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1. Introduction. Using the theory of adjoint functors, developed in [4],

a procedure will be given by which functors and natural transformations

may be constructed which involve c.s.s. complexes. Several of the functors

and natural transformations obtained in this manner are well known. A

new such functor, i?7(r, ), from chain complexes to c.s.s. abelian groups,

will be considered in more detail(2). It has the following properties

(a) The functor .ff^r, ) sets up a one-to-one correspondence between

chain complexes which are zero in dimension <0 and c.s.s. abelian groups.

(b) For every chain complex K

Hn(K) ~ 7rn(#7(r, K),

i.e. the homology groups of the chain complex K are isomorphic with the

homotopy groups of the c.s.s. group HV(T, K).

(c) Let (w, n) be a chain complex which has the abelian group tt in dimen-

sion n and 0 in the others. Then

IP(T, Or, n)) = K(r, n)

i.e. i^F(T, (it, n)) is the Eilenberg-MacLane complex of w on level n.

Two other functors obtained by the procedure mentioned above will be

discussed in [5].

In an appendix we define for a c.s.s. complex K the c.s.s. free abelian

group FAK generated by it. This notion is closely related to the functor

H^^T,   ). For every c.s.s. complex K

Hn(K) « Wn(FAK) n > 0.

There is a natural way of embedding K into FAK. This embedding map

/: K^>FAK induces homomorphisms of the homotopy groups of K into the

homotopy groups of FAK and hence by the above isomorphism into the

homology groups of K. It will be shown that these homomorphisms are the

Hurewicz homomorphisms.

The definitions and results of [4] will be used freely.

2. A definition of c.s.s. complexes. For each integer «^0 let [n] denote

the ordered set (0, • • • , n). By a monotone function a: [m]—>[w] we mean a

function such that
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a(i) ^ a(j) 0 ^ i ^ j ^ m.

Clearly the composition of two monotone functions is again a monotone func-

tion and for every integer w^O the identity map e„: [«]—>[«] is also mono-

tone. Hence the ordered sets [n] and the monotone functions a: [in]—>[«]

form a (proper) category. Throughout this paper this category will be de-

noted by 13.

Let 3TC be the category of sets. We recall that 3H7 denotes the category of

contravariant functors 13—>3TC.

Definition (2.1). A c.s.s. complex K is a contravariant functor K: 13—>3TC,

i.e. an object of the category 3T27. Similarly a c.s.s. map f: K-^L is a natural

transformation from K to L, i.e. a map of the category Wv. The elements of

the set K[n] are called n-simplices of K.

The category of c.s.s. complexes and c.s.s. maps, i.e. the category 9Ti7,

will often be denoted by S.

It is readily verified that Definition (2.1) is equivalent with that of

Eilenberg-Zilber [2; 3], except that the collection of the w-simplices of a c.s.s.

complex is required to be a set, i.e. an object of the category 3TC. Following

Eilenberg-Zilber we shall write aa instead of (Ka)o-, where aEK[n] and

a: [m]—>[n] is a monotone function.

3. The general case. Let Z be a category which has direct limits [4,

Def. 9.1 ]. Then with every covariant functor 2: 13—>Z, i.e. object of the cate-

gory Zk [4, §7] we will associate two covariant functors

®2:S->Z,        27v(2, ):Z->S

where <8>2 is a left adjoint of HV(E, ) [4, Def. 3.1]. Conversely every pair of

covariant functors

S:S->Z,        P:Z—>S

where S is a left adjoint of T may (up to natural equivalences) be obtained

in this manner.

Because Z has direct limits, the embedding functor Ed: Z—>Zd has a left

adjoint [4, Th. 7.8]. Let limj: Zd—>Z be an arbitrary but fixed such left

adjoint and let ad be an arbitrary but fixed natural equivalence ad: lim<j (Zd)

-\Ed(Z). Let the functor ®d: 9TC7, Zk—*Zd and the natural transformation

y: 27(3117 ®d Zv, Ed(Z)) -> 27(3117, Hr(Zv, Z))

be as defined in [4, §14]. Composition of the natural equivalence ad with the

functor ®d yields a natural equivalence

ad®d: H(\imd (9117 ®d Zk), Z) -» 27(3117 ®d Zv, Ed(Z)).

