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PREFACE TO TilE SECO);D EDITIO);

In the second (1970) impression of the first edition, some

typographical slips were corrected. Still more arc corrected in

the present second edition, and I trust the process is converging.

I have also added a new section entitled ");otes", and I hope these

miscellaneous comments will he useful to readers.

I. Kaplansky

Chicago
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PREFACE TO TIlE FIRST EDITIO:-.l

These lecture notes combine three items previously available

from Chicago's Department of Mathematics: Theory of Fields,

:-.l otes on Ring Theory, and IIomologieal Dimension of Rings and

Modules. I hope the material will be useful to the mathematical

community and more convenient in the new format.

A number of minor changes have been made; these arc de-

scribed in the introductions that precede the three sections.

One point should be noted: the theorems arc numbered eon-

seeutively within each section. Since there arc no cross-references

between the sections, no confusion should result.

I trust the reader will not mind a lack of complete consistency,

e. g., in Part II the modules a re right and the mappings a re placed:

on the right. while in Part III both get switched to the left.. :.~,

I am very grateful to Mr. Fred Flowers for a fine typing Jell
and even more for the many excellent suggestions he made dur.

the typing.

I. Kaplansky

('hicago

x
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PART I. FIELDS

Introduction

Thcsc notcs on ficlds wcrc writtcn in thc carly 1960's

after I had lectured several times on Galois theory. One

objective I had in mind was to carry several topics through to a

reasonable depth; another was to indicate how one actually goes

about computing field degrees and Galois groups.

The foundation of the subject (i.e. the mapping from sub­

fields to subgroups and vice versa) is set up in the context of an

absolutely general pair of fields. In addition to the clarification

that normally accompanies such a generalization. there are use­

ful applications: to infinite algebraic extensions (§13), and to the

Galois theory of differential equations (see my Introduction to

Differential Algebra. IIermann. 1957). There is also a logical

simplicity to the procedure: everything hinges on a pair of

estimates of field degrees and subgroup indices. One might de­

scribe it as a further step in the Dedekind-Artin linearization

of Galois theory.
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1. Field Extensions

Let K he any field and L a field containing K. Then L

can he thought of as a vector space over K. The dimension of this

vector space is called the dimension (or degree) of Lover K and

written lL :KI· We say that L is finite-dimensional or infinite­

dimensional over K according as lL :KJ is finite or infinite.

Suppose we have a "tower" of three fields KC L C M.

Then three dimensions can he formed and they arc connected hy a

useful relation.

TIIEOREM I. Let K, L, M he fields with K C L C M .

.::r:.h.= [M: KJ is finite ifand only if hoth (M: LJ and lL:KJ are
finite and in that case lM:KJ = lM:LJlL:KJ.

Prooe. Suppose first that lM:KJ IS finite. Since L is a

suhspace of M (as a vector space over K), lL :KI is also finite.

Any finite set that spans Mover K, for instance a hasis, will

also span Mover L; hence lM:LJ is also finite.

To complete the proof of the theorem we assume that

lL:KJ = m, lM:LJ = n and we prove that lM:KJ is finite and

equals mn. Let u
f

' ••• ,un he a hasis of Mover Land

a has is of Lover K. We claim that the mn ele-

men t s u.v . ( i = I, ... _n ;.i = I .... , m) fo r m a has is of M 0 vcr K.
1 J

We must show (I )they span M. (2) they arc linearly independent

over K.

(I) Let z he any clement of M. We can write z =1: h.u.
1 1

can in turn he written h. = Z; c .. v. with
lJ J

last sum heing overz = Z; C •. u.v. , this
lJ 1 J

(i- I, ... ,n;.i = I, ... ,m).iand

with b. in L. Each h.
1

in K. This yieldsc ..
lJ

hoth

Write bi=Z;c. v.
lj J

IS in K and thec ..
lJ

c .. = O.
1J

(2) Suppose 1: c ..u.v. = 0 where each
1.1 1 .1

sum IS over hoth i and j. We must show
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Then b. IS 111 I. and L:biui - O. Since the u*s arc linearly inde­
1

pendent over L ~ each b
i

is o. i. e. J L cijvj = o. Since the v's

arc linearly independent over K, we conclude that e
ij

=O.

Let M he any field and S a suhset of M. There is clearly

a unique smallest suhfield of M containing S. namely the intersec­

tion of all suhfields of M which contain S. We arc especially

interested in this construction in the case where S consists of a

suhfield K of M together with one additional clement u in M.

We then write K(u) for the field in question.

We distinguish two cases.

Case I. There exists no polynomial [ with eoefTieients 111 K

(other than the polynomial identically zero) such that f(u)" O. In

this case we say that u is transcendental over K. It is evident

that K(u) is the field of all rational functions in u (quotients of

polynomials in u) with coefficients in K, where u hehaves exactly

like an indeterminate over K.

Case n. There docs exist a polynomial f with eoefTieients

111 K such that feu) =O. In this case we say that u is 'llgcbqic

over K. The main facts concerning K(u) arc given in the follow-

ing theorem.

TIIEOREM 2. Let K he a field. u an clement of a larger

field. and suppose that u is algehraic oyer K. Let r be '1 monic

polynomial with coefTicients in K oC !c'lst degree SIIch th'p feu) =0,

and let this minimal degree he n. Then:

(a) IS unique.

(h) J S irr"dllcihl" oyer K,
2 n- I

(c) l,u.u , ....u form a vector space has is of K(u)

over K,

(d) lK(u) :K I =n.

(c) A polynomial g with coe fTicients 111 K

if and only if g is a DJ!lltiple oC [ .
s,pisCies g(u) =0
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Proof. (a) If f IS another monte polynomial of degree n

satisfying I' (u) '" 0 write f = £ - £ . Then f (u) ,. 0 and I' has, 1.0 1 1 .
degree less than n. If 1'1 f. O. this contradicts our minimal choice

of [ (of course a harmless multiplication hy an clement of K will

make 1'1 monic). lIenee f I = O. [= f
o

(h) If t~" f
o

f
1

where f I f
1

arc polynomials of lower de­

gree with coefficients in K. then either 1'0 or £1 has u as a root

and again we have contradicted the minimal choice of f.

(c) The existence of a linear relation with coefficients In K

among 1 I U , "', un-I implies g(u) =0 with 9 a polynomial of degree

less than n. I1ence I,u.... ,un-I arc linearly independent over K.

We must further show that they span K(u). Write T for the vector

suhspace of K(u) spanned hy I,u . ••• •u n - I If we show that T is

a field it will t()llow that T = K(u). First we note that T contains
k

every power u of u. This is true at least up to k,. n-I. Suppose

it is true for k-l:

(1) u
k

-
1

'" a + a u + ... t a u
n

-
l

o n- I

as a consequence of the equation f(u) = O. We conclude

T. It is now clear that T is a ring (indeed an integral

Multiply (I) hy u
n-I

1 I U , ••• ,u
k

that u IS In

n
and recall that u is a linear comhination of

domain since it is contained in the field K(u)). We must show that

any non-zero clement z in T has an inverse in T. We can write

z = h( u) where h is a non-zero polynomial of degree Ie s s than n.

Since f is irreducihle and h has degree smaller than the degree

of r. the greatest common divisor of I' and h must he 1_ I1ence

there exist polynomials rand s such that rf t sh = 1. Set the

variahle equal to u in this equation. The result is h(u)s(u) = 1

and thus s ( -. bs the desired inverse of z = h(u).

(d) IS an immediate corollary of (c).

(c) If g is not a multiple of I' then (since [ is irreducihle

the greatest common divisor of I' and g is 1, and there exist ply
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nomials rand s with rf 1: sg = I. Setting the variahle equal to u

yields a contradiction.

We shall say that a field L containing K is alg\'braj\, over

K if every clement of Lis algehraie over K: otherwise we say

that L is transcendental over K. If L is a finite-dimensional

extension of K it is ohvious that L is algehraie over K: if

rL:K 1 = nand u E L then any n t I powers of u arc linearly

dependent over K and this yields a polynomial satisfied hy u.

is possihle for infinite-dimensional extensions of a field K to he

algehraie over K.

We shall often deserihe K(u) as the field ohtained hy ad­

JOining u to K: note that so far such adjunction is heing discussed

only when u is handed to us as an clement Of a larger field con­

taining K. The dimension of K(u) over K will he called the

degree of u over K, and the polynomial of Theorem 2.2 will

he called the irredueihle polynomial for [; Over K. If, IS an

explicitly given clement over an explicit field (usually the rational

numhers) the prohlem of finding the degree of lJ can in principle

he solved hy locating the irredueihle polynomial for u. Occasion-

ally there arc suhtler methods that work, and some of these will

he developed later in this chapter.

Let Land M he two suhfields of a field N. There is a

unique smallest suhfield of "I containing Land M. namely the

intersection of all suhfields containing Land \iI. We write

LV M for this field. :\"ote that Lv M contains the set-theoretic

union of Land M hut it is usually larger (in fact, L u \iI is the

set-theoretic union only in the trivial case where one of L, M con­

tains the other). If the dimensions of Land M over an underlying

field K arc known we can get some partial information on the di­

mensionof L u Mover K.
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Let L. \II he suhfields of a field ~ and sup-

pose that L and \II hoth contain the field K. Write lI.: K I = m.

lM: Kj = n. (LV M: Kj = t.

(a) t is finite iCand only if hoth m and n arc finite.

(h) In that case t is a multiple of m and of n. and t s,mn.

(c) If m and n arc relatively prime. t = mn.

Prooe. If t is finite. so arc m and n. S1l1ee Land M

arc suhfields of L U M. We assume henceforth that m and narc

finite. We shall prove t is finite and at most mn hy induction

on n. The case n x (M = K) heing trivial. we assume n > l.

Let u he an clement in M hut not in K. Write r for the degree

of u over K and s for the degree of u over L. We have sS r.

for the irredueihle polynomial for u over K is a multiple of the

irredueihle polynomial for u over L. By Theorem I. lL(u):Kj

=ms and hence hy Theorem 1 again. lL(u):K(u)j =ms/r. Also

lM:K(u)j = nlr hy Theorem l. We apply our inductive assump­

tion to the fields L(u) and Mover K(u). and deduce
2

lL(u)U M :K(u)j ~ mnslr ~ mn/r. But L(u) U M evidently is

the same field as L U M. lIenee finally

[L U M:K I= [L V M :K(u)jlK(u) :KI .:;; (mn/r)r = mn.

We have now proved parts (a) and (h) except for the state-

ment that m and n divide t; hut this is immediate from

Theorem 1. Part (c) is an easy purely numher-theoretie conse­

quence of (h).

The union M V N of two fields assumes a more explicit

form when M and "I have the form M = K(u). ~ = K(v). We then

write Me "I = K(u.v). It is useful to ohserve that K(u.v) may he

thought of in three ways: •
(I) the smallest suhfield (of the given larger field) containing K. u.

and v; (2) the result of adjoining v to K(u); (3) the result of ad-

joining u to K(v).
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Exercises

1. If lL:KJ IS prime. prove that there arc no fields

properly het ween K and L.

2. If the degree of u over K IS odd. prove that K(u)-K(u2
n

3. Let u he a root of the irredueihle polynomial x - a

Over K and suppose that m divides n. Prove that the degree of

urn Over K is n/m. What is the irredueihle polynomial for u m

.C

Over K'!

4. Let L he a field algehraie over K and T an integral

domain containing K and contained in L. Prove that T IS a field.

5. Let L. YI he two fields lying hetween K and~. Let

T he the set of all sums ~ yizi for Y
i

e L. z. e YI.

(a) Prove that T is an integral domain.

(h) Prove that L U YI is the quotient field of T.

(c) If Land Marc algehraie over K then T = L U YI and

is algehraie over K.

6. Let u and v he algehraie over K. of degrees m and n

respectively. Show that u has degree mover K(v) if and only

if v has degree n over K(u). and that hoth statements hold if m

and n arc relatively prime.

7. Suppose that M and ~ arc finite-dimensional over K

and 1M uN: K I = lM:KJl~:KJ. Prove that MA I\' = K. Prove that

the converse holds if 1M: KJ or l~: K] is 2. Give an example where

M f'I "I = K. [YI:Kl = ["I:Kl = 3. hut [M u N: K] < 9. (Ilint: take a

real and a non-real euhe root of 2).
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2. Ruler and compass constructions

We shall indicate hriefly in this section how Theorem I

suffices to show the impossihility of the classical ruler and com­

pass constructions.

To do this, we must translate the geometric prohlem into

algehra. We take the point of view of analytic geometry, lahelling

the points of the Euclidean plane with ordered pairs of real num­

hers. We take it as our starting point that all points with integral

coordinates arc in our possession. We arc then allowed to per­

form ruler and compass constructions to acquire new points. Any

point ohtainahle this way we may call eonstruetihle. We call the

real numher a eonstruetihle if the point (a,O) is eonstruetihle.

Evidently (a, h) is a eonstruetihle point if and only if a and hare

eonstruetihle numhers.

The ruler and compass constructions that arc permitted may

he set forth carefully as t()l!ows:

(I) Given four distinct points A, H, C. D such that AH and

CD arc distinct non-parallel lines we arc allowed to acquire the

point of intersection of AH and CD.

(2) Given distinct points A,H and distinct points C,D such

that the circle r with center A and radius AH meets CD, we arc

allowed to acquire the points of intersection of r and CD. (The

case where two intersecting circles arc drawn can he reduced to (1)

and (2). )

:\"ow suppose the coordinates of the points A, H, C.D lie in a

suhfield K of the field of real numhers. Then simple arguments

from analytic geometry show that in case (I )the coordinates of the

new point lie in K, while in case (2) the coordinates of the new

point lie either in K or in K(.Ja.) where a is a positive numher

in K. It follows that any eonstruetihle numher u lies in a suh-
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field K
n

of the real numhers which IS the end product of a series

of adjunctions

Rationals = K C K
1

C ...C K° n

with each K. equal to K. 1(-ra:), a. a positive numher in Ki-1
1 1- ~

By iterated usc of Theorem \. lK : K 1 is a power of 2 ; and
n °

then hy another application of Theorem I. rK(u): K 1 is a power

of 2. We have proved

TllEOREM 4. Any eonstruetihle real numher is algehraie

Over the rational numhers. and its degree over the rational num­

hers is a power of two.

It is now a simple matter to demolish the three classical

prohlems on ruler and compass constructions.

(I) Squaring the circle. This means constructing 1T,

Since 'T1' is not even algehraie over the rational numhers (this IS a

(2) Duplication of the euhe.

hard theorem!) the question of degree docs not even enter.
1/3

The numher 2 (the real

Since x3 - 2 is the irredue-euhe root of 2) is to he constructed.

ihle polynomial for 2
1

/
3

, 2
1

/
3

has degree 3 over the rationals

and is not eonstruetihle.

(3) Trisection of angles. Some angles (c. g. 90°) can he

trisected hy ruler and compass. We exhihit one angle. 60°, that

cannot he trisected hy ruler and compass. The question is equiva­

lent to the eonstruetihility of cos 20° 0 r u" 2 cos 20°. From the

trigonometric identity cos 30 = 4 eos
3 e - 3 cos e we deduce

u 3 • 3u - I" O. Since the polynomial, x3 - 3x - I is irredueihle

over the rational numhers. it t(lilows that u has degree 3 and is

not eonstruetihle.
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3. Foundations of Galois Theory

It was Galois's remarkahle discovery that many questions

concerning a field arc hest studied hy transforming them into group­

theoretical questions in the group of automorphisms of the field.

Csually we arc interested in the structure of a field M relative to

a suhfield K and so it is natural to form the relative group of

automorphisms, consisting of those automorphisms of M leaving

every clement of K fixed. We shall mostly deal with the case

where M is finite-dimensional over K, hut it is interesting and

enlightening to push as far as possihle the general case where K

and Marc ahsolutely arhitrary.

DEFl~ITlO~. Let M he any field, K any suhfield. The

Galois group of Mover K is the group of all automorphisms of

M that leave every clement of K fixed (in hrief: automorphisms

of :vI/K).

In this definition we arc taking for granted the evident fact

that the automorphisms of M/K do form a group (a suhgroup of

the full group of automorphisms of M).

Examples.

identity.

1. If M = K. the Galois group consists just of the

2. K = reals, :vi = complexes. The Galois group IS of order

two, consisting of the identity and complex conjugation.

3. K = rationals, M'" K( ..[2). Again the Galois group IS of

order two.

4. K = rationals, M = K(u). u the real euhe root of 2. An

automorphism of M is determined hy what it docs to u, and u

must he sent into some root of x 3 - 2. But the other two roots of

x 3 - 2 arc non-real, and M consists just of real numhers. lIenee

the Galois group of :vI/K is the identity. This simple example
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shows that the Galois group of \iI/K can he the identity even when

M rK. Sec exercise 7 for an example where M is "much higger

than K and still the Galois group is the identity.

Let M he any field, K any suhfield, G the Galois group of

:vI over K. We proceed to set up the fundamental correspondence

hetween suhgroups of G and fields lying hetween K and M. Let

L he any intermediate field. We define L' (manifestly a suhgroup

of G) to he the set of automorphisms of M leaving every clement

of L fixed. ~ote that L' IS simply the Galois group of \iI over L.

Let II he any suhgroup of G. We define If (manifestly a field

hetween K and \iI) to he the set of all clements of M left fixed hy

every automorphism in II. It is natural to call II' the fixed suh­

field of M under II. Pictures such as in Figure I arc helpful in

visualizing the two maps.

\iI \iI

U n U n
L > L' II' < II

U n U n
K G K G

Figure 1

IIere (and throughout) we arc simply writing I for the identity suh-

group of G.

Let us tryout the priming maps on the four corners of the dia­

gram 111 Figure I. In three cases the result is evident and fits the

picture: M' = I, P = M K' =G. But it is not necessarily the case

that G' = K. G' will he the field (say K ) consisting of all clements

of M left fixed hy any automorphism fixing K elementwise, and

K o may he properly larger than K. For instance in Example 4

ahove K o is actually all of \iI.
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In the favorable case where KO IS equal to K we shall say

that \II is normal over K. Let us repeat this important defini­

tion in different words: M is normal over K if for any u in. M

but not in K there exists an automorphism of M leaving every

clement of K fixed but actually moving u. If we arc given a

field M which is not normal over K, we shall often replace the

base field by the larger field K
o

(for it is evident that M is

normal over K • a generalization of this fact will be proved in a
0'

moment).

Let us change our notation for the big field from M to 1\',

leaving room for two intermediate fields Land M. We write II

and J for two typical subgroups of G, the Galois group of "love

K. A s an immediate consequence of the definition of the priming

operation we have:

(2) L C M implies L' J M' ; Jell implies J' J II' .

We next contemplate the result of priming twice. It is obvious that

(3) L" J L. H" J H .

It may well happen that the field L" IS strictly larger than L.

Indeed the assertion K" =K is just another way of saying that N

is normal over K. At any rate we wish to single out the fields

for which L .. L" and we give them a name: an intermediate field

or subgroup will be called closed if it is equal to its double prime.

The double prime of any object will be called its closure.

We push one step further still, examining the triple prime.

It turns out that nothing new is obtained. Indeed it is a purely

formal consequence of (2) and (3) that L' = L"'. First, Lm J L'

by (3) applied to L'. Then start with L" J L and apply (2), ob­

taining LI1I( L'. Thus Lnl = Lt for any infermediate field L,

and similarly II" =II' for any subgroup II In short, any primed

object is closed.
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If we select any closed intermediate field L and pass to L'

\\C get a closed subgroup. Priming this closed subgroup returns

us to L. The same thing happens when we take a closed subgroup

and prime twice. We have proved:

TIIEOREM 5. Let K and I\' be any fields K C "I. a1.d G the
the Galois group of N/K. Then the priming operation sets up a

one-to-one correspondence between the closed subgroups of G.
and the closed fields lying between K and I\'.

Theorem 5 is virtually useless until we collect some informa­

tion that can tell us which fields 0 r subgroups arc closed. In the

next two theorems we prove two estimates on dimensions and these

enable us 10 prove that closure is at any rate stable under "finite

increases. n

TIIEOREM 6. ~ K C LC M C N be fields with [\iI: Ll = n

<00. Then [L!:MI]~n.

£.J:llu£ We argue by induction on n, the case n = I being

trivial. If there exists a field L o properly between Land M,

then we know [L': L'] ~ (Lo : L1 and I L': M'I S [M: Lo ]' Since

relative field dimensions and group indices arc both multipli­

cative we obtain [L': \ill I ~ [M: L1- We may therefore assume

that there arc no fields between Land M. :---Jeeessarily M has

the form L(u). Write f for the irreducible polynomial for u

over L: [ has degree n.

Consider a right coset C of M' In L'. It has the form

C = M'T for some Tin L'. Since every automorphism in \ii'

leaves u fixed, the entire coset C has the same effect on u,

Bending u into uT. If C .. MIT is a second right coset dis-
o 0

tinct from C, 'h"n uTo must be different from uT. For if

uT e uT, then T T- 1 leaves u fixed, hence leaves M = L(u)
o 0

*elementwise fixed, hence lies in M' ; but then MITo = MT •
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:-.lote that each uT IS a root of L for T leaves the coefficients

of [ fixed. lIenee the number of right eosets of M in L' is at

most equal to the number of roots of 1'. which in turn IS at most n.

TIIEOREM 7. Let G be the Galois group of N/K. Let

H :::J.J be subgroups of G with llI: .11 =n < co. Then LJ': II'J :S n.

~ Let C = JT(T E II) be a right coset of J in IL Let

x be any clement in J'. Then x IS left fixed by any automorph-.

ism in J. It follows that x IS sent into xT by any auto-

morphism in C. and we can unambiguously write xC = xT and

speak of applying C to any clement of .I'. We shall do so.in the

proof that follows.

We suppose that on the contrary lJ':II'J > n. Pick

ul' .•• ,u
n

+
1

in J' linearly independent over II'. Let

C •••• ,C denote the right co sets of .I in II. We form the
1 n

equations

+ an+l(un+1C1) = 0

+ an+1(un+1CZ) = 0

(4)

a1(u1Cn) + a2(uZCn) + .•• + antl(untl Cd = 0

We regard these as n equations for the n I I unknowns

al,aZ'" .,anll ,

there exists in ~

All the coefficients lie in the field ~ and so

a non-trivial solution (i.e. a solution where

not all the a's arc 0). Among all such solutions pick one with

as many zeros as possible; by a harmless change of notation we

may assume that this solution has the form

a iJ ••• ,ar,o, ... ,0

where

ply hy

each a. is not zero. We may also assume a = 1 (multi-
-1 I 1

a
l

). It is not possible that all the a's lie in II'; for
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one of the co sets, say C l' IS J itself. and in the first of equa­

tions (4) we have u
i
C

1
=u. so that the u's would be linearly

dependent over II'. Suppose for definiteness that a
2

is not in II'.

Then there is some automorphism S in II such that a
2
S;' tl

2
'

Apply S to the equations (4) ;the result is 1: (a.S)(u.C.S) =0
1 1 J

(j .. 1,. ,.,nll), But CiS,. ,.,C nS arc simply tI permutation of

the co sets C
i
, .. "C

n
; hence the new equations arc a permuta­

tion of the old and LaZS". 'J arS, 0, .•. 0 is also a solution of (4).

Subtracting the two solutions yields a solution with more zeros,

non-trivial since a2 - aZS;' O. This contradiction proves the

theorem.

TIIEOREM X. (a) Let K C L C M C ~ be fields. Assume L

is closed and that lM:Lj = n < 00. Then M IS also closed; more­

~ lL': M'j = n.

(b) Let He J be subgroups of the Galois group of N/K.

Assume that II is closed and that lJ:IIj =n< 00. Then J is also

closed; moreover llI': J' I =n.

(5)

Proof. (a) By Theorems 6 and 7,

lM": L" j ~ lL': M'j 'S. lM: Lj =n.

By hypothesis, L" =L. If M" contains \II properly, then the

left entry in (5) is larger than n, a contradiction. lIenee M is

dosed. Moreover lL':M'j

must also be n.

is trapped in the middle of (5) and

(b) The proof IS essentially the same.

We record an immediate corollary of Theorem X.

COROLLARY 9, Let G be the Galois group of M ~ K.

~

(a) All finite subgroups of G arc closed,
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(h) - M is normal over K and L IS an intermediate field

with lL:KJ finite then M is normal over L.

We turn to the setup of classical Galois theory. with M

finite-dimensional and normal over K and G the Galois group.

By Theorem X or Corollary 9 all intermediate fields arc closed

and all suhgroups arc closed. lIenee:

TIIEOREM 10. (Fundamental theorem of Galois theoryJ Let
M he a normal finite-dimensional extension of K, G the Galois

group of M/K. Then there is a one-to-one correspondence he­

tween the suhgroups of G and the fields hetween K and M,

implemented hy the priming operation. In this correspondence

the relative dimension of two intermediate fields equals the rela-

tive index of the corresponding suhgroups. In particular. the order

.u.C. G is equal to l\!!: KI.

To conclude this section we mention the point of view stressed

hy Artin: taking the top field as the fundamental ohjeet and eon-

strueting the hottom field as the fixed suhfield under a finite group

of automorphisms. The proof is easy (if the results ahove arc

used) and we leave it to the reader.

TIIEOREM t. Let G he a finite group of automorphisms of

a field M and let K he the fixed suhfield of M under G. Then

M is normal and finite-dimensional over K and the full Galois

g~ f \!11K is G.

A nice illustration IS to take M =F(x
1

, .•• ,x ) where F IS
n

any field and the x's arc indeterminates. and G is the group of

automorphisms of M ohtained hy permuting the x's (G is of

course isomorphic to the symmetric group S on n letters).
n

The fixed field K is the field of all symmetric rational functions

in the x's with eoefTieients in F. We thus exhihit. a little arti-
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ficially. a pair of fields having S as Galois group. Since any
n

finite group is isomorphic to a suhgroup of some Sn' we can

further exhihit any finite group as a Galois group.

Exercises

I. Let K C L C M he fields with L normal over K.

M normal over L. Assume that any automorphism of LJK

can he extended to \II. Prove that M is normal over K.

2. In the notation of this section. prove that (L U M)'

= L' n M' ; (II UJ)! =II' n J. Extend to arhitrary (even in-

finite) unions. lIenee. or otherwise. show that any intersection

of closed fields or suhgroups is closed.

3. Let K he any infinite field. M = K(x) where x IS an

.. indeterminate. Prove that M is normal over K. (llint: the

mapping x ..... x t a. a E K, induces an automorphism of MIK. If

the rational function fig lies in the fixed field let hex. y)

.. f(x)g(x I y)- g(x)C(x I y). Argue that h vanishes for every x

and y. hence is identically 0 (this uses the assumption that K

is infinite). Deduce that fig is a constant.)

4. Let K he any field. M = K(x) where x is an indeter-

minate. Let L he an intermediate field other than K. Prove

that M is finite-dimensional over L. (If r = fig E L. the ele-

ment x satisfies the equation rg(x) M f(x) = 0).

5. Let K he an infinite field. M = K(x) with x an indeter-

minate. and G the Galois group of Mover K. Prove that the

only closed suhgroups of G are its finite suhgroups and G itself.

6. Let K he the field of rational numhers. M = K(x) with
2

x an indeterminate. Prove that the field K(x ) is closed hut the

'" 3} ,field K(x IS not closed .

.'
~
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7. Let K he the field of rational numhers, M the field

of real numhers. Show that the Galois group of M/K is the

identity. (~ote that an automorphism preserves ord er and trap

a given real numher hetween suitahle rational numhers).

8. Let K C L C \II he fields with lL :KJ = n. Show that

there arc at most n different isomorphisms of L/K into a suh­

field of M, an isomorphism of L/K heing one that leaves K

elementwise fixed. (Argue as in Theorem 6. If L = K(u), note

that u must go into another root of its irredueihle polynomial.

In the general case insert intermediate fields).

9. Let K C L C M he fields with M normal over K

and lL: KJ = n < co. Prove that any isomorphism of L/K 111-

to a suhfield of M can he extended to an automorphism of \II.

(~ote that L' has index n and that its eosets correspond to the

distinct actions on L of automorphisms of M. esc exercise X).
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4. ~ormality and Stahility

In studying a field L lying hetween K and M we have eon­

-eentrated attention on the property of heing closed. that is. of M

heing normal over L. We have not asked when it happens that L

is normal over K. ~or have we asked which fields. in the eor-

respondence of Theorem 10, arc paired with normal suhgroups of G.

It is of course not a coincidence that the same word "normal" is

used in hoth contexts. But an investigation without any finiteness

assumptions reveals that normality of a suhgroup is instead paired

with a stronger property of an intermediate field which we shall call

stahility. Of course in the finite-dimensional case it will turn out

that stahility of L and normality of Lover K coincide.

DEFI~ITIO~. Let K C L C M he fields. We say that L

is stahle (relative to K and M) if every automorphism of Y1/K

sends L into itsel f.

In this definition we have required only that an automorphism

T of M!K send L into itself. hut actually it is automatic that T
-1

sends L onto itself. For there is an inverse automorphism T

which (if L is stahle) must also send L into itself. Then for
-1 -1

any x E L we have xT E L . xT T = x so that T maps onto L

TIIEOREM 12. let G he the Galois group of M/K.

(a) If L is a stahle intermediate field. then L' IS a nor-

mal suhgroup of G.

(h) If II is a normal suhgroup of G. then II' IS a stahle

intermediate field.

Prooe. (a) Given S in G and T 111 L' we must show that

STS·
1

lies 111 L'. That is, given x in L we must prove

• xSTS-
1 = x or its equivalent xST = xS. But this is true since x

lies in Land L is stahle. whence xS lies in L.
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(h) The proof IS essentially the same, read haekwards.

Given any x in If and S in G we must prove x S in II'.

That is. we must show xST = xS for T in II, or its equiva­

lent xSTS-
1 ~ x. But this is true since x is in II' and STS-

1

IS 111 I I.

COROLLARY 13. The closure of a normal suhgroup is nor­

mal; the closure of a stahle intermediate field is stahle.

Prooe. In each case apply Theorem 12 twice.

TIIEOREM 14. If K( L( M. M is normal over K, a-d
L IS stahle (relative to K and M), then L is normal over K.

Prooe. Given an clement u 111 L hut not in K we must

find an automorphism of L/K that moves u. We know there IS

an automorphism T of MIK such that uT f. u. Since L is

stahle T induces an automorphism of L when restricted to L,

and this restriction fulfills the requirements.

TIIEOREM 15. Suppose M is normal over K and [ IS an

irredueihle polynomial with coefficients in K having a root u in
M. Then [ factors over M into distinct linear factors.

Prooe. Let u
1

= U, u
Z

' .•• ,ur

of u under automorphisms of :vt/K.

Write

he all the distinct images

is a root of f andEach u.
1

is the degree of f.r :So n where nso we have

g(x)= (x~ul)' •• (x-ur). The eoelTieients of g arc a priori only

known to/he in M. But any automorphism of :vt/K merely per-

mutes the u's. lIenee the eoelTieients of g arc invariant under

every automorphism of MIK and, since M is normal over K,

they must lie 111 K. ~ow f is the irredueihle polynomial for u

over K and g is another polynomial over K with u as a root.
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By Theorem 2(e), r divides g. Since the degree of g is at most

equal to that of 1". we deduce g::C f. It follows that f. like g,

factors over M into a product of distinct linear factors.

TIIEOREM 16. Let K( L( M he fields, and assume

that~ L is normal over K and algehraie over K. Then L is

~.

~. Given u in L and an automorphism T of M/K

we must prove uT e L. ~ow u IS algehraie over K: let [ he

its irredueihle polynomial over K. By Theorem 15, f factors

completely in L Since uT IS a root of f. it must he in L.

TIIEOREM 17. Let G he the Galois group of M/K, and

~ L he a stahle intermediate field. Then GIL' is isomorphic

to the group of all automorphisms of UK that arc extendihle to M

.£J:.wl.C. (~ote that hy Theorem 12, L' IS a normal suhgroup

of G, so that GIL' is meaningful). Any automorphism T of

'11K induces an automorphism of L/K hy restricting T to L.

This yields a homomorphism from G into the Galois group of

UK. It is clear that the kernel is L' and the image is the set of

all automorphisms of L/K that can he extended to M

Let us return to the classical case where M is finite­

dimensional and normal over K. By Theorems 14 and 16 stahil­

ity of an intermediate field coincides with normality of Lover K:

furthermore GIL' is the full Galois group of L/K. This follows

from the more general result in Exercise 9 of section 3: however'

it sufTiees here to note that lG: L'J = lL: KJ so that the order of

GIL' is the same as the order of the Galois group of UK. We

Summarize:
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Supplement to Theorem 10. In the correspondence a field

L is normal over K if and only if the corresponding subgroup II

is normal in G: in this case Gill is the Galois group of L/K.

Exercise s

I. Let G be the Galois group of ~/K, Land M intermedi­

ate fields, II and J subgroups of G.

(a) If M = LT for T E G, then TMIT-
1 = L' •

(b) If THT-
I

= J, then If = J'T.

2. Let G be the Galois group of MIK and L a closed

intermediate field. Show that the normalizer of L' in G is the

set of all automorphisms of MIK that map L onto itself.

3. Give an example where K C L C M, Mis normal over

K, L IS closed and normal over K, and yet L is not stable.

(Take K infinite, M = K(x,y) with x and y indeterminates, and

L = K(x).)
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5. Splitting Fields

We have established the foundations of Galois theory but we

still lack a constructive way of exhibiting fields which arc normal

over a given field K. To supply this we introduce the concept of

a splitting field.

First we need two basic theorems on the existence and unique­

ness of the field obtained by adjoining a root of an irreducible poly­

nomial. We shall omit the proofs, but we remark that there arc

two possible styles for the proof. The first is elementary and ex­

plicit: for instance the field K(u) is defined by inventing a sym-
n-1

hoI u, taking K(u) to be a vector space with basis L u, ••• ,u

and defining multiplication by suppressing multiples of f. Full

verification of all the facts is tedious. The second (more sophisti­

cated) method is to define K(u) as the factbr ring of the polynomial

ring Krxl by the principal ideal (I). This method pushes the

tedious details back to the general abstract theory of factor rings.

TIIEOREM IX. Let f be an irreducible polynomial with

coefficients in a field K. Then there exists a field containing K

and a root of f

TllEOREM 19. Let K, Ko be fields and S an isomorphism

Q£ K onto Ko ' Let f be an irreducible polynomial with coeffi-

cients in K, [(J the corresponding polynomial with coefficients in

Let L =K(u), L = K (u ), where u and uO arc roots of
o 0 0 ---

fO respectively. Then there exists an isomorphism of L

~ L which coincides with S onto K and sends u intou .o 0 ,

DEFI:-.JITlO:-.J Let f be a polynomial with coefficients in K.

We say that \II is a splitting field of f over K if f factors com­

pletely in M and M- K(u
1

, ..• ,u ) where the uls arc all the

roots of f.
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Whcn thcrc is no nccd to call attcntion to thc polynomial L

wc shall simply say that M is a splitting ficld ovcr K. In

Thcorcm 25 wc shall givc a critcrion for splitting ficlds that IS

indcpcndcnt of thc choicc of any polynomial.

:-.lotc that by Thcorcm 1 any splitting ficld ovcr K IS iinite-

dimcnsionalovcr K.

TIIEOREM 20. Let f bc any polynomial with cocfficicnts

iJJ. K. Thcn thcrc cxists a ficld M which is a splitting ficld of

f over K.

Proof. Wc arguc by induction on thc dcgrcc of f. If f is

lincar. M = K will do; morc gcncrally if f factors complctcly

in K, M = K. Lct, thcn. 9 bc an irrcduciblc factor of f of

dcgrcc grcatcr than onc. By Thcorcm IX construct K(u) with u

a root of g. Thcn f = (x - u)h. h a polynomial with cocfficicnts

in K(u). It sufficcs to takc M to bc a splitting ficld of h ovcr

K(u) (scc Excrcisc 11).

TIIEOREM 21. Let K,KO bc ficlds and S an isomorphism

cl K onto KO . Let f bc a polynomial with cocfficicnts in K.

fO thc corrcsponding polynomial with cocfficicnts in K Lct
o

M bc a splitting ficld of f~ K, M a splitting ficld of f

ovcr K
o

Thcn S can bc cxtcndcd to an isomorphism of M

onto M
o

Proof. Wc makc an induction on lM:KJ. If M -K, thcn

bc thc corrcsponding i r-lct 9

factors complctcly in K, whcncc f factors complctcly in K
o 0'

o Wc may assumc that f has an irrcduciblc factorand M =K
() ()

g of degree greater than one;

rcduciblc factor of ovcr K Lct u (rcsp. u ) bc a root
O'

of 9 (rcsp. 9 ) in M (rcsp. M). By Thcorcm 19 thc iso­
o

morphism Scan bc cxtcndcd to an isomorphism of K(u) onto
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J(otGo); w" "ontinu" to writ" S for the extended map. :-.low M

i. a Splitting field of £ over K(u.) and Mo is a splitting field of

! Over K (u ) -- see Exercise 10. Since lM: K(u)] < (M: K]
o 0 0

our inducLiv" assumpLion shows LhaL S can be extended to an iso-

Inorphism of M onto Mo .

At this point in the subject we must cope with a special

difficulty that occurs only for characteristic p ~ 0 : the possi­

bility that an irreducible polynomial may (in a larger field) have

a repeated root. A s a technical help we introduce, purely
. i

formally, the derivative of a polynomial. I[ I'" L a.x IS a poly­
1

i-1
nom i awith coefficients in K. we define £1", L ia~x By

routine computation we can verify that the usual rules for deriva-

tives hold: (fl g)' = f' + g' , (fg)' -f'g + fg' ,(cm)' =cf' for c

in K.

TIIEOREM 22. Let [ be a polynomial with coefficients in

K, a an clement in K. Then the following statements a re equiv­

alent: (x - a)2 divides f. x - a divides both f and I' •

~ J
Proof. If [= (x-a)-g, then r '" (x-arg' t 2(x-a)g IS

divisible by x-a.

divisible by x-a.

divides f.

Suppose ["'(x-a)h and r =ht(x-a)h' IS

2
Then x-a divides h, whence (x-a)

TIIEOREM 23. Let f be an irreducible polynomial with

coefficients in K. The following three statements are equivalent:

(I) In every splitting field of f over K, f factors into

distinct linear factors,

(2) In some splitting field of f over K, [ factors into

distinct linear factors,

(3) f' ~ 0 •
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Prooe. (I) implies (2) is ohvious.

