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PREFACLE TO THIE SECOND EDITION

In the second (1970) impression of the first edition, some
typographical slips were corrected.  Still more are corrected in
the present seccond edition, and I trust the process is converging.
[ have also added a new section entitled "Notes™, and 1 hope these

miscellancous comments will be useful to readers.

I. Kaplansky

Chicago



PREFACE TO TIIE FIRST EDITION

These lecture notes combine three items previously available

[rom Chicago's Department of Mathematics: Theory of Fields,

Notes on Ring Theory, and [lomological Dimension of Rings and

Modules. I hope the material will be uselul to the mathematical
community and more convenient in the new [ormat.

A number of minor changes have been made; these are de-
scribed in the introductions that precede the three sections.

One point should be noted: the theorems are numbered con-
secutively within each section. Since there are no cross-references
between the sections, no confusion should result.

I trust the reader will not mind a lack of complete consistendy,
c.g., in Part Il the modules arc right and the mappings are placed;

on the right, while in Part IIT both get switched to the left.

[ am very grateful to Mr. Fred Flowers (or a [ine typing jé
and even more [or the many excellent suggestions he made durid

the typing.

1, Kaplansky

Chicago
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PART I. FIELDS

Introduction

These notes on [ields were written in the carly 1960's
alter I had lectured several times on Galois theory. One
objective I had in mind was to carry several topics through to a
reasonable depth ; another was to indicate how one actually goes
about computing field degrees and Galois groups.

The loundation of the subject (i.e. the mapping [rom sub-
[iclds to subgroups and vice versa) is set up in the context of an
absolutely general pair of [ields. In addition to the clarification
that normally accompanies such a generalization, there are use-
ful applications: to infinite algebraic extensions (§13), and to the
Galotis theory of differential equations (sce my Introduction to

Diflferential Algebra, Ilermann, 1957). There is also a logical

simplicity to the procedure: everything hinges on a pair of
estimates of [ield degrees and subgroup indices. One might de-
scribe it as a [urther step in the Dedekind-Artin lincarization

of Galois theory.



1. Ficld Extensions

Let K be any field and L a field containing K. Then L
can be thought of as a vector space over K. The dimension of this
vector space is called the dimension (or degree) of L over K and
written [L :K|.  We say that L is finite-dimensional or infinite-
dimensional over K according as [L K] is finite or infinite.

Suppose we have a "tower™ of three fields KC L C M.
Then three dimensions can be formed and they are connected by a

usecful relation.

THEOREM 1. Let K,L,M be ficlds with KC LC M.
Then [M:K] is finite ifand only if both [M:L] and [L:K] dF€

finite and in that case |[M:K] = |[M:L][L:K].

Proof. Suppose first that [M:K] is finite. Since L is a
subspace of M (as a vector space over K), [L IK| is also finite.
Any finite set that spans M over K, for instance a basis, will
also span M over L; hence [M:L] is also finite.

To complete the proof of the thecorem we assume that
[L:K] =m, [M:L] =n and we prove that [M:K] is finite and

equals mmn. Let u TN be a basis of M over L and

1
vi, v o2 basis of L over K. We claim that the mn cle-

ments u,vj (i= l,eae.nn;j = 1,eay,m) form a basis of M over K.
i

We must show (1)they span M, (2) they are lincarly independent

over K.

(1) Let z be any clement of M. We can write z = Z b.u.
11

with bi in L. [Fach b. can in turn be written b. = Zc..v. with
1]

c.. in K. This yields z =Z ¢, u v, , this last sum bcing over
1 113
both iandj (i— 1,...,n; j = ly.e.y, m).
(2) Suppose Z ¢ u, v, =0 where cach c¢.. is in K and the
1] 1 ] 1)
sum is over both i and j. We must show ¢, =0, Write bi=2c' v,
1 ij
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Then b, is in L and T biui = 0. Since the u*s arc lincarly inde-
i

pendent over L, cach bi is 0. i.e., Z cijvj = 0. Since the v's

arc lincarly independent over K, we conclude that ciJ =0.
Let M be any field and S a subsct of M. There is clearly

a unique smallest subfield of M containing S. namely the interscce-

tion of all subficlds of M which contain §. We arc especially
interested in this construction in the case where S consists of a
subficld K of M together with onc additional element u in M.
We then write K(u) for the ficld in question.

We distinguish two cases.

Case I. There exists no polynomial [ with coefficients in K
(other than the polynomial identically zero) such that f(u) ® 0. In
this casec we say that u is iranscendental over K. It is evident
that K(u) is the ficld of all rational functions in u (quoticnts of
polynomials in u) with coefficients in K, where u behaves exactly
like an indeterminate over K.

Case I. There does exist a polynomial f with cocfficients

in K such that f{{(u) = 0. Inthis case we say that u is algebraic

over K. The main facts concerning K(u) are given in the follow-

ing theorem.

TIIEOREM 2. Let K be a ficld, u an clement of a larger

ficld, and supposc that u is algebraic over K. Let f bhe a monic

polynomial with cocfficients in K afleast degree sneh that f(u) =0,

and lct this minimal degree _be n. Then:

(a) [ is unique,
(b) © isirreducible over K,

2 n-1 . . .
(¢) l.uu ,.au form a vector space basis of K(u)

over K,

(d) [K(u) K] =n,
(e) A polynomial g with coefficients in K satisfies g(u) =0

if and only i’ g is a muliiple of [.
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Proof. (a) If £ is another monic polynomial of degree n
satisfying f (u)= 0, write f1 = f"fo- Then fi(u) = () and 1‘1 has
degree less than no I 1‘1 # 0, this contradicts our minimal choice
of [ (of course a harmless multiplication by an clement of K will
make , monic). Ilence f, =0, [=f .

1 1 o

(b) Il t= fof‘l where f ,f‘1 arc polynomials of lower de-

gree with coeffictents in K, then either [ or fi has u as a root

and again we have contradicted the minim:l)l chotce of f.

(¢) The existence of a lincar relation with coefficients in K
among 1,u, ..., un_l implies g(u) = 0 with g a polynomial of degrec
less than n. llence 1.,u, ... ,un_l arc lincarly independent over K.

B

We must further show that they span K(u). Write T for the vector
subspace of K(u) spanned by 1.u, ...,un_l. If we show that T is
a ticld it will follow that T = K(u). First we note that T contains
every power uk of u. This is truc at leastup to k =n-1. Supposc

it is truc for k-1:
ukhi n-1

(1) =a()+a1u+ ...lan_lu .
. n
Multiply (1)by u and recall that v isa lincar combination of
n-1
L% as a conscquence of the equation f(u)= 0. We conclude

that uk is in T. It is now clear that T 1is a ring (indced an tntegral

domain since it is contained in the field K(u)). We must show that

any non-zcro clement z in T has an inverse in T. We can write

z = h(u) where h is a non-zcro polynomial of degree less than n.

Since f is trreducible and h has degree smaller than the degree

of 1. the greatest common divisor of f and h must be 1. Ilence

there exist polynomials r and s suchthat f t sh = 1. Sectthe

variable equal to u in this equation. The result is h(u)s(u) = 1

and thus s ( ~ s the desired inverse of z = h(u). “:";
(d) is an immediate corollary of (¢). -
(ey Il g isnot a multiple of { then (since [ is irreducible :

the greatest common divisor of { and g is 1, and there existply




nomials r and s with rf £ sg= 1. Sctting the variable cqual to u

yiclds a contradiction.

We shall say that a ficld L. containing K is algebraic over
K if every clement of L is algebraic over K: otherwise we say
that L 1is transcendental over K. If L is a finite-dimensional
extension of K it is obvious that L is algebraic over K : if
[L:K] =n and ue L then any nt 1 powers of u arce lincarly
dependent over K and this yiclds a polynomial satisficed by u. It
is possible for infinite-dimensional extensions of a fiecld K to be
algebraic over K.

We shall often describe K(u) as the field obtained by ad-
joining u to K note that so far such adjunction is being discussed
only when u is handed to us as an clement or a larger ficeld con-
taining K. The dimension of K(u) over K will be called the
degree of u over K, and the polynomial  of Thcorem 2.2 will
be called the irreducible polynomial for v Over K. Il « is an
explicitly given clement over an cxplicit ficld (usually the rational
numbers) the problem of finding the degree of U can in principle
be solved by locating the irreducible polynomial for u. Occasion-
ally there are subtler methods that work, and some of these will
be developed later in this chapter.

Let L and M be two subficlds of a ficld N.  There is a
unique smallest subficld of N containing L and M. namely the
interscection of all subficlds containing L and M. We write
L u M for this ficld. Notc that L M contains the sct-thcorctic
union of L and M but it is usually larger (infact, Lo M is thc
set-theoretic union only in the trivial case where one of L, M con-
tains the other). If the dimensions of L and M over an underlying
ficld K arc known wec can get some partial information on the di-

mensionot L M over K



TIIEOREM 3. Let L. M be subficlds of a field N and sup-

pose that L. and M both contain the field K Write [I.: K| = m,

[M: K] =n, [\ M:K]=1

(a) t is finite ifand only if both m and n arec finite

(b) In that case t is a multiple of m and of n, 4 t €mn.

(¢) If m and n arc relatively prime, t = mn.

Proof. If t is finite, so arec m and n, since L and M
arce subfields of L. UM. We assume henceforth that m and n arc
finite. We shall prove t is finite and at most mn by induction
on n. The case n= 1 (M= K) being trivial, we assume n > [.
Let u be an clement in M but not in K. Write r for the degrec
of u over K and s for the degree of u over L. We have s<r,
for the irreducible polynomial for u over K is a multiple of the
irreducible polynomial for u over L. By Theorem 1. [L(u):K]
=ms and hence by Theorem 1 again, [L(u):K(u)] = ms/r. Also
[M:K(u)] =n/r by Theorem 1. We apply our inductive assump-
tion to the fields L(u) and M over K(u), and deduce
[L(u)U M K(u)] £ mns/r 2 < mn/r. But L(u) UM ecvidently is
the same field as L UM. llence finally

[L UMK ]|=[L UM KW)][K(u):K]| £ (mn/r)r = mn.

We have now proved parts (a) and (b) except for the state-
ment that m and n divide t; but this is immediate from
Theorem 1. Part (c¢)1s an easy purcly number-theoretic conse-
quence of (b).

The union M UN of two ficlds assumes a more explicit
form when M and N have the form M = K(u), N = K(v). We then
write MU N = K(u.v). [t is useful to observe that K(u.v) may be
thought of in three ways: -

(I) the smallest subficld (of the given larger field) containing K. u,
and v; (2)the result of adjoining v to K(u); (3) the result of ad-

joining u to K(v).
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Exercises

1. If [L:K] 1is prime, prove that there are no ficlds
properly between K and L.

2. If the degree of u over K is odd, prove that K(u)—K(u2

3. Let u be a root ofthe irreducible polynomial xn— a
Over K and suppose that m divides n. Prove that the degree of
o™ Over K is n/m. What is the irreducible polynomial for u™
“Over K2

4, Let L be a ficld algebraic over K and T an integral
domain containing K and contained in L . Provethat T is a ficld.

5. Let L.M be two ficlds lying between K and N. Let
T be the set of all sums Z?y.lz.1 for y.1 ¢ L, z. ¢ M.

(a) Provethat T is an integral domain,

(b) Prove that L U M is the quotient ficld of T,

(¢) If L and M arec algebraic over K then T=L UM and
is algebraic over K.

6. Lect uand v be algebraic over K, of degrees m and n
respectively. Show that u has degree m over K(v) il and only
if v has degree n over K(u), and that both statements hold if m
and n are relatively prime.

7. Supposc that M and N arec finite-dimensional over K
and [M UN: K| = [M:K][N:K]. Provethat MA N = K. Prove that
the converse holds if [M: K] or [N: K] is 2. Give an example where
MA N =K. [M:K] =[N:K] =3, but [Mu N:K]< 9. (Ilint take a

real and a non-real cube root of 2).
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2. Ruler and compass constructions

We shall indicate brictly in this section how Theorem 1
suffices to show the impossibility of the classical ruler and com-
pass constructions.

To do this, we must translate the geometric problem into
algebra. We take the point of view of analytic geometry, labelling
the points of the I<uclidean plance with ordered pairs of recal num-
bers.  We take it as our starting point that all points with integral
coordinates arc in our possession.  We are then allowed to per-
form ruler and compass constructions to acquire new points.  Apy
point obtainable this way we may call constructible.  We call the
rcal number a constructible if the point (a,0) is constructible.
Iividently (a,b) is a constructible point if and only it a and b arec
constructible numbers.

The ruler and compass constructions that are permitted may
be set forth carctully as follows:

(1) Given four distinct points A, B, C, D such that AB and
CD arc distinct non-parallel lines we are allowed to acquire the
point of intersection of AB and CD.

(2) Given distinet points A,B  and distinct points C,D such
that the circele I with center A and radius AB mecets CD, we arc
allowed to acquire the points of interscection of I' and CD. (The
casc where two interscecting circles are drawn can be reduced to (1)
and (2). )

Now supposc the coordinates of the points A, B,C.D lic ina
subficld K of the ficld of rcal numbers. Then simple arguments
from analytic gcometry show that in casce (1)the coordinates of the
new point lic in K, while in case (2) the coordinates of the new
point lic cither in K or in K(\/i) where a is a positive number

in K. It follows that any constructible number u lies in a sub-
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ficld Kn of the real numbers which is the end product of a scrics
ol adjunctions
ationals = aC K
Rationals KOC Ki C C n
with cach Ki cqual to Ki_i(’da.), a. a positive number in Ki-1 .
By iterated use of Theorem 1, Kn:KO] is a power of 2 ; and
then by another application of Theorem 1, [K(u):K ] is a power

of 2. We have proved

TIHEOREM 4.  Any constructible real number is algebraic

Over the rational numbers, and its degree over the rational num-

bers is a power of two.

It is now a simple matter to demolish the three classical
problems on ruler and compass constructions.

(1) Squaring the circle.  This mecans constructing .

Since w 1is not cven algebraic over the rational numbers (this is a
hard thecorem!) the question of degree does not cven enter.

1/

cube root of 2) is to be constructed.  Since x3 = 2 is the irreduc-

21/3 Z1/3

s has degree 3 over the rationals

(2) Duplication of the cube.  The number 2 3 (the real

ible polynomial for
and is not constructible.

(3) Trisection of angles.  Some angles (c. g. 900) can be

trisccted by ruler and compass.  We cxhibit onc angle, 600, that
cannot be trisected by ruler and compass. The question is equiva-
lent to the constructibility of cos 200 or u=2cos 200. From the
trigonometric identity cos30 = 4cos3 ®=3cos® we deduce

u3 " 3u- 1= 0. Since the polynomial ax3 = 3x= 1 is irreducible
over the rational numbers, it follows that u has degree 3 and is

not constructible.
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3. Foundations of Galois Theory

It was Galois's remarkable discovery that many questions
concerning a ficeld are best studied by transforming them into group-
theoretical questions in the group of automorphisms of the field.
Usually we are interested in the structure of a field M relative to
a subficld K and so it is natural to form the relative group of
automorphisms, consisting of those automorphisms of M leaving
every clement of K fixed. We shall mostly deal with the case
where Mis finite-dimensional over K, but it is interesting and
enlightening 1o push as far as possible the gencral case where K

and M arc absolutely arbitrary.

DEFINITION. Let M be any field, K any subficld. The
Galois group of M over K is the group of all automorphisms of
M that leave every clement of K fixed (in brief: automorphisms

of M/K).

In this definition we are taking for granted the evident fact
that the automorphisms of M/K do form a group (a subgroup of

the full group of automorphisms of M).

Lxamples. 1. If M =K. the Galois group consists just of the
identity.

2. K = reals, M = complexes. The Galois group is of order
two, consisting of the identity and complex conjugation.

3. K = rationals, M= K{( '\/-2) Again the Galois group is of
order two.

4. K

rationals, M = K(u). u the rcal cube root of 2. An
automorphism of M is determined by what it does to u, and u
must be sent into some root of x3 = 2. But the other two roots of

x3=2 are non-real, and M consists just of real numbers. [lence

the Galois group of M/K is the identity. This simple example
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shows that the Galois group of M/K  can be the identity even when
M # K. Sce excrcise 7 for an example where M is "much bigger

than K and still the Galois group is the identity.

Let M be any field, K any subficld, G the Galois group of
M over K. We proceed to set up the fundamental correspondence
between subgroups of G and ficlds lying between K and M. Let
L bec any intermediate ficld. We define L' (manifestly a subgroup
of () to be the set of automorphisms of M leaving cvery element
of L fixed. Note that L' is simply the Galois group of M over L.
Let IT be any subgroup of G. We define IT (manifestly a field
between K and M) to be the set of all elements of M left fixed by
every automorphism in IL It is natural to call IT the fixed sub-
field of M under II. Pictures such as in Figure 1 are helpful in

visualizing the two maps.

M I M 1
U M U M
L ————> L' I ——1
U M U N
K G K G

Figure 1

ITere (and throughout) we are simply writing 1 for the identity sub-
group of G.

Let us try out the priming maps on the four corners of the dia-
gram in Figure 1. Inthree cases the result is evident and fits the
picture: =1, 1t =M, K'= G, But it is not necessarily the case
that G!'= K. G' will be the ficld (say K ) consisting of all elements
of M left fixed by any automorphism fixing K clementwise, and
Ko may be properly larger than K. For instance in Example 4

above Ko is actually all of M.
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In the tavorable case where KO is equal to K we shall say
that M is normal over K. Let us repeat this important defini-

tion in different words: M is normal over K il for any u inM

but not in K there exists an automorphism of M leaving cvery

clement of K fixed but actually moving u. If we arc given a

field M which is not normal over K, we shall often replace the
base ficld by the larger ficld Ko (for it is evident that M is
normal over Ko; a genceralization of this fact will be proved in a
moment).

Let us change our notation for the big ficld from M o N,
lcaving room for two intermediate ficlds L and M. We write 11
and J for two typical subgroups of G, the Galois group of N ove
K. As an immediate consequence of the definition of the priming

operation we have:

(2) L C M implies I!' O M' ; JC I implies J'D II'.

We next contemplate the result of priming twice. It is obvious that
(3) L" DL, H"DH,.

It may well happen that the field L" is strictly larger than L.
Indeed the assertion K" = K is just another way ol saying that N
is normal over K. At any ratec we wish to single out the ficlds

for which L = L" and we give them a name: an intermediate ficld

or subgroup will be called closed if it is equal to its double prime.

The double prime of any object will be called its closure.

We push onc step further still, examining the triple prime.
It turns out that nothing ncw is obtained. Indeced it is a purcly
formal conscquence of (2) and {3) that L'=1L". First, LML’
by (3) applied to L'. Then start with L" D L and apply (2), ob-
taining L®C L. Thus L™ = L! for any infermediate field L,
and similarly II" =II' for any subgroup II In short, any primed

object is closed.
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If we sclect any closed intermediate field L and pass to L'
We get a closed subgroup. Priming this closed subgroup rcturns
us to L. The same thing happens when we take a closed subgroup
and prime twice. We have proved:

THEOREM 5. Lef K and N be any fields, KC N, axd G the

the Galois group of N/K. Then the priming operation sets up a

onc-to-one correspondence between the closed subgroups of G

and the closed ficlds lying between K and N,

Theorem 5 is virtually uscless until we collect some informa-
tion that can tell us which ficlds or subgroups are closed. In the
next two thcorems we prove two estimates on dimensions and these
cnable us to prove that closure is at any rate stable under "finite

increcases. ®

THEOREM 6, Let KC LC MCN pe fields with [M: L]=n
< ., Then [L'tM!']<n,

PRroof  We argue by induction on n, the case n = 1 being
trivial. If there exists a ficld Lo properly between L and M,
then we know [L': Li] < (L,tL] and |L': M| < [M: LO]. Since
relative field dimensions and group indices arc both multipli-
cative we obtain [L" MI| € [M: L]. We may therefore assume
that there are no fields between L and M. Necessarily M has
the form L(u). Write f [orthe irreducible polynomial for u
over L : [ has degree n. -

Consider a right coset € of M' in L'. It has the form
C =M'T for some T in L'. Since cvery automorphism in M'
lcaves u fixed, the entire cosct € has the same effect on u,
Bending u into uT. If Co = M'TO is a sccond right cosct dis-
tinct from C, then uT, must be different from uT. For il
u'I‘O e uT, then TOT"1 lecaves u fixed, hence lecaves M = L(u)

*clementwisce fixed, hence lies in M' ; but then M'TO = MT .
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Note that cach uT is a root of [. for T leaves the coellicients
of [ [ixed. Ilence the number of right cosets of M in L' is at
most equal to the number of roots of . which in turn is at most n.

TIIEOREM 7. Let G be the Galois group of N/K_. Let
H D J be subgroups of G WIth [11: 11=n <. Then[J:1r] <n.

Riegede Lect C=JT(T ¢ II) be a right cosetof J in IL Let
x be any element in J'. Then x is left fixed by any automorph-,
ism in J. It follows that x is sent into xT by any auto-
morphism in ', and we can unambiguously write xC=xT and
speak of applying € to any element of J'. We shall do so.in the
prool that [ollows.

We suppose that on the contrary [J:II'] >n. Pick

LYEREEF S in J' lincarly independent over II.  Let
n
Cl' ...,(fn denote the right cosets of J in I We form the
cquations
a(uC)"‘u,,(u_,(‘)'l'..._I_ -
SN anpilunC) =0
+ PR =
ai(uicz) dz(uz( 2) ann + an+1(\1n+1cz) 0
(4)

al(uiCn) *+ a2ti2Cn) T ... + antl(untl c)j=o0.

We regard these as n equations [or the nt1l unknowns
ai,az,.. TN All the cocelficients lie in the field N and so
there exists in N a non-trivial solution (i.e. a solution where
not all the a's are 0). Among all such solutions pick one with
as many zeros as possible; by a harmless change of notation we

may assume that this solution has the form
ai, ...,ar,O,. s, 0

where cach a. is not zero. We may also assume a1 =1 (multi-
i

-1
ply by a, ). It is not possible that all the a's lic in II'; for
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one of the cosets, say Ci’ is J itsell, and in the [irst of equa-
tions (4) we have uiC1 = u. so that the u's would be lincarly

dependent over I Suppose for defliniteness that a, is not in IT"

Then there is some automorphism S in Il such thu‘I a,)S;‘ a,
Apply S 1o the equations (4);the result is T (aiS)(uiCjS)_ 2 ()
(= 1,. «..0n11), DBut cis, e nS arc simply a permutation of
the cosets Cl' .. .,Cn ; hence the new equations are a permuta-
tion of the old and l.aZS, v my a._r_S, 0,. .0 is also a solution ol (4).
Subtracting the two solutions yields a solution with more zeros,

non-trivial since a2 - aZS # 0. This contradiction proves the

theorem.

THEOREM 8. (a) Let KC LC MC N be fields. Assume L
is closed and that [M:L] =n < oo, Then M is also closed; more-

over [L' M'] =n.
(b) Let HC J be subgroups of the Galois group of N/K.

Assume that IT is closed and that [J:II] = n< oo, Then J s also

closed; morcover [II':J'] =n.

Prool. (a) By Theorems 6 and 7,
(5) [IM": L"] < [L'": M'] € [M:L]=n.
By hypothesis, L" = L. I M" contains M properly, then the
left entry in (5) is larger than n, a contradiction. Ilence M is

dosed. Morcover [L"M'] is trapped in the middle of (5) and

must also be n.

(b) The prool is essentially the same.
We record an immediate corollary of Theorem §.

COROLLARY 9. Let G be the Galois group of M over K.

Then:

(a) All linite subgroups of G are closed,
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(b) “ M is normal over K and L is an intermediate field

with [L:K] finite then M is normal over L.

We turn to the sctup of classical Galois theory, with M
finite-dimensional and normal over K and G the Galois group,
By Theorem 8 or Corollary 9 all intermediate ficlds arc closed

and all subgroups arc closed. Ilence:

TIIEOREM 10. (Fundamental theorem of Galois theory] Let

M be a normal finite-dimensional extension of K, G the Galois

group of M/K. Then there is a onc-10-one correspondence be-

tween the subgroups of G and the fields between K and M,

implemented by the priming operation. In this correspondence

the relative dimension of two intermediate ficlds equals the rela-

tive index of the corresponding subgroups. In particular, the order

al G is cqual to [M: K]

To conclude this scection we mention the point of view stressed
by Artin: 1taking the top ficld as the fundamental object and con-
structing the bottom field as the fixed subficeld under a finite group
of automorphisms. The proof is casy (it the results above are

used) and we leave it 1o the reader.

TIIEOREM t. Let G be a finite group of automorphisms of

a ficld M and let K be the fixed subficld of M URder G. Then

M is normal and finite-dimensional over K and the full Galois

group of M/K isc.

A nicc illustration is to take M = F(xl’ . ,xn) where F is
any ficld and the x's are indeterminates, and G is the group of
automorphisms of M obtained by permuting the x's (G is of
course isomorphic 1o the symmetric group Sn on n letters).
The fixed field K is the field of all symmetric rational functions

in the x's with coefficients in F. We thus exhibit, a little arti-
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ficially, a pair of ficlds having Sn as Galois group. Since any
finite group is isomorphic to a subgroup of some Sn' we can

further exhibit any finite group as a Galois group.

LExercises

1. Let KC LC M be ficlds with L normal over K,
M normal over L. Assume that any automorphism of L/K

can be extended to M. Prove that M is normal over K.

2. In the notation of this section, prove that (L MY
=L' M ;AU =1 (M J Extend to arbitrary (even in-
finite) unions. Ilence, or otherwise, show that any intersection

of closed ficlds or subgroups is closed.

3. Let K be any infinite field, M = K(x) where x is an
.indeterminate. Prove that M is normal over K. (Ilint: the
mapping x =~ xta, a ¢ K, induces an automorphism of M/K. Ir
the rational function (/g lies in the fixed field let h(x.y)
= ((x)g(x1y)>r g(x)(xty). Arguc that h vanishes for every x
and y. hence is identically 0 (this uses the assumption that K

is infinite). Deduce that /g is a constant.)

4. Ilet K be any fiecld, M = K(x) where x is an indeter-
minate. Let L be an intermediate field other than K. Prove
that M is finite-dimensional over L. (If r = /g ¢ L, the cle-

ment x satisfies the equation rg(x) = f{x) = 0).

5. Let K be an infinite field, M = K(x) with x an indeter-
minate, and G the Galois group of M over K. Prove that the

only closed subgroups of G are its finite subgroups and G itself.

6. Let K be the field of rational numbers, M = K(x) with
2
x an indecterminate. Prove that the field K(x ) is closed but the

3
field K(x") is not closed.
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7. Let K be the field of rational numbers, M the field
of real numbers.  Show that the Galois group of MK is the
identity. (Note that an automorphism preserves order and trap

a given real number between suitable rational numbers).

8. Let KC LC M be fields with [L K| =n.  Show that
there are at most n different isomorphisms of L/K into a sub-
field of M, an isomorphism of [/K being onc that leaves K
clementwise fixed. (Arguc as in Theorem 6. If L = K(u). note
that u must go into another root of its irreducible polynomial.

In the general casce insert intermediate ficlds).

9. Let KCLCM be ficlds with M normal over K
and |L:K]=n <c¢. Prove that any isomorphism of L/K in-
to a subfield of M can be extended to an automorphism of M.
(Note that L' has index n and that its cosets correspond o the

distinct actions on L of automorphisms of M. Use excrcise 8).
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4. Normality and Stability

In studying a field L lying between K and M we have con-
-centrated atiention on the property of being closed. that is, of M
being normal over L. We have not asked when it happens that L
is normal over K. Nor have we asked which ficlds, in the cor-
respondence of Theorem 10, arc paired with normal subgroups of G.
It is of course not a coincidence that the same word "normal” is
used in both contexts. But an investigation without any finiteness
assumptions reveals that normality of a subgroup is instead paired
with a stronger property of an intermediate ficld which we shall call
stability. Of course in the finite-dimensional case it will turn out

that stability of L and normality of L over K coincide.

DEFINITION. Let KCLCM be ficlds. We saythat L
is stable (relative to K and M) if every automorphism of M/K

sends L into itself.

In this definition we have required only that an automorphism
T of MK send L into itself, but actually it is automatic that T
sends [ onto itself. For there is an inverse automorphism T
which (if L is stable) must also send L into itself. Then for

-1 -
any X ¢ L we have xT e L, xT 1']." =x sothat T maps onto L.

TIIEOREM 12, Iet G be the Galois group of M/K.

(a) If L is a stable intermediate field, then L' is a nor-

mal subgroup of G.

(b) If IT is a normal subgroup of G, then IT' is a stable

intermediate ficld.

Proof. (a) Given S in G and T in L' we must show that
- . . . .
STS lies in L'. That is, given x in L we must prove

-1 . . . L .
«XSTS ~ = x or its cquivalent xST = xS. But this is true since x

liecs in L and L 1is stable, whence x8 lies in L.
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(b) The proof is essentially the same, rcad backwards.
Given any x in II' and S in G we must prove xS in II.
That is, we must show xST = xS for T in IL or its equiva-
Ient xSTS-1 = x. But this is true since x is in II' and STS"1

is in IL

COROLLARY 13. The closure of a normal subgroup is nor-

mal; the closure of a stable intermediate field is stable.

Proof. In cach casc apply Theorem 12 twice.

TIIEOREM 14, If KC LC M, M isnormal over K, ad
L. is stable (relative to K and M), then L is normal over K.

Proof. Given an clement u in L but not in K we must
find an automorphism of L/K that moves u. We know there is
an automorphism T of M/K such that uT #u. Since L is
stable T induces an automorphism of L when restricted to L,

and this restriction fulfills the requirements.

TIIEOREM I5. Suppose M is normal over K and [ is an

irrecducible polynomial with cocefficients in K having a root u 1Il

M. Then r ractors over M into distinet linear factors.

Proof. Let u = u, Upyensour be all the distinct images
of u under automorphisms of M/K. [Fach w is a root of f and
so we have r<n where n is the degree of [ Write

a(x) = (x"ui). «e(x~ur ). The coefficients of g arc a priori only
known to'be in M. But any automorphism of M/K merely per-

mutes the u's.  Ilence the coefficients of g are invariant under

every automorphism of M/K and., since M is normal over K,

they must liec in K. Now { is the irreducible polynomial for u

over K and g is another polynomial over K with u as a root.
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By Theorem 2(e), f divides g Since the degree of g is at most

equal to that of f. we deduce g=/[ It follows that f. like g,

o

factors over M into a product of distinet linecar factors.

TIIEOREM 16. Let KC LC M be fields, and assume

that- L 1s normal over K and algebraic over K. Then L is

stable.

Proaf. Given uin L and an automorphism T of M/K
we must prove uT ¢ L. Now u is algebraic over K: let [ be
its irreducible polynomial over K. By Theorem 15, { factors

completely in L. Since uT is a root of [. it must be in L.

TIIEOREM 17. Let G be the Galois group of M/K, and

led L be a stable intermediate ficld. Then G/L' is isomorphic

to the group of all automorphisms of L/K 1that are extendible to M.

Proof  (Note that by Theorem 12, L' is a normal subgroup
of G, so that G/L' is meaningful). Any automorphism T of
M/K induces an automorphism of L/K by restricting T to L.
This yields a homomorphism from G into the Galois group of
L/K. It is clear that the kernel is L' and the image is the set of

all automorphisms of L/K that can be extended to M

Let us return to the classical case where M is finite-
dimensional and normal over K. By Theorems 14 and 16 stabil-
ity of an intermediate ficld coincides with normality of L over K:
furthermore G/L' is the full Galois group of L/K. This follows
from the more general result in Exercise 9 of section 3; however'
it suffices here to note that [G: L'] = [L: K] so that the order of
G/L"  is the same as the order of the Galois group of L/K.  We

Summarize:
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Supplement to Theorem 10.  In the correspondence a field

L is normal over K if and only if the corresponding subgroup 11

is normal in G: in this casc (/11 is the Galois group of L/K.

Iixercisces

1. Let G be the Galois group of N/K, L and M intermedi-
ate ficlds, Il and J subgroups of G.

-1
(a)y ¥ M=LT for Te¢ G, then TM'T  =1L1'.

(b) If oHT ' 3. then 1T = )T,

2. Let G be the Galois group of MK and L a closed
intermediate ftield. Show that the normalizer of L' in G is the

sct of all automorphisms of M/K that map L onto itself.

3. Give an example where KC LC M, M is normal over
K, L is closed and normal over K, and yet L is not stable.
(Take K infinite, M = K(x,y) with x and y indcterminates, and

L = K(x).)
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5. Splitting Ficlds

We have established the foundations of Galois theory but we
still lack a constructive way of exhibiting fields which are normal
over a given field K. To supply this we introduce the concept of
a splitting ficld.

First we neced two basic thecorems on the existence and unique-
ness of the field obtained by adjoining a root of an irreducible poly-
nomial. We shall omit the proofs, but we remark that there are
two possible styles for the proof.  The first is eclementary and ex-
plicit:  for instancc the ficld K(u) is decfined by inventing a sym-
bol u, taking K(u) to be a vector space with basis  1.u, «. .,un_1 ,
and defining multiplication by suppressing multiples of . Full
verification of all the facts is tedious. The sccond (more sophisti-
cated) method is to detfine K(u) as the factbr ring of the polynomial
ring K[x] by the principal ideal (I). This method pushes the

tedious details back to the gencral abstract theory of factor rings.

TIHEORIEM 18. Let  be an irreducible polynomial with

coefticients in a field K. Then there exists a field containing K

and a root of f.

TIIEOREM 19, Let K,KO be ficlds and S an isomorphism

af K onto Ko' Let f be an irreducible polynomial with coctti-

cients in K, [0 the corresponding polynomial with coctficients in

Ko' Let L = K(u), LO = Ko(uo), where u and u0  are roots of

fand f0 respectively. Then there exists an isomorphism of L

eata. Lo which coincides with S onto K and sends u inl()\.l0 .

DEFINITION  Let § be a polynomial with coefficients in K.
We say that M is a splitting ficld of  over K if [ factors com-
pletely in M and M- K(u‘, .. ,u ) where the u's arc all the

roots of f.
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When there is no need to call attention to the polynomial [
we shall simply say that M is a splitting field over K. In
Theorem 25 we shall give a criterion [or splitting [ields that is
independent of the choice of any polynomial.

Note that by Theorem { any splitting field over K is finite-

dimensional over K.

TIIEOREM 20. Let f be any polynomial with coeflicients

in K. Then there exists a licld M which is a splitting field of

f over K.

Prool. We arguc by induction on the degree of [0 I[ f is
linecar, M =K will do; more genecrally it f factors completely
in K, M =K. Let, then, g be anirreducible factor of [ of
degree greater than one. By Theorem 18 construct K(u) with u
a root of g Then f = (x-u)h, h a polynomial with coellicients
in K(u). It sulflices to take M to be a splitting licld of h over

K(u) (sce Exercise 11)

TIIEOREM 21.  Let K,K0 be ficlds and S an isomorphism

aof K onto KO .Let f be a polynomial with coellicients in K,

f0  the corresponding polynomial with coellicients in K . Let
o | —=

M be a splitting ficld of [ over K, M a splitting [icld of f

over Ko , Then S can be extended to an isomorphism of M

onto M_ .,
—— f'e)

Prool. We make an induction on [M:K]. If M =K, then f
factors completely in K, whence f [lactors completely in K
and M =K . We may assume thuot f has an irreducible fuc‘t)or
g of dc(:)gree()greuter than one; let g be the corresponding ir-
reducible lactor of f over K LLet u (resp. u ) be a root

o
of g (resp. 90) in M (resp. M ). By Theorem 19 the iso-

morphism 8§ can be extended to an isomorphism of K(u) onto
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KO(L'[O); we continue to write 8§ for the extended map. Now M
4# a Splitting ficld of f over K(u) and Mo is a splitting field of
t Over Ko(uo) == sce Excrcise 10. Since [M: K(u)] < [M:K]
OUr inductive assumption shows that 8§ can be extended to an iso-

Inorphism of M onto 1y, .

