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Abstract

We study representations of subgroups of the mapping class groupMg of a surface of genus
g > 2 arising from the actions of them on the first cohomology groups of the surface with local
coefficient systems which are defined by nontrivial homomorphismsπ1(Σg,∗)→Z2= Aut(Z). As
an application, in the case ofg = 2, we construct a function onM2 which agrees with the Meyer
functionφ :M2→Q on the Torelli groupJ2.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A well-known representation of the mapping class group of a surface of genusg to
Sp(2g,Z) is obtained from the action of it on the first cohomology group of the surface.
In this case the coefficient group of the cohomology group isZ, more precisely, the local
coefficient system obtained from the trivialπ1(Σg,∗)-moduleZ. In this paper we take
local coefficient systems obtained from nontrivialπ1(Σg,∗)-moduleZ’s and consider
representations of subgroups of the mapping class group of the surface arising from
the action of them on the first cohomology groups of the surface with the above local
coefficient systems. Moreover as an application, we construct a function of the mapping
class group of the surface of genus 2 and show some properties of it.

We state them more precisely as follows. LetΣg be a closed oriented surface of genus
g > 2 with a base point∗. For any nonzero classw ∈H 1(Σg;Z2)=Hom(π1(Σg,∗),Z2=
{0,1}), Z is regarded as theπ1(Σg,∗)-module with the action(α,m) 7→ (−1)w(α)m for
(α,m) ∈ π1(Σg,∗)×Z, which is denoted byZw and the local coefficient system obtained
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from it is also denoted by the same letter. So we have the cohomology groupH 1(Σg;Zw).
In this paper, it is identified with the first cohomology groupH 1(π1(Σg,∗),Zw) of the
surface groupπ1(Σg,∗) with coefficients inZw sinceΣg is an Eilenberg–MacLane space.
Let Mg∗ be the mapping class group ofΣg relative to the base point andMw

g∗ the
subgroup ofMg∗ whose elements preserve the classw. Then the subgroupMw

g∗ acts
on the cohomology groupH 1(π1(Σg,∗),Zw)/torsionmodulo torsion by the pull back of
the inverse.

In order to state our results, we introduce subgroups ofMg∗ andMg . Let Jg be the
subgroup ofMg acting on the first cohomology groupH 1(Σg,Z) trivially. Let Kg be the
subgroup ofMg generated by all the Dehn twists along separating simple closed curves.
Then we haveKg ⊂ Jg ⊂Mw

g ⊂Mg . Similarly the subgroupsKg∗ andJg∗ ofMg∗ are
defined and we haveKg∗ ⊂ Jg∗ ⊂Mw

g∗ ⊂Mg∗. The subgroupsJg andJg∗ are called
Torelli groups (see [4]).

The following proposition is a collection of some results of Section 2.

Proposition 1. For each nonzero classw ∈ H 1(Σg;Z2), the above action ofMw
g∗ on

H 1(π1(Σg,∗),Zw)/torsion gives a surjective homomorphismζwg∗ :Mw
g∗ → Sp(2(g − 1),

Z), whose restriction toKg∗ is nontrivial. Moreover it descends to a surjective homomor-
phismζwg :Mw

g → PSp(2(g− 1),Z) whose restriction toKg is also nontrivial.

Next we define a representation of the whole groupMg∗.
Let Aut(H,Ω) be the group of automorphisms ofH preservingΩ whereH is the direct

sum ⊕
w∈H1(Σg;Z2)\{0}

H 1(π1(Σg,∗),Zw
)
/torsion

and Ω is the symplectic form defined by the cup product. For any elementf of
Aut(H,Ω), we can putf = (fuv), where fuv is an isomorphism or the zero map
from H 1(π1(Σg,∗),Zv)/torsion to H 1(π1(Σg,∗),Zu)/torsion and u and v run over
the nonzero classes ofH 1(Σg;Z2). Let S be the subgroup ofAut(H,Ω) consisting of
those elementsf = (fuv) for which there existsσ ∈ Aut(H 1(Σg;Z2),∪) such thatfuv
is not 0 if and only ifv = σ(u). The action ofMg∗ on H induces a homomorphism
ζg∗ :Mg∗ → S. The image of the kernel of the homomorphismMg∗ →Mg agrees
with a normal subgroupN = {((−1)u(τ)δuv) ∈ S | τ ∈ π1(Σg,∗)} of S, whereδuv is the
identity map onH 1(π1(Σg,∗),Zu) if u= v, and is zero if not. Hence the homomorphism
ζg∗ descends to a homomorphismζg :Mg → S/N . With these notations, we have the
following result which is stated as Corollary 9 in Section 2.

Corollary 2. The restrictions ofζg∗ andζg toKg∗ andKg , respectively are nontrivial.

Here we state some relations between our representations and others. There is a
representation ofMg,1 constructed by Morita (see [12]) and Trapp (see [15]) which is
nontrivial onJg,1, whereMg,1 is the mapping class group ofΣg relative to an embedded
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disk (∗ ∈)D2 ⊂ Σg andJg,1 is the corresponding Torelli group. It was shown that it
descends to a representation ofMg∗. Morita showed that this representation can be also
obtained from his representation ofMg,1 to the semi-direct product

1
2

∧3
H 1(Σg;Z)oSp(2g;Z).

Morita’s representation is an extension of Johnson’s homomorphism fromJg,1 to∧3
H 1(Σg;Z). It descends to a representation ofMg∗ to 1

2

∧3
H 1(Σg;Z)o Sp(2g;Z).