(2) implies (3). Suppose on the contrary that [' = o. Then

for any root a of L x - a divides hoth f and 1'. lIenee

(Theorem 22). (x - a)2 divides f. a contradiction.

(3) implies (I). If on the contrary [ has a repeated factor

(x - a)2 in the splitting field, then x - a divides hoth f and ff .

But r is irredueihle over K and [' IS a genuine polynomial of

lower degree. lIenee f and t' have the greatest common divisor

and rf t sf = 1 for suitahle polynomials r, s with eoefTieients

in K. On setting x = a we get a contradiction.

When can it happen that I' is the zero polynomial? If
i . . i- 1 ·11 If = !: a.x i.s not merely a constant, then r =!: la.x WI lave

in it genuine terms unless each term is annulled hy the insertion

of the eoefTieient i. So the characteristic must he pi 0 and

each i must he divisihle hy p. In other words: f must he a

polynomial in x P .

DEFI~ITIO~. Let f he an irredueihle polynomial over K.

We say that f is separahle over K if any (hence all) of the state­

ments in Theorem 23 hold. An clement u algehraie over K IS

said to he separahle over K if its irredueihle polynomial is

separahle over K. A field L algehraie over K is separahle

over K if every clement is separahle over K. To avoid amhi­

guity we shall not define separahility over K of a polynomial un-

less it is irredueihle over K.

We emphasize again that separahility is automatic 111 the

case of characteristic o.
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TIIEOREM 24. Let M he a finite-dimensional extension

of K. The following three statements are equivalent:

(I) \II is normal over K

(2) \II IS separahle over K and M IS a splitting field

~ K,

(3) M is a splitting field over K of a polynomial whose

irred ucih Ie factors are separah Ie.

Proo r. (I) implies (2). Let u he an clement of \II and

its irreducihle polynomial over K. By Theorem 15, [ factors

over M into distinct linear factors. lIenee u is separahle over

K. Since this is true for every u in K, \II is separahle over K.

Let v 1" .. ,V he a hasis of Mover K, let f. he the

irreducihle polynomial over K for v. and write g = 1'1'" £r

By Theorem 15 again, each f. factors completely in K and hence

so does g. Clearly M is a splitting field of g over K.

(2) implies (3). Say \II is a splitting field of [ over K,

and I' "" ft".f is the factorization of r into irreducihle factors

aver K. Each f. is the irreducihle polynomial for an element

in \II which hy hypothesis is separahle over K. lIenee each f.
I

IS separahle over K'

(3) implies (I). Assume that \II IS a splitting field of I'

over K where the irreducihle factors of are separahle. Let

G he the Galois group of MIK. We shall prove that M is normal

over K hy proving that the order of G is equal to lM:KJ. If I'

factors completely in K, then M = K and there is nothing to prove.

Let g he an irreducihle factor of I' having degree greater than

one; say the degree of g is r. Let u he a root of g and write

L =K(u), II =L'. Just as in the proof of Theorem 7, we have

lG:IIJ = the numher of images of u in automorphisms of \II/K

But everyone of the r distinct roots of g is such an image, for



-28-

if v IS another root there is hy Theorem 19 an isomorphism S

of K(u) onto K(v) leaving K elementwise fixed, and then hy

Theorem 21, S can he extended to an automarphism of M.

lIenee lG:IIJ =r =lL:KJ. By induction, the order of H IS

equal to l\!!: LJ, for M is still the splitting field of f over L,

and the irredueihle factors of f over L arc separahle (they

divide the irredueihle factors of f over K). Multiplying. we get

that the order of G is lMKJ and hence M is normal over K.

We shall now derive a criterion for splitting fields that docs

not name any special polynomial.

TIIEOREM 25. Let L he a finite-dimensional extension

~ K. The following statements arc equivalent:

(I) L is a splitting field over K,

(2) Whenever an irreducihle polynomial over K Ins 'j rool

.i.IJ. L it factors completely in L

~ (I) implies (2). Assume that L is a splitting field

of f over K. and let g he an irreducihle polynomial over K

with root u in L We must show that g factors completely in

L Suppose on the contrary that over L, g has an irreducihle

factor h of degree greater than one. Adjoin to L a root v of h.

Then hy Theorem 19 there is an isomorphism S of K(u) onto

K(v) which is the identity on K. ~ow L is a splitting field of

over K(u) and L(v) is a splitting field of f over K(v). By
/

Theorem 21, S can he extended to an isomorphism of L onto

L(v). But this is nonsense, for [L(v): KJ is strictly larger th<an

lL: KI·
(2) implies (t). Let v 1' •••, v he a hasis for Lover K,

let f. he the irreducihle polynomial for vi over K, and write

f'" f
1
••• f Then f factors completely in L hy hypothesis and

L is a splitting field of f over K (compare Exercise II).
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TIIEOREM 26. Let K C L he fields. lL: K] finite. There

exists a field M containing L such that M is a splitting field

over K and no field other than M hetween L and M is a splitt­

jngfield over K. J£. M
o

is a second such field. then there is an

.i;0morphism of M onto Mo which is the identity on L. if L

IS separahle. then M is normal over K.

Prooe. The construction of M has he en foreshadowed in

several earlier arguments. We take a has is vI'.' "v
r

of L

over K, [= £1'" £r where £j is the irreducihle polynomial for

vi over K. and then take M to he a splitting field of [ over L.

Then 1\1 IS also a splitting field of over K (compare exercise

11) and it is normal over K if L is separahle over K (Cor then

each f. is seaprahle over K). Any splitting field over K which

contains L must split each f. for they each acquire a root in L.

This shows that M has the property asserted in the theorem.

Any second such field M
o

must also he a splitting field of rover

r< or L, and the uniqueness asserted follows from Theorem 21.

We shall call a field having the properties of M in

• Theorem 26 a split closure of Lover Ki if L is separahle

over K we call M a normal closure of Lover K.

In concluding this section we summarize the connection

hetween splitting fields and normality: for characteristic O.

normal is the same as splitting field; for characteristic p, nor-

mal is splitting field plus separahility.
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Exercises

l. Let K( L( M be fields with L normal over K

(possibly infinite-dimensional) and M a splitting field over L

of a polynomial with coefficients in K whose irreducible factors

over L arc separable. Prove that M is normal over K. (Usc

Theorem 21 and Exercise 1 of 33).

2. If u. is separable over K (i:: I, _ ., 1:.) prove that

K(u
l

, • •• ,u is separable over K.

3. Let f be a pslynomial of degree n with coefficients

In K. Let L be a splitting field of f over K. Prove that rL:Kl

IS a divisor of n!

4. Let K be a field of characteristic J 2,3. Show that the

following statements arc equivalent:

(a) Any sum of squares in K IS a square.

(b) Whenever a cubic polynomial f factors completely In

K, so docs f. (This problem is motivated by the observation -­

an easy consequence of Rollers theorem -- that (b) holds for any

polynomial over the reals. I have been unable to determine just

what fields have this property).

S. State and prove the form that Exercise 4 takes for

characteristic 2.

6. Let K C L C M be fields with L a splitting field over

K. Prove that L is stable.

7. Suppose that M is a splitting field over K and L IS

an intermediate field. Prove that L is a splitting field over K

if and only if L is stable. Show further that G/Lr is the full

Calois group of UK.
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x. Let M be a split closure of Lover K. Prove that

M. L[ U ..• U L
r

where L. IS isomorphic to Lover K.

9. If K C L eM and M IS separable over K, then M

is separable over L.

10. If K C L C M and M is a splitting field of f over K

then M is a splitting field of f over L.

i i. Suppose- K C L eM and Lis generated over K by

some of the roots of a polynomial f with coefficients in K. Prov

that M is a splitting field of f over K if and only if \II is a

aplitting field of f over L.
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o. Radical Extensions

In a large part of classical algebra the main theme was the

search for "explicit" solutions of equations. While the meaning

of "explicit" was perhaps not made precise, it was always clear

that rational operations and extractions of roots were permitted.

The formula for solving a quadratic equation was already known

to the ancients. During the seventeenth century similar (but in­

creasingly complicated) formulas were found for the cubic and

quartic equations. The search for an explicit solution of quintic

equations ended In defeat when Abel proved that such a formula

was impossible. Shortly thereafter Galois proved the same thing

In a dramatic new way that truly explained the failure and more­

over made it possible to settle, at least in principle, whether a

specific equation with numerical coefficients could be solved in

the prescribed way. In this section we shall present Galois's

results.

First we must put In precise form the field-theoretic mean­

ing of solution by radicals.

DEFI:--lITlO:--l. A field L is a radical extension of K ~~. L

has the form K(u •. "'U where some power of u. lies in
1 m I

K(u
1

, •••• u
i
_

l
) for i = 1, ••• ,m.

:--lote that a radical extension of K IS clearly finite­

dimensional over K.

By inserting further uls , if necessary, we can arrange

that in each case ap..I:.i.m.c power of u. lies in K(u 1.... yUi _1).

In the proof of Theorem 27 we shall suppose that his has been

done.

We proceed at once to the main theorem on radical exten­

sions. We state and prove it here only for characteristic 0. but

it is true for any characteristic (sec Exercise I).
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TlIEOREk 27. If K has characteristic 0, K C L C M

and M is a radical extension of K, then the Galois group of UK

IS solvable.

Four lemmas will precede the proof of Theorem 27. In

these lemmas we drop the restriction of characteristic O.

LEMMA 1. The union of a finite number of radical exten-

slons is a radical extension.

Proof. It is enough to do the case of the union of two radi­

cal extensions. Suppose then that L, M arc radical extensions

with L =K(u 1, ... ,u
m

) and M =K(v 1" . 'J V n) exhibiting

the fact that they arc radical extensions. Then

L U M = K( u l' ••• , U m' vI' .•••v n)

shows that LU M is a radical extension of K.

LEMMA 2. If L is a radical extension of K and M i s a

nplit closure of L ~ K, then M is a radical extension of K.

§5.

Proof. This is immediate form Lemma I and Exercise X of

LEMMA 3. Let p be a prime and L a splitting field of

xP - lover K. Then the Galois group of UK is abelian.

Proof. If the characteristic is p, then x P - I = (x -1)P,

and L = K. For characteristic I p, x P- 1 has distinct roots.
(

Let e be a root different from I. Then E has multiplicative

order p and thus I,e, e 2, •.• ,E p-1 arc all the roots of x P - 1

lIenee L = K(e). An automorphism of L is determined by what

it docs to f.. Say the automorphisms 5 and T send
. 1
Into e

and e
j respectively. Then ST and TS both send e into e ij .

Thus ST = TS, and the Galois group of UK is abelian.
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Let K he a field in which
n

x - factors into

linear factors. Let a he any clement in K, and L a splitting

field of x
n

- a Over K. Then the Galois group of UK is

ahelian.

Proo r. n
If u is one root of x - a then the general root

has the form
n

I [; where E = 1 and so E lies in K. It follows

that L = K(u). and that an automorphism of LIK is determined

hy what it docs to u. Say the automorphisms Sand T send u

into EU and T]U respectively (E.1') roots of x
n

- 1 in K). Then

ST and TS hoth send u into E 1')u.

UK IS ahelian.

lIenee the Galois group of

denotes the closure of KProof of Theorem 27. If K o
relative to the Galois group of L/K (i.e. , K is the fixed suh-

field of L under the automorphisms of L/K). nothing in the proh­

lem is changed if we replace K hy K
o

(sec Exercise 2). lIenee

we may assume that L is normal over K. If I\' denotes a nor-

mal closure of Mover K then. hy Lemma 2, "I is a radical

extension of K. Thus (changing notation again) we may assume

that M is normal over K. Since the Galois group of UK is a

homomorphic image of that of MIK. and since a homomorphic

image of a solvahle group IS solvahle. we have only to show that

the Galois group of 'vI/K IS solvahle. Thus we may henceforth

forget ahout L.

Let M = K( U I' .•• ,u ) he the generation of 'vi that shows 'vi
n

to he a radical extension. We shall argue hy induction on n. As

noted ahove. we may assume that ut lies in K for some prime p.

Let M he a splitting field of x P - 1 over M. Let M he the
o 1

suhfield of M generated hy K and the roots of x P - 1. The four
o

fields involved arc shown in Figure 2.
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Figure 2

If we show that the Galois group of M IK
a

is solvahle. it

will follow that the Galois group of \1/K is solvahle. again he-

cause a homomorphic image of a solvahle group is solvahle.

~ow M[ is a normal extension of K with a Galois group which

is ahelian hy Lemma 3. lIenee it will sufTiee to show that the

Galois group of Ma/M[ is solvahle. for a group is solvahle if a

normal suhgroup and factor group arc solvahle. ~ow

M .. M[ (u[' .•. , un)' for M is generated from K hy the u's

anca the roots of x P - L and the latter arc already in M[, Let

G denote the Galois group of M IM[ and II the suhgroup cor­

responding to \11(iH) in the Galois correspondence (Figure 3).

M «<------;;> 1
a

U n
M 1(u 1) < " H

U n
M

1
< > G

Figure 3

Since x P - 1 factors completely in M
1

, M 1 ,(.11
1

) is a splitting

field of x P - ut over M
1

and hence it is normal with a Galois

group which is ahelian hy Lemma 4. Thus GIII is ahelian. To

prove that G is solvahle it remains finally to show that II IS

solvahle. This follows from our inductive assumption. for M
a

is a radical extension of M[ generated hy a chain u z' ... ,un

of n- I clements. This completes the proof of Theorem 27.
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We add a supplemnt to Theorem 27 which refers more di­

rectly to the solution of an equation by radicals. If f is a poly­

nomial with coefficients in K, we define the Galois group of

to be the Galois group of a splitting field of f over K -- it fol­

lows readily from Theorem 21 that a choice of a different split­

ting field of f yields the same Galois group up to isomorphism.

We usually think of the Galois group of f as a group of per­

mutations on the roots of f. i. e. as a subgroup of the symmetric

group Sn on n letters if has n roots.

TIIEOREM 2X. Let be an irreducible polynomial over a

.fi..c.W. K of characteristic o. Suppose there exists a radical

extension L 2.! K which contains a root of f. Then the Galois

group of r~ K IS solvable.

~ Enlarge L to anormal closure \l of Lover K:

by Lemma 2, \l is still a radical extension of K. I\' contains a

splitting field M of f over K and by Theorem 27 the Galois

group of Mover K is solvable.

:--low we see Galois's explanation of why polynomials of the

n-th degree can be solved by radicals up to n = 4 but not In

general for n 2. 5 : the reason is that Sn is solvable for n5 4

but not for n ~ 5.

To get an explicit example of an equation not solvable by

radicals we could resort to the device at the end of § 3 to con­

struct an extension with Galois group Sn ' Ilowever the base

field for this extension is too peculiar: we would like to have a

down to earth example with base field the rational numbers. Per­

haps the simplest class of examples is furnished by the following

theorem.



-37-

TIIEOREM 29. Let p be a prime and f an irreducible

polynomial of degree p over the rational numbers. Assume that

has exactly two non-real roots. Then the Galois group G of

f IS the full symmetric group S on the p roots of f.
P

Proof. G has order divisible by p, for in obtaining the

splitting field of [ we first adjoin an element of degree p. lienee

G has an element of order p. necessarily a p-cycle. Complex

conjugation induces an automorphism which is a transposition on

the roots, for it merely interchanges the two non-real roots.

That G = S now follows from an easy lemma on permutation
p

groups.

LEMMA. Let p be a prime. If a subgroup G of S con­
e

,,,ins a transposition and a p-cycle then G is all of S
P

Proof. By taking a suitable power of the p-cycle if necessary,

we can arrange the notation so that it is f - (1 2 ..• p) and the

transposition is g = (12). We form repeated conjugates: gtg = £1

=(2 1 ••• p), £1- 1 gf - gl
-1

£Z g1£Z=gZ=(14), ••.

and they generate S
p

=(13), gl- Il
1
g

1
=£2. =(23 I ••• p)

This produces allof (12),(13), ... ,(lp)

An explicit illustration of Theorem 27 is provided by
5

x - 6x -+-3. It is irreducible over the rationals by Eisenstein's

criterion, and a crude inspection of its graph reveals that is has

exactly 3 real roots. lienee the Galois group of x
S

- 6x t 3 IS

5
S

' and it is impossible to express any root of x S - 6x t 3 by

a formula involving only rational operations and extractions of

n-th roots.
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Exercises

i. Prove that Theorems 27 and 2X arc valid for any

characteristic. (esc Exercise 7 of §5).

2. If K C L C M and M is a radical extension of K

then M is a radical extension of L.

3. Show that in Lemmas 3 and 4 the Galois group IS

actually cyclic.
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7, The Traee and ~orm Theorems

Let L he a normal finite-dimensional extension of K, with

Galois group given hy St' ... , Sn' For any

the traee and norm of a _

T (a) = as t t as 2 t ••• + asn

~(a) = (as\)(aS
Z
)' .. (aS

n
) •

a in L we define

Clearly T(a) and ~(a) lie 111 K, for they are fixed under

all automorphisms of L/K. Traee is additive and norm multi-

,....plieative: T(ath) = T(a) t T(h),

Wc have T(a) = na, ~(a) = an.

~(ah) = ~(a)~(h), For a E K

It is possihle to define trace and norm for any finite-

'dimensional extension (not necessarily normal); there are certain

',8ubtleties and we shall not do it here,
~;/i It is our ohjective in this section to prove two theorems

, which characterize, in the case of a cyclic Galois group, the

elements of trace 0 and norm I; we shall then give an applica­

"tion for each theorem, The main tool IS a fundamental result on

linear independence of automorphisms,

TIIEOREM 30, Any distinct automorphisms of a field K

are linearly independent over K,

Remark 1. It is not heing assumed that the automorphisms in

question form a group or even that one of them is the identity,
"-
t IIowever since linear dependence is defined hy finite sums, it

might as well he a finite set of automorphisms,

$'. Remark 2, Linear independence of St'

if a\(xS\) +aZ(xS Z) t ••• + an(xSn) = 0

all the a's must he 0,

••• ,Sn over K

for every x 111

means:

K, then



Proof. Suppose on the contrary that S1' ••• ,Sn arc linearly

dependent over K. Among all dependence relations pick a

"shortest" one. i. e. , one with as many zeroes as possiole. Say

this shortest relation is

(6) (all x E K).

O' course r must oe greater than one. Since S1 and Sz arc dis­

tinct. there exists 0 in K with bS
1

, bS
Z

' In (I)we may replace

x oy ox. ootaining

Multiply (6) oy bS
I

and suotraet (7):

This is a shorter dependence relation. non-trivial since the coeffi­

cient of xS is not zeroZ· ..

TIIEOREM 31. Let L oe normal over K with a Calois

group which is cyclic of order n generated. say. oy S. Then an

clement a in L has trace 0 if and only if it is of the form o· oS

for some 0 in L.

Proof. If a = 0 • oS. then

2 n-1
T(a) = a ( ItS t St ••• t S )

2 n-1 n
= (0 - 0 S) t (0 S - 0 S ) t ••• t b(S - S ) = 0

since

Conversely. assume T(a) = O. By Exercise I there exists

In L an clement c with T(c) = I. Define d = ac.

d
1
=(a + as)cS. and in general

d. = (a t as +••• t aSi)(cS
i
)

1

for 0 So i :5. n-2. Set 0 ~ d t d
1

t •• " t d
n

_
Z

" Since
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d.S .. (as + aS 2 + .•• + asit1)(cSi+1) t- d d d S, we In i+ 1 - i

_ i+1) < ( n-1)
-aCeS for O_i~n-3. Also d

n
ZS=-acS since

T(a)= O. lienee

h - hS = d

= ae

-a

since T(e) = 1.

+ (d - d S) .. (d - d S) t ••• t (d Z - d 3S) - d S
1 0 Z 1 n- n- n-Z

.., n-1
t a(eS) t a(eS-) t ••• t a(cS )

A s an application of Theorem 31 we shall deserihe the

structure of a normal extension of degree p in the case where

the characteristic is the same prime p.

TlIEOREM 32. Let L he normal over K, where rL:Kl

is a prime p which is also the characteristic of K. Then

L .. K(u) where u is a root of an irredueihle polynomial over

K of the form xP - x-a.

Proof. The Galuis group of UK is cyclic of order p, say

generated hy S. The clement 1 satisfies T(I) = O. By Theorem

31, we can write I ~ lS - u for some u in L (take u to he the

Theorem 31). We have I;S = 1 t u, hence

It t()l!ows that a = uP - u is invariant under

negative of the h in

uPS =(1 tu)p =1tup •

S and hence lies in K. Since there arc no fields properly hetween

K and L, and u is not in K, we have L" K(u). It t()l!ows that

x
p

• x - a must he the irredueihle polynomial for u.

The next two theorems arc the "multiplicative" companions

of what might he called the additive theory of Theorems 31 and 32.

Theorem 33 (in a slightly more special context) was Theorem 90

in lIilhert's 1897 report on algehraie numher theory.
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TIIEOREM 33 (I Iilhert 's "Theorem 90"). Let L he normal

over K with a cyclic Galois group generated. say hy S Then an

clement a in L has norm 1 if and only if it has the form a ~ h/hS

for some h loin L.

Proo C. If a = h/hS. then

~(a) = a(.aS) .•• (aSn
-

l ) = .h.... • .b£.... •••
hS bS

Z

since Sn = I.

Suppose conversely that ~(a) =1. Write d = ae.

d
1

= (a.aSHeS) and in general

also that d. 1::: a(d.S) for
It 1

must exist a choice of c in

for O$iS-n-i.

d
i

= (a . .aS ••. aSi)(eS i)

~ote that d 1. = CS1
-

1
since ~(a) = l. ~ote

n-
0:S i:$ n-2. By Theorem 30 there

L such that h - d + ci
1

t •.• t d
n-1

1 S not O. Then

+ d 1S,. 4(d + d
Z

+ ••• -+-d 1)+ eS
n

•
n- a 1 n-

I, so cS
n = d la. lIenee bS '" h/a,

o
as desired.

TIIEOREM 34. Let L he normal over K with a Galois

group which is cyclic of order n, say generated hy S. Assume

that the characteristic is prime to n and that x n - factors

completely in K. Then L = K(u) where u is a root of an irre­

ducihle polynomial over K of the form xn - a.

Prooc' There arc n distinct roots of xn - 1 in K and

they form a multiplicative group. Any finite multiplicative group

in a field is cyclic. Let a generator he f.. We have N(E) =En =1.

By Theorem 33 we can write E = uSlu for suitahle u in L.

Then LS =E u, unS = f. nun =un. lIenee a =un is invariant under

S and lies in K. If n were prime, we could now conclude just
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as in Theorem 32 that L i= K(u). To cope with the possihility

that n is composite we need an additional argument. In any
n

event K(u) is a splitting field of x - a over K. The auto-
n-1

morphisms I, S, ••• ,5 send u into the distinct clements
n- 1

U,EU, • •• ,E u. lIenee K(u) admits n automorphisms aver

K and lK(u):KJ ~ n, whence K(u) = L, since [L:Kl = n. It

follows that x
n

- a must he the irredueihle polynomial for u

over K.

Theorem 34 IS the hasie ingredient for estahlishing a con­

verse to Theorem 27. This time the restrietian to characteristic

o cannot he dropped (hut a companion theorem could he proved

in which extensions such as those in Theorem 32 arc allowed).

TIIEOREM 35. Let K he of characteristic O. L a finite-

dimensional normal extension of K with a solvahle Galois group G.

Then L can he emhedded in a radical extension of K.

Prooc' We make an induction on lL:KJ. In order to apply

Theorem 34 we need the usual teehniealmanduver to cope with

the possihly missing roots of unity. We may assume that G has

a normal suhgroup II of prime index p. Let "I he a splitting

field over L of x P - 1, Then "I is normal over K and still

has a solvahle Galois group. Let M he the suhfield of "I oh­

tained hy adjoining to K the roots of x P - i. Then I\" is also

normal over M If we prove that "I can he emhedded in a radi-

cal extension of M we arc finished, for \II is a radical extension

of K.

Claim: the Galois group of 1\"/\11 IS isomorphic to a suh-

group of G. To sec this we map any automorphism T of N/\II

into its restriction to L (which of course is an automorphism of

UK). Let T he in the kernel of this homomorphism: then T

leaves hoth Land M elementwise fixed and hence IS the identity.

So the mapping is an isomorphism, as claimed.
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Case I. The Galois group of ~/M IS isomorphic to a pro-

per suhgroup of G. Then hy our inductive assumption ~ can he

emhedded in a radical extension of M.

Case 11. The Galois group of ~/M IS isomorphic to all of

G. Let us simply call it G again. Let P he the intermediate

field which corresponds to II. Then I P:MJ = p, P is normal

over M, and \II contains the p-th roots of 1. By Theorem 34,

P = M(u) with u a root of a polynomial x P - a, i. c., P is a

radical extension of M. "I is normal over P with the solvahle

Galois group II. By induction "I can he emhedded in a radical

extension of P. The theorem is proved.

Exercises

1. Let I. he finite-dimensional and normal over K. Then

any clement in K is the trace of a suitahle clement 111 L

2. Let K he a field of characteristic p and a, h non­

zero clement of K.

(a) Prove that xP - x - a IS either irreducihle or factors

completely in K. (llint: if u is a root then all the roots arc of

the form uti, i = 0, .•• ,p-I).

(h) Prove that xP - b P -
1

x - a is either irreducihle or fac­

tors completely in K. (Set x = hy).

(c) Prove that xP t bP-1a-1xP-1 - a- 1 IS either irreducihle

or factors completely in K. (Set x =l/y).

3. Show that in Theorem 3 I the clement h IS unique up to

addition of an clement in K.

4. Show that in Theorem 33 the clement h IS unique up to

multiplication hy a non-zero clement in K.
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8. Finite Fields

A finite field IS one having only a finite numher of clements.

We arc already familiar with the examples furnished hy the fields

J
p

(integers mod p) for every prime p. In this section we shall

determine what further finite fields exist and suhstantially exhihit

their structure.

A finite field K must have characteristic pi 0 for other-

wise it contains a copy of the rational numhers. Suppose

[K: JpJ = n. Then K has exactly pn clements. More generally:

an n-dimensional vector space over a field with q clements has

exactly qn clements. for expressing the clements of V in terms

of a hasis we have just q choices for each of the n coordinates

and therefore qn choices in all.

We shall prove that for every power pn of a prime there
n

docs exist a field with p clements and that any two such arc iso-

morphic. The key fact is given in the following theorem.

TIIEOREM 36. A field K has pn clements if and only if it
---- 1'\

IS a splitting field over J of x P - x.
P -

Proof. Suppose K has pn clements. The multiplicative

group of non-zero clements in K has order pn - 1. lIenee

pn _ 1
u =1 for any uf.o in K. Putting this equation in the form

n
uP =u we have it satisfied for u =0 as well.

n
Thus x P • x has

its full quota of pn distinct roots in K. Since these roots con­
n

stitute all of K, K IS a splitting field of x P • x over J
p

n
Conversely. suppose K is a splitting field of xP - x over

n
J The derivative of xp - x IS -1 and hence the pn roots arc

p
n

all distinct. Moreover. since the mapping u - uP preserves

addition as well as multiplication. the pn roots form a field. But
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since K IS generated

he equal to this field.

n
over J hy the roots of xl'

p
lIenee K has pn elements.

x, K must

We know (Theorems 20 and 21) that splitting fields exist and

are unique up to isomorphism. lIenee:

TIIEOREM 37. For any power pn of a prime p there
exists a field with pn elements and any two such are isomorphic.

We next investigate how the Galois theory of finite fields

works out. The result is gratifyingly simple and decisive.

TIIEOREM 38. ~ K C L he finite fields. Then L is

normal over K and the Galois group of UK is cyclic.

Forwehave

J with a
p

L is also normal over K

Proof. It sufTices to treat the case K = J l"

L::) K::) J ; if it is proved that L is normal over
l'

cyclic Galois group it will follow that

and that the Galois group is cyclic (heing a suhgroup of a cyclic

group).

That L is normal over J IS immediate from Theorem 36;
p

L is a splitting field over J of a polynomial with distinct roots.
p

For any field L of characteristic p the mapping S send-

ing every element into its p-th power is at least an isomorphism

of L into itself. But when L IS finite, S is necessarily onto.

If lL: JpJ =n, Sn 1 S the identity. J\o lower power is the identity:
k

if Sk =I with k <n then the polynomial xl' has
n

- x p

roots in L, which is impossihle in a field. lIenee I,S, ... '8n-1

are all distinct and constitute the whole Galois group of L/1
p
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Exercises

m
1. Suppose K with p clements IS contained in L with

pn clements. Prove that n is a multiple of m. Prove further

that the Galois group of UK is generated hy the automorphism

x .... xpm

2. Let K he any finite field. n an integer. Prove that

there exists an irredueihle polynomial over K of degree n.

3. Let f he a polynomial with the property that its roots

(in some splitting field) form a field (this is the situation

encountered in the proof of Theorem 36). Prove that the charac­

teristic is p and that [ has the form x
pn

.. x.

clements if and only if p divides

x P - 1 factors completely in the field of
d

q - 1).

integers mod q.
d

q

4. Let p.q he distinct primes. Assume that q is a
d

primitive root of p. i. c .. forno d < p-l IS q - 1 divisihle

by p. Prove that (x
p

- l)/(x - 1) is irredueihle over the field of

(II int:

n
5. For n~3, prove that x Z +xt 1 isredueihle over J

22n n
(Ilint: if u is a root. raise the equation u =u t 1 to the 2 -th

power).

6. Prove: in any finite field any clement can he written as

the sum of two squares.

7. Let K C L he finite fields. Prove that any clement of

K is the norm of some clement of L. (Ilint: consider the homo­

morphism from L* -- the multiplicative group of non-zero ele­

*ments of L -- to K given hy u - ~(u). Find the size of the

kernel hy using Theorem 33 and Exercise 4 of ~7).
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9. Simple Extensions

The following theorem gives a neat necessary and sufTieient

condition for a finite-dimensional extension to he generated hy a

single element. Such an extension we call simple.

TIIEOREM 39. Let M he any finite-dimensional extension

.u.C K. Then M is a simple extension of K if and only if there

arc only a finite numher of intermediate fields.

Prooe. If. Assume first that K is finite. Then M IS

also finite. The multiplicative group of non-zero clements of \II

IS cyclic. Any generator of this cyclic group will generate :vI.

Suppose then that K is infinite. Pick an clement u in M

such that lK(u):KJ is as large as possihle. We claim K(u) = \II.

Suppose the contrary and pick v in M hut not in K(u). As a

ranges over K we get a formally infinite list of intermediate

fields K(u t av). Two of these must coincide. say K(u I av)and

K(uthv). Then K(utav) contains utav and uthv. hence

(a- h)v. hence v and also u. Thus lK(utav): KI > lK(u):KJ.

a contradiction.

Only if. We now assume M = K(u) and have to prove that

there arc only a finite numher of intermediate fields. Let f he

the (unique monic) irredueihle polynomial for u over K. Let

L he a typical intermediate field and let g he the monic irre­

dueihle polynomial for u over L. Say
r r- I

g(x) =x + a 1x t .•. tar' We claim that L = K(a\, .... a ).

Certainly L contains K(a\, ..•. a ), so that

l\ll: K(a\, ..• ,a
r

)) ~ r. On the other hand. u satisfies an equa­

tion of degree rover K(a\, .• ". a ) so that the opposite 111­

equality lM: K(a\, .•• ,a )J < r holds. This proves that

L =K(a
1

, •••. a
r

) and shows that' L is uniquely determined hy g.
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~ow there are only a finite numher of monie divisors of r

(think of the eomplete faetorization of r in a splitting field and

recall that this factorization is unique). lIenee there are only a

finite numher of L's.

The criterion of Theorem 39 can he applied almost im­

mediately to the case of a separahle extension.

TIIEOREM 40. Any finite-dimensional separahle extension

L of a field K is a simple extension of K.

Prooe. Emhed L in M. a normal closure of Lover K.

By the Galois correspondence it is immediate that there are only

a finite numher of fields hetween K and M. lIenee the same is

true hetween K and L. Apply Theorem 39.

Exercises

1. Prove: if K is infinite and u.v are separahle algehraic

over K then K(u.v) = K(utav) for some a in K. Is this true if

K is fin ite'!

2. Let K have characteristic p and L = K(u.v) where

uP, v P E K and lL:KJ = p
2

• Show that L IS not a simple extension

of K and exhihit an infinite numher of intermediate fields.
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10. Cuhic and Quartic Equations

We turn to the following question: how can the Galois group

of an equation he found explicitly'! We shall give fairly complete

results for cuhic and quartic equations and the initial step in in-

vcstigating general equations.

Let f he a polynomial with coefTicients in a field K of

characteristic I 2. Let M he a splitting field of f over K,

and G the Galois group of \'11K. Assume that the roots

of f are distinct. We think of G as a group of per-

mutations on xi"" ,x
n

and thus as a suhgroup of Sn'

Write

A = (x - x )(x - x )...(x - x ) = TI (x. - x.)
i 2 1 3 n-i n . <' 1 J

1 J

and D = A
2

• Since D is invariant under all the permutations of

the xts, we have DE K. We call D the discriminant of f. We

know that a permutation of the x's IS even if it leaves A fixed

and odd if it sends A into -A. If II denotes the suhgroup of G

consisting of even permutations (the "even suhgroup" of G), it

follows that II and K(A) correspond in the Galois correspondence

hetween suhgroups and intermediate fields. We summarize:

TIIEOREM 41. Let K he a field of characteristic" 2. Let

he a polynomial over K, M a splitting field of f. Assume that

has distinct roots in M. Let G he the Galois group of M/K,

thought of as a group of permutations of the roots of f. Then in

the Galois correspondence K(a) corresponds to the even suhgroup

oJ: G. In particular, G consists of even permutations if and only

if A lies in K.

We continue the analysis, now adding the assumption that

IS irreducihle. It is then true that the order of G is divisihle
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by n. A stronger statement can he made: G IS transitive on the

XIS. That is. for any

M/K sending x. into

and 21).

x. and x, there exists an automorphism of
J

x. (this is immediate from Theorems 12
J

If f is a euhie equation. G is a suhgroup of S3' The only

suhgroups of S with order divisihle hy 3 arc A and S (they
3 3 3

arc of course also the only transitive suhgroups). lienee:

TIIEOREM 42. The Galois group of a separahle irredueihle

euhie over K is either A 3 ~ S3' For K of characteristic ~ 2,

it is A 3 if and only if the discriminant is a square in K.

Elementary computation shows that the discriminant of
3 3 2

x t px 1 q is -4p - 27q . Except for characteristic 3. any

euhie can he reduced to this form hy a change of variahle x = y t e.

If the given hase field K is a sub£ield of the real numhers.

we can usc to good advantage information on the reality of the roots.

In fact if only one root is real (and the euhie is irredueihle). the

Galois group is S3 as in Theorem 29. In this case the discrimi­

nant is negative. If all three roots arc real the discriminant is

positive. and we must determine whether it is a square in K.

Let f he a quartic with distinct roots xi' x 2 ' x 3 , x 4 . The

Galois group G IS a suhgroup of $4' Since the crucial normal

suhgroup of $4 I s V. the suhgroup consisting 0 f (i), (12)(34),

(13)(24), and (14)(23), it is a very natural step to form the expres­

sions Q =x 1x 2 + x
3

x
4

, 13 =x i x 3 + x 2x4 . 'I = x i x 4 + x Zx 3 ,

Ohviously any permutation in V leaves a,l3, and 'I fixed. Con-

versely. an easy argument shows that a permutation leaving

a,I3, 'I fixed is necessarily in V. lienee the field K(a, 13, 'I) cor­

responds to G (IV, and G/(G (IV) is the Galois group of

K(Q,I3,'I) over K.
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The polynomial (y - a)(y - 13){ y - 'Y) is called the resolvent
4 3 2

cubic of f. 1£ f = x + bx + cx + dx + e, an elementary compu-

tation shows that the resolvent cubic is

3 2 2 2
Y - cy + {bd - 4e)y - b e + 4ce - d •

Now let us assume that the quartic f is irreducible. Then

G is a transitive subgroup of 54' The eligible groups are found

to be: 54' A
4

, one of the groups of order 8 (there are three, all

conjugate), V, and the cyclic group of order four generated by a

4-cycle. Checking G/{G nV) in each case we find there is only

one possibility of ambiguity. The details are as follows:

THEOREM 43. 1&1 f be a separable irreducible quartic

over K. Let m be the degree over K of the splitting field of

the resolvent cubic of f. Let G be the Galois group of f over K

Then

( 1) 1£ m = 6, G is 54 '

(2) 1£ m =3, G is A
4

,

(3) 1£ m =1, G is V,

(4) 1£ m = 2, G is either of order 8 or cyclic of order 4.

One way to distinguish the two is to determine whether f is still

irreducible after the roots of the resolvent cubic are adjoined.

It remains to explain the final sentence in Theorem 43. The

Galois group of f over K{a,I3,'Y) is G nV. 1£ G is of order 8,

then G nV = V and is still transitive on the roots; hence f is

still irreducible over K{a, 13, 'Y). But if G is cyclic of order 4,

then G nV has order 2, and f must factor over K{a,I3, 'Y).
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Exercises

1. Let x
3 + ax + b be irreducible over a field K of charac­

teristic 2. Prove that the Galois group is A
3

or S3 according as

y2 + by + a
3 + b

2
has or has not a root in K.

3
2. Let x + px + q be irreducible over a finite field K.

3 2
Prove that -4p - 27q is a square in K.

3. Let x
4 + dx + e be irreducible over a finite field K of

characteristic 2. Prove that d is a cube in K.

4. Let x
4 + ax

2 + b be irreducible over a field .K of charac­

teristic :f: 2. Let G be the Galois group. Prove:

(1) If b is a square in K, G = V,
2

(2) If b is not a square in K but b(a - 4b) is. G is cyclic

of order 4,
2

(3) If neither b nor b(a - 4b) is a square in K, G has

order 8.

5. Let f be a separable irreducible quartic over K, G the

Galois group of f, u a root of f. Show that there is no field pro­

perly between K and K(u) if and only if G = A 4 or 54'

6. Let K be a subfield of the real numbers, f an irreducible

quartic over K. Let G be the Galois group of f. Prove: if f

has exactly two real roots, then G is the whole symmetric

group S4 or is of order 8.

