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ON DEFORMATIONS OF A CERTAIN TYPE OF IRREGULAR
ALGEBRAIC SURFACE.*

By ArnorLp Kas.

In this paper, we consider a compact complex analytic surface M which
admits a holomorphic map ¥: M — B onto a non-singular algebraic curve B
where ¥ is everywhere regular (i.e., d¥5£0). We call the triple (M, ¥, R)
non-trivial, if ¥: M — R is not a holomorphic fibre bundle. In §1 of this
paper, we prove that if (M,¥,R) is non-trivial, then genus(R) >1 and
genus(Cr) >R, where Cr=¥"(1), 1€ L.

In §2, we give a new construction of a class of surfaces originally con-
structed by Kodaira [7]. A Kodaira surface is a surface M which may be
represented as a cyclic branched covering M — 8 X R of a product of non-
singular algebraic curves S and E. We assume that S may be represented
as an unramified covering =: §— R, and that a group G of automorphisms
acting freely on R is given such that each irreducible component in S X R
of the image of the branch locus of M — 8§ X R, is equal to the graph of a
map goxn: S— R, where g € G.

Kodaira has raised the question of determining all “small” deformations
of the surface 3. The main result of this paper is the following theorem:

TuroreM. The Kodaira surface M has no obstruction to deformations.
Every small deformation of M 1s induced, in an obvious way, by a deformation
of the curve R/GQ.

1. Regularly fibred surfaces. By a “surface,” we will mean a compact
complex analytic manifold of complex dimension two; hence of topological
dimension four.

Definition 1.1. By a “regularly fibred surface,” we mean a surface 1/
together with a holomorphic map ¥: M — B of M onto a non-singular alge-
braic curve I?, such that ¥ is regular at every point of M.

It follows from this definition that for each point r € B, 0y = ¥-1(7) is a
non-singular algebraic curve in M. We will say that the regularly fibred
surface ¥: M — R is trivial if every curve (' is biholomorphically equivalent
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790 ARNOLD KAS.

to a fixed curve C. Tt follows from a theorem of Grauert and Fischer [3]
that if ¥: M — R is a trivial regularly fibred surface, then ¥: M >R is a
locally trivial holomorphic fibre bundle.

The following theorem is due in part to Kodaira.

TrEOREM 1.1. Let ¥: M — R be a non-trivial regularly fibred surface.
Then genus(R) > 1, and genus(C;) > R.

Proof. Let U be the universal covering space of R, and let T be the
Teichmiiller space of Teichmiiller structures on a compact topological surface
of genus g—genus(Cr). There exists a holomorphic map U—T which
maps each point w€ U to a point of T representing the complex analytic
structure of r(u) (w—> =(u) is the covering map U— R). By a theorem of
Bers [®], T is a bounded open set in a complex number space C*. If
genus(R) =1, then U is either the Riemann sphere or the complex plane C,
and the holomorphic map U — T must be constant by Liouville’ theorem. This
contradicts the assumption that ¥: 3/ — R is non-trivial ; hence genus(R) > 1.

It is obvious that we must have genus(Cr) > 0. If genus(C;) =1, the
function j(v) =J(Cr) is holomorphic (Cf. Kodaira [6], page 575) ; hence
constant, where J(C;) is the elliptic modular invariant of the elliptic curve
C,. This again contradicts the assumption that ¥: M — R is non-trivial;
hence genus(Cr) > 1.

