2. 5) is the following. We want to decide if a 
given e C P(X, G) is flat. According to (iii) we have to fill in the diagram 
with a map B (y) which is induced by a homomorphism y: 7r1X - G. This 
problem has only been solved in very special cases [15] (The well-known 
description of complete flat Riemannian or affine manifolds can also be con- 
sidered as an answer in these cases). Much simpler is (ii), where we have 
to fill in the diagram with a map -q, i. e. one has to solve a lifting problem for 
the map $. A new difficulty arises from the generality of BGd. We introduce 
at the end of section 3 an intermediate discrete group '1, which in the 
applications will be finite. We emphasize that the introduction of b serves 
as a computational device. 

As an immediate consequence of the definition we obtain 

PROPOSITION 2.8. Let $ C P (X, G) be fiat and 7r: X X the universal 
covering of X. The lifted bundle 7r*6 on X is trivial. 
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FLAT BUNDLES AND CHARACTERISTIC CLASSES. 865 

Proof. The classifying map to07r: X-> BG of 7r*e factorizes through 
the contractible total space of the universal 7r,X-bundle on B7r1X and is 
hence - O. I 

3. The transformation a. Let G be the infinite orthogonal or unitary 
group, KX the ring of G-vectorbundles on X and RG(b) the ring of G- 
representations of a finite group b. E CRG(4) induces a map a*: P(X, @) 
-> P (X, G) sending t to a*e. Its associated G-vectorbundle is still denoted 
a*4 and ac(t) (ar) ==- r* defines a ringhomomorphism ac(e): RGQ(I) -*KX. 
For all this see [1]. Let [RG(c), KX] be the ringhomomorphisms RG(ib) 
- KX. Then 

oa: P (X, (D) -> [R G (!), KX] 

is natural in X and (. In the sequel we shall use this and the following fact 
without comment. 

Let X be a space with finite 7r,X and f: X' -> X the finite covering 
corresponding to a subgroup t: 4' C b. The direct image frq of a vectorbundle 
q on X' is defined by (f ), = E, y, where y C f1 (x). Inducing represen- 
tations by t gives a module homomorphism t!: RG(@V) -> RG(Qi). With the uni- 
versal coverings t, r: X X and g',7r': X e X' the following diagram is 
commutative 

c~(c') 
RGQ(') > KX' 

(3 1 ) q ! f! 

RG( () - >KX. 

A vectorbundle is called flat, if its associated principal bundle is flat. A 
theorem of Brauer [6] on characters of finite groups gives the following 
description of flat U (n) -vectorbundles. 

PROPOSITION 3.2. Let X be a CW-complex with 7r1X finite, and e a 
U (n) -vectorbundle on X. 4 is flat if and only if the following holds. There 
exists a finite number of coverings fi: Xi->X and C-line bundles ?qi on X 
(i=1,* * *,m) such that 

(i) cl(,q)Q=O (c1(fql)Q=rational Chern class). 
m 

(ii) I fi mi, j=1 
Proof. We first observe that by (6. 3) condition (i) is equivalent to the 

existence of a unique family of 1-dimensionl C-representations pi E RU(iriXi) 
inducing the w from the coverings e, 7ri: I -* Xi; i ,o*g. 
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866 F. KAMBER AND PH. TONDEUR. 

To prove sufficiency, consider j- 7r (fl): 7r1Xj -r,X and define 

m 
p = j*,pi E RU(7riX) 

i=1 

We claim that 4 is induced from the universal covering bundle C by p and 
hence flat. Namely 

n m 
pag- o(g)) -E a&(g) jh) i - (Ji0)s)*g 

J=1 j* =1 

m m 
E fi I (pi*0X - E fi I ?-qi . 
j=1 * j=1 

Conversely assume 4 = p* for some p E RU(7r,X). By the theorem of 
Brauer [6] there exists a finite number of subgroups j: - 1-* rjX and 1-dimen- 

m 
sional C-representations pi E RU (Q) (i = * , m) with p = jIp. Let 

j=1 

fJ: X ->X be the coverings with 7r1Xi - ti and put gi for the covering 
7r: X->X. For q pj* we have c1()Q =O by (6.1). (ii) follows from 

mn mn m 

E fim- =z fil (pi*e) = z (j p0)*g p* = eand the proposition is proved. I 
j=1 * j=1 * i=1 

For the rest of this section, G is again an arbitrary topological group and 
'1 a discrete group. Let T: b -> G be a homomorphism. If we replace t by a 
and Gd by 4) in Theorem 2.4, it still holds. Let B (a): BD -> BG be the 
induced map of classifying spaces. 

Definition 3.3. 4 C P (X, G) is called C-fiat if 3 -: X .-> B, such that 
the following diagram is homotopy commutative 

B(a) 
(3.4) B > 

x 
A map -q with this property is called a C-structure on 4. 4 is T-flat if there 
exists a a-structure on 4. 

THEOREM 3. 5. 4 C P (X, G) is g-flat if and only if 3 a homomorphism 
y': 7r1X- 4), such that 4 is induced from the universal covering bundle g 
of X by .y =v ao y': 4 y*. In particular, C-fiat implies fiat. 

Proof. As Corollary (2. 5). 1 
Comments on Definition 3. 3 (see also end of Section 2). For b Gd 

and a l=: Gd-> G a 4EP(X,G) is flat if and only if it is t-flat, i.e. a 
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FLAT BUNDLES AND CHARACTERISTIC CLASSES. 867 

discrete G-bundle. For a flat e a -y: ir1X -- G with e =- y can be thought 
of as the holonomy map and y(-r1X) C G as the holonomy group of e. Then 
for injective a- a bundle e is a-flat if and only if it is flat with holonomy group 
contained in b. 