7.
432

Let x + bx + cx + bx + 1 be irreducible over a field K

of characteristic :f: 2. Let G be the Galois group of f. Prove:

(1) If c
2 + 4c + 4 - 4b

2
is a square in K. G =V,

2 2
(2) If c + 4c + 4 - 4b is not a square in K but

(c
2 + 4c + 4 - 4b

2
)(b

2
- 4c + 8) is, G is cyclic of order 4,
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(3) 1£ neither c
2 + 4c + 4 - 4b

2
nor

(c
2 + 4c + 4 - 4b

2
)(b

2
- 4c + 8) is a square in K, G is of order

8. Over a field K of characteristic" 2, let f be a cubic

whose disc riminant is a square in K. Prove that f is either

irreducible or factors completely in K.

9. Over any base field K prove that x
3

- 3x + 1 is either

irreducible or factors completely in K.
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11. Separability

We shall examine in greater detail the behavior of a finite­

dimensional extension field with respect to separability. We first

define a concept which is, so to speak, the extreme opposite of

separability.

DEFINITION. Let K be a field of characteristic p. An
k

element u is purely inseparable over K if for some k, uP

lies in K. A field L containing K is purely inseparable over

K if every element of L is purely inseparable over K.

THEOREM 44. If an element u is both separable and purely

inseparable over K then it lies in K.

Proof. Let f be the irreducible polynomial for u over K.

Then f has distinct roots (in a splitting field). On the other hand,

f is a divisor of a polynomial of the form x
pk

- a which has all

its roots equal. Hence f is linear and u lies in K.

n
THEOREM 45. .!i u is algebraic over K then uP is

separable over K for some n.

Proof. We. argue by induction on the degree of u over K.

If u is separable, all is well. Otherwise the irreducible poly­

nomial for u over K is actually a polynomial in x P , whence

uP has lower degree over K than u does. By induction some
k p pM1

P -th power of u is separable over K, i. e., u is separ-

able over K.

Now we assemble in a single theorem the major results on

the structure of a finite-dimensional extension with respect to

separability.
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TIIEOREM 46. Let "I he a finite-dimensional extension

of K. Then:

(I) There exists a unique largest suhfield L separahle

over K,

(2) There exists a unique largest suhfield \II purely in­

separahle over K.

(3) L(lM = K,

(4) N IS purely inseparahle over L.

(5) "I IS separahle over \II if and only if L UMc '-:.

(6) If I\' is a splitting field over K then L UM = 1\': also.

"I is normal over M. L is normal over K, and the Galois groups

.ll.C.. I\'/M and UK arc isomorphic.

Proo r. (1) Simply take L to he the set of all clements of

"I separahle. It is immediate from Exercise 2 of § 5 that L is a

suhfield and of course it is the unique largest separahle suhfield.

(2) Take M to he the set of all purely inseparahle clements.

It is ohvious that M is a suhfield with the desired property.

(3) The clements of L(I Marc hoth separahle and purely

inseparahle over K. By Theorem 44. they must lie in K.

(4) Let u he any clement of "I. By Theorem 45 some
n

uP is separahle'over K, hence lies in L. This shows that "I

IS purely inseparahle over L.

(5) Suppose that "I is separahle over M. Then evidently

"I IS separahle also over L U M. and hy (4) "I is purely in­

separahle over L UM. lIenee "I =L UM.

Conversely. suppose "I = L U M. If U
1

' • •• , u arc any

generators of Lover K, then "I =M(u
1

, .•• ,u ) and "I is

separahle over M hy Exercise 1 of §5. (Actually hy Theorem 40

a single u would do. hut there is no need to insist on this economy
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(6) Let M denote the fixed suhfield of "I under auto­
o

morphisms of N/K. We claim that M = M First suppose
o

U E M. Then u satisfies a polynomial equation over K of the
n

form x P - a which has all its roots equal. lIenee u cannot he

moved hy an automorphism and u e Mo' Suppose u e M
o

and

let [ he the irreducihle polynomial for u over K. If v is

another root of [ then v E "I hy Theorem 25. and there is an

automorphism of N/K sending u into v hy Theorems 19 and

21. It follows that all the roots of f arc equal and then

(sec Exercise 3) that u is purely inseparahle over K.

We have thus proved M = Mo ' i. e. I N is normal over M.

By (5), L U M = "I. Let T he any automorphism of N/M.

T must send L onto itself for separahle clements go into separ-

ahle clements. By restricting T to L we get an automorphism

of L/K. The resulting homomorphism from the Galois group of

~/M to the Galois group UK is onto (Theorem 21) and one-to­

one for if T is in the kernel it leaves hoth Land M element-

wise fixed and hence also "I = L U M Finally. L is normal over

K. since L n \II = K and only clements of M arc fixed under all

automorphisms of N/K. This completes the proof of Theorem 46.

The transitivity of separahility is now easily proved.

TIIEOREM 47. 11' K C L C M. L is separahle over K, and

M is separahle over L. (all extensions finite-dimensional). then

M is separahle over K.

Prooe. Let P denote the maximal separahle suhfield of M.

regarded as an extension field of K. Of course. p) L. By (4)of

Theorem 46. M is purely inseparahle over P. But M is also

separahle over P, since it is separahle over L. lIenee \II = P.
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We ask: what fields have the property that all extensions arc

separahle'! The answer is given hy Theorem 4X. First we make a

definition.

DEFI~ITIO~. A field K of characteristic p is perfect if

every clement of K is a p-th power in K.

TIIEOREM 4X. K is perfect if and only if every finite-

dimensional extension of K is separahle over K.

Proof. Suppose that the extensions of K arc separahle. If

an clement a E K has no p-th root in K we form K(u) with u

a root of x P - a. The irredueihle polynomial for u (it is in fact

x P - a. as will he proved in the next section) has all its roots equal.

SO u is not separahle. a contradiction.

Conversely. suppose that K is perfect. Let u he algehraie

over K and fits irredueihle polynomial. If u is not separahle.

then f is actually a polynomial in x
p

. By extracting the p-th root

of each eoefTieient of f we can write

contradicting the irredueihility of f.

Exercises

itself as a p-th power,

I. If L is purely inseparahle over K and M is purely 111­

separahle over L. then M is purely inseparahle over K.

2. The notation is that of Theorem 46 and P is another field

hetween K and N.

(a) I\" is purely inseparahle over P if and only if P:) L.

(h) If "I is separahle over P. then p) M,

(c) If PilL = K, then PC M.

3. Let f he an irredueihle polynomial over K and suppose

that (in a splitting field) f has all its roots equal. Show that the
n

characteristic of K must he p! 0, and f must have the form x P - a.
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4. Prove: the irredueihle polynomial for a purely insepar­
n

ahle clement has the form x P - a.

5. Prove: if L is finite-dimensional and purely

inseparahle over K, then [L: K] is a power of p.

6. If K IS perfect and L is a finite-dimensional extension

of K. then L is perfect. (The converse is also true; sec

Exercise 7 of the next section. )

7. If M =K(u, v) where u and v arc algehraie over K

and u is separahle. then M is a simple extension of K. (Ilint:

prove that there arc only finitely many intermediate fields. It

can he assumed that K(u) is the maximal separahle suhfield.

Analyze an intermediate field L hy showing that it lies hetween

its maximal separahle suhfield L o and Lo(v).)

X. Let x4 t ax2 + h he irredueihle over a field K of
characteristic 2, and assume at e2h is not a square in K for

anye E K. Let ~ =K(u) where u IS a root. Prove that (in the

notation of Theorem 46) L U \II II\'.

9. Prove: if u IS separahle over K, then K(u) =K(uP).

10. Prove: if u is separahle over K and v IS purely in-

separahle over K, then K(u,v) = K(utv). Also. K(u,v) = K(uv)

if u,vrO.
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12. Miscellaneous results on radical extensions

It is possihle to give a complete result on the reducihility

of an equation of the form x
n

- a over an arhitrary field. We

hegin hy showing that the prohlem reduces to the case where n

IS a prime power.

TIIEOREM 49. Let K he any field. a an element in K,
tnn

m and n relatively prime integers. Then x - a is irre-

ducihle over K if and only if hoth x
m

- a and x
n

- a are Irre-

ducihle over K.

for

Hy Theorem 1,
rm sn

since u = u u

Proof. If x
mn

- a IS irreducihle. so IS x
m

a hyele­

mentaryalgehra. for x
lTIn

- a =(Xn)m - a.

Conversely. assume x
m

- a and x
n

- a irreducihle over K.

u he a root of x
tnn

- a. Then u
m

IS a root of x
n

- a. IleneLet

[K(u
m

): K] =n and similarly [K(u
n

): K] =m.

[K(un,um):K] = mn. Hut K(u
m

, un) =K(u),

integers r. s with r m t sn =1, lienee the degree of u over K

is nm. and x
mn

- a must he irreducihle over K.

We proceed to attack the prime-power case. The complete

result is given in Theorem 51. with Theorem 50 as a prelude. An

intriguing aspect of the investigation is that the prime 2 hehaves

quite differently from odd primes.

TIIEOREM 50. Let p he prime. x P - a irreducihle over

K and u a root of x P - a. Then:

(1) Y p is odd. or if p = 2 and K has characteristic 2,

u IS not a p-th power in K(u),

(2) y p =2 and K has characteristic I 2, u is a square

i.n K(u) if and only if -4a is a fourth power in K.



-61-

Proof. We suppose that u" w P for w In K(u) and sec,

what conclusion we can reach. The case where K has eharae-

teristie p is simplest of all: since w is a polynomial In u

and p-th powers arc taken termwise we have w P € K, u € K,

a contradiction. We assume that the characteristic is not p.

Adjoin to L a primitive p-th roo t of unity, say E. The

resulting field M IS a splitting field of x P - a Over K and is

thus normal over K. Any automorphism of M/K sends u In­

to some E1U and there is, for every i = 0 ..•• ,p-1, an auto-

morphism
i

€ U .. wp.

. I
T

i
sending u Into E u. Write w. = wT.. Then

The clement w is in K(u) hut not in K. Its irre-

dueihle polynomial (say g) over

and has p distinct roots in M.

K necessarily has degree p,

If Wi is any of these roots

w o 'W 1" •• ,wp _1
all the roots of g.

there is an automorphism S of M/K sending w into Wi. If

uS'" EJU we must have wS =w .• lIenee the clements
J

yield all the roots of g and must he exactly

We conclude that z = w w ... W E K. We
• 0 1 p-1

now multiply together the equations E lU = W. P, finding
1

11uP=,.,a=zP, where 11=1'E'E 2 "'Ep-1. If P is odd, ,.,=1,

and we have the contradiction a'" zP, This completes the proof

of part (1) of the theorem.

When p = 2. ,., = -I and we find only that -a IS a square In

In K. The completion of the investigation in this case is so ele­

mentary that we shall do it again from scratch.

Write u = w
2

, w =at l3u (a and 13 in K). From u" (at l3u)2
.., ..,

we get the equations a-t l3-a '" 0, ZQ'13 = 1. Eliminating )3, we

find a = -4a
4

, so that -4a" 16a
4

is a fourth power in K. Con­
4

versely if -4a'" 16a , we take f3 '" 1/Z a and we verify
..,

u = (at f3u)-.
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.TIIEOREM 51. ~ p be a prime and a an clement in K

with no p-th root in K. Then
pu-

(I) !! p is odd, x - a is irreducible over K for any n
----------=-n --- '

(2) .!!. P = 2 and the characteristic is 2, x Z - a is irre-

ducible over K for any n,

(3) !! p =Z, n ~ 2, and the characteristic is not 2, x Zn - a

IS irreducible over K if and only if -4a is not a fourth power

in K.

Proof. First we show that x P - a is irreducible over K.

Suppose the contrary, and let be an irreducible factor of x P- a

of degree k (0 < k < pl. Let c be the constant term of f. The

roots of x P- a (in some splitting field) all have the form EU,

where u is one fixed root and E p = 1. Since ± c is a product

of k of .hese roots, we have ± c = "u
k

, "P"= I. There exist

integers rand s such that rk t sp = I. We have

rk sp ( /)r su=u u =.ic" a. IIence U7Jr lies in K. Since its p-th

power is a, we have the desired contradiction.

We shall next prove simultaneously parts (I) and (2) of the

theorem. Let v be a root of x pn _ a and write u = v pn -
1

• We

have uP =a, so that [K(u): K) = p (since we have just proved

that x P - a is irreducible over K).

n-1 ( ). . rp over K u It will lollow that

and x
pn

- a is irreducible over K.

If we show that v has degree

v has degree pn over K

n-1That v has degree p

over K(u) will be true by induction on n provided u is not a

p-th power in K(u). This is so, in cases (1) and (Z), by

Theorem 50.

We proceed to part (3) of the theorem. Assume first that
4 n-2

-4a I s a fourth power in K and write a = -4a y = x Z Then

n 4 4 Z Z Z
xZ - a = y t 40' =(y .. ZO'y t ZO' )( Y - ZO'Y t ZO'2).

Con verse Iy, suppose -4a is not a fourth power in K. Again, let
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n zn-1
v be a root of x Z - a and u = v We have (K(u): KI = 2

since u Z =a and we must prove [K(y):K(u)) = Zn-l. For n,: 2

this will be true if u is not a square in K(u), and for n > 2

this will be true by induction on n provided u is not a square in

K(u) and -4u is not a fourth power in K(u). In the latter case,

-u is a square in K(u). So it will suffice to rule out the possi­

bility that either u or -u is a square in K(u). :-.low these two

statements arc in fact equivalent (u - -u induces an automorphism

of K(u) over K) so that part (3) of Theorem 50 applies to com­

plete the proof.

We supplement Theorem 5 I with an analogous one on build-

ing towers of extensions in the context of polynomials of the type

x P - x-a.

Proof.

TIIEOREM 52. Suppose that K has characteristic p.

x p - x - a is irreducible over K, and u ;s a root of xp - x_a.

Then x P - x - aup - 1
IS irreducible over K(u).

If on the contrary x P - x - au
p

-
1

is reducible,

We havev =a t flu t

then (Exercise 2, §7) it has a root v in K(u). Say
p-l

1 yu

yP = a P t I3 Pu P 1 ... t ypu p(p-l)

= a P + 13P(u+ a) + ... + yp(u+ a)p-i

In

yP =y + aup-l = a + 13u + •.• + (y + a)u p-l

we equate coefficients of u
p

-
1

The result is yP = '{ t a. This

contradicts the irreducibUityof xP - x - a over K.

By combining these results with earlier techniques we prove

two theorems on the existence of extensions of large degree.
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TllEOREM 53. Let p he an odd prime and suppose that

the field K has an extension whose degree is divisihle hy p.

Then for any n. K has an extension whose degree is divisihle
n

~ p . For p = 2 the conclusion is still correct if K has

characteristic 2.

Proof. We give a more or less unified proof. hut the

characteristic of K must receive occasional attention. First

suppose the characteristic is p. Then if K IS not perfect. we

arc done; for there will exist an clement a In K with no p-th

root in K and then Theorem 51 furnishes the irredueihle p01y­
n

nomial x P - a. So if the characteristic is p we may assume

that K IS perfect.

Let M he the given extension of K with (M: K) divisihle

hy p. Let L he the maximal separahle subfie1d of K. By part

(4) of Theorem 46, M is purely inseparahle over L. By

Exercise 5. §11, [M:Ll is a power of the characteristic. If the

characteristic is not 1', (L: K) is therefore still divisihle hy p.

If the characteristic is p, M'" L by Theo~m 48 (since we arc

assuming K perfect) and again (L: K) is divisihle hy p. In

other words. we may assume that the given extension is separahle.

By passing to a normal closure we may further assume that it is

normal. By invoking Galois theory and the existence in the Galois

group of an clement of ord er p. we may still further assume that

we arc dealing with a normal extension of degree p. (In doing

this. we have of course replaced K hy a larger field. hut this

docs not change the prohlem. )

Let us then start the notation fresh with L normal over K

and (L: K) =p. Again the characteristic makes a difference. If

the characteristic is p. then hy Theorem 32. L '" K(u) with u

a root of an irreducihle polynomial over K of the form xP - x-a.
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. 2
Application of Theorem 52 yields an extension of K of degree p

n .
and the process can he iterated to get degree p for any n. If

the characteristic is not p we must pay our respects to the

possihly missing p-th roots of 1. Let N he a splitting field of

x P - i over L. and let M he K with the roots of unity adjoined.

A simple argument (of the type used repeatedly in S6) shows that

I\' is normal over M with Galois group cyclic of order p. By

Theorem 34. "I =M(u) with u a root of an irredueihle poly­

nomial x P - a. It only remains to apply Theorem 51.

TllEOREM 54. If K has an extension with dq:ree divisihle

EY 4, then for any n~ 2. K has an extension with degree divis-
. n
~2 •

.£.1;.w).£. If the characteristic is 2. the result is covered hy

Theorem 53; so we assume characteristic different from 2. A

virtual repetition of the argument in Theorem 53 enahles us to re­

organize the given extension so that L IS normal over K with

(L: K] =". We now further adjoin i with i
2 = -I. Then L(i) is

normal over K(i) with relative degree 20 r 4. In either case.

L(i) contains a quadratic extension of K(i) and hence K(i) con­

tains an clement a with no square root in K(i). It cannot he the

case that -4a has a fourth root in K(i), for then -a is a square

and so is a. By Theorem 52. K(i) therefore has extensions of

degree 2
n

for any n. This completes the proof of Theorem 54.

There is still one situation for us to examine. If K has an

extension of even degree hut no extension with degree divisihle hy

4, then a reorganization as ahove will lead to a pair K C L with

(L: K] = 2 and no extensions of K with degree divisihle hy 4.

Even the weaker assumption that K has no extensions exactly of

degree 4 suffices for a strong conclusion.
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TIIEOREM 55. Let K be a field which has a quadratic ex­

tension but no extension of degree 4. Then K is an ordered field

in which every positive clement has a square root.

Proof. Theorem 53 rules out the possibility that K has

characteristic 2. :-.lext, by Theorem 51 it must be the case for

every a in K that either a is a square or -4a is a fourth

power; otherwise x
4

- a would be irreducible over K and yield

an extension of degree 4. In particular, either a or -a IS a

square. It cannot be the case that -1 IS a square, for then

every clement in K would be a square, and no quadratic exten­

sion of K could exist. Thus, for any a, either a or -a is a
,.,

square but not both. We form the field K{i) with i-" -I. In

K(i) every clement must be a square, otherwise we would get a

quadratic extension of K{i) and thereby an extension of K of

degree 4. Writing out the fact that a t bi is a square in K{i).

f · d 2 2. . . I· .we 111 that a t b IS a square 111 K. ThIS supp les what IS

needed to show that K can be ordered by decreeing that the posi-.
tive clements shall be precisely the squares (up to this point we

would not have known that the sum of positive clements is positive).

A partial converse to Theorem 55 appears as Exercise 5

below.

We have accumulated all that is needed to prove briefly a

pretty theorem of Artin and Schreier.

TIIEOREM 56. Suppose a field K is not algebraically

closed but has a finite-dimensional extension L which is alge-

braieally closed. Then K is an ordered field and L =K{i),
,.,

i- " -1.

Proof. The hypothesis puts a fixed bound (the degree of L

over K) on the degree of any extension of K. Therefore, by

Theorems 53 and 54, (L: K] must be 2. Then, by Theorem 55,
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K is an ordered field in which every positive clement has a square

root, and L must be K(i).

The last two theorems have of course been reminiscent of

the facts which hold when K is the field of real numbers. L the

field of complex numbers. But we can add something more to the

picture. The theorem that the field of complex numbers is alge­

braically closed (in ancient days called the "fundamental theorem

of algebra") can be given a neat proo(by Galois theory. We first

prove:

TIIEOREM 57. Suppose that for some prime p everyex­

tension of K has degree divisible by p. Then every extension

of K has degree a power of p.

Proof. Let M be an extension of K. We must prove that

(M: K] is a power of p. We can assume that M is separable

over K. For if the characteristic is a prime different from p.

our hypothesis certainly implies that K is perfect; while if the

characteristic IS p we take the maximal separable subfield of M,

noting that M IS purely inseparable over it and so this upper

degree in any event is a power of p. Furthermore by passing to

a normal closure we can (change notation again) assume that M

is normal over K. Let P be a p-Sylow subgroup of the Galois

group of M/K, and let L be the corresponding subfield. Then

IL: KJ =the index of P and hence is prime to p. By our hy­

pothesis this is possible only if L =K. lIenee (M: K] is a power

of p.

We shall now prove that the field of complex numbers is al­

gebraically closed. using a minimum of information from analysis.

All we need is: (1) every positive real number has a real square

root. (2) every polynomial of odd degree over the real numbers

has a real root.
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TIIEOREM 5R. Let K he an ordered field in which every

positive clement has a square root. Suppose further that every

polynomial of odd degree over K has a root in K. Then K(i)

IS algehraieally closed. where ? = -1.

Prooc' Our hypothesis implies that K has no extensions

of odd degree. By Theorem 57 the degree of any extension of K

is therefore a power of 2. Let "I he a normal extension of K.

The order of the Galois group G of "11K is a power of 2. If

[N:K] > 2 then. hy group theory. G has a suhgroup of index 4

which in turn is contained in a suhgroup of index 2. Transferring

this information to the intermediate fields we get K C L C M

with (L: K] = lM: LJ = 2. ~eeessarily L is K(i), for this is the

only quadratic extension of K. But now Exercise 5 shows that

M cannot exist. for every clement in L has a square root in L.

So: we have proved that the only extension of K (other than K

itself) is K(i). lIenee K(i) is algehraieally closed.

We return to the study of the field K(u) where u is a

root of an irredueihle polynomial x P - a. In Theorem 59 we show

that (Cor characteristic f. p) K(u) contains no p-th roots of cle­

ments of K other than the ohvious ones. We usc this information

to show in Theorem 60 that the adjunction of two "genuinely

difTerent" p-th rooths result in an extension of degree p 2

TIIEOREM 59. Let p he a prime other than the charac­

teristic of K. Let L = K( u) with u a root of an irreducihle

polynomial over K of the form x P - a. Then: an clement v in

L satisfies v P E K if and only if v has the form bun (h c K).

Proo C. If v = hun then yP = hPak E K. Conversely. sup-

pose v € K(u)

v = do + diu +

satis fies yP = c
p-i... + d iU •

P-

E K. Say

If v ~ 0 then Borne d. -j. O. By
1
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multiplying hy an appropriate power of u we ean switeh this d.
1

to the eon stant term. In other words we may assume

After this normalization we shall prove that v lies in

d ~ o.
o
K. Sup-

pose the contrary; then the degree of v over K is necessarily

p and x P - c must he the irreducihle polynomial for v over K.

Now, just as in the proof of Theorem 51, we argue that the other

roots of x P - care ohtained hy replacing u hy E i u
P , p-1

( i = 1, ••. , P- 1 , E = 1, E I 1) in d + d u + t d 1u • The
o 1 p-

sum of all the roots of x P - c is 0 (for there is no term in x p -
i

).

Moreover for an 'I') satisfying 1)P =: 1, fl/1 we have

1 t 1) + •.• + 'l')p-1 = O. It follows that in summing the roots all

the terms in u drop out and we get simply pdo' Since pi 0

and d I- 0 we have the desired contradiction.

TIIEOREM 60. Let p he a prime other than the charac-

teristic of K. Let u, v he the roots of irreducihle polynomials

xp-a. xP-h over K. Then [K(u,v):K]=:p
2

unless h=cPa
n

for some n and some c E K.

Prooe. If the polynomial x P - h remains irreducihle over
-- 2

K(u) then [K(u,v): K] = P • If it factors over K(u) then (Theorem

51) it has a root w in K(u). ~ecessarily w has the form w = EV

with E P =: 1. By Theorem 59 we have w = cu
n

(c E K). Raising

this equation to the p-th power we get h =cPa
n

•

As our final topic in this section we shall examine the

question of computing the degree of u t v when u and v are given

elements algehraic over a field K. We make no attempt to he ex­

haustive; hut Theorems 63 and 64 do cover some useful territory.

Two preliminary theorems will he proved first.
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THEOREM 61. Let M be normal and finite-dimension;

over K and let u. v be elements of M. Let u = u t ' u z' ... ,u

be the conjugates of u (i. e., the roots of its irreducible equr

tion over K) and let v = v , ... , v be the conjugates of v.
--- t n

Assume finally that [K(u.v):K] = mn. Then: for any i,j

cxists an automorphism of M/K sending u into ut...a.n...

v
j
~. Wc construct instcad thc invcrsc automorpd',;'

scnding u
i

into u and Vj into v. Thcrc is somc auto~,

of M/K scnding u
i

into u. Wc havc as yct no control ov.

it docs to vr but aftcr normalizing by applying this automo

our problcm rcduccs to constructing an automorphism of 1-.

kccping u fixcd and scnding somc v
k

into v. ~ow our hy

implics that thc dcgrcc of v ovcr K(u) is still n. so tha'

roots of its irrcduciblc polynomial ovcr K(u) arc still v 1

Sincc M is normal ovcr K(u), thc dcsircd automorphism ..

.i '::'

~ow supposc that (in thc sctup of Thcorcm (1) wc wish

find thc dcgrcc of u t v ovcr K. Thc thcorcm says that all t

clcmcnts u
i

t v
J

(i= i ••••• m, j = 1, ..•. n) arc conjugatcs o'

u tv. Ifall thcsc mn clcmcnts arc distinct wc concludc tho..

dcgrcc of u+v is mn. If a coincidcncc occurs. thcn thc di

cncc of two uls will cqual thc diffcrcncc of two v's. This i

motivation for studying thc diffcrcncc of two conjugatcs as w(

thc ncxt thcorcm.

TIIEOREM 62. Let M bc thc splitting ficld oycr K of

scparablc irrcduciblc polynomial h.))'jug .) prj!uc degree p

diffcrcnt from thc charactcristic of K. Let u t ' U z bG t"'Q di,'

roots of r Thcn M is a normal closurc of thc ficld K(u - u ..
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Since T sends L into itself we find that

- u arc all in L. It follows that
p

Adding up. and rccalling that thc sum of

~ Proof. L L (et be the no rmal cIo sure of K u 1 - u
Z

) in M;

rrhave to prove L = M. The Galois group of M/K contains an

-·'morphism T of order p which is necessarily a p-cycIe on

~ ,ts of f. We can suppose the roots numbered so that the
r{~
.~ (ujuZ···u ).

,".. I r. p
u z ' u

3
,···,u

p
_ j

L for cvcry i..~
t~<~o;"I~;:;:o~;'~o~;oW:,::~ :"', ,LL ",,:;,,~o"'"~ 0"","0'0';";0

I ",THEOREM 63. LeI".' bo ,,,,,'ow,, ",omo,," ,op"mblo'
'i:~ 1< .SuPposc thc dcgrcc of u over K is a primc p diffcrcnt

~
;4\} ,
'" .jhc characterjstjc of K. and that thc dcgrcc of v ~ K tS

'~,,' ,.~ f (q
Thcn K(u+ v) = 'K(u, v), ~, u t v has dcgrcc pn~ K.

",-
,',roof. Wc work in a normal closurc ~ of K(u, v). Lct

./.@e thc ljormal closurcs (within ~) of K(u) and K(v) respec­

All will bc donc by Thcorcm 61 if wc show that no differ-
or!'
" of two conjugatcs of u cquals a diffcrcncc of two conjugatcs

3rL
r thcn U.' u. E L. But by

1 J
This is impossiblc sincc [L; K]

\. Supposc u. - u. = v • v
I. 1 J r s
')rem 62, this implics MeL.

ifj rf
Hvisor of n! and hcncc is not divisiblc by p.

''1 ",n.'
Ii a TIIEOREM 64. ~ P bc a primc diffcrcnt from thc charac­

fIt 'Of,~ K. Let u. v bc roots of irrcduciblc polynomials of thc

.:E x
p

• a. x
p

• b. over K. Assumc that [K(u,v):K] = p2. Thcn

r', has dcgrcc pZ ovcr K.
G

Proof. Again wc havc only to chcck ttat no diffcrcnccof two

J)t1'i'pjugates of u cquals a diffcrcncc of two conjugatcs of v. ~ow

--:')'; diffcrcncc of two conjugatcs of u has thc form (e i _ Ej)U
"S

f·ere E is a primitivc p-th root of unity. So thc cxistcncc of such

cquation would yicld thc conclusion that u/v lics in K(e). But
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[K(E): Kl :S. p-I, while the degree of u/v over K must divide
2

p = [K(u, v): KI. Thus u/v E K would he forced, a contradiction
-,

of [K(u, v): K] = p-.

Exercises

1. Let K he a field in which -1,2, and -2 are not squares.

Prove that x
Zn + I is irreducihle over K for any n. (~ote that

n t I .
this is the cyclotomic polynomial of primitive 2 -th roots of 1).

State and prove a converse.

Exercises 2 and 3 are multiplicative analogs of Theorems 62

and 63.

2. Let M he a splitting field over K of a separahle irre­

ducihle polynomial of prime degree p. Let u
1
'u

Z
he two dis­

tinct roots of f. Assume that u
1

P does not lie in K (that is, f.

taken with highest coefTicient I, is not of the for111 x P - a). Prove

that M is a normal closure of K(u /u
2

).

3. Let u, v he clements separahle over K. Suppose the

degree of u over K is a prime P, that uP does not lie 111 K,

and that the degree of v over K IS n <po Prove that

K(uv) = K(u, v) and that uv has degree pn over K.

4. Let u, v he clements separahle over K. Suppose the

degree of v over K is a prime p and that un E K for some n

less than p. Prove that K(u, v) = K( uv ) and that uv has degree

pn over K. (HiI;l.t: use Theorem 61 and the multiplicative plan

of attack again. Defeat is possihle only if v. = EV. for two con-
t J

jugates of v and an n-th root of I. ~ote that adjunction of I'

does not change the irreducihle equation for v, and examine how

that equation changes when v is replaced hy I"V.)
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5. Let K he an ordered field in whieh every positive ele­
2

ment is a square. Prove that in K(i), i = -I, every element is

a square.

6. Find the degrees over the rational numhers of

(a) 3 1/ 5 12 1/ 4 ,

(b) 2 1/3 - 7
1
/

3
,

(c) {1+3
1/ 5)5

1
/ 4

(d) 2 1/
5

3
1

/
4

•

7. Let K he a field of characteristic p. Suppose that K

has a finite-dimensional extension which is perfect.

K is perfect.

Prove that

x. What is the degree over the rational numhers of

2 1/ 4
t 3 1/ 4 ? Can you "emhed" this in a more general theorem'!

9 Let p he an odd prime difTerent from the characteristic
. 2

of K. Assume that (xp - 1)/(xP - I) is irreducihle over K.

Prove that for any n,

is irreducihle over K.

n n-I
(xp - 1)/(xP - 1)

( )
6 3

10. a If x 1 x 1 I is irreducihle over a field K, prove
2 3

that x +x t 1 and x - 3x t i are irreducihle.
2 3

(b) If x t x 1 I and x - 3x + 1 are irreducihle over
n n-I

K, prove that (x3 _ 1)/(x3 - I) is irreducihle over K for

any n.
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13. Infinite Algebraic Extensions

The theory of infinite-dimensional algebraic extensions pre­

sents us with very few surprises. :-.learly everything we have

proved remains valid, with the exception of results referring spe­

cifically to integers occurring as dimensions. The only serious

hurdle to be overcome is the existence of suitable extensions,

above all the existence of an algebraic closure.

DEFI:-.lITIO:-.l. A field L containing K IS said to be an

algebraic closure of K if L is algebraically closed and is alge-

braie over K.

The difficulty in proving the existence of an algebraic

closure is set-theoretic rather than algebraic. For the reader

who is willing to accept an old fashioned transfinite induction, the

following sketch is offered: let U}..} be a well-ordering of the

irreducible polynomials over K, for A a limit ordinal define

L}.. to be the union of La for a -< \. and define L}..+l to be a

splitting field of f}.. over L}... (:-.lote: the final touch in this

proof is supplied by Exercise 1. )

IIowever, the temper of the times requires that (even at the

expense of some gymnastics) welsarry through the proof using

instead Zorn's lemma. But we must not simply say "Apply

Zorn's lemma to the set of all algebraic extensions of K" ; this

naive gambit would make anyone familiar with the paradoxes turn

pale. We cautiously first get a bound on the cardinal numbers

invol ved.

THEOREM 65. Let L be an algebraic extension of K. If

K IS infinite, Land K have the same cardinal number.

~ L is either finite 0 r countable.
If K is
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Proof. We assume K infinite; the argument for K finite

is just a slight variant.

Standard set-theoretic arguments show that the number of

polynomials over K is the same as the cardinal number (say H)
of K. With each irreducible polyntlmial over K associate what­

ever roots it has in L. This covers all the clements of L with

no duplication. This gives us the upper estimate H
o
~ " ~

for the cardinal number of L.

Even with this cardinal number bound established. it would

be daring to contemplate all algebraic extensions of K. To treat

the matter more cautiously we name a fixed set S disjoint from

K; to give ourselves plenty of room we take the cardinal number

of S to be greater than that of K (and also greater than H' if
o

K is finite). The only fields we allow for the discussion have as

underlying set K and a subset of S; the field operations on K

arc to be maintained unchanged. Thus restricted. we arc able

to apply Zorn's lemma to the set of algebraic extensions of K

and pick a maximal field L. L must be algebraically closed:

for by Theorem 65 there arc still plenty of clements left in S to

construct an algebraic extension of L if an algebraic extension

were still possible. We have proved:

TIIEOREM 66. Any field has an algebraic closure.

The uniqueness of algebraic closure might as well be dis-

cussed in the more general context of splitting fields.

DEFJNITION. Let K be a field. {f.} a set of polynomials

with coefficients in K. A field L:::> K is said to be a splitting.

J:icl.d of {t:} over K if each fa factors completely in Land

L can be obtained from K by adjoining the roots of the f's.
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A s a first exercise. the reader should verify that Theorem

25 holds for infinite-dimensional extensions.

TIIEOREM 67.

of K onto K • Let
-- 0

Let

f I' }
\a

K, KO he fields and S an isomorphism

he a set of polynomials with coefTicients

in. K, 'lJJd let {I' } he the corresponding polynomials over K
a,o

l...cJ.. "I he a splitting field of {f) over K and "I a splitting

field of {I' } over K Then: S can he extended to an iso-
a,o 0

morph ismo f "I onto "I

Prooe. Once again all the algehraic difTiculties lie hehind us.

and only standard set-theoretic maneuvers need to he carried out.

To usc Zorn's lemma we set up a fussily defined partially ordered

set. Its clements arc triples (P,Po ' T) where P IS a field he-

tween K and 1\", Po a fieldhetween K and "I and T an iso-
o 0'

morphism of P onto Po which extends S. We say

(P,P,T)~(Q,Q ,L) if P~Q, P ~Q and T is an extension
o 0 0 0

of U. All is well for the application of Zorn's lemma and we oh-

tain a maximal triple (L. L . V). We have to show that L = "I

and L =N. If for instance L I "I, then sO'Ir.e polynomial f
o a

has not factored completely in L. Define M (LC MC 1\") hy

adjoining the roots of fa to L; note that M is a splitting field

of fa over L. Similarly define M hy adjoining the roots of

I' to L. By Theorem 21. V can he extended to an isomorph-a,o 0

ism of M onto M
o

. This contradicts the maximality of (L. L
o

' V).

In order to apply Theorem 67 to sec the uniqueness of alge-

hraic closure. we have only to note that an algehraic closure is a

splitting field -- sec Exercise 2.

The major point that remains to he settled is the generaliza-

tion of Theorem 24. We will leave the proof to the reader: the

fact to he estahlished is that an algehraic extension M of K is

normal over K if and only if it is separahle over K and a splitt-
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ing field over K. It is then immediate that \II IS also normal

over any intermediate field L. lIenee:

TIIEOREM oX. Let M he normal and algehraie over K.

Then in the Galois correspondence every intermediate field is

clos cd.

As for the suhgroups, it is not true that they arc closed.

The question is eonsiderahly clarified hy an ohservation of Krull

lMathematisehe Annalen (I92X), vol. 1001: it is possihle to topo­

logize the Galois group G of an algehraie extension in such a

way that G heeomes a compact topological group, and a suhgroup

of G is closed in the sense of Galois theory if and only if it is

topologically closed. ~ow the existence of non-closed suhgroups

can he seen purely group-theoretically, for it is easy to prove

that any infinite compact group contains a suhgroup which is not

closed.

Exercises

1. Let L he an algehraie extension of K with the property

that every polynomial with eoefTieients in K factors completely

in L. Prove that L is algehraieally closed.

2. Let L he an algehraie closure of K. Prove that L IS

a splitting field over K of all polynomials with eoefTieients in K,

or of all irredueihle polynomials over K.

3. State and prove the appropriate generalization to infinite

algehraie extensions of Theorem 46.



the subject of simple rings as presented in the lectures. This

chapter was written directly by Professor Kaplansky. "

After a subterranean existence for nearly ten years, the

notes surfaced in February, 1965 in the Chicago Mathematics

Department's lecture notes se.l.ies. They were unchanged except

for the addition of a preface summari.l.ing recent developments.

In the present reprinting there has been some editing, and

at appropriate places new material has been added.



As a guest of t:CLA in the Spring of 1955, I gave a course

on ring theory. ]\"otes on most of the course were prepared by

Kenneth Hoffman. He wrote the following in a preface:

"These notes represent the essential content of a series of

27 lectures given by Professor Irving Kaplansky at the t:niversity­

of California, Los Angeles, during the spring semester, 1955.

An effort has been made to make the notes self-contained; how­

ever certain elementary definitions such as ring, ideal, etc.

have been omitted to save space. The basic subject matter is
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grcat classics from thc days of chain conditions: Dcuring's

Algcbrcn. Albcrtls Structurc of Algcbras. Rings with Minimum

Condition by Artin. ~csbitt and ThralL and Jacobson's Thcoryof

Rings, as wcll as Bourbaki's Modulcs ct Anncaux Scmi-simplcs.

IIcrstcin's Carus Monograph on ~on-commutativcRings. and of

coursc thc standard work: Jacobson's Structurc of Rings.

I am vcry gratcful to Kcnncth IIoffman for his cxccllcnt job

on thc notcs. and for allowing mc to incorporatc his work into

Ficlds and Rings.
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1. Thc Radical

DEFI~ITIO~. Lct A bc a ring. A right A-modulc is an

abclian group Y1, ovcr which thcrc is dcfincd an cxtcrnal law of

composition (x. a) - XCI', with clcmcnts of A. in such a way that

for all x, y in YI and a,j3 in A:

(1) (x+ y}a c xa+ya,

(2) x(a+I3}=xa+xl3,

(3) x(al3) = (xa)j3.