Moreover it descends to a representation ofMg to 1
2

∧3
H 1(Σg;Z)/H 1(Σg;Z) o

Sp(2g;Z). The kernels of the Morita’s representations ofMg,1 andMg areKg,1 and
Kg , respectively (see [5,13]). This fact together with Proposition 1 and Corollary 2 imply
that our representationsζg∗ andζg are different from the above representations.

On the other hand there is a representation of subgroups of the mapping class groupMg

defined by Looijenga using finite abelian coverings. They are defined as follows (see [7]).
Let π :Σh→Σg be a connected finite abelian covering with covering groupG, then we
obtain the homomorphismc :H1(Σg;Z)→ G from it. LetMc

g be the subgroup ofMg

consisting of those elements which preserve the homomorphismc by pullback. LetSpG
be the group of symplectic transformations ofH1(Σh;Z) which commute with the action
of the covering groupG. The image ofG is contained in the center ofSpG. Any element
ofMc

g lifts to a mapping class ofΣh and the difference from any other lift is a covering
transformation. It follows that we have a well-defined homomorphismMc

g → SpG /G.
We consider the case ofG= Z2, hencec=w. If we consider the local coefficient system
Zw overΣg as one overΣh via the projectionπ , then it is trivial. This implies that we
have the induced homomorphismπ∗ :H 1(Σg;Zw)→ H 1(Σh;Z). It turns out that its
image is identified withH 1(Σg;Zw)/torsionand is preserved by the image of Looijenga’s
representation. If we replace the rangeSpZ2

/Z2 of it by its image, our representationζwg
factors through Looijenga’s representation.

As an application, in the case ofg = 2, we construct a function on the mapping class
groupM2 from our representations in the same way as [1]. This function is related to the
signature of 4-manifolds which areΣ2-bundles over surfaces. Its restriction to the Torelli
groupJ2 agrees with the restriction of the Meyer functionφ toJ2. We explain them more
precisely as follows.

There is a unique conjugacy invariantQ-valued functionψ on Sp(2,Z) = SL(2,Z)
satisfyingσ(A,B) = ψ(B) − ψ(AB) + ψ(A) for anyA,B ∈ SL(2,Z) whereσ is the
signature 2-cocycle ofSL(2,Z). This functionψ is described explicitly by using the
Dedekind sums or the Rademacherφ function (see [1,6,9,14]). Composingψ with ζw2∗,
we obtain the functionΨw∗ :Mw

2∗ →Q.
For anyf ∈Mw

2∗, let Mf → S1 be theΣ2-bundle overS1 with the sections where
Mf is given byΣ2× [0,1]/(x,1)∼ (f−1(x),0) and the sections is determined from the
base point ofΣ2. LetwMf be a unique class ofH 1(Mf ;Z2) such that its restriction to the
fiberΣ2 at the base point 0∈ [0,1]/∼ isw and its restriction to the image of the sections
is 0. By consideringwMf as a homomorphismπ1(Mf ,∗)→ Z2 = S0 ⊂ U(1), we obtain
a flat complex line bundle overMf . Then we have the Atiyah–Patodi–Singerρ-invariant
ρwMf

(Mf ) for (Mf ,wMf ) (see [2]). In this case the value ofρwMf (Mf ) is in Q. We
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define the functionµw∗ :Mw
2∗ →Q byµw∗ (f )= ρwMf (Mf )+Ψw∗ (f ). It turns out that this

functionµw∗ descends to a function onMw
2 , which is denoted byµw(f ). Hence we can

define the functionµ :M2→ Q by µ(f ) = 1
15

∑
w µ

w, wherew runs over the nonzero
classes ofH 1(Σg;Z2) fixed byf ∗.

It is known that there is a unique function, which is called the Meyer function,φ :M2→
Q such that the equality sign(a, b)= φ(b)− φ(ab)+ φ(a) holds for anya,b ∈M2 (see
[8,9]). Here the signature cocycle sign ofM2 is defined as follows.

Let P denote the 2 sphere with 3 holesS2 \ ∐3 intD2, then π1(P,∗) is a rank 2
free group whose generators are given byα andβ . For anya,b ∈M2, we define the
homomorphismh :π1(P,∗)→M2 by α 7→ a, β 7→ b. Let Zh be theΣ2-bundle overP
(the inverse of) whose monodromy is given byh. SinceZh is also a compact oriented 4-
manifold, we have the signature sign(Zh) of it which depends only ona andb, so we can
put sign(a, b)= sign(Zh).

LetMH
2 be the subgroup ofM2 acting trivially onH 1(Σ2,Z2).

Theorem 3. The functionµ is conjugacy invariant onM2 and satisfies the equality
sign(a, b)= µ(b)−µ(ab)+µ(a) for anya,b ∈MH

2 . Its restriction to the Torelli group
J2 is a nontrivial homomorphism, and agrees with the restriction of Meyer functionφ to
J2.

This theorem can be obtained by combining Corollary 18 and Proposition 19.
This paper is organized as follows. In Section 2, we construct our representations and

show some properties of them. In Section 3, we review a certain function onSL(2,Z)
related to the signature 2-cocycle of it. In Section 4, we define the functionµ in Theorem 3
and prove this theorem. In Section 5, we give an example, which is needed to show
Theorem 3.

2. Cohomologies of surfaces with twisted coefficients

In this section, for any nonzero class of the first cohomology group of a surface with
Z2-coefficient, we construct a representation of the subgroup of the mapping class group
of the surface whose elements preserve the class.