Assume that genus(C;) =2. Then each curve C, admits a unique
involution with six fixed points «,: Cr— C, (Cf. Ahlfors [1], page 51).
It is not difficult to see that the involutions «, depend holomorphically on
7€ R, and thus determine an involution, x: M —> M. Let N be the quotient
of M by the group {1,«}. N is a projective line bundle over R, and M is a
“fibre preserving ” 2-sheeted covering of N. Let A C N be the image of the
branch curve of M— N. Clearly A intersects each fibre of N in exactly
six points. It follows that the irreducible components of A are mutually
disjoint unramified coverings of E. Now we claim that there exists a finite
unramified covering S of R, such that if N* is the projective line bundle
over S induced from N, and if A* C N* is the “pull-back” of A, then A*
consists of six mutually disjoint sections of N* over S. To see this, we may
suppose that some component A! of A is a k-sheeted covering of R, k> 1.
Let S; be a copy of A, and let N, be the projective line bundle over 8,
induced from N. The “pull-hack” of any section of N over R is a section
of N, over S;, and the “pull-hack” of A! consists of ¥ disjoint sections of N,
over S;. Thus if A, C N, is the pull-back of A, then the number of com-
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ponents of A; which are sections of N, over S, is greater than the number
of components of A which are sections of N over R. It follows that if we
continue this procedure a finite number of times, we obtain a covering §
satisfying our claim. It is clear that N* =8 X P*, and each component of
A* is a “constant” section. Let ¥*: M*— § be the regularly fibred surface
induced from ¥: M — R by the covering map S— R. M* is a 2-sheeted
covering of N* =8 X P'. Thus each fibre C*;, 0 € 8 of M* is represented
as a 2-sheeted covering of P* branched over six points of P* which are
independent of o€ S. It follows that each fibre C*; is biholomorphically
equivalent to a fixed curve C'; hence each fibre C; of M is biholomorphically
equivalent to C. This contradicts the assumption that ¥: M — R is non-
trivial; hence genus(C;) >2. Q.E.D.

Cororrtary 1.1. Let ¥: M — R be a non-trwial regularly fibred surface.
Then M is a projective algebraic surface.

Proof. Clearly, there exists a non-constant meromorphic function on A
induced from R. Therefore, by a well-known theorem of Kodaira [5], either
M is a projectice algebraic surface or M contains an elliptic curve, By
Theorem 1.1, I/ may not contain an elliptic curve; hence M is a projective
algebraic surface. Q.E.D.

2. Kodaira surfaces. The only examples of non-trivial regularly fibred
surfaces that we know are of a very special type constructed by Kodaira [7].
Before giving a definition, we will explicitly construct a number of examples.

Let I be a non-singular algebraic curve of genus >1. Let G4 {1}
be a finite group of automorphisms acting freely on R, and let » > 1 be an
integer such that » divides the order of (. Let S be a finite unramified
covering of R with the covering map =: S— R. To each element g€ @, we
let (gm).: H,(S,Z) —> H,(R,Z) be the homomorphism on homology groups
induced by the covering g=: §— R.

Definttion 2.1. We say that the quadruple (R, @, 7, 8) is admissible if
the following condition is satisfied: ¢A) for every a € H,(S,2), 3 (gr) a=0
geq

mod 7, where for 8 € H,(R, Z), 8==0mod r means that there exists y € H,(R, Z)
with B ==ry.

Let (B, @,r,S) be an admissible quadruple. If g€ @, we denote by T,,
the graph in § X R of the map g»: S— R.

TuroreM R.1. Let (R, G,1,8) be an admissible quadruple. There exists
a cyclic r-sheeted branched covering ®: M —> 8 X R such that:
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1) if A C M is the branch locus defined locally by the equation:
jacobian (@) =0, then ®(A) = |J I'y;
9eqG

2) if p€ S X R, then ®*(p) consists of either r points or 1 point, 1.e.
all of the sheets “come together”™ at the branch locus.

Proof. Let I‘——-gg,GI‘y. Let [T] be the holomorphic line bundle on

8 X R determined by the divisor T'. Assume for the moment that there exists
a holomorphic line bundle L on S X R such that [T] =rL (the group of
line bundles is written additively). TLet (fiz) be a system of transition
functions defining the line bundle L with respect to a covering {U,} of § X E.
Let ¢; be a local fibre coordinate in the space of L | U; such that if u € U; N Uy,
then (u,¢&;) and (u,&;) represent the same point of L if and only if
¢="Ffin(u)& Let ¢ be a section of [T'] over S X R such that divisor (¢) =T.
¢ may be represented by a system of holomorphic functions (¢;) such that ¢;
is defined on U;, and such that if w€ U; N Uy, ¢j(1) =Fin(u)"dr(n). We
define M to be the subvariety of the total space of L such that M is defined
in each piece L | U; by the equation: ¢ = ¢;(u) (Cf. Wavrik [10], page 11).
It is easily verified that M is a non-singular surface, and that together with
the natural projection ®: M — 8 X R, the conditions in the theorem are
satisfied.