A left A-modulc is a systcm Y1. whcrc (3) is rcplaccd by:

(3)' x(al3) = {xj3)a.

For Icft A-modulcs. it is customary to writc thc clcmcnts of A

on thc Icft. so that (3)' assumcs thc morc natural form

(3)' (al3}x = a(j3x).

If YI is a right A-modulc and A has a unit 1 such that x.1 = x,

for all x in Y1, thcn YI is callcd.ll1itary.

DEFI~ITIO~. If M is a right A-.modulc and x is in Y1.

thc annihilator of x is thc sct of clcmcnts a in A for which

XCI' = O. If S is a subsct of M. thc annihilator of S is thc intcr­

scction ofthc annihilators of thc clcmcnts of S.

TI II'ORI'M 1. Let A bc a ring. and Ict YI bc a right

A-modulc. Thcn thc annihilator of a subsct S ~ M is a right

idcal in A. ::: S is a submodulc. thc annihilator is a 2-sidcd

idcal.

Proof. Lct a and 13 annihilatc S. For any x in S.

x(a -13) =xCI' - xl3 = 0 - 0 =O. Lct y bc any c Icmcn t of A. Thcn.

x(ay} = (xa}-Y =O''{ =O. Thus thc annihilator is a right idcal. If

S is a submodulc. thcn for any y in A and any a annihilating

S wc havc: x{'{a) = (X'{}CI' = O. sincc x:v lics in S. Thus '{a

annihilatcs S. and thc annihilator is now a 2-sidcd idcal.
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IS the annihilator of M, then M IS also a

DEFI:--lITlO:--l. The right A-module M is faithful, if the

annihilator of M consists exactly of the zero clement of A.

DEFINITION.' We say that the right A-module M is 8c.-
dueible, if it has no proper submodules and is not a trivial

module, i. c., M·A I- o.

DEFI:--lITlO:--l. A ring IS right primitive, if it admits a

faithful irreducible right module. (Left primitive ring is defined

similarly. )

Remarks: 1. A trivial ring (all products zero) admits no

irreducible module.

2. G. M. Bergman (Proc. Amer. Math. Soc. 15(1964),

473-5; correction on page 10(0) has given an example of a right

primitive ring which is not left primitive.

TllEOREM 2. Let x be an clement of the right A-module

M, and let I be the annihilator of x. Then' xA is isomorphic

to the module A/I.

Proof. (:--lote that if I is a right ideal in A, we cannot

induce a ring structure on the cosets of I, unless I is also a

left ideal: however, we can give these cosets the structure of a

right A-module, in the obvious manner.) We define a mapping of

A onto xA by h(a) = xa. :--low h is a module homomorphism.

The kernel of h is obviously I, and as usual for algebraic sys­

tems, we must have xA isomorphic to A/I.

TllEOREM 3. y M is an irreducible right A-module and

X IS a non-zero clement of M, then xA = M.
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Proof. Certainly x.A IS a submodule of M. Thus, either

xA'" 0 or xA =M; we wish to exclude the former possibility.

Let S be the set of clements y in M for which yA =O.

Clearly S is a submodule of M., and since M is non-trivial,

S is not all of M. Therefore, S =0, and in particular, x is

not in S. It follows that xA = M

DEFI:--JITlO:--J. The right ideal in the ring A IS called

regular if there is an clement e In A for which ea - a lies In

I for every a in A. The clement e is called a left unit

modulo I. We note that if e is in I, then 1= A.

Example.

regular (e =4).

In the ring of even integers, the ideal (6) IS

The ideal (4) is not regular.

TllEOREM 4. 1! M is an irreducible rif,!ht A module and

X IS a non-zero clement of M, then the annjhjlator of x Is a

regular maximal right ideal In A.

Proof. We know from Theorem ,I that I is a right ideal.

We must show two things:

(a) I is regular. Hy Theorem 3, xA =: M: in particular,

there IS an clement e in A such that xc =: x. Let a be an cle­

ment of A. Then x(ea-a)= xea-xa =xa-xa =: 0; or, ea-a

belongs to I.

(b) IS maximal. If .I were a right ideal properly be-

tween A and I, then .III would be a module properly between

All and (0). Hut All ~ xA = M. and M has no proper sub­

module.

TllEOREM 5. .!.£ \II is an irreducible rif,!ht A-module,

then there is a regular maximal right ideal I in A such that M

is module isomorph ie to A/I.
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Proof. Sec Theorems 2.3 and 4.

DEFI~ITIO~. The 2-sided ideal P in A IS called a right

primitive ideal if AlP is a right primitive ring.

Remark. If \II is a right A-module. then \II is a faithful

right Alp. module. where P is the annihilator of M. Thus. a

2-sided ideal P is right primitive if and only if P is the anni­

hilator of an irredueihle right A-module.

TIIEOREM 6. A right primitive ideal P is the intersec­

tion of the regular maximal right ideals containing it.

Proof. P is the annihilator of an irredueihle right

A-module M. If x IS a non-zero clement of M. then the anni­

hilator of x is, hy Theorem 4. a regular maximal right ideal

in A. The annihilator of Mis, hy definition. the intersection of

the annihilators of clements x in \II. The statement of the theo-

rem is now ohvious.

TIIEOREM 7. The intersection of the right primitive ideals

of a ring A is the intersection of the regular maximal right

ideals of A.

Proof. According to Theorem 6, it will sufTiee to show that

every regular maximal right ideal contains a right primitive

ideal. ~ow A/I is an irredueihle right A-module (non-trivial.

since I is regular). The annihilator P of A/r is a right primi­

tive ideal. Furthermore. P is contained in I; for let p he an

clement of P and let e he the left unit for I. Then ep· plies

in I. But clearly ep helongs to I; hence. p IS 111 I.

DEFI~ITIO~. An clement x in a ring A is called right

quasi-regular. if there is a y in A such that x+ y + xy .. O. We
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shall at times ahhreviate right quasi-regular to R. Q. R. If A

has a unit. x IS R Q. R. if and only if (1t x) is right regular.

For convenience. we introduce the notation

xoy=xtytxy.

The operation (o) is associative and has zero as a unit.

DEFI~ITIO~. We say that x is quasi-regular if x has

hoth a right and left quasi-inverse. ~ote: hecause of associativity.

these two inverses arc necessarily equal. For if xoy = 0 and

zox = O. then z =zo (xoy) =(zox)oy = y.

Remark. If A has a unit. then the mapping f(x):: 1 t x

IS an isomorphism of A under the circle operation with A

under ring multiplication. that is. f{xoy) = f{x)f(y). ~ote also

that the quasi-regular clements of a ring form a group under the

circle operation.

DEFI~ITIO~. A radical ring IS a ring 111 which every ele-

ment is quasi-regular.

Examples of Radical Rings.
-1-,

1. Any trivial ring.

2. Any nil ring. i. e. , one 111 which every clement is nil-

potent.
n

if x =
Indeed. in any ring. a nilpotent clement is quasi-regular:

, n-!
O. then (-x)o(x+ ••• + x ) = o.

Let F' he a field and form all formal power series over
")

u = a1x + ii2x- t .... llere we have

3.

F with no constant term:
-1 2(1 + u) '" 1 - u t u t •••• The right side makes sense since

each power of x occurs only a finite numher of times. From this

relation one can easily sec how to determine a quasi-inverse for u.

TllEOREM X. If a right ideal I consists entirely of right

quasi-regular clements. then I as a subring is a radical ring.
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Proof. Let x he an element of I. We must show that x

has a (2-sided) quasi-inverse in I. There is a y in A such

that x +y +xy = O. Since y = -x - xy, y helongs to I. lIence,

y has a right quasi-inverse z which is also in I. But now y

is quasi-regular and x -:: /.. Therefore y is also a left quasi-

inverse of x.

DEFIl\"ITlOl\". An ideal (left, right, or 2-sided) consisting

entirely of quasi-regular elements will he called a radical ideal

(appropriately qualified).

TIIEOREM 9. If I IS a radical right ideal and M is a

regular maximal right ideal, then I IS contained in M.

Proof. Let x he an element of I, and suppose x does

not he long to M. Then It M is the whole ring; in particular,

there is an i in and an m in M such that it m = e, the

relative unit of M. By hypothesis, there is an element in

for which -i 1 j • ij = O. Since ij 1 mj = ej, we have

-iljtmj= ej. Therefore i=mj-(ej-j), so that

But then e is in M, which is impossihle. Thus,

tained in M.

IS in M.

is con-

TIIEOREM 10. Any proper regular right ideal can he ex­

tended to a regular maximal right ideal (with the same relative

unit).

Proof. Zorn's len1nUl.

TIIEOREM 11. The intersection, l\", of the regular maximal

right ideals of A IS a radical ideal.'

Proof. Let x he in l\"; we will show that x IS right quasi-

regular. Ii x is not R. Q. R. , then the ideal I consisting of all
~
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clements xyty, for y in A. is a proper regular right ideal

(it docs not contain x), with len unit (-x). By Theorem 10.

can he extended to a regular maximal right ideal M. But then

x is not in M, a contradiction. Therefore, x is R. Q. R .. and

hy Theorem X. "I is a radical ideaL

TIIEOREM 12. The following four ideals arc identical:

(I) The intersection of the r~ular maximal right

ideals.

(2) The intersection of the regular maximal left

ideals.

(3) The intersection of the right primitive ideals.

(4) The intersection of the left primitive ideals.

Proof. By Theorem 7, (I) and (3) a re identical, call this

ideal l'\. By· symmetry, (2) and (4)are eq·.lal, call this ideal Nt,

By Theorem 11, 1'\ is a radical ideal, which, hy the "dual"

theorem of Theorem 9, lies in every regular maximal left ideal,

and hence in Nt, Similarly,' Nt is contained in 1'\, so that

Nt = l'\.

Remark. Tlte ideal 1'\" Nt is a radical ideal which contains

every other radical ideal; hence, we call "I the radical of A.

The radical also contains every left. right, or 2-sided nil ideal.

DEFI1'\ITI01'\. The ring A IS said to he semi-simple, if

the radical of A consists of the .I.ero clement alone.

DEFI1'\ITI01'\. A ring A satisfies the descending chain con­

dition (D.C.C.) on right ideal~, if every properly descending

chain of right ideals is finite.

DEFI1'\ITI01'\. An algehra' is a vector space which IS also

a ring, in such a way that for alI ring clements x, y and scalars a:
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Rcmark. If an algcbra has a unit. any right (or Icft) idcal

I s automatically a subspacc. If such an algcbra is finite­

dimcnsionaL thc dcsccnding chain condition on right (or Icft)

ideals is satisficd.

DEFI~ITIO~. Lct I bc a subsct of A and J a right

idcal. Thc symbol IJ will dcnotc thc right idcal spanncd by thc

sct of products ij. with i in I and j in J. (It is thc sct of finitc

sums of such products. )

DEFI~ITIO~. Thc idcal I is nilpotcnt. if for somc posi­

tivc intcgcr n. In == O.

LEMMA. If ax =a and -x IS right quasi-rcgular. thcn

a - o.

Proof. If (-x)oy =0, a(-xoy) = -a = 0.

TIIEOREM U. If thc ring A satisfics thc dcsccnding chain

condition on right idcals. thc radical of A is nilpotcnt.

Supposc P'" (0). Among all right idcals I such that

somc k.

p 2 = P.)

I P .,. (01,

(~otc thatP =(0).sha II show that

Lct ~ bc thc radical of A. Thcn

• By hypothcsis Nk =if+1, for

Proof.
2 3

~)N )N ) ..
k

Lct P =N ; wc

pick a minimal onc 1
0

(dcsccnding chain condition). Thcn thcrc
")

is an x in I such that xP'" (0). Conscqucntly {xP)p = xP-

= xP I (0): so, wc must havc xP = 1
0

, Choosc an clcmcnt a in

P suchthat xa-x. Sincc. in particular, a isin!\', -a IS

right quasi-rcgular. IIcncc. by thc abovc Icmma. x == 0, a contra­

diction. Thcrc forc P = N
k = (0).

DEFI~ITIO~. An algcbra is algcbraic. if cvcry clcmcnt

satisfics a non-trivial polynomial cquation.
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Rcmarks. 1. Thc dircct sum of an infinitc numbcr of

finitc-dimcnsfonal algcbras is algcbraic.

2. Thc algcbra of countably infinitc matriccs ovcr a ficld.

with only a finitc numbcr of non-zcro cntrics. is an infinite-

dimcnsional algcbraic algcbra which is simplc.

THEOREM 14. Thc radical of an algcbraic algcbra is nil.

n k
Proof. Lct x bc in thc radicaL xl ••• 1 ax = O. whcrc

.i k.. k k( -1 n-k)a r o. Solvc for x ,obtallllllg x =x 131x 1 ... - a x . ~()\\'

J3
1

x 1 ••• lics in thc radical. By thc Icmma prior to Thcorcm 13,

x k = 0, i.e., x is nilpotcnt.

DEFI~ITIO~. In a topological ring. thc clcmcnt x IS

n
callcd topologically nilpotcnt. if x approachcs 0 as n - co.

An idcal is topologically nil, if it consists of topologically nil­

potcnt clcmcnts.

Rcmark. In a compact topological ring. thc radical is topo-

logically nil.

TIIEOREM A. Thc radical of a Ban~ch algcbra A is topo-

logically nil. Any Icft. right. or 2-sidcd topologically nil idcal

I S in .the radical.

Proof. For convcnicncc. assumc a unit. Lct x bc in thc
-1

radical. For all complcx A.,A.X is in thc radicaL Thus (1-r..x)

cxists for all A.l furthcrmorc. thc function F(A.) = (1 _A.Xr
1

is

cntirc. For sufficicntly small A.,

1 ") ")
(1 - A.x) - = 1 + A.X + A. -x- 1

Ilcncc. this rclation holds for all A., in particular for r.. '" 1.

Thcrcforc. x
n

approachcs o.

, Lct

Then 2x

bc a topologically nil idcal in A, and Ict x bc in 1.
n

IS in L so that (2x) approachcs O. Thus, for somc K,
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n 7IIx II ~ K2-n. It follows that 1 txt x- t ••• converges (to

-I(1- x) ) and thus that -x is quasi-regular. We see that I

lies in the radical.
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Primitivc Rings and thc Dcnsity Thcorcm
•

DEFI~ITIO~. Thc ring A IS simplc. if thc only two-sidcd
7

idcals in A arc A and (0). and if. in addition A -I (0).

Rcmarks. 1. A simplc ring is cithcr a radical ring or a

pri m i ti vc ring.

2. For many ycars thc cxistcncc of a simplc radical ring

was an intriguing opcn qucstion. Then E. Sasiada (Bull. Acad.

Polon. Sci. 9(1961), 257) announccd thc cxistcncc of such a ring.

A dcfinitivc account has appcarcd in a joint papcr of Sasiada and

P. M. Cohn (.I. of Alg. 5(1967), 373-7).

3. Thc Sasiada cxamplc is howcvcr not a ni I ring and it

rcmains an opcn qucstion whcthcr a simplc nil ring cxists.

4. If a simplc ring has a maximal onc-sidcd idcal (not

ncccssarily rcgular). thcn it is not a radical ring.

5. It is. at timcs convcnicnt to considcr maximal right

idcals as bcing of onc of thrcc typcs:
7

(a) Thosc which contain A -.

(b) Thosc which do not contain A 2, but arc not

rcgular.

(c) Thosc which arc rcgular.

Thcrc cxists a ring in which all thrcc typcs occur; apd thcrc

cxists a simplc ring in which typcs (b) and (c) occur.

Examplcs of simplc rings.

1. Ar.y division ring is simplc. having in fact no propcr

right or Icft idcals. What one might tcrm a convcrsc of this

statcmcnt is also truc. namcly; If A is a ring with no propcr

right idcals. thcn A is trivial (with a primc numbcr of clcmcnts).

or A is a division ring~
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2. The ring A of all n hy n matrices over a division

ring D is simple.
2

Proof. Certainly A I (0). We let c .. denote a matrix
IJ

unit. A general clement of A IS a sum I: aije ij ,alj in ~).

with multiplication performed according to the rule

is notand' I

(O'k = the Kronecker delta). Let I he a two­
J

A with a nos-zero clement a = I: lIi .. e... Then
IJ IJ

accordingly eij is

ekk lies in Ii hence

e i / kl " e i / jk
sided ideal in

the clement en(a)ejj" a 1J e 1J lies in I, and

in I. But then for k" I .. •• , n, ek,e, ,e'
k

=
1 IJ J

the sum of the e
kk

, which is the unit. lies in I.

proper.

If the descending chain condition on right ideals is assumed

there arc no further simple rings. according to the theorem of

W edderburn-A rtin which we shall prove shortly. But otherwise

there arc other examples such as the peculiar one we next

deserihe.

3. Let F he a field of characteristic zero. and let A he

the ring of "difTerential polynamials" I: a.jxio
j

, with a .. tt1 F,
1 IJ

added in the ohvious manner. and multiplied according to the rule

Dx '" xD + 1. (One may think of the clements of A as operators

on real valued functions on the real line. with x corresponding to

"multiplication hy x" and D to difTerentiation.) The ring A

(which is in fact an infinite dimensional algehra) is a principal

ideal ring which has no divisors of zero and is simple. For let
i j

I he a two-ideal in A with a non-zero clement a = I: aiJx D

One easily estahlishes the formulae:

k k-I= x D t kx

D
k Dk-I

x + k

~ow the clement h" xa - ax lies in I. Either h is a non-zero

clement of I which is of lower degree in x than a is, or a is



free of D. If the former situation prevails, we similarly investi­

gate the element xh - bx in I. After a finite numher of'sueh

investigations we must thus arrive at a non-zero element of I

whieh is free of x or of D. 'Let us say, for instanee, that we

ohtain a non-zero e 111 I whieh is free of D. Then, if e is not

a "eonstant" (eonstant polynomial), c l =cD - De is a non-zero

element of I having lower degree in x than does c. Clearly, 111

a finite numher of steps, we arrive at a non-zero "eonstant" in I.

A similar argument holds when e is free of x. In any ease,

eontains a non-zero "eonstant", and is not proper.

Example of a primitive, .non-.~imple ring: Let V he an

infinite-dimensional left veetor spaee over a division ring D.

Let A he the ring of all linear transformations of V into V.

Then A has the following properties:

(a) A is not simple. The set F, of all clements of A

having finite-dimensional range, is a proper two-ideal.

(h) The ring A is right primitive, sinee V is a faithful

irredueihle right A-module.

(e) The ideal F, of linear transformations with finite­

dimensional range, is a simple ring: Let I he a two-ideal in F,

I';' O. We will show that I eontains every linear transformation

U on V whieh has one-dimensional range. This will sufTiee to

show that I = F, sinee any transfoimation in F IS a finite sum

of sueh transformations L. Let S he in I, with xiS =Y
i

-10.

If xL:= y I 0, we ean find a B in F sueh that xB =xl and

zU =0 implies zB = 0; then we ean find a C in F with one­

dimensional range sueh that y Ie = y. Clearly BSC = L: henee,

L IS in I.

(d) If I is any non-zero two-ideal 111 A. F IS !lI1tained

111 I. hy the same proof as in part (e).



-94-

(c) V IS a faithful irredueihle right F-module.

(I') If V has eountahle dimension. then A/F IS simple.

We can show this hy proving that any two-ideal I which eon-

tains F properly is all of A. If I contains an clement S with

infinite-dimensional range. then we can find (in a manner simi-

lar to that of part (e)) clements Band C in A such that

BSC::: 1 (we omit the details); hence. I is not proper.

DEFI~ITIO~. Let M he a right A-module. and let a he

a group endomorphism of M (written on the left). We say that

a is an A-endomorphism of M if for every a in A and m 111

M it is true that a(ma):: (am)a. Cnder the operations

(atJ3)m::: am t 13m

(aJ3)m :: a(J3m)

the set of A-endomorphisms of \II forms a ring.

Examples:

i. If A is the ring of integers. every group endomorphism

of M IS an A-endomorphism.

2. If M IS a vector space over the field A, the A-endo-

morphisms of \II arc the linear transformations of M.

TIIEOREM 15. (Schur's lemma) The ring D of A-endo-

morphisms of an irredueihle module M is a division ring.

Prooe. Since D has a unit. we need only show that each

non-zero clement a 111 D has an inverse. If a F0, then aM

is a non-zero suhmodule of M. which must he M (irreduei­

hility). Let "I he the set of clements m in M for which am::: O.

Then N is a suhmodule of M. which is certainly not all of M;

hence "I:: (0). Thus a is a one-one map of M onto M. and has
-1 1

a set-theoretic inverse. a We need only verify that a- IS

an A-endomorphism. But



-95-

1 -1 -1((a- (m+n) = a (am'+an') = a am' +n'}} '" m'+ nt,

and

Similarly,

m ' + n'
-1 -1

= a m + a n.

-1
m'a'" (a m}a.

This sufTiccs to show that D IS a division ring. We shall refer

to D as the commuting division ring.

Remark. If A is a right primitive ring. With faithful irre-

ducihle right A-module M. then Schur's lemma shows US that

A is isomorphic to a subring of the ring of linear transforma­

tions on M. when M is interpreted as a left vector space over

the commuting division ring D. In general. A is not the full

ring of linear transformations. (We have seen that this is the

case when A is the ring of linear transformations of finite­

dimensional range over an infinite-dimens,ional left vector space.

We are thus led to the following concept.

DEFI:\"ITIO:\". A set J of linear transformations on a vector

space V is called n-transitive if for any two sets of vectors in V:

xi' ... , xn and y l' •.. ,yn' with the x's linearly independent.

there is a transformation S in j such that xiS", y., i = 1, ... ,no

If ~ is n-transitive for every positive integer n, t~en S is

called dense (in the ring of all linear transformations on V).

TIIEOREM 16. (Density theorem) Let A he a right primi-

tive ring. and let M he a faithful irreducihle right A-module.

Make M into a left vector space over the commuting division

ring D (hy Theorem 15). Then A is isomorphic to a dense

ring of linear transformations on M.
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Prooc' If x is any non-zero element of \II. then x.A = M

(Theorem 3). Thus A is I -transitive. ~ow to prove density it

will sufTice to show that for any finite-dimensional suhspace E of

M and any non-zero vector x which is not in M there is a linear

transformation in A which annihilates E hut not x. The proof

will proceed hy induction on the dimension of E. The result has

he en estahlished when E is zero-dimensional; we assume it has

heen demonstrated for dimension n-1. Then. for any n-dimen-

sional suhspace E (and a non-zero x not in E) we write

E =F +Dy, where F is of dimension n- I. Let .I he the anni­

hilator of F. Then .I is a right ideal in A. and y3 is a sub­

module of \II. By the induction hypothesis. yJ # 0; hence.

y3 = M. ~ow suppose that any clement in A which annihilates

E also annihilates x. Then we can define a mapping a of \II

into \II hy a(yj)" xj. for each j in.l. (a is well-defined. since

if yj1 .. yjz then (j, - j 2) annihilates hoth 17 and y, hence E.

implying that xj 1 .. xjZ') One can easi Iy veri fy that a is an

A-endomorphism. that is. a is in D. By definition (ay-x)J" O.

and the induction hypothesis thus implies that ay - x is in F.

It follows that x IS an element of F t D y = E. contrary to as sump-

tion. Consequently. there must exist an element of A which

annihilates E hut not x.

TIIEOREM 17: If a right primitive ring satisfies the de-

scending chain condition on right ideals. it is the full ring of linear.
transformations on a finite-dimensional vector space over a.divi-

sion ring. In particular (Wedderhurn-Artin). this is true of a

simple ring with descending chain condition on right ideals.

Proo C. In the notation of Theorem 16. we must show that

M is finite-dimensional. Suppose the contrary. and let x 1,xZ'
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he an infinite linearly independent set in M. Let I he the anni­
r

hilator of (xl' x
2

' ..• ,x
r

). Then {I) is a descending chain of

right ideals of A. By the density theorem, I I I • This vio-
r r+ 1

lates the descending chain condition.

The result of Wedderhurn-Artin follows when one realizes

that a simple ring with D. C. C. cannot he a radical ring. (A radi­

cal ring with D. C. C. is nilpotent, hence, not simple. )

Remark. A particular consequence of Theorem 17 IS that

a right prim iti ve ring with D. C. C. on right id e als has a unit.

We mention two applications of the density theorem which

arose in various contexts.

I. Let A he a right prim iti ve ring in which the sq uare of

eve~y clement is right quasi-regular. Then A is a division ring

(with no square root of -I).

Prooe. We know that A is a dense ring of linear trans-

formations on a vector space V. We shall show that V is one-

dimensional. If not, take x and y to he linearly independent

vectors in V, and find a linear transformation a in A such that
2 2

xa =-;- and ya'" x. Then xa = -x and ya =-yo But then for
2 2 2 2

any h in A. x(a t h t a h) '" -x and y(a + h t a h) = -y, eon-
. . .2...

tradletll1g the hypothesIs that a IS fight quasI-regular. We re-

mark in connection with this result that a semi-simple Banach

algehra in which every x
2

is R.'Q. R is automatically commutative.

2. If A is a right primitive ring such that for any a, h in

A: a(ab - ha) '" (ah - baja, then A is a division ring.

Prooe. If x, yare linearly independent vectors In V. one

can easily verify that the transformations a (defined in example

ahove) and h, where xh = y, yh = x, violate the commuting con­

dition of the hypothesis.
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We poinl oUl 111 passing a somewhal deeper resull: If

c(ab - ha) '" (ah - ba)c for all a, h, c, lhen A is aClually a

field.

TIIEOREM Hi', (Classical dcnsily lhcorcm) Let V be

a finile-dimensional \'eclor space o\,er an algehraically closed

field F. Let A he an irreducihle algehra of linear transforma­

liomlon V. Then A is the full algehra of linear lransformalions

on V.

Proof. The proof will ulilize Theorem 16. Firsl we nole

lhal V is aClually a failhful irreducihle righl A-module. This

can he seen as follows: If x is a non-zero elemenl of V, lhen

xA IS a suhmodule of V; in facl, since ),,(xa) =x(A.a), we see

lhal xA is a subspace of V. Since V is irreducihle (as a \'ec­

lor space) we musl ha\'e xA'" V. Il follows lhal if a suhmodule

of V conlains a non-zero \'eclor x il conlains xA =V, ie.,

V IS an irreducihle righl A-module. Cerlainly V IS failhful.

,,"exl we show lhal the commuling di\'ision ring D (guaranleed hy

Schur's lemma) is aClually an algehra o\,er F. Lel a he 111 D.

A 111 F, X in V, For anynon-zero y in V lhere IS an a, in A

such lhal x =: ya. Thus a(A.x) '" a(A.' ya) :: a( y' A.a) =«( y)(A.a)

= A.' a(ya) :: )", a(x), Therefore D is aClually an algehra of linear

lransformalions o\,er the \'eclor space V. and as such is neces­

sarily finile-dimensional. We now quole the lheorem lhal the only

finile-dimensional di\'ision algehra o\,er an algehraically closed

field is the field of scalars; in olher words, D'" F. We may apply

Theorem 16 lo conclude lhal A IS a dense ring of linear lrans­

formalions o\,er the \'eclor space V (wilh F as scalar field).

Since V is finile-dimensional, A is the full algehra of linear

lransformalions on V.
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Remarks. 1. Theorem 16' could also ha\'e heen pro\'ed hy

pro\'ing proposilions analogous lo Theorems 15 and 16 for algehras

of linear lransfornlalions~ ralhcr lhan for rings of cndolll0rphisl11S.

2. If we had chosen lo de\'elop the lheory of rings wilh

operalors, eSlahlishing our presenl proposilions in the presence

of operalor domains, Theorem 16' would follow immedialely; how-

e\'er, il seems inad\'isahle lo lreal rings wilh operalors in an

inlroduclory course.

3. The hypolhesis lhal F he algehraically closed is essen­

lial. For example lel F he the field of real numhers and V a

lwo-dimensional space o\,er F. lhen the algehra A of lransfor-

malions on V malricially represenled hy

IS irreducihle.

TIIEOREM 16". (Burnside's lheorem) Let S he a mulli-

plicali\'e semi-group of linear lransformalions on an n-dimensional

\,eclor space V o\,er an algehraically closed field. Suppose V is

irreducihle under S. Then S conlains n
2

linearly independenl

lran s fo rm a l io n s.

Proo r. Lel A he the algehra spanned hy S. Apply

Theorem 16' lo i\!

TIIEOREM B. Let S he an irreducihle mulliplicali\'e semi-

group of linear lransformalions ,on an n-dimensional \,eclor space

V o\,er an algehraically closed field. Suppose lhal exaclly k e
lincl lraces occur in the elemenls of S . Then S has al mosl

2
k

n
elemenls.
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Prooe. Onthe algehra of all linear transformations on V

we introduce the inner product (A. B) = Traee( AB), easily seen

to he non-singular. Let c
1

' •• " ,c
k

be the distinct traces that

occur. Let A. (i = I, .•• ,n
2

) he n 2 linearly independent ele­
1

ments in S (Theorem 16"). Each' X in S satisfies equations

Tr(A.X) = b. where b i , .. ", b 2 arc chosen from the CIS.
1 n

These equations determine X uniquely, so there arc at most
2

k
n

choices for X. (This streamlimng of Burnside's argument

IS due to C. Procesi).

DEFI~ITIO~. A matrix IS unipotent if all its characteristic

roots arc 1. An equivalent statement is that the matrix has the

form identity plus nilpotent.

TIIEOREM C. (Kolchin) Let S he a multiplicative semi-

group of unipotent matrices. Then the clements of S can he

simultaneously put in triangular form.

Prooe. Let n he the size of the matrices. We argue hy

induction on n. The case n = 1 is trivial.

Case I. The scalar field is algehraically closed. If Sis

irreducihle, then hy Theorem B, S has only one clement; where­

as one matrix is always reducihle (here n >1). IIence S IS

reducihle. Then hy choosing a hasis for the invariant subspace

of S and extending it to a complete hasis, all the clements of

will have matrices of the hlock form:

~ow the sets SL' of the upper left corners B, and SR' of the

lower right corners D. form multiplicative semi-groups of uni­

potent matrices of dimension less than n. One can then usc the
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induction hypothesis to triangulatc simultancously thcsc matriccs,

and all clcmcnts of Swill thcn havc hccn put in triangular form.

Casc II. 'An arhitrary scalar ficld F. Form thc algc­

hraic closurc of F and triangulatc thc clcmcnts of S simultanc­

ously as matriccs ovcr thc cxtcnsion ficld. Thcn any product of

n matriccs (T -I). whcrc T is in S and I is thc idcntity

matrix, must hc zcro. Lct r hc thc smallcst intcgcr such that

thc product of any " clcmcnts (T - r) is zcro. Thcn thcrc cxist

clcmcnts T l' .•. , T r-1 in S such that

- I) I o.

Find a vcctor x such that

x( T 1 - I) • I) = y I O.

Thcn for any T in S ,y(T - I) =0, or yT = y. This shows that

S is rcducihlc. Thc argumcnt can now procccd as in Casc I.

DEFI~ITIO~. A torsion group is a group in which cvcry

clcmcnt is of finitc ordcr.

DEFI~ITIO~. A group is locally finitc if cvcry finitcly

gcncratcd suhgroup of it is finitc.

Thc following prohlcm, which comcs in two varictics, was

proposcd hy William A. Burnsidc. /

Burnsidc's Strong Prohlcm: Is cvcry torsion group locally

finitc'!

Burnsidc's Wcak Prohlcm: Is cvcry torsion group, in which

thc ordcr of cvcry clcmcnt is Icss than a fixcd intcgcr. locally

finitc?

Wc makc an analogous dcfinition for algchras.
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DEFI:-.lITIO:-.l. An algebra is locally finite if every finitely

generated sub algebra is finite-dimensional.

Kuroseh proposed the analogues of Burnside's problems.

Kurosehfs Strong Problem:

locally finite'!

Is every algebraic algebra

Kuroseh's Weak Problem: Is an algebraic algebra locally

finite irevery clement satisfies a polynomial of degree less than

a fixed integer'!

Kurosch's weak problem was answered in the affirmative

by Jacobson for semi-simple algebras. and by Levitzki for radi­

cal (i.e .• nil) algebras. It is easy to put these two results to-

gether to get that the answer to the weak Kurosch problem ip

llyes ll •

In a brilliant piece of work Golod (Izv. Akad. :-.lauk SSSR

28(1964), 273-6), basing himself on ideas of Golod and

Shafarevich (same Izv. 261-272) got a negative example for both

strong problems. This negative result increases the interest in

special cases \vhcrc the ans\vcr is a[[irlnativc~ such as algebras

with a polynomial identity (sec section 7).

The status of the weak Burnside problem IS uncertain.

:-.lovikov (Dokl. Akad. :-.lauk SSSR 121(1959), 749-752) has announced

a negative answer when the bound is at least 72, but full details arc

not available (sec the review by Bruck (Math. Rev. 21, 1051-2».

For the important class of groups faithfully represented by

matrices the answer to the strong Burnside problem (let alone

the weak one) is "yes". We proceed to prove this.
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TIIEOREM D. (0. Schmidt) If a group G has a normal

subgroup II such that both II and GIII arc locally finitc. thcn

G is locally finitc.

Proof. Lct a l , ••.• a bc c1cmcnts of G. and Ict

ai, "', a' bc thcir rcspcctivc imagcs undcr thc canonical homo­

morphism of G onto G/H. Thcsc imagcs gcncratc a finitc sub-

group of G/H with c1cmcnts atI' ... ,a' ,a' •..•• a t • Choosc
r r+ 1 n

any c1cmcnts a r +l •• ·. ,an in G which map rcspcctivcly onto

a t
rfl

, ... ,a
l
'). For cach i,j wc havc a,a,:: h a for somc k

1 J ij k '
and somc c1cmcnt h .. in II. Thc c1cmcnts h .. gcncratc a finitc

11 lJ

subgroup T of IL :-.low aiajam :: hijhkm.a£ (for some £).

Thus thc product of any numbcr of thc c1cmcnts a. is cqual to an

c1cmcnt of T timcs somc Clcarly thcn thc a
i

generate a

group with fcwcr c1cmcnts than n. (ordcr T).

TIIEOREM E. A solvablc torsion group G IS locally finitc.

Proof.
is normal In

Wc havc G = G :J G :J •.. :J G :: 1. whcrc G
G and (G.)/(G,o I) A abclian. l{'crtainly an abciliJan

1 1+
I

torsion group is locally finitc: hcncc. by succcssivcly applying

Thcorcm D. wc concludc that G is locally finitc. G .
locally finitc. ctc. n-l n-2 is

TIIEOREM F. Thc multiplicativc group of all non-singular

n EY n triangular matriccs ovcr a ficld is solvablc (and so is any

subgroup).

Wc omit thc proof.

Fqr thc proof of thc ncxt thcorcm. wc nccd thc following

four Icmmas. which wc statc without proof.
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LEMMA 1. The cyclotomic polynomial of any order IS irre­

dueihle over the rational numhers.

LEMMA 2. The degree '1>(n) of the cyclotomic polynomial

11?_(x) tends to ex:> with increasing n.

LEMMA 3. If f is a polynomial irreducihle over a field F

rn& F(x] is the field ohtained from 17 hy the adjunction of a trans­

cendental clement x, then f is irreducihle over F[x].

LEMMA 4 . Let K he a finite-dimensional extension of a

.J:i.cl.d F. Then K can he represented (isomorphically) hy matrices

over F.

We shall also need the following.

LEMMA 5. Let G he a finitely generated torsion group of

matrices over a field F. Then there exists a fixed integer '"

such that if Of is a characteristic root of a matrix in G. then

aN = 1.

(This is equivalent to saying that the clements of G arc of hounded

order; hut we need only the statement·about characteristic roots.)

Proo r. Let A l' . " , A r generate. G. We may rep lace 17

hy the field F l' ohtained hy adjoining the clements of the matrices

Ai to the prime field P of F. Then F 1 can be viewed as a

finite-dimensional extension of a field 9. which is a purely trans­

cendental extension of P. We usc Lemma 4 (ahove) to write

A 1, •.. , A
r

as matrices over Q. Let us say the matrices (over

Q) arc n hy n. Let Of he a characteristic root of one of these

matrices, and let h he the minimal positive integer for which
h

a :: 1. By Lemma 3. tpe irreducihle polynomial over Q which

Of satisfies is actually an irreducihle polynomial over P. We

wish to show that h is hounded for all a. and to do so. we argue

in two cases.
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If P is of eharaeteristie zero, the irreducihle

polynomial for a is the cyclotomic polynomial ~h' Since the

degree of <t>h is less than or equal to n, the exponent h must

he hounded (Lemma 2).

Case II: If P is of characteristic p, and a is of degree

k over P, then the simple extension
k

p elements. Thus a to the power

h S. n, i. e., h is hounded for all a.

P{a}
k

P - 1

is the Galois field of

is 1, so that

Thus for some positive integer '" and any characteristic

root a,

TIIEOREM G. Any torsion group of matrices IS locally

finite.

Prooe. Any torsion group of one hy one matrices IS locally

finite. Assume that any torsion group of matrices of order less

than n is locally finite. Let G * he a torsion group of n by n

matrices, and let G he a finitely generated suhgroup of G*.
Case I: If the underlying vector space is irreducihle

under G. then G is finite. For Lemma 5 implies that only a

finite numher of traces occur in the elements of G. so that G

IS finite hy T},.eorem B.

Case II: If the space IS reducihle, each matrix 111 G can

he written in the hlock form {see 'proof of Theorem C}

• ho' ,n,," "'0'" A (and C) multiply independently. Thus, hy

the induction hypothesis, the set of matrices (A) is locally finite

and similarly for the set (C). We map G homomorphicallyonto

the locally finite set of matrices
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by

T-

The kernel of this homomorphism is the set of matrices

where 1
1

and 12 arc identity matrices. By Theorems E and F.

this kernel is locally finite. Then Theorem D implies that G IS

locally finite. Consequently. G is finite.

It follows that G" is locally finite.
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3. Semi-Simple Rings

For any ring 1\, we shall usc the symhol R(A) for the .

radical of A. When no confusion is possihle. we shall ahhreviate

R(A) to R.

TIIEOREM IX. For any ring 1\, AIR is semi-simple.

Prooe. We first estahlish the following lemma.