LetΣg be a closed oriented surface of genusg > 2 and∗ ∈Σg a base point.
Letw :π1(Σg,∗)→ Z2 be a homomorphism, then it determines a cohomology class of

H 1(Σg;Z2) which is denoted by the same letterw. π1(Σg,∗) acts onZ by

π1(Σg,∗)×Z→Z,
(γ,m) 7→ γ ·m := (−1)w(γ )m,

where the homomorphismw takes values in{0,1}. So Z is regarded as aπ1(Σg,∗)-
module, which is denoted byZw .

Next we shall compute the first cohomology groupH 1(π1(Σg,∗),Zw) (see [3]).
Let Z1 = Z1(π1(Σg,∗),Zw) be the space ofw-crossed homomorphismsu from

π1(Σg,∗) toZ which satisfy the equalitiesu(αβ)= u(α)+α ·u(β) for ∀α,β ∈ π1(Σg,∗).
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Let B1 = B1(π1(Σg,∗),Zw) be the space of principalw-crossed homomorphismsu,
for which there existsm ∈ Z satisfyingu(α) = α · m − m for ∀α ∈ π1(Σg,∗). Then
H 1(π1(Σg,∗),Zw) is given byZ1/B1.

The fundamental groupπ1(Σg,∗) is presented by〈
αi,βi (16 i 6 g)

∣∣∣ g∏
i=1

[αi,βi] = 1
〉
.

For anyu ∈ Z1, putu(αi)= xi andu(βi)= yi . Then we can regardZ1 as a subset ofZ2g

by the inclusionu 7→ (xi, yi)
g

i=1.
Direct computation shows

Z1=
{
(xi, yi) ∈ Z2g

∣∣∣ g∑
i=1

{
w(βi)xi −w(αi)yi

}= 0

}
,

B1=
{
(xi, yi) ∈ Z2g

∣∣∣ (xi, yi)=−2
(
w(αi)m,w(βi)m

)
, m ∈Z

}
,

wherew(αi) andw(βi) are inZ2= {0,1}. Thus we obtain the following lemma.

Lemma 4.

H 1(π1(Σg,∗),Zw)∼=
{
Z2g w = 0,
Z2(g−1)⊕Z2 w 6= 0.

Remark. SinceΣg is aK(π,1)-space, if we considerZw as a local coefficient system,
then we have the identificationH ∗(Σg;Zw) ∼= H ∗(π1(Σ,∗),Zw). Hereafter we identify
these groups by this identification.

Let Mg∗ be the mapping class group of orientation and base point preserving
diffeomorphisms ofΣg . For a nonzero classw ∈ H 1(Σg;Z2), the subgroup ofMg∗
whose elements preserve the classw is denoted byMw

g∗. This subgroup acts on
H 1(π1(Σg,∗),Zw)/torsion. In this paper, the action off ∈Mw

g∗ is defined by the pull-
back (f−1)∗ of the inverse off . Moreover this action preserves the symplectic form
on H 1(π1(Σg,∗),Zw)/torsion which is given by the cup-product and the identification
H 2(π1(Σg,∗),Z)∼= Z.

Lemma 5. The above symplectic latticeH 1(π1(Σg,∗),Zw)/torsion is isomorphic to
Z2(g−1) with the standard symplectic form.

By Lemma 5, taking a symplectic basis forH 1(π1(Σg,∗),Zw)/torsion, we obtain a
homomorphism

ζwg∗ :Mw
g∗ → Sp

(
2(g− 1),Z

)
.

Lemma 6. The above homomorphismζwg∗ is surjective.
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Fig. 1. A basisαi,βi and the submanifoldT .

Proof of Lemmas 5 and 6.Since the action of the mapping class group of the surface on
H 1(Σg;Z2)\{0} is transitive, it is sufficient to prove the case ofw = α∗g whereα∗g belongs
to the dual basis of the oneαi,βi (16 i 6 g) of H1(Σg;Z2) which is given in Fig. 1. Let
T ⊂Σg be the submanifold ofΣg depicted in Fig. 1.

LetΣg−1,1 be the closure of the complement ofT in Σg . By the exact sequence of the
pair (Σg,T );

0=H 0(T ;Zw)→H 1(Σg,T ;Zw)→H 1(Σg;Zw)→H 1(T ;Zw)
→H 2(Σg,T ;Zw)→H 2(Σg;Zw)→H 2(T ;Zw)= 0,

and isomorphismsH 1(T ;Zw) ∼= Z ⊕ Z2, H 2(Σg,T ;Zw) ∼= Z andH 2(Σg;Zw) ∼= Z2,
we have an isomorphismH 1(Σg,T ;Zw) ∼=H 1(Σg;Zw)/torsion. There is the following
commutative diagram:

H 1(Σg;Zw)×H 1(Σg;Zw) ∪
H 2(Σg;Z)

H 1(Σg,T ;Zw)×H 1(Σg,T ;Zw)
∼=

∪
H 2(Σg,T ;Z)

∼=

∼=

H 1(Σg−1,1, S
1;Z)×H 1(Σg−1,1, S

1;Z) ∪
H 2(Σg−1,1, S

1;Z)
whereS1 is the boundary ofΣg−1,1. From this we can deduce the following commutative
diagram:

H 1(Σg;Zw)/torsion×H 1(Σg;Zw)/torsion ∪

o

H 2(Σg;Z)
o

H 1(Σg−1,1, S
1;Z)×H 1(Σg−1,1, S

1;Z) ∪
H 2(Σg−1,1, S

1;Z)
Since the symplectic structure onH 1(Σg−1,1, S

1;Z)∼=H 1(Σg−1;Z) is the standard one,
the proof of Lemma 5 is finished.