At this point in the subject we must cope with a special
difficulty that occurs only for characteristic p # 0 = the possi-
bility that an irreducible polynomial may (in a larger [(ield) have
a repeated root.  As a technical help we introduce, purely

formally, the derivative of a polynomial. If = Eaixl is a poly-

nomiatwith cocllicients in K., we deline ft=3 ia;xl . By
routine computation we can verily that the usual rules [or deriva-
tives hold: (fig) =1 +g , (fg) —[g+fg ,(cm) =c[ for ¢
in K.

TIIEOREM 22. Let [ be a polynomial with coclflicients in

K, a an clement in K. Then the [ollowing statements arc cquiv-

alent: (x-a.)z divides . x-a divides both f and .

2 2

Proofl. If f=(x-a)’g, then [ = (x-a) g t 2(x-a)g is
divisible by x=a. Suppose (=% (x=a)h and  =h t (x-a)h' is
divisible by x-a. Then x-a divides h, whence (x—a)2

divides f.

TIHHEOREM 23. Let f be an irreducible polynomial with

coellicients in K. The [ollowing three statements are equivalent:

(1) In every splitting field of [ over K, t [lactors into

distinct linear lactors,

(2) In _some splitting field of  over K,  [actors into

distinct lincar lactors,

3y rgo.
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Proof. (1) implies (2) is obvious.

(2) implies (3).  Suppose on the contrary that [" = 0. Then
forany root a of f, x-a divides both [ and f. Ilence
(Theorem 22), (x-ai2 divides [. a contradiction.

(3) implies (1). If on the contrary [ has a repecated factor
(x-a)2 in the splitting field, then x - a divides both [ and f£!
But { is irreducible over K and [' is a genuine polynomial of
lower degree. llence [and f' have the greatest common divisor 1
and rf £ sf" =1 for suitable polynomials r.,s with cocfficients

in K. Onsctting x =a we get a contradiction.

When can it happen that 0 is the zero polynomial ?  If
[=2 a_xl is not merely a constant, then [ = Z ia.xl_1 will have
in it genuine terms unless cach term is annulled by the insertion
of the coefficient i. So the characteristic must be p # 0 and
cach 1imust be divisible by p. In other words: f must be a

p

polynomial in x" .

DEFINITION. Let [ be an irreducible polynomial over K.
We say that [ is separable over K il any (hence all) of the state-
ments in Theorem 23 hold. An clement u algebraic over K is
said to be separable over K if its irreducible polynomial is
separable over K. A field L algebraic over K is separable
over K if every element is separable over K. To avoid ambi-
guity we shall not define scparability over K of a polynomial un-

less it is irreducible over K.

We emphasize again that separability is automatic in the

casc of characteristic 0.
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TIIEOREM 24. Let M be a finite-dimensional extension

of K. The following three statements arc equivalent:

(1) M is normal over K ,

(2) M s scparable over K and M is a splitting ficld

over K,

(3) M is a splitting ficld over K of a polynomial whose

irrcducible factors arc scparable.

Proof. (1) implies (2). Let u be an eclement of M and [
its irreducible polynomial over K. By Theorem 15, [ factors
over M into distincet linear factors. Ilence u is separable over
K. Since this is true for every u in K, M is separablec over K.

Let v LV be a basis of M over K, let f. be the

IR
irreducible polynomial over K for v. and write g=1{ ,,,.f .,
r

By Theorem 15 again, cach [. factors completely in K1 and hence
so does g Clearly M is a splitting ficldof g over K.

(2) implies (3). Say M is a splitting ficld of [ over K.
and = fi' , of 1s the factorization of f into irreducible factors
aver K. LEach [. is the irreducible polynomial for an element
in M which by hypothesis is separable over K. Ilence cach fi
is separable over K!

(3) implies (1). Assume that M is a splitting field of f
over K where the irreducible factors of [ are separable. Let
G be the Galois group of M/K. We shall prove that M is normal
over K by proving that the order of G is equal to [M:K]. If
factors completely in K, then M = K and there is nothing to prove.
Let g be an irreducible factor of { having degree greater than

one; say the degree of g is r. Let u be arootof g and write
L =K(u), IITL. Justas in the proof of Theorem 7, we have
|G:II] = the number of images of u in automorphisms of M/K .

But every one of the r distinet roots of g is such an image, for
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if v 1is another root there is by Theorem 19 an isomorphism S
of K(u) onto K(v) leaving K eclementwise fixed, and then by
Theorem 21, S can be extended to an automarphism of M.
Ilence [G:lI] =r = [L:K]. DBy induction, the order of H is
equal to [M: L], for M is stillthe splitting ficld of f over L,
and the irreducible factors of  over L are separable (they
divide the irreducible factors of  over K). Muliiplying. we get

that the order of G is [MK] and hence M is normal over K.

We shall now derive a criterion for splitting ficlds that does

not name any special polynomial.

TIIEOREM 25. Let L be a finite-dimensional extension

af K. The following statements arc equivalent:

(1) L is a splitting ficld over K,

(2) Whenever an irreducible polynomial over K has a root

in L it factors completely in L.

Proof (l)implies (2). Assume that L is a splitting field
of f over K, and let g be an irreducible polynomial over K
with root u in L. We must show that g factors completely in
L. Suppose on the contrary that over L, g has an irreducible
factor h of degree greater than one. Adjoin to L a root v of h
Then by Theorem 19 there is an isomorphism § of K(u) onto
K(v) which is the identity on K. Now L is a splitting ficld of f
over K(u) and L{v) is a splitting ficld of f over K(v), By
Thcorcm/21, S can be extended to an isomorphism of L onto
L{v), Butthis is nonsense. for [L{v}:K] is strictly larger than
|L: K].

(2) implies {1). Let VisermV be a basis for L over K,
tet f. be the irreducible polynomial for v, over K. and write
f= fi' vof =« Then f factors completely in L by hypothesis and

L is a splitting ficld of f over K (compare Exercise 11).
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TIIEOREM 26. Let K(C L be ficlds, [L:K] finite. There

exists a ficld M containing L such that M is a splitting ficld

over K and no ficld other than M between L and Mis a splitt-

irgflicld over K. If Mo is a second such ficld, then there is an

iromorphism of M onto Mo which is the identity on L. i L

is separable, then M is normal over K.

Proof. The construction of M has been foreshadowed in
several carlier arguments. We take a basis Vi ey, of L
over K, [= fi-- -fr where fi i the irreducible polynomial for
Vi over K. and then take M 1o be a splitting field of [ over L.
Then M is also a splitting field of [ over K (comparec exercisc
11) and it is normal over K il L is separable over K (for then
cach [. 1is scaprable over K). Any splitting ficld over K which
contains L must split cach f. for they cach acquire a root in L.
This shows that M has the property asserted in the theorem.

Any sccond such fiecld Mo must also be a splitting field of [ over

I< or L, and the uniqueness asserted follows from Theorem 21.

We shall call a field having the properties of M in
Theorem 26 a split closure of L over Ki if L is separable
over K we call M a normal closure of L over K.

In concluding this scction we summarize the connection

between splitting ficlds and normality:  for characteristic 0.

normal is the same as splitting field ; for characteristic p, NOr-

mal is splitting ficld plus scparability.
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Iixercisces

I. Let KC LC M be ficlds with L normal over K
(possibly infinite-dimensional) and M a splitting ficld over L
of a polynomial with coefficients in K whose irreducible factors
over L are separable. Prove that M is normal over K. (Use

Theorem 21 and LExercise 1of §3),

2, If u. is scparable over K (i= 1, _ ,r) prove that

K(ul, » =u,U ) is scparable over K.

3. Let f be a pslynomial of degree n with coetficients
in K. Let L bec a splitting ficld of f over K. Prove that [L:K]

is a divisor of n'

4. Lect K be a field of characteristic #2,3. Show that the
following statements are cquivalent:

(a) Any sum of squarcs in K 1s a squarc.

(b) Whenever a cubic polynomial f factors completely in
K, so does f. (This problem is motivated by the obscrvation ==
an casy conscequence of Rolle's theorem == that (b) holds for any
polynomial over the recals. | have been unable to determine just

what ficlds have this property).

5. Statc and prove the form that lixercisc 4 takes for

characteristic 2.

6. Let KC L CM be ficlds with L a splitting ficld over

K. Prove that L is stable.

7. Suppose that M is a splitting field over K and L is
an intermediate field. Prove that L is a splitting field over K
if and only i L is stable. Show further that G/Lr is the full
Calois group of L/K.
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8. Let M be a split closurcof L over K. Prove that
M= Liu "'ULr where L. is isomorphic to L over K.

9. It K CL CM and M is separable over K, then M
is separablec over L.

10. T kCwL CM and M isa splitting field of f over K
then M is a splitting ficld of f over L.

ii. Suppose-KCL CM and L is gencrated over K by
some of the roots of a polynomial t with coefficients in K. Prov
that M is a splitting ficld of f over K if and onlyif M is a

aplitting ficld of  over L.



6. Radical Extensions

In a large part of classical algebra the main theme was the
scarch for "explicit” solutions of equations.  While the mcaning
of "explicit" was perhaps not made precise, it was always clear
that rational operations and extractions of roots were permitted.
The formula for solving a quadratic cquation was alrcady known
to the ancients.  During the scventeenth century similar (but in-
creasingly complicated) formulas were found for the cubic and
quartic equations. The scarch for an explicit solution of quintic
cquations cnded in defeat when Abel proved that such a formula
was impossible.  Shortly thereafter Galois proved the same thing
in a dramatic new way that truly cxplained the failure and more-
over made it possible to scttle, at least in principle, whether a
specitic equation with numerical cocfticients could be solved in
the prescribed way. In this scction we shall present Galois's
results.

First we must put in precise form the fiecld-thecoretic mean-

ing of solution by radicals.

DEFINITION. A ficld L is a radical extension of K 7 L

has the form K(ul, ., =.,u_) where some power of u. lies in
m i

K(ui""’ui—l) for i= 1, waa,m.

Note that a radical extension of K is clearly finite-
dimensional over K.

By inserting further uls , if necessary, we can arrange
that in cach casc a primce power of u. lies in K(ugsss "'ui-i)'
In the prootf of Theorem 27 we shall suppose that his has been
done.

We proceed at once to the main theorem on radical exten-
sions.  We state and prove it here only for characteristic 0. but

it is true for any characteristic (sce Excercise 1).
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TIILORI:k 27. _E K _has characteristic 0, KC LCM

and M is a radical extension of K, then the Galois group of L/K

is solvable.

Four lemmas will precede the proot of Theorem 27. In

these lemmas we drop the restriction of characteristic 0.

LIEMMA 1. The union of a finitec number of radical exten-

sions is a radical e¢xtension.

Proot. It is enough to do the case of the union of two radi-
cal extensions. Suppose then that L, M arc radical extensions

with L = K(u . ,um) and M = K(vi, .. .,vn) exhibiting

I
the tact that they are radical extensions. Then

LUmMm= K(ui, ERTASANEE ..,vn)
shows that LU M is a radical extension of K.

LEMMA 2. If L is a radical extension of K and M i s a

nplit closurc of L over K, then M is a radical extension of K.

Proot. This is immediate form Lemma 1 and Iixercise 8 of
§s5.

LEMMA 3. Let p bec a prime and L a splitting field of
xp- 1 over K. Then the Galois group of L/K is abcelian.

Proof. If the characteristic is p, then xp' 1= (x-i)p,
and L = K. For characteristic ;‘ p, xp- 1 has distinct roots.
I.et ¢ be a root different from 1. Then : has multiplicative
order p and thus 1 ,e,ez,.. .,ep-i arc all the roots of xp' 1.
llence L =K(e). An automorphismof L is determined by what
itdoes to . Say thc automorphisms 8§ and T send ¢ into ei
and ej respectively.  Then 8T and TS both send ¢ into eli .

Thus ST =TS, and the Galois group of L/K is abclian.
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LEMMA 4. Let K be a ficld in which xn =1 factors into

lincar factors. Let a be any element in K, and L a_splilting

field of Xn = a Over K. Then the Galois group of L/K is

abelian.

Proof. If u is one root of xn = a then the general root
has the form 1t where en =1 and so ¢ lies in K. It follows
that L = K(u), and that an automorphism of L/K is determined
by what it does to u.  Say the automorphisms § and T send u
into €eu and mu respectively {e,m roots of xn' 1 in K). Then
ST and TS both send u into e€fu., Ilence the Galois group of

LL/K is abelian.

Proof of Theorem 27. If Ko denotes the closure of K

relative to the Galois group of L/K  (i.e. , K is the fixed sub-
field of L under the automorphisms of [/K), nothing in the prob-
lem is changed il we replace K by 'Ko (sce Exercise 2). llence
we may assume that L is normalover K. If N denotes a nor-
mal closure of M over K then, by Lemmma 2, N is a radical
extension of K. Thus (changing notation again) we may assume
that M is normal over K. Since the Galois group of L/K is a
homomorphic image of that of M/K, and since a homomorphic
image of a solvable group is solvable, we have only to show that
the Galois group of M/K is solvable. Thus we may henceforth
forget about L.

Let M= K(ui, .. .,un) be the generation of M that shows M
to be a radical extension. We shall argue by induction on n. As
noted above, we may assume that uip lies in K for some prime p.
Let M_ be a splitting ficld of %<1 over M. Let M, be the
subficld of Mo generated by K and the roots of xP- 1. The four

fields involved are shown in Figure 2.
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Mo
/
M\ / M1
K
Figure 2

If we show that the Galois group of MO/K is solvable, it
will follow that the Galois group of M/K is solvable, again be-
causce a homomorphic image of a solvable group is solvable.

Now M1 is a normal extension of K with a Galois group which
is abelian by Lemma 3. Ilence it will suffice to show that the
Galois group of Mo/MI is solvable, for a group is solvable if a
normal subgroup and factor group are solvable. Now

M = Ml(ul’ . ..,un), for M is generated from K by the u's
and the roots of xP - 1. and the latter arc alrecady in MI' Let
G denote the Galois group of M /M1 and II the subgroup cor-

responding to M1¥U1) in the Galois correspondence (Figure 3).

M <> 1
(o)

U M
Mi(u1)<————-——> H
U M
M1 < > G

Figure 3

Since xP - 1 factors completely in Mi’ Mi‘('ul) is a splitting
field of xp- ulF> over Ml and hence it 1s normal with a Galois
group which is abelian by Lemma 4. Thus G/IT is abelian. To
prove that G is solvable it remains finally to show that II is
solvable. This follows from our inductive assumption, for Mo
is a radical extension of M1 generated by a chain Uy .,un
of n-1 clements. This completes the proof of Theorem 27.
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We add a supplemnt to Theorem 27 which refers more di-
rectly to the solution of an cquation by radicals. If [ is a poly-
nomial with coefficients in K, we define the Galois group of f
to be the Galois group of a splitting field of f over K -- it fol-
lows readily from Theorem 21 that a choice of a different split-
ting ficld of  yields the same Galois group up to isomorphism.
We usually think of the Galois group of f as a group of per-
mutations on the roots of [ i.c. as a subgroup of the symmetric

group Sn on n letters if [ has n roots.

THIIORIEM 28. Let ¢ be an irreducible polynomial over a

field K of characteristic 0. Supposc there exists a radical

extension L _9£ K which contains a root of f. Then the Galois

group of [ over K is solvable.

Proof Inlarge L to anormal closure N of L over K:
by Lemma 2, N is still a radical extension of K. N contains a
splitting field M of  over K and by Thcorem 27 the Galois

group of M over K is solvable.

Now we sce Galois's explanation of why polynomials of the
n-th degree can be solved by radicals up to n =4 but not in
gencral for n 2 5 the reason is that Sn is solvable for n< 4
but not for n2 5.

To get an cxplicit example of an equation not solvable by
radicals we could resort to the device at the end of §3 to con-
struct an extension with Galois group S . llowever the base
ficld for this extension is too peculiar: we would like to have a
down to earth example with base field the rational numbers. Per-
haps the simplest class of examples is furnished by the tollowing

thcorem.
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TIHIEORIEM 29, Let p be a prime and { an irreducible

polynomial of degree p over the rational numbers.  Assumec that

f has exactly two non-rcal roots.  Then the Galois group G of

{ is the full symmetric group S on the p roots of f.
P

Proot. G has order divisible by p, for in obtaining the
splitting ficld of [ we first adjoin an clement of degree p. llence
G has an clement of order p, necessarily a p-cycle. Complex
conjugation induces an automorphism which is a transposition on
the roots, for it merely interchanges the two non-real roots.

That G =S now follows from an casy lemma on permutation

groups.

LIEMMA. Let p be aprime. If a subgroup G of § con-

C
wins a transposition and a p-cycle then G isallof § .
Proot. By taking a suitable power of the p-cycle if nccessary,

we can arrange the notation so that itis f—(12.. .p) and the
transposition is g = (12}). We form repeated conjugates: gfg = fi
=.(f 14unp), f1-1gf_ g = (13), gl—lflgl = f2 =(23 1 auup) ,
fz gifz = g2 = (1 4),.,. =« This produces allot (12),(13),....(1p)
and they gencrate SP .

An cxplicit illustration of Theorem 27 is provided by
xs' 6x +3. It is irreducible over the rationals by I{isenstecin's
criterion, and a crude inspection of its graph reveals that is has
exactly 3 real roots. llence the Galois group of x5' 6x t3 is
55 , and it is impossible to cxpress any root of x5' 6xt3 by
a formula involving only rational opecrations and cxtractions of

n-th roots.
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Exercises
i. Prove that Theorems 27 and 28 are valid for any

characteristic. (Use Exercise 7 of §5).

2 I KCLCM and M is a radical extension of K

then M is a radical extension of L.

3. Show that in Lemmas 3 and 4 the Galois group is

actually cyclic.
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7, The Trace and Norm Theorems

LLet L. be a normal finite-dimensional extension of K. with
Galois group given by Si‘ . ..,Sn . Forany a in L we define
the trace and norm of a :

T(a)—aS1 taSzt ...+aSn ,

N(a) = (aSi)(aSZ). . (aSn) .

Clearly T(a) and N(a) lic in K, for they are fixed under
all automorphisms of L/K. Tracc is additive and norm multi-
“_{plicativc: T(atb)=T(a)t T(b), N(ab) = N(a)N(b). For ae¢ K
we have T(a) = na, N(a) = an .
It is possible to define trace and norm for any finite-
..'dimcnsional extension (not necessarily normal); there are certain

}pubtlctics and we shall not do it here.
P

b

5 It is our objective in this section to prove two theorems
ng

gwhich characterize, in the case of a cyclic Galois group, the
elements of trace 0 and norm 1; we shall then give an applica-
tion for each theorem. The main tool is a fundamental result on

lincar independence of automorphisms.

TIIEOREM 30. Any distinct automorphisms of a ficld K

arc lincarly independent over K.

Remark 1. It is not being assumed that the automorphisms in
question form a group or even that one of them is the identity,
ITowever since linear dependence is defined by finite sums, it

might as well be a finite set of automorphisms.

Loy

{‘f Remark 2. Lincar independence of Si' e .,Sn over K means:
RN + - . ) .
if ai(xSi) aZ(XSZ) t oann t an(xSn) 0 forevery x in K, then

all the a's must be 0.

e ek oy o,
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Proof. Supposc on the contrary that Si' . ..,Sn arc lincarly
dependent over K. Among all dependence relations pick a
"shortest™ one, i.c. , one with as many zeroes as possible.  Say

this shortest relation is

(6) ai(xSi)laZ(xSZ)+ — ar(xSr)=0 (all x ¢ K).

1
tinct, there exists b in K with bSi # bSZ' In (1) we may replace

Of course r must be greater than one. Stnce S, and SZ arc dis-

x by bx., obtaining
(7) ai(bSi)(xSi) + az(bSZ)(xSZ) + auat ar(bSr)(xSr) =0 (allxsKl

Multiply (6) by bS1 and subtract (7):

a,(bS, " bS,)(xS,) Lt sunta (bS - bS )xS ) =0 .

This is a shorter dependence relation, non-trivial since the coeffi-

cient of xSZ is not zero.

TIHIEOREEM 31. Let L be normal over K with a Calois

group which is ¢ yclic of order n gencrated, say, by S. Then an

clement a in L has tracec 0 if and only if it is of the form b =bS

for some b in L.

Proof. If a =b =bS, then

2 -
T(a) = a(1StS7 L vent 874
2 -
— (b-bS) L (bS-bST) £ aus t BS™ =) = 0
since S = 1.
Conversely, assume 1'(a) = 0. By lixercise | there exists

in L an clement ¢ with T(c¢) = I. Detine d = ac,

di = (a + aS)cS, and in general
4 = (atas t ..e tas?)(cs)

for 0<i<n-2. Sct b=4d ld1 i ...tdn_ Since

2°
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2 1 i
d.s = (a5 +a8% + ..u + as' ) (estY) | we find 4, " 48

— i+1 - .
Zaces ) for 0€£ig<n-3. Also dn 2S = -a(cSn 1) since
T(a)= 0. llence

b =bS

+ - - - -
d (d1 dOS)t(dZ dls)l l(dn_z dn_3S) 4 _,S

2 n-{
ac L a(eS) L a(eS7) t vuutalecS )

—a
since T(c¢) = 1.

A's an application of Thecorem 31 we shall describe the
structurc of a normal extension of degree p in the case where
the characteristic is the same prime p

THEOREM 32. Let L be normal over K, where [L:K]

is a primec p which is also the characteristic of K. Then

L = K(u) where u is a root of an irreducible polynomial over

K of the form xp- X-a.

Proof. The Galuis group of L/K is cyclic of order p, say
gencerated by S The element 1 satisfies T(1)= 0. By Thcorem
31, we can write I = ¢S=u for some u in L (take u to be the
ncgative of the b in Theorem 31). We have tS = 1tu, hence
uPS =(1 tu)p = 1tup. It tollows that a = up = u is invariant under
S and hence lies in K. Since there are no fields properly between
K and L, and u is not in K, we have L = K(u). It follows that

p

X" - x " a must be the irreducible polynomial for u.

The next two theorems arce the "multiplicative" companions
of what might be called the additive theory of Theorems 31 and 32.
Theorem 33 (in a slightly more special context) was Theorem 90

in Itilbert's 1897 report on algebraic number theory.
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TIIEOREM 33 (Ililbert’s “Theorem 90”). Let L be normal

over K with a cyclic Galois group gencrated, say by § Then an

clement a in L has norm 1 if and only il it has the form a = b/bS

for some b # 0 iN L.

Proof. If a = b/bS, then

- n-1
N(a) = a(aS). a.{as? 1) = e BS— L BE—

bs  bSZ bs”
since s® =L
Suppose conversely that N(a)= 1. Write d = ac,

d1 = (a.aS)(cS) and in general
di =(a.aS ... aSl)(cSI)

for 0<i<n-I. Note that d__ =1 Gnce N@ = 1. Note

also that d.l 1 = a{d,S) for 0 €i<n-2. By Theorem 30 there
1 i

must exist a choice of ¢ in L suchthat b=d + &, £t «ast d
n-

1 1

isnot 0. Then

hS—d81dls+... +d_

i n
o n15=3‘r(d1+d2+...+dn_i)+cs .

s = I, so cs” = do/a. Ilence bS = b/a, as desired.

TIIEOREM 34. Let L be normal over K with a Galois

group which is cyclic of order n, say gencrated by S. Assume

. . - . T ~
that the characteristic is prime to n and that x"= 1 factors

completely in K. Then L = K(u) where u is a root of an irre-

. . - - T
ducible polynomial over K of the form x" - a.

Proof. There are n distinet roots of x' = 1 in K and
they form a multiplicative group. Any finite multiplicative group
in a ficld is cyclic. Let a generator be k. We have N(e) =¢" =1
By Theorem 33 we can write ¢ = uS/u  for suitable u in L.

nn-—- n
u =-u

. Ne = _n - - .
Then ¢S = eu, u's = . Ilence a =u" is invariant under

S and lies in K. If n were prime, we could now conclude just



-43-

as in Theorem 32 that L =K(u). To cope with the possibility
that n is composite we nced an additional argument. In any
event K(u) is a splitting field of xn =a over K. The auto-
morphisms L[S, .. .,Sn-‘I send u into the distinct clements
u,€u,. ..,en_ 1u. [lence K(u) admits n automorphisms aver
K and [K(u):K] 2 n, whence K(u)= 1L, since [L:K] =n. It
follows that x' - a must be the irreducible polynomial for u

over K.

Theorem 34 is the basic ingredient for establishing a con-
verse 1o Theorem 27. This time the restrictian to characteristic
0 cannot be dropped (but a companion theorem could be proved

in which extensions such as those in Theorem 32 arc allowed).

THEOREM 35. Let K be of characteristic 0. L a finite-

dimensional normal extension of K with a solvable Galois group G.

Then L can be embedded in a radical extension of K.

Proof. We make an induction on [L.:K]. In order to apply
Theorem 34 we need the usual technical manduver to cope with
the possibly missing roots of unity. We may assume that G has
a normal subgroup II of prime index p. Let N be a splitting
ficld over L of xP - {. Then N is normal over K and still
has a solvable Galois group. Let M be the subficld of N ob-
tained by adjoining to K the roots of xp' i. Then N is also
normal over M. If we prove that N can be embedded in a radi-
cal extension of M we are finished, for M is a radical extension
of K.

Claim: the Galois group of N/M is isomorphic to a sub-
group of (. To sce this we map any automorphism T of N/M
into its restriction to L (which of course is an automorphism of
[/K). Let T be in the kernel of this homomorphism; then T
lecaves both L and M clementwise fixed and hence is the identity.

So the mapping is an isomorphism, as claimed.
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Casec 1. The Galois group of N/M is isomorphic 1o a pro-
per subgroup of G. Then by our inductive assumption N can be
embedded in a radical extension of M.

Case 1. The Gatlois group of N/M is isomorphic to all of
G.  Let us simply call it G again. Let P be the intermediate
field which corresponds to II. Then [P:M]=p, P isnormal
over M, and M contains the p-th roots of 1. By Thecorem 34,
P = M(u) with u a root of a polynomial <P - a, i.c., P isa
radical extension of M. N is normal over P with the solvable
Galois group II. By induction N can be embedded in a radical

extension of P. The theorem is proved.

LExerciscs

1. Let L be finite-dimensional and normal over K. Then

any clement in K 1is the trace of a suitable clement in L

2. Let K be a ficld of characteristic p and a.b non-
zero element of K.

(a) Prove that xp = x = a 1is cither irreducible or factors

completely in K. (Ilint: if u is a root then all the roots arc of
the form uti, i =0,. «..p-1).

(b) Prove that xp - bp-ix = a is cither irreducible or fac-
tors completely in K. (Set x = by).

(c) Prove that xp t bp-ia.'ixp-1 - a-1 iy cither irreducible

or factors completely in K. (Set x = l/y).

3. Showthatin Theorem 31 the element b is unique up to

addition of an clement in K.

4. Show that in Theorem 33 the clement b is unique up to

multiplication by a non-zcro clement in K.
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8. Finite Ficlds

A finite field is one having only a finite number of elements.
We are already familiar with the examples furnished by the ficlds
Jp (integers mod p) for every prime p. Inthis section we shall
determine what further finite fields exist and substantially exhibit
their structure.

A finite field K must have characteristic p # 0 for other-
wise it contains a copy of the rational numbers. Suppose
|K: Jp] =n. Then K has exactly pn clements. More generally:
an n-dimensional vector space over a field with q clements has
exactly qn clements, for expressing the elements of V interms
of a basis we have just q choices for cach of the n coordinates
and therefore qn choices in all.

We shall prove that for every power pn of a prime there
does exist a ficld with pn clements and that any two such arc is0-

morphic. The key fact is given in the following theorem.

TIIEOREM 36. A ficld K has pn clements if and only if it

- . . . ~ n
is a splitting field over Jp of <P = x

Proof. Suppose K has pn clements. The multiplicative

group of non-zero clements in K has order pn= 1. Ilence

n
-1 . . . . S .
u = 1 for any u ;4 0 in K. Putting this equation in the form
pn . - . - n
u® =u we have it satisfied for u =0 as well. Thus xP - x has

its full quota of p° distinct roots in K. Since these roots con-
n
stitute all of K, K is a splitting field of P - x over J .

n
Conversely, suppose K is a splitting field of xP = x over
. . . n . n
J . The derivative of xP = x is -1 and hence the p roots arc
p
n

all distinct. Morcover, since the mapping u —- up preserves

.. T n . -
addition as well as multiplication. the p roots form a field. DBut
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n
since K 1is gencrated over J by the roots of xP - x. K must

be equal 1o this field. Ilence K has pn clements.

We know (Theorems 20 and 21) that splitting fields exist and

arc unique up to isomorphism. Ilence:

TIIEOREM 37. For any power p" of a prime p there

. . . n . .
exists a {ield with p~ eclements and any two such are isomorphic.

We next investigate how the Galois theory of finite ficlds

works out. The result is gratifyingly simple and decisive.

TIIEOREM 38. Let K(C L be finite fields. Then L ig

normal over K and the Galois group of L/K is cyclic.

Proof. It suffices to treat the case K = J'p. For we have
LD KDJP ; if it 18 proved that L is normal over J with a
cyclic Galois group it will follow that L is also normal over K
and that the Galois group is cyclic (being a subgroup of a cyclic
group).

That L is normal over JP is immediate from Thecorem 36,
L 1is a spliting ficld over JP of a polynomial with distinct roots.

For any ficld L of characteristic p the mapping S send-
ing every clement into its p-th power 18 at least an isomorphism
of L into itself. DBut when L is finite, S is necessarily onto.
If [L: JP] =n, s™ is the identity. No lower power is the identity:

1

if Sk =1 with k <n then the polynomial xP - x has p]

roots in L, which is impossible in a field. Ilence 1.S. ..., .n-1

’S
arc all distinct and constitute the whole Galois group of L/J
P
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Exercises

. m . . . .
1. Suppose K with p clements is contained in L with

pn clements. Prove that n is a multiple of m. Prove further

that the Galois group of L/K is generated by the automorphism

m
< =+ xP

2. Let K be any finite field, n an integer. Prove that

there exists an irreducible polynomial over K of degree n.

3. Let f be a polynomial with the property that its roots
(in some splitting ficld) form a ficld (this is the situation
encountered in the proof of Theorem 36). Prove that the charac-

n
teristic is p and that [ has the form xP = x.

4. Let p.q be distinct primes. Assume that q is a
primitive root of p, i.c., forno d<p-1 is q - 1 divisible

by p. Prove that (xp'

1Y/(x = 1) is irreducible over the ficld of
integers mod q. (Ilint: xP=1 factors completely in the ficld of
d
qd clements if and only if p divides q - 1).
n
5. For n> 3, prove that xZ + x t 1 is reducible over J

2
n n
(Ilint: if u is a root, raisc the cquation u2 2util othe 2 -th

power).

6. Prove: in any finite ficld any clement can be written as

the sum of two squares.

7. Let K C L be finite fields. Prove that any clement of
K is the norm of some ctement of L. (Ilint: consider the homo-
morphism from L ~~ the multiplicative group of non-zero cle-
ments of L ==to K given by u = N(u). Find the size of the

kernel by using Theorem 33 and Excrcisc 4 of §7).
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9. Simple Extensions

The following theorem gives a ncat necessary and sufficient
condition for a finite-dimensional extension to be generated by a

single element. Such an extension we call simple.

TIIEOREM 38, Let M be any finite-dimensional extension

of K. ThenM isa simple extension of K il and only if there

arc only a finite number of intermediate ficlds.

Proof. If. Assume first that K is finite. Then M is
also finite. The multiplicative group of non-zero clements of M
is cyclic. Any generator of this cyclic group will gencrate M.

Supposc then that K is infinite. Pick an clement u in M
such that [K(u):K] is as large as possible. We claim K(u) = M.
Suppose the contrary and pick v in M but not in K(u). As a
ranges over K we get a formally infinite list of intermediate
fields K(u t av). Two of these must coincide, say K(utav)and
K(utbv). Then K(utav) contains utav and utbv, hence
(a-b)v, hence v and also u. Thus [K(utav):K]|] > [K(u):K],

a contradiction.

Only if. We now assume M = K(u) and have to prove that
there arc only a finite number of intermediate ficlds, Let f be
the (unique monic) irreducible polynomial for u over K. Let
L be a typical intermediate ficld and let g be the monic irre-
ducible polynomial for u over L. Say
g(x) = x4 a1xr_I t...ta, Weclaimthat L= K(al,. ...a )
Certainly L contains K(al,. ...a ), so that
[M: K(al, e ,ar)] > r. Onthe other hand, u satisfies an equa-
tion of degree r over K(ai, . =-.a ) so that the opposite in-
cquality [M: K(al, cee,a )] < holds. This proves that

L= K(ai, e ,ar) and shows that' L. is uniquely determined by g.
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Now there arc only a finite number of monic divisors of

(think of the complete factorization of { in a splitting ficld and
recall that this factorization is unique). Ilence there are only a

finite number of L's.

The criterion of Theorem 39 can be applied almost im-

mediately to the case of a separable extension.

TIIEOREM 40. Any finite-dimensional separable extension

L of a ficld K is a simple extension of K.

Proof. LEmbed L in M. a normal closurcof L over K.
By the Galois correspondence it is immediate that there are only
a finite number of ficlds between K and M. Ilence the same is

true between K and L. Apply Theorem 39.

Exercises

1. Prove: if K is infinite and u.v arec scparable algebraic
over K then K(u.,v)=K(utav) for some a in K. Is this true if
K is finite?

2. Let K have characteristic p and L = K(u.v) where

2 . . .
uP’vp ¢ K and [L:K] =p . Showthat L 1is not a simple extension

of K and exhibit an infinite number of intermediate ficlds.
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10. Cubic and Quartic Equations

We turn to the following question: how can the Galois group
of an equation be found explicitly? We shall give fairly complete
results for cubic and quartic equations and the initial step in in-
vestigating general equations.

Let f be a polynomial with coefficients in a field K of
characteristic # 2. Let M be a splitting field of [ over K,
and G the Galois group of M/K.  Assume that the roots
 FRNRS of [ are distinct. We think of G as a group of per-

{
mutations on Xqpe mesX and thus as a subgroup of S
n

n'

Write

R

and D = AZ. Since D is invariant under all the permutations of
the xts, we have D e K. We call D the discriminant of [. We
know that a permutation of the x's 1is even il it leaves A fixed
and odd if it sends A into -A. If Il denotes the subgroup of G
consisting of even permutations (the "even subgroup" of G), it
follows that Il and K(A) correspond in the Galois correspondence

between subgroups and intermediate fields. We summarize:

TIIEOREM 41. Let K be a ficld of characteristic # 2. Let

f be a polynomial over K, M a splitting ficld of f. Assume that

f has distinct roots in M. Let G be the Galois group of M/K,

thought of as a group of permutations of the roots of [ Then in

the Galois correspondence K(A) corresponds to the even subgroup

al G, In particular, G consists of even permutations il and only

il A lies in K.

We continue the analysis, now adding the assumption that f

is irreducible. It is then true that the order of G is divisible
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by n. A stronger statement can be made: G is transitive on the
x's, That is, for any x. and xJ. there exists an automorphism of
M/K sending x. into xj (this is immediate from Theorems 12
and 21).