It remains to be proved that there exists a holomorphic line bundle I
on 8 X R such that [T]=rL. Let & be the group of holomorphic line
bndles on S X R, and let P be the Picard (group) variety of § X R. Tt
HY (8 X R,Z) be the subgroup of H*(S X I,Z) consisting of those elements
whose image in H2(S8 X R, R) is represented under the De Rham isomorphism.
by a form of type (1.1). It is well known that there exists an exact sequence:

¢
0>P—>F ——> H" ' (SXR.Z)—0

where ¢: F— H*' (8 X R, Z) sends each line bundle ¥ € J to its Chern class
c¢(F)€ HY*(S X R,Z). Since P is a complex torus; hence an infinitely
divisible group, it is clear that a line bundle ¥ is divisible by » in & if and
only if ¢(F) is divisible by 7 in H**(8 X R,Z). Moreover, ¢(F) is divisible
by r in H**(S X R, Z) if and only if ¢(F') is divisible by » in H2(S X R, Z).
Since H?(S X R,Z) contains no torsion, we need only show that the value of
c([r]) on any 2-dimensional homology class by the Kronecker product < , >
is divisible by . Using the Kunneth formula:

Ho(8 X B,Z) — H(S) ® Hy(R) + Hy(8) ® Hy(R) + H,(S) ® Hy(R),
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we will check the value of ¢([T']) on each of the three summands separately.
Fix points z2€ 8, and we R. Clearly H,(S) ® Ho(R) is generated by the
homology class of S X w, and H,(S) ® H,(R) is generated by the homology
class of z )X R. It is well known that by Poincaré duality in S X R, ¢([T])

is “dual” to the homology class of the divisor I'= X T'y. It follows that
xyes

the value of ¢([T']) on the homology class of S X w is equal to the intersection
number of § X w and I'= X Ty, which is divisible by r since r divides the
ge@

order of G. By a similar argument, the value of ¢([I']) on the homology class
of z X R is divisible by r. Finally, let a € H,(S,Z) and B€ H,(R,Z). We
let Dx: H;(X)— H**(V) denote Poincaré duality in any manifold X».
Then it is easy to verify the formula:

<C([P]), o X IB> = <DSXR(g52GPg)’ a X 18> =_<])R(/3)} 2 (g”r)*a>

It follows from assumption (A) that <c([T]),a X 8>=0modr. Q.E.D.

Ezample 1. The simplest example of an admissible quadruple (i.e.,
involving the smallest values for the genera of R and §) is the following:

Let B be a non-singular algebraic curve of genus 3 such that R is a
?2-sheeted unramified covering of a curve of genus 2. Let G'= {1,p} where
p: B— R is the involution of sheet interchange, and let r=2. We may
choose a basis {B1,B2- - *,B¢} of H,(R,Z) such that that induced map
pst Hi(R,Z)— H,(R,Z) operates on this basis in the following way:

px(Bi) =B, i=1,2

P*(BS) =
P*(B4) =B
P (35) =B
P*(BO) = @s.

Let N H,(R,Z)—>Z,®Z, bhe the homomorphism which sends
B=23mB,€ H,(R,Z) to ([ms+ m,], [m;+ms]) €Z,D Z, where [m] =
the residue class of m modulo 2. Let 7: §— R be the 4-sheeted unramified
covering of R determined by A such that the sequence:

0> 7wy (H.(S,Z2)) > H,(R,Z)> 2, D2Z,—0
is exact. Tt is easy to see that the quadruple (R, (,r,8) is admissible.

Ezample 2. Let R be any non-singular algebraic curve on which a finite
group (F 5~ {1} acts freely. Let » > 1 be any integer which divides the order of
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@, and let =: S — R be the finite unramified covering such that the sequence:
0— 7y (H,(S,Z))—> H,(R,Z) - H,(R,Z,) — 0 is exact, where the last homo-
morphism is determined by the coefficient homomorphism Z-—>Z,. Clearly
7y (@) =0modr for every a€ H,(S8,Z). Thus (R, G,r,8) is an admissible
quadruple.

More generally, let E be a non-singular algebraic curve of genus >> 1,
@ a finite group of automorphisms of B which acts freely on R, and »: §— R
a finite unramified covering of B. As above, we let T, C 8 X R be the graph
of the map g=: S— R if g€ G.