LetMg−1,1 denote the group of isotopy classes of diffeomorphisms ofΣg−1,1 whose
restriction to the boundary is the identity of it. For any element ofMg−1,1, extending it to
an isotopy class of diffeomorphism ofΣg by the identity onT , we have a homomorphism
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Mg−1,1→Mg∗. By the choice ofw, the image of the homomorphism is contained in
Mw

g∗. Clearly the following diagram commutes:

Mg−1,1 Aut(H 1(Σg−1,1, S
1;Z),∪)

o

Mw
g∗ Aut(H 1(Σg;Zw)/torsion,∪)

The fact thatMg−1 → Aut(H 1(Σg−1;Z),∪) is surjective implies that the upper
homomorphism in the above diagram is surjective, hence so is the lower one. The proof of
Lemma 6 is completed.2

Next we see thatζwg∗ descends to a homomorphism fromMw
g to PSp(2(g− 1),Z).

There is the following exact sequence

1→ π1(Σg,∗) ι→Mg∗ →Mg→ 1.

Since the image ofι is inMw
g∗, we have the following exact sequence

1→ π1(Σg,∗) ι→Mw
g∗ →Mw

g → 1.

Lemma 7. For any τ ∈ π1(Σg,∗), the equalityζwg∗ ◦ ι(τ ) = (−1)w(τ)I holds. Hence the
image ofζwg∗ ◦ ι is {±I } ⊂ Sp(2(g− 1),Z).

Proof. For eachτ ∈ π1(Σg,∗), the action ofι(τ ) ∈Mg∗ on π1(Σg,∗) is given by
ι(τ )∗(γ )= τγ τ−1 for all γ ∈ π1(Σg,∗) (see [11]).

For anyu ∈Z1(π1(Σg,∗),Zw), we have

ι(τ−1)∗u(γ )= u(τ−1γ τ)=−τ−1 · u(τ)+ τ−1 · u(γ )+ τ−1γ · u(τ)
= τ−1 · u(γ )+ (γ − 1)τ−1 · u(τ).

Since the mapγ 7→ (γ − 1)τ−1 · u(τ) belongs toB1(π1(Σg,∗),Zw), we obtain

ι(τ−1)∗[u] = [τ−1 · u] = (−1)w(τ
−1)[u] = (−1)w(τ)[u], where[u] ∈ H 1(π1(Σg,∗),Zw)

is the class ofu. The proof is completed.2
By this lemma, the homomorphismζwg∗ descends to a homomorphism

ζwg :Mw
g → PSp

(
2(g− 1),Z

)
.

Let Kg∗ be the subgroup ofMg∗ generated by all the Dehn twists along separating
simple closed curves onΣg . Similarly the subgroupKg ⊂Mg is defined. ClearlyKg∗ and
Kg are subgroups ofMw

g∗ andMw
g , respectively for anyw ∈H 1(Σg;Z2).

The example in Section 5 shows the following proposition in the case ofg = 2. For
g > 2, similar examples can be given.

Proposition 8. The restrictions of the homomorphismsζwg∗ andζwg to the subgroupsKg∗
andKg , respectively are nontrivial.
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We define a representation of the whole groupMg∗ as follows. LetH be the direct sum⊕
w∈H1(Σg;Z2)\{0}

H 1(π1(Σg,∗),Zw
)
/torsion

andΩ be the symplectic form on it given by the direct sum of the cup products on
H 1(π1(Σg,∗),Zw)/torsion’s. By Lemma 5,(H,Ω) is isomorphic toZ2(22g−1)(g−1) with
the standard symplectic form. ClearlyMg∗ acts onH and preserves the symplectic
form Ω . Let Aut(H,Ω) be the group of automorphisms ofH preservingΩ . For any
f ∈ Aut(H,Ω), we put f = (fuv) where fuv is an isomorphism or the zero map
fromH 1(π1(Σg,∗),Zv)/torsion to H 1(π1(Σg,∗),Zu)/torsionandu andv run over the
nonzero classes ofH 1(Σ;Z2). Let S be the subgroup ofAut(H,Ω) consisting of those
elementsf = (fuv) for which there existsσ ∈ Aut(H 1(Σg;Z2),∪) such thatfuv is not 0
if and only if v = σ(u). Clearly the action ofMg∗ onH induces a homomorphism

ζg∗ :Mg∗ → S.
By Lemma 7, the image ofζg∗ ◦ ι agrees withN = {((−1)u(τ)δuv) ∈ S | τ ∈ π1(Σg,∗)} ⊂
S, whereδuv is the identity map onH 1(π1(Σg,∗),Zu) if u = v, and is zero if not. It is
easy to see thatN is a normal subgroup ofS. Hence the homomorphismζg∗ descends to a
homomorphism

ζg :Mg→ S/N.
Clearly the restriction ofζg∗ toMH

g∗ is identified with∏
w∈H1(Σg;Z2)\{0}

ζwg∗ :MH
g∗ → Sp

(
2(g− 1);Z)22g−1

.

For ζg , a similar result holds. Proposition 8 implies the following corollary.

Corollary 9. The restrictions ofζg∗ andζg toKg∗ andKg , respectively are nontrivial.