4. Characteristic classes of group representations. In this section 
we list some facts on characteristic classes of G-bundles, G = U (n), 0(n), 
SO (n), which will be needed in Sections 5 and 6. We recall the definition 
of -characteristic classes of group-representations [1, Appendix] and give some 
interpretations of low-dimensional classes. Our general references here are 
[1], [3], [4], [5], [13] and [17]. Let X be a paracompact, connected, locally 
connected, semi-locally contractible space, e. g. a CW-complex. If G is a 
topological group, we denote by Gx (or G if no confusion is possible) the 
group-valued sheaf of germs of continuous functions X -* G. Then we have 
the following natural isomorphisms: 

(4.1) H1(X, G) ~P(X, G) [X,BG], 

where H1 (X, U) is the Cech cohomology set of X with coefficients in the (non- 
abelian) sheaf G. 

G=U(n), n> 0: By [3] one has H*(BU(n), Z) -Z[c1,, *c, 
degc*==2i and the inclusion t: T(n) =U(1)n C U(n) induces a map 

B (t) *: H* (BU (n), Z) EH* (BT(n), Z) _ Z[x,, X -** , deg x == 2 

given by 

(4. 2) B (C) *c. e (xi, * * , xn), i-th elementary symmetric function. 

For a U(n)-bundle e: X->BU(n), the Chern-classes are given by c*(d) -- Mi. 
G = O (n): By [4] one has H* (BO (n), Z2)s-Z2w, * ** Wn], deg w 

-=i and the inclusion ,u: Q(n) -Z2' C 0(n) sends wi to 

B (/j) * wi u- (yi., * , y,,) E HBe ( Q (n), Z,) )-Z2 [Yl, * , YJ], deg yi --1. 

For an 0 (n) -bundle 6: X-->BO (n) the Stiefel-Whitney classes are given by 
wi (d) =-- e*. 

Recall the formula [4], [25] 

(4.4) 02Wj-Sqlw X , j odd 
w j+1+w1lwu, j even 

where /2 is the Z2-Bockstein-operation. 
In the case G = SO (n), one just has to put w, = 0 and all formulas 

remain valid. 
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868 F. KAMBER AND PH. TONDEUR. 

The universal Pontrjagin classes pi are defined by the inclusion 

K: 0(n) C U(n): j =B (K)*Cj, Pi (-1) p2i, i =1 1 ,kc [n/2]. 

Then one has [5]: 

H*(BO (n), Z) Z[p, Ppk] ED T2 

T2 im(p2 T 72) im Sql, 2 * T2 = , 

where pp: HB (X, Z) -> H* (X, Z,), p ! 0, means reduction mod p (p 0: 
4O = Q). Moreover the classes p2j+i are redundant, since we have 

(4.6) P2i+1 = (S2W2i)2 4(82w1)pjE T2. 

In Section 5 we will need some reduction formulae for Pontrjagin classes 
which we list here without comment. They can be found in [5]. The 

r K 
inclusions T(kc) C U(kc) C 0(n) C U(n), kc = [n/2], induce cohomology 
maps given by 

(4.7) B (r) ep z(- cjcl 
and therefore 

13 (r o t) *pi z( I ia,f (Xip 
. . 

*, Xk) lal (Xl, * ',Xk) 
(4. 8) J+1=2i 

ort (Xj 2p 
. . . 

p Xk2 ) E H* (BT (7c) Z) --Z [xi, ,p Xk], 

(4.9) B(rot)*p2t+ -0 

The inclusion Q (n) C 0(n) induces a cohomology map given by 

(4.10) B (,) * 'j ==(32y1, **, 2Y) E H* (Q (n), Z), 

(S2 = integral Bockstein-operation) and therefore 

(4.11) B (jt)* p2'j j=o,(y,2, * . . n yn2) oaj (yl1 * * *n )2 <B (<) *Wj2 

which implies 

(4.12) P2pj (Wj)2 

For G = SO (2k + 1), (4. 5) remains valid, the universal Euler-class 
being given by X2k+1 = 82W2k. 

For G =SO(27c) one has 

(4.13) H*(BSO(27c),Z) -Z[pi.. *Pk-1,X2k] ? T2fp 

X2 Pk, 2 * T2' 0 
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FLAT BUNDLES AND CHARACTERISTIC CLASSBS. 869 

and 

(4.14) p2Xc = W2k, B(r o t) *X2k-I H . 
4=1 

The formulae (4. 6) .- (4. 12) remain true after obvious modifications (w, = 0, 
n 

Sy O ). 
i=1 

Let P be a finite group, '% the universal P-bundle with base space 
B(P5=K(P,1). The transformation a of Section 3 allows us to define the 
Chern-classes C (cr) of a representation a E RU (1) by [1, Appendix], [12] 

(4.15) ci (r) ==ct (a, (X) (a) =-c,(i) E 2HI ((, Z) . 

Stiefel-Whitney classes wi (or), Pontrjagin classes pi (o), E R10 ('1) and 
the Euler-class x (a), CC ESO (D) are similarly defined. The Pontrjagin 
classes are again determined by the Chern-classes: 

pi (1f) pi (a() ('9) pi (0-*q4) = IC21 (K*,U*-q) - C2i (K* (,r) ) 

for cr E R0 (D), k7: R0 () -> RU(P) induced by K: 0 -> U. 
Since a() is a natural ring-homomorphism, the characteristic classes of 

representations inherit the formal properties of the characteristic classes of 
bundles. 

Characteristic classes can also be defined for non-finite discrete groups 
(. R (() has then to be interpreted as the Grothendieck-ring finite-dimen- 
sional representations of (D. 

The low dimensional characteristic classes are described by the following 
propositions. 