Composition of the natural equivalences ad®d and y yields the natural

equivalence (see [4, Th. 14.1 ])

8: 27(limd (3117 ®d ZY), Z) -* 27(3UF, W(Zr> Z)).
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It follows that ft is completely determined by the choice of lim,j and ad; a different

choice of lim^ and ad changes ft by a unique natural equivalence [4, Theorem

(4.4*)].
Now denote by

<g>: 3T17, Zy -» Z

the composite functor lim,* ®d: 3I17, Zy—>Z and write S instead of 9TC7. Then

ft is a natural equivalence

ft: H(& ® Zv, Z) -> H(&, HY(ZV, Z)).

Hence, given the functor limd: Zd—>Z and the natural equivalence ad: \imd-\Ed,

we may associate with every object SEZy

(i) the covariant functor

Hv(2, ): Z -» S

which is the right adjoint of

(ii) the covariant functor

<g>2:S-> Z

under

(iii) the natural equivalence

ft? = ft(S, 2, Z): H(S ® 2, Z) -> H(§, 277(2, Z)),

(iv) the natural transformation induced by fts

<cs: £(S) -► Z?7(2, S ® 2)

satisfying the relation

ftrf= HY(2,f)oK2K

ior every object A'ES and ZEZ and every map/: K®2—>ZEZ [4, Lemma

6.2], and

(v) the natural transformation induced by fts1

M2: #7(2, Z) ® 2 -+ £(Z)

satisfying the relation

02 g = msZ o g ® 2

for every object A^E§ and ZEZ and every map g: K—>i?7(2, Z)ES [4,

Lemma 6.2*].

When no confusion can arise the subscript 2 will be omitted in fts, kj

and jits-

By a suitable choice of the category Z and the object SEZy the above

functors and natural transformations reduce to well known ones.

That every pair of covariant functors S: S—*Z and T: Z—>S where S is a
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left adjoint of T may (up to natural equivalences) be obtained in the above

manner can be seen as follows. Consider the identity functor E: 13—->13 as an

object of the category 13k. Then the lifted functor H7: 13k, 13—»3Tlr induces a

functor HV(E,   ): 13-»S(3Ti7 = S). Let 2:13->Z be the composite functor

HV(E, ) S
V-> s-> z.

Then it is readily verified, using the fact that S is a left adjoint of T, that

there exists a natural equivalence r: 2P/(2, )—*T and hence [4, Th. (3.2*)]

implies the existence of a natural equivalence a: S—>®2.

Remark. The results of this section also hold if 13 is replaced by any

other proper category 11 and S by y(iu.

4. Topological spaces. Let a be the category of topological spaces and

and continuous maps

Proposition (4.1). The category a has direct limits.

Proof. Let 11 be a proper category and let K: It—»a be a covariant functor'

Denote by B the set of all pairs (U, x) where f/£lt is an object and xEKU

a point. Define a relation (U, x)~(U', x') if there exists a map u: U—>C/'GCU

such that (Ku)x = x'. This relation ~ induces an equivalence relation on B.

Let A he the set of all equivalence classes and for every object t/GU- let

ku:KU-^A

be the function which assigns to a point xEKU the equivalence class of

(U,x). Introduce a topology in A by defining a subset MEA open if for every

object UEU

k~u (MC\ kv(KU))

is open in KU. It is now easily verified that

A = linu K

where the map k: K—*EuA is given by kU = ku for every object UEli- This

completes the proof.

It should be noted (see [4, Remark 7.9]) that in the proof of Proposition

4.1 not merely the existence of a direct limit is established but that a pro-

cedure is given by which simultaneously for all pairs (11, K), where 11 is a

proper category and K: 11—>a a covariant functor, an object A and a map

k: K—^EjjA can be found such that A =lim* K. Let the functor

lim = &d —> a
a

and the natural equivalence

ad: H(limd (ad), a) -» H(GLd, Ed(a))
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be the unique ones induced by the above procedure of assigning to every pair

(11, K) an object A and a map k: K-+EVA (see [4, Theorem 9.5]).

Define an object 2EGV as follows. For each integer w^O, 2[«] is an

euclidean n-simplex with ordered vertices Ao, • • • , An; ior each map a: [m]

—>[»], 2a: 2[w]—-*Z[m] is the simplicial map defined by (Ea)Ai = Aali) ior

all O^i^m.

The following then can readily be verified by comparison with the usual

definitions.

Proposition (4.2). For every topological space X

tf7(2, X)

is its simplicial singular complex (see [2]).