LEMMI\. If x is a right quasi-regular element of AIR,
and if x maps into x under the canonical homomorphism

(modulo R). then x IS right quasi-regular.

Prooe. There is a y in I\IR

a y which maps into y. Then xoy

R. Q. R., since there is a z such that

such that x"y = O.

I S in R. But then

Choose

X IS

xo (yo z) = (xc>y)oz = o.

The statement of the theorem now follows readily; for. if Rt IS

the radical of J::/R, (hy the Lemma) the inverse image of Rl
under the canonical homomorphism is a radical ideal in 1\. Such

an ideal lies in R; hertee R' = (0).

Remarks. I. If '" is a homomorphism of the ring A onto

the ring B, then ",(R(A)) is contained in R(B)j however. ",(R(A))

IS not in general all of R(B).

2. Theorem IX says that if one "divides out" the union of

all radical ideals in a ring. th~ quotient ring has no (proper)

radical ideals. To indicate that analogous propositions may fail.

we remark that if one "divides out" the union of all nilpotent ideals

in a ring. the quotient ring may have many nilpotent ideals. In

fact. this quotient ring modulo its nilpotent ideal union may still

have nilpotent ideals. and so on. ad infinitum.
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For thc p-oof of our ncxt thcorcm. wc nccd two Icmmas.

2
In any ri ng A. if - X is R. Q. R. , then

x is R. Q. R.

II' 2-x oy = 0, thcn

)

xo((-x)oy) = xo(-x) oy = (-x·joy = O.

LEMMA 19.2. Let A bc a ring and x an clcmcnt of A.

Thcn xA is a radical idcal if and only if x lics in R(A) .

.£.t..o..u..(. If x is in R(A), ccrtainly xA is a radical idcal.

Supposc xA is a radical idcaL andlet J bc thc right idcal

gcncratcd by x. Wc shall provc J is a radical idcal. ~ow J

is thc collcction of clcmcnts of thc form y =nx + xa. whcrc a

is in A and n is an intcgcr. Onc can casily chcck that for an.y
2

such clcmcnt y. -y is in xA. By Lcmma 19.1. y is R. Q.R.

TIIEOREM 19. Let I bc a right idcal in a ring A. Then

R(I) contains In R(A). l! I is a two-idcaL thcn R(I) js cqllal

.w. In R(A).

Proof. If x lics in I nR(A), thcrc IS a y in A such

that xoy =O. Sincc y = -x - xy. y is in I. Thus In R(A)

is a radical right idcal in L and IS cohtaincd in R(I). If I is

in fact a two-idcaL thcn for any x in R(I) and any a in A.

_(xa)2 = -x(axa) is in R(I) and is thcrcforc R. Q. R. By Lcmma

19.1. xa is R. Q. R. Thus xA is a radical right idcal in IA.

and by Lcmma 19.2. x lics in R(A).

Wc now turn to thc Chincsc rcmaindcr thcorcm. Thc sct-

ting for this thcorcm is as follows. Lct 11, .•• ,In bc two-sidcd

idcals in a ring A. Thcrc is thcn a natural homomorphism of

A into thc dircct sum A/I
1

e A/I
2
~ ••• e A/In' Onc may ask

whcn this homomorphism is onto. If n =2. thc ncccssary and
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sufficicnt condition is that Ii t 1
2
=A, or. as wc may say. '1 and

'2 arc rclativcly primc idcals. Thc ncccssary and sufficicnt con-

dition in gcncral is that for r = 1,2..•. ,n. bc rclativcly

primc to thc intcrscction of thc rcmaining Ikts. Thc Chincsc rc­

maindcr thcorcm statcs that. undcr suitablc hypothcscs. it is

sufficicnt that I
k

bc rclativcly primc in pairs.

TIIEOREM (Chincsc rcmaindcr). Let Ii" •• ' In bc two­

sidcd idcals in a ring A. such that for r f. s, I t I =A. 'f
r s

cach quoticnt ring AI' is cqual to its squarc (that is.

A 2 t' '" A), thcn thc natural homomorphism of A into

A/Ii $ ... $ A/In is. onto.

Proof. Sincc '1 t 1
2

= A. '1 t 1
3

=A,

A
2

= (11 +1 2)(1 1 + 13)C Ii + 1213C Ii + (1
2

(\1
3

),

,''v nvo I".·'"slo"s "vI",' o"vlo"s. Sinc'e A/Ii is cqual to its,
squarc. A = A - t Ii C 1

1
+ (1

2
(11

3
), Conscqucntly.

A = 'I t (I, (\'L~). Wc rcpcat csscntially tlk samc argumcnt using2 _.
A = [1

1
t 1

2
n 1

3
][1

1
t 1

4
] to concludc that A =1

1
+(1

2
(11

3
(11

4
),

By induction. 1
1

+ (1
2

(\1
3

(\ .•• (lIn) =A. A similar argumcnt

shows that cach' is rclativcly primc to thc intcrscction of thc

I
k

, k I .. This sufficcs to show that thc mapping in qucstion is

onto.

,
Rcmark. Thc conditions A - +' = A arc automatically

satisficd if cach quoticnt ring A/I has a unit.

TIIEOREM 20. (Wcddcrburn-Artin). Let A bc a semi-

simplc ring satisfying thc dcsccnding chain condition on two-sidcd

idcals. Supposc furthcr that for cvcry right primitivc idcal P

in A. AlP satisfics thc dcsccnding chain condition on right

idcals. Thcn A is thc dircct sum of a finitc numbcr of simplc

rings. cach of which is a full matrix ring ovcr a division ring.
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Proof. Lct P bc a right primitivc idcal in A. By

Thcorcm 17. AlP is a full matrix ring ovcr a division ring;

in particular AlP IS simplc and has a unit clcmcnt. Thus thc

condition A 2 1 P =A holds. Wc now claim that thcrc arc only

a finitc numbcr of right primitivc idcals. For supposc wc havc

an infinitc numbcr: P l' P 2' ....

P l' P 1(\ P 2' . " , P 1II ... (\ P n'

for instancc.

Wc claim that thc chain

is propcrly dcsccnding. If,

... II Pn (I Pn +1 'P/i ... (lP
n

= P/i

P n ... (lP
1 n

is containcd in P n+1 But by thc Chincsc

rcmaindcr theorcm. P 1 1 (PI n ... n P ) = A. Thc conclusion
n+ n

is P n+1 = A, a contradiction. Our hypothcsis that A satisfics

thc dcsccnding chain condition on two- sidcd idcals thus implics

thcn

that thc numbcr of p. IS is finitc. Thcir intcrscction is 0 by
1

thc scmi-simplicityof A. and A is thc full dircct sum of thc

rings A/p. by anothcr application of thc Chincsc rcmaindcr

theo rcm.

DEFI~ITlO~. Lct A bc a ring. Thc clcmcnt a. in A is

callcd Rcgular (in thc scnsc of von ~cumann) if thcrc is an x in

A for which axa = a. If cvcry clcmcnt of A is Regula,r, thcn A

IS callcd a Rcgular ring.

Rcmark. Bccausc of thc many uscs of thc word "rcgular".

wc shall bcnd our grammar to kccp our mathcmatics straight.

and spcll ttvon ~cumann regular" with a capital ttR".

Examplcs of Rcgular rings:

1. Any division ring is (obviously) Rcgular.

2. A dircct sum of Rcgular rings is Rcgular.

3. Thc n by n matrix ring ovcr a Rcgular ring IS

Rcgular (scc Thcorcm 24). In particular. a scmi-simplc ring

with D. C. C. on right (or Icft) idcals is Rcgular.
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4. Thc ring of all lincar transformations on a vcctor spacc

V (not ncccssarily finitc-dimcnsional) ovcr a division ring is

Rcgular.

Proof. Lct A bc a lincar transformation on V. and Ict

u A = v
a a

As thc v
a

such that{v }
a

bc a basis for thc rangc of A. Choosc u
a

Thcn {u} togcthcr with thc null spacc of A span V.
a

arc lincarly indcpcndcnt. thcrc is a lincar transfor-

mation X such that v X =u. Thcn AXA =A. as onc can
a a

rcadily vcrify. Wc rcmark that thc sct of linear transformations

on V with finitc-dimcnsional rangc is a Rcgular subring of thc

full ring of transformations.

Rcmarks. I. (von ~cumann) In any Rcgular ring. thc ,

sct of principal right idcals is a complcmcntcd. modular latticc.

In his work on Continuous Gcomctry a big thcorcm is thc con-
\

vcrsc: any complcmcntcd modular latticc satisfying ccrtain

mild conditions ariscs from a suitablc Rcgular ring.

2. Any Rcgular Banach algcbra is finitc-dimcnsional.

3. A homomorphic imagc of a Rcgular ring is Rcgular.

TIIEOREM 21. Any Rcgular ring is scmi-simplc.

sincc thc radical of a ring ncvcr contains

R(A). Suppo~e axa =a.

in R(A). Thus ax =o.

Proof. Lct A bc a Rcgular ring. and assumc a
2

Thcn (ax) = axa' x =ax. and

lsi n

ax IS

a non-zcro idcmpotcnt. (If e is an idcmpotcnt in R(A), thcn

. R Q R b . I' 2+ .-e IS ... ; ut. -e t y - cy =0 Imp ICS -e ey-cy = O. l.e.

e = 0.)

LEMMA. (McCoy) 1£ axa - a is Rcgular. thcn a is

Rcgular.
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If (axa - a)y (axa - a) = axa - a. then

a = a(x - y - xayax t xay t yax)a.

TIIEOREM 22. Let A be a ring and I a two-ideal in A.

~ A is Regular if and only if both I and All are Regular.

Proof. If A IS Regular. we have already observed that

All is Regular. Let a be in I. There is an x in A such

that axa=a. But then a=a·xax·a and xax isin L Thus

is Regular. ~ow suppose that both I and All are Regular.

Let a be in A and let a map into a' under the canonical hOI1H

morphism of A onto A/I. There is an Xl in All for which

alxlal = a l . Let x map into xl (modulo I). Then axa - a is in

I. and is there£qre Regular. By McCoy's lemma. a is Regular.

DEFI~ITIO~. The two-ideal I in the ring A is called a

Regular ideal. if IS a Regular ring as a subring of A.

TIIEOREM 23. Any ring A has a unique largest Regular

ideal M. and AIM has no non-zero Regular ideals .

.£J:.oAf:. If I and J are Regular ideals in A. then 1+3

I S Regular. For, by the "first law of isomorphism" for rings.

( I tJ)/1 is isomorphic to J/(1 (lJ). ~ow J /(1 n.J) is Regu lar.

being a homomorphic image of the Regular ring J; since lis

Regular. It J is Regular (Theorem 22). Evidently a finite sum

I[ t 1
2

t

then the set

t In ' of Regular ideals is also Regular. Clearly

M of all finite sums of elements. each lying in

some Regular ideal. is the unique largest Regular ideal in A.

Let J be a Regular ideal in A/M. The inverse image of J

under the homomorphism of A onto AIM is. by Theorem 22.

a Regular ideal in A, and therefore is contained in M. Conse-

quently J == O.
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LEMMA 23.1. If I is a Rcgular idcal in thc ring A and

.I is a right idcal in L then .I IS a right idcal in A.

Proof. Lct j bc in 1. a in A. Thcrc IS an x in Iwith

jxj :: j. Thcn ja:: jxja. Sincc xja IS in L ja is in .I.

LEMMA 23.2. Let A bc a ring with a two-idcal I. If

has a unit. thcn I is a dircct summand of A.

Proof. Lct c bc thc unit clcmcnt for I. Thc kcy point is

that c is ccntral. To scc this. wc notc that for any x in A.

cx lics in I. It can thcrcforc admit c as a right unit clcmcnt.

so wc havc cx:: cxc. In just thc samc way xc :: cxc. IIcncc

cx:: xc and c is ccntral. If wc Ict .I bc (I - c)A :: thc sct of

all a - ca. wc scc rcadily that .I is a two-sidcd idcal and that

A is thc ring dircct sum of I and .I.

Rcmark. Ifthc ring .A is a dircct .summand in e.)ery

largcr ring in which it is an idcal. thcn A has a unit.

Proof. Lct B bc thc standard ring obtaincd by adjoining

a unit to A. B is thc sct of ordcrcd pairs (a, n), with a in A

and n an intcgcr. Thc opcrations in B arc dcfincd by

(a
1
,n

1
) + (az,nzl:: (a

1
+ a

Z
,n

1
+ n

Z
) and (a1,n

1
)'(a

Z
,n

Z
)

:: (a 1a
Z

t n
1

n Z t nZa1,:(I1nZ)' • Thc ring A is isomorphic to thc

ring of pairs (a,a), and A is thus an idcal in B. By hypothcsis

B:: A Gl.l. for somc idcal .I containcd in B. In particular . .I

contains an clcmcnt (e , n) such that for somc a in A.

significant point is that . (e I - I ) IS in .I. Lct b bc in A.

(c. -1). (b, 0) :: (cb- b. 0) IS in both A and .I, so cb :: b.

larIy. bc :: b. Thus c IS a unit for A.

Simi-
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TIIEOREM 23'. If thc ring A has thc dcsccnding chain con­

dition on right idcals. it admits a dircct sum dccomposition

A :: Mal "I. whcrc M is thc maximal Rcgular idcal of A. and "I

has no non-zcro Rcgular idcals.

Proof. Lcmma 23.1 guarantccs that thc maximal Rcgular

idcal M of A (Thcorcm 23) satisfics thc D. C. C on right idcals.

Sincc any Rcgular ring is scmi-simplc. wc scc. from Thcorcm 20.

that M has a unit. By Lcmma 23.2. A admits a dircct sum dc­

composition A :: M al~. Sincc "I must bc isomorphic to AIM,
"I has no non-zcro Rcgular idcals (Thcorcm 23).

TIIEOREM 24. Any n ~ n matrix ring ovcr a Rcgular

ring is Rcgular.

Proof. Wc first considcr thc casc n = 2. For thc matrix

(
a b) ..cd' II c rc :: c. thcn

(: :)G :)(: :) -(: :) = C:rc -a)
,

by McCoy's lcmma. it will sufficc to considcr matriccs

Supposc that axa = a and dyd:: d. Thcn

IIcncc.

(~ :)

G:)(: :)(: :) -G :)= Co axb -:)

Again by McCoy's lcmma. it sufficcs to considcr matriccs(: J.
But if bzb:: b. thcn

This concludcs thc argumcnt for n:: 2.
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For n = 4. thc conclusion follows immcdiatcly upon writing

4 by 4 matriccs in thc block form

whcrc A. B. C.D arc 2 by 2 matriccs. Thc 4 by 4 matriccs arc

thcn simply 2 by 2 matriccs ovcr thc ring of 2 by 2 matriccs.

and thc abovc argumcnt·applics. By induction wc casily obtain

thc rcsult for n = Zk.

For an arbitrary n. pick 2
k ~ n. Thcn thc ring of n by n

matriccs sits as thc uppcr lcft n by n corncr in thc ring of

Zk by 2
k

matriccs. Thc dcsircd rcsult thcn follows from a rc­

mark which wc lcavc as an cxcrcisc for thc rcadcr: if A IS

Rcgular and c is an idcmpotcnt in A. thcn eAe IS Rcgular.

DEFl~ITlO~. Lct G bc a group and F a ficld. Thc

group algcbra of G ovcr F is thc sct of all (formal) lincar com­

binations 1: \gi of thc clcmcnts gi of G, whcrc thc ),.i arc

clcmcnts of F, all but a finitc numbcr of which arc zcro. Thc

algcbraic opcrations arc thc obvious oncs. (U~e of group algc­

bras has madc it possiblc to cxploit ring-thcorctic tcchniqucs in

thc study of groups. Wc shall survcy somc of thc known rcsults

and opcn qucstions. bcginning with a complctc rcsult on semi­

simplicity in casc thc group is finitc. )

TIIEOREM 25. (Maschkc) Let A bc thc group algcbra of

a finitc group G ovcr thc ficld F. If F has charactcristic

zcro. A is scmi-simplc. If F has charactcristic p, then A

IS scmi-simplc ~"and only if p docs not dividc thc ordcr of G.

Proof. Of a numbcr of diffcrcnt known proofs. wc sclcct

onc that uscs a tracc argumcnt in thc rcgular rcprcscntation.

Thc proof procccds in two stcps.
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I. Suppose the characteristic p of F divides the order n

of G. Let a be the sum of all the clements of G. Evidently

ag = ga .. a for any g in G. From this we deduce first that a

lies in the center of the group algebra A. Furthermore, a
2

" na

(n-order of G). Since p divides n, a
2 = O. Since a lies in

the center of A. (aA)2 = (0). Then aA, being a nilpotent ideaL

lies in the radical of A (and is not (0)). lIenee, A is not seml­

simple.

fLSuppose F has characteristic zero or that it has

characteristic p and p docs not divide n. We need the concept

of the regular representation of an algebra H. This representa­

tation is the homomorphic mapping of B onto the algebra of

linear transformations over B (viewed as a vector space) de-

termined by x ... 1\, where a,l\ :: ax. :-Jote that when H has a

unit this representation is faithfuL i. e. an isomorphism.

We return to the group algebra A. Suppose ~ }..igi IS a

non-zero clement of R(A). Multiplying by a suitable clement of

A, we obtain an clement x in R(A) of the form

ItfJ.{Rg t ... tlJ. R
1 r g

Then each R IS a
gi

x " 1 t 1J.1 g 1 t ••• t lJ.rg
r

, Under the regular representation of A

x maps into the linear transformation R =
x

Choose as a basis of A the clements of G.

permutation matrix corresponding to a permutation leaving no cleo

R has zeros on the diagonaL so
gi

On the other hand x (being in the

ment fixed. It follows that

that the trace Tr(R ) = O.
, gi

radical of a finite-dimensional algebra) is nilpotent; hence R
x

is nilpotent; and hence Tr(R ) = O. Hut Tr(R ) [] n # 0
" x

(pdoes not divide n). This is the desired contradiction.
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We can deduce from Theorem 25 a result on the Regularity

of certain infinite-dimensional group algebras.

TlIEOREM 26. Let G be a locally finite group. Let A

be the group algebra of G over a field F. 1£ F has charac­

teristic zero. 0 r if I' has characteristic p while no clement of

G is of order p.~ A is Regular.

Proof. Let x be in A. Then there exist clements

g1' ..• ,gn In G such that x lies in the subalgebra H generated

by the g .. As G is locally finite. g1"" ,gn generate a finite

subgroup G' of G. :-Jow H is the group algebra of G' over F.

Hy Theorem 25, B is semi-simple. Hut H is also Regular. as

any finite-dimensional semi-simple algebra is Regular. Conse-

quently. x is Regular.

This theorem stimulated a series of investigations eoneern-

ing the validity of the converse. Partial results were obtained by

M. Auslander. McLaughlin, and Villamayor. Then Villamayor

(Pac. J. of Math. 9(1959), 941-951) proved the full converse: if

the group algebra A of G over I' IS Regular then G is locally

finite and. if I' has characteristic p, G has no clements of

order p.

We turn to the question of the semi-simplicity of a group

algebra A. first over a field I' of characteristic O. A great

deal of progress has been made by Amitsur and Ilerstein. The

semi-simplicity of A is known if F is uncountable. 0 r if I' is

transcendental over the rational numbers. To settle it in the re-

maining cases (I' algebraic over the rational numbers) it would

suffice to handle the field of rational numbers. In any event. A

has no nil ideals.
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Similar results for characteristic p have heen proved hy

Passman (Mich. Math. J. 9(1962), 375-384).

Analytic methods provide a quick proof of semi-simplicity

over the field of complex numhers.

TIIEOREM II (RickFt, Segal) Any self-adjoint algehra A

of hounded operators on a (complex) pre-llilhert space is semi­

simple.

P roo 1'. We may as well assume the pre-llilhert'spaee

complete (simply complete it! ).
"-

Let T he in R(A), the* radical of A. Then TT i~ in

R(A), and consequently, -AT T is quasi-regular for any complex

numher A. If I is the identity operator, then I->-'T*T has an

Inverse In the full operator algehra; in other words, the spectrum

of T*T contains at most the numher zero. It is known that this

implies T"T os O. Therefore T = o.

We can now demonstrate that the complex group algehra of

any group G is semi-simple. For any a'" !: Xig
i
, gi in G, A.

i
complex, define

JI a II 2 = !: J >-..1 2
1

Then 11-' - JI IS a norm, supporting an inner product, which makes

the group algehra A into a pre-llilhert space. To each clement

for whichon Aa in A make correspond the operator T a
{3T~ '" {3a. The algehra of these operators T is self-adjoint

~ _ -1 a
T: =T'( , where y =: 1; >-'igi Since A is evidently isomorphic

to this operator algehra, we apply Theorem II and conclude that

A is semi-simple.
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At the other extreme, we study groups for which the group

algehra is almost all radical. We introduce the augmentation

.i.d.c..aJ ~: the set of all 2: \gi with 2:),.i =o.

TIIEOREM 27. If G is a finite p-group and F has

characteristic p, then "I is nilpotent.

Proof. Of the several possihle styles of proof, we choose

to make an application of Kolchin's theorem (Theorem C in §Z).

Fix a hasis for A (as a vector space), and consider the

regular represe~tation x - R
x

' For each g in G

k such that R p :: l. The characteristic roots of
k .g . "

P -th roots of uOity. SInce F has characteristic

there is a

R arc thus
g

p, these roots

must In fact he equal to one. We now apply Kolchin's theorem

and conclude that the matrices R can he simultaneously tri-
g

angulated. Thus, the entire group algehra is triangulated in its

regular rdpresentation. Consequently, ~ is the set of matrices

with a's down the main diagonal. Therefore N is nilpotent.

COROLLARY. If G is a locally finite p-group and F has

characteristic p, then N is a nil ideal.

Proof. Let x =2: ),.igi he in "I. We wish to show that x

IS nilpotent. Consider the finite suhgroup of G generated hy the

g. for which ).. ..~ O. Applying Theorem 27, we sec that x is
1 -

nilpotent.

Actually, more IS true: ~ IS locally nilpotent (i.e.,

every finitely generated suhalgehra of I\' is nilpotent). Losey

(Mich. Math . .I. 7(1960), 237-240) has proved the converse:

if ~ is locally nilpotent then G is a locally finite p-group and

F has characteristic p.
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We arc now going to lead up to a theorem on complete re-

dueihility of representations which will make usc of Theorem 26

and of the local finiteness of torsion matrix groups. First we

need some hasie information on complete redueihility.

DEFI~ITIO~. The right A-module M is completely re-

dueihle , iCit is a direct sum of irredueihle right A-modules.

TIIEOREM 28. Let A he a ring. and suppose that A is

the sum of its minimal right ideals. If A contains no total (10)

left annihilator, then any right A-module M such that :viA = M

IS completely redueihle.

Proof. We first argue that M is a sum of irredueihle

suhmodules. If x is in M. and is a minimal right ideal in

A, consider the homomorphism of onto xl which carries i

in I into xi. Since I is a minimal right ideal, it has no sub­

modules (when viewed as a right A-module). Thus the kernel of

the ahove homomorphism is either (0) or I. If the kernel is I,

xl =O. If the kernel is (0). Xl e!! I. an irredueihle suhmodule

of M. (I is not trivial, that is. IA r(0), since A has no total

left annihilators other than zero). The sum of all the modules

xl, as x runs through M. and I through the minimal right

ideal of A. is certainly MA = M. A s the suhmodules xl = ~

may he disregarded. M is a sum of irreducihle modules.

It remains to cut this sum down to a direct sum. This

calls for a straightforward transfinite induction (or usc of Zornls

lemma) quite analogous to picking a hasis of a vector space. and

we leave it to the reader.



-121-

We need a lemma. whose proof we also leave to the reader.

LEMMA. 1£ A is a semi-simple ring with the descending

chain condition on right ideals. then A is the sum of its mini­

mal right ideals.

DEFI~ITIO~. Let A he a finite-dimensional algehra with

unit over a field F. Let Y he a finite-dimensional vector space

over F. By a representation of A on Y we mean an algehraie

homomorphism of A into the algehra of linear transformations

on Y. carrying the unit of A into the identity transformation.

Remark. A representation of A on Y amounts to making

Y into a right A-module. Any suhmodule S of Y is then auto­

matically a suhspaee. If S IS in Sand}" in F. then }"·1 is

in A. so that }"S = s(},,' 1), which lies in S.

TIIEOREM 19. Let G he a torsion group. Let Y be a

finite-dimensional vector space over a field F. If 17 has charac­

teristic p. assume also that G has no clements of order p.

Then any representation of G ~ Y is completely reducihle.

Prooe. (By a representation of G on Y we mean a homo­

morphism of G onto a multiplicative group of linear transforma­

tions over Y, the identity of G mapping into the identity trans­

formation. To say the representation is completely reducihle is

to say that Y is a direct sum of suhspaces which arc invariant

under the transformation group and arc irreducihle.} We first

note that we may assume the representation to he faithful. i. e.,

an isomorphism; for. if this is not the case. we consider the iso­

morphism on G modulo the kernel of the representation. As G

is a torsion group isomorphic to a matrix group. Burnside's

theorem tells us that G IS locally finite. Let A he the group

algehra of A over F. By Theorem 16, A IS Regular. The
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representation of G induces a representation of A. Let K be

the kernel of this induced homomorphism (representation). Then

A/K IS Regular. But A/K is finite-dimensional. Therefore.

A/K IS semi-simple (Regularity implies semi-simplicity) and

satisfies the descending chain condition on right ideals. It fol-

lows from the lemma and Theorem 21\ that V is completely

reducible.

There arc n umeriou s unsol ved prob lems concern ing group

algebras. We shall conclude this section by mentioning three of

them.

1. If G is torsion-free is its group algebra free of zero­

di visors'! Roughly speaking. the best that is known is that the

answer is affirmative if G can be (linearly) ordered. This

applies in particular to torsion-free abelian groups. for they can

be ordered.

2. Let F be a field of characteristic O. G an arbitrary

group. and A the group algebra of Gover F. Fact: if xy = I

for x and y in A. then yx = I. Moreover. the same is true for

the algebra of n by n matrices over A. For an application of

this result sec Coekeroft and Swan (Proe. Lon. Math. Soc. 11

(1961), 194-2(2).

The only known proof is analytic. In brief: A can be em-

bedded in a weakly closed algebra A (W" -algebra. von :---.leumann

algebra) of operators on the IIilbert space L
2
(G). It is known

*that A
o

is "finite", a technical term in the theory of W -algebras

which means precisely the property we arc trying to prove. It is
~~

further known that finiteness of a W -algebra A
o

implies finite-

ness of matrix algebras over A
o
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Open question: docs this property (that one-sided inverses

arc two-sided) hold for group algebras in characteristic p?

3. Again let F be a field of characteristic O. G an ar­

bitrary group. and A the group algebra of Gover F. Let

e be an idempotent in A, e 10 or 1. Theorem (unpublished):

the coefficient of the unit clement in G is a totally real alge­

braic number with the property that it and all its conjugates lie

strictly between 0 and 1. Again the proof is analytic. Query:

is the coefficient in question actually rational'!
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4. Thc Wcddcrburn Principal Thcorcm

Lct A bc an algcbra with radical R. Thc Wcddcrburn

principal thcorcm asscrts that undcr suitablc hypothcscs A is

a vcctor spacc dircct sum of R and a subalgcbra S (ncccssarily

S is isomorphic to AIR). This accomplishcs a partial rcduc­

tion of thc study of algcbras to thc radical and scmi-simplc cascs.

In this scction wc shall introducc an ad hoc hypothcsis

callcd ttSBP' (hopcfully somc day thcrc will bc a morc graccful

namc). Wc conccntratc on thc implications of this hypothcsis for

thc lifting of idcmpotcnts.

Thc SBI idca arosc in a convcrsation with Jacobson in thc

latc 1940's. Thc intcntion was to unify a numbcr of diffcrcnt con­

tcxts in which thc lifting of idcmpotcnts is possiblc.

DEFl~ITlO~. Lct A bc a ring with radical R. Wc sas

that A is an SBI ring if for any y in R thcrc cxists an x in

R such that
")

(1) x- t x = y.

(2) For all z in R. yz'" zy implics xz = zx (i.e .••

x commutcs with anything that commutcs with y).

TIlEOREM 30. If R is niL A is SBl.

Proof. Wc think of thc formal solution of thc quadratic

.2
0cq uatlon x t x - Y = :

-l+~
2

If wc cxpand .J1"T4V" by thc binomial thcorcm and thcn simplify

wc find x to bc a powcr scrics in y with intcgral cocfficicnts.

It starts

Y2 t 2y3X" Y -
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~ow if y is nilpotcnt. thc scrics brcaks off aftcr a finitc

numbcr of tcrms. Thc rcsulting clcmcnt x ccrtainly commutcs

with anything that commutcs with y. Wc Icavc it to thc rcadcr to
convincc himsclf that wc havc solvcd thc cquation x2t x = y (it

is possiblc to formulatc and provc rigorously a principlc of thc

"prc scrvation of idcntitics ll ).

Rcmarks. 1. Any' Banach algcbra IS SBI. If y is in thc

radicaL thc scrics (*) convcrgcs.

2. Any compact topological ring is SBL thc abovc scrics

again convcrging.

3. Thc following IS an cxamplc of a ring which is not SBI.

Lct A bc thc ring of rational numbcrs with odd dcnominator.

This is a principal idcal ring in which 2 is thc only primc ele­
I

-mcrit. Accordingly. thc radical is thc singlc maximal idcal (2).

Fo; y= -2. no x (not cvcn a rcal x) cxists such that x2tx = y.

TIIEOREM 31. Let A bc an SBI ring with radical R. Let

u, v bc orthogonal (uv" vu =0) idcmpotcnts in AIR. If thcrc

exi!ts an idcmpotcnt c in A which maps into u undcr thc

canonical homomorphism (of A~ AIR), thcn thcrc cxists an

idcmpotcnt I' 'in A, orthogonal to c. mapping into v.

Proof. In what follows. wc shall makc symbolic usc of a

unit. Thc rcadcr may. if hc so dcsircs. simply think of adjoining

a unit to A (if it docs not alrcady havc onc). Lct b bc an clc-

v. Lct a" (1 - e)b(1 - c). Thcn a maps

Thc clcmcnt z =a 2 • a lics in R. and

(Za - 1) Z = 4a 2 - 4a t = 4z t 1. As z IS

mapping on

and ca =ac =O.

cz = ze =O. Considcr

in R, (Za. 1r2 cxists

mcnt of A

on v

(and commutcs with z). Sincc A is SBL
')

thcrc is a w in R such that w- t w t z(Za -1)-2 = O. This clc-

mcnt commutcs with c and a. Lct x = {1 - e)w. Thcn
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-Z Z
x2+x+z(Za-1) =(1-e)[w2lwlz(Za-1f ]=0, and ex=xe=O,

Lel r=x(Za-1) and [=alr. Since ra=ar.

Z 2 Z 2 2 2
f = a 1 Zar 1 r = a 1 Zax(Za - 1) 1 x (Za - 1)

. 2( 2 (2 IRecalltt1g lhal x Za- 1) 1 x 2e- 1) t z = O. we sec l1al

Z 7 Z
f = (a - - z) 1 Zax( Za - 1) - x( Za - 1) = a 1 x( Za - 1) '" f

","ower =re = O. so lhal ef =fe = O. Since r is in R. f maps

onlo y in AIR,

Remarks. I. In conneclion wilh Theorem 31. we shall say

lhal y has heen lifLed lo an idempolenl f in A.

2. If A is commUlaliye. lifLs of idempolenls arc unique.

If e
1

and e
2

arc holh lifLs of the same idempolenl.

IS an idempolenl in the radical and IS lherefore zero.

e
2

_ e
Z

e
1

BUl lhen

Z
= e1

so e j - e
Z

:: O.

3. FUrlhermore. when A is commUlaliye. lifLs of orlho-

gonal idempolenls arc aUlomalically Orlhogonal. If e
j

maps on

u
j

and e on U where U u
Z

:: 0 (u.,e, idempolenl). lhen e 1e 2Z Z j 1 1

IS an idempolenl in the radical, and is lhus zero.

COROLLARY. If A IS an SBI ring and u
1
,u

Z
' ••• are

counlahly many Orlhogonal idempolenls tt1 AIR, lhen lhey can be

lifLed lo Orlhogonal idempolenls in A.

idempolenl e
1

in A. Wilh e = e
1

, U
z

can he lifLed lo

gonal lo e
j

, Wilh e =e
1

1 e z, U
3

can he lifLed lo e
3

,

lo e
1

t e
Z

(and consequenlly Orlhogonal lo e
j

and e
2
),

Proo r. Taking e = 0 in Theorem 31. we can Ii fL U
j

lo an

e Z' ortho­

Orlhogonal

elc.

Remark. The Corollary is in general false for an uncounlahle

colleclion of Orlhogonal idempolenls. Fo:r; compacl lopological rings

il is. however. lrue.
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DEFI);ITIO);. Two idempolenls eJ 111 a ring A are said

lo he relaled if lhere exisl elemenls x 111 eAf and y 111 fAe

such lhal xy = e and yx:: f. We nole lhal e and fare relaled

if and only if eA and fA are isomorphic righl A-modules.

TIIEOREM 32 . .!£l e and [ he idempolenls in a ring A.

mapping respectively inlo the elemenls u and v of AIR
~

R is the radical ae A). Then if u and v are relaled, e and

are relaled.

Proof, By hypolhesis, lhere exisl dements x 111 u{A/R)v

and y in v{A/R)u such lhal xy "u and yx :: v. Take any x

and y mapping on x and y, respeclively. (We may assume x

in eAf and y in fA e; if nol, we would consider ex f and fy e.

);ow "XoYo maps inlo u, so xoy 0 - e IS 111 R. There exisls a

such lhal xOY
o

- e t l t (x
o

y 0 - e)l:: O. Mulliplying lhis equa­

tion hy e on the len (and recalling lhal ex
o

:: X ) we have

x oY0 -
e l x oY 0

l :: O. Thus x y t x oy 0
l :: x y (e II ) :: e. );ow lel

0 0 0 0

x :: X and y:: y (ett)e. Cerlainly x lies 111 eAf and y 111

fAe. Also xy :: e. To sec lhal yx :: f. we proceed as follows:

yx is idempolenl and is in fA£. Direcl compulalion shows lhal

yx maps inlo v. in A/R. Consequenlly [- yx IS 111 R. BUl

[- yx is idempolenl, and musl lherefore he zero.

The version we presenl of the Wedderhurn principal lheorem

assumes lhal AIR is finile-dimensional and is a direcl sum of

lolal malrix algehras over the hase field F, lhal is, the division

algehras lhal mighl occur are assumed lo collapse lo F.

TIIEOREM 33. Let A be an SBI algehra over a field F

such lhal A/R{A) is finite-dimensional. Assume lhal each lolal

malrix ring summand of AIR has F as ils associaled division

ring. Then lhere exisls a suhalgehra S of A such lhal A is

lhe veclor space direcl sum of Sand R.
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Proof. Lct AIR = Al $ A
Z

$ ... $ A
r

, whcrc cach A. is a

(k)
full matrix algcbra ovcr F. Lct f.l

ij
,i,I" = I, .. , ,n

k
bc thc

matrix units of A
k

, Thc clcmcnts f.l'I~lk) (i= I, .. . ,nk ;

k = 1" .. ,r) arc orthogonal idcmpotcnts in AIR which can (by

'd (k). AThcorcm 31) bc liftcd to orthogonal I cmpotcnts e'l'l 111 .

(k) (k) . _ (k)
Thc clcmcnts \.1.11 and \.I. \'1 arc rclatcd. uSll1g x = \.I.1i and

y = \.I.i~k) (thc notation is that of Thcorcm 32). Thcrcforc. by

(k) (k) _ (k)
Thcorcm 32. c II and en arc rclatcd for somc x - c1i

_ (k) . (k) _ (k) (k) .'
and y - e'1 ' ~ow wc dcfll1c C.. - e'

1
e

1
.• We must ven-

1 1J 1 J

fy that this dcfinition is consistcnt with thc onc abovc whcn i = j,

But this follows immcdiatcly from thc dcfinition of c1;k) and

(k) . (k) (k) = (k)
c

1
' . ~ow wc clallll that c.. e t O.• c. , By dcfinition
1 1J 5 JS It

e (k) e (k) = e (k) e (k) e (k) e (k) Now e (k) lies in
ij st i 1 1j s 1 1t • 1j

C1~k) Aej)k) and cst:). lics in cs~k)Aelr). Thus. if j I 5,

e
1

\k). c (1k ) = O. and accordingly c.(k)e (1k ) = O. If j = s, thcn
J S 1J S

(b d f · .. ) (k) (k) (k) R II' I (k) (k) _ (k)
y c II1ltlon c

1j
e

s1
= e

11
• cca II1g t lat cit ell - e

ii

wc obtain for .i = 5

6. e. (k)
JS It

(k) (k) (k) (k) (k)
e ij est = ei 1 e 11 e it

~ow wc know that (k) (k)
c ij est

likc matrix units.

; 0 r ~ thc (k) bchavce ..
1J

(k)
Lct S bc thc subspace of A spanncd by all thc e" ,all

1J
i.j. k. Clcarly S is a subalgcbra. Thc imagc of 5 undcr thc

canonical homomorphism of A onto AIR is AIR, sincc thc
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element
n

1
n

r
(r)2: (1) (1) L (r)

A.. fl. ij , ... , A.. fl. •.
i.j =1

lJ
i.j =1

lJ lJ

of AIR is thc imagc of thc clcmcnt 2: A (k) (k)
in S... e ..

i, j, k lJ lJ

IS zcro.

Furthcrmorc

(k)
cach X..

lJ

2:
i, j. k

will havc imagc zcro only if

That isS n R = (0). It follows that A is

thc vcctor spacc dircct sum of Sand R.

This is as far as wc carry thc thcory. But wc notc that in

classical accounts. or in contcmporary vcrsions using cohomology.

thc assumptions arc strongcr on Rand wcakcr on AIR: it is

assumcd that R is nilpotcnt and that AIR is finitc-dimcnsional

and scparablc <i.e., thc ccntcr of cach simplc componcnt of AIR

is a ficld scparablc ovcr F). Scparability cannot bc droppcd. as

shown by thc following cxamplc. Lct 17 bc a ficld of charac-

tcristic 2. containing an clcmcnt c' with no squarc root in F.
'") 2

Lct A bc thc cxtcnsion algcbra F[x]/(x- +c) of F. Thcn A

can bc viewed as thc algcbra q.f polynomials in x of dcgrcc Icss
• 4 2

than 4, multiplicd with thc rcstriction x "" c • Thc radical of A
'")

is thc nilpotcnt idcal R(A) =(x- t c). Thcn AIR is thc ficld

F(.fc) = F[y]/(y2 t c). Thcrc is no subalgcbra S of A such that

A is thc vcctor spacc dircct sum of Sand R. sincc this would

imply S isomorphic to AIR, whcrcas S cannot contain a squarc

root of c (sincc A docs not).