Remark. The above homomorphismsζwg∗ are also obtained from the action of diffeo-
morphisms ofΣg on the moduli spaces of flatO(2)-connections onΣg . More precisely,
for nonzero classw ∈ H 1(Σg,Z2), we regard it as a homomorphism fromπ1(Σg,∗) to
Z2 ⊂O(2) whose image is not contained in the identity component ofO(2). Then it de-
fines a nontrivial flatO(2) bundle overΣg . We consider the moduli space of flatO(2)
connections on this bundle modulo automorphisms of the bundle which preserve an ori-
entation of the fiber at the base point. For any diffeomorphism ofΣg which preserves the
base point, orientation and the classw, by taking a lift of it to an automorphism of the
aboveO(2)-bundle which preserves an orientation of the fiber at the base point, we obtain
the action of the diffeomorphism on the moduli space. This action is independent of the
choice of a lift and a representative of an isotopy class of a diffeomorphism. It is easy to
see that the moduli space can be identified with a 2(g − 1)-dim torusT 2(g−1). The above
action induces the action ofMw

g∗ on the first homology group of the moduli space, so we

obtain a homomorphism fromMw
g∗ to Aut(H1(T

2(g−1),Z)). It is easy to check that this
homomorphism agrees withζwg∗.
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3. Some functions onMw
2∗ andM2∗

In this section we consider the case ofg = 2 and construct some functions on mapping
class groups with values inQ.

Letw be a nonzero class ofH 1(Σg;Z2). Take an oriented basis forH 1(π1(Σ2,∗),Zw)/
torsion and fix it. Then by Lemma 4,H 1(π1(Σ2,∗),Zw)/torsion is identified withZ2.
Hence the action ofMw

2∗ on the cohomology group induces the homomorphism

ζw2∗ :Mw
2∗ →SL(2,Z).

Next we introduce some functions onSL(2,Z) andPSL(2,Z) (see [1,6,9,14]).
Let

φ : PSL(2,Z)→Z

be the Rademacherφ function which is defined by

A=
(
a b

c d

)
7→ φ(A)=

{
b/d if c= 0,
(a+ d)/c− 12 sign(c)s(a, c) if c 6= 0,

whereA ∈SL(2,Z) is a lift of [A] ∈ PSL(2,Z) and

s(a, c) :=
|c|−1∑
k=1

((
k

c

))((
ka

c

))
is the Dedekind sums for coprime integersa andc. Here((x))= 0 if x is an integer, and
= x − [x] − 1/2 if not.

Moreover we define theZ-valued function

ν : SL(2,Z)→ Z

by

A=
(
a b

c d

)
7→ ν(A)=

{
sign(b) if A= (1 k0 1

)
, k ∈Z,

sign(c(a+ d − 2)) if not,

and theQ-valued function

ψ : SL(2,Z)→Q

by

A 7→ψ(A)= 1
3φ(A)− ν(A).

It is known thatψ is a unique function onSL(2,Z) with values inQ satisfyingσ = δψ ,
where

σ : SL(2,Z)×SL(2,Z)→ Z

is the signature 2-cocycle andδ is the coboundary operator.
We define the function

Ψw∗ :Mw
2∗ →Q
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by

Ψw∗ (f )=ψ
(
ζw2∗(f )

)
.

Sinceψ is conjugacy invariant onSL(2,Z), Ψw∗ is independent of the choice of a basis for
H 1(π1(Σ2,∗),Zw)/torsion.

We also define the function

Ψ∗ :M2∗ →Q

by

Ψ∗(f )= 1
15

∑
w∈H1(Σ2;Z2)\{0}

f ∗w=w

Ψw∗ (f ).

The following lemma is clear from the conjugacy invariance ofψ .

Lemma 10. Ψw∗ isMw
2∗-conjugacy invariant andΨ∗ isM2∗-conjugacy invariant.

4. The signature of surface bundles

In this section we define the functionµ in Theorem 3 and show some properties of it.
LetX be a compact oriented surface with a base pointx0 and possibly with boundaries.
Let π :Z→X be aΣg-bundle with a sections :X→ Z whereg > 2. Considering (the

inverse of) the monodromies of it, we have a homomorphism

h :π1(X,x0)→Mg∗,

where we identifyΣg with the fiberZx0 at the base pointx0 of X. Conversely if a
homomorphism fromπ1(X,x0) toMg∗ is given, then we can construct a surface bundle
with a section sinceBDiff+(Σg,∗)'K(Mg∗,1) holds forg > 2 (see [10]).

Lemma 11. Letw be a nonzero class ofH 1(Σg;Z2). Under the above setting, suppose
Imh ⊂Mw

g∗, then there exists a unique classwZ ∈ H 1(Z;Z2) satisfyingwZ|Σg = w in

H 1(Σg,Z2) ands∗wZ = 0 in H 1(X;Z2).

Proof. We consider a spectral sequence(Ep,qr , dr) for the cohomologyH ∗(Z;Z2)

with E
p,q

2 = Hp(X;Hq(Σg;Z2)) of the fibrationπ :Z → X. In this case, we have

isomorphismsE0,1
2
∼=H 1(Σg;Z2)

π1(X,∗) andE1,0
2 =H 1(X;Z2). Clearly we haveE1,0

2 =
E

1,0
3 = · · · = E1,0∞ . It is easy to see thatd2 :E0,1

2 → E
2,0
2 is 0 because of the existence of

a sections of the fibration by the assumption. So we getE
0,1
2 =E0,1

3 = · · · =E0,1∞ . Hence
we obtain isomorphisms

H 1(Z;Z2)∼=E1,0∞ ⊕E0,1∞ =E1,0
2 ⊕E0,1

2
∼=H 1(X;Z2)⊕H 1(Σg;Z2)

π1(X,x0).
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For the above splitting ofH 1(Z;Z2), the projection to the second factor agrees with the
restriction and one to the first factor may be given by pullback ofs. By the hypothesis, the
classw is inH 1(Σg;Z2)

π1(X,x0). This completes the proof.2
Hereafter we assume the hypothesis of Lemma 11, that isw 6= 0 and Imh⊂Mw

g∗.
Let CwZ be theπ1(Z,∗)-moduleZwZ ⊗ C over C. It defines the flat complex line

bundle overZ, which is also denoted byCwZ , so the cohomology groupsH ∗(Z;CwZ)
andH ∗(Z, ∂Z;CwZ) are defined. Put

Ĥ ∗(Z;CwZ) := Im
[
H ∗(Z, ∂Z;CwZ)→H ∗(Z;CwZ)

]
.