If f is a cubic equation, G is a subgroup of S3. The only
subgroups of SZ with order divisible by 3 arc A‘ and S3 (they

arc of course also the only transitive subgroups). Ilence:

TIIEOREM 42. The Galois group of a separable irreducible

cubic over K s cither AZ or 83. Foer K of characteristic # 2,

itis AZ if and only il the discriminant is a squarc in K,

Elementary computation shows that the discriminant of
x3 tpxtq is -4p3 - 27q . Except for characteristic 3, any
cubic can be reduced to this form by a change of variable x = ytc.

If the given base field K is a subfield of the real numbers,
we can use 1o good advantage information on the reality of the roots.
In fact if only one root is real (and the cubic is irreducible), the
Galois group is SZ as in Theorem 29. In this case the discrimi-
nant is negative. If all three roots are real the discriminant is
positive, and we must determine whether it is a squarce in K.

Let [ be a quartic with distinet roots ¥4, ¥,, XasXy- The
Galois group G is a subgroup of 84. Since the crucial normal
subgroup of 84 is V. the subgroup consisting of (1), (12)(34),
(13)(24), and (14)(23), it is a very natural step to form the expres-
sions o = :".‘Ix2 + x3x4, B = X1x3 + x2x4, Y = x1x4+ x2x3.
Obviously any permutation in V leaves a,f, andy fixed. Con-
versely, an casy argument shows that a permutation leaving
a,B,y flixed is necessarily in V. Ilence the ficld K(e,B,v) cor-

responds o GV, and G/(GMV) is the Galois group of
K(e, B,y) over K.
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The polynomial (y-a)(y-B)(y-v) is called the resolvent
cubic of f. If f= x4 + bx3 + <:x2 + dx + e, an elementary compu-

tation shows that the resolvent cubic is

y3 - z:y2 + (bd - 4e)y - be + 4ce - d°

Now let us assume that the quartic f is irreducible. Then
G is a transitive subgroup of 54. The eligible groups are found
to be: 54, A4, one of the groups of order 8 (there are three, all
conjugate), V, and the cyclic group of order four generated by a
4-cycle, Checking G/(G MV) in each case we find there is only

one possibility of ambiguity. The details are as follows:

THEOREM 43, Let f be a separable irreducible quartic

over K, Let m be the degree over K of the splitting field of

the resolvent cubic of f. Let G be the Galois group of f over K

Then
(1) f m=6, Gis S,,
(2) I m=3, Gis A,
(3) f m=1, G is V,

(4) I m=2, G is either of order 8 or cyclic of order 4,

One way to distinguish the two is to determine whether f is still

irreducible after the roots of the resolvent cubic are adjoined.

It remains to explain the final sentence in Theorem 43. The
Galois group of f over K(e, B,v) is G V. If G is of order 8,
then G/ )V =V and is still transitive on the roots; hence { is
still irreducible over K(a, 8,v). But if G is cyclic of order 4,

then G [V has order 2, and f must factor over K(e,8,v).
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Exercises

1. Let x3 + ax + b be irreducible over a field K of charac-
teristic 2, Prove that the Galois group is A3 or 53 according as

3

yZ +byta + b2 has or has not a root in K,

2. Let x3 + px + q be irreducible over a finite field K.

2
Prove that ~4p3 - 27q is a square in K,

3. Let x4 + dx + e be irreducible over a finite field K of

characteristic 2. Prove that d is a cube in K,

4, Let x4 + ax2 + b be irreducible over'a field .K of charac-
teristic # 2, Let G be the Galois group. Prove:

(1) If b is a squarein K, G=1V,

(2) If b is not a square in K but b(a.z- 4b) is, G is cyclic
of order 4,

(3) If neither b nor b(a.z- 4b) is a square in K, G has

order 8.

5, Let f be a separable irreducible quartic over K, G the
Galois group of f, u a rootof f. Show that there is no field pro-

perly between K and K(u) if and only if G=A, or S,

6, Let K be a subfield of the real numbers, f an irreducible
quartic over K. Let G be the Galois group of f. Prove: if f
has exactly two real roots, then G is the whole symmetric

group S, or is of order 8,

7. Let x4 + bx3 + cx2 +bx + 1 be irreducible over a field K
of characteristic # 2. Let G be the Galois group of f. Prove:

(1) 1f c2+4c+4-4b2 is a square in K, G=V,

(2) 1t c2 +4c+ 4 - 4b2 is not a square in K but
(c2 +4ct 4 - 4b2)(b2 - 4c + 8) is, G is cyclic of order 4,
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(3) If neither c2 + 4c + 4 - 4b2 nor

(&:2 +4c+ 4 - 4b2)(b2 -4c + 8) is a square in K, G is of order

8. Over a field K of characteristic # 2, let £ be a cubic
whose discriminant is a square in K. Prove that f is either

irreducible or factors completely in K,

9. Over any base field K prove that x3 - 3x+ 1 is either

irreducible or factors completely in K.
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11. Separability

We shall examine in greater detail the behavior of a finite-
dimensional extension field with respect to separability. We first
define a concept which is, so to speak, the extreme opposite of

separability.

DEFINITION, Let K be a field of characteristic p. xi\(n

element u is purely inseparable over K if for some Kk, uP

lies in K. A field L containing K is purely inseparable over

K if every element of L is purely inseparable over K.

THEOREM 44, If an element u is both éeparable and purely

inseparable over K then it lies in K.

Proof. Let f be the irreducible polynomial for u over K,
Then f has distinct roots (in a splitting field). On the other hand,
k
f is a divisor of a polynomial of the form xP - a which has all

its roots equal. Hence f is linear and u lies in K,

n
THEOREM 45. If u is algebraic over K then uP is

separable over K for some n.

Proof. We argue by induction on the degree of u over K.

If u is separable, all is well. Otherwise the irreducible poly-

P

nomial for u over K is actually a polynomial in x*, whence

uP has lower degree over K than u does. By induction some

P k+1

pk—th power of u" is separable over K, i.e., uP is separ-

able over K.,

Now we assemble in a single theorem the major results on
the structure of a finite-dimensional extension with respect to

separability.
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TIIEOREM 46. Let N be a finite-dimensional extension

_o_f K. Then:

(1) There exists a unique largest subficld L separable

over K,

(2) There exists a unique largest subficld M purely in-

separable over K.
(3) LM=K,

(4) N is purely inseparable over L,

(5) N is separable over M if and only if L{MB X,

(6) If N is a splitting ficld over K then L (M= N: also

Lo,

N is normal over M, L isnormal over K, and the Galois groups

of N/M and L/K are isomorphic.

Proof. (1) Simplytake L to be the set of all elements of
N separable. It is immediate from Exercise 2 of §5 that L is a
subficld and of course it is the unique largest separable subfield.

(2) Take M 1o be the set of all purcly inseparable eclements.
It is obvious that M 1S a subficld with the desired property.

(3) The clements of LM are both separable and purely
inscparable over K. By Theorem 44, they must liec in K,

(4) Let u be any clement of N. By Theorem 45 some
upn is separable'over K, hence lies in L. This shows that N
is purcly inseparable over L.

(5) Suppose that N is scparable over M. Then evidently
N is separable also over LAJM, and by (4) N is purely in-
separable over L (UM, Ilence N = L UM,

Conversely, suppose N =LIUM, If Ugpeee,u are any
generators of L over K, then N = M(ui,. .., ) and N s

separable over M by Exercisce 1 of §5. (Actually by Theorem 40

a single u would do. but there is no need o insist on this economy
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(6) Let Mo denote the fixed subfield of N under auto-
morphisms of N/K, We claim that Mo =M First suppose '
ue¢ M. Then u satisfies a polynomial equation over K of the
form xpn - a which has all its roots equal. Ilence u cannot be
moved by an automorphism and u e Mo_ Suppose u ¢ Mo and
et [ be the irreducible polynomial for u over K. If v 1is
another root of [ then v ¢ N by Theorem 25, and there is an
automorphism of N/K sending u into v by Theorems 19 and
21, It follows that all the roots of f are equal and then
(sce Exercise 3) that u 18 purely inseparable over K.

We have thus proved M= Mo’ i.e., N isnormal over M.
By (5), L\UM=N. Let T be any automorphism of N/M,

T must send L onto itself for separable clements go into separ-
able elements. By restricting T to L we get an automorphism
of L/K. The resulting homomorphism from the Galois group of
N/M 1o the Galois group L/K is onto (Theorem 21) and one-to-
one for if T 1is in the kernel it leaves both L and M clement-
wise fixed and hence also N = LM Finally, L is normal over
K. since LM =K and only eclements of M are fixed under all

automorphisms of N/K, This completes the proof of Theorem 46.
The transitivity of separability i1s now casily proved.

TIIEOREM 47. I KCLC M, L is separable over K, and

M is separable over L. (all extensions finite-dimensional), then

M is scparable over K.

Proof. Let P denote the maximal separable subficld of M,
regarded as an cxtension ficld of K, Of coursec, P L. By (4) of
Theorem 46, M is purcly inseparable over P. But M is also

separable over P, since it is scparable over L. Ilence M = DP.
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We ask: what fields have the property that all extensions are
separable? The answer is given by Theorem 48. First we make a

definition.

DEFINITION. A field K of characteristic p is perfeet il

cvery clement of K is a p-th power in K.

TIIEOREM 48. K is perfect if and only il every finite-

dimensional extension of K is sceparable over K.

Proof. Supposc that the extensions of K are separable. If
an clement a ¢ K has no p-th root in K we form K(u) with u
a root of xP-a. The irreducible polynomial for u (itis in fact

p-a

x . as will be proved in the next section) has all its roots equal,
so u is not scparable, a contradiction.

Conversely, supposc that K is perfect. Let u be algebraic
over K and f its irreducible polynomial. If u is not separable,
then f is actually a polynomial in %P, By extracting the p-th root
of cach coefficient of f we can write [ itself as a p-th power,

contradicting the irreducibility of f.

Exercises

1. If L is purely inseparable over K and M is purcly in-

separable over L., then M is purcly inseparable over K.

2. The notation is that of Theorem 46 and P is another ficld
between K and N.

(a) N is purcly inscparable over P if and only if P DL,

(b) If N is separable over P, then POM,

(¢) If PNL=K, then PC M.

3. Let f be an irreducible polynomial over K and supposc
that (in a splitting field) f has all its roots equal. Show that the

n
characteristic of K must be p ;‘0, and f must have the form xP -a.
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4. Prove: the irreducible polynomial for a purcly insepar-

n
able clement has the form %P - a.

5. Prove: if L is finite-dimensional and purely

inseparable over K, then [L:K] is a power of p.

6. If K is perfectand L 1is a finite-dimensional extension
of K, then L is perfect. (The converse is also true; sce

Exercisce 7 of the next scetion. )

7. If M= K(u,v) where uandv are algebraic over K
and u is scparable, then M is a simple extension of K. (Ilint:
prove that there are only finitely many intermediate ficlds. It
can be assumed that K(u) is the maximal separable subfield.
Analyze an intermediate field L by showing that it lies between
its maximal separable subficld Lo and Lo(v)')

8. Let x4+ ax2+ b be irreducible over a field K of
characteristic 2, and assume a + ¢2b is not a square in K for
any ¢ ¢ K. Let N = K(u) where u is a root. Prove that (inthe
notation of Theorem 46) L1 M # N.

0

9. Prove: if u is separable over K, then K(u) = K(u

10. Prove: if u is separable over K and v is purely in-

separable over K, then K(u,v) = K(u+v). Also. K(u,v) = K(uv)
it u,v % 0.
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12. Miscellancous results on radical extensions

[t is possible to give a complete result on the reducibility
of an cquation of the form x - a over an arbitrary field. We
begin by showing that the problem reduces to the case where n

is a prime power.

TIHEOREM 49. Let K be any field. a an clement in K,

m and n rclatively prime integers.  Then x -a isirre-

. . . m n .
ducible over K il and only if both x" - a and x = a arcirre-

ducible over K.
. 4+ _mn L . . m
Proof. If x = a is irrecducible, sois x - a by ele-
. mn n,m
mentary algebra, for x —a=(x) -a.

Conversely, assume xM - a and x" - a irreducible over K.
Let u be a rootof x "= a. Then u' is a root of x" - a. llenc
[K(um):K] = n and similarly {K(un):K] = m. By Theorem1,

n rm Ssn
)

[K(un,um):K] = mn. But K(um,u = K(u), since u=u u for

integers r.s with rmt sn= {, llence the degree of u over K

. mn
is nm, and x

a must be irreducible over K.

We proceed to attack the prime-power case. The complete
result is given in Theorem 51, with Theorem 50 as a prelude.  An
intriguing aspect of the investigation is that the prime 2 bchaves
quite differently from odd primes.

p

THEOREM 50. Let p be prime, x° - a irrcducible over
K and u a root of xF - a. Then:

(1) If p isodd, orif p=2 and K has characteristic 2.

u is not a p-th power in K(u),

(2) ¥ p=2 and K has characteristic #2, u is a squarc

in K(u) if and only if -4a is a fourth power in K.
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Proot. We supposc that u= wP for w in K(u) and sce,
what conclusion we can reach. The casc where K has charac-
teristic p is simplestof all: since w is a polynomial in u
and p-th powers are taken termwise we have Wp ¢ K, ue K,

a contradiction. We assume that the characteristic is not p.

Adjoin to L a primitive p-th root of unity, say ¢, The
resulting ficld M is a splitting ficld of xP-a Over K and is
thus normal over K. Any automorphism of M/K sends u in-

to somce ¢ .

u and there is, forevery i=0.. ..,p-1, anauto-
morphism Ti sending u into eiu . Write w. =wT,, Then
eiu = wp. The clement w is in K(u) but not in K. Its irre-
ducible polynomial (say g) over K neccessarily has degree p,
and has p distinct roots in M. Il w! is any of these roots
there is an automorphism S of M/K sending w o into w!, If
uS = ¢Ju we must have wS = \Vj. Ilence the clements

W Wi =Wy yteld all the roots of g and must be cxactly
all the roots of g. We conclude that ‘7_ = w()w1 ."Wp~1 ¢ K. We
now multiply together the equations elu = w P, finding

nup = na = zp, where m = 1-6-52'--€p-1. Ilf p is odd, n =1,
and we have the contradiction a = zp. This completes the proof
of part (1) of the theorem.

When p= 2. n= -1 and we find only that -a is a squarc in
in K. The completion of the investigation in this casc is so cle-
mentary that we shall do it again from scratch.

Write u = wz, w= o+ pu (a and 8 in K). From u = (a+ ﬁu)2
we get the equations a2+ ﬁza =0, 2af = {, Lliminating g, wc
tfind a = —4a4, so that -4a = 16&4 is a fourth power in K. Con-
versely it -d4a= 16a4, we take p= 1/2a and we verify

5
u=(a+pu)”.
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.TIHHEOREM 51, Let p be a prime and a an clement in g

with no p-th root in K. Then
)
(1) If p is odd, %P - a is irreducible over K for any n,
- n
(2) If p=2 and the characteristic is 2, x2 - a isirre-

ducible over K [for any n,

n
3) If p=2, n2 2, and the characteristic is not 2, x2 - a

is irreducible over K if and only if -4a is not a fourth power

in K.
P a 1is irreducible over K.

p

Proofl. First we show that x
Suppose the contrary, and let { be an irreducible factor of x"-a
of degree k (0 <k<p). Let ¢ be the constant term of [ The
|5

roots of x"-a (in some splitting ficld) all have the form eu,

where u is one fixed root and ¢P =1, Since *+c¢ 1is a product

of k of .hese roots, we have # ¢ = nuk, 'qp~= 1. There exist

integers r and s such that rk tsp= 1. We have

8
u= urku5p = (£ c/n)ra . Ilence up® lies in K. Since its p-th

power is a, we have the desired contradiction.

We shall next prove simultancously parts (1) and (2) of the
thecorem. Let v be a root of xpn_ a and write u = vpn—i . We
have uP = a, sothat [K(u):K] =p (since we have just proved
that xP=a is irreducible over K). If we show that v has degree
pn.1 over K(u) it will follow that v has degree p! over K
and xpll - a is irreducible over K. That v has degree pn-i
over K(u) will be true by induction on n provided u is not a
p-th power in K(u), This is so, in cases (1) and (2), by
Theorem 50.

We proceed to part (3) of the theorem. Assume [irst that

. . . 4 n-2
-4a is a fourth power in K and write a= -4a , y = x2 . Then

x2B=a = y4 L 4a4= (y2 €t 2ay L 2012)(y2 - 2ay L 2a2),

Conversely, suppose -4a is not a fourth power in K. Agqin. let
gain,



o0 Zn-i
v bearootof x* -a and u=v « We have [K(u):K]|=2

since u = a and we must prove [K(v):K(u)] = Zn-1 . For n=2

this will be true if u is not a square in X(u), and for n>2

this will be true by induction on n provided u is not a square in
K(u) and -4u is not a fourth power in K(u), Inthe latter case,
-u is a square in K(u). So it will suflflice to rule out the possi-
bility that either u or -u is a square in K(u). Now these two
statements are in [act equivalent (u =~ -u induces an automorphism
of K(u) over K) so that part (3) of Theorem 50 applies to com-

plete the prool.

We supplement Theorem 51 with an analogous one on build-

ing towers of extensions in the context of polynomials of the type

p

X - X-a.

TIIEOREM 52, Suppose that K has characteristic p,

xP - x - ais irreducible over K, and u isa root of xP - x - a.

Then xp' X = auup-1 is irreducible over K(u),

-1
P X = aup is reducible,

Proofl. Il onthe contrary x
then (Exercise 2, §7) it has a root v in K(u). Say

-1
v=atPut ... tyab . We have
-1
vp=aptﬁpupl typup(p )

ap + ﬁp(u+a) + o+ yp(u+a)p-i .

In

- -1
vP =yt ad? 1=oz+ﬁu+... +(Y+a)up

-1 , P .
we equate coellicients of wP™h, The resultis Y =yta. This

contradicts the irreducibility of xP - x -—a over K,

By combining these results with carlier techniques we prove

two theorems on the existence of extensions of large degree.
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THEORIEM 53, Let p be an odd prime and supposc that

the ficld K has an extenston whose degree is divisible by p.

Then for any n, K has an cxtension whosc degree is divisible

by pn. For p= 2 the conclusion is still correct il K has
characteristic 2.

Proof. We give a more or less unified proof, but the
characteristic of K must recetve occasional attention.  First
supposc the characteristic ts p. Then if K is not perfect, we
arc done; for there will exist an clement a in K with no p-th
root in K and then Theorem 51 furnishes the irreducible poly-
nomial xpn - a. 8o if the characteristic is p we may assume
that K is perfect.

Let M be the given extenston of K with [M.K] divisible
by p. Let L be the maximal separable subfield of K. By part
(4) of Theorem 46, M is purcly inscparable over L. By
Exercise 5, §11, [M:L] is a power of the characteristic. If the
characteristic is not p, {L:K] is thereforc still divisible by p.
If the characteristic is p, M= L by Theozem 48 (sincc we arc
assuming K perfect) and again [L:1 K] is divisihle by p. In
other words, we may assumece that the given extension is separable.
By passing to a normal closure we may further assume that it 1s
normal. By invoking Galots theory and the existence in the Galots
group of an element of order p. we may still further assume that
we are dealing with a normal cxtension of degree p. (In doing
this, we have of course replaced K by a larger field, but this
docs not change the problem. )

Let us then start the notation fresh with L normal over K
and [L:K) =p.  Again the characteristic makes a difference. It
the characteristic is p, then by Theorem 32. L = K(u) with u
bo -

a root of an irreducible polynomial over K of the form x a.
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Application of Theorem 52 yiclds an extension of K of degree Pz
and the process can be iterated to get degree pn for any n. If
the characteristic is not P we must pay our respects to the
possibly missing p-th roots of 1, Let N be a splitting field of
«°-1 over L. andlet M be X with the roots of unity adjoined.
A simple argument (of the type used repeatedly in $6) shows that
N is normal over M with Galois group cyclic of order p By
Theorem 34, N = M(u) with u a root of an irreducible poly-

nomial xP_ a. It only remains to apply Theorem 5SI.

THIORIM 54, If K has an extension with degree divigible

EX 4, then for any n2 2. K has an extension with degree divis-
ible by 2".

Proof If the characteristic is 2, the result is covered by
Theorem 53; so we assume characteristic differentfrom 2. A
virtual repetition of the argument in Thecorem 53 cnables us to re-
organize the given cxtension so that L is normal over K with
[L:K] = 4. We now further adjoin i with iz = -I. Then L(i) is
normal over K(i) with relative degree 2or 4 In cither case,
L{i) contains a quadratic extension of K(i) and hence XK(i) con-
tains an clement a with no square root in K(i), It cannot be the
casc that -4a has a fourth root in K(i), for then -a is a square
and so i1s a. By Thcorem 52, K(i) therefore has extensions of

degree Zn for any n. This completes the proof of Theorem 54.
L]

There is still one situation for us to ecxamine. I K has an
extension of even degree but no extension with degree divisible by
4, then a reorganization as above will lead to a pair K C L with
(L:K] = 2 and no extensions of K with degree divisible by 4.
liven the weaker assumption that K has no extensions cxactly of

degree 4 suffices for a strong conclusion.
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TIIEOREM 55. Let K be a ficld which has a quadratic ex-

tension but no extension of degree 4. Then K is an ordered licld

in which every positive clement has a square root.

Prool. Theorem 53 rules out the possibility that K has
characteristic 2. Next, by Theorem 51 it must be the case for
every a in K that either a is a squarc or -4a is a fourth
power; otherwise x4' a would be irreducible over K and yield
an extension of degree 4. In particular, cither a or -a isa
square. It cannot be the case that -1 is a square, [or then
every clement in K would be a square, and no quadratic exten-
sion of K could exist. Thus, [or any a, cither a or -a is a
square but not both. We lorm the field K(i) with i2 = -i. In
K(i) every element must be a square, otherwise we would get a
quadratic extension of K(i) and thereby an extension of K of
degree 4. Writing out the lact that a tbi is a square in K(i),
we [ind that uztb2 is a square in K. This supplies what is
needed to show that K can be ordered by decrecing that the posi-

s
tive elements shall be precisely the squares (up to this point we

would not have known that the sum ol positive elements is positive).

A partial converse to Theorem 55 appears as Exercise 5
below.
We have accumulated all that is needed to prove briefly a

pretty theorem of Artin and Schreier.

TIIEOREM 56. Suppose a ficld K is not algebraically

closed but has a [inite-dimensional extension L which is alge-

braically closed. Then K is an ordered field and L = K(i),

Proof. The hypothesis puts a fixed bound (the degree of L
over K) on the degree of any extension of K. Thereflore, by

Theorems 53 and 54, [L:K] must be 2. Then, by Theorem 55,
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K is an ordered [icld in which every positive clement has a square

root, and L must be K(i).

The last two theorems have of course been reminiscent of
the lacts which hold when K is the ficld of real numbers, L the
ficld of complex numbers. DBut we can add something more to the
picture. The theorem that the ficld of complex numbers is alge-
braically closed (in ancient days called the "[fundamental thecorem
ol algebra™) can be given a ncat proof by Galois theory. We [irst

prove:

TIIEOREM 57. Suppose that for some prime p _every ex-

tension of K _has degree divisible by p. _Then every extension

ol K has degree a power of p.

Prool. Let M be an extension of K. We must prove that
[M: K] is a power of p. We can assume that M is separable
over K. For if the characteristic is a prime dilferent from p,
our hypothesis certainly implies that K is perfect; while if the
characteristic is p we take the maximal separable subficld of M,
noting that M 1is purcly inseparable over it and so this upper
degree in any event is a power of p. Furthermore by passing to
a normal closure we can (change notation again) assume that M
is normal over K. Let P be a p-Sylow subgroup of the Galois
group of M/K, and let L be the corresponding subficld. Then
|L: K] = the index of P and hence is prime to p. DBy our hy-
pothesis this is possible only if L = K. Ilence [M:K] is a power

of p.

We shall now prove that the field of complex numbers is al-
gebraically closed, using a minimum of information from analysis.
All we need is: (1) every positive real number has a real square
root, (2) every polynomial of odd degree over the real numbers

has a real root.
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TIIEOREM 58. Let K be an ordered field in which every

positive eclement has a square root. Supposc further that every

polynomial of odd degree over K has a root in K. Thep K(i)

. . .2
is algebraically closed, where i = -1.

Proof. Our hypothesis implies that K has no extensions
of odd degree. By Theorem 57 the degree of any extension of K
is therefore a power of 2. Let N be a normal extension of K.
The order of the Galois group G of N/K  is a power of 2. If
[(N:K] > 2 then, by group theory, G has a subgroup of index 4
which in turn is contained in a subgroup of index 2. Transferring
this information to the intermediate ficlds we get g LCM
with [L:K] = [M:L]= 2. Neccessarily L is K(i), for this is the
only quadratic extension of K. DBut now Exercise 5 shows that
M cannot exist, for every element in L has a square root in L.
So: we have proved that the only extension of K (other than K

itself) is K(i). Ilence X(i) is algebraically closed.

We return to the study of the field K(u) where u is a
root of an irreducible polynomial P - a. In Theorem 59 we show
that (for characteristic # p) K(u) contains no p-th roots of ele-
ments of K other than the obvious ones. We use this information
to show in Theorem 60 that the adjunction of two "genuinely

. . . - 2
different” p-th rooths result in an extension of degree p

TIIEOREM 59. Let p be a prime other than the charac-

teristic of K. Let L =K(u) with u a root of an irreducible

polynomial over K of the form xP = a. Then: an element v in

L satisfies vP ¢ K il and only if v has the form bu'" (bec K).

Proof. If v = bun then vp = bPak ¢ K. Conversely, sup-

p

pose v e K(u) satisfies v

v= do+d1u+ ...+dp_ up-i. If v#0 then some di#O. By

Sce K Say

i
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multiplying by an appropriate power of u we can switch this di
to the constant term. In other words we may assume do ;‘ 0. -
After this normalization we shall prove that v lies in K. Sup-

pose the contrary; then the degree of v over K is necessarily

P and xp

- ¢ must be the irreducible polynomial for v over K.
Now, just as in the proof of Theorem 51, we arguc that the other

. . . i
roots of xp - ¢ arc obtained by replacing u by €'u

.

-1
(i=t,c0,p-1,6P=1, £ 1) in dy+dut it dp_iup . The
. . - . -1
sum of all the roots of x° - ¢ is 0 (for there is no term in xP )-

Morcover for an 1 satislying ’qp =1, 71% 1 we have

-1 . .
1ttn+ aunt ‘np = (. It follows that in summing the roots all
the terms in u drop out and we get simply pdo. Since p£ 0

and d # 0 we have the desired contradiction. »

TIIEOREM 60. Let p be a prime other than the charac-

teristic of K. Let u,v be the roots of irreducible polynomials

xP-a. x'-b over K. Then [K(u,v):K] = p2 unless b= cPa”

for some n and some c¢ ¢ K.

Proof. If the polynomial xp = b remains irreducible over

2
K{u) then [K{u,v):K]=p . If it factors over K(u) then (Theorem
51) it has a root w in K(u). Neccessarily w has the form w = ¢v
n

with €P = 1. By Theorem 59 we have w=cu (ce¢ K). Raising

. . n
this equation to the p-th power we get b = cPa .

As our final topic in this section we shall examine the
question of computing the degree of utv when uand v are given
clements algebraic over a field K. We make no attempt to be ex-
haustive; but Theorems 63 and 64 do cover some uscful territory.

Two preliminary theorems will be proved first.
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THEOREM 61. Let M be normal and finite-dimension:

over K andlet u,v be elements of M. Let u=u1,u2,...,u

be the conjugates of u (i. e., the roots of its irreducible equs

tion over K) andlet v = Viseea Vo be the conjugates of v.

Agsume finally that [K(u,v):K] = mn. Then: for any i,j

exists an automorphism of M/K _sending u Ainto uy 20w
v, .
J . .

Proof We construct instead the inverse automorp.i;-

sending u, into u and vj into v. There is some autome . .1 ¥

of M/K sending u, into u. We have as yet no control ov.
it does to Vj‘ but alter normalizing by applying this automo

our problem reduces to constructing an automorphism of M

keeping u [ixed and sending some Vi into v. Now our hy

implies that the degree of v over K(u) is still n. so tha'
roots of its irreducible polynomial over K(u) are still vy
Since M is normal over K{u), the desired automorphism «

Now suppose that (in the scetup of Theorem 61) we wish

find the degrec of utv over K. The thecorem says that all ¢

clements uil vy (i= i, 0eu,m, j = 1, «x.n) are conjugates o
utv. Ifallthese mn clements are distinet we conclude tha.

degree of u+v is mn. If a coincidence occurs. then the di

ence of two uts will equal the difference of two v's, This 1

motivation for studying the difference of two conjugates as we

the next theorem.

TIIEOREM 62. Let M be the splitting field over K of
separable irreducible polynomial f hawving a prime degree p
different from the characteristic of K. Let ui,u betwo-dis

2
roots of . Then M is anormal closure of the field K(u - u.




% 71

I
—f Proof. Let L be the normal closure of K(u1 - u2)

rchave to prove L = M. The Galois group of M/K contains an

in M;

8,
1T - . .
*morphism T of order p which is necessarily a p-cycle on

We can suppose the roots numbered so that the

¥

P * ots of f.

N Coedd :

ik (uluZ' . .up). Since T sends L into itself we find that '

Py o [ .

A YT IR  SU ,u -u_ arcall in L. It follows that

% 2 3 p-1
'_ﬁ L for every i. Adding up. and recalling that the sum of
. Since the characteristic

4. .
is even in K, we get pu1 e L.

LT G, u, ¢ [.. hence every u. ¢ L. and L = M.

A TY

THEOREM 63. Let u.v be non-zero clements separable’

? 4
4 q;g( Suppose the degrec of u over K isa prime p different
% . vd.l;l.(‘_‘_lLLLLL_LC_I_Lﬁ_lu[: K. _aud w111111 the degree of v over K _1:
w " Then K(ut+v) = K(u,v), i.e., utv has degrece pn over K.
TS maa —_
.roof, We work in a normal closure N of K(u,v), Let
\ -«e the normal closures (within N) of K(uv) and K(v) respec-

All will be done by Theorem 61 if we show that no differ-

r

ot’”
= of two conjugates of u ecquals a difference of two conjugates
ad.
. Suppose u.-u.=v -v .then u -u. e L. DBut by
1 r s 1

J
“J;rem 62, this implies M(C L. This is impossible since [L: K]
BN
livisor of n! and hence is not divisible by p.

-1011¢

i3 a THIEOREM 64. Let p be a prime different from the charac-

af oh stic of K. Let u.v be roots of irreducible polynomials of the

n xP-a. xP- b. over K. Assume that [K(u,v):K] = p2. Then

.rv has degree pZ over K.

[
Prool. Again we have only to check that no difference of two

1seppjugates of u cquals a difference of two conjugates of v.  Now

‘b difference of two conjugates of u has the form (el= ¢J)y
Lo
. rere € 1is a primitive p-th root of unity. So the existence of such

cquation would yield the conclusion that u/v lies in K(e). put
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[K(e): K] € p-1, while the degree of u/v over K must divide
p” ={K(u,v): K]. Thus u/v e K would be forced. a contradiction

of [K{u,v):K] = pz.

Exercises

1. Let K be a field in which -1,2, and -2 arec not squares.
n
Prove that x2 + 1 is irreducible over K for any n. (Note that
L . . . C ntl .
this is the cyclotomic polynomial of primitive 2 -th roots of 1).

State and prove a converse.

Exercises 2 and 3 arec multiplicative analogs of Theorems 62
and 63.

2. Let M be a splitting ficld over K of a separable irre-
ducible polynomial of prime degree p. Let u_,u, be two dis-

1’72
tinct roots of [ Assume that uip does not liec in K (thatis, [.

p

taken with highest coefficient 1. is not of the form x" - a). Prove

that M 1is a normal closure of K(ul/uz).

3. Let u,v be clements separable over K. Supposc the
degree of u over K is a prime p, that u? does not lic in K,
and that the degree of v over K is n<p. Prove that

K(uv) = K{u,v) and that uv has degree pn over K.

4. Let u,v be clements separable over K. Suppose the
degree of v over K is a prime p and that u ¢ K {or some n
less than p. Prove that K(u,v) = K(uv ) and that uv has degree
pn over K. (Hint: usc Thecorem 61 and the multiplicative plan
of attack again. Defeat is possible only if v, ® <vj for two ¢con-
jugates of v and an n-th root of 1. Note that adjunction of ¢
does not change the irreducible equation for v, and examine how

that equation changes when v is replaced by rv.)
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5. Let K be an ordered field in which every positive ele-

, 2
ment is a square. Prove that in K(l), i = -1, cvery clement is

a squarc.

6. Find the degrees over the rational numbers of

(a) 3’1/5 L 21/4 ,

{c) (1 +31/5)51/4

() 21/531/4.

7. Let K be a field of characteristic p. Suppose that K
has a finite-dimensional extension which is perfect. Prove that
K is perfect.

8. What is the degree over the rational numbers of
1/4
21/4 ¢ 5t/

? Can you "embed" this in a more general theorem?

9. Let p be an odd prime different from the characteristic
of K. Assume that (xp - i)/(xp- 1) is irreducible over K.
Prove that for any n,

(xpn ) 1)/(xpn— 1 ) 1)

is irreducible over K.

10. {(a) 1t x6 L x3 L 1 isirreducible over a field K, prove
that x2+ x t1 and x3 -3x+ 1 arc irreducible.
(v) I x2 txt | and x3 = 3x+ 1 arc irreducible over
K, prove that (x3n_ 1)/(x3n— L 1) is irreducible over K for

any n.
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13. Inflinite Algebraic Extensions

The theory of infinite-dimensional algebraic extensions pre-
sents us with very few surprises. Nearly everything we have
proved remains valid, with the exception of results relerring spe-

cifically to integers occurring as dimensions.  The only serious
hurdle to be overcome is the existence of suitable extensions,

above all the existence of an algebraic closure.

DEFINITION. A ficld L containing K is said to be an

algebraic closure of K i L is algebraically closed and is alge-

braic over K.

The diffliculty in proving the existence of an algebraic
closure is sct-theoretic rather than algebraic. For the reader
who is willing to accept an old lashioned transfinite induction, the
following sketch is offered: let {f)\} be a well-ordering of the

irreducible polynomials over K, for A a limit ordinal deline

L. to be the union of L for @< A. and define L f
)\. . . a o 1 11 A1 1o be a
splitting field of f)\ over L)\. (Note: the [inal touch in this

prool is supplied by Exercise 1,)

[Towever, the temper of the times requires that (even at the
expense of some gymnastics) we carry through the prool using
instecad Zorn's lemma. But we must not simply say "Apply
Zorn's lemma to the sct of all algebraic extensions of K" ; this
naive gambit would make anyone familiar with the paradoxes turn
pale. We cautiously [irst get a bound on the cardinal numbers

involved.

THEOREM 65. Let L be an algebraic extension of K. If

K is infinite, L and K have the same cardinal number. K i
_— T is

linite, L is cither [inite or countable.




5.

Prool. We assume K inflinite; the argument for K [inite
is just a slight variant.

Standard set-theoretic arguments show that the number ol
polynomials over K 1is the same as the cardinal number (say x )
of K. With cach irreducible polynbmial over K associate what-
ever roots it has in L. This covers all the elements of L with
no duplication. This gives us the upper estimate Ho}{ = &S

[for the cardinal number of L.