Proposition (4.3). For every c.s.s. complex K

K ® 2

is its geometrical realization (by a CW-complex of which the n-cells are in one-

to-one correspondence with the nondegenerate simplices of K; (see [(>]).

The existence of the (natural) equivalence

ft: H(K ® 2, X) -» H(K, B7{2, X))

expresses the fact that for every object AES and XE& there exists a one-to-

one correspondence between the continuous maps A®2—>X and the c.s.s.

maps A->iF(2, X).

Proposition (4.4). For every c.s.s. complex K

kK: K-^HvC2, K ® 2)

is the (natural) embedding of K into the simplicial singular complex of its geo-

metrical realization (see [6]).

Proposition (4.5). For every topological space X

pX: B7(Z, X) ® 2-»X

is the (natural) map of the geometrical realization of the simplicial singular com-

plex of X onto X (see [6]).

For a locally compact space YE<Z define another object 2yECfcy by

2y[«] = 2[«] X F; (2y)a = 2a X iy

where X denotes the cartesian product. As for every two topological spaces

X and Z there exists a (natural) equivalence

H(Z X Y, X) « H(Z, XY)



1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 335

where Xr denotes the function space with the compact open topology, it

follows immediately that

Proposition (4.6). For every topological space X

Hr(2 Y, X) « Hv(2, XY).

Similarly because the operation of "taking the direct limit" commutes

with "taking the cartesian product with F" it follows that

Proposition (4.7). For every c.s.s. complex K

K ® Xy ~ (K ® 2) X F.

5. C.s.s. complexes.

Proposition (5.1). The category S has direct limits.

Proof. This follows immediately from [4, Corollary 12.2] and the follow-

ing proposition.

Proposition (5.2). The category 3TC has direct limits.

Proof. Omit all mention of topology from the proof of Proposition 4.1.

Define an object AGSk as follows. Consider the identity functor E: 13—>13

as an object of the category 13k and define, using the lifted functor H7: 13k,

13^3EF

A[«] = HV(E, [«]);        Aa = HV(E, a).

Thus A [n] is the standard n-simplex (this is K[n] in the notation of Eilenberg-

Zilber, see [2; 3]).

The functors associated with the object AG§k are, up to a natural equiva-

lence, the identity. For every w-simplex <r of a c.s.s. complex K let <f>„: A[n]—>K

denote the unique map such that ^>aa = aa for all aGA[n]. It then follows

easily from the uniqueness of the map <f>0 that

Proposition (5.3). The function

<^.X:X^27r(A, K)

given by

(<j>K)c = <pa o-EK

is an isomorphism. This isomorphism is natural.

Similarly it can be shown:

Proposition (5.4). The map

8-K4>K): K ® A-+K

is a (natural) isomorphism.
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For a c.s.s. complex L define another object A^ESy by

AL[n] = A[n] X L, (AL)a = Aa X h

where X denotes the cartesian product. Then Proposition 5.4 together with

the fact that "taking the direct limit" commutes with "taking the cartesian

product with L" yields

Proposition (5.5). For every c.s.s. complex K

K ® Ai « K X L.

For L, ME& define the function complex ML by

Ml = HV(AL, M).

"Taking the cartesian product" is thus a left adjoint of "taking the function

complex." In fact we have

Proposition (5.6). Let K, L and ME§>- Then there exists a (natural)

equivalence

mkxl „ (ML)R.

The functors associated with still another choice of an object of Sy will

be considered in [5].

6. Chain complexes. Let dg be the category of chain complexes and chain

maps.

Proposition (6.1). The category dg has direct limits.

In order to prove this we need

Proposition (6.2). The category g of abelian groups has direct limits.

Proof of Proposition (6.2). Let 11 be a proper category and let A^ll—>g

be a covariant functor. Let A be the abelian group generated by the pairs

(17, x) where Z7E11 is an object and xEKU an element, with the following

relations: for every object £7Ell and every two elements x, yEKU

(U,x) + (U,y) = (U,x + y)

and for every map u: U-^U'E^x and every element xEKU

(U, x) = (V, (Ku)x).