Definition 2.2. By a “Kodaira surface” we mean a compact complex
analytic surface M such that there exists a holomorphic map &: M > S X R
which makes M a r-sheeted cyclic branched covering of S X R and which
satisfies the conditions:

(1) if p€ S, then ®*(p) contains either » points or 1 point (i.e., all
of the sheets “come together” at the branch locus).

(2) If A is an irreducible component of the branch locus of
&: M— 8 X R, then ®(A) =T, for some g€ G.

Remark. Let K= {g€ G|T,—=®(A) for some component A}. By
replacing the covering map = by gon: S— R where g € K, we may assume
that K contains 1z: E— E. Moreover, we may assume that G is generated
by K.

Let Pg: M—8 and Pgr: M— R be holomorphic maps such that the

diagram :
M
Pg ® Pp
P1 P2
8 gXR R

is commutative, where P; and P, are the projections of S X B onto the first
and second factors respectively. If M is a Kodaira surface, it is obvious that
Py: M— 8 and Pg: M — R are both non-trivial regularly fibred surfaces. We
know of no other examples of non-trivial regularly fibred surfaces.

For a compact complex analytic manifold X, let A*°(X) — the dimen-
sion of the space of holomorphic 1-forms on X. It is well known that if X
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is an algebraic manifold, A*°(X) =1b,(X) =dim H*(X, 0) where b,(X)
is the first betti number of X, and @ is the sheaf of germs of holomorphic
functions on X.

THEOREM 2.2. Let M be a Kodaira surface. Using the notation of
Definition 2.2, let gg=genus(S) and gr=genus(R). Then

R0 (M) = 1°(8 X R) = gs + g=.

Proof. We will prove that b, (M) =0b,(S X R). Consider the continuous
fibre bundle Pg: M — S, and fix a base point 0 € S. There exists a natural
action of m (S) on Py*(o) defined as follows: given a loop, @:[0,1]— 8,
2(0) =a(1) =o, and a point p€ Pg*(0), choose a path

«:[0,1] = P (Pr(p))

which “covers” «.o’ is uniquely determined for an everywhere dense set of
points p€ Pg (o) (at least if « is “reasonable”). Define ha(p) to be the
end point of the path o’. Clearly %« depends only on the homotopy class of «;
hence we obtain a homomorphism «—> hy from m (8) to the covering trans-
formation group of Pg™*(0o) — R. Moreover, since Pr*(q) is connected for
every point q€ R, it follows that the homomorphism «—> he is surjective.
On the other hand, since Py: M — § is a continuous fibre bundle, there is a
natural action of =, (8) on the homology groups H,(Ps*(0)) obtained by
“deforming cycles.” It is easy to see that for a € #,(S), the action of « on
H,(Ps(0)) obtained by “deforming cycles over «,” is the same as that
induced by the automorphism Ae: Ps(0) — Ps*(0).

By an argument using the spectral sequence of the fibering Pg: M — 8,
it can be shown that:

by (M) = b1(8) + dim H, (8, Hy(Ps(2), Q) )

where the last group is a homology group with local coefficients in
H,(Ps*(2),Q), 2€ 8, and @ =the rational numbers. By the definition of
homology with local coefficients, and by the fact that the action of =, (8) on
H,(Ps*(0),Q) can be factored through a finite group, it follows that

Ho(8, H:(Ps(2),Q)) = H:(Ps(0), )",

the subspace of H,(Ps*(0),@) invariant under the action of =, (S). Since
w1 (8) acts on Pg'(o) as the full covering transformation group of
Pg*(0) > R, we have H,(Ps(0),Q)*=H,(R,Q); hence we obtain the
inequality (M) =b,(8) + b:(R) =0b,(S X R). On the other hand, as
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A is a covering of S X R, we obviously have b,(M) = b,(S X R); hence
b, (M) =0b,(S X R). Q.E.D.

3. The Sheaves @, M) and @ V@, Let Ox be the sheaf of germs of
holomorphic functions on a complex analytic manifold X, and let ®x be the
sheaf of germs of holomorphic vector fields on X. We may omit the subscript
X if there is no possibility of confusion. Using the notation of §2, let M
be a Kodaira surface, and let p: M — M be a generator of the cyclic covering
transformation group & of the covering ®: M — 8 X RB. p induces maps
p*: O —> Oy and p,: @y —> @y which “cover” the automorphism p: M — M.
Explicitly, if f€ Ou,, is the germ of a holomorphic function at p€ M, then
p*f =1p € Oupp). 1L 0€ Oy, then p,6€ Oy pp).