There is the nondegenerate hermitian form onĤ 2(Z;CwZ) which is defined by the cup-
product, the inner product onC and evaluation on the fundamental cycle[Z,∂Z]. Its
signature is denoted by signwZ (Z).

On the other hand, from the surface bundleZ→ X with a sections, we construct the
flat vector bundleH overX with the hermitian form as follows.

The fiberHx at x ∈X is the cohomology group

H 1(π1
(
π−1(x), s(x)

);CwZ |π−1(x)

)∼=H 1(Σg;Cw)∼=C2(g−1).

The hermitian form is given byi times the cup-product, the inner product onC and
evaluation on the fundamental class of the fiberπ−1(x).

By the definition ofH, (the inverse of ) the holonomy homomorphism of the flat bundle
H is given by

τ :π1(X,x0)→Sp
(
2(g− 1),Z

)
↪→U(g − 1, g− 1),

which agrees with the homomorphismπ1(X,∗) 3 α 7→ (h(α)−1)∗ ∈ Aut(H 1(Σg;Cw),
i× (· ∪ ·)). By consideringH as a local coefficient system, we obtain the first cohomology
groupH 1(X;H) with the skew-hermitian form which is also defined by the cup-product
and the hermitian form of the bundle. The skew-hermitian form multiplied byi is a
hermitian form onH 1(X;H), so we get its signature, which is denoted by sign(X;H).

Lemma 12. Under the above setting, the equalitysignwZ(Z)= sign(X;H) holds.

Proof. There exists a spectral sequence(Ep,qr , dr) for the cohomology groupH ∗(Z, ∂Z;
CwZ) with E

p,q

2
∼= Hp(X,∂X;Hq(Σg;Cw)) of the fibrationZ → X. Note that the

cohomology groupHp(X,∂X;Hq(Σg;Cw)) depends on the sections, hence the
isomorphism fromEp,q2 to it does so, and note thatE1,1

2 = H 1(X, ∂X;H 1(Σg;Cw)) =
H 1(X, ∂X;H). Since we haveH 0(Σg;Cw)=H 2(Σg;Cw)= 0, we obtainE2,0

2 =E0,2
2 =

0. Hence we get the isomorphisms

H 2(Z, ∂Z;CwZ)∼=
∑

p+q=2

E
p,q∞ ∼=E1,1

2
∼=H 1(X, ∂X;H).
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Similarly we obtain isomorphismsH 2(Z;CwZ)∼=H 1(X;H) andH 2(X, ∂X;H 2(Σg;C))∼=H 4(Z, ∂Z;C). Moreover we have the following commutative diagrams:

H 2(Z, ∂Z;CwZ)
o

H 2(Z;CwZ)
o

H 1(X, ∂X;H) H 1(X;H)
H 2(Z, ∂Z;CwZ)×H 2(Z;CwZ) ∪

o

H 4(Z, ∂Z;C)
o

H 1(X, ∂X;H)×H 1(X;H) −(∪)
H 2(X, ∂X;H 2(Σg;C))∼=H 2(X, ∂X;C)

where−(∪) on the lower arrow denotes minus the cup product on cohomology with local
coefficient system. In this case−(∪) agrees with the cup product in the spectral sequence.
Taking the two times multiple byi in the definition of sign(X;H) into consideration, we
obtain the equality signwZ(Z)= sign(X;H). 2

PutP := S2\∐3 intD2, thenπ1(P,∗) is a rank 2 free group whose generators are given
by α andβ .

Any homomorphismξ fromπ1(P,∗) toU(p,q) defines a flat vector bundleEξ overP
with a hermitian form. In the same way as above, we have the signature sign(P,Eξ ) of the
hermitian form onĤ 1(P ;Eξ) := Im[H 1(P, ∂P ;Eξ)→H 1(P ;Eξ)]. The flat bundleEξ
depends only on the homomorphismξ , hence on the two elements(ξ(α), ξ(β))=: (A,B)
of U(p,q). So we can put sign(A,B) := sign(P,Eξ ) (see [1]).

Now we shall consider the case ofg = 2.
Since the restriction of sign toSL(2,Z) ↪→ U(1,1) agrees with the signature 2-cocycle

σ (see [1]), we have sign= σ = δψ . Thus we obtain

sign(A,B)=ψ(B)−ψ(AB)+ψ(A).
LetX be a compact oriented surface with boundary∂X=∐i S

1
i . Let

ξ ′ :π1(X,x0)→ SL(2,Z)

be a homomorphism andξ the composition ofξ ′ with SL(2,Z) ↪→ U(1,1), then by the
signature additivity, we have

sign(X,Eξ )=
∑
i

ψ
(
ξ ′(S1

i )
)
,

whereS1
i denotes also a class inπ1(X,x0) corresponding to the boundaryS1

i which
is determined up to conjugation. Here we note that, sinceψ is conjugacy invariant on
SL(2,Z), the right hand side of the above equality is well-defined.

Lemma 13.

signwZ(Z)=
∑
i

Ψ w∗
(
h(S1

i )
)
.
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Proof. The flat bundleH in Lemma 12 is constructed from the representationτ =
ξ :π1(X,x0)→SL(2,Z) ↪→ U(1,1), so we getH=Eξ . Hence we have

signwZ(Z)= sign(X,H)= sign(X,Eξ )=
∑
i

ψ
(
ξ ′(S1

i )
)
.