It follows from the first kind of relations that for every object UE^x the

function ku- KU—*A given by kux=(U, x) is a homomorphism. Straightfor-

ward computation now yields that

A = limjt K

where the map k: K—>EVA is given by kU' — ku for every object i/'Ell.
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Proof of Proposition (6.1). Let Z be the category of which the objects are

the integers and which contains one map m—*n for each pair of integers

(m, n) with mf^n. It then follows from Proposition (6.2) and [4], Corollary

(12.2) that the category g2 has direct limits. Clearly dg may be considered

as a full subcategory of gz and dQd as a full subcategory of gf. It is easily seen

that a functor lim<j: gf —»gz maps any object of dQd into dg. Hence the category

dg has direct limits.

Define an object TGdgK by

T[n] = CjvA[m], Ta = CNAa

where Cy: S—n)g is the normalized chain functor (see [2]). Of the two adjoint

functors associated with T one, 8P, is, up to a natural equivalence, the

normalized chain functor Cn; the other functor 27T(r, ), will be investigated

in the remainder of this paper.

Proposition (6.3). There exists a natural equivalence

c:S ® T—>C;v(S)-

Proof. Let XG§ be an object. Define a map/: A®<*r—>EdCr?K by/([re], a)

= Cn4>„ for every re-simplex o~EK, where <j>a: A [re]—>A is the unique map such

that <j>„a = cra lor all aGA[w]. Let c: K®T—>CxK be the unique map such

that/=£,jc o \d(K®dT), where \d: E(d%d)-*Ed lim<j (dg</) is the natural trans-

formation induced by the natural equivalence ad: lim<i (dg<j) H Ed(dQ). Straight-

forward computation then yields that c is an isomorphism. Naturality now

follows easily.

7. Some definitions and lemmas. We shall now state several definitions

and lemmas which will be needed in the sequel. For proofs, see [7].

For every pair of integers (k, n) with O^k^n let ek: [n — l]—>[n] be the

monotone function given by

tk(i) = i i < k;

tk(i) = i + 1 i ^ k

and let if: [n]—»[« — l] be given by

rik(i) = i i ^ k;

ink(i) = i — 1 i > k.

Definition (7.1). A c.s.s. complex A is said to satisfy the extension con-

dition if for every pair of integers (k, n) with O^k^n and for every n (n — 1)-

simplices o^o, ■ • • , <r*_i, ak+i, ■ ■ ■ , c„GA such that o"j€,~1 = crye* for i<j and

i^kr^j, there exists an w-simplex aEK such that aei = 07i for i = 0, ■ ■ ■ ,

k, ■ ■ ■ , n.

Denote by S^ the full subcategory of S generated by the c.s.s. complexes

which satisfy the extension condition.
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Definition (7.2). Two w-simplices a and r of a c.s.s. complex K are called

homotopic (notation (t~t) if

(i) their faces coincide, i.e. ati = aei for all i,

(ii) there exists an (w + 1)-simplex pEK such that

Pt° = a,

pe1 = r,

pti+i = o-^rjo = T€y 0 < » g n.

Lemma (7.3). If KE&E, then ~ is an equivalence relation on the simplices

ofK.

Definition (7.4). Let KE$>e and let cpEK be a 0-simplex. For every

integer wS;0 a group 7r„(A; <p), the nth homotopy group of K rel. <b will be de-

fined as follows. Consider the collection 2 of the w-simplices aEK such that

o-e» = d,ri0 ■ ■ ■ t]n-2 0 ^ i ^ n.

The equivalence relation ~ divides 2 into classes. These classes a, b, etc.

will be the elements of irn(K; <p). Now let oEa and rEb be arbitrary repre-

sentatives of the classes a and b. Because KE&e there exists an (ra + 1)-

simplex pEK such that

pe° = <r,

pe2 = t,

pei = d>V° ■ ■ ■ ij"-1 2 < i ^ » + 1.

The sum c+6 of the classes a and & then is defined as the class of the re-simplex

pe1. It can be shown that irn(K; <j>) so defined is a group and is independent

of the different choices made in its definition.

Definition (7.5). Let 3C be the category of groups and homomorphisms.

The objects of the category 3C7 will be called c.s.s. groups and the maps of

3C7 c.s.s. homomorphisms. A c.s.s. group G thus is a c.s.s. complex such that

(i)  G[n] is a group for each integer «S;0,

(ii) Ga: G[n]-^G[m] is a homomorphism for every map a: [m]—>[«]E13-

The objects of the category g7 (g is the category of abelian groups) will be

called c.s.s. abelian groups.

The following results are due to J. C. Moore, (see [7]).