[Even with this cardinal number bound established, it would
be daring to contemplate all algebraic extensions of K. To treat
the matter more cautiously we name a fixed set § disjoint [rom
K; to give ourselves plenty of room we take the cardinal number
of § to be greater than that of K (and also greater than No' il
K is [inite). The only ficlds we allow [or the discussion have as
underlying set K and a subsct of §; the ficld operations on K
arc 1o be maintained unchanged. Thus restricted, we arce able
to apply Zorn's lemma to the set of algebraic extensions of K
and pick a maximal ficld L. L must be algebraically closed:
for by Theorem 65 there are still plenty of elements lelt in § to
construct an algebraic extension of L if an algebraic extension

were still possible. We have proved:

TIIEOREM 66. Any licld has an algebraic closure.

The uniqueness of algebraic closure might as well be dis-

cussed in the more general context of splitting [ields.

DEFINITION. Let K be a field, {L} a sctof polynomials

with coelficientsin K. A field LK is said to be a splitting ,
Lield of {f} over K if cach fa factors completely in L and

. can be obtained from K by adjoining the roots of the f's.
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As a first exercise, the reader should verify that Theorem

25 holds for infinite-dimensional extensions.

TIIEOREM 67. Let K,KO be ficlds and S an isomorphism

of K onto Ko. Let {fa} be a sct of polynomials with cocefficients

in K, and let {fa } be the corresponding polynomials over K .
o
?

ler N be a splitting field of “"1} over K andN a splitting

field of {f } over Ko . Then: S can be extended to an iso-

?
morphismof N onto N .

Proof. Once again all the algebraic difficulties lic behind us,
and only standard sct-thcoretic mancuvers nced 1o be carried out.
To use Zorn's lemma we sct up a fussily defined partially ordered
set. Its elements are triples (P,PO, T) where P 1is a ficld be -
tween K and N, PO a ficld between Ko and No , and T an iso~
morphism of P onto PO which extends S. We say
(P,Po, T) 2(Q, Qo’ Uy ir PDOQ. PO:)QO and T is an extension
of U. Allis well for the application of Zorn's lemma and we ob-
tain a maximal triple (L.L .V). We have to show that L =N
and L = NO. If for instance L f' N. then somee polynomial fa
has not factored completely in L. Define M (LC MC N) by
adjoining the roots of fa to L: note that M is a splitting ficld
of fa over L. Similarly define M by adjoining the roots of
fa,o 1o Lo. By Theorem 21, V can be extended to an isomorph-
ismof M onto Mo . This contradicts the maximality of (L,LO,V).

In order to apply Theorem 67 1o sce the uniqueness of alge-
braic closure, we have only to note that an algebraic closure is a
splitting field == sce Exercise 2.

The major point that remains to be scttled is the genecraliza-
tion of Theorem 24. We will leave the proof to the reader: the
fact to be established is that an algebraic extension M of K is

normal over K if and only il it is separable over K and a splitt-
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ing ficld over K. It isthen immediate that M is also normal

over any intermediate field L. Ilence:

TIIEOREM 68. Let M be normal and algebraic over K.
Then in the Galois correspondence every intermediate field is

closed.

As for the subgroups, it is not true that they are closed.
The question is considerably clarified by an observation of Krull
[Mathematische Annalen (1928), vol. 100I: it is possible to topo-
logize the Galois group G of an algebraic extension in such a
way that G becomes a compact topological group, and a subgroup
of G is closed in the sense of Galois theory if and only il it is
topologically closed. Now the existence of non-closed subgroups
can be scen purely group-theoretically, for it is casy to prove
that any infinite compact group contains a subgroup which is not

closed.

Exercises

1. Let L be an algebraic extension of K with the property
that every polynomial with coefficients in K factors completely

in L. Prove that L is algebraically closed.

2. Let L be an algebraic closure of K. Prove that L is
a splitting fiecld over K of all polynomials with cocfficients in K

-

or of all irreducible polynomials over K.

3. State and prove the appropriate generalization to infinite

algebraic extensions of Theorem 46.



the subject of simple rings as presented inthe lectures. This
chapter was written directly by Prolessor Kaplansky. "

After a subterrancan existence for nearly ten years, the
notes surfaced in February, 1965 in the Chicago Mathematics
Department's lecture notes sezies. They were unchanged except
[or the addition of a preface summarizing recent developments.

In the present reprinting there has been some editing, and

at appropriate places new material has been added.



As a guest of UCLA in the Spring of 1955, I gave a course
on ring theory. Notes on most of the course were prepared by
Kenneth Holfman. lle wrote the following in a prelace:

"These notes represent the essential content of a series of
27 lectures given by Proflessor Irving Kaplansky at the University-
of California, Los Angeles, during the spring semester, 1955.
An eflfort has been made to make the notes self-contained; how-
ever certain elementary deflinitions such as ring, ideal, etc.

have been omitted to save space. The basic subject matter is
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great classics [rom the days of chain conditions: Deuring's

Algebren, Albertls Structure of Algebras, Rings with Minimum

Condition by Artin, Nesbitt and Thrall, and Jacobson's Theory ol

Rings, as well as Bourbaki's Modules et Anncaux Semi-simples.,

Ilerstein's Carus Monograph on Non-commutative Rings, and of

course the standard work:  Jacobson's Structure of Rings.

I am very grateflul to Kenneth Iloffman for his excellent job
on the notes. and lfor allowing me to incorporate his work into

Ficlds and Rings.
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1. The Radical

DEFINITION. Let A be aring. A right A-module is an
abelian group M, over which there is deflined an external law of
composition (x.a)=> x&, with eclements of A. in such a way that
for all x,y in M and a,f in A:

(1) (x+y)eo xatya,

(2) x(et+p)= xa+xp,

(3) x(aB) = (xa)B.
A left A-module is a system M. where (3) is replaced by:

3)" x(ap) = (xB)a.
For left A-modules. it is customary to write the elements of A
on the left. so that (3)' assumes the more natural form

(3)' (aB)x = a(px).
I M is a right A-module and A has a unit 1 such that xl = x,

for all x in M, then M is calledinitary.

DEFINITION. If M is a right A-module and x isin M.
the annihilator of x is the sct of elements @ in A [or which
xae = 0. Il S is a subset of M, the annihilator of S is the inter-

section of the annihilators of the clements of S.

TIHOREM 1. Let A bea ring. and let M bec a right

A-module.  Then the annihilator of a subset S _o_f M is a right

-
idealin A. — S is a submodule, the annihilator is a 2-sided
idcal.

Prool. ILet a and B annihilate S. For any x in S,
x(e-B) Txe "xp=0-0=0. Let y beany clementof A. Then,
x(ay) = (xa)y = 0-y = 0. Thus the annihilator is a right ideal. Ir
S is a submodule, then for any vy in A and any ¢ annihilating
S we have: x(ya) = {xy)e =0, since xy liecs in S. Thus ya

annihilates S, and the annihilator is now a 2-sided ideal.
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Remark: It 1 is the annihilator of M, then M is also a
right A/I-module.

DEFINITION. The right A-module M is faithful, if the
annihilator of M consists exactly of the zero clement of Al

DEFINITION. We say that the right A-module M is -
ducible, if it has no proper submodules and is not a trivial
module, i.e., M.A #0.

DEFINITION. A ring is right primitive, if it admits a
faithful irreducible right module.  (Left primitive ring is defined
similarly. )

Remarks: 1. A trivial ring (all products zero) admits no

irreducible module.
2. G.M. Bergman (Proc. Amer. Math. Soc. 15(1964),
473-5; correction on page 1000) has given an example of a right

primitive ring which is not left primitive.

THEOREM 2. Let x be an clement of the right A-module

M, and let 1 be the annihilator of x. Then xA is isomorphic

to the module A/I,

Proof. (Note that it I is a right ideal in A, we cannot
induce a ring structurc on the coscts of I, unless 1 i1s also a
left idcal: however, we can give these coscts the structure of a
right A-module, in the obvious mannecr.) We definc a mapping of
A onto xA by h(e) = xe. Now h is a module homomorphism.
The kernel of h is obviously I, and as usual for algebraic sys-

tems, we must have xA isomorphic to A/I,

THEOREM 3. I_f M is an irrcducible right A-module and

X is a non-zecro clement of M, then xA = M.
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Proof. Certainly xA is a submodule of M. Thus, cither
xA =0 or xA= M; we wish to exclude the former possibility.
Let S be the set of clements y in M for which yA = 0.
Clearly S is a submodule of M, and since M is non-trivial,
S is not all of M. Theretfore, § =0, and in particular, x is
not in §. It follows that xA = M

DEFINITION. The right ideal 1 in the ring A is called
rcgular if therc is an element ¢ in A for which ca-a lies in
I torevery a in A. 'The clement ¢ is called a left unit
modulo 1. We note that if ¢ isin I, then 1= A.

LExample. Inthe ring of cven integers, the ideal (6) is
regular (e = 4). The idcal (4) is not regular,

THEOREM 4. If M is an irreducible right A-module. and

X is a non-zero clement of M, then the annihilator 1 of x fsa

regular maximal right ideal in A.

Proof. We know from Theorem [ that T is a right ideal.
We must show two things:

(a) 1 is regular. By Theorem 3, xA = M: in particular,
there is an element ¢ in A such that xe = x. Let a be an cle-
ment of A. Then x(ea -—a)=xca-xa=xa"xa=0; or, ¢a"a
belongs to L.

(b) T is maximal. I J were a right idcal properly be-
tween A and I, then J/1 would be a module properly between
A/l and (0). But A/l = xA =M, and M has no proper sub-

module.

THEOREM 5. If M is an irreducible right A-module,

then there is a regular maximal right ideal I in A such that M

is module isomorphic to A/I.
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Proof. Sece Theorems 2.3 and 4.

DEFINITION. The 2-sided ideal P in A is called a right
primitive ideal if A/P is a right primitive ring.

Remark. If M is a right A-module, then M is a faithful
right A/P- module, where P is the annihilator of M. Thus, a
2-sided ideal P is right primitive il and only if P is the anni-

hilator of an irreducible right A-module.

TIIEOREM 6. A right primitive idecal P is the intersec-

tion of the regular maximal right ideals containing it.

Proof. P is the annihilator of an irreducible right
A-module M. Il x is a non-zero clement of M, then the anni-
hitlator of x is, by Theorem 4, a regular maximal right ideal
in A. The annihilator of M is, by definition, the intersection of
the annthilators of clements x in M. The statement of the theo-

rem is now obvious.

TIIEOREM 7. The intersection of the right primitive ideals

of a ring A is the intersection of the regular maximal right

idecals of A.

Proof. According to Theorem 6, it will suffice 1o show that
every regular maximal right ideal [ contains a right primitive
ideal. Now A/l is an irreducible right A-module (non-trivial,
since 1 is regular). The annihilator P of A/I is a right primi-
tive ideal. Furthermore, P is contained in I; for let p be an
clement of P and let ¢ be the left unit for I. Then ep-p lies

in I. DBut clearly ep belongs to I; hence, p isin L

DEFINITION. An clement x in a ring A 1is called right

quasi-regular, il thereis a y in A suchthat x+y+xy = 0. We
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shall at times abbreviate right quasi-regularto R.Q R. If A
has aunit, x is R Q R. if and only if {i1x) is right regular.
For convenience, we introduce the notation

KXoy 2 XLylXy.

The operation (o) is associative and has zcro as a unit.

DEFINITION. We say that x is guasi-regular if x has
both a right and left quasi-inverse. Note: because of associativity,
these two inverses are necessarily equal. For if xoy = 0 and

zox =0, then z = zo(xoy) = (zox)oy = y.

Remark. If A has a unit, then the mapping £(x) = 11 x
is an isomorphism of A under the circle operation with A
under ring multiplication, that is, f(x,,y) = f(x) f(y). Note also
that the quasi-regular elements of a ring form a group under the

circle operation.

DEFINITION. A radical ring is a ring in which every cle-

ment is quasi-regular.

Examples of Radical Rings.

i. Any triviaf‘ring.

2. Any nil ring, i.c. , onc in which every clement is nil-
potent. Indeed, in any ring, a nilpotent eclement is quasi-regular:
it xT= 0. then (-x)o(xt evatxT =0

3. Let F be a ficld and form all formal power series over
I’ with no constant term: u = aiX + Z{Zx2 L was = llere we have
(1+u)“1 ={-ut u2 Lt «ss « The right side makes sense since
cach power of x occurs only a finite number of times. From this

relation one can casily sece how to determine a quasi-inverse for u.

TIIEOREM 8. If a right ideal 1 consists entirely of right

guasi-regular clements, then 1 as a subring is a radical ring.
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Proof. Let x be an eclement of 1. We must show that x
has a (2-sided) quasi-inverse in I. Thereisa y in A such
that x+y+xy = 0. Since y= -x ~xy, y belongs to I. Ilence,
y has a right quasi-inverse z which is also in I. But now y
is quasi-regular and x = 2. Therefore y is also a left quasi-
inverse of x.

DEFINITION. An ideal (left, right, or 2-sided) consisting
entirely of quasi-regular elements will be called a radical ideal

(appropriately qualified).

TIIEOREM 9. I 1 is a radical right ideal and M is a

regular maximal right ideal, then [ is contained in M.

Proof. Let x be an clement of I, and suppose x does
not belong to M. Then ItM is the whole ring: in particular,
thereisan 1 in I andan m in M suchthat itm = ¢, the
relative unit of M. DBy hypothesis, there is an element j in 1
for which ~it1j = ij=0. Since ijtmj = ej, we have
-itjtmj= ¢cj. Therefore i=mj-{(ej-j), sothat i isin M.
But then e is in M, which is impossible. Thus, 1 is con-

tained in M.

TIIEOREM 10. Any proper regular right ideal can be ex-

tended to a regular maximal right ideal (with the same relative

unit).
Proof. Zorn's lemma.

TIIEOREM 11, The intersection, N, of the regular maximal

right ideals of A is a radical idecal.’

Proof. Let x be in N; we will show that x is right quasi-

regular. If x is not R. Q. R. , then the ideal 1 consis{ing of all
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clements xyty, for y in A. is a proper regular right ideal

(it does not contain x), with left unit (-x). By Theorem 10. 1
can be extended to a regular maximal right ideal M. DBut then
X is not in M, a contradiction. Therefore, x is R. Q. R.., and

by Theorem 8. N is a radical ideal.

THEOREM 12. The following four idecals are identical:

(1) The intersection of the regular maximal right

ideals.

(2) The intersection of the regular maximal left

ideals.

(3) The intersection of ’5}_1_e_ right primitive ideals.

(4) The intersection of the left primitive ideals.

M, By Theorem 7, (1) and (3) are identical, call this
ideal N. By symmetry, (2)and (4)arc egaal, call this ideal N',
By Theorem 11, N is a radical ideal, which, by the "dual”
theorem of Theorem 9, lies in every regular maximal left ideal,
and hence in N!', Similarly, "N!' is contained in N, so that

Nt = N.

Remark. The ideal N = N' is a radical ideal which contains
every other radical ideal; hence, we call N the radical of A.
The radical also contains every left. right, or 2-sided nil ideal.
DEFINITION. The ring A is saidto be semi-simple, il

the radical of A consists of the zero clement alone.

DEFINITION. A ring A satisfies the descending chain con-

dition (D.C.C.) on right ideals, il every properly descending

chain of right ideals is finite.

DEFINITION. An algebra'is a vector space which is also

aring, in such a way that for all ring elements x,y and scalars a:

a(xy) = {ex)y = x(ey).
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Remark. If an algebra has a unit. any right (or left) ideal
is automatically a subspace. I such an algebra is finite-
dimensional, the descending chain condition on right (or left)
ideals is satisfied.

DEFINITION. Let I be a subsetof A and J a right
ideal. The symbol IJ will denote the right ideal spanned by the
set of products ij. with 1iinl and j in J. (It is the set of [inite

sums ol such products. )

DEFINITION. The idecal 1 is nilpotent, if for some posi-

. . n
tive integer n. 1" =0,

LEMMA. If ax=a and -x is right quasi-regular, then

a— 0.
Prool. If (-x)ey =0, a(-xoy)= -a =0,

TIHEOREM 13. 1If the ring A satislics the descending chain

condition on right idecals. the radical of A 1is nilpotent.

Proof. [Let N be the radical of A. Then
N :)NZ:) N3 ... « By hypothesis Nk = Nk+1, for some k.
Let P = Nk 4 we shall show that P = (0). (Note that P2 = P.)
Suppose P # (0). Among all right ideals [ such that IP #(0),
pick a minimal onc Io (descending chain condition). Then there
is an x in I  such that xP#(()). Conscquently (xP)P =xP2
= xP # (0) ¢ so, we must have xP = I.. Choosc an clement a in
P suchthat xa—x. Since, in particular, a isin N, -a is
right quasi-regular. Ilence. by the above lemma. x = 0, a contra-

diction. Thereflfore P = Nk = (0).

DEFINITION.  An algebra is algebraic, if every eclement

satisfies a non-trivial polynomial equation.
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Remarks. 4. The direct sum ol an infinite number of
finite-dimensfonal algebras is algebraic.

2. The algebra of countably infinite matrices over a [icld.
with only a finite number of non-zero entries. is an infinite-

dimensional algebraic algebra which is simple.

THEOREM 14. The radical of an algebraic algebra is nil.

n k
Prool. Let x be inthe radical, x 1 «ast &X = (. where

—o" 1x11—k

k . k k
a/f 0. Solve for x , obtaining x =X (ﬁixl - ). Now

ﬁlx 1 ..a lics in the radical. By the lemma prior to Theorem 13,

xk =0, i.e., X Iis nilpotent.

DEFINITION. In a topological ring, the clement x is

n
called topologically nilpotent, if x approaches 0 as n ~ oo.

An ideal is topologically mil, il it consists of topologically nil-

potent clements.

Remark. In a compact topological ring. the radical is topo-

logically nil.

TIIEOREM A.  The radical of a Banach algebra A _is topo-

logically nil.  Any leflt, right, or 2-sided topologically nil ideal

is in the radical.

Prool. For convenience, assume a unit. Let x be in the
radical. For all complex X,\x is in the radical. Thus (1 - \x)

-1 .
exists for all N furthermore. the function F(\) = {1 -\x) is

entire. For sufficiently small X\,
-1 2.2
(1-2x) "= 14Ax+ N X L wuu «

Ilence. this relation holds for all X\, in particular for A = 1,
n
Therefore. x approaches 0.
“ Let I be a topologically nil ideal in A, and let x be in L

. - n
Then 2x is in I. so that (2x) approaches 0. Thus,for some K,
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5
“xu “ < x2™®, It follows that {{x £tx t =s= converges (10

We sce that 1

1 .
(1-x) ) and thus that -% is quasi-regular.

lies in the radical.
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2. Primitive Rings and the Density Theorem

x

DEFINITION. The ring A is simple. il the only two-sided
2
ideals in A are A and (0), and il, in addition A~ # (0).

Remarks. 1. A simple ring is cither a radical ring or a
primitive ring.

2. For many ycars the existence of a simple radical ring
was an intriguing open question. Then E, Sasiada (Bull. Acad.
Polon. Sci. 9(1961), 257) announced the existence of such a ring.
A delinitive account has appeared in a joint paper of Sasiada and
P.M. Cohn (J. of Alg. 5(1967), 373-7).

3. The Sasiada example is however not a nil ring and it
remains an open question whether a simple nil ring exists.

4. If a simple ring has a maximal one-sided idecal (not
necessarily regular). then it is not a radical ring.

5. It is.at times convenient to consider maximal right
ideals as being of one of three types:

(a) Those which contain Az.
(b) Thosc which do not contain Az, but arc not
regular.
(c) Thosec which are regular.
There exists a ring in which all three types occur; apnd there

exists a simple ring in which types {b) and (¢) occur.

Examples of simple rings.

1. Arny division ring is simple. having in lfact no proper
right or left ideals. What one might term a conversc of this
statement is also true, namely; I[ A is a ring with no proper
right ideals, then A is trivial (with a prime number of e¢lements),

: Cs .
or A is adivision ring.
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2. The ring A of all n by n matrices over a division
ring D is simple.
. . 2 .
Proof. Certainly A ;4 (0). We let Cij denote a matrix
unit. A general clement of A is a sum I: ai_jeij ) ai'j
with multiplication performed according to the rule
e,.e ,=c,,b.
ij kL it jk
sided ideal in A with a NOS-ZCro clement a = It dijei" Then

in D.
(6ik = the Kronecker delta). Let [ be a two-

the element en(a)ejj = @5y lies in [, and accordingly Cij 1s

in 1. Butthen for k= 1,...,n, e lies in I; hence

®ki®%k ~ “kk
the sum of the Ck.k' which is the unit, lies in I, and' I is not
proper.

If the descending chain condition on right ideals is assumed
there arc no further simple rings, according to the theorem of
Wedderburn-Artin which we shall prove shortly. DBut otherwise
there arc other examples such as the peculiar one we next
describe.

3. Let I’ be a field of characteristic zero, and let A be
the ring of "differential polynamials”™ I: o

J

added in the obvious manner, and multiplied according to the rule

i . . .
X D‘], with a.. in IF,
1)

Dx = xD+1, (One may think of the clements of A as opcrators
on recal valued functions on the real line, with x corresponding to
"multiplication by x" and D to differentiation.) The ring A
(which is in fact an infinite dimensional algebra) is a principal
ideal ring which has no divisors of zero and is simple. For let

. . . 1]
I be a two-ideal in A with a non-zcro clement a=1: a,x D" .

1)
One casily establishes the formulac:
k k-1
ka = x D tkx
k k-1
Dkx = xD + kD .

Now the element b= xa = ax lies in I. LEither b is a non-zero

clement of I which is of lower degree in x than a is, or a is
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free of D. If the former situation prevails, we similarly investi-
gate the element xb = bx in L. After a finite number of 'such
investigations we must thus arrive at a non-zcro clement of [
which is freec of x or of D, 'Let us say., for instance. that we
obtain a non-zcro ¢ in | which is frecof D. Then, il ¢ is not
a "constant" (constant polynomial), ¢! = ¢D = Dc is a non-zero
clement of I having lower degree in x than does ¢.  Clearly, in
a finite number of steps, we arrive at a non-zero "constant” in L
A similar argument holds when ¢ is frecof x In any case, |

contains a non-zero "constant”, and is not proper.

Example of a primitive, non-simple ring: Let V be an

infinite-dimensional left vector space over a division ring D.
Let A be the ring of all lincar transformations of V into V.
Then A has the following properties:

(a) A is not simple. The set F, of all clements of A
having finite-dimensional range, is a proper two-ideal.

(b) The ring A is right primitive, since V is a faithful
irreducible right A-module.

(c) The idecal ‘F, of linear transformations with finite-
dimensional range, is a simpte ring: Let [ be a two-ideal in F,
I1#0. We will show that | contains every linear transformation
U on V which has one-dimensional range. This will suffice to
show that 1 =2 [, since any transfoimationin [F is a finite sum
of such transformations U. Let S be in I, with xis = Yy £ 0.
If xU2y#0, wecanfinda B in F suchthat xB = % and
2U = 0 implies zB = 0; then we can find a C in IY with one-
dimensional range such that yIC =vy. Clearly BSC = U: hence,
U isin [.

(dy If T is any non-zcro two-ideal in A. F is A)ntaincd

in I, by the same proof as in part (c¢).
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(¢) V is a faithful irreducible right F-module.

(f) If V has countable dimension, then A/F is simple.
We can show this by proving that any two-ideal 1 which con-
tains F properly is all of A. If I contains an clement S$ with
infinite-dimensional range, then we can find (in a manner simi-
ltar to that of part (c¢))clements B and C in A such that

BSC =1 (weomit the details); hence, 1 is not proper.

DEFINITION. Let M be a right A-module, and let a be
a group endomorphism of M (written on the left). We say that
a is an A-endomorphism of M if for every a in A and m in

M it is true that a(ma) = (em)a. Under the operations

(atf)m = am t fm
{ap)m = o(pm)

the sct of A-endomorphisms of M forms a ring.

A Examples:

i. If A is the ring of integers, cvery group endomorphism

of M is an A-endomorphism.
2. I M is a vector space over the field A, the A-endo-

morphisms of M are the lincar transformations of M.

TIIEOREM 15.  (Schur's lemma) The ring D of A-endo-

morphisms of an irreducible module M is a division ring.

Proof. Since D has a unit, we need only show that cach
non-zero element a in D has an inverse. If af 0, then aM
is a non-zero submodule of M, which must be M (irreduci-
bility). Let N be the set of elements m in M for which am =
Then N is a submodule of M, which is certainly not alt of M;
hence N = (0). Thus ais a onc-one map of M onto M. and has
a sct-theoretic inverse, .a'-1 .= We need only verify that .a-1 is

an A-cndomorphism. But

0.
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1
R

- - -1
o Um+n) = o Hamt+ant) = & H(a(m® +n%) = m'+ 0,
and
-1 -1
m'+nt=a m+a n, .

Similarly, .

o H(ma) = o H((em"a) = @ (a(m'a)) = m'a = (2" 'm)a.

This suffices to show that D is a division ring. We shall refer

to D as the commuting division ring.

Remark. K A is a right primitive ring, With faithfulirre-
ducible right A-module M, then Schur's lemma shows us that
A is isomorphic 10 a subring of the ring of linear transforma-
tions on M, when M is interpreted as a left vector space over
the commuting division ring D. In general, A is not the futll
ring of linear transformations. (We have seen that this is the
case when A is the ring of linecar transformations of finite-
dimensional range over an infinite-dimens‘ional left vector space. )

We are thus led to the following concept.

DEFINITION. A sct jof lincar transformations on a vector
space V is called n-transitive if for any two sets of vectors in V:
Xysewe, X0 and Yyre s sV with the x's linearly independent,
there is a transformation S in j such that %, S = Yo i=1, ...,n

It j1s n-transitive for every positive integer n, then S is

called dense (inthe ring of all lincar transformations on V).

TIIEOREM 16. (Density thcorem) Let A be a right primi-

tive ring, and let M be a faithful irreducible right A-module.

Make M into a left vector space over the commuting division

rnNg D (by Theorem 15). Then A is isomorphic to a densc

ring of linear transformations on M.
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Proof. If x is any non-zero clement of M. then xA =M
(Theorem 3). Thus A is l-transitive. Now 1o prove density it
will suffice to show that for any finite-dimensional subspace [ of
M and any non-zecro vector x which is not in M there is a lincar
transformation in A which annihilates [ but not x. The proof
will proceed by induction on the dimension of [E. The result has
been established when [ is zero-dimensional: we assume it has
been demonstrated for dimension n-1, Then, for any n-dimen-
sional subspace LI (and a non-zero x not in L) we write
[E = F+Dy, where F is of dimension n-1. Let J be the anni-
hilator of I Then J is a right ideal in A. and yJ is a sub-
module of M. By the induction hypothesis, yJ # 0: hence,
yJ = M. Now supposc that any element in A which annihilates
I: also annihilates x. Then we can define a mapping a of M
into M by ofyj) = xj, for ecach j in J. (ais well-defined, since
il y_j1 ===y_j2 then (3, —jz) annihilates both I' and vy, hence [,

implying that xj, = sz.) One can casily verify that a is an

1
A-endomorphism, that is, a is in D. By definition (ay-x)J = 0,
and the induction hypothesis thus implies that ay-x is in F.

It follows that x is an clement of FtDy = E, contrary to assump-

tion. Consequently, there must exist an clement of A which

annihilates [ but not x.

TIIEOREM 17: If a right primitive ring satisfies the de-

scending chain condition on right ideals, it is the full ring of lincar

.
transformations on a {inite-dimensional vector space over a.divi-

sion ring. In particular (Wedderburn-Artin), this is true of a

simple ring with descending chain condition on right idecals.

Proof. In the notation of Theorem 16, we must show that

M is finite-dimensional. Suppose the contrary, and let Xq XZ.
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be an infinite linearly independent set in M. Let I  be the anni-
r

hilator of (xi,xz, e ,xr). Then {Ir} is a descending chain of

right ideals of A. By the density theorem, Ir # Ir+1' This vio-

lates the descending chain condition.

The result of Wedderburn-Artin follows when one realizes
that a simple ring with D. C. C. cannot be a radical ring. (A radi-

cal ring with D. C. C. is nilpotent, hence, not simple.)

Remark. A particular consequence of Theorem 17 is that

a right primitive ring with D. C. C. on right idecals has a unit.

We mention two applications of the density theorem which
arosc in various contexts.

1. Let A be a right primitive ring in which the square of
every clement is right quasi-regular. Then A is a division ring
(with no square root of -1).

Proof. We know that A is a densc ring of linear trans-
formations on a vector space V. We shall show that V is one-
dimensional. If not, take x and y to be lincarly independent
vectors in V., and find a lincar transformation a in A such that
xa 2oy and ya = x. Then xa2 = -x and ya2 =2 -y, DBut then for
any b in A, x(a2 tbt azh) = -x and y(a2 +bt azh) = -y, con-
tradicting the hypothesis that a2 is right quasi-regular. We re-
mark in connection with this result that a semi-simple Banach
algebra in which every x2 is R.Q.R is automatically commutative.

2. If A is aright primitive ring such that {or any a,b in
A: a{ab - ba) = (ab - ba)a, then A is a division ring.

Proof. If x,y are lincarly independent vectors in V. one
can casily verify that the transformations a (defined in example 1§
above) and b, where xb =y, yb = x, violate the commuting con-

dition of the hypothesis.

@
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We point out in passing a somewhat deeper resule: If
c(ab - ba) = (ab - ba)c for all a,b,c, then A is actually a
field.

TIHILEOREM 16", (Classical density thecorem) Let V _be

a finite-dimensional vector space over an algebraically closed

ficld F. Egt A be an irreducible algebra of lincar transforma-

tions on V. Then A is the full algebra of lincar transformations

on V.

Proof. The proof will utilize Theorem 16. First we note
that V is actually a faithful irreducible right A-module.  This
can be scen as follows: I x is a non-zero clement of V, then
xA is a submodule of V: in fact, since \(xa) = x(ha), we sce
that xA 1is a subspace of V. Since V is irreducible (as a vee-
tor space)we must have xA = V. It follows that if a submodule
of V conlains a non-zero veclor x, il contains xA =V, ie.,
V is an irreducible right A-module. Certaintly V is faithful.
Next we show that the commulting division ring D (guaranteed by
Schur's lemma) is actually an algebra over F. Let a be in D.
Ain F, x in V, For anynon-zero y in V there is an a, in A
such that x = ya. Thus a(Ax) = a(rya) = a(y-\a) = &y)(\a)
=2 alya) = M a(x). Therefore D is actually an algebra of lincar
transformations over the vector space V. and as such is neces-
sarily finite-dimensional. We now quote the theorem that the only
finite-dimensional division algebra over an algebraically closed
field is the ficld of scalars; in other words, D = F. We may apply
Theorem 16 0 conclude that A is a dense ring of lincar trans-
formations over the vector space V (with F as scalar ficld).
Since V is finite-dimensional, A is the full algebra of lincar

transformations on V.
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Remarks. 1. Theorem 16' could also have been proved by
proving propositions analogous to Theorems 15 and 16 for algebras
of lincar transformations, rather than for rings of endomorphisms.

2. If we had chosen to develop the theory of rings with
operators, eslablishing our present propositions in the presence
of operator domains, Theorem 16" would follow immediately; how-
ever, il scems inadvisable Lo (reat rings with operators in an
introductlory course.

3. The hypothesis that F be algebraically closed is essen-
ttal. For example tet F be the field of real numbers and V. a
two-dimensional space over F. then the algebra A of transfor-

mations on V maltricially represented by

a b
-b  a

is irreducibtle.

THIEOREM 16". (Burnside's theorem) Let S be a mullti-

plicative semi-group of lincar transformations on an n-dimensional

veclor space Vo over an algebraically closed field.  Suppose V is

. . . 2 . .
irrcducible under S . Then S contlains n  lincarly independent

transformations.

Proof. Let A be the algebra spanned by S . Apply

Theorem 16" 0 A

THIEORIEM B. Let S be an irreducible multiplicative semi-

group of lincar transformations ,on an n-dimensional veclor space

V over an algebraically closed field. Suppose that exactly k e

tinct traces occur in the elements of § . Then S has at most
2

n
k clements.
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Proof. Onthe algebra of all linear transformations on V
we introduce the inner product (A. B) = Trace( AB ), casily scen
to be non-singular. Let Cyonn =0 be the distinet traces that
occur. Let Ai (i=1,. ..,nz) be nZ lincarly independent cle-
ments in S (Theorem 16"), LFach'X in S satisfies equations
Tr(AX) = bi where bi’ ) , are chosen from the <'s,
These cquations determine X nuniqucly, so therce arc at most

2

n . . . . . .
k choices for X. (This streamlimng of Burnside's argument

is due to C. Procesi).

DEFINITION. A matrix is unipotent if all its characteristic
roots are 1. An cquivalent statement is that the matrix has the

form identity plus nilpotent.

TIIEOREM C. (Kotchin) Let S be a multiplicative semi-

group of unipotent matrices. Then the elements of S can be

simultancously put in triangular form.

Proof. Let n be the size of the matrices. We arguc by
induction on n. The case n =1 is trivial.

Casc 1. The scalar ficld is algebraically closed. If Sis
irrecducible, then by Theorem B, S has only one element; where-
as onc matrix is always reducible (here n >1), Ilence $ is
reducible. Then by choosing a basis for the invariant subspace
of 8 and extending it to a complete basis, allthe clements of

will have matrices of the block form:
B C

O o

Now the sets SL , of the upper left corners B, and S

R’ of the
lower right corners D. form multiplicative semi-groups of uni-

potent matrices of dimension less than n.  One can then use the
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induction hypothesis to triangulate simultancously these matrices,
and all ctements of S will then have been put in triangular form.

Case {I. 'An arbitrary scalar fiecld F. Form the alge-
braic closure of I and triangutlate the etements of 8 simuliane-
ously as matrices over the extension field. Then any product of
n matrices (T -1), where T isin S and [ is the identity
matrix, must be zero. Let r be the smallest integer such that
the product of any » clements (T-1I) is zero. Then there exist
clements Ti' ey Tr-i i S such that

(T =T, =D ... -I)#o.

Find a vector x such that

(T, = D -I) =y #o.

Then for any T in S , y(T - 1)=0, or yT =y. This shows that

S is reducible. The argument can now proceed as in Case [.

DEFINITION. A torsion group is a group in which every

clement is of finite order.

DEFINITION. A group is locally finite if every finitely

generated subgroup of it is finite.

The following problem, which comes in two varieties, was

proposed by William A. Burnside. /

Burnside's Strong Problem: Is every torsion group locally

finite?

Burnside's Weak Problem: s every torsion group. in which

the order of every element is less than a fixed integer, locally
finite?

We make an analogous definition for algebras.
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DEFINITION. An algebra is locally finite if every [initely
generated subalgebra is [inite-dimensional.
Kurosch proposed the analogues of Burnside's problems.

Kurosch(s Strong Problem: Is cvery algebraic algebra

locally [inite?

Kurosch's Weak Problem: Is an algebraic algebra locally

finite ifevery element satislies a polynomial of degree leds than

a [ixed integer?

Kurosch's weak problem was answered in the alfirmative
by Jacobson for semi-simple algebras, and by Levitzki for radi-
cal (i.e., nil) algebras. It is casy to put these two results to-
gether to get that the answer to the weak Kurosch problem is
nyest,

In a brilliant picce of work Golod (Izv. Akad. Nauk SSSR
28(1964), 273-6), basing himsell on ideas of Golod and
Shaflarevich (same [zv. 261-272) got a negative example [or both
strong problems. This negative result increases the interest in
special cases where the answer is allirmative, such as algebras
with a polynomial identity (sce section 7).