PROPOSITION 4.16. 

det 
(i) Let RU(() >Hom(Q,U(1)) be the determinant-homomor- 

phism. Then 

cl (a) = c1 (det ca) f EC RU (Q). 

det 
(ii) Let RO() -l> om(Q(, 0(1) ==Z2) be the determinant-homo- 

morphism. Then 

wl (or) = w, (det or), a E RO ((D). 

Proof. (i) The result is known for U(n)-bundles. Exterior powers XI 
make KU and RU into A-rings and (c (-) becomes a X-map [1, ? 12]. But 
for dimc = n we have Xno = det u and therefore 
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870 F. KAMBER AND PH. TONDEUR. 

cl (det cr) el (ca (r() Xtu)-el (Ana a) 
c l (det a: e7off l (a:(7s,r c, (a), qed. 

(ii) is proved by the same argument. I 

The following proposition gives a representation of the fundamental 
characteristic class (primary obstruction) of an arbitrary G-bundle as a 
coboundary map in a (non-abelian) cohomology sequence (cf. [13, 4. 3. 1] for 
G - C*). Assume that G is path-connected and that BG has a CW-structure 
Let 4 a G-bundle on X, T : Hl (G, -xiG) -_ H2 (X, nriG) the transgression in 4 
and t E H1 ( G, r, G)-I Hom (.ri G, r, G) the fundamental class of G with respect 
to the natural orientation of S1 C C. 

PROPOSITION 4.17. (i) Consider the exact sequence of group-valued 
sheaves on X 

O < rG -- C;-- G -- 1 

defined by the universal covering of G. Since 7-1G is abelian, we have a (non- 
abelian) exact sequence in Cech-cohomology 

H < M (X. 7r, G) -> H1 ' )< (X(X G) > H2 (X, 7r,G).X 

Then 8(4) -'r (t) for 4 C H' (X, G). 

(ii) Taking X=BD (D discrete), we have a (non-abelian) group- 

theoretic exact cohomology sequence 

*,H1 (4,i 7riG) -> H'1, Gd) <- > (', Ga) > H2 ((,ir,G) 

and again 

St(u) 7-on (t) -(Bu) *7'G (t) 

where VG resp. vj, are universal G- resp. b-bundles, and 

aE H'Q(,Ga) -Hom((,Ga). 

(iii) Let H' ((, Ga); the fundamental group r = 7r (EX G) of 
the total space E1 X. G of the bundle i is an extension of the form 

0wscsnrlGH2,1Grisql '(D ). 

whose class in H2((DP 7r,G) is equal to W'(a). 
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Remark 4.18. The cohomology sequences in (i), (ii) are exact in the 
category of sets with basepoint (see e. g. [21*] for the group-theoretic -case). 

COROLLARY 4.19. 4CEH'(X, G) can be lifted to a G-bundle if and only 
if - (C) O=0. Moreover, if X is a CW-complex, -- (C)-o (e) where o (d) 
is the primary obstruction of 4 [22, p. 189] and therefore: E H 1 (X, G) has 
a G-structure if and only if o (d) 0. 

Proof. (i) By naturality of the transgression and 8, it is sufficient to 
prove the statement for the universal bundle fG C H' (BG, G). We reduce the 
problem further to bundles on S2 by the following trick. Orient S2- Sl 

coherently with the canonical orientation of 51 and let [f] C 1r2BG. Consider 
the diagram, in which all isomorphisms are either canonical or given by the 
orientations: 

[BG, BG] -H (BG, G) > 2(BG, 7riG) H2(BG, 7riG) - Hom(ir2BG, 7r1G) 
id %'O%+ a 

(4.20) f*J1 {f* {f* {f* {f* 

[S2, BG] tH1(52, G) H 2(S2, 7riG) H2(S82, r1G) - Hom(7r2S2, iriG) 

By naturality of 8 and the isomorphisms involved, the diagram is commutative 
and the f* at the right is essentially an evaluation map. Therefore it is 
sufficient to show that f* (- 7rG (t)) - f* ( (71G) ) for all [f] C 7r2BG or equiv- 
alently by (4. 20) : -Tf*77,,(t) = 8 (f *,G). But -,rf*7G(t) C Hom( 2S2, rG) 
-7r1G is given by y([f]) CEr1G where y: 7r2BG_7r,G is the canonical iso- 
morphism and hence we are done if we show: The composition of the maps 
in the bottom line of (4. 20) is equal to y. This follows by an argument 
similar to that used in [13, 4. 3. 1] if one observes that the bundle f*7qG on 
S 2 _51, [f] C [S2, BG] is obtained by clutching the trivial bundles on the 
2 hemispheres of S2 along the common equator S' by a map S' -> G repre- 
senting the class yy([f]) C7riG. 

(ii) follows from (i) and the commutative diagram 

a' 
Hw ' Gd4) > ()2 (oC'7r,GG) 

HI (B') CT ) - H2 (B(P, 7r,G) 

where as (-q,,) (cr) = a*-q4, or E H (4), Gd) . 
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(iii) The extension corresponding to 8 (cr) is given by a pull-back 
operation 

0 -- 7r1Ge G G-- 1 

(4.21) 

8'(cr) : 0 -->rr - G 1 
q 

where r= {(s, E) E 1 X /as = pg} and j, q are the natural projections. 
Define a free r-action on E, X G by (e, g') (8,g) _ (e8, f-l *'), (s, g) E r. The 
7r1G-action on E. X G is then given by (e, g')'1 - (e, a- i'), a E 7r1G C G and 
thus E. X G/7rG -E, X G. The quotient group @ acts now on E, X G 
by (e,g)8- (e8,us-' g), sC Ei and therefore E, X G/I=E. X. G. Since 
E, X G is 1-connected, we have a universal covering 

7rIG (D 
E.,.X a >E.,.XG > E4,X4,G 

with decktransformation groups given by the bottom line of (4. 21) and the 
result follows by a standard argument. I 

Examples. 