A s a final topic in this scction wc carry out thc classifica-

tion of two-dimcnsional algcbras. Thcrc arc cight possibilitics

(but notc that thc third onc compriscs all quadratic ficlds ovcr F;

as cxtrcmc cascs thcrc may bc nonc at all or infinitcly many).
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esc of the Wedderhurn principal theorem cuts down the work a

trifle.

First we remark that the only one-dimensional algehras

(associative or not) over a field Fare F itself and a one-

dimensional vector space with trivial multiplication. If A is a
2

one-dimensional algehra generated hy y, then y '" >"y for

some A 111 F. If >.. = O. the multiplication in A IS trivial;

whereas if A'I 0, then the clement x = y/>.. also generates A.

Furthermore, x 2 :: x, so that A IS isomorphic to F.

Let A he a two-dimensional (associative) algehra over a

field F. First, suppose that the radical R is all of A. Then

since R is nilpotent, A 2 is either 0 (i. e., A is the trivial
2 . . . ,

algehra), or A IS one-dmlenSHl11al. Every clement of A IS

nilpotent of index $. 3. In the second case we shall find an cle­

ment which has index precisely 3. Select clements x, y in A

with xy'l O. If either x
2

or y2'1 0 we arc done. But the

assumption that hoth arc 0 leads to a contradiction. For we

can write xy:: tlX t j3y. Multiplying this equation on the left

hy x, we ohtain j3xy =0, 0 r j3 '" O. Multiplying on the right

hy y, we ohtain O! = 0, which is ahsurd. Thus, one of the ele-

ments x, y has a non-zero square, call this clement z. ~ow

the nature of A IS clear. The clements z and z2 arc linearly

independent, since z = >..z2 implies z2 = >..z3 = O. Thus A con­

sists of clements O!z t j3z2, multiplied with z3 = O.

Suppose, secondly, that R:: (0). Then A IS a direct sum

of total matrix rings over division rings. There arc two possi-

hilitie s:

3. If there is hut one summand, A will he a division alge-

hra over F (with unit). It follows that A is in fact a field, that

is, a quadratic extension field of F.
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4. If there arc two summands. A IS the direct sum of two

copies of F.

~ow let us consider the third possihility for R; namely. R

IS one-dimensional. We ro.ust have AIR isomorphic to F (heing

a one-dimensional semi-simple algehra over F). By the

Wedderhurn principal theorem. there exists a suhalgehra S of A

whose vector space direct sum with R is A. As S is isomor­

phic to AIR, it is isomorphic to F. Let e he the unit in S.

Let u span A. The nature of A IS then reflected completely 111

the products eu and ue. We have four possihilities.

5. If eu':: ue .:: O. then A is the direct sum of F and a

one-dimensional trivial algehra over F.

6. Suppose eu =au, al O. while ue =O. Then eeu =aeu.

Recalling that
2 2

The multipli-e = e. we have au ::: a u. or a= I.

cation tahle of A
2 2

.:: O. O. It is eon-IS e '" e. u ue ::: eu = u.

venient to picture A as the algehra of 2 hy 2 matrices over F,

having zeros 111 the second row.

( ) and

7. Another possihility IS the dual of 6. namely ue:o u and

eu:o O.

X. The final possihility is eu =ue = u. This algehra IS

often called the algehra of dual memhers ..
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5. Theorems of Hopkins and Levit.l.ki

After Artin introduced rings with descending chain condition

there was a peaceful decade of development. The suhjeet was

thought of as distinct from (and in a sense dual to) the earlier theory

of rings with ascending chain condition. It came as quite a sur-

prise when Charles Hopkins proved (under the modest assumption

of either a left 0 r a right unit clement) that the D. C.C. implies

the A. C. C. We prove here a slightly sharpened version which has

the merit of unifying his two theorems (note that the hypothesis of

Theorem 34 is satisfied if A has either a left 0 r a right unit

clement).

Let us first give an example to show that some hypothesis is

needed. The example is one where multiplication is trivial (if this

leaves the reader unsatisfied he is invited to explore draping a

more complicated example around it). So: what we need is an

ahelian group with the descending hut not the ascending chain c'on­

dition on suhgroups. The standard example is Z(pCO): the additive

group of rational numhers with denominator a power of the prime p,

reduced modulo the suhgroup of integers.

We slale without proof the following theorem.

THEOREM . .!! G is an ahelian group with descending chain

condition on suhgroups, then G is a direct sum of a finite group

F and a finite numher of groups Z(pco),

...• 5
n

of M:

The factors of the chain arc the

Two chains arc

M)S )S ) ... ) S = (0).
f 2 n

quotient modules MIS f' Sf/5 2" .• ,Sn_f/Sn'

We shall need some preliminary results hefore proving

Hopkins' theorem.

I) Let M he a right A-module. A chain is a descending

(finite) set of suhmodules
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equivalent if their factors arc isomorphic in some order. We re-

mind the reader of the principal result along these lines.

THEOREM. (Jordan-Hblder-Schreier-Zassenhaus) Any two

chains (of the same module) have equivalent refinements.

A composition series is a maximal chain, i. e. , one which

cannot he properly refined. In a composition series the factors

arc either irredueihle or trivial with a prime numher of clements.

The following result is dedueihle immediately from the theorem

of Jordan-Holde r- S e h re i er - Zassenha us.

THEOREM. The right A-module M possesses a composi­

tion series if and only if M satisfies hoth the ascending and de-

seending chain conditions on suhmodules.

2) Lemma: Let A he a ring with unit e, and let M be a

right A-module. Then M" S lfl T, where S, Tare suhmodules

of M, S is unitary and T is trivial.

Proof. Let S" Me, T" M(I - c), that is, T is the set of

clements of M which arc annihilated hy e. Certainly S, T arc

suhmodules and T is trivial. We need only verify that S n T =(0).

But this is imme<\iate, for if x is in S, xc = x, so that if x is

also in T, x = XC" o.

3) Lemma: Let A he a ring with D. C. C. on the ideals of

the form piA, where p is a prime. Let x he an clement of

~ pr (prx =0) and infinite p-height, i. e., for any n there

is a y=". with x = pn Yn ':('hen x is a total annihilator in A.

Proof. There is a k such that pk A = pk+1 A '" B. Then

B .. pB" p2 B = "', and xB'" prxB = (0). Let Y he any clement
k . . k k

of A. Then p y IS In B, and we may write p y'" p z, where Z

is in B. l'\ow xz =O. As x has infinite p-height, x .. pk w , for
k k k

some w. Thus x(y-z) .. P w(y-z)" 0, since p y .. p Z. Con-
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sequenlly, xy =xz = O. Since y was arhilrary, xA =O.

Similarly Ax = o.

TIIEOREM 34. (Ilopkins) Let A he a ring wilh descending

chain condilion on righl ideals. Lel R he the radical of A, and

suppose lhal for each non-negalive inleger k the ring AIR
k

has

no (non-zero) lolal annihilalors. Then 1\ salisfies the ascending

chain condilion on righl ideals.

Proo r. We shall show lhal A. as a righl A-module, has a

composilion series. As R IS nilpolenl, we may form a chain

A ~ R ~R2 J ... ~Rn = (0). We ohserve lhal il will suffice lo

I
2 n- I n

prove lhal each module A R, R/R ,'.', R IR has a compo s,i-
k k+1

bon series. Each R IR is a righl A-module, annihilaled hy R.
k k+1 .

Therefore, R IR can he regarded as a nghl AIR-module. ","ow

AIR has a unil. By the lemma of 2) ahove, Rk /Rk +1 = SEe T.

where S is a unilary AIR-module and T is a lrivial AIR-module.

By Theorem 28. S is a direcl sum of a finile numher of irreduc-

ihle suhmodules. The lrivial module T has the D. C. C. on suh-

groups, and as we noled earlier, is lherefore a direcl sum of a

finile group F and a finile numher of groups Z(pco). If x IS tt1

Z(pCO), prx =0 for some r, and x has infinile p-heighl. ","ow

x IS tt1 A/R
k+1

• By the lemma 3) ahove, x IS a lolal annihilalor

A/R
k+1.of By hypolhesis, x = O. Thus, T = F, a finile group.

As R k /R
k +1

is a direcl sum of a finile numher of irreducihle

suhmodules and a finile group (lrivial module) il cerlainly has a

composilion series.

• Remark. By addilional argumenls one can refine lhis resull;

il suffices lo assume lhal the ring ilself has no non-zero lolal anni-

hilalors. Sec Fuchs, Ahelian (iroups, pp.283-6.
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Wc ahruplly changc suhjcCl mallcr lo a prclly lhcorcm duc

lo Lcyilzki.

TIIEOREM 35. Let A hc lhc ring of all lincar lransforma-

lions on an n-dimcnsional ycclor spacc V oycr a division ring.

t:-et s hc a mulliplicaliyc scmi-group in A. consjsljng of njl-

polcnl c1cmcnls. Thcn lhc c1cmcnls of S CiJn hI' sjm!J1liJnl'olJsly

pUl in slricl lriangular form, i.e., zcros on and hc10w lhc main

diagonal.

Proo r. Wc firsl rcmark lhal a parlicular conclusion from

lhc lhcorcm will hc lhal lhc producl of any n c1cmcnls of 8 IS

zcro. Thc proof will procccd hy induclion. For n = I, il IS

lriyial. Assumc lhc rcsull lruc for n-1. ,,"olc lhal if V IS rc-

ducihlc undcr S, lhc c1cmcnls of S may hc rcprcscnlcd in lhc

hlock form (: :) , hy a suilahle choicc of hasis. Thc

malriccs B (lhc malriccs D) conslilulc a scm i-group of nilpolcnl

lincar lransformalions on a spacc of lowcr dimcnsion, and may

lhcrcforc hc pUl simullancously in slricl lriangular form, hy yir-

luc of lhc induclion hYPOlhcsis. Thus S is slriclly lriangulahle.

Lcl T l' .. " T:
r

hc c1cmcnls of S, and 8' lhc scm i-group

gcncralcd hy these 'elements. If V is irrcducihle undcr lhc scmi

group S'., then the vecto.- space SHill VT
i

+ vr 2 t •.. t VT r

musl cilhcr hc

sclecl c1cmcnls

(0) or V.

T
i1

, Ti
Z

If lhis sum is V, wc may induCliyc1y

, .•. from among lhc T. such lhal

T'T ···T. 10,
i ~ 11

Takc

I, ... , r,i =

V = VT 1 1 •.• + VT r'

This is donc as follows: if

annihilalcs

T .... T. Ti 10. for cach k.
~ 1 2 1

I 0 lhcn fo r somcT T T
~ ... i

Z
i
1

(Jr c1sc T .... T.
1
k

1
1

T. =T ,,"ow 111 lhc scqucncc {T. } so 111C T., say T
1 fo r

1k + I i
l
k

1

c()n\'cnicncc~ occurs al leasl (n+1) limcs. Wc lhus hayc a pro-
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duct T1\";nT1\";n_1T1,,·U1T1lJOI0. for some Uo ••.• ,U n jn S'.

~ow the clements CiT 1 for i = I, .. "n may he regarded as

linear transformations of W. the range of T l' into itself. As

IS nilpotent, the dimension of W is less than n. If we let
11
S he the semi-group of transformations :IT l' T 111 SI, we

know from the induction hypothesis that S is strictly triangul-

ahle. As we have noted, it follows that Ln T l' .. L 2 T l' U 1T 1 = O.

a contradiction. Thus V is irreducihle under SI only if

SI =(0). But now it is clear that V cannot he irreducihle under

S, unless S =(0). The case S =(0) is trivial, and we have given

the argument in case V is reducihle under S.

COROLLARY. If a ring A satisfies the descending chain

condition on right ideals, every multiplicative nil semi-group

.in.. A is nilpotent.

Proo f. Let R he the radical of A. Then AIR IS a direct

sum of a finite numher of total matrix rings over division rings.

Let SI he the nil semi-group of A. The image S of SI 111 AIR

is then a direct sum of a finite numher of nil semi-groups of

matrices over division rings. By Theorem 35, each of the latter

semi-groups consists of matrices which can he simultaneously

put in strict triangular form. Furthermore, if k is the maxi­

mum of the dimensions of the total matrix ring summands of AIR

the product of any k elements in S will he zero. For some n,

R n =(0). It is easily seen that {SI)nk == (0).

Remark. Theorem 35 should he compared with Ko1chin l s

theorem (Theorem C in § 2) which gives an analogous conclusion

for a semi-group of unipotent matrices over a field. The proof

of Kolchin's theorem could in fact he repeated to yield a difTerent

proof of Theorem 35, if the division ring were a field. It is an

open question whether Kolchin's theorem holds over a division
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ring; at any rate a proof in the style of Theorem 35 docs not

appear to work. (Of course the division ring has to he in£inite­

dimensional over its center to have a new prohlem. for other­

wise it can he represented hy finite matrices over the center.)

We conclude this section with a theorem that simultane-

ously generalizes Kolchin's Theorem C and the field case of

Theorem 35.

TIIEOREM II. Let S he a multiplicative semi-group of

matrices over a field F. Suppose each has the form >-'1 +N for
>-. iE F and "I nilpotent. Then S can he put in simultaneous

triangular form.

1',.",,1". A reduction to the algehraically closed case can he

made just as in the proof of Theorem C; we therefore assume F

algehraically closed. We may also assume the vector space V

to he irreducihle under S. As a final normalization it is harm-

less to assume that S contains all scalar matrices (enlarge S

hy taking the semi-group generated hy S and all scalar matrices).

Let 5 he the suhset of S consisting of its nilpotent
o

matrices. So is closed under multiplication. Theorem 35 applies

to show that 50 is triangular. In particular. there is a non-

zero vector annihilated hy So' Let W he the set of all x with

xS .. O. For any T E S. T E S we have that TT is singular
000

and therefore nilpotent (i.e., in the sense of semi-group theory.

S is an ideal in S). IIence WTT :: O. This proves that W is

invariant under 5. Since wI o. we have W "V VS =0, 0 . We

may therefore ignore S henceforth and assume S to consist of

non- singular matrices.

Let S1 he the suhset of S consisting of matrices of

determinant I. (It is tempting to drop down further to the unipo­

tent matrices: however we do not know this set to he closed under
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mulliplicalion. or course, when the proor rinally concludes we

will know lhis.) Il is sufTicienl lo lriangulale 8
1

, fat mulli­

plicalion or any elemenl or S hy a suilahle scalar lhrows il inlo

The characlerislic rools or malrices 111 Sl are n-lh rools

or I, where n is the size or the malrices. IIence only rinilely

many lraces occur 111 S I' and 8 1 IS rinile (Theorem B).

shows lhal S1 is a group. We now make a case dislinclion,

according lo the characlerislic or F.

Case I. Characlerislic O. Ir a malrix has rinile mullipli­

caliye order and has the rorm scalar plus nilpolenl, il musl

aClually he a scalar. Thus Sl jUSl consisls or scalars.
k

Case II. Characlerislic p. 1\ sufTicienlly high p -lh power

or each malrix in Sl is a scalar, and in parlicular is cenlral.

This shows lhal 8
1

IS nilpolenl and so is a direcl producl or

groups or prime power order. The crucial poinl is lhal the ele­

menls or order a power or p rorm a suhgroup, and lhey are

exaclly the unipolenl malrices in 8
1

, They can he pUl in lriangu-

lar rorm hy Kolchin's lheorem. Also any malrix 111 8 I has

lhe rorm scalar limes unipOlenl. The proor or Theorem II is

complele.
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6. Primili\'e Rings wilh Minimal Ideals and Dual Veclor Spaces

DEFI"ITIO". Lel D he a di\'ision ring. E a lefL \,eclor

~ space o\,er D and F a righl\'eclor space o\,er D. An

inner producl helween E and F is a hilinear funclional (.,.)

on EX F (\'alues in D), i. e., if x. is in E, y. is in F. 01, /3

111 D. lhen

(Xi +X2,Y
i

) = (Xi,Y
i

) + (x
2
,y

i
)

(xi' Yi + Y2) ::: (xi' Yi ) + (xi' Y2)

(OiXi,y i ) = a(xi,yi )

(xi' Yi/3) ::: (xi' yi )/3

The spaces E and F are called dual if lhere exisls a non­

degenerale inner producl helween lhem. i. e .. (x,F) = 0 implies

X::: 0; (E, y) =0 implies y =O.

DITI"ITIO"." Lel E he a lefL \,eclor space o\,er the di\'i­

slon ring D. A linear funclional on E is a linear mapping of E

inlo D.

Remarks. L Wilh oh\'ious definilions. lhe sel of all linear

functionals on E hecomes a righl \,eclor space o\,er E. This

space is called the full dual of E. Il is aClually dual lo E. lhe

inner producl heing defined hy (x,f)::: f(x) .

• 2. If F is any space dual to E. F is isomorphic lo a sub­

space of the full dual of E. The c!emenl yin' F corresponds lo

lhe funclional for which f(x)::: (x.y).

3. If E is finile-dimensional. any dual of E IS the full

dual of E.

4. If E IS infinile-dimensional and F IS the full dual of E.

E IS ne\'er the full dual of F.
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Wc list cxamplcs of dual vcctor spaccs. (E, Fl.

I. F thc full dual of E.

2. E thc full dual of F.

3. If E. F havc thc samc dimcnsion. choosc bascs

(Xi), (Y) for E. I' and dcfinc an inncr product by (xi' Y) =6ij

4. Any Banach spacc E and its topological dual F.

5. Form dircct sums E = E I ~ E
2

8 ••. ,

I' = F 1 ~ F 2 $ ... , whcrc (El , F 1) arc duaL and dcfinc thc inncr

product by [e
t

, e
2

, .•• ; f
1

, f
2

, ' .• ] := (e
1

, £1) + (e
2

, £2) + •..

DEFI~ITIO~. Lct S bc a subspacc of E [subspacc of Fl.

Thcn wc dcnotc by st thc sct of clcmcnts y in F [x in EJ such

that (S.y)" 0 [(x.S) = 0]. Wc call Sll = (S')' thc closurc of S.

and say that S is closcd if S = S".

Rcmarks. I. For any S. S' is closcd. Ilcncc. thcrc is a

onc-onc corrcspondcncc bctwccn thc closcd subspaccs of E and

thosc of I' (a closcd S corrcsponding to S'). This corrcspond-

cncc is an anti-isomorphism of thc latticcs of closcd subspaccs

of E and F.

2. Evcry subspacc of E is closcd if and only if I' is thc

full dual of E.

TIIEOREM. (Mackcy) If E. I' arc duaL thcn cvcry finite-

dimcnsional subspacc of E is closcd:

Proof. If S is any subspacc of E. S and Fist arc dual in

a natural way. If x is in S. y in F/s' dcfinc [x,y]:= (x.y) for

somc y in y. This dcfinition of [x, y] is indcpcndcnt of thc y

choscn. and yiclds a duality of S and FiSt,
~ow Ict S bc ann-dimcnsional subspacc of E. Thcn Fist

bcing dual to S. is thc full dual of S. and has thus dimcnsion n.

Similarly. S" IS dual to F/S" =F/S', and thcrcforc has dimcn­

sionn. It follows that S ::: S".
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Rcmarks. I. Thc sum of two closcd subspaccs nccd not bc

closcd: howcvcr. thc sum of a closcd subspacc and a finite-dimen­

sional subspacc is always closcd.

2. If E has countablc dimcnsion. and if thc sum of any two

closcd subspaccs of E is closcd. thcn F is thc full dual of E.

3. Thc sum of cvcry two closcd subspaccs of E is closcd if

and only if thc latticc of closcd subspaccs of E is modular.

TIIEOREM. (Mackcy) If E and F apc dual vcctor spaccs

of countablc dimcnsion. thcy admit dual bascs.

Proof. 'Lct (u
1
,u

Z
"") bcabasisfor E and (v,v , ... )

--- I 2
a basis for F. We wish to dctcrminc bascs (x

1
,x

Z
" .. ) for E

and (Y1 'YZ"") for F suchthat (xi'Y)=:'\j' Wcprocccdbyin­

ductivc sclcction. distinguishing two cascs: whcn n is cvcn. and

whcn n is odd. Supposc x 1,···, xnand y l' ..• , Yn' Iincarly in­

dcpcndcnt vcctors in E and 17, rcspcctivcly. havc bccn found

such that (x.,y.) = 0 ... If n IS cvcn. procccd as follows. Lct u.
1 J lJ II:

bc thc first u. lincarly indcpcndcnt of x
1

' ..• ,x Lct
n

x n+1 =~ - (~, y1)x 1 - .,. - (~, yn)xn .' Then (x
n

+1' Y
j
) = 0,

j = I, ••• , n. Choosc a vcctor w in F such that (x ,w) = 1,
n+1

and Ict Y
n

+
1

= w - y
1

(x1 ,w) - .•. - yn(xn,w). Thcn

(x ,y ) = 1, and is linearly indcpcndcnt of Y1"'" Y
n

'
n+1 n+1 Yn+1

This complctcs thc inc:4lction stcp whcn n is cvcn.

If 11 is odd. thc proccss is csscntially thc samc; howcvcr.

will span all of E and 17 rcspcctivcly.

in this casc. onc bcgins by sclccting thc first v. which is lincarly
.J

This altcrnat ing proccdurc guarantccsindcpcndcnt of yl' .• , , Yn'

that thc clcmcnts (x. ),(y.)
I .J

Rcmark. It follows from Mackeyls thcorcm (in conjunction

with Thcorcm 36) that thcrc cxists only onc (up to isomorphism)

simplc algcbraic algcbra of countablc dimcnsion with a minimal

onc-sidcd idcal ovcr an algcbraically closcd ficld.
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Lel T be a linear lransformalion of I: 111-

lo I: (E,F dual). The linear lransformalion T of F inlo F

IS called an adjoint of T if for every x in I: and y in F:

*(xT, y) = (x, T y).

Remark. If an adjoinl of T exisls. it IS necessarily unique.

TIII'ORI:M. If I, IS a normed linear space. and F the

lopological dual of I,. then T has an adjoinl if and only if T is

conlinuous.

easily demonslrale·d.

Proof. If T IS conlinuous. lhe exislence of an adjoinl is

*Suppose T exisls. To prove T continu-

aus,

in E.

il IS enough lo show lhal T is bounded on the unil sphere £1

For each y in F, (E
1

T, y) == (E
1

, T*y) is bounded. Il

follows fro m the Banach- S leinhaus un i form boundedness pri nc i pic

lhal I,)T is bounded.

Remark. If F IS the full dual of I,. every T has an ad-

joinl; however. if I, is the full dual of F only special T's have

adjoinls.

We proceed now lo the proof of Theorem ]6. in which lhe

close relalion belween dual veclor spaces and primilive rings

wilh a minimal ideal is demonslraled. For lhis purpose. we shall

need some facls aboul minimal ideals and nilpolenl ideals in a ring.

IXMMA ]6.1. If I is a nilpolenl righl ideal in a ring A,

t Al (the 2-sided ideal spanned by I) is a nilpolenl 2-.s..i.d.J.:..d.

ideal.

Proof. For a posilivc inlcgcr
k k k

k. (1+ AI) == I t AI . If

In =0, clearly (I t AI)n == 0.

Remarks. 1. Il is an elemenlary consequence.of Lemma ]6.

lhal the slalemenl "lhe ring A has no nilpolenl ideals" is unam-
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biguous; lhal is. the slalemenls lhal A has no nilpolenl lefL

ideals. A has no nilpolenl righl ideals. and A has no nilpolenl

ideals (in all cases. "olher lhan (0)11) are equivalenl.

2. Il is an open queslion whelher the corresponding resull

IS valid for nil ideals.

IXMMA ]6.2. If e IS an idempolenl itl a rIng A and eA

IS a minimal righl ideal. lhen eAe is a division rIng.

Proof. ="Iole lhal e IS a 2-sided unil for eAe. Suppose

exe I- O. Then exeA IS a non-zero righl ideal conlained in eA.

Thus. exeA =eA. For some y lhen exey = e. or exe' eye =. e.

Thus. eAe iE\ a division ring.

IXMMA ]6.]. Let A be a ring wilh no (non-zero) nilpolenl

ideals. If e is an idempolenl in A such lhal eAe is a division

rll1g. lhen eA is a minimal righl ideal.

Proof. Lel I be a non-zero ideal conlained 111 eA. Lel

e x II 0 be in I. Consider exAe. Suppose exAe [] O. Then

exAexA = (0). i.e., exA IS a nilpolenl righl ideal. By hypolhesis

exA = O. ="low the sel of lolal lefL annihilalors of A IS a nilpolenl

ideal (and conlains ex): hence. ex =O. a conlradiclion. Thus.

exAe I- (0). Then. for some a in A. lhere is a b such lhal

exae' ebe = e. BUl exae· ebe is in L Therefore I conlains e.

and consequenlly musl be equal lo eA.

IXMMA ]6.4. If I is a minimal righl ideal 111 a rIng A.

lhen eilher 1
2 = O. or 1= eA, e an idempOlenl.

Proof.
.,

Assume '-"I (0). and choose an elemenl a In

such lhal aI I- (0). Then aI =I. In parlicular. lhere is an ele-

menl e 111 for which ae =a. The righl annihilalor. In I, of

lhe elemenl a is a righl ideal conlained in I. As it is nol
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2
(it docs not contain e). the annihilator is (0). ~ow ae - ae

=a(e
2

- c) =0; hence e
2 =e. Consider the right ideal eAC I.

Certainly eA I (0). as e' e = e lOis in eA. It follows that

I = eA.

~(ltation: If E, F arc dual vector spaces, let L =L(E, F)

denote the ring of continuous linear transformations over E. Let

S =S(E, F) denote the suhring of L, consisting of those trans­

formations of finite-dimensional range.

TIIEOREM 36. Let E and F he dual vector spaces. Let

A be any ring containing S =S(E, F) and contained in L =L(E, F).

Then S is the unique minimal 2-ideal in A. Also, A is (left

and right) primitive, and has a minimal left ideal. Conversely,

any primitive ring with a minimal left ideal arises in this way

from a pair of dual vector spaces.

Prooe. Let SC A C L. First we note that if x is in E

and y in F, the mapping: x into (x, y)x is a linear trans-
o 0

formation T of one-dimensional range. Also, T is continuous:

T y = Y (x ,y). Furthermore, any continuous T of one-dimen­
o

sional range arises in this way. Let x he a fixed non-zero

vector in E, and consider the set I of clements of L which map

E into the one-dimensional space spanned hy x o ' A typical ele­

ment T in I is ohtained hy fixing a y in F and setting

xT = (x, y)x. Certainly I is a left ideal in A. Moreover, IS
o

a minimal left ideal in A: for, if a left ideal contains T
o

xT = (x, Y )x , y 10, it contains every T in I, since T =T 1T o '
o 0 0 0

where xTl. '" (x,y)x
1

, and x 1 is so chosen that (x1 'Yo) = I. It

follows that A is (left) primitive. In the second half of the proof,

we shall sec that A is also right primitive. It remains only to

show that S is the unique minimal 2-ideal in A. Clearly any non-
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zcro right idcal intcrsccts S. so that thcrc can hc no minimal

2-idcal othcr than S. To provc that S is minimal. it will suf-

ficc to show that a non-zcro 2-idcal in S must contain cvcry

transformation (continuous) of onc-dimcnsional rangc (cach clc-

mcnt of S is a sum of such transformations). Lct T "hc a

non-zcro clcmcnt of A. say uT::: v 'I o. Lct T hc an arhitrary

clcmcnt of S

xT I:: (x. Yo)u

To::: T 1TT2 .

of onc-dimcnsional rangc: xT :: (x. y )x
o 0 0

and Ict T 2 hc such that vT 2 :: x
o

' Thcn

Thus S IS minimal.

Dcfinc

Now supposc that A is a primitivc ring with minimal Icft

idcal I. (Wc shall scc shortly that for rings with minimal Icft

idcal. Icft and right'primitive arc thc samc.) By Lcmma 36.4.

I:: Ac. c an idcmpotcnt. (A primitivc ring has no non-zcro

nilpotcnt idcals.) By Lcmma 36.2. eAe is a division ring. By

Lcmma 36.3. eA is a minimal right idcal. ~ow eA is a Icft

vcctor spacc ovcr eAe and Ac is a right vcctor spacc ovcr

eAe. Wc dcfinc thc following inncr product hctwccn eA and. Ae;

(cx. yc)::: exye. Thc lincarity propcrtics arc ohvious. and non­

dcgcncracy is dcmonstratcd as follows. If (cx. Ac) ::: O. i. c .. if
2cx. Ac :: 0, thcn (exA) ::: O. implying that exA:: 0 and cx:: O.

(Thc argumcnt for clcmcnts yc is similar.)

With cach clcmcnt x in A wc associatc thc lincar trans-

formation T *,n eA dcfincd hy (ea)T = cax. ~ow T is
x x x

continuous. T
x

hcing Icft multiplication hy x on Ac. Thc

mapping of x into T
x

IS clcarly a homomorphism. It is also

casily sccn to hc onc-onc. Wc now havc A isomorphic to a

suhring of L(eA, Ac). It rcmains only to show that A contains

cvcry clcmcnt of S(eA, Ac). For this. it sufTiccs to show that A

contains cvcry clcmcnt of Shaving onc-dimcnsional rangc. But

this is immcdiatc; for if (ea)T:: (ea, ey)ex, thcn T is simply

right multiplication hy ycx.
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Remarks. 1. A consequence of the ahove proof is that if a

(left or right) primitive ring A contains either a left or right

minimal ideal, it is hoth left and right primitive and contains hoth

left and right minimal ideals. All faithful irredueihle right A­

modules arc isomorphic.

2. An elementary consequence of Theorem 36 is that a

simple ring A containing a minimal left ideal I (where 1= Ae

as ahove) is an S(E, F), namely S(eA, Ae). One may consider

simple rings as heing of two types: th6se with a minimal left (or

right) ideal, and those without such an ideal. Those of the first

type arc completely descrihed (ahove) , whereas knowledge of

those of the second type is scanty. We have seen one example of

a simple ring without a minimal left ideal (the ring of "difTerential

polynomials"). Another example can he constructed as follows.

Let L he the ring of linear transformations on a countable­

dimensional vector space, and let I he the ideal of those of

finite-dimensional range. Then A = L/I is simple without a

minimal left ideal.
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7. Simple Rings

( I) The enveloping ring and the centroid

Cp to Theorem 44 the associative law will he irrelevant.

Since there arc important applications (notahly to Lie algehras)

we drop associativity at this point.

Let A he any ring. Associated with an clement x 111 A

we have the right and left multiplications

R(x) : a .... ax

L(x): a .... xa

The ring E generated hy all LIS and R' S IS called the envelop-

111g ring of A: it is a subring of the ring of endomorphisms of

the ahelian group A. The general clement of E is a sum of

terms, each of which is a product of L's and R's. When E IS

associative, the general clement of E takes on the simpler form

L(a) + R(b) + ~ L(c.) R(d.) •
1 1

We think of the clements of E as placed on th~ right of A

and in this way A heeomes a right E-module. Examining the

relevant definitions we sec that A is simple if and only if it is

an irredueihle E-module.

F or later usc we state at this point:

TIIEOREM 38. J.,et a he a non-zero clement of a simple

ring A. Then for a suitahle integer n (n ~ 0, i, 2, ••. ) and ele­

~xi, ... ,xn' y in A we have aR(xi) .•. R(xn)L(y)/O.

Prooe. Suppose the contrary. Write I for the set of all

clements of the form

where k IS an integer. Then I is invariant under right multi-
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plication. Also IL(y) = 0 for any y. IIcncc I IS a two-sid cd

idcal and it is non-zcro sincc it contains a. Thus 1= A. But

thcn yA= 0 for all y,
2

A = O. a contradiction.

Thc ccntroid C of a ring A is thc ring of all additivc

cndomorphisms of A which commutc with all L's and R1s.

Thus if S is in thc ccntroid wc havc

(xy)S = (xS)y = x( yS)

for all x. y in A.

Examplcs:

1. If A IS trivial. thc centroid 'is thc full ring of endo­

morphisms of A.

2. If A has a unit clcmcnt. it can hc sccn that thc ccntroid

coincidcs with thc ordinary ccntcr. i. c. , thc sct of clcmcnts com-

muting and associating with cvcrything.

3. If A is an algchra ovcr a ficld F, thc ccntroid contains

F and is itsclf an algchra ovcr F.

4. As a gcncralization of thc Gclfand-Mazur thcorcm. onc

can provc that thc ccntroid of a primitivc Banach algchra is just

thc complcx numhcrs.

TIIEOREM 39. For any clcmcnts x. y in a ring A and

any ccntroid clcmcnts S. T wc havc (xy)5T = {xy)TS.

Prooe.

(xy)ST = {x. yS)T = xT· y5

= (xT. y)5 = {xy)TS.

TIIEOREM 40. 1£ A
2 = A, thc ccntroid of A IS comm uta-

tivc. If A has no non-zcro total annihilator. thc ccntroid is com-

mutativc.

Prooe. Thc first part is immcdiatc from Thcorcm 39. To

provc thc sccond part ""..note



-f49-

x' y(ST • TS) =(xy)(ST - TS) =0

y(ST - TS). x = (yx)(ST - TS) = 0

Thus y(ST - TS) is a total annihilator of A and IS O.

TIIEOREM 41. The centroid of a primitive associative

ring is an integral domain.

Proo r. The commutativity follows from Theorem 40. We

omit the proof that there arc no divisors of O.

TIIEOREM 42. The centroid of a simple ring IS a field.

Proo r. The centroid is a division ring hy Schur's lemma

and is commutative hy either half of Theorem 40.

It follows from Theorem 42 that any simple ring can he re-

garded as an algehra. for instance over its centroid. If the hase

field is exdctly the centroid we call the algehra central simple.

To complete the identification of the concepts of simp,le

ring and simple algehra. we should also note that if an algehra

A is simple in the sense of having no algehra ideals. then it is

also simple as a ring. For let J he a non-zero ring ideal in A.

Let I he the subspace spanned hy .1. Then

ideal so that 1= A. The typical clement of

is an algehra

is of the form

r; >-',a, , a. in .1. Then (r; A..a.)x =r; a.(>-..x) is in J. lIenee .1
111 11 11

contains lA, which in turn is A 2 = A.

(More generally. if a module is irreducihle when operators

arc allowed. it is also irreducihle without operators.)

For associative rings it is convenient to introduce the

reduced enveloping ring E', defined as the set of all sums

r; L(x.)R(y.). With a unit clement. this is the same as the envelop
1 1

ing ring.
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TIIEOREM 43. Let A he a simple associaliye rinp, E'

ils reduced enveloping ring. Then A is also irreducihle as an

El-module, and the commuling ring of endomorph isms IS again

lhe cenlroid.

We omil the proof.

(z) Tensor producls

In the interst of speed we define the lensor producl hy means

of hases, allhough we freely acknowledge lhal an in'{ariant defini­

lion is lo he preferred.

Lel A. B he algehras oyer a field F. Lel {uJ,{vJ he
1 J

hases of A. B. We define A@B lo he an algehra wilh hasis

(or more cauliously we mighl wrile u.@v.) wilh multipli-
1 J

u ....T
•

1 J
calion lahle

where of course the righl hand side is lo he expanded hy the dis­

lrihuliye law.

The general elemenl of A@B lS lhus of the form

lerms involving Y. 111 lhe
J

as !: a.v.. In olher words:
J J

wilh coefTicienls ranging oyer A (inslead

!:atjLltV
J

' a
tj

E F. If we galher all

single lerm a we may rewrile ilj ,

we use a hasis of B

of F). Since lhis descriplion no longer ulilizes a hasis of A,

lhe lensor producl is independenl of the choice of hasis.

Examples:

I. If K is an eXlension field of F, K@A lS analgehra

oyer K. wilh the same hasis and mulliplicalion lahle as the origi-

nal algehra. One speaks of eXlending the hase field from F lo K.

2. Lel Q he the qualernions as an algehra oyer the reals,

and K the complex numhers. Then K@Q is the lwo hy lwo

lolal malrix algehra oyer K.
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3. a(8)a IS the 4 by 4 lolal malrix algehra over lhe

reals.

4. K@K IS the direcl sum of lwo copies of the complex

numhers.

5. If A IS any algehra over F, and

lolal malrix algehra over

malrix algehra over A.

F. lhen A@M
n

M
n

IS the n hy n

is the n by n lolal

6. M @M
r s

is isonl0rphic to M
rs

TIIEOREM 44. Let A and B he algehras over. F. ~­

pose lhal A is cenlral simple and B is simple. Assume fUrlher

anyone of the following lhree hypolheses:

(1) A has a unil elemenl.

(2) B has a unil elemenl.

(3) A IS associalive and B

righl annihilalors.

has no non-zero lolal lefL or

Then AQ9B is simple.

Before presenling the proof. lel us give an example lo show

lhal some hypolhesis is n,.cessary. Lel A he the two-dimen­
2

sional algehra wilh hasis L1, v and lahle u =Ll\' = O. vu =v,
2

v =u. You can check simplicily of A rapidly hy no ling:

L
v

and lhal Rand L suffice lo generale all lwo hy lwo malrices.
v \'

A is in facl cenlral simple. hUl we can hypass lhis poinl hy assum

ing the hase field lo he algehraically closed. ,,"ole lhal u is a

lefL annihilalor of A. Lel B he the algehra anli-isomorphic lo A.

Then B conlains a righl annihilalor. say u
l

' In A@B the e1e­

menl Lilli is lhus a lwo-sided annihilalor and gives rise lo a one~

dimensional ideal.
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Proof of Thcorcm 44. Lct I bc a non-zcro idcal in A0 B.

Wc provc that 1= A0B, dividing thc proof into thrcc parts.

I. Supposc I contains Ab for somc non-'zcro b in B.

Right multiplying by ab -1 wc scc that I contains Aa· bb I' This

bcing truc for any a in A wc gct AA' bb
i
C I. Sincc A IS

simplc wc havc A 2 = A. A' bb i C I. In this way wc can build up

thc two-sidcd idcal gcncratcd by b. which is all of B sincc B

IS simplc. IIcncc

II. Supposc

= A0 B .

contains a non-zcro clcmcnt abo Ccntral

simplicity of A is irrclcvan\ hcrc and so wc may trcat hypothc­

scs (I )and (2) togcthcr. supposing that. B has a unit clcmcnt.