The status of the weak Burnside problem is uncertain.
Novikov (Dokl. Akad. Nauk SSSR 127(1959), 749-752) has announced
a negative answer when the bound is at Ieast 72, but [ull details are
not available (sce the review by Bruck (Math. Rev. 21, 1051-2)).

For the important class of groups [aith[ully represented by

matrices the answer to the strong Burnside problem (let alone

the weak one) is "yes'™. We proceed to prove this.
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TIEOREM D. (O, Schmid) If a group G has a normal

subgroup Il such that both II and G/I1 are locally [inite, then

G is locally [inite.

Prool. Let CTTRIET be clements of G. and let

a'i, .=-,a' be their respective images under the canonical homo-
morphism of G onto G/H. These images gencrate a [inite sub-

group of G/H with clements a!, ...,al ,a' ,,...,a! . Choose
i r’ rit n

any clements Appqgre mody in G which map respectively onto

a! ,...,a' . For cach i,j we have a.a. = h, a , [lor some k

r+t n 1) ijk
and some clement h'i in II. The elements h.. gencrate a [inite
1 1)

subgroup T of IL Now aiajam = hijhkrnag (for some?).

Thus the product of any number of the elements , iy equal o an

clement of T times some a, + Clearly then the a_ generate a

i

group with fewer elements than n.(order T).

TIHEOREM E. A solvable torsion group G is locally [inite.

Prool. We have G=G DG, Dass+ )G =1, where G
is normal in G and (G, )/(G° ) i abelian. Rertainly an abdlifin

i
torsion group is locally [inite: hence, by successively applying

Theorem D. we conclude that G is locally [inite, G is
locally finite, etc. n-1 n-2

TIHEOREM F.  The multiplicative group of all non-singular

n bz n triangular matrices over a [ield is solvable (and so is an
P=3 y

subgroup).
We omit the prool.

Fqr the prool of the next theorem, we neced the [ollowing

four lemmas, which we state without prool.
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LEMMA 1., The cyclotomic polynomial of any order is irre-

ducible over the rational numbers.

LEMMA 2. The degree ¢(n) of the cyclotomic polynomial

® (x) tends 1o o with increasing n.

LEMMA 3, If [ _is a polynomial irreducible over a ficld F

amd F{x] is the ficld obtained from I° by the adjunction of a trans-

cendental clement x, then [ is irreducible over F[x].

LEMMA 4. Let K be a finite-dimensional extension of a

Lield IF. Then K can be represented (isomorphically) by matrices

over F,
We shall also need the following.

LEMMA 5. Let (G be a finitely generated torsion group of

matrices over a fiecld F. Then there exists a fixed integer N

such that if @ is a characteristic root of a matrix in (5, then

aN= 1.

(This is equivalent 1o saying that the eclements of G are of bounded

order; but we need only the statement-about characteristic roots.)

Proof. Let Ai’ . ..,Ar generate. (5. We may replace I°

by the ficld F_, obtained by adjoining the clements of the matrices

1’
A.1 to the prime fiectd P of F. Then F1 can be viewed as a
finite-dimensional extension of a ficld Q, which is a purely trans-
cendental extension of P. We use Lemma 4 (above)to write

Ail . .,Ar as matrices over Q. Let us saythe matrices (over
Q)are nbyn. Let @ be acharacteristic root of onc of these
matrices, and let h be the minimal positive integer for which

ah =1, By Lemma 3, tlpe irreducible polynomial over Q which

o satisfies is actually an irreducible polynomial over P. We

wish to show that h 1is bounded for all a, and to do so, we arguc

in two cases.
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Case I: I P is of characteristic zero, the irreducible
polynomial for « is the cyclotomic polynomial Qh' Since the
degree of Qh is less than or equal to n, the exponent h must
be bounded (Lemma 2).

Case 1l: If P is of characteristic p, and a is of degree
k over P, then the simple extension P{e) is the Galois field of
pk clements. Thus & to the power pk-i is 1, so that
h< n, i.c.., h is bounded for all a.

Thus for some positive integer ¥V and any characteristic

N _.
root @, & =i.

TIIEOREM (. Any torsion group of matrices is locally

finite.

Proof. Any torsion group ol one by one matrices is locally
finite. Assume that any torsion group of matrices of order less
than n is locally finite. Let (,}* be a torsion group of n by n
matrices, and let (G be a finitely generated subgroup of G*.

Casec I If the underlying vector space is irreducible
under (G, then G is finite. For Lemma 5 implies that only a
finite number of traces occur in the elements of (, so that G
is finite by Theorem B.

Casc 1l: If the space is reducible, cach matrix in G can

be written in the block form {see -proof of Theorem C)

o'

The matees A (and C) multiply independently.  Thus, by
the induction hypothesis, (he set of matrices (A) is locally finite
and similarly for the set (C). We map G homomorphically onto

the locally finite set of matrices
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A o
o cC
by
A o
T et
O C

The kernel of this homomorphism is the sct of matrices

where I1 and 12 arc identity matrices. By Theorems IL and F,
this kernel is locally finite. Then Theorem D implies that G is
locally finite. Consequently, G is finite.

It follows that G is locally finite.
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3. Semi-Simple Rings

For any ring A, we shall use the symbol R{(A)} for the .

radical of A. When no confusion is possible, we shall abbreviate

R(A) 10 R.
TIIEOREM 18. For any ring A, A/R is semi-simple.
Proof. We first establish the following lemma.

LEMMA. If ¥ is a right quasi-regular element of A/R,
and il x maps into x under the canonical homomorphism

(modulo R), then x is right quasi-regular.

Proof. Thereisa y in A/R suchthat ey = 0. Choosc
a y which maps into y. Then xoy isin R. DBut then x is

R. Q. R., since there is a 2z such that
x0 (ye z) = (xey)oz = 0.

The statement of the theorem now follows readily; for, if Rt is
the radical of A/R, (by the Lemma) the inverse image of R!
under the canonical homomorphism is a radical ideal in A. Such

an ideal lies in R:; herdee R' = (0).

Remarks. 1. If ¢ is a homomorphism of the ring A onto
the ring B, then ¢(R(A)) is contained in R{B); however, ¢(R(A))
is not in general all of R(B).

2. Theorem 18 says that if one "divides out” the union of
all radical ideals in a ring, th? quotient ring has no (proper)
radical ideals. To indicate that analogous propositions may fail,
we remark that if one "divides out” the union of all nilpotent ideals
in a ring, the quotient ring may have many nilpotent ideals. In
fact, this quotient ring modulo its nilpotent ideal union may still

have nilpotent ideals, and so on, ad infinitum.
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For the p-ool of our next theorem. we need two lemmas.

"
LEMMA 19.1. In any ring A. if -x" is R.Q.R., then
x is R.Q.R,

Droafl If -xzoy = 0, then
2
xo((-x)oy) = xo(-x)oy = (-x)oy = 0.

LEMMA 19,2, Let A be a ring and x_an eclement of A.

Then xA is a radical ideal il and only il x lies in R(A).

Praof If x is in R(A), certainly xA is a radical ideal.
Suppose xA is a radical ideal. andlet J be the right ideal
generated by x. We shall prove J is a radical ideal. Now J
is the collection of elements of the form y = nx + xa. where a
isin A and n is an integer. One can casily check that for any

such element y. -yz is in xA, By Lemma 19.1. y is R. Q.R.

TIIEOREM 19, Let I be a right ideal in a ring A. Then

R(I) contains I(\R(A), If I is atwo-ideal. then R{I) is equa
w IMR(A),

Prool. If x lies in I R(A), thercisa y in A such
that xoy = 0. Since y= -x - xy. y isin I. Thus I/ R(A)
is a radical right ideal in I, and is cohtained in R(I), If I is
in fact a two-ideal. then for any x in R(I) and any a in A.
-—(xa)2 = -x(axa) is in R(I) and is therelfore R. Q. R. By Lemma
19.1. xa is R. Q. R. Thus =xA is a radical right idcal in\A.
and by Lemma 19.2, x lies in R(A),

We now turn to the Chinese remainder theorem. The sct-
ting for this theorem is as follows. Let 11, . -,I11 be two-sided
ideals in a ring A. There is then a natural homomorphism of
A into the direct sum A/I1 ® A/I2 S ... A/In. One may ask

when this homomorphism is onto. I n= 2, the necessary and
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1

I,) are relatively prime ideals. The necessary and sulTicient con-

dition in general is that for r=1,2.. ..,n. [ be relatively

sulficient condition is that I1 t IZ =2 A, or, as we may say., I_ and

prime to the intersection of the remaining Ik‘s. The Chinese re-

mainder theorem states that, under suitable hypotheses. it is

sulficient that Ik be relatively prime in pairs.

TIIEOREM (Chinese remainder). Let I,,...,I bc two-
=€t n X2 LWo:

1)
sided idecals in a ring A. such that for r ;4 s, I t Is = A, I
T -

cach quotient ring A/l is equal 1o its squarc (that is,

A2 t1 = A), then the natural homomorphism of A into

A/I1 & ... A/In is. onto.

Prool. Since Iit[Z=A' IilI3=A,

Ab: (41, +1)C 1+ LIC 1 +(1,01),

the tweo inclusions being obwvions. Since A/I1 is equal to its
square, A = A2 t I1 C I1 + (Izm 13). Consequently,
A= I1 t (12 0\13). We repeat essentially tHe same argument using
al= [I1 t I2 M 13][11 L 14] to conclude that A = L +(12r\13r\ 14),
By induction, I1 + (12 (‘\13 MN... mln) = A. A similar argument
shows that cach [  is relatively prime to the intersection of the
Ik' k;‘ . This sulfices to show that the mapping in question is
onto.

Remark. The conditions A2 +1 = A arc automatically
satisfied if cach quotient ring A/I has a unit.

TIIEOREM 20. (Wedderburn-Artin). ..]:‘E.t A bc a semi-

simple ring satislying the descending chain condition on two-sided

ideals. Suppose lurther that for every right primitive ideal P

in A. A/P satislies the descending chain condition on right

ideals. Then A is the direct sum of a [inite number of simple

rings. cach of which is a [ull matrix ring over a division ring.
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Proofl. Let P be a right primitive ideal in A. DBy
Theorem 17. A/P is a [ull matrix ring over a division ring;
in particular A/P is simple and has a unit clement. Thus the
condition A2 Lt P=A holds. We now claim that there arc only
a linite number of right primitive ideals. For suppose we have
an infinite number: Pi’PZ’ . «« « We claim that the chain
Pi,PimPZ, Crey Pi('\ . ﬁPn, .w. is properly descending. If,
for instance.

Piﬂ ...{WPn=Piﬂ ...ﬂPnﬂP'nH ,

then Pim s ﬂPn is contained in P But by the Chinese

nt+i’
remainder theorem, Pn+1 L (Pim e Pu) = A. The conclusion

is P A, a contradiction. Our hypothesis that A satislies

o+t
the descending chain condition on two-sided ideals thus implies
that the number of P.l‘s is [inite. Their intersection is 0 by
the semi-simplicity of A, and A is the full direct sum of the

rings A/P. by another application of the Chinese remainder

theorem.

DEFINITION. Let A be aring. The clement a. in A is
called Regular (in the sense of von Neumann) if there is an x in
A lor which axa = a. If every clement of A is Regula‘r, then A

is called a Regular ring.

Remark. DBecause of the many uses of the word "regular".
we shall bend our grammar to keep our mathematics straight.

and spell ®von Neumann regular® with a capital *R®,

Examples of Regular rings:

1. Any division ring is (obviously) Regular.

2. A direct sum of Regular rings is Regular.

3. The n by n matrix ring over a Regular ring is
Regular (see Theorem 24). In particular. a semi-simple ring

with D. C. C. on right (or lell) idecals is Regular.



-111-

4. The ring of all lincar transformations on a vector space
V (not necessarily finite-dimensional) over a division ring is

Regular.

Proof. Let A be alinear transformation on V. and let
{va} be a basis for the range of A. Choose ua such that
uaA = Vo Then {ua} together with the null space of A span V.
As the v, are lincarly independent. there is a linear transfor-
mation X such that vaX = ua. Then AXA = A, as one can
readily verily. We remark that the set of lirear transformations
on V with finite-dimensional range is a Regular subring of the

[ull ring of transformations.

Remarks. . (von Neumann) In any Regular ring. the |
set of principal right ideals is a complemented. modular lattice.
In his work on Continuous Geometry a big theorem is the con-
verse: any complemented modular lattice satisfying certain
mild conditions arises [rom a suitable Regular ring.

2. Any Regular Banach algebra is finite-dimensional.

3. A homomorphic image of a Regular ring is Regular.

TIIEOREM 21,  Any Regular ring is semi-simple.

Proof. Let A be a Regular ring. and assume a is in
R(A). Suppose axa =a. Then (a.x)z = axarx = ax. and ax is
in R(A)_ Thus &ax = 0. since the radical of a ring never contains
a non-zero idempotent. (If e is an idempotent in R(A), then
-e is R.Q. R,; but, ~ety -cy =0 1implics -e2+ ey-cy = 0. i, e.
e=0.)

-

LEMMA. (McCoy) _Ig axa = a is Regular, then a is

Regular.
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Proofl. Il (axa - a)y(axa - a)= axa - a., then

a = a(x - y - xayax t xay t yax)a.

TIIEOREM 22, Let A be a ring and I a two-ideal in A.

Theno A is Regular if and only il both 1 and A/l arc Regular.

Prool. I A is Regular. we have alrcady observed that
A/l is Regular. Let a be in I. There is an x in A such
that axa = a. DBut then a = a.xax+a and xax is in . Thus I
is Regular. Now supposc that both [ and A/l arc Regular.
Let a bein A andlet a map into a' under the canonical home
morphism of A onto A/I, Thereis an x' in A/ for which
t

atxtal' = at., Lect x map into x!' (modulo I). Then axa - a is in

I. and is therefore Regular. By McCoy's lemma. a is Regular.

DEFINITION. The two-ideal I inthe ring A is called a

Regular ideal, if I is a Regular ring as a subring of A.

TIIEOREM 23. Any ring A has a unique largest Regular

ideal M, and A/M has no non-zero Regular ideals.

Proolf If I and J are Regular ideals in A, then I+7
is Regular. For, by the Mirst law of isomorphism® for rings,
(113)/1 is isomorphic to J/(INJI). Now J/(IMNJ) is Regular.
being a homomorphic image of the Regular ring J; since [ is
Regular. 1tJ is Regular (Thecorem 22). [Lvidently a finite sum
I1 t I2 t...1 In , of Regular ideals is also Regular. Clearly
then the set M of all finite sums of elements, cach lying in
some Regular ideal. is the unique largest Regular ideal in A
Let J be a Regular ideal in A/M, The inverse image of J
under the homomorphism of A onto A/M  is, by Theorem 22,
a Regular ideal in A, and thereflore is contained in M. Conse-

quently J = 0.
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LEMMA 23.1. If I isa Regular idecal in the ring A _and
L.

J is a right ideal in then J is a right ideal in A.

Prool. Let j bein J. a in A. There is an x in Iwith

jxj =j. Then ja = jxja. Since xja is in I, ja is in J.

LEMMA 23.2 Let A be aring with atwo-ideal 1. I I

has a unit, then I is adirect summand of A.

Prool. Let ¢ be the unit element for 1. The key point is
that ¢ 1is central. To sce this. we note that for any Xx in A,
ex lies in I It can therefore admit ¢ as a right unit element,
so we have ex = exe. Injust the same way xe = exe. Ilence
ex = xe and ¢ 1s central. Ifwe let J be (1-¢)A = the sct of
all a-ca. we see readily that J is a two-sided ideal and that

A is the ring direct sumof I and J.

Remark. Ifthe ring .A is a dircct summand in every

larger ring in which it is an ideal. then A has a unit.

Proof. Let B be the standard ring obtained by adjoining
aunit to A. B isthe set of ordered pairs (a, n), with a in A
and n an integer. The operations in B are deflined by
(ai,ni) + (az,nzz = (a1 ta,n + nz) and (ai,ni)-(az,nz)
= (aiazt 1111121 112111,n1n2). " The ring A is isomorphic to the
ring of pairs (a,0), and A is thus an ideal in B. DBy hypothesis
B=A@®IJ, for someideal J contained in B, In particular, J
contains an clement {e,n) such that for some a in A.
(0,-1)=(a,0) + {e,n). Itmustbethat a—-c and n= -1, The
significant point is that (e, -1) is in J. Let b be in A. Then
(¢.-1):(b,0) = (eb-b.0) is inboth A and J, so ecb=b. Simi-

larly. be =z b. Thus ¢ is aunit for A.
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TIIEOREM 23'. If the ring A has the descending chain con-

dition on right idecals. it admits a direct sum decomposition

= M® N, where M is the maximal Regular ideal of A, and N

has no non-zero Regular ideals.

Proof. Lemma 23.1 guarantees that the maximal Regular
idecal M of A (Thcorem 23) satisfies the D, C., C on right idcals.
Since any Regular ring is semi-simple. we sce. from Theorem 20,
that M has aunit. By Lemma 23.2, A admits a direct sum de-
composition A = M@ N. Since N must be isomorphic to A/M,

N has no non-zero Regular ideals (Thecorem 23).

TIIEOREM 24. Any n by n matrix ring over a Regular

ring is Regular.

Prool. We lirst consider the case n= 2. For the matrix

2 b if ¢rc =c. then
c d/’ )
<a b)(o r> a b) 2 b) (azc -a) (ard-b)
c d/\o o/\¢ 4/ \¢ da/ \o (crd-q) / °
L
ITence. by McCoy's lemma. it will sulfice to consider matrices

(g :) . Suppose that axa=a and dyd = d. Then

G ICICD-CG)

0
Again by McCoy's lemma. it suflices to consider matriccs( b)

0 0
But if bzb = b, then

G CI6 D66

This concludes the argument for n = 2.
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For n = 4. the conclusion follows immediately upon writing

4 by 4 matrices in the block form

)

where A.B.C.D arc 2by 2 matrices. The 4 by 4 matrices are
then simply 2 by 2 matrices over the ring of 2 by 2 matrices,
and the above argument-appliecs. DBy induction we casily obtain
the result for n = Zk.

For an arbitrary n, pick Zk 2>21n. Then the ring of n by n
matrices sits as the upper left n by n corner in the ring of
Zk by Zk matrices. The desired result then follows from a re-

mark which we leave as an exercise for the reader: if A is

Regular and ¢ is an idempotent in A, then eAe is Regular.

DEFINITION. Let G be a group and 1Y a field. The
group algebra of G over 17 is the set of all (formal)linecar com-
binations Z‘,Xigi of the elements g of G, where the Xi are
elements of 17, all but a linite number of which arce zero. The
algebraic operations are the obvious ones. (U§e of group alge-
bras has made it possible to exploit ring-theoretic techniques in
the study of groups. We shall survey some of the known results
and open questions. beginning with a complete result on semi-

simplicity in case the group is finite. )

TIIEOREM 25. (Maschke) Let A be the group algebra of

a finite group G over the ficld F. If F has characteristic

zero. A is semi-simple. Il ¥ has characteristic p, then A

is semi-simple ¥ and only if p does not divide the order of G.

Proofl. Of a number of different known proofls. we seclect
one that uses a trace argument in the regular representation.

The prool proceeds in two steps.
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[. Supposc the characteristic p of F divides the order n
of G. Lect a be the sum of all the clements of G. Evidently
ag = ga =a forany g in G. From this we deduce first that a
lies tn the center of the group algebra A. Furthermore, a2'= ne
(n—order of G). Since p divides n, a2= 0. Since a lics in
the center of AL (arA)2 = (0). Then aA, being a nilpotent ideal,
lics tn the radical of A (and is not (0)). llence, A is not semi-
simple.

II.Suppose F has characteristic zero or that it has
characteristic p and p does not divide n.  We need the concept

of the regular representation of an algebra B. This representa-

tation ts the homomorphic mapping of B onto the algebra of
lincar transformations over BB (viewed as a vector space) de-
termined by x - RX where a- Rx = ax. Notc that when B has a
unit this representation is faithful, i.c. , an isomorphism.

We return to the group algebra A.  Supposc E)\igi is a
non-zero clement of R(A), Multiplying by a suitable clement of
A. wec obtain an clement x in R(A) of the form
X=dtpqgqte.at - Under the regular representation of A

x maps into the lincar transtformation R = Tty R, t...tp R
X 1 gi r

g
Choosc as a basis of A the clements of (. Then cach R is a
i
permutation matrix corresponding to a permutation leaving no cle-
ment fixed. It follows that R has zcros on the diagonal, so
i
that the trace Tr(R_ )= 0. Onthe other hand x (being in the
!

radical of a fintte-dimensional algebra) is nilpotent; hence R‘
is nilpotent; and hence Tr(R ) = 0. But Tr(Rx) on#o

N

(pdoces not divide n). This is the desired contradiction.
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We can deduce from Theorem 25 a result on the Regularity

of certain infinite-dimensional group algebras.

THEOREM 26. Let G be a locally finite group. Let A

be the group algebra of G over aficld F. If F has charac-

teristic zero, or il 19 has characteristic p while no clement of

G is of order p, then A is Regular.

Proof. Let x be in A. Then there exist clements
g8y in (G suchthat x lics in the subalgebra B gencrated
by the g.. As G is locally finite, £4s +e=,80 genCrate a fintte
subgroup G' of G. Now B is the group algebra of G' over I5.
By Thecorem 25, B is semi-simple. But B is also Regular, as
any finite-dimensional semi-simple algebra ts Regular. Consc-

quently, x is Regular.

This thcorem stimulated a serics of investigations concern-
ing the validity of the converse. Partial results were obtained by
M. Auslander, McLaughlin, and Villamayor. Then Villamayor
(Pac. J. of Math. 9(1959), 941-951) proved the tull converse: if
the group algebra A of G over I’ is Regular then G is locally
finite and, il I* has characteristic p, ( has no clements of
order p.

We turn to the question of the semi-simplicity of a group
algebra A, first over a field I of characteristic 0. A great
deal of progress has been made by Amitsur and llerstein.  The
semi-simplicity of A is known if F is uncountable, orif I¥ is
transcendental over the rational numbers.  To scttle it in the re-
maining cascs (I algebraic over the rational numbers) it would
suffice to handle the ficld of rational numbers. 1n any cvent, A

has no nil idcals.



-118-

Similar results for characteristic p have been proved by
Passman (Mich. Math. J. 9(1962), 375-384).
Analytic methods provide a quick proof of semi-simplicity

over the field of complex numbers.

THEOREM II (Rickgrt, Segal) Any self-adjoint algebra A

of bounded operators on a (complex) pre-Hilbert space is semi-

simple.

Proof. We may as well assume the pre-lHilbert'space
complete (simply complete it!).

Let T be in R(A), thg radical of A. Then TT isin
R(A), and consequently, -AT T is quasi-regular for any complex
number A, K [ is the identity operator, then I-)\T*T has an
inverse in the full operator algebra; in other words, the spectrum
of T*T contains at most the number zero. It is known that this
impliecs T"T® 0. Therefore T = 0.

We can now demonstrate that the complex group algebra of
any group G is semi-simple. Forany a= Z Xigi' gi in G, )\i
complex, define

fe = 202

Then ]

.

the group algebra A into a pre-lilbert space. To cach clement

is a norm, supporting an inner product, which makes

a@ in A make correspond the operator Ta on A for which
ﬁTa = Ba. The algebra of these operators Ta is sclf-adjoint :
- -1
T =T ‘here = . Since is evide ic
@ lY » where y=2 )\igi Since A is evidently isomorphic
to this operator algebra, we apply Theorem H and conclude that

A is semi-simple.
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At the other extreme, we study groups for which the group
algebra is almost all radical. We introduce the augmentation
ideal N: o the setof all Z )\ig. with T\, =0.

i i

THEOREM 27.  If G is a finite p-group and I° has

characteristic p, then N is nilpotent.

Proof. Of the sceveral possible styles of proof, we choose
to make an application of Kolchin's theorem (Theorem C in §2).

Fix a basis for A (as a vector space), and consider the
regular rcprcsctf(lalion x—’Rx. [For cach g in G thereis a
k such that Rg = 1. The characteristic roots of Rg are thus
pk-th roots of unity. Since F has characteristic p, these roots
must in fact be equal to one. We now apply Kolchin's theorem
and conclude that the matrices R can be simultancously tri-

;

angulated. Thus, the entire groug algebra is triangulated in its
regular rdpresentation. Consequently, N is the set of matrices

with 0's down the main diagonal. Therefore N is nilpotent.

COROLLARY. If G is alocally finite p-group and ¥ has

characteristic p, then N is a nil idcal.

Proof. Let x=2Z )\igi be in N. We wish to show that x
is nilpotent. Consider the finite subgroup of G gencerated by the
g; for which X\,’# 0. Applying Theorem 27, we sce that x is
nilpotent.

Actually, more is true: N is locally nilpotent (i.c.,
every finitely generated subalgebra of N is nilpotent). Losey
(Mich. Math. J. 7(1960), 237-240) has proved the converse:

il N is locally nilpotent then G is a locally finite p-group and

F has characteristic p.



-120-

We are now going 1o lead up to a theorem on complete re-
ducibility of representations which will make use of Theorem 26
and of the local finiteness of torsion matrix groups. First we

need some basic information on complete reducibility.

DEFINITION. The right A-module M is completely re-

ducible , if it is a direcct sum of irreducible right A-modules.

TIIEOREM 28.  Let A be a ring, and suppose that A is

the sum of its minimal right ideals. If A contains no total (7! 0)

left annihilator, then any right A-module M such that MA = M

is completely reducible.

Proof. We firstargue that M is a sum of irreducible
submodules. If x isin M, and | is a minimal right ideal in
A, consider the homomorphism of I onto xI which carries i
in I into xi. Since 1 is a minimal right ideal, it has no sub-
modules (when viewed as a right A-module). Thus the kernel of
the above homomorphism is cither (0) or 1. If the kernel is 1,
xI = 0. Il the kernel is (0). Xl 21, an irreducible submodule
of M. (I isnot trivial, that is, IA # (0), since A has no total
left annihilators other than zero). The sum of all the modules
xI, as x runs through M, and 1 through the minimal right
ideal of A, is certainly MA =2 M. As the submodules xI = €

may be disregarded, M is a sum of irreducible modules.

It remains o cut this sum down to a direct sum. This
calls for a straightforward transfinite induction (or usc of Zorn's
lemma) quite analogous to picking a basis of a vector space, and

we leave it 1o the reader.
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We need a lemma, whose proof we also leave to the reader.

LEMMA. If A is a semi-simple ring with the descending

chain condition on right ideals, then A is the sum of its mini-

mal right ideals.

DEFINITION.  Let A be a finite-dimensional algebra with
unit over a field I'. Let V be a finite-dimensional vector space

over F. DBy a representationof A on V we mean an algebraic

homomorphism of A into the algebra of lincar transformations

on V. carrying the unit of A into the identity transformation.

Remark. A representation of A on V amounts to making
V into a right A-module. Any submodule S of V is then auto-
matically a subspace. If s isin S and \ in F, then X\:-{ is

in A, sothat \s = s(\-1), which lies in S.

TIIEOREM 29, Let G be atorsion group. Let V pea

finite-dimensional vector space over a field F. If I has charac-

teristic p. assume also that G has no elements of order p.

Then any representation of G on V is completely reducible.

Proof. (By a representation of G on V we mean a homo-
morphism of ¢ onto a multiplicative group of lincar transforma-
tions over V, the identity of G mapping into the identity trans-
formation. To say the representation is completely reducible is
to say that V is a direct sum of subspaces which arc invariant
under the transformation group and are irreducible.) We first
note that we may assume the representation to be faithful, i.e.,
an isomorphism; for, if this is not the case, we consider the iso-
morphism on G modulo the kernel of the representation. As G
is a torsion group isomorphic 0 a matrix group. Burnside's
theorem tells us that G is locally finite. Let A be the group

algebra of A over F. By Thecorem 26, A is Regular. The
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representation of G induces a representation of A, Let K be
the kernel of this induced homomorphism (representation). Then
A/K is Regular. DBut A/K is [inite-dimensional. Therelore,
A/K is semi-simple (Regularity implies semi-simplicity) and
satisfies the descending chain condition on right ideals. It fol-
lows [rom the lemma and Theorem 28 that V is completely

reducible.

There are numerious unsolved problems concerning group
algebras. We shall conclude this section by mentioning three of
them.

i. I G is torsion-[free is its group algebra [ree of zero-
divisors? Roughly speaking, the best that is known is that the
answer is affirmative if G can be (lincarly) ordered. This
applies in particular to torsion-[ree abelian groups, [or they can
be ordered.

2. Let I' be a [icld of characteristic 0. G an arbitrary
group, and A the group algebra of G over 1. Fact: il xy =1
for x andy in A. then yx= 1. Morcover, the same is true [or
the algebra of n by n matrices over A. For an application of
this result sce Cockerolt and Swan (Proc. Lon. Math. Soc. {1
(1961), 194-202).

The only known prool is analytic. In briel: A can be em-
bedded in a weakly closed algebra A (Wk -algebra, von Neumann
algebra) of operators on the Ililbert space LZ(G)' It is known
that Ao is ®finite®™, a technical term in the theory of W*—ulgebrus
which means precisely the property we are trying to prove. It is
further known that [initeness of a W*—ulgebru Ao implics finite-

ness of matrix algebras over Ao .
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Open question:  does this property (that once-sided inverses
are two-sided) hold lfor group algebras in characteristic p ?

3. Again let F be a ficld of characteristic 0. G an ar-
bitrary group, and A the group algebra of G over F. Let
¢ be an idempotent in A, ¢ f' 0 ori., Theorem (unpublished):
the coelficient of the unit element in G is a totally real alge-
braic number with the property that it and all its conjugates lic
strictly between 0 and 1, Again the prool is analytic. Query:

is the coeflicient in question actually rational?
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4. The Wedderburn Principal Theorem

Let A be an algebra with radical R. The Wedderburn
principal theorem asserts that under suitable hypotheses A is
a vector space direct sum of R and a subalgebra S (neccessarily
$ is isomorphic to A/R). This accomplishes a partial reduc-
tion of the study of algebras to the radical and semi-simple cases.

In this section we shall introduce an ad hoc hypothesis
called ®SBI" (hopefully some day there will be a more gracelul
name). We concentrate on the implications of this hypothesis [or
the lifting of idempotents.

The SBlidea arose in a conversation with Jacobson in the
late 1940's. The intention was to unily a number of different con-

texts in which the lifting of idempotents is possible.

DEFINITION. Let A be a ring with radical R. We 8say
that A is an SBI ring if for any y in R there exists an x in
R such that

(1) x2 tx =y,

(2) Forall z in R. yz=zy implies xz = zx (i.e., g

x commutes with anything that commutes with ).
TIIEOREM 30. If R is nil, A is SBIL

Prool. We think of the formal solution of the quadratic

. 2
cquation x tx = y= 0:

-1+ {+4y .

w =

If we expand N 1+4y by the binomial theorem and then simplily
we find x to be a power scries in y with integral cocelTicients.
It starts

-
(*) x=y-yht2y3-5y4... .
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Now if y is nilpotent. the scries breaks off alter a [inite
number of terms. The resulting clement x certainly commutes
with anything that commutes with y. We leave it to the reader to
convince himsell that we have solved the equation x2t x =y (it
is possible to formulate and prove rigorously a principle of the

Npreservation of identities®),

Remarks. 1, Any‘Banach algebra is SBI. Il y is inthe
radical, the series (¥) converges.

2. Any compact topological ring is SBI. the above scries
again converging.

3. The following is an example of a ring which is not SBI.
Let A be the ring of rational numbers with odd denominator.
This is a principal ideal ring in which 2 is the only prime ele-

.

/
-merit. Accordingly. the radical is the single maximal ideal (2).
.
For y=-2. no x (noteven a real x) exists such that x2tx = y.

TIIEOREM 31. Let A be an SBIring with radical R. Let

u,v be orthogonal (uv = vu = 0) idempotents in A/R. Il there

exigts an idempotent ¢ in A which maps into u under the
&’ a

canonical homomorphism (ol A onto A/R), then there exists an

idempotent f -in A, orthogonal to ¢. mapping into v.

Prool. In what follows, we shall make symbolic use of a
unit. The reader may. if he so desires, simply think of adjoining
a unit to A (if it does not alrecady have one). Let b be an ele-
ment of A mapping on v. Let a=(1-e)b(f~¢). Then a maps
on v and ca=ac=0. The clement z = aZ «a liesin R, and

2'4at1=42t1, As z 18

ez = ze= 0. Consider (2a- 1)2 = 4a

in R, (23 - 1)-2 exists (and commutes with 2z). Since A is SBI,
2

there isa w in R suchthat w™ twtz(2a~ 1)'2 = 0. This cle-

ment commutes with ¢ and a. Let x=(1'e)w, Then
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X2+ x+ z(2a - 1)-2 =(1-e)w2twt z(2a- 1)_2] =0, and ex= xe= 0,

Let r=x(2a-1) and (= atr. Since ra =ar,
2
7 = a1 2ar t rZ = a’ 2ax(2a-1) 1 x2(2a- 1)2 .
. 2 2 2 _
Recalling that x{2a- 1) tx(2e- 1) t z=0. we sce that

£ =(a2-z)12ax(2a-1)-x(2a-1)2=alx(2a-1)2f.

Now cr=re = 0. sothat ef = fe=0. Since r isin R, { maps

onto v in A/R.
Remarks. I. In connection with Theorem 31, we shall say
that v has been lifted o an idempotent £ in A.

2. If A is commulative, lifts of idempotents are unique.

If 61 and ¢, are both lifts of the same idempotent, ¢y eZe1
is an idempotent in the radical and is therefore zero.  But then

2 2.2 t =e - le -ee_=e, -¢C
(e) ~e)) =l "5G4 B T O T T T %% T 8y T %2
SO e1 - e2 = 0.

3. Furthermore, when A is commulative, lifts of ortho-

gonal idempotents are automaltically orthogonal. If e1 maps on

u1 and e2 on 1.12 where 1.11112 =0 (ui,ei idempotent), then ¢qe,

is an idempotent in the radical, and is thus zero.

COROLLARY. If A is an SBI ring and ui,uz,... are

countably many orthogonal idempotents in A/R, then they can be

lifted o orthogonal idempolents in A

Proof. Taking ¢ =0 in Theorem 31, we can lift v, Lo an
N u2 can be lifted o ez, ortho-
gonal (o €. With ¢ = ey 1 eZ, 1.13 can be lifted to e_, orthogonal
to ¢, t e  (and conscquently orthogonal to e, and cz), cLe.

1 2 i

idempoltent ¢y n A. Wilth ¢=¢

Remark.  The Corollary is in general false for an uncountable
collection of orthogonal idempotents. For compact topological rings

it is, however, (rue.
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DEFINITION. Two idempotents ¢.f in a ring A arc said
to be related if there exist elements x in eAf and y in fAe
such that xy = ¢ and yx =[ We note that ¢ and f arec related

if and only iff eA and fA arc isomorphic right A-modules.

THEOREM 32, Let ¢ and [ be idempotents in a ring A.

mapping respectively into the clements u and v of A/R  (where

R is the radical o A). Thenif u and v are related, ¢ and [

arc related.

Proof. By hypothesis, there exist elements X in u(A/R)v
and ¥ in v(A/R)u such that Xy = u and ¥% =v. Take any x
and y mapping on X and ¥, respectively. (We may assume x
in eAf and y in fAe; if not, we would consider ex [ and fy c.
Now X,y maps into u, so Xy, ¢ is in R, There exists a
L such that Xy "¢ tit(xy =e)=0. Muliplying this equa-

o oo
tion by ¢ on the left (and recalling that ex =X ) we have
Xy -c¢lt xoyol = 0. Thus xoyo 1 xoyol = xoyo(cll)= c. Now let
x=x and y=y (ett)e, Certainly x lies in eAf and y in
fAe, Also xy =c¢. To sce that yx = [ we proceed as follows:
yx is idempotent and is in fAf, Dircct computation shows that
yx maps into v in A/R, Conscquently [-yx isin R. Bul
[=yx is idempotent, and must therefore be zero.