Lemma (7.6). Every c.s.s. group satisfies the extension condition.

Let G be a c.s.s. group. For each integer w^O define a subgroup GnEG[n]

by
n

Gn =   H  kernel Gt'.
i—l

Then aEGn+i implies at°EGn. Define a homomorphism rj„+i: Gn+i—>Gn by



1958] FUNCTORS INVOLVING C.S.S. COMPLEXES 339

r5„+i<r = o-e°, i.e. dn+i = Ge°\ G„+i. For each integer n<0 let Gn=l and let

dn+i: Gn+i-^Gn be the trivial homomorphism. It may be shown that for all n

image dn+i is a normal subgroup of kernel dn, i.e. G= {Gn, dn\ is a (not neces-

sary abelian) chain complex. Its homology groups are

H„(G) = kernel h J image dn+i.

Let G be a c.s.s. group and let eEG[0] be the identity. The homotopy

group ir„(G; e) will often be denoted by irn(G). The group structure of G[o]

induces a group structure in t0(G) =tto(G; e), the set of the components of G

and we have

Lemma (7.7). irn(G)=Hn(G) for each integer w^O.

Let G be a c.s.s. group and let <bEG[o]. For each re-simplex oEG denote

by <pfo- the re-simplex

4>ta = <rfo-y • • • t?"-1)-

Then clearly the function <f>f induces an isomorphism

4>*: irn(G; 4>) —* vn(G).

8. The functor H7(T, ). For every object A in dg, the category of

(abelian) chain complexes, the c.s.s. complex H7^, A) may be converted

into a c.s.s. abelian group as follows. Let a, t: r[w]—>A be two w-simplices of

^(T, A). Then the sum <r+r: F[re]—>.4 is defined by

(a + r)y = ay + ry y E T[w].

For every chain map/: A-+B the c.s.s. map Hv(V,f): HV(Y, A)^>HV(Y, B)

then becomes a c.s.s. homomorphism. Hence ^^(r, ) may be regarded as a

functor

ff7(r,):ag-*g7.

Let dg° be the full subcategory of dg generated by the chain complexes

which are 0 in dimension <0, i.e. A Edg° if and only if ^4,- = 0 for i<0. Let

M:g7^r3g°

be the functor which assigns to every c.s.s. abelian group G the chain com-

plex MG = G and to every c.s.s. homomorphism f;G-+H the chain map

Mf: G-+H given by (Mf)o-=f<r ior a EG.
Roughly speaking, the functor HV(T, ) sets up a one-to-one correspond-

ence between the objects and maps of dg° and those of g7. An exact formula-

tion of both halves of this statement is given in the following two theorems,

in which E denotes the identity functor.

Theorem (8.1). There exists a natural equivalence

a:MHv(r,d<3a)-^E(dQ°).
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Theorem (8.2). There exists a natural equivalence

b:E(%v)->Hv(T,M(tf)).

Let A G<3g and let A°EA be the subcomplex given by

o
An = An n > 0,

A°0 = d^\o),

An = 0 n < 0.

It is readily verified that

/P^r, A) = 27r(r, A0)

and that the inclusion map j:A°-*A induces isomorphisms

;*:27„(,4°)->77nU) „ ^ 0.

Application of Theorem 8.1 and Lemma 7.7 now yields

Corollary (8.3). Let .4Gdg. Then for every integer re 2:0

/*<**: Wn(B7(r, A)) « Hn(A)

i.e. the nth homotopy group of the c.s.s. group i7T(r, A) is isomorphic with the

nth homology group of the chain complex A.

Proof of Theorem (8.1). For each nondegenerate simplex «GA[re] let

Cxa be the corresponding generator of T [re]. Let A Gdg° be an object and let

G = HV(T, A). For each simplex a: Y[n]-^>A G<3„ define an element acrG^4n by

ao- = o-(C„€n),

where «„: [re]—♦ [re] is the identity map, i.e. the only nondegenerate re-simplex

of A [re]. As the addition in G was induced by that of A it follows that the

function a: G„-+A„ is a homomorphism for each re.

It follows from the definition of G„ that a simplex a: T[re]—vl is in Gn if

and only if ere*: r[re — l]—*A is the zero map for i^O, i.e. crmaps all generators

of r[re], with the possible exception of Cjven and C^e°, into zero. Consequently

dn(ao) = dn(o-(CNe„)) = i; (-l)«(<r(C*«0)

= o-(CNe°) = (o-e°)(CNen-i)

= (3„<r)(Cjven_i) = a(dno-),

i.e. the function a: G—*A is a chain map. It also follows that cr is completely

determined by a(CN*n)EAn. Hence a: G—>A is an isomorphism. Naturality

is easily verified.