Sinceξ ′ = ζw2∗h andΨw∗ =ψ ◦ ζw2∗ holds by definitions, we obtain

ψ
(
ξ ′(S1

i )
)=ψ(ζw2∗h(S1

i )
)=Ψw∗ h(S1

i ),

hence signwZ(Z)=
∑
i Ψ

w∗ (h(S1
i )). This completes the proof.2

Now we recall the definition of theρ-invariants (see [2]).
LetM be an oriented Riemannian manifold of dimension 2l− 1 andα :π1(M)→U(n)

a unitary representation. The self-adjoint operator on even forms onM:

D :Ωeven(M;C)→Ωeven(M;C)
is defined by

D(φ)= il(−1)p+1(∗d − d∗)φ,
whereφ is a form of degree 2p. Moreover the extension ofD to the even forms with
coefficients in the flat vector bundle of rankn defined byα is denoted byDα , which is also
a self-adjoint operator.

For the operatorDα , we define the functionηα(s) by

ηα(s)=
∑
λ 6=0

(signλ)|λ|−s ,

whereλ runs over the eigenvalues ofDα . The corresponding function toD is denoted by
η(s). These functions extend ats = 0 and have finite values here. Its valuesη(0) andηα(0)
are called theη-invariants of a Riemannian manifold.

Put η̃α(s) := ηα(s)− nη(s).

Theorem 14 (Atiyah, Patodi and Singer [2]).̃ηα(0) is independent of the metric. It is a
diffeomorphism invariant ofM andα which we shall denote byρα(M). If M = ∂N with α
extending to a unitary representation ofπ1(N) then

ρα(M)= nsign(N)− signα(N).

Now we return to our setting. Let∂Z =∐i ∂iZ be the decomposition of the boundary
of Z by the connected components. Then∂iZ is theΣ2 bundle overS1

i with (the inverse
of) a monodromyh(S1

i ) ∈Mw
2∗ whereS1

i is a connected component of the boundary
∂X = ∐i S

1
i . In Theorem 14, we putN = Z, M = ∂Z and α = wZ|∂Z . Then using

Lemma 13 we obtain

sign(Z)=
∑
i

ρw∂iZ (∂iZ)+ signwZ(Z)=
∑
i

{
ρw∂iZ (∂iZ)+Ψw∗

(
h(S1

i )
)}
.

For an orientation and base point preserving diffeomorphismf of Σ2 or its isotopy
class, letMf denote theΣ2 bundle overS1 with a monodromyf−1.
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For a nonzero classw ∈H 1(Σ2;Z2), the function

µw∗ :Mw
2∗ →Q

is defined by

µw∗ (f )= ρwMf (Mf )+Ψw∗ (f )

for f ∈Mw
2∗. Then we can rewrite the above equality as follows:

sign(Z)=
∑
i

µw∗
(
h(S1

i )
)
.

Since the signature of a surface bundleZh over a compact surfaceX is determined by
the action of the corresponding monodromyh−1 on the first cohomology group of the fiber
Σ2, the equality sign(Zh)= 0 holds for any homomorphismh :π1(X,x0)→J2∗. This and
the above equality imply that the restriction ofµw∗ toJ2∗ is a homomorphism.

Letµ∗ :M2∗ →Q be function defined by

µ∗(f )= 1
15

∑
w∈H1(Σ2;Z2)\{0}

f ∗w=w

µw∗ (f )

for f ∈M2∗. The above argument and the example in Section 5 imply the following
proposition.

Proposition 15. The restrictions ofµ∗ andµw∗ (w 6= 0) to J2∗ are nontrivial homomor-
phisms.

Next we shall prove that, for any nonzero classw inH 1(Σ2;Zw), the mapµw∗ :Mw
2∗ →

Q descends to the map

µw :Mw
2 →Q.

For anya,b ∈M2∗, let sign(a, b) be the signature sign(Zh) of the surface bundleZh
overP constructed from the homomorphismh :π1(P,∗)→M2∗ defined byα 7→ a and
β 7→ b. Then we have sign(a, b)= sign(A,B), whereA,B ∈ U(2,2) is the image ofa,b
by the obvious homomorphism

M2∗ → Aut
(
H 1(Σ2;Z),∪

)→ Sp(4,Z)→U(2,2),

where we used a fixed basis ofH 1(Σ2;Z).
Note that sign(A,B) = 0 if A = 1, B = 1 or AB = 1 (see [1]). Hence we have

sign(a, b)= 0 if a ∈ π1(Σ2,∗), b ∈ π1(Σ2,∗) or ab ∈ π1(Σ2,∗).
The following lemma is easy or have already been proven.

Lemma 16. For any nonzero classw ∈H 1(Σ2;Zw), the mapµw∗ satisfies the following
properties.

(1) µw∗ (1)= 0,
(2) µw∗ (a−1)=−µw∗ (a),
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(3) µw∗ (f af−1)=µf ∗w∗ (a),
(4) sign(a, b)=µw∗ (b)−µw∗ (ab)+µw∗ (a),

wherea,b ∈Mw
2∗ andf ∈M2∗.

Lemma 17. For anyα ∈ π1(Σg,∗) andf ∈Mw
2∗, the followings hold.

(1) µw∗ (α)= 0,
(2) µw∗ (αf )=µw∗ (f α)=µw∗ (f ).

Proof. (1) Since we haveMα
∼= Σ2 × S1 = ∂(Σ2 × D2), there exists̃w ∈ H 1(Σ2 ×

D2;Z2) satisfyingw̃|∂(Σ2×D2) = wMα . By Theorem 14 andH 2(Σ2 ×D2;Cw̃) = 0, we
have

ρwMα (Mα)= sign(Σ2×D2)− sigñw(Σ2×D2)= 0.