4. 22. G U (n) : 8( )c,( E H2 (X, Z), E H' H(X, U (n) ) 
' f) c,, Er H2 (D,Z), E H M1 (D, U (n) d), 

[13, 4.3. 1]. 

4. 23. G GL+ (2 R) : 8( x (t) E H2 (X, Z),e E HI (X, GL+ (2 R)) 
8"(T X (a) E H2 (DOZ) .o E H1-(-D, GL+ (2, R)d) 

4.24. G SO(n),n>2: 8() w2(t) E J2(X,Z2),ECH1(X,SO(n)), 

8'(U) W2 (a) c H2 (4D Z2) C E HI (Dn SO (n) d) 

This includes the result of [5, p. 350]: w2()- 0 if and only if e can be 
lifted to a SO(n) = Spin (n) -bundle. 

4.25. By (4.17, ii) and (4.20) one can compute [1, p. 62] the Chern class 
c1 of the irreducible representations 

pX: Zn U(1) p pl() - C exp(A/n)Z , 0)[ /. . . n-1 
c (px) - A * ub E H* (Z,n Z) -- Z[u4] /(n * u4), deg u 2. 
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4. 26. Milnor's characterisation of flat GL+ (2, R) -bundles on compact 
oriented 2-manifolds Mg of genus g ? 1 [15]: Proposition 4.17 allows to 
give a formal description of Milnor's construction as follows: The fundamental 
group ir ,r,Mg is generated by elements c, *cg with the single relation 

g 
b(ccI. c **2.) 1(X2F1(X2ca2c-1-1(21=- 1. Since Mg is covered by the open 

l=1 

2-disc (Uniformisation Theorem), it follows that Mg = Br and that H*(Mg, A) 
-1H* (r, A), for any 7r-module A of coefficients. Thus 7r is of cohomological 
dimensioin 2 and moreover H' (7r, Z) Z2g H2 (7r, Z) _ Z. 

The diagram 

a' 
H (7r,, GL+ (2, R) d) - > H2 (7r,Z) Z 

Hi (Mgn G L+ (2,R)) > H(Mga,Z) 

now shows that CE HI (Mg, GL+ (2, R) ) is flat if and only if X() C im ('). 
In fact, the proofs on pp. 217-220 of [15] consist essentially in a determina- 
tion of im(8'): 

im (') {a C Z/I a, < g}. 

5. The lifting problem for finite abelian (. In this section the lifting 
problem 3. 4 for t C [X, BG] is discussed for 1 finite abelian, G 0(n), 
SO (n), U (n). First we compute the characteristic classes of representations 
Ti -? G as polynomials in 1- and 2-dimensional classes of H* (4, Z) and 
H* (4, Z,). This yields necessary conditions for the characteristic classes of 
T-flat bundles. These conditions turn out to be sufficient in certain cases. 

Let T: 1 -- 0 (n) be a representation of (, m the number of irreducible 
2-dimensional components of T and k = n - 2m. Then we have the following 
factorization of : 3 

p 
(5.1) FmS- SO(2) t X Q(k) C 0(n), 

p being the standard inclusion. 
The characteristic classes for the reduction p are given by 

PROPOSITION 5. 2. 

s We are indebted to J. M. G. Fell for pointing out this fact. 

2 
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(i) B (p) *wj I fj (p2X1n 
. . . n p2XM) * U I(Yl, *** Yk) 

2j+l=i 

C H* (BFm, Z2) -Z2 [p2X1y . . . 
, p2XM] ? Z2 [yli * Yk] 

(deg xi 2, deg yi =1). 

(ii) B (,,) *pi g 
j (X,2,. * *.2) '21 (82Yl, * ,82Yk) 

E Z , X. ] ? Z[82yly , 82Yk]/2 (82yl, ,82Yk) 

C H*(BF,mZ). 

(iii) If r is oriented, r factors through SFm=--SO(2)m X SQ((k) and 
we have 

B(p)*Xn 82B(p)*wn i if n odd, k > 1 

0 if n odd, k= 1 

2 - B (p) *xn =82B (p) *w -0 if n even, k > 0 

B(p)*Xn Xi * - ' - ' Xm if n even, k I=0. 

Proof. (i) is a simple consequence of the Whitney formula. 
(ii) Factor p in the following form 

p 
F1m SO (2) mX Q (k) > O (n) 

pX 1'% /t 

0 (2m) X O (k) 
Then by the Whitney formula 

(1)$B (t) *pi pjpl z ( )pjpl + p2_t_1p2I1-1 
j+I=2j j+l=i 

(-1)'B(p)*pj- [(-1)iB(p)*pj-B(,i)*pI 

+ B (pi) *p2j+1B (,u) *p21-1] 
But now 

B (pi) *pj gj (XJ2, *XM2) by (4. 8), 

B (y) *PI S21(82Y1. . . . n 82Yk) by (4. 10), 

B(fi) *2j+l p0 by (4.9), 

and the formula follows. 
(iii) The first two formulae are obvious. The last follows from (4.14). 

If n is even, c > 0 we have 82wl =0 by (4.4), p2(2 Xn) =2 wn 0 and 
Po (B (p) *xn) B (p) * (poX,,) 0 since I > 0. The third formula now follows 
by a torsion argument [18, p. 112]. 
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Remark' 5. 3. If we look only at the reduction 

O(m) X Q(k) C O(m) X O(k) C O(m + 7e) 
i8 Xy 

we obtain in the same manner, applying (4. 6) 

B (t o (i8 X ) ) *pi E [pi * 21(82yl, . . *, S2Yk) 

+ { (82W2j )2 + (82Wl) Pi}0f2Z-1 (S2Y15 
. . 