Definition 3.1. By a $-invariant covering of 1}/, we mean a covering
U= {U} of M by open sets such that: (i) if U € U, then g{U) € U for every
g€ &; (ii) if Ue U and g€ §, then either U =g(U) or U and g(U) are
disjoint.

It is obvious that every open covering of A may be refined to a %-
invariant covering. Hence the cohomology groups of M with coefficients in
any sheaf are equal to the direct limit of “Cech” cohomology groups taken
with respect to &-invariant coverings.

For a §-invariant covering U of M, let C7(I,U;0) and C¢(M,U;0O)
by the groups of g-cochains on M with respect to the covering U and with
coefficients in the sheaves @ and ® respectively. The maps p*: 6—> 6 and
ps:: ®—> ® induce in an obvious way, linear maps p*: C4(M, U; 6)— C«M, U; 6)
and pyg: C1(M,U;0) — C(M,U;0) respectively. It is easy to verify that
these maps commute with the coboundary operations and with the “refine-
ment maps,” and therefore they induce linear maps pt: He(1L, @) — He(Il, )
and py: HY(M,®) > H4(M,®). Since the cndomorphisms pt and p; have
finite order, the vector spaces H¢(M,0) and He(M,®) split into direct sums
of eigenspaces. Thus:

Hq(M’ o) =,\® Hq(]”, @))\
A'=1
Hq(M} ®) =h@ Hq(M, ®))‘
r=1 f
where H¢(M,0)* [H1(M,®)*] is the eigenspace of He(M,H) [H(M,0)]
with respect to pt [py] corresponding to the eigenvalue .

For each §-invariant covering U of M, let C2(M, U; 6)* [C1(M,U;0)M]
be the p# [p4] eigenspace of C¢(M,U:0) [C4(I,U;:®)] corresponding to the



IRREGULAR ALGEBRAIC SURFACE. v

eigenvalue \. Let He(M,U:0) [H4(M,U;®) ] be the cohomology groups
of the complex {C7(M,U;0)*} [{Ce(M,U;®) }]. It is easy to verify that:
He(M, ) = dir lim He(M,U; O)*
He(M,0)*=dirlim H1 (M, U;®)>
where the direct limit is taken over all $%-invariant coverings of M.
Consider the direct image sheaves ®,0y and ®,0y on § X R. The maps
p¥*: O — Oy and p,: ®y—> Oy induce automorphisms (which we denote

by the same symbols) p*: ®,0u —> ®,0x and p,: .0y — $,0y respectively,
covering the identity on S X R.

Definition 3.2.
2,00 = {f € 2.0u | p*f =M}
P, N0 = {§€ 0,0y | pd =10}

(Compare Grothendieck [4]).

We describe these sheaves explicitly. If p€ S X R, we distinguish two
cases:

(i) pis not contained in the image of the branch locus of ®: M—8 X E.
Let ®*(p) ={q1, 92" * *,¢-} where the points ¢; are indexed by integers
modulo 7 and arranged in such a way that p(¢;) = gs2. Then,

(2:M0)p = {(fu, 2o - = fr) | fi € Ostqir fs=Afinap}
(‘I)*O\)®)p= {(91: 02:' ) o*r) l 0i € ®M.qu P*0i=)‘04+1}‘

(ii) p is contained in the image of the branch locus of &: M — § X R.
Let ¢=&*(p). Then,

(24™0)p = {f € Ou,q | f = Mo}
(2:M@)p = {0 € Ou,q | p,6 =28}

Let U= {U} be a H-invariant covering of M, and let ®(U) = {®(U)}

be the covering of S X R consisting of the sets {®(U)| U € U}. It is imme-
diately obvious that:

Co(M,U;0) = C1(S X R, &(U) ; :M0O)
C1(M, U; @) = C1(8S X B, 2 (U) ; 2,M0).
The following theorem is clear from the above remarks.

TmEOREM 3.1.
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Hi(M,0) = )\@ He(8 X R, ®,M0)
=1
He(M,®) %)\69 He(S X R, ®,M0).
=1
4. Deformations of Kodaira surfaces. We will prove a series of lemmas
describing the structure of the sheaves ®,M@ and ®,Me.
LemMma 4.1. The sheaves ®, M0 and &, M0 are locally free.