Wc can carry out Icft and right multiplications on a. holding b

fixcd. Whcn th isis followcd by addi tions wc gct all of Ab in I.

Thc argumcnt thcn rcvcrts to Casc I. Undcr hypothcsis (3) wc

pick clcmcnts b l,b 2 in B such that bib'bZ ' O. Thcn for any

x. y in A wc havc (xay)(b
1
b. bZ},E I. Sincc AaA'" A, byadd­

ing such tcrms wc find A(bib'~)C I. Wc rcfcr again to Casc I.

I I I. In thc gcncral casc wc bcgin with a non-zcro clcmcnt

x = '!: a,.b,. in L Wc may supposc that thc a's arc lincarly inde

pcndcnt ovcr 17, and thc bls non-zcro. By thc dcnsity thcorcm

thcrc cxists an clcmcnt T in thc cnvcloping ring of A such

that a-1 T, O. a.T = 0 for i > i; if A is associativc wc can pick

T in thc rcduccd cnvcloping ring (Thcorcm 43). Wc now dis­

tinguish thc thrcc hypothcscs.

(2) If B has a unit clcmcnt. thc Icft and right multiplica-

tions that build up T can bc carricd out on A whilc Icaving thc

B-componcnt fixcd. Applying thcsc to x wc gct that alT' b 1 I ic

in I, and wc rcfcr to Casc I I.

(I) Supposc that A has a unit clcmcnt. Lct us considcr

formal products of Lis and RI S with no symbols yct attachcd to

thcm. Wc spcak of onc such product as bcing a rcfincmcnt of
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is just a single product of L's and R' S • (2 )

is a refinement simultaneously of each of the

of another if it is obtained from it by the insertion of more L's

and R's. By repeated appl ications of Theorem 38 we can find an

element L of the enveloping ring of B with the following pro­

perties: (I) lJ

b
1

V'" 0, (3) L

monomials comprising T. ~ow since A has a unit element we

can stick into each of these monomials harmless left and right

multiplications by 1. The result is to make T a sum of terms,

each having the same formal product of L'S and R1s as L does.

This makes it possible to apply TV to the element x = ~ a.b .•
I I

Since each a.T = 0 for i ~ 2. we conclude that a T·b lJ is in I.
1 1

This reverts the problem to Case II.

(3) We must finally treat the case where A is associative

and B has no left or right annihilators. We can find c,d in B

Left multiply x = ~ a.b .
I I

The result

Since T is now in the reduced envelopingsuch that cb
1

' d 10.
ring, it has the form T = ~ L(u.)R(u.).

.1 .1
by u.c, then right multiply by v.d, then add over j.

is that a 1T· (cb
1

' d) I ies in I. lJhis completes the proof of

Theorem 44.

r From now on all rings are again associative.

As a first application of Theorem 44, consider a division

algebra D, finite-dimensional over its center F, We claim that

[D:F] is a square. For let K be an algebraically closed field

containing F, We form K@D. Since K is simple and D is

central simple, K@D is simple by Theorem 44. Moreover

K@D is an algebra over K, with the same dimension as D

over F, Thus K0D is a total matrix algebra, its dimension

over K '-03 a square, and [D:F] is a square.

TIIEOREM 45. (The internal tensor product theorem) Let

C be an algebra over F. Let A,B be subalgebras with 1\ cen-
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tral simple and B simple. Suppose further that A and B ..c..u==.

mute elementwise. Then AB is either 0 or is isomorphic to

A(8)B.

Prooe. There is a natural homomorphism from A 0 B

onto AB. By Theorem 44. A«i)B is simple. lIenee the kernel

tS either 0 or all of A(8)B.

TIIEOREM 46. Let A he a central simple algehra over F,

and denote the reciprocal algehra hy A". Then A(8)A*~

dense rin" of linear transformations on a vector space (namely A)

over F.

Prooe. In the algehra E of all linear transformations on

the vector space A we ohserve two suhalgehras: • A ,A1 the

algehras of right and left multiplications. respectively. hyele­

ments of A. A
r

is isomorphic to A, A 1 is isomorphic to A".

A
r

and A 1 commute elementwise hy the associative law.

Finally ArA 1 is ohviously non-zero. lIenee (Theorem 45)

ArA
1
~A@A~'. ~ow ArA

1
is exactly the reduced enveloping

ring of A. By Theorem 43. ArA
1

is a dense algehra of linear

transformations on A. as a vector space over the centroid F.

In particular: if A is central simple finite-dimensional,

then A®A* is a total matrix algehra. This is the starting point

for making a group (the Brauer group) out of the central simple

finite -dimensional algehras. ./

(3) Maximal suhfields

Any ring possesses maximal commutative subrings hy Zorn1s

lemma. ~ote that they necessarily contain the center. In a divi-

sion ring a maximal commutative subring is automatically a sub-

field.
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TIIEOREM 47. Let D he a central division algehra over F.

and K a maximal suhfield. Then K@D is a dense ring of linear

transformations on a vector space over K (namely D as a left

vector space over K).

Prooe. We operate again in the algehra E of all linear

denoteLet D
r

the algehra of

as a vector space over F.

the algehra of all right multiplications hy D.
Kl'

left multiplications hy K. By Theorem 45. K l' Dr ~ K@D. Let

us look at D as a right K t Dr-module. It is irredueihle. heing

already irredueihle under D. What is the commuting division

transformations on D

ring'! One readily computes that an endomorphism commuting

with D is of the form L with x in D. For L to commute
x x

with K l' ' it must further he the case that x commutes with K.

By the maximality of K. x lies in K. Thus the commuting divi­

sion ring is exactly K t' The density theorem completes the

proof.

If in particular D IS finite-dimensional over 17, then K@D

IS a total matrix algehra over K and we sec once again that

[D: F] is a square. But we can get more precise information.

TIIEOREM 4X. Let D he a division algehra over F. and

A a finite-dimensional algehra with unit element over F.

Prooe. We first look at A@D as a right vector space over

D. with D acting in the natural way on the right. It is a finite-

dimensional vector space: in fact if LIt"'.' u is a hasis of A

over F then LIt"'" LI is also a hasis of A@D over D. In

particular A@D satisfies the descending chain condition on D­

suhmodules.
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~ow look at A@D as a right (A@D)-module. The cle­

ments 1·d of A@D act on the right of A@D in just the way

we had D acting in the preceding paragraph. lIenee an (A®D)­

suhmodule (that is. a right ideal of A@D) is a D-suhspaee. A

fortiori. we have the descending chain condition on right ideals

of A@D.

TIIEOREM 49. Let D be a central division algehra over F,

K a maximal suhfield. If D IS infinite-dimensional over F. ~

is K. If D is finite-dimensional over F, its dimension is a- -")

square n-, and [K:F]=n.

Prooe. Suppose that K IS finite-dimensional over F, say

[K: FJ = r. By Theorem 4X. K@D satisfies the descending chain

condition. We now apply Theorem 47 and ohserve that D. as a

left vector space over K, must he finite-dimensional (for a ring

with descending chain condition acts as a dense ring on it). ::.r

[D: K] is

K. Thus

s, then D@K is an shy s total matrix algehra over
2

lD: F I = s But on the other hand lD: F J = lD: K][K: F)

.= sr. so that r = s. We have proved hoth statements of Theorem

49.

As an application of Theorem 49. let D he an algehraie

division algehraover a real-closed field R. Then a maximal sub­

field must he R or the complexes. We rapidly conclude that D

is the reals. complexes. or four-dimensional over R. We shall

complete the determination of D a little later. with the aid of

more theory.

(4) Polynomial identities

Let C he a commutative ring. Let xi.· .. ,x
n

he inde­

terminates. A non-commutative monomial is a product of xIS,

order heing carefully ohserved. A non-commutative polynomial
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over C IS a linear eomhination of monomials with eoefTieients

in C. We do not allow a constant term.

Let A he a ring admitting C as a ring of operators (in

other words. C is part of the centroid). We say that A satis-

fies a polynomial identity (over C) if there exists a non-zero

non-commutative polynomial over C which vanishes whenever

clements of A arc suhstituted.

Examples:

I. Any nil ring of hounded index.

2. Any commutative ring.

3. Any finite-dimensional algehra. If the dimension IS k-I

the identity

'is satisfied. the sum heing over all permutations with the sign

according to the parity of the permutation.

4. Ar.y algehraie algehra of hounded degree. If the hound

on the degree is n. the identity

-, n
S(xy, x-y.••. ,x y) 0

IS satisfied.

TIIEOREM 50. Let A he a primitive ring satisfying a

polynomial identity of degree k, with eoefTieients in the centroid.

Then A is a.simple algehra. finite-dimensional over its center.

If the dimension over the center is n

First a preliminary lemma.

2
then 2n S k.

LEMMA. Let I he a maximal right ideal in a ring A.
-,

Assume that I docs not contain A-. Then I is invariant under

the centroid of A.
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Lel X he a cenlroid elemenl. placed on the len.

Eyidenlly Xl IS a righl ideal in A. If XI is nol conlained in I,

lhen It \.1 = A. Then

a conlradiclion.

A' IA + XIA IA t I(\.A) C I,

On suhSliluling lhese inlo f. only one lerm

We lurn lo the proof of Theorem 50. Lel 'vi he a failhful

irreducihle module for A. We know lhal 'vi IS isomorphic lo

All for a suilahle regular maximal righl ideal I. Of course.
7

does nol conlain A -. IL follows from the lemma lhal I is ad-

missihle under the cenlroid C. and hence so is A/r. 'The com-

mUling division ring J) of endomorph isms lhus conlains lhe

cenlroid in a nalural way (and also ils quolienl field).

Lel [= 0 he the idenlily salisfied hy A. We proceed lo

lransform [ inlo a mullilinear homogeneous idenlily. If

f = f(x, ... ) is nol linear in x. wrile

g(u,v, ... ) =f(u+y.... ) - f(u, ... ) - f(v, ... ).

Then g is salisfied hy A. il is nol the zero polynomial. and ils

degree in u 0 r y is lower lhan the degree of [ 111 X. By suc-

cessiye sleps of lhis kind we reach a mullilinear idenlily. whose

joinl degree in all ils yariahles is slill k; we shall again wrile il

as f. Suppose f is nol homogeneous. Then some yariahle. say

X IS missing from al leasl one lerm. On selling x = 0 we gel

an idenlily of lower degree. Cllimalely lhis will reach a homo-

geneous idenlily of degree S k. Changing nolalion again we

assume the degree lo he jUSl k. Thus [ consisls of a lerm

"x and some of ils permulalions. Consider the malricesx
1
x

Z
. k

e 11 , e 1Z ' e ZZ ' e Z3 " .•

survives. for in all olher permulalions the producl of the ets is O.
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We now invoke the densily lheorem. 1\ is a dense ring of

linear lransformalions on a yeclor space Voyer D. If V IS

infinile-dimensional. il will he possihle lo find in A k elemenls

which acl exaclly like e on a suilahle £inite-ii' e 12 , e 22 , e 23 ,· ..

dimensional subspace of V. But lhis conlradicls the idenlily f = O.

Thus A is merely a lolal malrix ring oyer D. In parlicu-

lar it has a unil elemenl. and ils cenlroid C has hecome lhe

ordinary cenler. We now regard D as an algehra oyer C, no ling

lhal it inherils the idenlily r = O. Lel K he a maximal subfield

of D. In the algehra K@D the idenlily f = 0 survives. for a

mullilinear idenlily need only he checked on hasis elemenls. and

we can use a hasis of [) oyer C as a hasis of K(8lD oyer K.

By Theorem 47, K@D IS a dense ring of linear lransformalions

on a yeclor space oyer K. We now simply repeal the argumenl

of the previous paragraph lo deduce lhal lhis yeclor space IS

finile-dimensional. IIence 1\ is finile-dimensional oyer C. say

of dimension
2

n By suilahle eXlension of the hase field. we can

suppose lhal A IS merely an n hy n lolal mat.rix algehra. Then

k musl he al leasl 2n. for if k'" 2n-I.lhe use of the k elemenls

e
11

, e
12

, .•• (juSl as hefore) would yiolale the idenlily.

We append a hihliography of the early work on polynomial

idenlilies. wilh shorl commenls on each paper.

M. IIall. ProjecliYe planes. Trans. Amer. Malh. Soc.,

yol. 54 (1943), 229-277. Theorem 6. 2 slales lhal if D is a divi­
7

sion ring such lhal eyery (xy - yx)- is in the cenler. lhen D is

one 0 r four-dimensional oyer ils cenler. This special case of

Theorem 50 was ils inspiralion.

J. Leyilzki. On a prohlem of 1\. Kurosch. Bul. Amer. Malh.

Soc. yol. 52 (1946), 1033-1035. Proof lhal a nil ring of hounded

index is locally nilpOlenl.
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I. Kaplansky. Rings with a polynomial identity. Bull. Amer.

Math. Soc., vol. 45 (1948), 575-5XO. Foundations of the suhjeet.

Proof of Theorem 50. Also a proof that a nil ring satisfying a

polynomial identity is locally nilpotent.

J. Levitzki. A theorem on polynomial identities. Proc. Amer.'

Math. Soc., vol. 1 (1950), 334-341. Let A he a ring with a poly-

nomial identity of degree k. Let " he the union of all nilpotent

ideals in A. Then every nilpotent clement x in A satisfies

x
r

E ~. where r = [k/l].

A. Amitsur and J. Levitzki. Minimal identities for alge­

.b..I:.as.. Proc. Amer. Math. Soc., vol. 1(1950), 441-463. Proof

that the n hy n total matrix ring over a commutative ring satis-

fies the "standard" identity S2n =O. IIere is an interesting un­

puhlished application. Let A and B he rings with unit clements.

Suppose that A is commutative and that the n hy n matrix rings

A and B arc isomorphic. Then B is commutative (whence A
n n.

and B arc isomorphic). For proof apply the standard identity to

the 2n clements ae11,f3e11,e12,e22" •• ,enn in Bn to get

al3 = f3a for any a and 13 in B.

I. Kaplansky. Groups with representations of hounded degree.

Can. J. of Math .. vol. (1949), 105-112. Application of poly-

nomial identities to group representations.

A. Amitsur and J. Levitzki. Remarks on minimal identities

for algehras. Proc. Amer. Math. Soc., vol. 2 (1951), 320-327.

Determination of all identities of degree 2n for a simple algehra

n l -dimensional over its center.

I. Kaplansky. Topological representation of algehras II,

Trans. Amer. Soc., vol. 6X (1950), 62-75. Proof that an alge-

hraic algehra satisfying a polynomial identity is locally finite.
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I. Kaplansky. The structure of certain operator algehras.

Trans. Amer. Math. Soc., vol. 70 (1951), 219-255. Application

of polynomial identities to C*-algehras. Reduction of the local

finiteness prohlem to the primitive and nil cases.

A. Amitsur. An emhedding of PI-rings. Proc. Amer. Math.

Soc .• 3 (1952), 3-9. Let A he a ring with a polynomial identity

and no nilpotent ideals. Then: (I )the degree of a minimal iden-

tity for it is even. (2) A can he emhedded in a matrix ring over

a conl111utativc ring.

A. Amitsur. The identities of PI-rings. Proc. Amer. Math.

Soc., 4 (1953), 27-34. Various further facts. In particular: any
m

PI-ring satisfies an identity of the form S = o.
2n

J. Levitzki. On the structure of algehraic algehras and

related rings. Trans. Amer. Math. Soc. , vol. 74 (1953). 3X4-409.

Simplified purely algehraic proofs of local finiteness theorems.

Many other results.

We conclude hy mentioning an open question. An aCf'irma­

tive answer would have useful applications. Docs the n hy n

matrix algehra (n ~ 3) admit polynomials which arc identically

in the center without heing identically 0')

(5) Extension of isomorphisms

TIIEOREM 51. Let E he a vector space over a division

ring D with center Z. Let A he the ring of all linear trans­

formations on E (note that the center of A is also Z). Let B

and C he simple suhalgehras of A. finite-dimensional over Z

and containing the unit elementof A. Then: any isomorphism he­

tween B & C can he extended to an inner automorphism of A.
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COROLLARY. If A IS ilself finilc-dimcnsional oycr Z,

all ils aUlomorphisms arc inncr.

Proof. Wc opcralc in lhc algchra of all lincar trans£orma-

lions on E as a ycclor spacc oycr Z. Among ils suhalgchras

arc D, A, B. C. By Thcorcm 45. DB ~ D@B is simplc. By

Thcorcm 48, D@B and D0c salisfy lhc dcsccnding chain

condilion. Thc giYcn isomorphism ¢ hclwccn Band C cXlcnds

in a nalural way lo an isomorphism. which wc shall again call ¢,

hclwccn DB and DC. ","ow E is a righl {DB}-module. Thcrc

IS anolhcr way of gClling il lo hc a DB-modulc: hy lransfcrring

lo IX: via ¢, and lhcn aCling lhc way' IX: docs on E. Ex­

plicilly. lhc sccond opcralion is dcfincd hy

a· x = a¢(x}

for a 111 E. x 111 DB.

","ow cach of lhcsc modulcs is a dirccl sum of irrcducihle

modulcs. all isomor,phic (for DB is simple wilh lhc dcsccnding

chain condilion). Thc lwo modulcs will hc isomorphic as soon as

wc chcck lhal lhc numhcr of irrcducihle componcnls is lhc samc

holh limcs. Whal wc hayc is a dccomposilion of lhc ycclor spacc

E inlo (DB}-submodules, which arc in parlicular suhspaccs.

Thc dimcnsion of cach subspace is finilc (for an irrcducihle {DB}­

modulc is isomorphic lo a righl idcal 111 DB. and all of DB IS a

finilc-dimcnsional ycclor spacc oycr D). ","ow if a ycclor spacc

is dccomposcd inlo finilc-dimcnsional suhspaccs of a ccrlain fixcd

dimcnsion. lhc numhcr of componcnls is uniquely dClcrmincd.

IIcncc lhc lwo (DB}-modules arc isomorphic. Call lhc isomorphis

T. Thcn T is a onc-onc mapping of E onlo ilself salisfying

(ax}T = (a T)¢(x)

for any x 111 DB. Apply lhis in parlicular wilh x 111 D. so lhal

,!>(x} = x. Thc conclusion is lhal T is D-lincar. lhal is. T lics
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111 A. ,,"cxl lakc x 111 B. We find xT:: T~(x). IIcncc on B,

~ coincidcs wilh lhc inncr aUlomorphism hy T. This concludcs

the proof of Thcorcm 51.

Wc shall oUllinc scycral applicalions.

(a) Thc lhcorcm of Frohcnius. Lcl [) hc an algchraic

division algchra oycr a rcal closcd field R. Wc hayc alrcady

sccn lhal D IS R, lhc complcxcs oycr R, or four-dimcnsional

oycr R. Lcl us complclc lhc discussion of lhc lasl possihilily.

D' conlains lhc field R(i), i' = -1. Thc aUlomorphism i .... - I

can hc cXlcndcd lo an ll1ncr aUlomorphism of D. say hy j. Thcn

j2 commulcs wilh i and j, and so musl hc in lhc ccnlcr R. Morc

oycr j2 cannol hc Posiliyc, for lhcn hy ordinary faclorizalion j

would hc in R. IIcncc j2 is ncgaliyc and wc may normalizc lo

j2 = -1. Il is casy lo Ycrify lhal lhc elcmcnls 1, i,j, ij arc

lincarly indcpcndcnl and wc rcach lhc qualcrnions. J
(h) Wcddcrhurn's lhcorcm. Lcl D hc a finilc division

ring. Supposc ils dimcnsion oycr ils ccnlcr Z
. 2
IS n • Lcl K

hc a maximal suhfield of D. Any olhcr maximal suhfield K
1
,

likc K, has dimcnsion n oycr Z. IIcncc K and K admil an
1

isomorphism lcaying Z elcmcnlwisc fixcd. By Thcorcm 51 lhis

cXlcnds lo an inncr aUlomorphism of D. If wc wrilc K* and

n" for lhc mulliplicaliyc groulls of non-zcro elcmcnls, wc ob-

scryc lhal lhc conjugalcs of K fill up D* BUl no finilc group

can hc cxhauslcd hy a propcr suhgroup and i ls conjugalcs. I Iencc

K* :: [)", and [) is commulaliyc.

(c) Jacohson's gcncralizalion. Lcl [) hc an algchraic

division algchra oycr a finilc field. Lcl Z hc ils ccnlcr. Lcl x

hc an elcmcnl in D hUl nol in Z. Thc field Z(x) is normal

oycr Z. IIcncc lhcrc cxisls an aUlomorphism of Z(x) oycr Z

aClually moving x inlo a polynomial f(x). By Thcorcm 51 lhis
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cxtcnds to an inncr automorphism. say by y. Considcr now thc

subalgcbra D 1 gcncratcd ovcr Z by x and y. In vicw of thc
-1

cquation y xy:= {(x), 0 1 is finitc-dimcnsional. By taking a

basis of D l' and dropping down to thc finitc ficld gcncratcd by

thc clcmcnts occurring in thc multiplication tablc for that basis.

wc rcach a finitc division ring. Thcrc is a contradiction of

Wedderburn's thcorcm unlcss 0 is commutativc.

(d) Jacobson's thcorcm: if for cvcry a in a ring A
n(a)

thcrc cxists an intcgcr n(a» I such that a := a. thcn A IS

commutativc. For onc argucs rcadily that thc primitivc imagcs

of A arc division rings. and thc lattcr arc necess,arily algc­

braic ovcr a finitc ficld.

Herstein madc succcssivc gcncralizations winding up with

thc following: suppose that for cvcry a in A thcrc cxists a
7

polynomial P with intcgral cocfficicnts such that a-P (a) - a
a a

is in thc ccntcr of A; thcn A is commutativc. Anothcr
,

thcorcm: if cvcry clcmcnt of A has somc powcr in thc ccntcr

and A has no nil idcals. thcn A is commutativc. For an

authoritativc account scc Ilcrstcin's Carus Monograph Non­

commutativc Rings.
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Part Ill. IIomological Dimcnsion

Introduction

Thcsc notcs are bascd on a coursc givcn in thc Autumn

Quartcr of 195X and wcrc writtcn carly in 1959.

Thc main objcctivc of thc coursc was to rcach thc

Auslandcr-Buchsbaum-Scrrc charactcrization of rcgular local

rings: At that timc thc rcsult was still quitc ncw. and its proof

-- at Icast from a point rcasonably ncar scratch -- was a sizc­

ablc undcrtaking.

Early in thc coursc 1 formcd a onc-stcp projcctivc rcsolu­

tion of a modulc. and rcmarkcd that if thc kcrncl was projcctivc

in onc rcsolution it was projcctivc in all. 1 addcd that. although

the" statcmcnt was so simplc and straightforward. it would bc a

whilc bcforc wc provcd it. Stcvc Schanucl spokc up,and told mc

and thc class that it was quitc casy. and thcrcupon skctchcd what

has comc to bc known as "Schanucl's Icmma". It took a couplc of

days and a half-dozcn convcrsations bcforc thc proof was fully in

hand.

Subscqucntly it bccamc apparcnt that quitc a fcw anticipa­

tions could bc found in thc litcraturc. Most notably. Fitting

(Math. Annalcn 112 (1936), 572-5X2) had provcd it with tlprojec­

tive" rcplaccd by "£ree tl and allmodulcs finitcly gcncratcd.

IIowcvcr. Schanucl dcscrvcs full crcdit for stating it thc right way

and for rcalizing that it could Icad to a thcory of homological

dimcnsion (I will takc a littlc crcdit for acting as a catalyst).

F rom this point on thc coursc dcvclopcd rapidly and took on

thc form rccordcd hcrc. Many kccn contributions wcrc madc by

studcnts. and I am cspccially gratcful to II. Bass. S. Chasc. arv-t

R. MacRae.
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The course also contained two parts not reproduced here:

(I) An account of commutative ]\"oetherian rings. An extended

version appears in the notes Commutative Rings issued hy

Queen Mary College (QMC). (2) A similar theory of weak di­

mensIOn. After the concept of flatness has heen adequately

developed, one forms projective (or free, or flat) resolutions and

waits till the kernel is flat. An analogous sequence of theorems

can he worked up. I leave this as a long exercise to the intereste

reader.

In the present reprinting there has heen some editing and

some material has heen incorporated from the QMC notes and

from my 1965 Varenna lectures.
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I. Dimension of modules

R will always denote a ring with unit clement, and all

modules will he unitary. ]\"ormally, we shall deal with left

modules.

We take the point of view that free modules arc the slm-

plest ones and we study other modules in terms of them. Of

course, any module 1\ is representahle as the image of a free

module 17, say withkernel K

The next simplest type of module IS one for which K is free.

But at once we face the question: is this independent of the partiCll­

lar choice of the resolution (1)? It turns out that the answer is "no"

hut becomes.nyes n if we yield a little ground and replace "free"

hy "projective" (i.e., direct summand of a free module).

Once this is granted, it is natural to hegin again, treating

projective modules as the simplest type. The comparison of two

projective resolutions

(2)

is made In Theorem 1.

THEOREM I. (Schanuel's Lemma). Let R he a ring,

A an R-module, and let (2) and (3) he projective resolutions of

A (i.e., the sequences arc exact and P and P
1

arc projective).

Then K ~ PI is isomorphic to K I <Il P.

Proof. Let £, £1 denote the maps from P, P 1 to A. Since

P IS projective there exists a map g: P -+ P
1

with fig = 1'. Let

L denote the suhmodule of P ~ P consisting of the pairs (p,p )
1 I

satisfying f(p) = r I(P I)' Map PEEl K
1

into L hy

(4)
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It is straightforward that (4) is onc-onc and onto. Thus. if P

is projcctivc. PlB K
1

IS isomorphic to L. If P 1 is also pro­

jcctivc. L is isomorphic to P1lB K.

Thcorcm I incvitably suggcsts thc introduction of an cquiv-

alcncc rclation: modulcs A and B arc cquivalcnt if thcrc cxist

projcctivc modulcs P and Q such that AlB P is isomorphic to

B EEl Q. Wc writc /(A for thc cquivalcncc class of K in (Z),

and thc gist of Thcorcm

morc wc casily scc that

is that 'd(A is wcll-dcfincd. Furthcr­

"leA dcpcnds only on thc cquivalcncc

class of A. Wc arc now rcady to dcfinc thc projcctivc dimcnsion

of A as thc smallcst n such that -KA is thc class of projcc-

tivc modulcs; if thcrc IS no such n. thc projcctivc dimcnsion of

A is 111 .. Wc usc thc symbol d(A), or dR(A) if it is advisablc

to call attcntion to thc ring R.

Examplcs:

1. d(A) '" 0 if and only if A IS projcctivc.

2. d(A) = 1 if and only if A is not projcctivc but IS cx­

prcssiblc as B/e with Band C projcctivc.

3. Lct a, b bc clcmcnts of R such that thc Icft annihi-

lator of a is Rb and thc Icft annihilator of b IS Ra. Wc havc

thc cxact scqucncc

o ..... Rb - R - Ra .... 0

whcrc thc map from Rb to R is inclusion. and that from R to

Ra is right multiplication by a. Wc havc a similar rcsolution

with a and b intcrchangcd. Thc rcsult is to obtain a pcriodic

long rcsolution that bounccs back and forth bctwccn Ra and Rb.

Thus d(Ra) '" d(Rb) =a::> unlcss Ra and Rb arc both projcctivc.

Whcn a and b arc ccntraL thc condition for this is (a, b) '" R.

Wc givc thrcc illustrations:
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(i) R = Z 4 (thc intcgcrs mod 4), a = b = 2. IIcrc d(Ra} = 111.

(ii) Lct u, v bc ccntral non-zcro-divisors in a ring T. and

supposc (u. v) f. T. Lct R =T/(uv) and Ict a. b bc thc imagcs of

u and v 111 R. Again d(Ra) = 111.

(iii) Lct Y bc any ring. T = Y[xj with x a (commuting)

indctcrminatc and sct u =x-I. v = l-+x -+ ••• t xn-I. Thcn

R = T/(uv} is' thc group ring ovcr Y of thc cyclic group of ordcr n.

Thc condition (u, v) = T holds if and only if n is invcrtiblc in Y.

4. Excrcisc: if A is a dircct sum of (any numbcr on

modules B .. thcn d(A) = supd(B.).
1

Wc procccd to a thcorcm giving a ncarly complctc rclation­

ship bctwccn thc homological dimcnsions of thrcc modulcs occurr-

ing in a short cxact scqucncc. It is pcrhaps most uscful to vicw

this as an attcmpt to dctcrminc d(A/B) from d(A) and d(B}.

This is succcssful cxccpt in thc "ambiguous casc" d(A} =d(B)

whcn wc only gct an incquality.

Wc call attcntion also to thc condcnscd vcrsion suggcstcd by

P. M Cohn: d(A) ~ .max(d(B), d(C}) with cquality cxccpt possibly

whcn d(C) =d(B) t I.

TIIEOREM 2. Let B bc a submodulc of A. and write

C =A/B; thus wc havc thc cxact scqucncc

(6) 0- B -A - C - O.

(I) If two of thc dimcnsions d(A), d(B), d(C) arc finitc. so

is thc third.

(2) If d(A) > d(B), then d(C) = d(A).

(3) If d(A) -< d(B), then d(C) =d(B} + I.

(4) If d(A) = d(B), thcn d(C) ~ d(A) -+ I.
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Before heginning the proof we menlion an allernale

procedure. lhal of huilding simullaneous resolulions of all lhree

modules (Cartan and Eilenherg. p. 7, Prop. 2.5). Symholically.

we pass from (6) lo

0-+ FeB -+ 1<. A .... 'f(.c -+ o.

Beginning the induclion is a lrifle more ledious in lhis version.

Perhaps the hesl advice lo the reader is lo have holh lechniques

al his disposal.

If A is projeclive. lhe lheorem is immediale. If C IS

projeclive. lhen A is the direcl sum of Band C and again lhe

lheorem is immediale. We may lhus assume lhal neilher A nor

C IS projeclive.

Wrile A == P/D wilh P projeclive. Then B has the form

E/D, where DC E'C P, and C ~ piE. Thus d(E) == d(C) - 1"

d(D) = d(A) - I, d(E/D) = d(B). We have the exacl sequence

or symholically

(7) o -'1((A} -+ "(C) - B -+ 0 .

(ll is inleresling lo nole lhal lwo more applicalions of the proce­

dure lead us 10

By using (7) and induclion on the sum of the lwo finile dimensions

we gel parl one of the lheorem al once. So we assume all lhree

dimensions finile and make an induclion on lheir sum. The induc-

live assumplion on 0, E, B gives the following informalion when

lranslaled hack lo A. B. C :
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(a) If diG) > d(A), lhcp d(B)" diG) - I"

(b) If diG) < d(A), lhcn d(B)" d(A),

(c) If d(G):: d(A), lhcn d(B) S diAl.

Thcsc lhrcc slalcmcnls arc mcrcly a logical rcarrangcmcnl of lhc

lhrcc slalcmcnls in Thcorcm 2.

Excrcisc.

aClually possihlc.

All comhinalions pcrmillcd hy Thcorcm 2 arc

2. Glohal dimcnsion

Thc glohal dimcnsion of R. wrillcn D(R), is lhc sup of

diAl lakcn ovcr all R-modulcs. Morc cxaclly. lhis is lhc lcn

glohal dimcnsion and lhcrc is a similar righl glohal dimcnsion

dcrivcd from righl modulcs.

Bricf argumcnls show lhal D(R)" 0 (lcn or righl) if and

only if R is scmi-simple wilh dcsccnding chain condilion. If R

IS an inlcgral domain. d(R) So 1 if and only if R is a Dcdckind

ring.

If cilhcr of lhc lwo glohal dimcnsions is O. so is lhc olhcr.

BUl olhcrwisc lhcrc is no conncclion hclwccn lhc lcn and righl

glohal dimcnsions (A. V. Jalcngaonkar. :\"oliccs Amcr. Malh.

Soc. vol. 14, (1967), p. 660).

3. Firsl lhcorcm on changc of rings

For many lhcorcms 0 r compulalions conccrning homological

dimcnsion a comparison hclwccn lwo rings is uscful. Thc follow­

ing lhcorcm. hccausc il is so simplc lo provc and is dccisivc of ils

kind, dcscrvcs firsl mcnlion.
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TIIEOREM 3. Let R be a ring with unit and x a central

element of R which is ~ non-zero-divisor. Write R* = R/{x).

Let A be a non-zero R -module with dR*{A) = n < 00 • ..Ilu:.n.

dR{A) [] n t I.

The proper context in which to view results like Theorem 3

is the following: let Rand S be rings and let there be given a

ring homomorphism from R to S. Then any S-module A be­

comes in a natural wayan R-module. By Theorlilm 2 and an easy

induction one proves

(8)

(This IS part of Exercise 5 on p. 360 of Cartan-Eilenberg). In

Theorem 3 we have a case where the inequality (8) is improved to

equality. By iterated use of Theorem 3 we can get f\Jrther in­

stances of equality (and this is a nice motivation for the concept

of an R-sequence). In Corollary 2.12 of Auslander and

Buchsbaum's Codimension and multiplicity (Ann. of Math. 6X

(1958), 625-(57) there is another case of equality. It would be

interesting to know the precise circumstances in which equality

holds.

Proof of Theorem 3. We proceed by induction on n.

q,= O. A is R *-projective and hence-a direct summand of a

free R -module F. ~ow (xl is R-projective (even free*m one

generator) and not a direct summand of R. IIence dR{R ) =
and Iikewi se d

R
(F) = I. I t follows that d

R
(A) ~ I. We must ex­

clude the possibility that A is R-projective. ~ow x acts faith­

fully on R. hence on any free R-module. hence on any non-zero

submodule of a free R-module; therefore no non-zero projective

R-module can be annihilated by x.
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*
n > O. Map a frcc R -modulc G o~to A with kcrnc I K.

Wc havc dR*(K) = n-I. whcncc dR(K) =n by induction. By

Thcorcm 2 wc can concludc d
R

(A) =n+ 1 cxccpt whcn n" I; hcrc

wc only gct dR(A) S 2. (It is typical of such an inductivc proof

that thc ambiguous casc of Thcorcm 2 calls for a spccial argu-

mcnt at a low stagc of thc induction.) Wc shall concludc thc proof

by showing that whcn d (A) and dR*(A) arc both at most onc. A
* Ris R -projcctivc.

Map a frcc R-.modulc II onto A with kcrncl T. Sincc A

is anni hi latcd by x, T =::l xH. Sincc d
R

(A) 5 L Tis R-proj ccti vc.

Wc furthcr havc a homomorphism of H/xH onto A with kcrncl

*T/xH. Sincc H/xH is R -frcc and d .(A)< I, T/xH is R*-
R'c -

projcctivc. This implics that xH/xT is a dircct summand of
T/xT. ~ow .T/xT is R*-projcctivc. as follows rcadily from

thc fact that T is R-projcctivc. Ilcncc xH/xT is R*-projcctivc.

But xH/xT Gii! lIlT ~ A. IIcncc A is R *-projcctivc.

Thc ncxt thcorcm is an immcdiatc corollary of Thcorcm 3.

*
TIIEOREM 4. ~ R, x. R bc as in Thcorcm 3. Supposc

*D(R ) =n < 00. Then D(R) ~ n+ I.

Thc following somcwhat rclatcd thcorcm is duc to

D. E. Cohcn.

TIIEOREM 5. Let T bc a ~ubring of R and assumc T is

a dircct summand of R as a T-bimodulc. Thcn D(T) 5 D(R)

+ dT(R) •

Proof. Takc any (lcft) T-modulc A, and sct B = HomT(R, A).

Thcn B carrics thc structurc of a Icft R-modulc. As a T-modulc

it has A as a dircct summand. for if R =T lillJ as a T-T-bimodulc

thcn B = A lil IIom
T

(U, A). It follows that dT(A) 5 dT(B). By (8),
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dT(B) S dR(B) t dT(R). lIence dT(A) ~ dR(B) t dT(R). Passing

lo global dimensions. we gel the desired conclusion.

Useful examples for Theorem 5 are provided by laking R

lo be a POlYl10111ial algcbra~ po\vcr series algcbra~ group algcbra~

or semi-group algebra over R. Anolher example: lel Y be a

rtng~ G a group. II a subgroup of G. and lake T(R) lo be lhe

group ring over Y of H(G). (The complemenl lo T in R is

provided by the sel of linear comb ina lions of elemenls nol in II.)

4. Polynomial nngs

Lel S 'be any ring. By the polynomial nng R = S[x) we

mean the usual polynomials 111 x wilh coefficienls in S; x com-

mules wilh the elemenls of S. bUl we allow S lo be non-commuta-

live. ="Iole lhal x is in the cenler of R and is a non-zero-

divisor.

TIII:ORI:M 6. Let R =S[x) be a polynomial ring In x over

S. Then D(R) = I t D(S).

Proof. We have D(R) ~ I t D(S), by Theorem 4 when

D(S) < ee and (since dSR =0 here) by Theorem 5 when D(S) =ee

(lhe argumenl below also looks afLer the case D(S) = ee). We

lherefore assume D(S) =n < ee and have lo prove D(R) ~ n+ L

Lel A be any S-module. We describe a cerlain conslruc­

lion for a relaled R-module for which. at the momenl, we wrile

A[x). (The reader who prefers is inviled lo subslilule RI8>
S

A

and make analogous changes below.) The module A[x) IS the sel

of ~ a x
n

, a E A ; the aclion of S and x (and lhereby R) on
n n

A[x) is self-explanalory.

We claim lhal dR(A[x)) = dS(A). Firsl: if A IS S-free.

evidenlly A[x) is R-free. Direcl summands offer no problem.

so A S-projeclive implies A[x) R-projeclive. Conversely. sup-
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pose A[x) is R-projeclive. Then it is an R-direcl-summand of

an R-free module which is also S-free. (Observe lhal R is free

as an S-module.) So A[x) is S-projective. Since. as an S-

module. A[x) is merely a direct sunl of a counlable number of

copies of A. it follows lhal A is S-projeclive.