2.I2yk)] 

This is formula (2. 1) of [14], which follows here simply from the product- 
formula for ', (4. 6) and (4. 10). (5. 2, iii) remains true in this case except 
when n even and k ==0. 

Remark' 5. 3'. The Euler-class satisfies a product-formula and therefore 
B(p)*x= x= * x i . - xm B(L) *Xk In the case n even, k > 0 we show 
that the class B (p) *Xk E H* (SQ (k), Z) cannot be an element of the subring 

m 
Z[82y1, 2, 2Yk]/ (282y1, . . , 282yk., 2 Y). If it were so then B (,u) *Xk 

would be a symmetric polynomial in the S2yj and therefore of the form 
B (/) *Xk P (f25 * * *,Sk/2). But 

B (u) *Xk2 p2 ('02, * *, SOk/2) = B (p ) *pk = k (82Y1n 
. . ., 82Yk) 

Since k > 0, this is impossible, the at being algebraically independent. 
In the case of a complex representation r: c-* U (n) we have a 

factorization 

(D-- T (n) == U(1) n C U (n) 

and the classes B (t) * are given by cj (xi, * . x,). In order to determine 
the characteristic classes of R- and C-representations of 41, it is therefore 
sufficient to look at irreducible representations 1 -- SO (2) U (1) and 

? -- 0(1) =; Z2. Since b is finite abelian it is of the form 

o9 Zq, where qv is a prime power p,@^. 

It will be convenient to study first the cohomology maps induced by repre- 
sentations Z<,, -e U (1), 0 (1). 

Recall the structure of the cohomology ring of these groups [7] [211. 

(5.4) H* (Z0,, Z) = Z[u]/p (u), deg u =2; 

(5. 5) H* (Zp,, Z2) t Z2 for p > 2; 
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(5.6) H*(Z2,Z2) _ Z2[v], degv 1,u= 82v; 

(5.7) H* (Z2 , Z2) -AZ2[5] ?Z2[t1, 

deg s = 1, deg t = 2 for w > 1; in this case with the canonical class 

H C H(Z2n, Z2)) we have u = t t 2 S p2t, t p2u, where S2., I2 are 
the Bockstein-homomorphisms associated to 

2w 2c 
0 -< Z - *Z -> Z 2 0 and 0 -> Z2 - z26)+-z2 -> 0. 

PROPOSITION 5. 8. 

(i) Let pX: Z^J-e U(1) be defined by pX1(1) = exp ( 0 ),= 0O .* p-1. pWo 

Then the induced map 

B (px) *: HU (B U (1 ), Z) =Z [x] ->H* (Zp,, Z) =Z--p u] /pw (u) 

is given by B (Ox) *x u. For Z2-cohomology we have 

O, p > 2 

B(pX)*{x V2P p 2 1} 

A. t, p 2, > 1J 

(ii) Let p: Z21 -- 0 (1) Z2 be the nontrivial representation. Then the 
map B(p): H* (BO (1), Z2) Z2 [y] -H*(Z2 ,Z2) is given by 

B (-i) y iVP (o =- 1 

(i) is proved by (4.25"); (ii) is trivial. I 
Now let T= (pX )v: = ff Zqp , U(1) be a representation, q. pvWv 

Then we have by (4. 17, i) 
Def. 

(5.9) B (7 Tx B (pQlv) x Avu,- =-- X)a:X= (uV,)V, 

and for T= (1ifv)v: DZq ->0(1), E E=,1, E =0 if p12> 2 we have 

B (T)Y *y B (PV) y 

(5.10) Def. 
= E vVv-+ E EVsv - Y(f), , (vI, Sy ,* * 
WV=l wV>1 
pp=2 pp=2 

Notation. For the polynomials in (5.2,i,ii) we put by definition: 
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Wi (p2Xlp 
. . . n P2Xm; Yl *Y * * Yk) and Pi (x1, . *, x; 82Yl ,'S2Yk) . 

Combining 5. 9 and 5. 10 with 5. 2, we obtain finally for the characteristic 
classes of the representation r the following formulas. 

PROPOSITION 5. 11. 

(i) Let r (Ti-,. .Tm. *; *,Tk) 'Fk - (n) be a representation 
factored through F. (5. 1). Then we have 

Def. 
w* (-) - B (7) *W, Wi (p2Xf171 . . .YI171n * . . '* D(p20an/3 E H* (@, Z2) p 

Def. 
pi (T) B (r) *p Pi (X1lr, ;. 2Yj.2 * * ) -- r 

(aQ,823) E H* (<, Z). 

In the oriented case X (T) is given via (5. 2, iii). 
(ii) Let -r (-1, * * -rT,m) f- U (n) be a representation of 1' factored 

through T(n). Then we have 
Def. 

c* (i-) = B (T) * c=- (X11, . . . , X7n) - : E)r (x) E H* (1, Z). 

The explicit formulas for the case of a cyclic group F Zj, p > 2, are 
as follows. 

COROLLARY 5.12. 

(i) ForT -= (pXl,. . .,pXm) :Zp-SO(n), A O=, * ,p , (2m=n 
or 2m + 1=-n) we have 

W,,(T) - O, i > O 

p, T) s (Al.2p . . . PkM72 ) .U2i E H* (Zpp Z) =- z [ff] / ( p * u), 

i 1,* **, [n/2] 
O mU n-2r + x&) A, 0,m-u, n==2m-n- 

(ii) For T (pXi,- .,pXm) Zp - U(n), X= Op , p -1 we have 

C* (T)-C,,(Alp * )An) *i E H *(Zpp,Z) p i I,1 * *n 

We keep the preceding notations for a fixed representation T-: 4 -> G of 
0 3 Zqqp q = PI,. In the following X is supposed to be a OW-complex. 