The proof of Theorem (8.2) will be given in §11.
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Let X be a topological space. The homotopy groups of X are by definition

those of its simplicial singular complex A=77v(2, X) (see §4), and the singu-

lar homology groups of X are the homology groups of the chain complex

CnK. Let <p he a 0-simplex of A, let

h*:irn(K;d>)^Hn(CNK)

be the Hurewicz homomorphism and let

K:£(S)->77v(r, S 8 T)

be the natural transformation induced by the natural equivalence /3:S®r

HiP^r, dg). Then it can be shown that

Proposition (8.4). Commutativity holds in the diagram

■Kn(H?(T,K®T),+)

(kK)*/ « | +*

jS Tn(HV(T, A ®  r)

ir„(A; </>)<T ~ I a*

N. Hn(K ® T)

h*     ^v. ~ 1 e*

■H„(CnK)

where \j/ = (kK)<j>, i.e. the map kK: A—>/7^(r, K®T) induces (up to an equiva-

lence) the Hurewicz homomorphisms.

9. The A(7r, re). Let w be an abelian group and let re be an integer 5:0.

Denote by (w, n) the chain complex with ir in dimension re and 0 in the others.

Proposition (9.1). HV(T, (it, n))=K(ir, re), the Eilenberg-MacLane com-

plex of ir on level re (see [l ]).

Proof. A 5-simplex of A(7r, re) is an element of Zn(A [q], it), i.e. a chain map

r[g]—>(x, re) and hence a g-simplex of HV(T, (tt, re)) and conversely. It is

readily verified that this one-to-one correspondence commutes with all oper-

ators a.

Combination of Proposition (9.1) with Lemma (7.7) yields

Corollary (9.2). 7r„(A(x, re)) = v; iri(K(ir, re)) =0 for i^n.

Let A be a c.s.s. complex. Then combination of the equivalence

8: H(K ® T, (x, re)) -♦ 77(X, 27^(r, (tt, re))

with the equivalence c: K®T—>C?fK of Proposition 6.3 yield an equivalence

8': H(CNK, (x, re)) -> H(K, K(ir, re))

which expresses the well known fact that the elements of Zn(K; tt), i.e. the
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chain maps CnK—>(ir, re) are in one-to-one correspondence with the c.s.s.

maps A—>A(7r, n).

10. Two lemmas. We shall now give two lemmas which will be needed in

the proof of Theorem (8.2).

Let G be a c.s.s. abelian group and let o~i, • ■ ■ , anEG[n — l] be such that

o,,eJ'~1 = (Tj€* for 0<i<j. Let

4>n   =   <Tnnn~l,

<pk = akr\k~x — <f>k+itkink~1 + <t>k+i 0 < k < n

and define an w-simplex 4>(ai, • • • , an)EG[n] by

4>(oi,  ■  ■  • , (Tn)   = <£i-

Lemma (10.1). <p(<ri, ■ • • , o-„)ei = o-ifor i^O.

Lemma (10.2). LetTEG[n-l]. Then

^(rij'e1, • • • , Ti)Un) = tt\1 for 0 S i ?k n — 1.

Proof of Lemma (10.1). Clearly

4>ntn = ant}n~ltn = an,

4>kek = aktik~1ek — 4>k+itki)k~xtk + 4>k+itk = <rt.

If Kk gi, then

0*_ie' = cr*_ilj*-V - fc«*-y~V + 0te*

= (Ti-ia^V-2 - **«*e*-y-J + <*>*«'

= a,tk~1r]k~2 — o-jt*-1!?*-2 + <r,- = cr^.

Hence <p(<ri, • • • , 0-„)e'=#ie' = <ri for j?^0.

Proof of Lemma (10.2). If <pk+i = Trii ior some &, then

4>k = T7titkrjk-1 — d>k+iekr]k-1 + 4>k+i

= rr]itkrik~1 — Tr),tkr)k~1 + tt\% = Trf.

Hence it suffices to show that <pi+i=Trji ior all i. For i = n — l

4>n   =   T7Jn-1eV-1   =   T1JB_1.