Proof. We need only consider the restriction of these sheaves to a
neighborhood of a point p=®(¢) € S X B where q€ M lies on the branch
locus, We may choose local coordinates (z,#) on M with the center at g,
and local coordinates (2, w) on S X R with the center at p such that in terms
of these coordinates:

®: (2,w) = (2, w) = (7, )
pt (5 ) = (&%, )

where e=exp(2ni/r), 0 <k <r, and k and = are relatively prime. Let
A=¢,0=j<r Then (2,M0),— {f€ Ou,|f=MNrop}. Letfe (2,N0),.
In local coordinates, let f(%, W) = X fu(w)z" The condition that f=Afop
becomes :

S fa ()20 = 3 £, (D) en+izn,
It follows that f(2,w) must have the form:
f(éa 17}) =zt 2 fn(l’b)ér" = ihg(z, w)

where 0 =h < 7, hk=-—/ modulo 7. The correspondence f(z, &) — g (2, w)
clearly determines an isomorphism ®, M@ | U = Osxz | U for a suitably small
neighborhood U of p. Hence the sheaf ®,M@ is locally free. By a similar
argument, the sheaf ®,™® is also locally free.

LeMMA 4.2. 8,00 = Ogxx.
Proof. Obvious.

Let L™ be a holomorphic line bundle on S X R such that &, M@ = G(L™),
the sheaf of germs of holomorphic sections of L™,

LeMMA 4.3, Let A=¢ 541, where e=exp(2xi/r), 0 <j<r. Then

(== B3 ) 0
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(Ct. Definition 2.2), where h, is an integer, 0 < &, <'r, and where (4,7) is
the greatest common divisor of j and r..

Proof. Let ¥ =0(— Z ((]

of germs of holomorphlc functlons on § X B whose divisors are multiples of

the divisor E (

We identify % with the sheaf

G r) )Ty,. TFor each point p€ S X B we define an isomor-
phism o,: ®,M6,® (,,—,)% H, as follows:
(i) if p¢ Ty, ge kK, let (p) ={g1," - -, &}, p(¢s) = gina (CL. §3).

Let fO@fO®- - -Qfm € (8,M0),®™, where m — U% and let
FO— (D, £ 0, - -, f0), il = Mra® 2.

m m
Then it is easy to verify that T]fi® = (I fu.®) op; hence JIfi ) =go®,
=1 i=1

g€ Osxrp. We let op(fO®- - -@f(M) —g. o, may be extended linearly
to an isomorphism o,: ($,M0),®7 =9, (ii) If peT,, g€ K, p=o(q),
we choose local coordinates (2, w)at p and (%,%) at ¢, and we use the notation
in the proof of Lemma 4.1. Thus,

®: (2,W) > (2, w) = (7,0),p: (5, B) = (&%, )

where (k,7) =1. Let &, be the unique integer such that 0 < &, < 7, kh=—j
modulo 7. Then (®,M@), is isomorphic to the germs of functions f(z, @)
of the form f(z,w)=2"F(z,w). If fYQ- - -Qfme (8,M0),9™ where
in terms of the local coordinates f® = 2F® (2, w), then

T1 £ = 34 T] F® — ghol 0. F (2, ).

i=1 i=1
We'let op(fO®: - - @ fM) = 2M/umF (2, w) € ¥, Tt is easy to see that o
may be extended linearly to an isomorphism o,: (®,M0),9™ = &, which
does not depend on a choice of coordinates. One can easily verify that the
isomorphisms o, “fit together” coherently to determine an isomorphism
o: (2,M0)®™=%. The lemma follows immediately from the definition of
these sheaves.