Then we can state the main result of this section as follows. 

THEOREM 5. 13. 

(i) Let $: X -BO(n) and T: -O(n). There exists a -r-fat bundle 
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4': X-- BO (n) with the same Stiefel-Whitney and Pontrjagin classes as 4 
if and only if the following holds. There exist classes , E f2 (X, Z) for 
p, > 2 satisfying pp^0z * =-- 0; classes V. E H' (X, Z2) for p, -- 2, 0 =- 1; 
and classes ip E HI (X, Zqp) for q, = p,o' with p, 2, wv >1; such that 

W' (2) = (p 

p- i (i S '2A) 

where o= (v),/3= = ,). If 4 and -r are oriented, then so is 4' and 

rwithout condition if n odd; 

(X)() Oif n even, k > O (assumning 
X xt) HnX (t ) ? q BB (X, Z;) has no 2-torsion); 

UX(4) =lXj'ri(d) if n even, klO 
i=1 

(ii) Let 4: X - BU (n) and : I-4 U (n). There exists a -r-flat bundle 
4': X->BU (n) with the same Chern classes as 4 if and only if there exist 
classes ts, E H2(,Z) such that p;,10P *i 0 and 

ci (4-) . OJ 0) =- (ffv) 1. 

Proof. We restrict ourselves to the proof of (i); (ii) being proved 
similarly. 

(a): Put tb,-=*it, for p >2; > h=q*v, for Pv =2, WV 1; Tv=Bjtv for 
P. = 2, wi,> 1. These classes satisfy all the requirements by naturality 
and (5.11). 

( ): = ED Zqv p B4c =HBZqI = H K(Zq) 1,) 
V' V V 

uv SqV qv 

Pv > 2: EK(Zqv,) I 

> K(Z, 2) K(Z, 2) 

x 
since qv2v * . = ? 3 7v . oqv ? 7P - u. 

pv-2, o 0= 1 : Take -q V,: X K K(Z2,1 ) . 

Pv =2, co > 1: Take -q 7,: X-K(Z2o,1). 

This defines a unique class : X -> I K (Zq7, 1) = BI such that 
V 
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FLAT BUNDLES AND CHARACTERISTIC CLASSES. 879 

B K(ZK(Zy, 1) 

>1;~~ 

~ 

an 'irv 

, 

X 

is 
commutative, 

where 
7r, 

is the canonical projection. Then we have clearly 

*uv4=iv 
for PV> 2; 

-q*vp=T,v 
for 

pv=2, 
WV 

=1; q*t_- 
for Pv 2, 

wv > 1; and the result again follows by naturality and (5. 11). The state- 
ment concerning the Euler-class follows from (5.2,iii). This finishes the 
proof. I 

Remark 5. 14. The method of this proof is due essentially to Massey- 
Szczarba [14]. 

Remark 5. 15. The proof implies that for given classes iiu,, vv, tv as in 
(5. 13) there always exists a T-flat bundle whose characteristic classes are given 
by 4iT(p2 ,P2 , 'I' T) QS2P), resp. by?@Q(d). 

Remark 5.16. If the bundles P(X,G) [X,BG], G O(n), SO(n), 
U(n) are classified by their characteristic classes, Theorem (5. 13) gives 
necessary and sufficient conditions for the --flatness of a bundle e: X ;-> BG 
in terms of primary characteristic classes. In the sequel we list some examples 
illustrating this fact and the content of Theorem (5. 13). 

Example 5.17. Let X be a CW-complex. The bundles P(X,SO(2)) 
-[X, BSO (2) ] are classified by their Euler-class X. Given -: 4 > SO (2), 
assume that k - 0, i. e. T irreducible. Then e: X-> BSO(2) is --flat if andc 
only if there exist classes %vC 2 (X,Z) such that q7 =ttV 0 and 

X(t) ~'V - ftv,' _= (p'V) ,. 

Example 5. 18. For any CW-complex X of dim X < 4 the bundles 
P (X, SO (n)) = [X, BSO (n) ], n?> 3 are classified by w2, wI (resp. x4 if 
n =4) and pi, if :E4(X,Z) has no 2-torsion [11] [20]. 

Let r - SO(n). Then X: ->BSO(n) is i-flat iff there exist classes 
ut, V7,, T7 as in (5. 13, i) with 

pi (t) - 92 (82Y l *S ,8Yjk^7) _ r,( (X71) 2, *,(XMm ) 2) 

W2 () = 1 (p2Xf1ri. . . , p2XmTm) + '02 (Y17i, * * k) 

W4 ($) 4%7(p27, ) . 
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For n 4 the last condition has to be replaced by 

xi('r: -ST X2r2 k_ t0 

Example 5.19. For any CW-complex X of dim X < 2n, the bundles 
P (X, U (n) ) = [X, BU (n) ] are classified by cG if 12j (X, Z) has no (j-1) !- 
torsion [19], [23, Thm. 4.7]. The condition in (5.13,ii) is in this case 
necessary and sufficient for the --flatness of t: X -> BU (n). 

Example 5. 20. For any CW-complex X of dim X ? 8, dim X < n- 1, 
the bundles P(X, 0(n)) are classified by wi, w2 and pi, P2 if H4 (X, Z) has 
no 2-torsion and H8 (X,Z) no 6-torsion [23, Thms. 4.2, 4.3]. Thus the 
conditions in (5. 13, i) are again equivalent to the r-flatness of t: X - BO (n). 