Let

^„_, = re"-y-2,

^ = rey-1 - ^t+iey-1 + "At+i     for 0 < k < n - 1.

Then for i < re — 1

</>„ = n^v-1 = T£"-y-y = &,_y

and if «p*=^t_i97'for i+2<^g«, then
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<t>k-i = Tr)iek-1t)k~2 — <foe*_V~2 + 4>k

= (rek-2Vk-3 - ^.V-y-3 + ft-iW = tk-#l\

Hence

4>i+i = tj/V+V - 0;+2ei+y + <j>i+2

= T7)' — \pi+iriiei+1rii + ti+lV* = W-

Remark. In the proofs of the Lemmas (10.1) and (10.2) no use was made

of the fact that G is abelian. Hence both lemmas also hold in the nonabelian

case.

11. Proof of Theorem (8.2). Let G be a c.s.s. abelian group and let

H = HV(T, G). For each integer w^O define a function b: G[n]—>H[n] by

bcr = a~V dim o- = 0;

bo- = a~1(a- - <p(o-e\ • • • , ce")) + ^(crt1), • • • , b(<ren)) dim a > 0.

Clearly the function b: G[0]—>27[0] is an isomorphism because a is so. Now

suppose it has already been proved that the functions b: G[i]—*H[i] are iso-

morphisms for i<n and commute with all face and degeneracy operators in

dimension <re, then it must be shown that b = G[re] —>H[re] is an isomorphism

and that b commutes with all face and degeneracy operators in dimension

That b: G[re] —>27[re] is a homomorphism follows from the induction hy-

pothesis and the fact that the function <p only involves face and degeneracy

operators and therefore is additive.

We now first show that b commutes with all face operators in dimension

gw. It follows from Lemma (10.1) that for i^0:

(ba)ef = a~l(a - d>(o-tl, • • • , «"))<•* + <p(b(artl), • • • , b(aen))ti

= ar1^ — o-eO + b(atl") = b(o-e{).

Let <pi=4>(o-el, • • • , o-£"). Then it follows from the definition of b that

(b<t>iY° = 4>(.b(*el), ■■■ , b(*e»))e°.

Thus (bd>i)e° is obtained from ere1, ■ ■ ■ , ae" by application of the isomorphism

b: G[n — l]—*H[n — l] and operators e' and if. These operators can always be

rearranged in such a manner that first all operators e* are applied and then

all r]>. As in this way only simplices in dimension <re are involved, these oper-

ators can now be commuted with the isomorphism b (by induction hypoth-

esis). Arranging the operators e' and v' back again in their original order we

thus get

(&0i)6° = b(<j>(a-e\ • • • , «»)e°) = b(4>ie°).

Let \]/ = (i—<p(o-(.1, ■ ■ • , ff€"). Then in view of Lemma 10.1 ^£' = 0 for i^Q.

Hence
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(ty)e° = a~\l- - <K^e\ • • • , *«»))«• + 4>(b(W), • • • , 4(tfe»))e°

= a-^e0 - 0) + 0 = a-l(^e°)

= a-1^0 - ^e0*1, • • • , ^eV"1)) + 4>(b(^eV), ■ ■ ■ K^eV"1))

= 6(^«°).

Hence

(ba)e<> = (&(* + tfOJe" = (ty)e° + (^i)e0

= b(W) + bfat0) = i((* + *i)«°) = b(ae°).

We now show that b commutes with all degeneracy operators in dimen-

sion gre. Let rGG[»-l], then in view of the induction hypothesis

6(tij'V) = J(reJ'-y) = (&r)e'-y = (brfy'i' i <j — 1;

b(T7i't') = ir = (bT)rjiti i = j — 1,/;

i(TijV") = 6(r«V_1) = (ir)ey-1 = (&r)i?V i > /.

Consequently application of Lemma 10.2 yields for 0 ^i^n

bW)  =  a-^ - *(t*V,  ■ ■ ■ , T17V1)) + <t>(b(Tr,V), ■ ■  ■ , ft(n|V))

= a"1^ - T7/0 + <t>((bT)r,\\ • • • , (*r)ij<«»)) = (Jt)ij\

In order to show that 6: G[re]—>.£7[w] is an isomorphism consider a simplex

ff£G[«] such that &cr = 0. Then (ba)e' = b(o-e') =0. By the induction hypothe-

sis this implies <re' = 0. Hence

0 = ficr = o-'(<7 - 0(0, • ■ • , 0)) + 0(0, • • • , 0) = o-V

and because a^1 is an isomorphism this implies cr = 0 i.e. b: G[n]—*Il[n] is a

monomorphism. Now let r£//[»] and let

at = 6-1(t«*)j        P = «(T — <KT£l, • • • , ren)).