Let N, be the sheaf, concentrated on T, of germs of holomorphic sections
of the normal bundle of T, in § X B. There is a natural projection ®sxz—> N ,.
Let E be the kernel of the map @g5xz—> ZK‘Rg, so that the sequence of sheaves:

g€

0->E-0-> 3 N,>0
geK
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is exact. Clearly = is the sheaf of germs of holomorphic vector fields on
8§ X R whose restrictions to each curve I'y, g € K, is tangent to I,

LeMMaA 4.4. &, WO =E,

Proof. It is enough to consider the stalks of these sheaves at a
point p€Ty, pc K. Then, using the notation of the pereceding proofs,
(2,M0)p={0€ Oy,q | ps6 =0}. In local coordinates, if 6—a(2,1)d/dz
+ b(2,w)8/0w, then p, 8 — a(e*%, @)d/0z + b (e*z,w) /0. Then the condi-
tion that p,0 =19 becomes:

{c’ca(e'ké, W) =a(z,)
b(e*z,w) =b(z,w).
It is easily verified that these conditions imply :
{a('z’,ﬁ;) =zc(z,w)
b(z,w) =d(zw)

where ¢(z,w) and d(z,w) are holomorphic functions of (z,w). It follows
that the holomorphic vector field § — a(z, @)d/9z - b (2, @)3/0w is project-
able” and ®,0 — rzc(2z, w)9/0w + d (2, w)9/0w. Clearly ®,6€ B, Tt is easily
verified that § — ®,6 determines an isomorphism ®,»® = &.

LeMMa 4.5. 0,00 = (8,00) @ (,M0).
Proof. Obvious.

Let W be the holomorphic vector bundle on § X R such that & — @ (W).
It follows from Lemma 4.5 that &, M0 — 6(W @ LM),

THEOREM 4.1. H*(M,®) = H*(8 X R,E).
Proof. By Theorem 3.1, H'(M,0) = @ H*(S X R, ®,M0). By Lemmas
A1

4.4 and 4.5, it is sufficient to prove that H*(S X R, W® L®) =0 if A5 1.

Let T be the holomorphic tangent bundle on S X B. We have the exact
sequence :

02, M0 - Oyxr @ Q*(X)ﬁ-—)g%{ﬁ( ([Ty] 4+ LM)p,) >0
and the exact cohomology sequence: |
. '-—>EKH°(I‘9, ([Ty] + L®)r,) - H* (S X R, W ® L™)
> H' (S XRTQOLMN)—- -

Thus it is sufficient to prove:
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(i) H(Ty, ([T,] 4 L™)1,) =0, if A541
(ii) H (S X R, T®LM) =0, A5£ 1.

Proof of (i). Obviously (Ty*) =2 —2¢s < 0. By Lemma 4.3, the inter-
section number (T, LW)-Ty= (1—h,/r)(Ty?) <0 since h, <r; hence
H°(Ty, ([T,] + LM)1,) =0.

Proof of (ii). Let Xz be a canonical divisor on S, where z;€ S, and
let 3w be a canonical divisor on R. Let Cf =2 X R and C” =8 X wy.
Then T=[—3XC/] & [—X C¥/], and

H (S X R TQLWN)=H'(SXR,[—3XC/]+ LW™)
© H*(S X B, [—2 0]+ LW).
We consider each of these summands separately. We have the exact sequence:
0> 0([—ZC/1+LY) > 6(LW) > ? 0 (L™ | Cf)—0,
and the exact cohomology sequence:
‘> S H(CF, L0 07) > H (8 X B, [— S C/] 4 LO)
—>HY (S X R,LV)—- - -,

By Theorem 2.2, dim H*(M, Oy) — dim H* (S X R, Osxz). Hence by Theorem
3.1 and Lemma 4.2, we have H*(S X R, LW) =0. It follows from Lemma
4.3 that the intersection number (L™ - (/) < 0; hence H°(C/,L™| C/) =0.
It follows from the exact sequence that H'(S X B, [— X C/] + L™) =0 if
A41, By a similar argument, H*(S X B, [— 2 C"] + L™) =0 if A541;
hence H*(S X R, T ® L™) =0, A541, and the theorem is proved. Q.E.D.
Let P, and P, denote the projections of 8§ )X R onto S and R respectively.
Let T'(8), T(R), T(Ty) denote the tangent bundles of S, R and Ty, and let
N (T,) denote the normal bundle of T, in S X R. We identify the tangent
bundle T of § X B with P,*(T'(S)) ® P,*(T(R)) in an obvious way, and
if (w,2) €8 X R, we identify the fibre Ty, with T (S) & T,(R). Let
T|T, be the restriction of T to Ty, and consider the inclusion map
v: T(T,) > T |Ty. One easily verifies that under our identifications, if

(w,2) €Ty
T e (L) ) = {(u,v) € Twy(8) @ To(B)| v=(gm)«(u)}.