Take all bundles within the range of the examples (5.17-5.20). By 
(5. 12) and (5.13) we obtain in particular the following two corollaries. 

COROLLARY 5. 21. Let 4=Z5, p > 2. 

(i) If E RO(Zp) is of dimn, n > 2, =(pX-. . .,pXm), then 
EC [X,BO(n)] is r-flat iff 3 it'E 2(X,Z) such that p- .=O and wi(t) 0, 

pi (e) - (X12, 12 . , Am2) ta2i, i > 0. 

(ii) If r CRSO (Z.) is given as above, then C [X, BSO (n) ] is 7r-flat 
iff 3]fEH'(X,Z) such that p it0 O, wi (t) and pi(t) are given by (i) and 

O, n= 2m + 1 
X.. - .iftm, n==2m 

(iii) if rTRU(Zv) is of dimn, n>1, r=(pX. *. .,pXn) then 
C [X,BTU(n)] is r-flat iff 3 ] EH2(X,Z) such that p f=0 and c (e) 
= (/\,. * ,Af) u ti, i 1- l , n. 

Remark 5. 22. Let M be a Zp-manifold (p > 2) in the sense of [8], i. e. 
a compact flat Riemannian manifold with 7-flat tangent bnndle for r: 
Zp->0(n), n =- dimM. By 5.21 we have wi(M) =0 for i>0 and pi(M) 
is a multiple of u2i. From this follows pi (M) = 0 for i > 0, because 
u E H2 (M, Z) is of order p and then U2i -0 for i> 0 by L. Charlap and 
A. Vasquez, Amer. J. of Math., 87 (1965), p. 557, Remark ii. 

COROLLARY 5. 23. Let =- Q (n) Z28 and p,: Q(n) -> 0(n) the natural 
inclusion. Then a 0(n)-bundle $: X-BO(n) is ,t-flat (i.e. a sum of line 
bundles) if 3 classes 9,* ,n E H1(X,Z2) such that piQ) 0, wiQt) 
== igi (91, 

- - 
#fl ~, ) - 
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6. Rational characteristic classes of flat bundles. It is known that 
the rational Pontrjagin classes of flat GL (n, R) -bundles and the rational 
Euler class of flat SO(n)-bundles are trivial. See [15] where this is proved 
via the Chern-Weil theorem. Here we first study flat C*- resp. SO(2) = U(1)- 
bundles. Then we prove by topological methods the triviality of the rational 
Chern classes for flat U(n)-bundles under some assumptions on the funda- 
mental group ir,X of the base space.4 

THEOREM 6.1. Consider a bundle t: X *BC*. Them t is flat if and 
only if poc (e) -cl (t) Q = O 

(cl (Q) = rational Chern class; po induced by Z -* Q). 

Proof. Consider the commutative diagram of sheaves with exact rows. 
(cf. 4. 17) 

0 - Z -C > 0d 

I exp I 
0->--> - IC -*0 

Since these sheaves are abelian, we have exact cohomology sequences 

sit a 
H' (X, Cd) -- H (X, Cd* ) >H2 (X, Z) a > H2 (X Cd) - . 

(6.2) { t* { 
H* **H(X,C H' (X, C*) oH2(X, Z) > H2(X,C 

By (4.22) we have 8 cl; since C is a soft sheaf, HP(X,C) 0 for p>O 
and so cl is an isomorphism. By exactness we have now for C H1 (X, C*) 
pOc1($) 0 a ccc1(e) =0 # 3Ey I I(X,Cd'), = - iS flat by 
(2.5). 1 

PROPOSITION 6. 3. Let e be a C*-bundle on X and assume 7r1X is finite. 
Then the following assertions are equivalent: 

(i) t is flat, 
GOi POC, (d)-?7~ 

4Added 7. 27. 66: In a forthoeming paper " On the characteristic homomorphism of 
flat bundles " the following will be shown: Let X be a CW-complex, t a flat a-bundle, 
where G is a compact or complex and reductive Lie group. Then the real (or rational) 
characteristic homomorphism V: H* (BG, R) > H* (X, R) is trivial. Added in proof: 
See Topology, vol. 6 (1967), pp. 153-159. 
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(iii) (7r*c )- 0, where = (r: X -* X) is the universal covering 
bundle. 

Moreover we have: 

(iv) lt in (6. 2) is injective, i. e. e has at most one flat structure. The 
flat C*-bundles are classified by H2 (_r1X, Z) -- Hom (7r,X, C*). 

(v) If H2 (X, Z) = 0, then H2(_r1X, Z) - H2(X, Z), i. e. all C*-bundle& 
on X are flat. 

Proof. (i) (ii) by (6.1). 

The bundle g: X->B(7r,X) maps the sequence (cf. 4.17) 

at 
* **H1 (X, C) --> H1 (7r.X, C*) >* H2 (7rX, Z) -'> H2 (X1X,C) C 

into the upper line of (6. 2). Since 7r1X is finite, we have HP(irjX, C) = , 
p > 0 and hence W is an isomorphism. Thus we obtain the following diagram 
with exact rows: 

o 0 

o --> 1 '(r,X, C*) > H2 (I1X, Z) 

(6.4) a s , 

O ->H:L(X, Ca*) - yH2 (X, -H2(X, Cd) 

1 1~~~~~7r* 

O H2(X,Z) 

where s is the Steenrod-map of (2. 4) and hence an isomorphism. That the 
vertical row is exact follows from the spectral sequence of the covering Xr 
since H1(X,Z)- 0 [7, p. 356]. The equivalence of (ii) and (iii), as well 
as (iv), (v) can now be read off from (6.4), using of course (6.1). 1 

COROLLARY 6. 5. (i) For SO (2) = U (1) -bundles and the Euler class X 
Theorem 6. 1 and Prop. 6. 3 remain valid. In this case one has to use the 
exact sequence of sheaves 

O _ Z >R exp > S0(2) -> O. 