Then

r = a_1p + 4>(bai, • • ■ , ban)

= a~'(p + 4>(ait ■ ■ ■ , a„) — <£(<ri, • • • , an)) + <b(bau ■ ■ ■ , ba„)

=  Kp + ^C0"!;  -  -   ' ) "n)),

i.e. 6: G [re J —>i7 [re ] is also an epimorphism and is thus an isomorphism.

Naturality of b is now easily verified.

Appendix

12. The c.s.s. free abelian group generated by a c.s.s. complex. Define a

functor

FA : S -> c;v'
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as follows. Let AGS be an object. Then FAK[n] is the free abelian group

with a generator a for each <rGA [re] and (FAK)a is the homomorphism given

by

((FAK)a)a = ra.

FAK is called the c.s.s. free abelian group generated by A. For each c.s.s. map

/: A—>L a c.s.s. homomorphism FAf: FAK—+FAL is defined by

(FAj)i=To-

The functor FA is closely related to the functors 27T(r,    ) and Cn (or

equivalently ®Y). The relation is expressed by the following theorem.

Theorem (12.1). There exists a natural equivalence

d:FA(S,)-^Bv(T, CA-(S)).

Proof. For each object AGS define a c.s.s. homomorphism

d:FAK^Hv(T, CNK)

by

di = Cjv0<,

where </>„: A [re ] —>A is the unique map such that <p„a = aa lor all aGA [re]. The

naturality of d then is obvious. It is also clear that d is an isomorphism in

dimension 0. Now suppose it has already been proved that d is an isomor-

phism in dimension <re. Then it is sufficient to show that d is also an iso-

morphism in dimension re. Let D (resp. E) be the subgroup of FAK[n]

(resp. 7J(r[«], CnK)) generated by the degenerate simplices. Then Lemma

(10.2) and the additivity of <p imply

P E D (resp. E) if and only if p = ^(pe1, ■ • • , P«n)-

Combining this with the fact that d is an isomorphism in dimension re —1 we

get that d: D^>E is an isomorphism. It is easily seen that D is freely gener-

ated by those a for which o- is degenerate. Consequently FAK[n]=D-\-D,

where D is the free abelian group generated by elements ff—<p(ael, ■ ■ ■ , aen)

where a is nondegenerate. Similarly we get 2J(r[w], CnK) =E-f-a""1(C.vA)„.

It now follows from

d(i - <p(ae\ • • • , oV))(Cve„) = (CN<t>.)(CNt„) - d(<p(5t\ ■ • ■ , Btn))(CNtn)

= Cno- + 0 = Cffo-

where Cn-ct is the generator of C.vA, corresponding with the nondegenerate

simplex cr, that d: D-^a~~l(CNK)n is also an isomorphism and so is therefore

d: FAK[n]->H(Y[n], CNK).
Let X be a topological space, let K = IIV(2, X) (see §4) and let <pEK[0].
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Let again

K: ir„(K; d>) -> Hn(CNK)

be the Hurewicz homomorphism. Consider the (natural) map

f:K->FAK

defined by/<r = a, a E K.

Proposition (12.2). Commutativity holds in the diagram

t„(FAK; 4>)

f*/ ~  I 0*

y^ TTn(FAK)

rn(K;<f>)<^ « 1 ̂ *

^\ Tn(HV(V, CNK))

Zt*N. ~ I a*

Hn(CxK)

i.e. the map f: K—+FAK induces (up to a natural equivalence) the Hurewicz

homomorphisms.

Proof. Let »Gt„(Z; <b), vy^O and let aEv. If Cnv is the corresponding

generator of CnK, then CNcrEh*vEH„(CNK). Furthermore

$tfa = a — fa0 ■ ■ ■ j/"-1,

d$tfa = CNd>„ - (d$)r,° ■ ■ ■ v"-\

adcptfa = (CN4>„)(CNtn) — ((d$)r)° • ■ ■ v^^Ntn)

= Cwa — 0 = Cwa.

Hence

<z*<z*$*/* = «*•
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