We get a splitting, 7' | T,=T(Ty) @ N(T,) if we identify 7(T,) with
(T(Ty)) and let: N o) (Tg) = {(2,v) € Tws(8) @ To(B)| v=— (gr)«(u) }.
In terms of this splitting, the projection; T | Ty—> N (T,) is defined at each
point (w,z) by

10
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(u,v) = 3 (u—(gm) 7 (v),v— (97) 4 (4)),

where (u,v) € Ty (S) @ T.(R).

If X and Y are compact complex-analytic manifolds and ¢: X =Y is a
holomorphic mapping which makes X an unramified covering of ¥, then there
are natural maps ¢, *: H2(Y,®y) —> H¢(X,®x). To describe these maps
explicitly, we consider open coverings U= {Ue} of X and V={V;} of ¥
such that there exists a surjective map «—> j(«) from the index set of U onto
the index set of Q such that for every Ua € U, ¢ | Ua is a biholomorphic map
from Uq onto Vjw. If é€ H1(Y,®y) is represented by a g-cocycle (&j,--j,) 5
then ¢,~1(&) — &€ He(X,®x) is represented by the g-cocycle ((ag ) sUCH
that: ¢*f.aoa1~~-aq =&j(a) - j(ap+ The following lemma is trivial.

LeMMA 4.6. The linear maps ¢, HY(Y,®y) > HY(X, ®x) are injective.

We return to our Kodaria surface M. Let W =R/G (Cf. Definition 2.2
and the remark following that definition). We have the unramified coverings:

(i) R>W=R/G
m
(i) S— W, defined by S—— RE—-> W
(iii) gw: S—>R.
These coverings give rise to linear maps:

(1) 'ZR: Hl("V, ®w) —)HI(R, ®R)
(il) fg: HY(W,0y) - H*(S, 0g)
(iii)  (gm)4: H(R, Og) — H(S, 0g).

It is well known (Kiinneth formula) and easily verified that
H*(S X R,0) =H,(S,05) ® H'(R,0z). Let c: H(W,®w)—> HY(S X R, ®)
be the monomorphism determined by

ls @ lg: HY(W,0w) —> H*(S,05) & H'(R, ®F).
Lemma 4.7, o(HY(W,0w)) =H*(S X R,E).
Proof. We need to prove that the sequence:

o

K
0—H*(W,0w) — H*(8 X R,0) ——> 3 H*(Ty, Ny)
gekK

is exact. Identifying H*(S X R,®) with H*(S,0s) @ H*(R, Or), one easily
verifies that the kernel of « corresponds to

{(&n) € H(8,05) © H* (R, 0r) | (g7) 47 (1) =&, for every g € K}
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(Cf. our remarks above on the bundle 7' | Ty). It follows that if (¢, ) € kernel «,
then =g,y for every g€ G and £ ==, *(). Since 5 is invariant under G,
and £ =, (y), there exists some € H* (W, ®w) with (&) = (ls(),lr(+)).
It follows that the sequence is exact.

Let {W}, , be a complex analytic family of curves parametrized by a
complex manifold 4, such that Wo= W where 0€ 4 is a base point. This

family induces in an obvious way a family {I/ t}te 4 Where M,=M.

THEOREM 4.2. If the complex analytic family of curves (Wi, o, s
complete and effectively parametrized at a point t,€ A, then the family {M,}
is complete and effectively parametrized at to€ A. (For the definitions cf.

Kodaira and Spencer [9]).

Proof. By Theorem 4.1 and Lemma 4.7, we have an isomorphism
H* (Wi, ©y,) = H* (M, ©s,). Let

Pty * Tto(A) '-)Hl(Wto’ ®fo)7 Plto: Tto(A) _>H1(Mfo) ®to)

be the maps of infinitesimal deformation (cf. [9], page 8364). One can easily
verify that the diagram

H* ( I’Vto, ®t0) = H* (Zl[toy ®t0)
Pto'\ /’ P,to
T to (A)
is commutative. It follows that p’;,: Ty (A4) — H* (M4, ©4,) is an isomorphism
and {M;}, , is effectively parametrized at ¢, By a theorem of Kodaira and

Spencer [8], the family {1} , is complete at t,.

ted

STANFORD UNIVERSITY.
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