The version we present of the Wedderburn principal theorem
assumes that A/R is finite-dimensional and is a direct sum of
total matrix algebras over the base field F, that is, the division

algebras that might occur are assumed o collapse o F.

THEORIEM 33. Let A be an SBI algebra over a field Y,

such that A/R(A) is finite-dimensidnal. Assume that cach total

matrix ring summand of A/R has [ as its associated division

ring. Then there exists a subalgebra S of A such that A is

the vector space direct sum of S and R.
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Proof. Let A/R = A1 5] Aze ] Ar’ where cach A. is a

. k
full matrix algebra over F. Let p'i(j ) , L,r=1,... ,nk be the

(k)

matrix units of Ak' The clements p‘l,l (i l,...,n2

Kk H
k=1,...,r) arc orthogonal idempotents in A/R  which can (by

(k)

Theorem 31) be lifted to orthogonal idempotents e.. in A.

(k) (k)

The clements u 1 4

b *“i(ik)

and By arc related. using §=p1(.1k) and

(the notation is that of Theorem 32). Therelore, by

Theorem 32, ¢ (k) and e,(,k) ¢ (k)
11 11 1i

(k). Now we defline c.gk) = e, (k)e (k)
1 ij i1 ij

are related for some x =

and y = e, We must veri-
i

[y that this deflinition is consistent with the one above when 1= j.

(x)

1 and

But this lollows immediately [rom the deflinition of ¢

(1) (k) (1) _ —Y

Now we claim that Cij .c. By deflinition

11 st ys it

eigk) est(:k) = ei(ik) ei(jk)es(ik) e“(:k). Now ei_(ik) lies in
Cia_k)AeJ-(jk) and Cs(1k)~ lies in cs(sk)Aei(f). Thus. if j# s,
ei_(jk)'cs(ik) = 0. and accordingly Ci§k)es(ik) = 0. If j=s, then
(by definition) Ci(jk)es(f) = ei(ik)‘ Recalling that Ci(ik)e (lkl) = ei(f)

we obtain for j = s

e(k)e ) _ e (k)e (k)e W e.(k)e ) e (19

ij st i1 11 it i1 it it
Now we know that c,(‘k)e (k) = 0, e.(k) ; or, the e_(_k) behave
1) st js 11 ij

like matrix units.
et S be the subspace of A spanned by all the ei§k), all
i.j.k. Clearly S is a subalgebra. The image of 8§ under the

canonical homomorphism of A onto A/R is A/R, since the
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element
ni nr
(1) () : (r) (r)
)\ij p'i- ERCIL L | )\ij P’i.
i,j=1 ! i,j=1 )

of A/R is the image of the element E )\,(.k) e_(,k) in S.
i, j,k - u 1

Furthermore E )\,(,k) e(k) will have image zero only il
< 1j ij
. i,j,k
(k) N .
cach X"_] is zero. Thatis S{R = (0). It follows that A is
1

the vector space direct sum of S and R.

This is as far as we carry the theory. But we note that in
classical accounts, or in contemporary versions using cohomology.
the assumptions are stronger on R and weaker on A/R: it is
assumed that R is nilpotent and that A/R is linite-dimensional
and separable (i.e., the center of cach simple component of A/R
is a ficld separable over IF). Separability cannot be dropped. as
shown by the following example. Let ¥ be a field of charac-
teristic 2. containing an clement ¢’ with no square root in F.
[Let A be the extension algebra F[x]/(x2+c)2 of TI°. Then A
can be vj.ewed as the algebra af polynomials in x of degree less
than 4, multiplied with the restriction x4 = c2. The radical of A
is the nilpotent ideal R(A) = (x2 1t ¢). Then A/R is the fiecld
F(Ne) = F[y]/(y2 t ¢). There is no subalgebra S§ of A such that
A is the vector space direct sum of $ and R, since this would
imply S isomorphic to A/R, whereas $ cannot contain a square
root of ¢ (since A does not).

As a linal topic in this section we carry out the classifica-
tion of two-dimensional algebras. There are cight possibilities
(but note that the third one comprises all quadratic fields over F;

as extreme cases there may be none at all or infinitely many).
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Use of the Wedderburn principal theorem cuts down the work a
trifle.

First we remark that the only onc-dimensional algebras
(associative or not) over a field F are F itsclf and a one-
dimensional vector space with trivial multiplication. I[ A is a
one-dimensional algebra generated by vy, then y2= Ay for
some A in 7. If X = 0. the multiplication in A is trivial;
wherecas il A 7-‘ 0, then the element x = y/)\ also gencrates A.
Furthermore, x2 = x, so that A is isomorphic to F.

Let A be a two-dimensional (associative)algebra over a
field 1. First, supposec that the radical R is allof A. Then
since R is nilpotent, A2 is ecither 0 (i.e,, A 1is the trivial
algebra), or A2 is onc-dimensional. [Every clement of A is
nilpotent of index £ 3. In the second case we shall find an cle-
ment which has index precisely 3. Sclect elements x,y in A
with xy ;‘ 0. If cither x2 or yzf 0 we arc done. DBut the
assumption that both are 0 leads to a contradiction. For we
can write xy = ex t fBy. Multiplying this cquation on the left
by x, we obtain fxy = 0, or B= 0. Mulliplying on the right
by vy, we obtain « = 0, which is absurd. Thus, one of the cle-
ments X,y has a non-zero square, call this element z. Now
the nature of A is clear. The clements z and z2 arc lincarly
independent, since z = )\zz implics z2 = )\z3 = 0. Thus A con-
sists of elements az t ﬁzz, multiplied with z3 =0.

Suppose, sccondly, that R = (0). Then A is a direcct sum
of total matrix rings over division rings. There are two possi-
bilities :

3. If there is but one summand, A will be a division alge-
bra over F (withunit). It follows that A 1is in fact a ficld, that

is, a quadratic extension field of I,



-434-

4. If there are two summands, A is the direct sum of two
copies of F,

Now let us consider the third possibility for R; namely, R
is onc-dimensional. We must have A/R isomorphic to F (being
a onc-dimensional semi-simple algebra over F). DBy the
Wedderburn principal theorem, there exists a subalgebra § of A
whose vector space direct sum with R is A. As S is isomdr-
phic 1o A/R, it is isomorphic o F. Let ¢ be the unit in S.

Let u span A. The nature of A is then reflected completely in
the products cu and ue. We have four possibilities.

5. I cu=ue=0. then A is the dircct sum of F anda
once-dimensional trivial algebra over 17,

6. Supposc eu = au, @ 75 0. while ue = 0. Then ccu = aeu.

2 2
Recalling that e = ¢, we have au = o u, or a= 1. The multipli-

. . . 2 2 .
cation table of A is e =c¢, u =0, uc =0, cu=u Itis con-
venient to picture A as the algebra of 2 by 2 matrices over I7,

having zeros in the second row,

and gy =

7. Another possibility is the dual of 6, namely ue = u and
eu = (.
8. The final possibility is cu = uec = u. This algebra is

often called the algebra of dual members..
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5. Theorems of Hopkins and Levitzki

After Artin introduced rings with descending chain condition
there was a peaceful decade of development. The subject was
thought of as distinet from (and in a sense dual to) the carlier theory
of rings with ascending chain condition. It came as quite a sur-
prise when Charles Hopkins proved (under the modest assumption
of cither a left or a right unit element) that the D. C.C. implies
the A.C.C. We prove here a slightly sharpened version which has
the merit of unifying his two theorems (note that the hypothesis of
Theorem 34 is satisfied il A has cither a left or a right unit
clement).

Let us first give an example to show that some hypothesis is
needed. The example is one where multiplicationis trivial (if this
leaves the reader unsatisfied he is invited to explore draping a
more complicated example around it). So: what we need is an
abelian group with the descending but not the ascending chain con-
dition on subgroups. The standard example is Z(poo): the additive
group of rational numbers with denominator a power of the prime p,
reduced modulo the subgroup of integers.

We state without proof the following theorem.

THEOREM. If G s an abelian group with descending chain

condition on subgroups, then G is a direct sum of a finite group

I' and a finite number of groups Z(poo).

We shall need some preliminary results before proving
Hopkins' thecorem.

1) Let M be a right A-module. A chainis a descending
(finite) set of submodules ...,Sn of M:
M Dsi '_')52 DETD) Sn = (0). The factors of the chain are the

quotient modules M/S1’S1/S Sn-i/sn' Two chains are

PARRRR
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equivalent if their factors are isomorphic in some order. We re-
mind the reader of the principal result along these lines.

THEOREM. (Jordan-Hblder-Schreier-Zassenhaus) Any two

chains (of the same module) have equivalent refinements.

A composition series is a maximal chain, i.e. , one which

cannot be properly refined. In a composition series the factors
arc cither irreducible or trivial with a prime number of eclements.
The following result is deducible immediately from the theorem

of Jordan-Hdlder-Schreier-Zassenhaus.

THEOREM. The right A-module M possesses a composi-

tion series if and only if M satisfies both the ascending and de-

scending chain conditions on submodules.

2) Lemma: Let A be aring with unit e, andlet M be a

right A-module. Then M=S® T, where S.T are submodules

of M, S is unitary and T is trivial.

M. Let §=Me, T=M(l-¢), that is, T is the setof
elements of M which are annihilated by ¢. Certainly 8, T arc
submodules and T is trivial. We need only verify that § MNT = 0).
But this is immediate, for if x is in 8§, xe¢ = x, so that il x is

alsoin T, x = xe = 0.

3) Lemma: Let A be aring with D. C.C, on the ideals of

the form plA, where p is a prime. Let x be an element of

order pr (prx = 0) and infinite p-height, i.e., forany n there

isa y, W_llh X = pnyn . Then x is a total annihilator in A.
M There is a k such that pkA = pk+1A = 3. Then

B =pB = sz 2 ...,and xB = ppr = (0). Let y be any element

of A. Then pky is in B, and we may write pky = pkz, where z

is in B. Now xz =0. As x has infinite p-height, x = pkw, for

some w. Thus x(y-2z)= pkw(y-z) = 0, since pky = pkz. Con-
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sequently, xy = xz = 0. Since y was arbitrary, xA = (.

Similarly Ax = 0.

THEOREM 34, (Ilopkins) Let A be a ring with descending

chain condition on right ideals. I.et R be the radical of A, and

. . . . k
suppose that for cach non-negative integer k the ring A/R™ has

no (non-zero) total annihilators.  Then A satisfics the ascending

chain condition on right idcals.

Proof. We shall show that A. as a right A-module, has a
composition series. As R is nilpotent, we may form a chain
2 n
ADR DR ... DR = (0). We observe that it will suffice o

2 |
prove that each module A/R,R/R “,... ,Rn /Rn has a composi-
k
tion scries. liach R /Rk-'-i is a right A-module, annthilated by R.
ket can be regarded as a right A/R-module. Now

A/R  has a unit. By the lemma of 2) above, Rk/Rk-'-1 =S@T,

Therefore, Rk/R

where S is a unitary A/R-module and T is a trivial A/R-module.
By Theorem 28, S is a direct sum of a finite number of irreduc-
ible submodules.  The trivial module T has the D. C. C. on sub-
groups, and as we noted carlier, is therefore a direct sum of a
finite group F and a finite number of groups Z(poo). If x is in
Z(poo), prx= 0 for some r, and x has infinite p-height.  Now

X is in A/Rk+‘i. By the lemma 3) above, x is a total annihilator
of A/Rk-H. By hypothesis, x = 0. Thus, T =17, a finite group.
As Rk/Rk-'-1 is a direcct sum of a finite number of irreducible

submodules and a finite group (trivial module) it certainly has a
composition series.

. Remark. By additional arguments one can refine this result;
it suffices to assume that the ring itself has no non-zero total anni-

hilators. Sce Fuchs, Abcelian Groups, pp. 283-6.
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We abruptly change subject matter o a pretty theorem due

to Levitzki.

THEOREM 35. 16t A be the ring of all linear transforma-

Lions on an n-dimensional veclor space V. over a division ring.

Eet S be a multiplicative semi-group in A, consisting of nil-
potent elements.  Then the elements of S can be simultancously

pul in strict triangular form, i.e., zeros on and below the main

diagonal.

Proof. We first remark that a particular conclusion from
the theorem will be that the product of any n clements of 8 is
zero.  The proof will proceed by induction. For n= I, it is
trivial. Assume the result true for n-41. Note that if 'V is re-

ducible under S, (h

B

clements of S may be represented in the

he
block form > , by a suitable choice of basis. The

C
0 D
matrices B (the matrices D) constitute a semi-group of nilpotent

lincar transformations on a space of lower dimension, and may

therefore be put simultancously in strict triangular form, by vir-

tue of the induction hypothesis. Thus S is strictly triangulable.
Let Ti’ .««»T be elements of S, and S!' the semi-group
r

generated by theseelements, I V is irreducible under the semi
group S', then the vector space sum VTi + VT2 LA, 3 VTr
must cither be (0) or V. It this sum is V, we may inductively

select elements T, , Ty 5-n- from among the T. such that
1 2

l‘-k . ..T.1 Ti1 # 0. for cach k. This is donc as follows: if
T, ...T. T. 7‘ 0 then for some i= I ,...,r, T T, *- - T, 7‘ 0,
o2 M L 1
or else T, ...T, annihilates V=VT t ...+ VT . Take
1 i i r
k 1
T, =T Now in the sequence {T. } some T,, say T1 for
k14 x :
convenience, occurs at least (nt1) times. We thus have a pro-



-136-

duct T b T b Te--U T Ug #0. forsome U ..., U in S
Now the clements I]iT1 for i= 1,...,n may be regarded as

linear transformations of W. the range of T,, into itself. As

1’
is nilpotent, the dimension of W is less than n. If we let

T* P

S bethe semi-group of transformations AT, T in S, we

know from the induction hypothesis that § is strictly triangul-

able. As we have noted. it follows that U_T,+«.U,T +U, T =0,

n'1 271 11

a contradiction. Thus V is irreducible under 8! only if

St = (0). But now it is clear that V cannot be irreducible under

S. unless S = (0). The case S= (0) is trivial, and we have given

the argument in case V is reducible under S.

COROLLARY. K aring A satisfies the descending chain

condition on right ideals, every multiplicative nil semi-group

in. A is nilpotent.

Proof. Let R be the radical of A. Then A/R is a dircct
sum of a finite number of total matrix rings over division rings.
Let S8t be the nil semi-group of A. The image S of 8' in A/R
is then a direct sum of a finite number of nil semi-groups of
matrices over division rings. By Thecorem 35, cach of the tatter
semi-groups consists of matrices which can be simultancously
put in strict triangular form. Furthermore, if k is the maxi-
mum of the dimensions of the total matrix ring summands of A/R
the product of any k eclements in § will be zero. For some n,

R" = (0). It is easily scen that (S’)nk'—‘ (0).

Remark. Theorem 35 should be compared with Kolchin's
thecorem (Theorem C in §2) which gives an analogous conclusion
for a semi-group of unipotent matrices over a field.  The proof
of Kolchin's theorem could in fact be repeated to yield a different
proof of Theorem 35, if the division ring were a field. It is an

open question whether Kolehin's theorem holds over a division
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ring; at any rate a proof in the style of Theorem 35 does not
appear 1o work. (Ofcourse the division ring has 1o be infinite-
dimensional over its center 1o have a new problem, for other-
wise it can be represented by finite matrices over the center.)
We conclude this section with a theorem that simultane-
ously generalizes Kolchin's Theorem C and the ficld case of

Theorem 35.

TIIEOREM I Let § be a multiplicative semi-group of

matrices over a field . Suppose cach has the form AI+N [Or

X in F and N nilpotent. Then $ can be put in simultancous

triangular form.

Proof. A reduction 1o the algebraically closed case can be
madec just as in the proof of Theorem C; we therefore assume F
algebraically closed. We may also assume the vector space V
to be irreducible under S. As a f{inal normalization it is harm-
less to assume that S contains all scalar matrices (enlarge S
by taking the semi-group genecrated by S and all scalar matrices).

Let So be the subset of S consisting of its nilpotent
matrices. § is closed under multiplication. Theorem 35 applics
to show that So is triangular. In particular, there is a non-
zero vector annihilated by So' Let W be the set of atl x with
xS =0. Forany Te¢ S, Toe So we have that TT0 is singular
and therefore nilpotent (i.e., in the sensec of semi-group theory,
S is an ideal in S). Ilence WTT = 0. Thisproves that W is
invariant under S, Since W # 0. we have W =V, VSO = 0. We
may therefore ignore S henceforth and assume S 1o consist of
non-singular matrices.

Let S1 be the subset of S consisting of matrices of
determinant 1. (Itis tempting to drop down further to the unipo-

tent matrices: however we do not know this set to be closed under
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multiplication. Of course, when the proof finally concludes we
will know this. ) It is sufficient to triangulate Si’ for multi-
plication of any clement of § by a suitable scalar throws it into

Si'

The characteristic roots of matrices in S1 are n-th roots
of 1, where n is the size of the matrices. [lence only finitely
many lraces occur in Sl’ and Si is finite (Theorem B). This
shows that 51 is a group. We now make a casce distinction,
according Lo the characteristic of F.

Case I. Characteristic 0. If a matrix has finite multipli-
cative order and has the form scalar plus nilpotent, it must
actually be a scalar. Thus Sl just consists of scalars.

Case II, Characteristic p. A sufficiently high pk—lh power
of cach matrix in Sl is a scalar, and in particular is central.
This shows that Si is nilpotent and so is a dircect product of
groups of prime power order. The crucial point is that the cle-
ments of order a power of P form a subgroup, and they arc
exactly the unipotent matrices in Si' They can be pul in triangu-
lar form by Kolchin’s thecorem. Also any matrix in S1 has
the form scalar times unipotent.  The proof of Theorem II is

complete.
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6. Primitive Rings with Minimal Idcals and Dual Veclor Spaces

DEFINITION. Let D be a division ring, i a left vector
weetar spacec over D and F a rightvector space over D. An
inner product between E and F is a bilinear functional (-, )
on IEXF (valuesin D), i.e., if x. isin E, y. is in F, 28

in D, then

+
(x, +x,,y,) (o) +(x50y))

"

(vt y,) = ey )+ (x,0y,)

(arxi, Yi) = a(xi, Yi)

(oo yyB) = (x,.9,)8 .
The spaces E and I arc called dual if there exists a non-
degenerate inner product between them, ie.. (x,F)= 0 implics

x = 0 (E,Y)‘-'-' 0 impliecs y =0,

DEFINITION.” Let E be a lefl vector space over the divi-

sion ring D. A lincar functional on LI is a lincar mapping of [:

into D.

Remarks. . With obvious definitions, the scet of all lincar
functionals on @i becomes a right vector space over Ii. This
space is called the full dual of E, [t is actually dual 1o I, the
inner product being defined by  (x,[) = f(x).

*2. If F is any space dualto I, F is isomorphic to a sub-
space of the full dual of E, The element y in-F corresponds (o
the functional [ for which f(x) = (x.y).

3. K E is finite-dimensional, any dual of Ii is the full
dual of E,

4. If I! is infinite-dimensional and F is the full dual of I:,

E is never the full dual of F.
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We list examples of dual vector spaces. (E, 7).
1. F the full dual of L[.
2. E the [ull dual of T
3. If E.F have the same dimension. choose bases

(xi), (y.l) for E.I' and defline an inner product by (xi, yi) = (’ij
4. Any Banach space L[ and its topological dual 1°.
5. Form direct sums [ = F,l@EzS... ,

I° = F1 (<] F2 @ ..., where (Ei'Fi) arc dual. and defline the inner

product by [ei,ez, . ";fi’ fz, caa]® (ei’fi) + (ez,fz) + ..
DEFINITION. Let S be a subspace of L[ [subspace ol I7].

Then we denote by 8t the set of elements y in F [xin E] such

that (S.y) = 0 [(x.$)= 0], We call St = (SN the closurc of S.

and say that S is closed il S= S".

Remarks. 1. For any S, S!' is closed. [Ilence, there is a
onc-one correspondence between the closed subspaces of [ and
those of I' (aclosed S§ corresponding to S'). This correspond-
ence is an anti-isomorphism of the lattices of closed subspaces
of [ and I7.

2. Every subspace of [ is closed if and only if 17 is the

full dual of [.

TIIEOREM. (Mackey) l_f E.1° arce dual, then every finite«

dimensional subspace ol [E is closed:

Proof. I $ is any subspaceof E, S and F/S' arc dual in
anatural way. If x isin S8,y in F/S' define {x,¥]= (x.y) for
some y in y. This deflinition of [x,¥] is independent of the vy
chosen. and yields a duality of § and F/S!,

Now let $ be an n-dimensional subspace of E. Then F/S!
being dual to S, is the [ull dual of S, and has thus dimension n.

Similarly, 8" is dual to ¥/S"" = F¥/8', and therelore has dimen-

sion n. It follows that § = S'.
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Remarks. 1. The sum of two closed subspaces need not be
closed: however, the sum of a closed subspace and a finite-dimen-
sional subspace is always closed.

2. If [ has countable dimension. and if the sum of any two
closed subspaces of E is closed. then F is the [ull dual of E.

3. The sum of every two closed subspaces of [ is closed if

and only il the lattice of closed subspaces of ¢ is modular.

THEOREM. (Mackey) If E and F ape dual vector spaces

of countable dimension. they admit dual bases.

Proofl. Let (u‘l’UZ" ..) be abasis for E and (vl,v?,...)

a basis for I'. We wish to determine bases (xi’x .) for E

2’7

and (yi, ¥ e ..) for F such that (xi,y.) = Gij' We proceced by in-

J

ductive selection. distinguishing two cases: when n is even., and

when n is odd. Suppose Xgoer .,xn and y‘l" ...y, linearly in-
. n

dependent vectors in E and 17, respectively. have been found

such that (xi,yj) = Gij' Il n is even, procced as follows. Let o
be the first u. lincarly independent of xi, S Y
n
= - - s = LT =
X o1 = - oy e, - (w,y )x « Then (an,Yj) 0,
j= l,oaws,n. Choose avector w in F such that (x +1,w) =1,
n

and let Vopg W7 y‘l(x‘l’w) S eea - yn(xn’ w). Then

. is linearly independent of
(xn+i,yn+i)=‘l, and y 1s y imdependent ¢ Yyseens ¥,

This completes the indug;:l-iion step when n is even.

Il n is odd. the process is essentially the same; however.
in this case. one begins by sclecting the [irst vj which is lincarly
independent of Yyremeo Yo This alternating procedure guarantees

that the clements (xi),(yl.) will span all of E and I7 respectively.

Remark. It follows from Mackey!s theorem (in conjunction
with Theorem 36) that there exists only one (up to isomorphism)
simple algebraic algebra of countable dimension with a minimal

one-sided ideal over an algebraically closed flield.
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DEFINITION. Let T be alincar transformation of LI in-
to L (E,F dual). The linear transformation T of ¥ into F
is called an adjoint of T il for every x in I© and y in F:

*
(xT,y) =(x, T y).
Remark. If an adjoint of T exists. it is necessarily unique.

TIHHEORIEM. _I_£ I is anormed lincar space, and 17 the

topological dual of L, then T has an adjoint il and only il T is

contLinuous «

Prool. I T is continuous. the existence of an adjoint is
*
casily demonstrate-d. Suppose T  exists. To prove T continu-
ous, il is cnough to show that T is bounded on the unit sphere Eq
£
in E. Forecach y inl", (E'iT' y) = (E'i’T y) is bounded. It
follows from the Banach-Steinhaus uniform boundedness principle

that L lT is bounded.

Remark. I 17 is the full dual of E, every T has an ad-
joint; however. il E is the full dual of 17, only special T's have
adjoints.

We proceed now o the prool of Theorem 36, in which the
close relation between dual vector spaces and primitive rings
with a minimal ideal is demonstrated. For this purposc., we shall
need some lacts aboult minimal ideals and nilpotent ideals in a ring.

LEMMA 36.1. If I is anilpotent right ideal ina ring A,

dhen 1t AL (t&g 2-sided ideal spanned by 1) is anilpotent 2-sided

idcal.
k  k
Prool. For a positive integer k., {I+AI) =1 AIk. Ir

"= 0, clearly (It AI)ll =0,

Remarks. 1. Itis anclementary consequence.of Lemma 36.

that the statement "the ring A has no nilpotent ideals™ is unam-
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biguous; that is. the statements that A has no nilpotent teft
ideals, A has no nilpotent right ideals, and A has no nilpotent
ideals (in all cases. "other than (0)") arc equivalent.

2. It is an open question whether the corresponding result

is valid lfor nil ideals.

LEMMA 36.2. I ¢ is an idempolent ih a ring A and eA

is a minimal right ideal. (hen eAe is a division ring.

Prool. Note that ¢ is a 2-sided unit for eAe. Supposc
exe 7( 0. Then exeA is a non-zero right ideal contained in eA,
Thus., exeA = eA, IFor some y then exey = ¢, or exescyce = c.

Thus. eAe is a division ring.

LEMMA 36.3. Tet A be a ring with no (non-zero) nilpotent

ideals. I ¢ is an idempotent in A such that eAe is a division

ring. then eA is a minimal right idcal.

Proofl. Let I be a non-zcero ideal contained in eA, Let
ex# 0 bein I. Consider exAe. Supposce exAeno 0. Then
exAexA = (0). i.e., exA 1is a nilpotent right ideal. By hypothesis
exA = (. Now the sect of total left annihilators of A is a nilpotent
ideal (and contains ¢x): hence. ex = 0, a contradiction. Thus.,
exAe 7( (0). Then. for some a in A, there is a b such that
exae-r cbe = ¢. Bul exae.cbe isin I. Therclore | contains ec.

and conscquently must be equal o eA,

LEMMA 36.4. If I is a minimal right ideal in a ring A,

. 2 .
then cither T = 0. or I =eA, ¢ an idempotent.

5

Prool. Assume I_#(()). and choosce an clement a in [
such that al f (0). Then al=1. In particular, there is an cle-
ment ¢ in I for which ac = a. The right annihilator, in 1, of

the element a is a right ideal contained in I. As it is not I
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(it does not contain ¢), the annihilator is (0). Now ae:2 = ac
= a(e2 - c¢)=0; hence e:2 = c¢. Consider the right ideal eAC L
Certainly eA # (0), as e.c=c # 0 is in eA, It follows that
[ =eA,

Notation: If IE,F arc dual vector spaces, let L = L(E, I7)
denote the ring of continuous lincar transformations over [. Let

§ = S(E,F) denote the subring of L, consisting of those trans-

formations of finite-dimensional range.

TIIEOREM 36. Let ' and F bec dualvector spaces.  Let

A be any ring containing § = S(E,F) and contained in L = L{E, F).

Then § is the unique minimal 2-idecal in A. Also, A is (lefl

and right) primitive, and has a minimal lefl ideal. Conversely,

any primitive ring with a minimal left idcal arises in this way

from a pair of dual vector spaces.

Proof. Let SC AC L. First we note that if x isin [
and y in [7, the mapping: x into (x,yo)x0 is a linear trans-
formation T of one-dimensional range. Also, T is continuous:
Ty=y (xo,y). Furthermore, any continuous T of one-dimen-
sional range arises in this way. Let x  be a fixed non-zcro
vector in LI, and consider the set 1 of elements of L which map
[ into the one-dimensional space spanned by L A typical ele-
ment T in | is obtained by fixinga y in IY and sectling
xT = (x'y)xo' Certainly I is aleft ideal in A. Morcover, 1 is
a minimal left ideal in A: for, if a left ideal contains p
xTo = (x,yo)xo v Y # 0, it contains every T in I, since T= T Ty
where xT1 = (x, Y)xi' and x4 is so chosen that (x1,yo) =1. It
follows that A is (left) primitive. Inthe second half of the proof,
we shall see that A is also right primitive. It remains only 1o

show that § is the unique minimal 2-ideal in A. Clearly any non-
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zero right ideal intersects S8, so that there can be no minimal
2-idecal other than §. To prove that S is minimal, it will suf-
fice 10 show that a non-zero 2-ideal in § must contain every
transformation (continuous) of one-dimensional range (cach cle-
ment of § is a sum of such transformations). ILet T "be a .
non-zero clement of A. say uT=v #0. Let T be an arbitrary
clement of § of one-dimensional range: xTo = (x,yo)xo . Define
le = (x,yo)u and let ‘I‘2 be such that vT_=x  Then

0
TD =T TT, . Thus § is minimal.

1772

Now supposc that A is a primitive ring with minimal left
ideal I. (We shall sce shortly that for rings with minimal lefl
ideal, left and right primitive arc the same.) By Lemma 36.4,

I = Ac, ¢ an idempotent. (A primitive ring has no non-zcro
nilpotent ideals.) By Lemma 36.2, eAe is a division ring. DBy
Lemma 36.3, eA is a minimal right ideal. Now eA is a left
vector space over eAe and Ac is a right vector space over
eAe, We define the following inner product between eA and, Ae;
(ex.yc) = exye, The linecarity properties are obvious, and non-
degencracy is demonstrated as follows. I (ex,Ace)= 0. i.c., if
ex.Ae = 0, then (exA)2 = (. implying that exA = 0 and ex = 0.
(The argument for elements ye is similar.)

With cach element x in A we associate the linear trans-
formation Tx on eA defined by (ea)TX = cax. Now Tx is
continuous, Tx being left multiplication by x on Ac. The
mapping of x into T is clearly a homomorphism . It is also
casily scen to be onc-one. We now have A isomorphic to a
subring of L(eA, Ac). It remains only to show that A contains
every clement of S(eA, Ac). For this, it suffices to show that A
contains every clement of § having one-dimensional range. DBut
this is immediate; for if (ea)T = (ea,ey)ex, then T is simply

right multiplication by yex.
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Remarks. 1. A conscquence of the above proof is that if a
(left or right) primitive ring A contains cither a left or right
minimal ideal, it is both left and right primitive and contains both
left and right minimal ideals. All faithful irreducible right A-
modules are isomorphic.

2. An clementary consequence of Theorem 36 is that a
simple ring A containing a minimal left ideal 1 (where 1= Ac
as above) is an $(E, IF), namely S(eA, Ac). One may consider
simple rings as being of two types: those with a minimal left (or
right) ideal, and those without such an ideal. Those of the first
type arc completely described (above), whereas knowledge of
those of the second type is scanty. We have scen one example of
a simple ring without a minimal left ideal (the ring of "differential
polynomials™). Another example can be constructed as follows.
Let L be the ring of lincar transformations on a countable-
dimensional vector space, and let | be the ideal of those of
finite-dimensional range. Then A = L/ is simple without a

minimal left ideal.
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7. Simple Rings

(1) The enveloping ring and the centroid

Up to Theorem 44 the associative law will be irrelevant.
Since there are important applications (notably to Lic algebras)
we drop associativity at this point.

Let A be any ring. Associated with an clement x in A
we have the right and left multiplications

R(x) - a -+ ax
L(x): a ~xa .

The ring [ gencerated by all Ltf's and R's is called the envelop-
ing ring of A: it is a subring of the ring of endomorphisms of
the abelian group A. The general clement of E is a sum of
terms, cach of which is a product of L's and R's. When [ is

associative, the general clement of E takes on the simpler form
L{a) + R{b) + = L(ci) R(di) .

We think of the elements of [ as placed on thé right of A
and in this way A becomes a right E-module. Examining the
relevant definitions we sce that A is simple if and only if it is
an irreducible E-module.

For later use we state at this point:

TIIEOREM 38. Let a be a non-zcro clement of a simple

HNg A. Then for a suitable integer n (n=0,1,2,...) and ele-

ments Xy, .- X, Y in A we have aR(xi). ..R(xn)L(y) # 0.

1
Proof. Suppose the contrary. Write 1 for the set of all

clements of the form

ka + = aR(xi)...R(xj) ,

where k is an integer. Then [ is invariant under right multi-
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Ilence 1 is a two-sided

plication. Also IL{y)= 0 for any y.
ideal and it is non-zero since it contains a. Thus 12 A, But

‘ .
then yA=0 forall y, A = 0. a contradiction.

The centroid C of a ring A is the ring of all additive
endomorphisms of A which commute with all L's and Rfs,

is in the centroid we have

Thus if” S
(xy)s = (x8)y = x(yS)
[ ]

for all x,y in A.

Examples:
1. K A istrivial, the centroid is the full ring of endo-

morphisms of A.
2. If A has a unit element, it can be scen that the centroid

coincides with the ordinary center, i.e., the set of elements com-

muting and associating with everything.

3. If A is an algebra over a ficld I, the centroid contains

I and is itself an algebra over I°.

4. As a gencralization of the Gelfand-Mazur theorem, one

can prove that the centroid of a primitive Banach algebra is just

the complex numbers.

For any elements x,y ina ring A and

TIEOREM 39.
any centroid clements S, T we have (xy)ST = (xy)TS.

Proof.

(xy)ST = {x-yS)T = xT- y5
= (xT+y)S = {xy)TS.

is commuta-

TIIEOREM 40. lf A2 = A, the centroid of A

has no non-zero total annihilator, the centroid is com-

tive. If A

mutative.

Proof. The first part is immediate from Theorem 39. To

prove the sccond part wanote
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x-y(ST - TS) = (xy)}(ST - TS)= 0
y(ST = TS):x = {yx)(ST - TS) = 0
Thus y(ST - TS) is a total annihilator of A and is 0.

TIIEOREM 41.  The centroid of a primitive associative

ring is an integral domain.

Proof. The commutativity follows from Theorem 40. We

omit the proof that there are no divisors of 0.

TIIEOREM 42, The centroid of a simple ring is a ficld.

Proof. The centroid is a division ring by Schur!s lemma

and is commutative by cither half of Theorem 40.

It follows from Theorem 42 that any simple ring can be re-
garded as an algebra, for instance over its centroid. If the base
field is exdctly the centroid we call the algebra central simple.

To complete the identification of the concepts of simp‘le
ring and simple algebra, we should also note that if an algebra
A is simple in the sense of having no algebra ideals, then it is
also simple as a ring. For let J be a non-zero ring ideal in A.
Let I be the subspace spanned by J. Then [ is an algebra
ideal so that I = A. The typical eclement of I is of the form
ZNa,,a, in J. Then (= )\.a,)x =T a(\.x}) isin J. Ilence J

i i i1 it
contains IA, which in turn is A2 = A.

(More gencerally, if a module is irreducible when operators
arc allowed, it is also irreducible without operators.)

For associative rings it is convenient to introduce the

reduced enveloping ring E', defined as the set of all sums

T L(x,)R(y,}). With a unit element, this is the same as the envelop
i i

ing ring.
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TIIOREM 43. Let A be a simple associative rinp, '

its reduced enveloping ring.  Then A is also irreducible as an

E!'-module, and the commuling ring of endomorphisms is again

the centroid.
We omit the proof.

(2) Tensor products

In the interst of speed we define the tensor product by means
of bases, although we frecly acknowledge that an invariant defini-
tion is to be preferred.

Let A. B be algebras over a field F. Let {ui},{vj} be
bases of A. B. We define A®B Lo be an algebra with basis
uivj (ormore cautiously we might write ui®vj) with multipli-
cation table

uivj- Wy, = uiuk®vjv£ ,
where of course the right hand side is Lo be expanded by the dis-
tributive law.