Moreover Prop. 6. 3 may even be formulated for GL (2, R)-bundles, since each 
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conjugacy-class of homomorphisms rX-1X-* GL+(2,R) contains an element 
factorizing through SO (2), 71X being finite. 

(ii) By (4.16) we have c (e) Q O0 for any fiat GL (n, C) - resp. U (n) - 
bundle. 

Example 6. 6. Let M be a compact orientable 2-manifold. We observe 
that a flat C*- resp. SO(2)-bundle e on M is trivial, because (6.1) and 
H2 (M, Z) = Z imply cl (e) =0 resp. x (t) =0. Hence the nontrivial flat 
GL+(2, R)-bundles on M discussed in [15] are not flat C*- or SO (2)-bundles. 

Example 6.7. For X=P,,R (n?2) we have H2(Z2,Z) =H2(P?,R,Z) 
--Z2. The nontrivial SO (2) -bundle (x (e) 74 0) on P,*R is flat. Theorem 
6. 1 is also illustrated by Example 5. 17. 

Remark 6. 8. (6. 1) and (6. 7) should be compared with the proof of 
Thm. 1 in [24] which contains implicitly the statement that a flat SO (2)- 
bundle is trivial. The author has informed us that his proof is indeed 
incorrect. 

We now prove the triviality of the rational Chern classes for flat U(n)- 
bundles satisfying a certain splitting principle to be defined below. Recall 
the splitting principle of [3] [13] described by the following diagram 

E ( > EU (n) 

(6.9) IE/T (n) - { BT (n) =E EU (n) /T (n) 

X >BU(n) 

The lifted bundle -rx$ == o X- factors through BT (n), as e is U (n) -equivariant, 
and hence splits into a sum of U (1) -bundles. Moreover 7r* is injective in 
integral cohomology. 

Definition 6.10. Let e: X-*BU(n) be a fiat U(n)-bundle: e=y*Cx 
B(y) ogz. A map f: Y--X is called a y-splitting (with respect to Q), if 

(i) f*: H* (X, Q) >H* (Y, Q) is injective, 
(ii) 3 a homomorphism /3= (,/31, * * *,/3,n): 7riY -T(n) -U(1)n such 

that in the following diagram the big rectangle is homotopy com- 
mutative 
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y B ((13) 
Y - B71Y - BT (n) 

(6. 11) ft lBrij 
N ' x B (y) 

: X >B7r,.X > BU(n) 
PROPOSITION 6. 12. Let e be flat, t B(y) o gx and f: Y X a y-splitting. 

Then poc(c) c(e)Q 1. 
n 

Proof. fpoc() = poC(f*t) II (1 + pOc1(, *y)). But by (6. 1) 
i=1 

pocj(3.*Cy) = 0 and hence f*poc(e) = 1. Condition (i) now implies poc(t) 
1. I 
We have not been able to decide if a flat U(n)-bundle t=B(y) ?gx 

always admits a y-splitting. However in the following cases we can apply 6. 12. 

THEOREM 6. 13. Assume ir1X is of the form 0 -O N ->7r,X -> 1 -> 1 with 
? finite and N abelian. 

(i) For any flat U(n)-bundle e on X we have poct) =1. 

(ii) For any flat 0 (n) -bundle e on X we have pop (e) 1. 

Proof. Let f: Y -> X be the regular covering corresponding to the 
invariant subgroup N of 7r,1X. ? operates properly on Y and Y/l _ X. The 
spectral sequence for f in rational cohomology collapses since H* (,cD, Q) - Q 
and hence f*: H*(X, Q) -H*(Y,Q) CH*(Y,Q) [7, p. 355]. Thus f 
satisfies (i) of 6.10. By assumption,e B(y) oCx with y: 7r,X-> U(n) and 
hence f* to f =B(y) oBrifoCy B(yo7rif) oCy. Since N is abelian, a 
conjugate of yo7vrf: 7r,Y-> U(n) factors through T(n) C U(n) and f is a 
y-splitting. (i) follows now from 6.12. (ii) follows from (i) by the defini- 
tion of Pontrjagin classes. I 

Remark 6. 14. Let e y*g a flat bundle. (6.13) remains valid if 
y: r1X- U(n) factors through a group r of the form 0-->N -r--> i 1 
with 1 finite and N abelian. Recall that by (2. 1) Br is a space of type 
K(], 1) and hence has a structure of a CW-complex. 

THEOREM 6. 15. Let F C ? be a subgroup of finite index m in a discrete 
group 4, A E RU(r) a 1-dimensional representation. Then for the induced 
representation i!A\ we have poC(i!A) = 1. 

,tm X 1 
Proof. By [12] we have the factorization i!A: ? rm X S (m 
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N= T(m) X S(m) C U(m) where S(m) is the symmetric group in m letters, 
X means semidirect product and N = T (m) XS (m) is the normalizer of 
T(m) in U(mn). The assertion follows now from 6.13 and 6.14. 1 

COROLLARY 6.16. Let f: Y- >X be a finite covering of X and v a 
U(1)-bundle on Y with p0c1(-) =0, i. e., - flat by 6.1. Then f!.=4 is fiat 
and poc(4) = 1. 

Proof. By 6.1 = XA*Cy with A: r1Y- U(1). Then by 3.1 we have 
6= f!(A*gir) = (i!A) *x, i= irf and finally poc (4) = 1 by 6. 15. 1 

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA. 
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