Map a free S-module F onlo A wilh kernel K. Il is im-

mediale lhal lhere is an induced R-homomorphism of F[x) onlo

A[x] wilh kernel K[x); nole also lhal F[x) is R-free. We lhus

gel parallel resolutions'of A and A[x) over Sand S[x)

respeclively. and it follows from the preceding paragraph lhal

lhese resolulions lerminale al the Same momenl. Moreover if

one resolulion never lerminales the same is lrue of the olher. We

have suslained the claim lhal dS(A) =dR(A[x)).

We shall find it advisable laler lo change our nolalions for

A[x). We may wrile A[x) inslead as the sel of all sequences

(a
o

' ai' a
Z

" •. ) of elemenls of A, non-zero al only finilely many

coordinales; S acls by pbintwise mulliplicalion and x as a push

lo the righl:

x(ao ,a1,aZ" •• )=(O,ao ,a
1
,a

Z
'·")·

="low lel \II be any R-module. We shall wrile "I for lhe

R-module which was described as M[x) above; ="I is the sel of

all ullimalely vanishing sequences (m ,m ,m , ••. ), m. E \II.
o 1 Z 1

wilh S aCling pointwise and x acting as a push lo the righl. The

map

defines an R-homomorphism of N onlo \II (note that the right

side is meaningful since M is already an R-module). Lel lhe

kernel be K. We showed above lhal d ('» = d (M); hence
R S

dR(N) oS n. We shall show fUrlher lhal K is isomorphic lo "I.
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Application of Thcorcm 2 thcn yiclds that for M = I\/K wc havc

dR(M)sntL as dcsircd.

Thc isomorphism of K and " IS givcn by mapping ~

onto K as follows:

That this is indccd an R-homomorphism which is onc-to-onc and

onto K is a straightforward vcrification thz.t wc lcavc to thc

rcadcr.

Excrcisc.

-1]R =S(x, x •

Adapt thc abovc argu mcn t to thc c a sc

Wc rccord an immcdiatc corollary of spccial intcrcst.

TIl EOREM 7. (II i lbcrt's thcorcm on syzygics). If R is

thc ring of polynomials in n variablcs ovcr a ficld. thcn

D(R) = 11.

5. Sccond thcorcm on changc of rings

Thcorcm 3 docs not sufficc *0 gct complctc information on

thc conncction bctwccn Rand R , for thc only R-mQdules

covcrcd arc thosc annihilatcd by x. If in rcvcrsc wc start ~ith

an R-modulc A. wc nccd a way to pass to an appropriatc R -

modulc. Thc obvious choicc is A/xA. With prccautions about

zcro-divisors (which cannot bc omittcd) thcrc is at any ratc

incquality:

TIIEOREM X. Let R bc a ring with unit. x a ccntral

clcmcnt in R, writc R~' = R/(x}. Let A bc an R-modulc and

supposc that x is a non-zcro-divisor on both Rand A. Thcn:
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Again thcrc is a broadcr contcxt in which to vicw Thcorcm X.

Givcn a ring homomorphism from R to S, and a (lcft) R-modulc

A. wc pass to B:: S®R A which is a (lcft) S-modulc. Wc arc

intcrcstcd in thc validity of dS(B) ~ dR(A). If tcnsoring with S

prcscrvcs cxactncss (i.e., if S is right R-Oat). thc incquality is

immcdiatc. This is not. howcvcr. thc sctup in Thcorcm X, which

is cxplaincd from thc 'highcr" point of vicw as follows. Thc rcqui­

sitc prcscrvation of cxactncss is assurcd ir,pppropriatc Tor's

vanish. From Tor 2 on thcy do sincc dR{R ) = 1. Thc vanishing

I' T
R, * .. .o or

1
(R .A) IS prcclscly thc hypothcsls that x IS a non-zero-

divisor on A.

Proof of Thcorcm X. If dR(A) = 00, thcrc is nothing to

provc. So wc assumc dR(A) = n < 00, and procccd by induction

on n.

n =O. Dircct summands offcr no problcm so wc may as
8

wcll assumc that A is R-frcc. Thcn A/xA is visibly R -frcc.

n> O. Map a frcc R-modulc F onto A with kcrncl K.

Wc havc dR(K) = n-l. whcncc dR*{K/xK) ~ n-l by induction.

Thc map F - A followcd by thc natural homomorphism of A on­

to A/xA yiclds a map F - A/xA with kcrncl K t xF. Wc may

instcad rcgard this as a map F/xF - A/xA with kcrncl

(K t xF}/xF. ~ow (K t xF}/xF ~K/(KnxF) by thc standard

isomorphism thcorcm. It follows rcadily from thc hypothcsis

that x acts ~lithfully on A that K n xF :: xK. Thus: wc havc a

map of thc R -frcc modulc F/xF onto A/xA with kcrncl K/xK.

Sincc dR*(K/xK) Son-I. wc dcducc dR*(A/xA}::; n. as dcsircd.

6. Third thcorcm on changc of rings

Whilc Thcorcm Xhas a ccrtain uscfulncss. it is to bc cx-

pcctcd that important rcsults will conccrn thc casc of cquality.
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For this assumptions arc nccdcd conccrning thc Jacobson radical

and finitcncss.

TIlEOREM 9. Let R bc a lcft ~octhcrian ring. x a cen-

*tral clcmcnt lying in thc Jacobson radical of R; write R = R/{x).

l...cJ. A bc a finitcly gcncratcd 'R-modulc. Assumc that x is a

non-zcro-divisor on both Rand A. Thcn d ",(A/~) =dR{A).- -- R~

Proof. Lct d ,(A/xA) = n. Wc havc to provc dR{A) = n.
R~'

If n =00, Thcorcm 8 applics. so wc assumc n < 00. Wc arc

going to arguc 'oy induction on n. Wc do thc inductivc stcp first.

lcaving thc discussion of n = 0 to thc cnd.

Map a frcc finitcly gcncratcd R-modulc F onto A with kcr­

ncl K. This induccs a map of F/xF onto A/xA with kcrncl K/xK

(cxactly as in thc woof of Thcorcm X). Wc havc dR~~{K/xK) = n-l

(sincc F/xF is R -frcc). whcncc dR{K) = n-l by induction.

(~otc that K satisfics thc rcquisitc conditions: it is finitcly

gcncratcd and x acts faithfully on it.) Wc concludc that

(If n = 1 thcrc is a momcntary possibility that

but this of coursc implics d *(A/xA) =0.)
R

It rcmains for us to trcat thc casc n = o. That is. wc must

provc thc following: undcr thc hypothcscs of Thcorcm 9, if AjxA

IS projcctivc. thcn A is projcctivc.

Wc first do this with "projective" rcplaccd by "freeR in both

thc hypothcsis and thc conclusion. Supposc thcn that A/xA is frcc

ovcr R*, and let v , •• "v bc a basis. Pick clcmcnts u. in
1 n

A Inappihg 011 v.. We clailTI that A is frcc~ with U0
1

" .. J un as

a basis.

That thc uts span A is typical dcduction from ~akayama's

lcmma. In dctail: lct C bc thc submodulc of A spanncd by

u u Wc havc C t xA = A. whcncc x{A/C) = A/C, and
1"'" n'

Ale = 0 by ~akayama.
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Supposc ~ ciu
i

= 0 for c. E R. Wc show that thc CiS

arc O. From 1: c.v. =0 wc gct that cach c. is divisiblc by x.
1 1 I

Sincc x acts faithfully on A. wc may canccl x in thc rclation

~ c u. = O. Thc proccss may thcn bc rcpcatcd.
iI,

sult a scqucncc of clcmcnts c .. c./x, c./x2, •.•
1 1

Thcrc will rc­
which gcncratcs

a propcrly asccnding chain of lcft idcals in R. unlcss c
1

= O.

• From thc frcc casc wc pass to thc projcctivc casc b¥ a

dcvicc duc to Lancc Small. Supposc thcn that A/xA is R -pro-

jcctivc. Form a frcc rcsolution of A:

From (9) wc pass to thc corrcsponding rcsolution of A/xA:

(10) 0 - K/xK'" F/xF - A/xA'" 0

Lct B =A $ K. Thcn B/xB is isomorphic to A/xA $ K/xK.

Sincc A/xA is projcctivc. thc scqucncc (10) splits. IIcncc B/xB

is isomorphic to F/xF, which is R*-frcc. By thc frcc casc al­

rcady trcatcd. B is R-frcc. and A is R-projcctivc as rcquircd.

Thcrc is an additional aspcct of Thcorcm 9 which wc shall

bricOy cxplorc. Supposc. in thc sctup of Thcorcm 9. that

dR,:,(A/xA) = n < cc and that A I- 0 (whcncc. by ~akayama.

A/xA I- 0). Thcn. by Thcorcm 3. dR(A/xA) =nH. Putting this

togcthcr with Thcorcm 9 wc gct

(11)

~ow thc intcrcsting thing is that if R is commutativc (11) can bc

improvcd in two rcspccts: it is truc also whcn dR(A) = 00, and wc

can dclctc thc assumption that x is a non-zcro-divisor in R. Thc

proof is by thc long cxact scq ucncc for Ext. Supposc
k+1

uR(A/xA) =k < cc. Thcn Ext
R

(A/xA, H) = 0 for any R-modulc B.
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From the exact sequence

o .... A~ A .... A/ocA .... 0

we get
k x k kH / .ExtK(A,B)~ ExtR(A,B) -> Ext

R
(A xA, B) = O.

Take B finitely generated; then the ~akayama lemma yields

Ext~(A,B) = O. This'leads to dR(A):s.k-l. the key point we

need.

Whether commutativity of R can he deleted here is unknown.

A "little" non-commutativity can he allowed: if R is a T -algehra

and a finitely generated module over the commutative ~oetherian

ring T. and x is in the Jaeohson radical of T. then the ahove

argument works (look at the relevant Ext as aT-module).

We wish to state a corollary of Theorem 9 applying to. the

*glohal dimensions of Rand R • Because of the restriction to

finitely generated modules. there is a difTieulty. In Section 14

we shall sec that this difTieulty is transitory. for the glohal

dimension of a ring can he computed from its finitely generated

modules. or even its cyclic modules. So: the distinction hetween

D and 15 is temporary only.

DEFI~ITIO~. 15(R) IS the sup of d(A), taken over all

finitely generated modules.

TIIEOREM 10. Let R he a left ~oetherian ring. x a een-

tral clement in the Jaeohson radical of R, not a zero-divisor in R.

J.....c.L R~( =R/(x). Assume that i5(R~~) =n < 00. Then 15(R) =nff.

Proof. That 15(R) is at least nff is immediate from

Theorem 3. Conversely. let A he any finitely generated R-mo-

dule. say with dR(A) = k. We must prove k:5 nff. If k = O.

there is no prohlem. Otherwise we map a free finitely generated

R-module F onto A with kernel K. We have dR(K) =k-f.
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Also, K IS finitely generated and x acts faithfully on it. By

Theorem 9, dR(K) = dR*(K!xK) ~ n. lienee k-I:s' n , k ~ n+1

as desired.

Exercise. Let S he a Ie Ct ~oetherian ring and R the

formal power series ring in one (commuting) indeterminate over

S. Prove: 'D(R) = 1 t D(S).

7. Localization

We recall the fundamental definitions. R is a commutative

ring with unit, S a multiplicatively closed suhset containing I.

For any R-module A define AS to he the set of pairs (a, s) ,

a E A. s e S, with the identification (a,s):: (a
1
,s1) if there

exists s2 E S with s2(s 1a - sa!) = O. With the usual rule of

addition AS is an ahelian group. When this construction is per­

formed on R, there is a natural multiplication making R
S

a ring,

and then AS hecomes an RS-module in a natural way. Any R
S

­

module arises from an R-module this way (for instance from itself).

TIIEOREM II. For any localization R
S

of a commutative

ring R, D(R) ~ D(R
S

)' D(R) ~ D(R
S

)' (The re ad er is rem ind cd

that the distinction hetween 0 and D is temporary.)

Prooe. The proof is immediate from three simple remarks,

whose proof we leave to the reader.

(I) If A is R-projective, then AS IS RS-projective.

(2) If F is R-free and maps onto A with kernel K, then F
S

is RS-{ree and maps onto AS with kernel K
S

'

(3) A finitely generated RS-module is of the form AS with

A a finitely generated R-module.
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X. Preliminary lemmas

In sections X-IO we derive the homological characterization

of regular local rings. This section is devoted to some easy pre­

liminary lemmas that arc needed. R will denote a local ring

(i.e., commutative, J\"octhkrian, with unique maximal ideal M).

LEMMA i. Let A he a finitely generated R-modJlk and

B ad irect summand of A such that Be '-'1A. Then B '" O.

P roo f. Say A = Bel C. We have C t '-'1A = A. whence

M(A/C) =A/C. By the J\"akayama lemma, Ale", 0, whence B '" 0

LEMMA 2; Let A he a finitely generated R-module and

a minimal set of generators.at' .. " an

module on n generators u t '··· J un' Let

Let

F

F be,a free R-

he mapped onto A

hy sending u
i

into a
i
. Then the kernel is contained in MF.

Proof. If L ctu
i

is in the kernel and docs not lie in :vIF

then one of the

we find that

a contradiction.

CIS, say c
t

' must he a unit. From L ciai '" 0

can he expressed in tcrn1S of the other a's,

LEMMA 3. Any finitely generated projective R-module A

IS free.

Proof. Map F on A vIa a minimal generation of A as

In the preceding lemma. The kernel K is a direct summand

of F. By Lemmas 1 and 2, K =O. and A'" F is free.

Remark. By auxiliary arguments it is possihle to delete

the hypothesis of finite generation in Lemma 3 (Ann. of Math. 6X

(1958), 372-7).

LEMMA 4. Suppose that every clement of M IS a zero­

divisor. Then for any finitely generated R-module A, d(A)~

either 0 or 00.
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If not there exists a finitely generated A with

d{A) = 1. Resolve A, F"'" 1\. as in Lemma 2, so that the kernel

K is projective (hence free) and satisfies K C :vIF. Fromthe

hypothesis that every clement of M is a zero-divisor it is a

known consequence that there exists a non-zero clement z with

zM = O. But zK'= 0 is impossihle since K is free.

9. A regular local ring has finite glohal dimension

In connection with Theorem 13 we remind the reader that

the distinction hetween J) and 15 is a provisional one, to he re­

moved in section 14.

THEOREM 12. If R IS an n-dimensional regular local

ring, 15{R) = n.

Proof. Let M he the maximal ideal of R. Pick an ele­

ment x in M hut not in M
2

(this is possihle except in the

trivial case where

divisor (indeed R
R is a field). The clement x is not a zero­

IS an integral domain). The ring R,~ == R/{x)

is a regular local ring of Krull dimension n-I. By induction on

the Krull dimension of R we may assume D{R") =n-1. All the

hypotheses of Theorem 10 arc fulfilled and we conclude that

D{R) =n.

10. A local ring of finite glohal dimension is regular.

In proving the converse of Theorem 12 we arc ahle simul­

taneously to extract the information that the one module M

determines homological dimension.
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TIIEOREM 13. Let R he a local ring with maximal ideal

M Assume that R is not a field. Suppose dR(M) = n < 00 •

.I1u:JJ R is an (n+l)-dimensional regular local ring.

Prooc' We hegin the proof hy disposing of two rather tri­

vial cases. Suppose n = 0, i. e., M is projective. By Lemma 3,

\II is free, which means that M is a principal ideal generated by

a non-zero-divisor. From this it is easy to conclude that R is a

one-dimensional regular local ring.

Suppose that every element in M IS a zero-divisor. It

then follows from Lemma 4 that n = O. and this is covered hy the

preceding paragraph.

Let k he the Krull dimension of R. We shall argue hy in­

duction on k. If k = O. every element of M is a zero-divisor

(in fact even nilpotent); hut this case we have already disposed oc.

We assume k> O. We may of course further assume that M

'" M/{x) he the maximal ideal of the local

*The Krull dinftCnsion of R is k-l.

R/{x), and let M

'"Rring

non-zero-divisor x

'"R =

contains a non-zero-divisor. It is known that then there exists a
2

wk1ich is in M hut not in M • Write

It IS a fact that M is isomorphic to a direct summand of

M/xM. Supposing that this is known, let us see how the proof con­

cludes. By Theor;m X, dR*(M/xM) ~ dR(M) and hClIl1ce is finite.

Therefore d
R

(M ) is finite. By Theorem 2, dR(M ) =dR(M/(x»

= n. (~ote that (x) is projective, and that the amhiguous case

of Theorem 2 does not arise since we ha*,e already taken care of

the case n = 0.) By Theorem 3, dR*(M ) =n-I; ohserve that it

is vital to know somehow that dR*(M*) is finite. By induction on

k, we have that R'" is an n-dimensional regular local ring. From

this it follows that R is an (n+1)-dimensional regular local ring.
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It remains to supply the proof that M: IS isomorphic to a

direct summand of M/xM. S · I 2. . k. 111ee x M, we may piC a mini-

mal hase of M having the form x.Yt'·· "Y
r

' Let

S = xM + (Y
1

, .•• ,Y
r
), It is evident that S t (x) = M. Further.

S n(x} = xM. For suppose z ( S n(x). Then

(a, b. ( R. e (M). and
I

is a minimal hase of M it £01-

M/(x}

S/xM.

z =ax-b l Y1 + ... + hrY
r

t ex

ax - ~ b.y. E M2.. Since {x. Y.}
1 1 I

lows that a lies in M, and thus S n (x) = xM. So M/xM IS

the direct sum of (x}/xM and S/xM, and this implies that

is isomorphic to a direct summand of M/xM, namely

This concludes the proof of Theorem 13.

Let R he a regular local ring. P a prime ideal in R.

As is customary we write R
p

instead of R
S

,where S is the

set-theoretic complement of P. Putting together Theorems 11,

12, and 13 we have:

TIIEOREM 14. For any prime ideal P 111 a regular local

ring R. the local ring R p is again regular.

11. Injective modules

In this section and. the next three we develop the dual theory

of injective dimension. ahd as a last step we apply it to ohliterate

the distinction hetween D and D.

Let us hegin hy recalling that a module Q IS injective if

whenever modules A C B and a homomorphism f: A - Q arc

givcn~ can he extended to B.

It is important to know that injeetivity can he tested hy just

examining the case where B is the given ring.

LEMMA 5. Let Q he a piven R-module. Suppose that any

homomorphism of a left ideal into Q can he extended from I

to R. Then Q is injective.
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Sec Cartan-Eilenherg, page X, Theorem 3.2.

~ext we have the dual of Theorem 1. The proof IS dual and

IS left to the reader.

TIIEOREM 15. Suppose the sequences

o -+A . Q' -+ C' 0

arc exact, and Q, Qt arc injective. Then Qeel IS isomorphic

to Qt e c.

This suggests defining two modules to he iPjectjyely cqlljva-

knLif they hecome isomorphic when suitahle injective direct

summands arc added to each. The injective equivalence class of

C in Theorem 15 is independent of the choice of the resolution

and we write J A for it.

In order to huild injective resolutions we need:

LEMMA 6. Any module can he emhedded in an injective

module.

A proof hy Baer appears on page 9 of Cartan-Eilenherg;

a proof hy Eckmann and Schopf is sketched on page 31.

We now define the injective dimension of A to he the

smallest n such that J.nA = O. <Xl if there is no such n. We

introduce no symhol for injective dimension. For the glohal

injective dimension of R (the sup of the injective dimensions

of all R-modules) no symhol IS needed, for it is equal to the

glohal projective dimension. In order to prove this we must

study Ext a little hit.

We conclude this section hy noting the other characteriza­

tion of injective modules. Sec Cartan-Eilenherg page 10. Lemma

3.4. (Remark: they usc Lemma 6 hut this can be avoided. Sup­

pose Q has the universal direct summand property, let A C B,
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and suppose we arc given f:A ..... Q. Form C = (B Ell Q)/D where

D = all (a, f(a)). We get a one-to-one map of Q into C, and its

splitting extends I' to B. Compare the proof of Theorem 16.)

LEMMA 7. A module is injective ifand only if it has the

property of heing a direct summand of any module containing it.

12. The group of homomorphisms

For any modules A and B we write Hom(A, B) for the

set of homomorphisms from A to B. made into an abelian group

under the natural operation of addition. When R is commutative.

Hom(A, B) admits the structure of an R-module.

Given modules A, B, C and a map A ..... B there arc natural

induced maps Hom(C, A) ..... Hom(C, B) and Hom(B, C) ..... Hom(A, C)

LEMMA X. 1£ 0 - A B ..... C is exact. then

o Hom(D, A) ..... Hom(D, B) ..... Hom(D, C)

I S exact. If A ..... B ..... C o is exact. then

Hom(A, D) ... Hom(B, D) +- Hom(C, D) ...... 0

IS exact.

Sec Cartan-Eilenherg. page 26. Proposition 4.4.

13. The vanishing of Ext

We shall have no need to assign a meaning to Ext itself:

we shall only speak of its vanishing.

DEFI~ITIO~. Let A.B he given modules. We say

Ext(A, B) =0 if the following is true: whenever a module C con­

tains B with C/B =A then B is a direct summand of C.
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TIIEOREM 16. Let C.D he given modules. The following

three statements arc equivalent:

(I) Ext(C,D)==O.

(2) For any exact sequence 0 - A - B ! C - 0 the sequence

o _Hom(A, D) _ Hom(B, D) +- Hom(C, D) - 0

IS exact.

(3) For a single exact 0 *A ... B - C - 0 with B~-

~. (*) is exact.

Prooe. (1) - (2). Lemma X covers the exactness of (*)

except at the term Hom(A, D). So: we must prove that

Hom(B, D) ... Hom(A, D) is onto. i. e., we must show that any

homomorphism h: A - D can he extended to a homomorphism

B'" D. (We arc thinking of A as heing simply a suhmodule of B.)

Let E == D lil B. Let T he the suhmodule of E consisting of all

(-h(a), a), a E A.

(~'*)

Write F == E/T. We have the sequence

IIere p(d) is the class of (d.O) mod T. and r(d, h) =g(b), this

heing independent of the choice of (d. h) within its class mod T.

It is routine to check that (**) is exact. It follows from our hypo­

thesis (I) that there exists a map s: F - D with sp = identity.

Define a map B - D in 3 steps

the first heing h - (O, h) and the second the natural homomorphism.

One verifies that this map coincides with h when restricted to A.

(2) - (3). Trivial.

(3) _ (I). Let E he a module with suhmodule D. E/D ~ c.

We must prove that D is a direct summand of E. In the diagram
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O~l;j~!-l>O
o-l>D~ E~ C----;. 0

the map f arises sinee B is projeetive. When restrieted to A,

one easily sees that [ maps into D. Our hypothesis (3) implies

that f: A - Dean he extended to g: B .... D. ~ow I define t: E - D

as follows: piek hE B with r(b) '" s(e), and set t(e) = e tg(b) - f(b).

We have t(e) E D since sf = r, so that st(e) = s(e) sf(b) '" o. If

instead of h we take b
1

with r(b
l

) = s(e), then g - h 1 E A and

g - f vanishes on h - b
l

; thus is well-defined. Since g and f

coincide on A. is the identity on D. lIenee D is a direct sum-

mandof E.

The gist of Theorem 16 is worth restating: to tell whether

Ext(A, B) =O. take a projective resolution of A:

O-K .... P-A .... O
proj.

and determine whether every homomorphism of K into B can he

extended to P; the decision is independent of the choice of the

resolution.

It is immediate from the definitions that Ext(A, B) vanishes

for all B ifand only if A IS projective and vanishes for all A

if and only if B is injective. But with the aid of Lemma 5 this

latter result can he usefully strengthened:

TIIEOREM 17. Let Q he an R-module such that

Ext(R!r, Q) = 0 for every left ideal I in R. Then Q is injective.

The dual of Theorem 16 admits a dual proof that we leave to

the reader.
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TIIEOREM IX. Let C, D hc givcn modulcs. Thc following

lhrcc slalcmcnls arc cquivalcnl.

(I) Ext(C,D) = o.

(2) For any cxacl scqucncc 0 - D .... A .... 13 .... 0 lhc scqucncc

(~,~,) 0 .... Hom(C, D) .... Hom(C, A) .... Hom(C, B) .... 0

IS cxacl.

(3) For a singlc cxacl scqucncc 0 .... D .... A - 13 .... 0 with

A injcclivc, U*) is cxacl.

14. Injcclivc dimcnsion

IL is cvidcnl lhal lhc vanishing of Ext(A, B) dcpcnds only on

lhc projcclivc cquivalcncc class of A and lhc injcclivc cquivalcncc

class of B. Thus wc may mcaningfully spcak of lhc vanishing of

Ext( J? A. B) 0 r Ext(A,j B). IL lurns oul lhal lhcsc lwo slalcmcnls

arc cquivalcnl.

TlIEOREM 19. For any modulcs A and 13, Ext(1i.'A,B)::: 0

if and only if Ext(A, JB) ::: o.

Proof. Wc shall supposc Ext(?e A, B) = 0 and provc

Ext(A, SB) =0; lhc olhcr half of lhc proof is dual.

Takc a projcclivc rcsolulion of A and an injcclivc rcsolu-

lion of 13:
projcclivc

o~ 1<>-- )1>-- A -;:. 0

fl~lh
O?--C~ Q~ B~O

injcclivc

Wc musl provc Ext(A, C) = O. By Thcorcm 16 lhis mcans lhal wc

musl lakc any f:K .... C and provc lhal f can hc cXlcndcd lo P.

By Thcorcm IX, lhc hYPOlhcsis Ext(K, B) =0 implics lhal lhcrc
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cxisls g:K -.. Q wilh rg = f. Sincc Q is injccliyc. g can hc

cXlcndcd lo h: P -.. Q. Thcn rh is lhc dcsircd map of P inlo C.

TIIEOREM 20. Thc projccliyc and injccliyc glohal dimcn-

sions of any ring arc cqual.

Proof. Lcl n hc lhc projccliyc glohal dimcnsion. We

shall show lhal lhc injccliyc glohal dimcnsion is al mosl n; lhc

olhcr half is dual. Thc casc n =co hcing lriyial. wc assumc n

finilc. Wc musl show JnB == 0 for any B. i.e .• Ext{A, jnB ) = 0

for any A. B, i. e., (hy n succcssiyc applicalions of Thcorcm 19)

Ext{ RnA, B) = O. which IS lruc hy hYPOlhcsis.

Al lasl wc supply lhc proof lhal D and IT coincidc.

TIIEOREM 21. Thc projccliyc glohal dimcnsion of any ring

R is lhc sup~ d{A) lakcn oYcr all cyclic modulcs A.

Proof. (iiycn I(.nR/ 1 == 0 for any I wc musl proyc !?nC = 0

for any module C. Thal is. wc musl show Ext{ Ii.nC , B) = 0 for

any C,B, i. e. I Ext{C, .,9.nB) =O. L e., JnB injccliyc. i. e. I

(Thcorcm I X) Ext{R/I, jnB ) =O. i. e. I Ext{ 1ln R/I, B) '" 0 ,

which is lruc hy hYPolhcsis.
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:-.lOTES

Page 9. To the three classical ruler and compass problems

a fourth should be added: the construction by ruler and compass of

a regular polygon of n sides. This is equivalent to asking whether

the number u = cos(21T/n) is a constructible real number. Write
21Ti/n -I

S = e a primitive n-th root of unity. Then S t S = 2u. It

follows readily that the degree of S over the field Q of rational

numbers is twice the degree of u over Q. Let us write g(n) for

the degree of S over Q. Then we sec that a necessary condition

for cos (21T/n) to be constructible is that g(n) is a power of 2.

In fact. this condition is also sufficient. but a proof at this point IS

not easily given. so we delay it till later (sec the section of these

notes referring to page 33).

What is g(n)? The answer is known; g(n) is equal to the

Euler function ¢(n), the number of residue classes mod n which

arc prime to n. This fact (which can be restated as the irre­

ducibility of the so-called cyclotomic polynomial) is somewhat

tricky to prove and we shall not discuss the general proof. which

can be found in several of the available treatises on modern alge-

bra. IIowever. the case where n is a prime (say p) is compara­

tively easy. The problem is to prove that

xP - 1 p-1 p- 2 +
--x=r-=x +x ... txtl

is irreducible over the field of rational numbers. We set x = y +1,

and find that the polynomial becomes
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(yH)P- 1

Y

In this new polynomial the highest coefficient is I, every suhsequent

coefficient is divisihle hy p, and the constant term is not divisihle

2
hy p By Eisenstein's criterion, the polynomial is irredueihle.

(This discussion is horrowed from Birkhoff and Mac Lane.,)

So now we have to study a prohlem in numher theory: given an
n

odd prime p, when is it true that p-I IS a power of 2, say 2 ?

We summarIze the facts. The numher n in turn has to he a power
t ' t

of 2, say 2. The numhers F " I +2 2 arc called Fermat nurn­
t

hers, honoring Fermat, who thought they were all prime. The first

five are 3,5,17,257, and 65537 (corresponding to 0~t~4), and

a re indeed prime. But for t 2:. 5. F
t

has turned out to he composite

in every case which has heen decided. 1'0 r a survey of the status

of the Fermat numhers, sec Wrathall [19) (these numhers refer to

the hihliography at the end of the notes). The factorization of F7

was accomplished very recently [10], although F
7

had heen proved

to he composite hy Morehead and Western in 1905.

It is a simple matter to,extend the investigation to composite

n. It turns out that ¢(n) IS a power of 2 if and only if n has the

following form: a power of 2 multiplied hy a product of distinct

Fermat primes.

Page 13. There is a very nIce theorem, due to Barhilian

[i), which In a way rounds out the circle of ideas presented up to

this point. Krull [9) simplified the proof and developed the theory

further.

Here IS the theorem. Let K C L he fields and let (i he the

(ialois group of L/K. Assume that the (ialois correspondence he­

tween suhgroups of (i and intermediate fields is ahsolutely perfect.

Then L must he finite-dimensional over K (and of course normal).
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Suppose that instead of requIrIng a perfect correspondence

hctween all intermediate fields and all suhgroups, we yield some

ground hy assuming that the (ialois group is topologized and that

only closed suhgroups arc eligihle. Then in the case of normal

algehraie extensions we do again gct a perfect correspondence, as

is mentioned on page 77. With transcendental extensions allowed,

new prohlems arise. They arc studied in [17], where earlier

references arc also given.

Page 33. Right after Lemma 3 is a convenient place to hreak

In and complete the discussion of ruler and compass construction of

regular polygons. In the notes on page 9 we proved the "only if"

portion of the following theorem. ]\"ow it is quite routine to supply

the .. if" part.

TllEOREM. Let p he an odd prime. Then a regular poly­

gon of p sides is eonstruetihle hy ruler and compass if and only if

p IS a Fermat prime.

(iranted the irredueihility of the cyclotomic polynomial, one

gets the complete result.

TllEOREM. A regular polygon of n sides is eonstruetihle

hy ruler and compass if and only if n has the following form:

a power of 2 multiplied hy a product of distinct Fermat primes.

The following additional information is worth recording. Let

Q he the field of rational numhers, let u he a real algehraie num­

her, and let K he a normal closure of Q(u) over Q. Then:

u IS eonstruetihle hy ruler and compass if and only if [K: QJ is a

power of 2. To prove this, one needs routine arguments eom-

hincd with the following thcOrCI11 frol11 group theory: a finite group

with order a power of 2 has a non-trivial center.
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Pages 40-42. Theorems 31 and 33 arc special cases of a

broader theory. In the text, this broader theory was not

developed since applications were envisaged only for Theorems 31

and 33.

lIere IS a sketch of the more general results. Let L be

normal and finite-dimensional over K, with Galois group G. Then

t *G acts on two abelian groups: L ,the additive group of L, and L ,

the multiplicative group of non-zero clements in L. :-.low any time

a group G acts on an abelian group A. certain cohomology groups
n 1 , +

H (G,A) a re definable. Theorems 31 and 33 say that II (eJ, L )
1 1 ,

and II (G, L*) vanish if G is cyclic. Actually, II (J. L *) = 0 for

any G and ~(G, L t) = 0 for any G and any n 2:. I. The coho-

I *mology group II-(G. L.) docs not in general vanish; it connects

with the Brauer group of K. Two references for further reading

arc Serre [14], [is].

Page 71. The idea in Theorem 63 has been developed further

by Isaacs [5].

Page 102. In collaboration with Adjan, :-.lovikov has now

published full details of his work on the Burnside problem. In

three papers [11] they prove that the non-trivial Burnside groups

with odd exponent 2:. 431\ I a re infinite. [n a further paper [1 Z] they

show that the groups in question arc not even finitely presented.

Page 123. The problem about the coefficient of the unit ele-

ment in an idempotent has been ingeniously resolved in the affirma­

tive by A. Zalessky (letter to the author). lie also proves the

analogous result in characteristic p; in fact, he docs it first for

characteristic p and then succeeds in making a reduction mod p.
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Let me mention at this point the publication of Passman's com­

prehensive monograph [i3] on infinite-dimensional group algebras.

Page 161. The question on central polynomials has been

answered affirmatively by Formanek [4],

Page 166. The Queen Mary College notes arc now out of print.

In nearly all re$peets, they have been superseded by [8],

Page 171. The paper l6J contains full details on the result

announced by J ategaonkar.

Page 172. The first change of rings theorem (Theorem 3) has

received some attention in the literature. Pertinent references arc

[2], [3], [7], and [i6]. Injective analogues of the three change of

rings theorems arc established in Section 4-4 of [8].

Page 171\. The proof that begins in the second last paragraph

(it is due to Bass) can be replaced by the following argument, which

proves a little more.

PROPOSITIO:-.l. Let x be a central clement in the Jacobson

radical of R. Suppose that x is a non-zero-divisor on a finitely

*pr:ll;sented R-module A. and that A/xA ~ R -free. where

R = R/(x), Then A is R- free.

Proof. Again take vi" ",v
n

to be a basis of A/xA, lift vi

to u. E A. and observe ~ la :-.lakayama that the u's span A. Re­

solve A over R:

O-K-F-A-O,

IIere F ;s free on zi' ... ' zn' and \ maps to u
i

' * If !: tiz
i

E K,

then!: 1. v. = 0, where t.* is the image of t. in R • It follows
1 1 1

that t~< = O. whence t. = xs .. We deduce x~ S,u, = O. Since x is
1 1 1 1 1
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a non-zero-divisor on A. we have :8 SiUi = 0 and 2: BiZ i E K. In

short, K =xK. Now K is finitely generated since A has heen

assumed to he finitely presented. Bya second application of

Nakayama, K = O. as desired.

For another way of proving Theorem 9, sec the paper [i8] hy

Strooker.

Pages I X3-5. For the possihle convenience of some readers

On page I X4, granted that the maximal ideal

(Of course they arc in lots of other hooks as well.)

Then R ISOn page IX3, R is given as a regular local ring.

a domain (Theorem 1(4). With x in M_M
2

,R/(x) IS regular

(Theorem 1(1) and {n-i)-dirnensional (Theorem 159).

M docs not con­
2

sist of zero-divisors, we need a non-zero-divisor x in M - M •

I will indicate (hy theorem numher) where some needed facts can he

found in [8].

This is provided hy Theorem X3, in conjunction with Theorem XO.

Finally, granted that R/(x) is a n-dimensional regular local ring,

we usc Theorems 162 and X4 to deduce that R is an (nti)-dimen-

sional regular local ring.
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Adjoint, 142

Algehra, 87

algehraie, 88

Algehraie

algehra, 88

closure, 74-6

clement, 3

extension, 5

Annihilator, 81, 148

Augmentation ideal, 119

Burnside's

prohlem, 101-2

theorem, 99

Centroid, 148

Chain, 132

Chain condition

ascending, 132-4

descending, 87, 132-4, 155, 171

Chinese remainder theorem, 108-9

Closed

field or group, 12

suhspaee, 140

Closure, 140

algehraie, 74-6

normal, 29

split, 29



Completely redueihle. 120

Composition series. 133

Construetihle numher, X-9

Dedekind ring. 171

Degree

of field extension. 2

of clement. 5

Density theorem. 95

Dimension. 2

projective. 16X

inj eeti ve. I X6

glohal. 171, 191

Discriminant. 50

Dual
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vector spaces. 139

full. 139

Endomorphism. 94

Enveloping ring. 147

reduced. 149

Equivalence

projective. 16X

inj eeti ve. I X6

Ext. IX7

Extendihle automorphism. 21

Extension

alge hraie. 5

infinite algehraie. 74

radical, 32.60-73

simple. 4X-9

transcendental, 5
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Field

algehraieally closed. 66w 8

finite. 45-7

ordered. 66-8,73

perfect. 5X

splitting. 23

tower or. 2

Functional, 139

Galois

group. 10

theory. 16

qroup

algehra. 115.174

locally finite. 101

torsion. 101

IIilhert's theorem 90, 42

IIopkins' theorem. 132-4

Ideal

maximal, 83,91

nilpotent. XX

primitive. X4

radical, X6

regular. X3-4

topologically nil, 89

Identity

polynomial. 156-161

standard. 157.160

Injective

dimension. I X6

equivalence, IX6

module. I X5
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Inner product, 139

Kolchin's theorem, 100,136-7

Kurosch1s prohlem, 102,160-1

Levi1.l.ki's theorem, 135-6

LocaIi.l.ation, 181

Locally finite

algehraic, 102

group, 101

Maximal

ideal, 83,91

suhfield, 154-6

Module, 81

completely reducihle, 120

faithful, 82

injective, 185

irreducihle, 82

projective, 165,167

unitary, 81,133

l'\ilpotent

group, 138

ideal, 88

topologically, 89

l'\orm, 39

l'\ormal, 12

Polynomial

identity, 157

ring, 174

Primitive

ring, 82

ideal, 83

with minimal ideal, 139-146



Projective

module, 165,167

dimension, 168

Purely inseparahle, 55

Quasi-regular, 84- 5

Radical

ideal, 86

of a ring, 87,178

ring, 85

Regular

ideal, 83

local ring, 183-5

representation, 116

ring, 110

Related idempotents, 127

Representation

of algehra, 121

of group, 12 I

Resolvent euhie, 52

Ring

central simple, 149

Dedekind, 171

local, 182

nil, 85

polynomial, 174

primitive, 82,149

radical, 85

regular local, 183-5

Regular, 110

semi-simple, 87,171

simple, 91,147
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Ruler and compass constructions. lI-9

SEl, 124

Sehanuel's lemma. 167

Schur's lemma. 94

Separable. 26,55

Stable. 19

Tensor product, 150

Trace, 39,99

Transitive. 51, 52, 95

Unipotent. 100. 136-lI

Wedderburn principal theorem. 124- no