The general element of A®B is thus of the form
Zaljule , aij ¢ F. If we gather all terms involving \'j in the
single term aj , We may rewrile it as X ajvj' In other words:
we use a basis of B with coefficients ranging over A (instcad
of F). Since this description no longer utilizes a basis of A,

the tensor product is independent of the choice of basis.

Iixamples :

1. If K is an cxtension ficld of 17, K@A is analgcebra
over K, with the same basis and multiplication table as the origi-
nal algebra. One speaks of extending the basce field from F o K.

2. Let Q be the quaternions as an algebra over the reals,
and K the complex numbers. Then K®Q is the t(wo by two

total matrix algebra over K.
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3. Q®Q is the 4 by 4 total matrix algebra over the
reals.

4. K®K is the dircecet sum of two copies of the complex
numbers .

5. If A is any algebra over F, and Mn is the nby n
total matrix algebra over F. then A®Mn is the n by n total
maltrix algebra over A.

6. M -phic to M__.
1‘®Ms is isomorphic rs

THEORIEM 44. Let A and B be algebras over. F. Sup-

posc that A is central simple and B is simple. Assume further

any onc of the following three hypotheses:

(1) A has a unit clement.

{2) B has a unil ctement,

(3) A is associative and B has no non-zero total left or

right annihilators.

Then A®B is simple.

Before presenting the proof, let us give an example to show
that some hypothesis is ngcessary. Let A be the two -dimen-
. . . 2
sional algebra with basis y,v and table v =uv =0. vu=v,

2

v 2 u. You can check simplicity ¢ rapidly by noting:

) (o)

and that and L sufficetlo gencerate all two by two matrices.
v v

A is in fact central simple, but we can bypass this point by assum
ing the base ficld Lo be algebraically closed. Note that u is a
teft annihilator of A. Let B be the algebra anti-isomorphic o A.

Then B contains a right annihilator, say u In A®B the ele-

10
ment uu, 1s thus a (wo-sided annihilator and gives rise 0 a one~

1

dimensional ideal.
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Prool of Theorem 44. Let I be anon-zero ideal in AQB,

We prove that 1= A®B, dividing the proofl into three parts.

[. Suppose 1 contains Ab for some non-'zero b in B.
Right multiplying by .3b1 we sce that 1 contains Aa-bbl' This
being true for any a in A we get AA‘bb1CI. Sinece A s
simple we have AZ = A, A bbic [. Inthis way we can build up
the two-sided ideal generated by b, which is all of B since B
is simple. Ilence [ = AQB,

11. Suppose | contains a non-zero clement ab. Central
simplicity of A is irrclcvaut\ here and so we may treat hypothe-
ses (1)and (2) together. supposing that, B has a unit element.
We can carry out left and right multiplications on a. holding b
fixed. When this is followed by additions we get all of Ab in L.
The argument then reverts to Case [, Under hypothesis (3) we
pick elements b l,b2 in B such that bib-b2 74 0. Then lor any
X.y in A we have (xay)(blb-bz),e . Since AaA = A, by add-
ing such terms we find A(bib- bZ)C I. We refer againto Case L

111. In the general case we begin with a non-zcro clement
x=Z a,lb,l in I. We may supposc that the a's arec lincarly inde
pendent over I7, and the b's non-zero. By the density theorem
there exists an element T inthe enveloping ring of A such
that aiT £0. a.T=0 for i>1; il A is associative we can pick
T inthe reduced enveloping ring (Theorem 43), We now dis-
tinguish the three hypotheses.

(2) I B has a unit element, the left and right multiplica-
tions that build up T can be carried out on A while leaving the
B-component fixed. Applying these to x we get that ayT-bq lic
in I, and we refler to Case 1L

(1) Supposc that A has a unit element. Let us consider

formal products of L's and R's with no symbols yet attached to

them. We speak of one such product as being a refinement of
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of another il it is obtained from it by the insertion of more 1 tg
and R's. By repeated applications of Theorem 38 we can find an
clement U of the enveloping ring of B with the following pro-
perties: (1) U is just a single product of Ltg and R's, 2)
biU 7‘ 0, (3) U is a refinement simultancously of cach of the
monomials comprising T. Now since A has a unit element we
can stick into cach of these monomials harmless lelt and right
multiplications by 4. The result is to make T a sum of terms.
cach having the same formal product of Lts and R's as U does.
This makes it possible to apply TU to the clement x = Z a b, .
Since cach a.T =0 lor 12 2. we conclude that alT'blU is1 i111 I.
This reverts the problem to Case II, .

(3) We must linally treat the case where A is associative
and B has no left or right annihilators. We can find ¢.d in B
such that cb1°d #0. Since T is now inthe reduced enveloping
ring. it has the form T=Z L(uf)R(uf). Left multiply x = £ a.b.
by u.¢, then right multiply by \},d, {11011 add over j. The rcsllllt
is thdt u1T-(cb1'd) lies in 1. This completes the prool of

Theorem 44.
Sy

\ From now on all rings are again associative.

As a [irst application of Theorem 44, consider a division
algebra D. flinite-dimensional over its center F. We claim that
[D:F] is a square. Forlet K be an algebraically closed field
containing F. We form K®D. Since K is simple and D is
central simple, K@D is simple by Theorem 44. Morcover
K@D is an algebra over K, with the same dimension as D
over F. Thus K@D is a total matrix algebra. its dimension

over K is a square. and {D:F] isa square.

TIIEOREM 45. (The internal tensor proauct thecorem) Let

C be analgebraover F. Let A.B be subalgebras with A cen-
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tral simple and B simple. Suppose further that A and 3 com-
mute clementwise. Then AB s either 0 or is isomorphic to
AQ®B,

Proof. There is a natural homomorphism from AQ B

onto AB. DBy Theorem 44, A@DB 1is simple. Ilence the kernel

is cither 0 or all of AQB.

TIIEOREM 46. 1.t o be acentral si;nplc algebra over F,

and denote the reciprocal algebra by A'". Then A®A* is a

dense ring of lincar transformations on a vector space (namely A)

over I°.

Proof. Inthe algebra [ of all lincar transformations on
the vector space A we observe two subalgebras: <A :Af the
algebras of right and left multiplications, respectively, by ele-

ments of A, A is isomorphic to A, A is isomorphicto A"
r

2
A and Az commute clementwise by the associative law.
T

Finally ArA£
A A 2ARA* Now A A
r £ r

is obviously non-zero. llence (Thecorem 45)
. is exactly the reduced enveloping

ring of A. DBy Thecorem 43, ArA is a densc algebra of lincar

2
transformations on A. as a veclor spacec over the centroid I'.

In particular: if A is central simple finite-dimensional,
then A®A* is a total matrix algebra. This is the starting point
for making a group (the Brauer group) out of the central simple

finite-dimensional algebras. /

(3) Maximal subficlds

Any ring possesses maximal commutative subrings by Zorn's
lemma. Note that they necessarily contain the center. Ina divi-

sion ring a maximal commutative subring is automatically a sub-

ficld.
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TIIEOREM 47. Let D be a central division algebra over F,

and K a maximal subficld. Then K@D is a dense ring of lincar

transformations on a vector space over K (namely D as alefl

vector space over K).

Proof. We operate again in the algebra [ of all lincar
transformations on D as a vector spaccover F.  [et Dr denote
the algebra of all right multiplications by D. Kl the algebra of
left multiplications by K. By Theorem 45, KIDr gK@D. Let
us look at D as a right KlDr—modulc. It is irreducible, being
alrcady irreducible under D . What is the commuting division
ring? One recadily computes that an endomorphism commuting
with D is of the form LX with x in D. For L‘ to commute
with K, it must further be the case that x comm/ulcs with K.
By the maximality of K, x lies in K. Thus the commuting divi-

sion ring is exactly K;' The density theorem completes the

proof.

If in particular D is finite-dimensional over I7, then KQD
is a total matrix algebra over K and we sce once again that

[D:F] is a square. But we can get more precise information.

THEOREM 48. Let D be a division algchra over F_ apd

A a finite-dimensional algebra with unit element over F. Then

A®D satisfics the descending chain condition on right ideals.

Proof. We firstlook at AQD as a right vector space over
D. with D acting in the natural way on the right. It is a finite-

dimensional vector space: in fact if u .a,u is a basis of A

1"
over F then ui, ceeU s also a basis of A®D over D. In
particular A@D satisfies the descending chain condition on D-

submodules.
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Now look at A®D as a right (A@D)-module. The cle-
ments 1+d of A®D act on the right of A®D in just the way
we had D acting in the preceding paragraph. Ilence an (AQ@D)-
submodule (that is, a right ideal of A®D) is a D-subspace. A
fortiori, we have the descending chain condition on right ideals

of AQD,

TIIEOREM 49. ILet D be a central division algebra over I7,

K a maximal subficld. If D is infinite-dimensional over F., 80

is K. If D is finite-dimensional over F, its dimension is a

5
square n , and [K:F]=n.

Proof. Suppose that K is finite-dimensional over 17, say
|[K: F] = r. By Theorem 48, K®D satisfies the descending chain
condition. We now apply Theorem 47 and observe that D. as a
left vector space over K, must be finite-dimensional (for a ring
with descending chain condition acts as a dense ring on it). L
[D:K] is s, then DK is an s by s total matrix algebra over
K. Thus [D: 1] = 2. But on the other hand [D: F] = [D: K){K: F]
= sr, so that r = s. We have proved both statements of Theorem
49.

As an application of Theorem 49, let D be an algebraic
division algebraover a real-closed field R. Then a maximal sub-
ficld must be R or the complexes. We rapidly conclude that D
is the reals, complexes, or four-dimensional over R. We shall
complete the determination of D a little later, with the aid of
more theory.

(4) Polynomial identitics

Let € be a commutative ring. Let KioewarX, be inde-
terminates. A non-commulative monomial is a product of x's,

order being carcfully observed. A non-commutative polynomial
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over C is a linecar combination of monomials with coefficients
in C. We do not allow a constant term.

LLet A be a ring admitting C as a ring of operators (in
other words, C is part of the centroid). We say that A satis-
fies a polynomial identity (over C) il there exists a non-zero
non-commutative polynomial over C which vanishes whenever
clements of A arc substituted.

Examples :

1. Any nil ring of bounded index.

2. Any commutative ring.

3. Any finite-dimensional algebra. If the dimension is k-1
the identity

S(xi, ’xk) = DEx X .eex
1 12 k
'is satisfied, the sum being over all permutations with the sign
according 1o the parity of the permutation.

4. Ary algebraic algebra of bounded degree. If the bound

on the degree is n, the identity
2 n
S(XY, X7y, vu.sX y) =0
is satisfied.

TIIEOREM 50. Let A be a primitive ring satis{ying a

polynomial identity of degree k, with coefficients in the centroid.

Then A is a simple algebra, finite-dimensional over its center.

If the dimension over the center is on < k.

2
n , then

First a preliminary lemma.

LEMMA. Let I be a maximal right ideal in a ring A.

5
Assume that [ does not contain A~. Then 1 is invariant under

the centroid of A.
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Proof. Let Xbe a centroid element, placed on the left.
LEvidently XI is a right ideal in A. If X is not contained in I,

then ITtXI=A. Then

-

A TIA+XA 1A tINAYC L,
a contradiction.

We turn o the proof of Theorem 50. Let M be a faithful
irrecducible module for A. We know that M is isomorphic Lo
A/l for a suitable regular maximal right ideal 1. Of course, 1
does not contain Az. It follows from the lemma that T is ad-
missible under the centroid €. and hence so is A/I. "The com-
muting division ring D of endomorphisms thus contains the
centroid in a natural way (and also its quotient field).

Let [= 0 be the identity satisfied by A, We proceed o
transform [ into a multilinear homogencous identity. If

f=1(x,...) is not lincar in x, write
g(u:\’, ...) = f(u+\', . ..) = f(\.l, ...) = f(v: . -.).

Then g is satisfied by A. it is not the zero polynomial, and its
degree in u or v is lower than the degree of [ in x. By suc-
cessive steps of this kind we reach a multilinear identity, whose
joint degree in all its variables is still k; we shall again write it
as [ Suppose f is not homogencous. Then some variable, say
X, is missing from at least one term. On setting x = 0 we gel
an identity of lower degree.  Ultimately this will reach a homo-
geneous identity of degree k. Changing notation again we
assume the degree o be just k. Thus [ consists of a term

X %o ¥ and some of its permutations. Consider the matrices
1e On substituting these into [. only one term

e e e e “ e,
117 742° 22 723
survives, for in all other permutations the product of the e's is 0.
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We now invoke the density theorem. A is a dense ring of
lincar transformations on a vector space V over D, If V is
infinite-dimensional, it will be possible o find in A k clements

which act exactly like ¢ on a suitable finite-

11° €427 %220 S230 *
dimensional subspace of V. Byt this contradicts the identity = 0.
Thus A is merely a total matrix ring over D. In particu-
lar it has a unit clement, and its centroid ¢ has become the
ordinary center. We now regard D as an algebra over C, noling
that it inherits the identity f=¢, Let K be a maximal subfield
of D. 1In the algebra K®D the identity = 0 survives, fora
multilinear identity need only be checked on basis elements, and
we canusce a basis of D over C as a basis of K®D over K.
By Theorem 47, K®D is a dense ring of linear transformations
on a vector space over K. We now simply repeat the argument
of the previous paragraph to deduce that this vector space is
finite-dimensional. Ilence A is finite-dimensional over C, say
of dimension 112. By suitable extension of the base field, we can
suppose that A is merely an n by n total materix algebra. Then
k must be at teast 2n, for if k = 2n-1, the use of the k cltements

eii’ eiZ’ . == (just as before) would violate the identity.

We append a bibliography of the carly work on polynomial

identities, with short comments on cach paper.

M. Hall, Projective planes, Trans. Amer. Math. Soc.,

vol. 54 (1943), 229-277. Theorem 6. 2 states that if D is a divi-
sion ring such that every (xy - yx)2 is in the center, then D s
one or four-dimensional over its center.  This special case of
Theorem so was ils inspiration.

J. Levitzki, Ona problem of A. Kurosch, Bul, Amer. Math.

Soc. vol. 52 {1946), 1033-1035, Proof that a nil ring of bounded

index is locally nilpotent.
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[. Kaplansky, Rings with a polynomial identity, Bull. Amer.

Math. Soc., vol.45(1948), 575-580. Foundations of the subject.
Proofl of Theorem 50. Also a proof that a nil ring satisfying a
polynomial identity is locally nilpotent.

J. Levitzki, A theorem on polynomial identities, Proc. Amer.

Math. Soc., vol.4 (1950), 334-341. Lect A be a ring with a poly-
nomial identity of degree k. Let N be the union of all nilpotent
ideals in A. Then every nilpotent element x in A satisfies
x" ¢ N, where r =[k/2].

A. Amitsur and J. Levitzki, Minimal identities for alge-

hras, Proc. Amer. Math. Soc., vol. 1{1950), 441-463. Proof

that the n by n total matrix ring over a commutative ring satis-
fies the "standard" identity SZn = 0. Ilere is an interesting un-

published application. Let A and B be rings with unit elements.
Suppose that A is commutative and that the n by n matrix rings
An and Bn arc isomorphic. Then B is commutative (whence A
and B arc i:s*omorphic). For proof apply the standard identity 1o

the 2n  clements e e in B_ to get
S eii,ﬁ i1’ n 123

12227 " %
af= Ba forany o and B in B.

[. Kaplansky, Groups with representations of bounded degree,

Can. J. of Math., vol. 1 (1949), 105-112, Application of poly-
nomial identities 10 group representations.

A. Amitsur and J. Levitzki, Remarks on minimal identitics

for algebras. Proc. Amer. Math. Soc., vol. 2 (1951), 320-327.

Determination of all identities of degree 2n for a simple algebra
2 .

n -dimensional over its center.

I. Kaplansky. Topological representation of algebras II,

Trans. Amer. Soc., vol. 68 (1950), 62-75. Proof that an alge-

braic algebra satisfying a polynomial identity is locally finite.
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[. Kaplansky, The structure of certain operator algebras,

Trans. Amer. Math. Soc., vol.70 (1951), 219-255. Application
of polynomial identities to C*-algebras. Reduction of the local
finiteness problem to the primitive and nil cases.

A. Amitsur, An embedding of Pl-rings, Proc. Amer. Math.

Soc., 3{1952), 3-9. Let A be a ring with a polynomial identity
and no nilpotent ideals. Then: (1)the degree of a minimal iden-
tity for it is even, (2) A can be embedded in a matrix ring over
a commutative ring.

A. Amitsur, The identities of Pl-rings, Proc. Amer. Math.

Soc., 4(1953), 27-34. Various further facts. In particular: any
m

Pl-ring satisfies an identity of the form S, =0.
n

J. Levitzki, On the structure of algebraic algebras and

related rings. Trans. Amer. Math. Soc. , vol. 74 {1953), 384-409.
Simplified purely algebraic proofs of local finiteness thcorems.

Many other results.
n

We conclude by mentioning an open question.  An affirma-
tive answer would have uscful applications. Does the n by n
matrix algebra (n > 3) admit polynomials which arc identically

in the center without being identically 07

(5) Extension of isomorphisms

TIIEOREM 51. Let L[ _be a vector space over a division

ring D with center Z. Let A be the ring of all lincar trans-

formations on [ (note that the center of A is also Z), Let B

and C be simple subalgebras of A, finite-dimensional over 2

and containing the unit elementof A. Then: any isomorphism be-

tween B &% C can be extended to an inner automorphism of A.
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COROLILARY. _E A is itself finite-dimensional over Z,

all its automorphisms are inner.

Proof. We operate in the algebra of all lincar transforma-
tions on [ as a vector space over 7. Among ils subalgebras
are D,A,B,C. By Thcorem 45, DB E’D@B is simple. By
Theorem 48, D®B and D®C salisfy the descending chain
condition. The given isomorphism ¢ between B and C extends
in a natural way to an isomorphism, which we shall again call ¢,
between DB and DC. Now [ is a right (DB)-module. There
is another way of getting it to be a DB-module: by transferring
to DC via ¢, and then acting the way - DC does on B, Lix-
plicitly, the second operation is defined by

a-x = ag(x)
for a in [, x in DB.

Now cach of these modules is a direct sum of irreducible
modules, all isomorphic (for DB is simple with the descending
chain condition). The two modules will be isomorphic as soon as
we check that the number of irreducible components is the same
both times. What we have is a decomposition of the vector space
E into (DB)-submodules, which arc in particular subspaces.
The dimension of cach subspace is finite (for an irreducible (DB)-
module is isomorphic to a right ideal in DB, and all of DB is a
finite-dimensional vector space over D). Now il a veclor space
is decomposed into finite-dimensional subspaces of a certain fixed
dimension, the number of components is uniquely determined.
Ience the t(wo (DB)-modules are isomorphic. Call the isomorphis
T. Then T 1is a one-one mapping of LI onto itself satisfying

(ax)T = (aT)g(x)
for any x in DB. Apply this in particular with x in D, so that

¢(x) = x. The conclusion is that T is D-linear, that is, T lies
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in A. Next take x in B. We find xT = T¢(x). Hence on B,
¢ coincides with the inner automorphism by T. This concludes

the proofl of Theorem 51.

We shall outline several applications.

(a) The theorem of Frobenius. Let ID be an algebraic
division algebra over a real closed field R, We have already
seen that D is R, the complexes over R. or four-dimensional
over R, Let us complete the discussion of the tast possibility.

D¢ contains the field R(i), i'ﬂ = -1. The automorphism i =+ -1i

can be extended to an inner automorphism of D. say by j. Then
j2 commutes with 1 and j, and so must be in the center R, More
over j  cannot be positive, for then by ordinary factorization j
would be in R. [Ilence j2 is negaltive and we may normalize Lo

j = -1. Itis casy to verify that the elements 1,i,j.ij are
lincarly independent and we reach the quaternions. \/

(b)Y Wedderburn's theorem. Let D be a finite division
ring. Suppose its dimension over its center 7 is 112. Let K
be a maximal subficld of D.  Any other maximatl subfield Kl‘
like K, has dimension n over 7. Ilence K and Ki admil an
isomorphism leaving 7 clementwise fixed. By Theorem 51 this
extends to an inner automorphism of D. If we write K* and
D" for the multiplicative groups of non-zero clements, we ob-
scrve that the conjugates of K fillup D*  But no finite group
can be exhausted by a proper subgroup and its conjugates. Ilence
K =D", and D is commulative.

(c)Jacobson's generalization. Let D be an algebraic
division algebra over a finite field. Let 7Z be its center. Let x
be an element in D but not in 7. The ficld Z{x) is normal
over Z. Hence there exists an automorphism of Z({x) over 7

aclually moving x into a polynomial f(x), By Thcorem 51 this
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extends to an inner automorphism. say by y. Consider now the
subalgebra Di generated over Z by x and y. Inview of the
cquation y-lxy = {(x), Dl is finite-dimensional. DBy taking a
basis of Di’ and dropping down to the finite ficld generated by
the elements occurring in the multiplication table lfor that basis,
we reach a finite division ring. There is a contradiction of
Wedderburn!s thecorem unless D is commutative.

(d) Jacobson's theorem: il for every a inaring A
there exists an integer n{a)™> 1 _such that an(a) = a. then A is
commutative. For one argues readily that the primitive images
of A arc division rings. and the latter are necess‘arily alge-
braic over a [inite ficld.

Herstein made successive gencralizations winding up with
the following: suppose that for every a in A there exists a
polynomial Pa with integral coelficients such that uzPa(a) -a
is in the center of A: then A is commultative. Another
theorem: il every clement of A has some power in the center
and A has no nil ideals. then A is commutative. For an

authoritative account sce Ilerstein's Carus Monograph Non-

commutative Rings.
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Part III, Tlomological Dimension

Introduction

These notes ate based on a course given in the Autumn
Quarter of 1958 and were written carly in 1959,

The main objective of the course was to reach the
Auslander=Buchsbaum-Serre characterization of regular local
rings: At that time the result was still quite new, and its proofl
== at least [rom a point recasonably necar scratch == was a size-
able undertaking.

Early inthe course [ formed a one-step projective resolu-
tion of a module. and remarked that if the kernel was projective
in one resolution it was projective in all. [ added that. although
the statement was so simple and straightforward. it would be a
while before we proved it.  Steve Schanuel spoke up‘and told me
and the class that it was quite casy. and therecupon sketched what
has come to be known as "Schanuel's lemma”™. [{ took a couple of
days and a half-dozen conversations belore the prool was [ully in
hand.

Subsequently it became apparent that quite a few anticipa-
tions could be found in the literature. Most notably, Fitting
(Math. Annalen 112 (1936), 572-582) had proved it with "projec-
tive® replaced by Pfree® and all modules [initely generated.
ITowever. Schanuel deserves [ull credit for stating it the right way
and lor realizing that it could lead to a theory of homological
dimension (I will take a little credit for acting as a catalyst).

From this point on the course developed rapidly and took on
the form recorded here.  Many keen countributions were made by
students. and I am especially grateful to 1. Bass, S. Chase. and

R. MacRae.
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The course also contained two parts not reproduced here:
(1) An account of commutative Noctherian rings. An extended

version appears in the notes Commutative Rings issued by

Queen Mary College (QMC). (2) A similar theory of weak di-
mension.  After the concept of flatness has been adequately
developed, one forms projective (or free, or flat) resolutions and
waits till the kernel is flat. An analogous sequence of theorems
can be worked up. [Ileave this as a long exercise to the intereste
rcader.

In the present reprinting there has beensome editing and
some material has been incorporated from the QMC notes and

from my 1965 Varenna lectures.
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1. Dimension of modules

R will always denote a ring with unit clement, and all
modules will be unitary. Normally, we shall deal with left
modules.

We take the point of view that free modules are the sim-
plest ones and we study other modules in terms of them. Of
course, any module A is representable as the image of a free

module IY, say withkernel K
(1) 0+K=F—>A=0

The next simplest type of module is one for which K is free.
But at once we face the question:  is this independent of the particu-
lar choice of the resolution (1)? It turns out that the answer is "no”
but becomes’“yes“ if we yield a little ground and replace "free™
by "projective” (i.e,, direct summand of a free module).

Once this is granted, it is natural to begin again, treating
projective modules as the simplest type. The comparison of two

projective resolutions

{2) 0+K—+P—+A=>0,
- *A =0

(3) 0-K - P1

is made in Theorem 1,

THEOREM 1. (Schanuel‘s Lemma). Let R be a ring,

A an R-module, and let (2) and (3) be projective resolutions of

A (i.e., the sequences are exact and P and l"1 are projective).

Then K& Pl is isomorphic to Kl$ P.

Proof. Let f, f1 denote the maps from P,l:’1 to A. Since
P is projective there exists a map g P -+ P1 with flg = f{. Let
L. denote the submodule of :E’GP1 consisting of the pairs (p’pl)
satislying f(p):f'l(pl). Map PGB:K1 into L by

(4) (p.k) = (p, g(p) ¥ k,) .
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It is straightforward that (4)is onec-onec and onto. Thus. if P
is projective, l"GBK1 is isomorphic to L. If P1 is also pro-

jective. L is isomorphic to P1 @ K.

Theorem 1 inevitably suggests the introduction of an equiv-
alence relation: modules A and B are equivalent if there exist
projective modules P and Q such that A® P is isomorphic to
B® Q. We write ﬂA for the equivalence class of K in (2),
and the gist of Theorem 1 is that &4 is well-defined.  Further-
more we casily see that #a depends only on the equivalence
class of A. We are now ready to defline the projective dimension
of A as the smallest n such that AA is the class of projec-
tive modules; if there is no such n, the projective dimension of
A is m.  We usc the symbol 4(A), or dR(A) if it is advisable

to call attention to the ring R.

Examples:

1, @&(A)= 0 if and only if A is projective.

2. &A)=1 il and only il A is not projective but is ex-
pressible as B/C with B and C projective.

3. Let a,b be clements of R such that the left annihi-
lator of a is Rb and the left annihilator of b is Ra. We have

the exact sequence
0O+ Rb-R—=Ra—=+0

where the map from Rb to R is inclusion, and that from R to
Ra is right multiplication by a. We have a similar resolution
with a and b interchanged. The result is to obtain a periodic
long resolution that bounces back and forth between Ra and Rb.
Thus d(Ra) = 4(Rb) = @ unless Ra and Rb are both projective.
When a and b are central. the condition for this is (a,b) = R.

We give three illustrations :
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(i) R= Z4 (the integers mod 4), a=b= 2. Jlecre d(Ra) = m
(ii) Let u,v be central non-zero-divisors in a ring T, and
suppose (u.v) # T. Let R=T/(uv) andlet a,b be the images of
u and v in R. Again d(Ra) = m
(iii) Let Y be any ring. T = Y[x] with x a (commuting)
indeterminate and set u=x-1, v= l+x+ ... t xn-1. Then
R = T/(uv) is'the group ring over Y of the cyclic group of order n.

The condition {u,v)= T holds il and only if n is invertible in Y.

4. Lxercise: it A is a direct sum of (any number ol)

modules B.. then d(A) = supd(Bi).

We proceed to a theorem giving a nearly complete relation-
ship between the homological dimensions of three modules occurr-
ing in a short exact sequence. It is perhaps most uselul to view
this as an attempt to determine d(A/B) from d(A) and d&(B),
This is successful except in the "ambiguous case" d(A) = d(B)
when we only get an inequality.

We call attention also to the condensed version suggested by
P.M. Cohn: d(A) < .max(d(B),d(C)) with cquality except possibly
when d(C) = d(B) t 1.

THEOREM 2. Let B be a submodule of A. and writé

C = A/Bj; thus we have the exact sequence

(6) 0=+B-=A-=C~0.

(1) K two of the dimensions d(A), d(B), 4(C) arec finite. so

is the third.
(2) It da(A) > d(B), then d(C) =d(a).
3) If a(a)< a(B), then d(C) d( )
(4) I a(A) = aB), then d(C) < 1.
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Proof. Before beginning the proof we mention an alternate
procedure, that of building simultancous resolutions of all three
modules (Cartan and Lilenberg, p. 7, Prop. 2.5). Symbolically,

we pass from (6)
0+ KB~ RA~+ RC~o.

Beginning the induction is a trifle more tedious in this version.
Perhaps the best advice to the reader is to have both techniques
al his disposal.

If A is projective, the theorem is immediate. If C is
projective, then A is the direct sum of B and € and again the
theorem is immediate. We may thus assume that neither A nor
C is projective.

Write A= P/D with P projective. Then B has the form
E/D, where DCEC P, and € 2 P/E. Thus d4(E) = d(C) - 1,,
d(D) = d(A) - 1. d(E/D) = d(B), We have the exacl sequence

0=-D—-E—+B->0

or symbolically
(7) 0-"A(A)~ R(C)+B=0.

(It is interesting Lo note that two more applications of the proce-

dure lead us to
0~ R%B = R% - R2% ~0).

By using (7) and induction on the sum of the (wo finite dimensions
we get part one of the thecorem at once. S0 we assume all three
dimensions finite and make an induction on their sum. The induc-
tive assumption on D, I3, B gives the following information when

translated back to A. B, C:
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(a) If d(C) > d(A), thep d(B)=d(C) - 1.
{b) I d(C)< d(4), then a(B) = d(A),
(c) I &(C) = d(4), then a(B) < d(A).

These three statements are merely a logical rearrangement of the

three statements in Theorem 2,

Lixercise.  All combinations permitted by Theorem 2 are

aclually possible.

2. Global dimension

The global dimension of R, written D(R), is the sup of
3d(A) taken over all R-modules. More exactly, this is the left
global dimension and there is a similar right global dimension
derived from right modules.

Bricef arguments show that D(R) = 0 (left or right) il and
only if R is semi-simple with descending chain condition. Il R
is an integral domain, d(R) <1 il and only if R is a Dedckind
ring.

If cither of the two global dimensions is (. so is the other.
But otherwise there is no connection between the left and right
global dimensions (A. V. Jatengaonkar, Notices Amer. Malth.

Soc. vol. 14, (1967), p. 660).

3. First thecorem on change of rings

For many thecorems or compultations concerning homological
dimension a comparison between (wo rings is useful.  The follow-
ing thcorem, because it is so simple Lo prove and is decisive of its

kind, descerves first mention.
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TIIEOREM 3. Let R be a ring with unit and x a central

L . . * _
clement of R which is g non-zero-divisor. Write R™ = R/(x).

et A be a non-zero R -module with dR*(A) =n <o. Then
dR(A) Ontl.

The proper context in which to view results like Theorem

w

is the following: let R and S be rings and let there be given a
ring homomorphism [rom R to S. Then any S-module A be-
comes in a natural way an R-module. By Thcoram 2 and an casy

induction one proves
(8) dp(A) < dg(A) + dp(S).

(This is part of Exercise 5 on p. 360 of Cartan-Eilenberg), In
Theorem 3 we have a case where the inequality (§) is improved to
equality. By iterated use of Theorem 3 we can get fyurther in-
stances of equality (and this is a nice motivation for the concept
of an R-sequence). In Corollary 2.12 of Auslander and

Buchsbaum's Codimension and multiplicity (Ann. ol Math. 068

(1958), 625-657) there is another case of equality. It would be

interesting to know the precise circumstances in which equality

holds.

Prool of Thecorem 3. We proceed by induction on n.

= 0. A is R*-projective and hence-a direct summand of a
free R -module I'. Now (x) is R-projective (even [ree%n one
generator) and not a direct summand of R. Ilence dR(R 1= 1
and likewise dR(F) = 1. It follows that dR(A) < 1. We must ex-
clude the possibility that A is R-projective. Now x acts laith-
fully on R. hence on any [ree R-module. hence on any non-zero
submodule of a [ree R-module; therelfore no non-zero projective

R-module can be annihilated by x.



-473-
*
n>0. Mapa [ree R -module G onto A with kernel K.

We have dR*(K) = n-1. whence dR(K) = n by induction. py
Theorem 2 we can conclude dR(A) = n+{ cxcept when n =2 1; here
we only get dR(A) < 2, (Itis typical of such an inductive proofl
that the ambiguous case of Theorem 2 calls for a special argu-
ment at a low stage of the induction.) We shall conclude the prool
by showing that when dR(A) and dR*(A) are both at most one. A
is R -projective.

Map a [ree R-.module II onto A with kernel T. Since A
is annihilated by x, T ) xH, Since dR(A)S I, T is R-projective.
We further have a homomorphism of H/xH onto A with kernel
T/xH. Since H/xH is R*-I'rcc and dR*(A)S 1, T/xH is R*-
projective. This implies that xH/xT is a direct summand of
T/xT . Now .T/xT is R&k-projective. as follows readily [rom
the fact that T is R-projective. Tlence xH/xT is R#-projective.

But xH/xT & IUT = A. llence A is R*-projective.

The next theorem is an immediate corollary of Theorem 3.
1 *

TIIEOREM 4. Let R,x,R be as in Theorem 3. Suppose

D(R*) = 1< . Then D(R)2n+ 1.

The following somewhat related theorem is due to

D. E. Cohen.

TIHIEOREM 5. Let T be a subringol R and assume T jg

a direct summand of R as a T-bimodule. Then D(T) < D(R)

+ dT(R) .

Prool. Take any (left) T-module A, and set B = Hom_ (R, A).

ol
Then B carries the structure of a left R-module. As a T-module

ithas A as adirect summand. for if R=T& U as a T-T-bimodule

then B=zA® IlomT(U, A), It follows that dT(A)S dT(B). By (8),
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dT(B) < dR(B) £ dT(R)' Hence dT(A) < dR(B) t dT(R). Passing
to global dimensions. we get the desired conclusion.

Usclul examples for Theorem 5 are provided by taking R
Lo be a polynomial algebra, power series algebra, group algebra,
or semi-group algebra over R. Another example: let Y be a
ring. G a group. Il a subgroup of (. and take T(R) (o be the
group ring over Y of H(G). (The complementto T in R is

provided by the set of lincar combinations of clements not in H.)

4. Polynomial rings

Let S'be any ring. By the polynomial ring R = S{x] we -+
mean the usual polynomials in x with coelflicients in 8; x com-
mutes with the clements of S, but we allow S (0o be non-commuta-
tive. Note that x is in the center of R and is a non-zero-
divisor.

THEOREM 6. _]'_.ae_t R = S[x] be a polynomial ring in x over
S. Then D(R) = I t D(S).

Prool. We have D(R) 2 1 £ D(8), by Theorem 4 when
D(S) < co and (since dSR = 0 here) by Theorem 5 when D(S) = o
(the argument below also looks afler the case D(S) = ). We
therefore assume D(S) = n< oo and have to prove D(R}< n+ 1.

Let A be any S-module. We describe a certain construc-
tion for a related R-module for which, at the moment, we wrile
A[x]. (The reader who prefers is invited Lo substitute R®SA
and make analogous changes below.)  The module A[x] is the set
of = anx“ , an ¢ A ; the action of S and x (and thereby R) on
A[x] is self-explanatory.

We claim that dR(A[x]) = dS(A). First: il A is S-[ree.
evidently A[x]} is R-Iree. Direet summands offer no problem,

so A S-projective implies A[x] R-projective. Conversely. sup-
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pose Alx] is R-projective. Then it is 4n R-direct-summand of
an R-free module which is also S-free.  (Observe that R is free
as an S-module.) So A[x] is S-projective. Since. as an S-
module. A[x] is merely a direct sum of a countable number of
copies of A. it follows that A is S-projectlive.

Map a [ree S-module F onto A with kernel K. It is im-
mediate that there is an induced R-homomorphism of F[x] onto
Alx] with kernel K[x]; note also that F[x] is R-free. We thus
gel parallel resolutions<of A and Afx] over § and S[x]
respectively, and it follows rom the preceding paragraph that
these resolutions terminate at the Same moment. Morcover il
one resolution never terminates the same is true of the other. e
have sustained the claim that dS(A) = dR(A[x])'

We shall find it advisable later Lo change our notations lor
Alx). We may wrile A[x) instead as the set of all sequences
(ao’ai’aZ" ..) of clements of A, non-zero at only finitely many
coordinates; $ acts by pbintwise multiplication and x as a push
to the right:

X(ao'ai’a )=(0’a~ ,ai,az,...) .

2’ o

Now let M be any R-module. We shall write N f(or the
R-module which was described as M[x] above; N is the set of
all ultimately vanishing scequences (mo,ml,mz, - ), m, ¢ M.
with S acling pointwise and x acting as a push to the right.  pe

map -

(m_,m ,mz,..-) - % xim.

1

defines an R-homomorphism of N onto M (note that the right
side is meaningful since M is alrcady an R-module). Let the
kernel be K. We showed above that dR(N)= d (M); hence

S

dR(N) < n. We shall show lurther that K is isomorphic to N.
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Application of Theorem 2 then yields that for M= N/K  we have

dR(M) <ntl. as desired.

The isomorphism of K and N is given by mapping N

onto K as follows:

(mo,m m,,...) = (xmo,xmi- m_, xm

g my -mi,...).

2
That this is indeed an R-homomorphism which is one-to-one and
onto K is a straightforward verilication that we leave to the

rcader.

Exercise.  Adapt the above argument to the case

-1
R=5[x,x |
We record an immediate corollary of special interest.

THEOREM 7. (Ililbert's theorem on syzygies). If R is

the ring of polynomials in n variables over a ficld. then

D(R) = n.

5. Sccond theorem on change of rings

Theorem 3 does not suflfice 4o get complete information on
the connection between R and R , for the only R-modules
covered arc those annihilated by x. If in reverse we start gith
an R-module A. we need a way 1o pass 1o an appropriate R -
module. The obvious choice is A/xA. With precautions about
zero-divisors (which cannot be omitted) there is at any rate

inequality:

TIHEOREM 8. Let R be a ring with unit. x a central

clement in Ry write R* = R/(x). Let A be an R-module and

supposc that x is anon-zero-divisor onboth R and A. Then:

dpx(8/x8) < dp(A).
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Again there is a broader context in which to view Theorem 8.
Given a ring homomorphism from R to S, and a (left) R-module
A. we passto B= S®RA which is a (left) S-module. We are
interested in the validity of dS(B)S dR(A). If tensoring with §
preserves exactness (i.e., if0 S is right R-[lat), the inequality is
immediate. This is not. however. the setup in Theorem 8, which
is explained from the 'higher" point of view as follows. The requi-
site preservation of exactness is assured ifgppropriate Tor's
vanish. From Tor2 on they do since dR(R ) = 4, The vanishing
ol ToriR(R*.A) is precisely the hypothesis that x is a non-zero-~

divisor on A.

Proofl of Theorem 8. I dR(A) = 00, there is nothing to
prove. So we assume dR(A) = n < o, and procced by induction
on n.

n= 0. Direct summands offer no problem so we may as
well assume that A is R-free. Then A/xA is visibly RX—I'rcc.

n> 0. Map a [rece R-module I onto A with kernel K.
We have dR(K) = n-1. whence dR*(K/xK) <n-1 by induction.
The map F = A [followed by the natural homomorphism of A on-
to A/xA yields a map 17 - A/xA with kernel K t x¥, We may
instcad regard this as a map F/xF - A/xA with kernel
(K £ xF)/xF. Now (Kt xF)/xF = K/(K(xF) by the standard
isomorphism theorem. It follows recadily [rom the hypothesis
that x acts [pithfully on A that KM xF = xK. Thus: we have a
map of the R -free module F/xF onto A/xA with kernel K/xK.
Since dR*(K/xK) <n-1. we deduce dR*(A/xA) <n. as desired.

6. Third theorem on change of rings

While Theorem 8 has a certain uselulness, it is to be ex-

pected that important results will concern the case of equality.
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For this assumptions are nceded concerning the Jacobson radical

and finiteness.

TIIEOREM 9. Let R be aleflt Noctherian ring, X a cen-

*
tral clement lying in the Jacobson radical of R; write R = R/(x).

Let A be a linitely generated 'R-module. Assume that x is a

non-zcro-divisor on both R and A. Then dR*(A/xA)= dR(A).

Proofl. Let dR*(A/XA) = n. We have to prove dR(A) = .
Il n=o00, Theorem 8 applies, so we assume n < . We are
going to argue 'by induction on n. We do the inductive step [irst,
leaving the discussion of n = 0 to the end.

Map a [ree finitely generated R-module F onto A with ker-
nel K. This induces a map of F/xF onto A/xA with kernel K/xK
(exactly as in the grool of Theorem 8). We have dR*(K/xK) =n-1
(since F/xF is R -free). whence dR(K) = n-1 by induction.

(Note that K satislies the requisite conditions: it is [initely

generated and x acts [aithlully on it.) We conclude that

dR(A) =qn. (If n=1 there is a momentary possibility that
d (A) = 0 but this of course implies d _(A/xA) = 0.)
R R*

It remains for us to treat the case n = (. That is. we must
prove the following: under the hypotheses of Theorem 9, if A/XA
is projective, then A is projective.

We [irst do this with "projective® replaced by "free® in both
the hypothesis and the conclusion. Supposec then that A/xA is free

* . . .
over R , andlet v v, be a basis. Pick clements u. in
1

y mna,
A mappihg on v.. 1VVC claim that A is [ree. with LIEREPR N as
a basis.

That the u's span A is typical deduction from Nakayama's
lemma. In dectail: let C be the submodule of A spanned by
LEREETL N We have C t xA = A. whence x{(A/C)= A/C, and

A/C = 0 by Nakayama.
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Suppose Z ciu.1 =0 for c¢.e¢ R. We show that the cfs
are 0. From Zc¢.v, =20 we get that ecach ¢ is divisible by x.
Since x acts I‘aith[‘lullly on A, we may cauccl1 x in the relation
z c,u = ().‘ The process may then be repeated. There will re-
sult a sequence of elements c¢., ci/x,ci/x2, ..« which gencrates
a properly ascending chain of left ideals in R, unless ¢ = 0.
« From the [ree case we pass to the projective case bx a

device due to Lance Small. Suppose then that A/xA is R -pro-

jective. Form a [ree resolution of  A:

(9) 0+K=F->A=>0,

From (9) we pass to the corresponding resolution of A/xA:
(10) 0= K/xK=F/xF = A/xA =0 .

Let B=A®K Then B/xB is isomorphic to A/xA ® K/xK.
Since A/xA is projective. the sequence {40) splits. Ilence B/xB
is isomorphic to F/xF, which is R*-frece. DBy the [ree case al-

rcady treated. B is R-frce. and A is R-projective as required.

There is an additional aspect of Theorem 9 which we shall
briefly explore. Suppose. in the sctup of Theorem 9, that
dR*(A/xA) =n<oco andthat A # 0 (whence. by Nakayama.
A/xA #0). Then. by Thecorem 3, dR(A/xA) = ntd. Putting this

together with Theorem 9 we get
A/xA 1+
(11) . dp(a/xa) = 1+ d (A).

Now the interesting thing is that if R is commutative (11) can be
improved in two respects: it is true also when dR(A) = o0, and we
can delete the assumption that x is a non-zero-divisor in R. The
prool is by the long exact sequence for L[Ext. Supposc

1
dR(A/xA) =k < «. Then Ex1;+ (A/xA,B) =0 for any R-module B.
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From the exact sequence

0~ AZ>A>A/xA =0

we get
k

k41 P
R(A,B) —> Extg (A/xA,B) = 0.

Extﬁ(A,B) x5 Ext

Take B finitely gencrated; then the Nakayama lemma yicelds
Ext;(A,B) = (0. This leads (o dR(A) < k-1, the key point we
neced.

Whether commutativity of R can be deleted here is unknown.
A "little” non-commutativity can be allowed: if R is a T-algebra
and a finitely generated module over the commutative Noectherian
ring T, and x is in the Jacobson radical of T, then the above
argument works (look at the relevant Ext as a T-module).

We wish to state a corollary of Theorem 9 applying to. the
global dimensions of R and R*. Because of the restriction to
finitely generated modules, there is a difficulty. In Scction 14
we shall see that this difficulty is transitory, for the global
dimension of a ring can be computed from its finitely generated
modules, or even its cyclic modules. So: the distinction between

D and D is temporary only.

DEFINITION.  D(R) is the sup of a(A), taken over all

finitely generated modules.

TIIEOREM 10. Let R be a left Noctherian ring., x a cen-

tral element in the Jacobson radical of R, not a zero-divisor in R.

let R¥= R/(x). Assumec that _]5(R*) = n< oo, Then D(R) = nti,

Proof. That D(R) is at least n+1 is immediate [rom
Theorem 3. Conversely, let A be any finitely generated R-mo-
dule, say with dR(A) = k. We must prove k<n+i, If k=0,
there is no problem. Otherwise we map a free finitely generated

R-modute 1Y onto A with kernel K. We have dR(K)= k-1,
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Also, K is finitely generated and x acts faithfully onit. By
Theorem 9, dR(K) = dR*(K/xK) <n. llence k-1<n , k<nt

as desired.

Exercise. Let S be aleft Noetherian ring and R the
formal power scries ring in one (commuting) indeterminate over

S. Prove: "D(R) = 1 £ D(8).

7. Localization

We recall the fundamental definitions. R is a commutative
ring with unit, S a multiplicatively closed subset containing 1.
For any R-module A define AS 1o be the set of pairs (a,s) ,
ae A. s e S, with the identification (a,s) = (ai,si) il there
exists 52 ¢ S with 52(5121 - sai) = 0. With the usual rule of
addition AS is an abelian group. When this construction is per-
formed on R, there is a natural multiplication making RS a ring,
and then AS becomes an R -module in a natural way. Any RS-

S
module arises from an R-module this way (for instancefrom itself).

TIIEOREM 11. For any localization RS of a commutative

ring R. D(R) 2 D(Ry),

that the distinction between D and D is temporary.)

D(R) Zﬁ(RS), (The reader is reminded

Proof. The proof is immediate from three simple remarks,
whose proof we leave 1o the reader.

(1) If A is R-projective, then AS is Rs—projcctivc.

(2) If Fis R-free and maps onto A with kernel K, then I

S

is Rs-free and maps onto AS with kernel KS .

(3) A finitely generated RS-module is of the form AS with

A a finitely generated R-module.
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8. Preliminary lemmas

In sections 8-10 we derive the homological characterization
of regular local rings. This scction is devoted to some casy pre-
liminary lemmas that are nceded. R will denote a local ring

(i.e., commutative, Noecthkrian, with unique maximal ideal M).

LEMMA {, Let A be a finitely gencrated R-module, and

B adirect summand of A such that B{ MA. Then B = 0.

Proof. Say A=B® C. Wechave C t MA = A, whence
M(A/C) = A/C. By the Nakayama lemma, A/C = 0, whence B =0

LEMMA 2, Let A be a finitely sencrated R-module and

a

RN a minimal set of gencrators. Let F be.a free R-
n

module on n generators Uy,--.s4 . Let F be mapped onto A

by sending uy into a. Then the kernel is contained in MF.

Proof. I T oy is in the kernel and does not lic in MF

then one of the c's, say ¢,, must be a unit. F'rom z C-la~ =0

1 i
we find that a.1 can be expressed in terms of the other a's,

a contradiction.

LEMMA 3. Any finitely gencerated projective R-module A

is free.

Proof. Map F on A via a minimal gencration of A as
in the preceding lemma. The kernel K is a direet summand
of F. By Lemmas { and 2, K= 0. and A=F is frce.

Remark. By auxiliary arguments it is possible to delete
the hypothesis of finite generation in Lemma 3 (Ann. of Math. 68

{1958), 372-7).

LIEMMA 4. Supposec that every element of M is a zero-

divisor. Then for any finitely generated R-module A, d(A) is

cither 0 or oo.
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Proofl Ifnot there exists a finitely generated A with
d(A) = 1. Resolve A, F—+A. as in Lemma 2, so that the kernel
K is projective (hence free) and satisfies K (C MF.  From the
hypothesis that every element of M is a zero-divisor it is a
known consequence that there exists a non-zero element z with

zM =0, But zK%™ 0 is impossible since K is free.

9. A repular local ring has finite global dimension

In connection with Theorem 13 we remind the reader that
the distinction between D and D is a provisional one, to be re-

moved in section 14.

THEOREM 12. If R is an n-dimensional regular local

ring, D(R) = n.

Proof. Let M be the maximal ideal of R. Pick an ele-
ment x in M but notin M2 (this is possible except in the
trivial case where R is a field). The clement X is not a zero-
divisor (indeed R is an integral domain). The ring R = R/(x)
is a regular local ring of Krull dimension n-i. By induction on
the Krull dimension of R we may assume B(Rn‘) =n-1. All the
hypotheses of Theorem 10 are fulfilled and we conclude that

D(R) = n.

10. A local ring of finite global dimension is regular.

In proving the converse of Theorem 12 we are able simul-
tancously to extract the information that the one module M

determines homological dimension.



-184-

TIIEOREM 13. Let R be a local ring with maximal idcal

M Assume that R is not a field. Suppose dR(M) =n < oo,

Then R is an (n+1)~dimensional rcegular local ring.

Proof. We begin the proof by disposing of two rather tri-
vial cases. Suppose n=0, i.c.., M is projective. By Lemma 3,
M is free, which means that M is a principal ideal generated by
a non-zero-divisor. From this it is easy to conclude that R is a
one-dimensional regular local ring.

Suppose that every element in M is a zero-divisor. It
then follows from Lemma 4 that n = 0. and this is covered by the
preceding paragraph.

Let k be the Krull dimension of R.  We shall argue by in-
duction on k. If k = 0. every clement of M is a zero-divisor
(in fact even nilpotent); but this case we have alrecady disposed of.
We assume k> 0. We may of course further assume that M
contains a non-zero-divisor. It is known that then there exists a
non-zecro-divisor x which is in M but not in MZ. Write
R”= = R/(x), and let M = M/(x) be the maximal ideal of the local
ring R*. The Krull dinyension of R* is k-1,

It is a fact that M is isomorphic to a direcct summand of
M/xM. Supposing that this is known, let us sce how the proofl con-
cludes. By Thcm;kcm 8, dR*(M/xM)S_ dR(M) and hance is finite.
Therefore dR (M » is finite. By Theorem 2, dR(M ) = dR(M/(x))
=n. (Note that (x) is projective, and that the ambiguous casc
of Theorem 2 does not arise since we hawe alrcady taken care of
the case n=0.) By Thecorem 3, dR*(M ) = n-1; observe that it
is vital 10 know somechow that dR*(M*) is finite. By induction on
k, we have that R* is an n-dimensional regular local ring. From

this it follows that R is an (n+i)-dimensional regular local ring.
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. ~ ol . . .
It remains to supply the proof that M. is isomorphic 10 a

direcet summand of M/xM, Since x { MZ, we may pick a mini-
mal base of M having the form x, ISLRRETR Let

S=xM+ (yl, . ..,yr). It is evident that S t (x) = M. Further,

S r\(x) =xM. For suppose z ¢ ${){x), Then

7= ax—bly1 + ot bryr tcx (a’bi ¢ R, ce M), and

ax - Z b,ly.le M2, Since {x,yi} is a minimal base of M it fol-
lows that a lies in M, and thus S (x) = xM. So M/xM is
the direct sum of (x)/xM and S/xM, and this implies that M/{x)
is isomorphic o a direct summand of M/xM, namely S/xM,

This concludes the proof of Theorem 13.

Let R be a regular local ring, P a prime ideal in R.
As is customary we write Rp instead of RS , where S is the
set-theoretic complement of P. Putting together Theorems 11,

12, and 13 we have:

TIIEOREM 14.  For any prime ideal P in a regular local

ring R. the local ring R is again regular.
g p p=3 p=3

11. Injective modules

In this scction and the next three we develop the dual theory
of injective dimension, ahd as a last step we apply it to obliterate
the distinction between D and D,

Let us begin by recalling that a module Q is injective il
whenever modules A CB and a homomorphism 1 A = Q arc
given, [ can be extended o B.

It is important to know that injectivity can be tested by just

examining the casec where B is the given ring.

LEMMA 5. Let Q be a piven R-module. Supposc that any

homomorphism of a left ideal 1 into Q can be extended from 1

to R. Then Q is injective.
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See Cartan-Lilenberg, page 8, Theorem 3.2,
Next we have the dual of Theorem i, The proof is dual and

is left to the reader.
TIHIEOREM 15. Supposec the sequences
0+A—+Q—=C~=0
0-tA . Q'=Ct .0

arc cxact, and Q,Q! arec injective. Then Q® C!' is isomorphic

o QAeC.

This suggests defining two modules to be injectively equiva-

lentif they become isomorphic when suitable injective dircet
summands are added 1o cach. The injective equivalence class of

C in Theorem 15 is independent of the choice of the resolution

and we write & A for it.

In order to build injective resolutions we need:

LEMMA 6. Any module can be embedded in an injective

module.

A proof by Baer appears on page 9 of Cartan-Eilenberg:
a proof by Eckmann and Schopf is sketched on page 31.

We now define thé injective dimension of A 1o be the
smallest n such that uQnA = 0. o il there is no such n. We
introduce no symbol for injective dimension. For the global
injective dimension of R (the sup of the injective dimensions
of all R-modules) no symbol is neceded, for it is equal to the
global projective dimension. In order to prove this we must
study L[Ext a little bit.

We conclude this scction by noting the other characteriza-
tion of injective modules. Sce Cartan-LEilenberg page 10. Lemma
3.4. (Remark: they use Lemma 6 but this can be avoided. Sup-

pose Q has the universal direct summand property, let A B,
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and supposec we are given 1A = Q. Form C = (B & Q)/D where
D = all {a, f(a)). We get a one-to-one map of Q into C, and its

splitting extends f 1o B, Compare the proof of Theorem 16, )

LEMMA 7. A module is injective if and only if it has the

property of being a direct summand of any module containing it.

12. The group of homomorphisms

For any modules A and BB we write Hom(A, B) for the

set of homomorphisms from A 10 [ made into an abelian group
under the natural operation of addition. When R is commutative,
Hom(A, B) admits the structure of an R-module.

Given modules A,B,C and a map A - B there are natural

induced maps Hom(C,A) = Hom(C, B) and Hom(B, C) = Hom(4, C)
LEMMA 8. If 0+ A B - C 1is exact, then
0  Hom(D, A) = Hom(D, B) = Hom(D, C)

is exact. If A-=+-B—~C 0 jg exact, then
Hom(A,D) « Hom({B, D) + Hom(C, D) < 0

is exact.

Sce Cartan-Lilenberg, page 26, Proposition 4.4.

13. The vanishing of Ext

We shall have no neced to assign a meaning to [Ext itself:

we shall only speak of its vanishing.

DEFINITION. Let A.B be given modules. We say
Ext(A,B) = 0 if the following is truc: whenever a modute C con-

tains B with C/B —A then B is a direct summand of C.
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TIIEOREM 16. Let C.D be given modules.  The following

three statements arc equivalent:

(1) Ext(C,D) = 0.

g .
(2) For any ecxact sequence 0 = A = = C =0 the sequence

(%) 0 «Hom(A, D) « Hom(B, D)+ Hom(C,D)+ 0

is exact.

(3) For a single exact 0 *A - B - C -0 with B prgjec-

tive, (*) is exact.

Proof. (1) ={2). Lemma & covers the exactness of (¥)
except at the term Hom(A, D). So: we must prove that
Hom(B,D) - Hom(A,D) is onto, i.e., we must show that any
homomorphism h: A =) can be extended to a homomorphism
B - D. (Weare thinking of A as being simply a submodule of B.)
Let E=D&B. Let T be the submodule of E consisting of all

(-h(a),a), ae¢ A. Write F = E/T, We have the sequence
r
(%) 0=DEF>C=o0.

Ilere p(d) is the class of (d.0) mod T, and r(d,b) = g(b), this
being independent of the choice of (d.b) within its class mod T.
It is routine 1o check that (¥%) is exact. It follows from our hypo-
thesis (1) that there exists a map s:F = D with sp = identity.

Define a map B =D in 3 steps

s
B=~E-F - D,
the first being b - {0,b) and the sccond the natural homomorphism.
One verifies that this map coincides with h when restricted to A.
(2) == (3). Trivial.
3) = (1). L.et I be a module with submodule D, E/D 2 C.

We must prove that D is a direct summand of E. In the diagram
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—>B
g l
—>E

the map f ariscs since B is projective.  When restricted to A,

0—> A ——> L>

C —3
—>D—> C—o0

—_—

one casily sces that [ maps into D. gyr hypothesis (3) implies

that {* A =+ D can be extended to g B = D. Now | define - E =+ D

as foltows: pick b e B with r(b) = s(e), and sct t(e) = c tg(b) - £(b).
We have t(e) ¢ D since sf = r, sothat st(e) = s(e) - sf(b) = 0. If
instead of b we take b1 with r(bi) = S(e), then g = b1 ¢ A and

g - f vanishes on b - bi; thus t is well-deflined.  Qipce g and f
coincide on A. t is the identity on D. Ilence D is a dircct sum-

mandofl [.

The gist of Theorem 16 is worth restating: to tell whether

Ext(A, B) = 0. take a projective resolution of A:

0+K=+P—+A=90
proj.

and determine whether every homomorphism of K into B can be
extended to P; the decision is independent of the choice of the
resolution.

It is immediate {from the definitions that Ext(A, B) vanishes
for all B ifand only i’ A is projective and vanishes for all A
if and only if B is injective. DBut with the aid of Lemma 5 this

latter result can be usefully strengthened:

TIIEOREM 17. Let Q be an R-module such that

Ext(R/I, Q) = 0 for cvery left ideal | jn R. Then Q is injective.

The dual of Theorem 16 admits a dual proof that we leave to

the rcader.
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THEOREM 18. Let C,D be given modules.  The following,

three statements are equivalent.

(1) Ext(C,D) = 0.

(2) For any exact sequence 0 =D = A = B =0 the sequence

(%) 0 = Hom(C, D) = Hom(C,A) = Hom(C, B) = 0

is exact.

(3) Lor a single exact sequence 0 =D = A =B =0 wih

A injective, {(¥%) is cxact.

14. Injectlive dimension

It is cevident that the vanishing of Ext(A, B) depends only on
the projective equivalence class of A and the injective cequivalence
class of B. Thus we may meaningfully speak of the vanishing of
Ext( RA. B)Y or Ext(A,j. B). It turns out that these (wo statements

are cquivalent.

THEOREM 19, For any modules A and B, Ext( #A,B)=0
if and only if Ext(A, JB) = ().

Proof. We shall suppose Ext(R A, B) =0 and prove
Ext(A,&B) = 0; the other half of the proof is dual.
Take a projective resolution of A and an injective resolu-

tion of B:
projective

0—> K

fl N 111
0<—C<E— Q<— B<—0
injective

A—=>0

We must prove Ext(A,C) = 0. By Theorem 16 this means that we
must take any [:K = C and prove that [ can be extended to P.

By Theorem 18, the hypothesis Ext(K, B) = 0 implics (hat (here
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exists g:K =+ Q with rg=1[ Since Q is injective, g can be

extended o h: P+ Q, Then rh is the desired map of P into C.

TIHEOREM 20.  The projective and injective global dimen-

sions of any ring arc cqual.

Proof. Let n be the projective global dimension. We
shall show that the injective global dimension is at most ny  the
other half is dual. The case n = @ being rivial, we assume n
finite. We must show jnB =0 forany B, i.e., Ext(A, =gnB) =0
for any A.DB, i.e., (by n successive applications of Theorem 19)

Ext( ﬁnA, B) = 0. which is truc by hypothesis.
Al last we supply the proof that D and D coincide.

THEOREM 21 The projective global dimension of any ring

R _is the sup of d(A) taken over all cyclic modules A,

n
Proof. Given ﬂ_nR/I = (0 for any 1 wec must prove K'c=o
for any module €. That is, we must show Ext( ﬁnc, BY=0 for
0. i, e., jnB injective, i.e.,

0. ie., Ext{ R"R/I,B)=0 ,

i

any C,B, i.e., Ext(C,j-nB)
(Theorem 18) Ext(R/I, JnB)

which is true by hypothesis.
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NOTES

Page 9. To the three classical ruler and compass problems
a fourth should be added: the construction by ruler and compass of
a regular polygon of n sides. This is equivalent to asking whether
the number u = cos(2n/n) is a constructible real number. Write

= eZﬂi/n, a primitive n-th root of unity. Then £ t s_l =2u., It
follows readily that the degree of € over the field Q of rational
numbers is twice the degree of u over Q. Letus write g(n) for
the degree of € over Q. Then we sce that a necessary condition
for cos(2m/n) 1o be constructible is that g(n) is a power of 2.
In fact, this condition is also sufficient, but a prool at this point is
not casily given, so we delay it till later (sce the section of these
notes relerring to page 33).

What is g{n)? The answer is known; g(n) is equal to the
Fuler function ¢(n), the number of residue classes mod n which
are prime to n. This fact (which can be restated as the irre-
ducibility of the so-called cyclotomic polynomial) is somewhat
tricky to prove and we shall not discuss the general proofl, which
can be found in several of the available treatises on modern alge-
bra. Ilowever, the case where n is a prime (say p) is compara-
tively casy. The problem is to prove that

- =xp-1+xp-2 t .. extl
is irreducible over the ficld of rational numbers. We set x = y +14,

and [ind that the polynomial becomes
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p
Ly#8)7-1 o opety P24 (Py Py

Y 2
In this new polynomial the highest coefficient is 1, every subsequent
cocefficient is divisible by p, and the constant term is not divisible
by pZ. By Eisenstein's criterion, the polynomial is irreducible.
(This discussion is borrowed from Birkhoff and Mac Lane.,)

So now we have to study a problem in number theory: given an
odd prime p, when is it true that p-1 is a power of 2, say 2n ?
We summarize the facts. The numbcr' n in turn has to be a power
of 2, say 21. The numbers Fl = l+22’ arc called Fermat num-
bers, honoring Fermat, who thought they were all prime.  The first
five arc 3,5,17,257, and 65537 (correspondingto 0 <1< 4), and
arc indced prime. But for t 2 5. Fl has turned out to be composite
in every case which has been decided. For a survey of the status
of the Fermat numbers, sce Wrathall [49]) (these numbers refer to
the bibliography at the end of the notes). The factorization of F7
was accomplished very recently [10], although F7 had been proved
to be composite by Morehead and Western in 1905.

It is a simple matter to’extend the investigation‘to composite
n. T turns out that ¢{n) is a power of 2 if and only il n has the

following form: a power of 2 multiplied by a product of distinct

Fermat primes.

Page 13. There is a very nice theorem, due to Barbilian
[1]), which in a way rounds out the circle of ideas presented up to
this point. Krull [9] simplified the proof and developed the theory
further.

IHere is the theorem. Let KC L be ficlds and let G be the

Galois group of L/K. Assume that the Galois correspondence be-

tween subgroups of G and intermediate fields is absolutely perfect.

Then L must be finite-dimensional over K (and of course normal).
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Suppose that instead of requiring a perfect correspondence
between all intermediate fields and all subgroups, we yield some
ground by assuming that the Galois group is topologized and that
only closed subgroups are cligible.  Then in the case of normal
algebraic extensions we do again get a perfect correspondence, as
is mentioned on page 77. With transcendental extensions allowed,
new problems arise. They are studied in [17], where carlier
references are also given.

Page 33. Right after Lemma 3 is a convenient place to break
in and complete the discussion of ruler and compass construction of
regular polygons. In the notes on page 9 we proved the "only il"
portion of the following theorem. Now it is quite routine to supply

the "il" part.

TIIEOREM. Let p be an odd prime. Then a regular poly-

gon of p sides is constructible by ruler and compass il and only if

p is a Fermat prime.

Granted the irreducibility of the cyclotomic polynomial, one

gets the complete result.

TIHEOREM. A regular polygon of n sides is constructible

by ruler and compass il and only il n has the following form:

a power of 2 multiplied by a product of distinct Fermat primes.

The following additional information is worth recording. Let
Q be the field of rational numbers, let u be a real algebraic num-
ber, and let K be a normal closure of Q(u) over Q. Then:

u is constructible by ruler and compass il and only if [K: Q] is a

power of 2. To prove this, one needs routine arguments com-
bined with the following theorem from group theory: a finite group

with order a power of 2 has a non-trivial center.
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Pages 40-42. Theorems 31 and 33 are special cases of a
broader theory. In the text, this broader theory was not

developed since applications were envisaged only [or Theorems 31
and 33.

Ilere is a sketeh of the more general results. Let L be
normal and [inite-dimensional over K, with Galois group G. Then
G acts on two abelian groups: Lt, the additive group of L, and L ,
the multiplicative group of non-zero clements in L. Now any time
a group G acts on an abelian group A. certain cohomology groups
H™(G,A) arec definable. Theorems 31 and 33 say that I (G, L%)
and Ill((,},L*) vanish if G is cyclic. Actually, Ill((}.L*)= 0 flor
any G and Hn(G,Lt) =0 forany G and any n 2 1. The coho-
mology group llz((}. Lﬂf) does not in general vanish; it connects

with the Brauer group of K. Two references [or further reading

are Serre [14], [15].

Page 71. The idea in Theorem 63 has been developed further
by Isaacs [5].

v

Page 102. In collaboration with Adjan, Novikov has now
published [full details of his work on the Burnside problem. In
three papers [14] they prove that the non-trivial Burnside groups
with odd exponent 2 4381 arc infinite. In a further paper [12] they

show that the groups in question are not even [initely presented.

Page 123. The problem about the coeflicient of the unit ele-
ment in an idempotent has been ingeniously resolved in the affirma-
tive by A. Zalessky (letter to the author). Ile also proves the
analogous result in characteristic p; in [act, he does it [irst for

characteristic p and then succeeds in making a reduction mod p.
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[Let me mention at thig point the publication of Passman's com-

prehensive monograph [13] on inlinite-dimensional group algebras.

Page 161. The question On central polynomials has been

answered alfirmatively by Formanck [4],

Page 166. The Queen Mary College notes are now out of print.

In nearly all respects, they have been superseded by [8].

Page 171. The paper [6] contains [ull details on the result

announced by Jategaonkar.

Page 172. The (irst change of rings theorem (Theorem 3) has
received some attention in the literature. Pertinent reflerences are
[2],{3],[7]), and [16]. Injective analogues of the three change of

rings theorems are established in Section 4-4 ol [8].

Page 178. The proofl that begins in the second last paragraph

(it is due to Bass) can be replaced by the following argument, which

proves a little more.

PROPOSITION. Let x be a central element in the Jacobson

radical of R Suppose that x is a non-zero-divisor on a [(initely

*
psesented R-module A, and that A/xA is R -[ree, where
R = R/(x), Then A is R-[ree.

Proofl. Again take v ,v, o be abasis of A/xA, lilt A
1

RERL
N\
to u.e¢ A. and obscerve a la Nakayama that the u's span A. Re-

solve A over R:

0+-K—-F—+A-—+0,

Ilere F is [ree on Zyseena?, and 7z, mapsto u,_ If Ttz ¢ K,
* o B i it* 171
then 1. v. = 0, where t* 1is the image of li in R . It follows

101
that t,ik = (. whence t. = xs.. We deduce xZ s,u, = 0. Since x is
1 1 11
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a non-zcro-divisoron A. wc have Z s,u, =0 and Z s,2,¢ K. In
short, K = xK, Now K is finitely gencerated since A has been
assumed to be finitely presented. By a sccond application of

Nakayama, K = 0. as desired.

For another way of proving Theorem 9, sce the paper [18] by

Strooker.

Pages 183-5. For the possible convenience of some readers
I will indicate (by thcorem number) where some needed facts can be
found in [8], (Of course they are in lots of other books as well.)

On page 183, R is given as a regular local ring. Then Rois
a domain (Thcorem 164). With x in M- MZ, R/(X) is rcgular
(Theorem 161) and {n-1)-dimensional (Thcorem 159).

On page 184, granted that the maximal ideal M docs not con-

2
sist of zcro-divisors, we neced a non-zero-divisor x in M—M

This is provided by Theorem 83, in conjunction with Thecorem 80.
Finally, granted that R/(x) is a n-dimensional regular local ring,
we usce Theorems 162 and 84 to deduce that R is an (n+1)-dimen-

. . #
sional regular local ring.
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Adjoint, 142
Algebra, 87
algebraic, 88
Algebraic
algebra, 88
closure, 74-6
clement, 3
extension, 5
Annihilator, 81, 4148
Augmentation ideal, 149
Burnside's
problem, 101-2
theorem, 99
Centroid, 148
Chain, 132
Chain condition
ascending, 132-4
descending, 87, 132-4, 155, 171
Chinese remainder theorem, 108-9
Closed
field or group, 12
subspace, 140
Closure, 140
algebraic, 74-6
normal, 29

split, 29
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Completely reducible, 120
Composition series, 133
Constructible number, 8-9
Dedekind ring, 171
Degree
of ficld extension, 2
of element, 5
Density theorem, 95
Dimension, 2
projective, 168
injective, 186
global, 171,191
Discriminant, 50
Dual
vector spaces, 139
full, 139
Endomorphism, 94
Enveloping ring, 147
reduced, 149
[Equivalence
projective, 168
injective, 186
Ext, 187
Extendible automorphism, 21
Extension
algebraic, 5
infinite algebraic, 74
radical, 32,60-73
simple, 48-9

transcendental, 5
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Ficld
algebraically closed, 668
finite, 45-7
ordered, 6648, 73
perfect, 58
splitting, 23
tower of, 2
Functional, 139
Galois
group, 10
theory, 16
Group
algebra, 115,174
locally finite, 101
torsion, 101
ITlilbert's theorem 90, 42
ITopkins' theorem, 132-4
Idcal
maximal, 83, 94
nilpotent, 88
primitive, 84
radical, 86
regular, 83-4
topologically nil, §9
Identity
polynomial, 156-161
standard, 157,160
Injective
dimension, 186
equivalence, 186

module, 185



Inner product, 139
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Kolchin's theorem, 100,136-7

Kurosch's problem, 102,

160-1

Levitzki's theorem, 135-6

Localization, 181
Locally finite
algebraic, 102
group, 104
Maximal
ideal, 83,91
subficld, 154-6
Module, 81

completely reducible, 120

faithful, 82
injective, 185
irreducible, 82
projective, 165,167
unitary, 81,133
Nilpotent
group, 138
ideal, 88
topologically, 89
Norm, 39
Normal, 12
Polynomial
identity, 157
ring, 174
Primitive
ring, 82
ideal, &3

with minimal ideal,

139-146



Projective

module, 165,167

dimension, 168
Purely inseparable, 55
Quasi-regular, 84-5
Radical

ideal, 86

of a ring, 87,178

ring, 85
Regular
ideal, 83

local ring, 183-5
representation, 116
ring, 110
Related idempotents, 4127
Representation
of algebra, 121
of group, 121
Resolvent cubic, 52
Ring
central simple, 149
Dedekind, 171
local, 182
nil, 85
polynomial, 174
primitive, 82,149
radical, 85
regular local, 183-5
Regular, 4140
semi-simple, 87,4171
simple, 91, 147
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Ruler and compass constructions, 8-9
SBI, 124

Schanuel's lemma, 167

Schur's lemma, 94

Separable, 26,55

Stable, 19

Tensor product, 150

Trace, 39,99

Transitive, 51, 52, 95

Unipotent, 100, 136-8

Wedderburn principal theorem, 124-130