By Lemma 7, we have

Ψw∗ (α)=ψ
(
ζw2∗(α)

)=ψ(±1)= 0.

So we obtainµw∗ (α)= ρwMα (Mα)+Ψw∗ (α)= 0.
(2) sign(f,α)= 0, (4) of Lemma 16 and (1) of this lemma imply (2).2

Corollary 18. The functionsµw∗ andµ∗ descend to the functionsµw andµ onMw
2 and

M2, respectively. For the functionsµw andµ, the similar properties to Lemma16 hold
except for(4) for µ, but the restriction ofµ toMH

2 satisfies the corresponding property to
(4) of Lemma16. Their restrictions toJ2 are nontrivial homomorphisms.

It is well known that sign defines a 2-cocycle onM2 over Z, which is called the
signature cocycle, and that it is a coboundary overQ. By the fact thatH 1(M2,Q) = 0,
there exists a unique function, which is called Meyer function,

φ :M2→Q

such that sign(a, b)= φ(b)−φ(ab)+ φ(a). It is known thatφ satisfies the corresponding
properties to Lemma 16 onM2 and its image is in15Z (see [8,9]).

Proposition 19. On the Torelli groupJ2, the functionµ agrees with the Meyer functionφ.

Proof. The Torelli groupJ2 is normally generated inM2 by the Dehn twist along
a separating simple closed curve onΣ2 (see [4]). Such a Dehn twist is given by the
diffeomorphismf in the example in Section 5. The functionsµ and φ are conjugacy
invariant onM2 and are homomorphisms onJ2. Thus in order to prove this proposition,
we have only to show the equalityµ(f ) = φ(f ), but it is true from Corollary 3.7 in [8]
and the example in Section 5.2
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5. An example

In this section we shall give an example.
Let αi,βi (i = 1,2) be the generators for the fundamental groupπ1(Σ2,∗) of Σ2

depicted in Fig. 2.
We use the same lettersαi,βi for the corresponding basis forH1(Σ2;Z2).
Take a classw ∈H 1(Σ2;Z2) and fix it. We assumew(α1)= 1.
We can identify the spaceZ1 := Z1(π1(Σ2,∗),Zw) of w-crossed homomorphisms

from π1(Σ2,∗) to Z with the subset{(xi, yi)2i=1 ∈ Z4 | ∑2
i=1{w(βi)xi − w(αi)yi} =

0} of Z4 by the mapι :u 7→ (x1, y1, x2, y2) := (u(α1), u(β1), u(α2), u(β2)). We give
elementsE,F andW of Z1 by ιE = (0,−w(α2),0,1), ιF = (0,w(β2),1,0) and ιW =
(w(α1),w(β1),w(α2),w(β2)). It is easy to check that these elements form a basis for
Z1∼= Z3 and 2W is a basis for the spaceB1 := B1(π1(Σ2,∗),Zw)∼= 2Z of the principal
w-crossed homomorphisms. Thus we obtain

H 1(π1(Σ2,∗),Zw
)∼= ZE ⊕ZF ⊕Z2W.

Let f :Σ2→ Σ2 be the base point preserving diffeomorphism ofΣ2 which is the
positive Dehn twist along the loop in Fig. 3, hencef belongs toK2∗.

The action off on the fundamental group ofΣ2 is given by

f∗ : π1(Σ2,∗)→ π1(Σ2,∗),
α1 7→ lα1l

−1

β1 7→ lβ1l
−1

α2 7→ α2

β2 7→ β2,

wherel = [β1, α1].

Fig. 2. Generators ofπ1(Σ2,∗).

Fig. 3. The loop definingf .
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Direct computation shows the following equalities:

f ∗E = (1+ 4w(α2)w(β2)
)
E + 4w(α2)

2F − 4w(α2)W,

f ∗F =−4w(β2)
2E + (1− 4w(β2)w(α2)

)
F + 4w(β2)W,

f ∗W =W.
Then the representation matrix of the homomorphism

f ∗ :H 1(π1(Σ2,∗),Zw
)
/torsion→H 1(π1(Σ2,∗),Zw

)
/torsion

with respect to the basisE,F is given by 1+ 4w(α2)w(β2) −4w(β2)
2

4w(α2)
2 1− 4w(β2)w(α2)

 .
Forw ∈H 1(Σ2,Z2) such that(w(α2),w(β2))= (0,0), (0,1), (1,0), (1,1), the represen-
tation matrices of(f−1)∗, which areζw2∗(f ) by the definition, are obtained as(

1 0
0 1

)
,

(
1 4
0 1

)
,

(
1 0
−4 1

)
,

(−3 4
−4 5

)
,

respectively. Here we note that, the basisE,F is oriented in the case of(w(α2),w(β2))=
(0,1), (1,0), (1,1) and is not in the case of(w(α2),w(β2))= (0,0). But in the latter case,
since the representation matrix of(f−1)∗ is identity, the one with respect to an oriented
basis is also identity. Thus we have eight matrices in all in the case ofw(α1)= 1.

Similarly in the case ofw(α1) = 0, under appropriate choices of oriented bases, we
obtain the same representation matrices of(f−1)∗ as above, but the number of the matrices
are 4,1,1 and 1, respectively. Hence we obtain seven matrices in all.

Since we have

ψ

(
1 0
0 1

)
= 0, ψ

(
1 4
0 1

)
=ψ

(
1 0
−4 1

)
=ψ

(−3 4
−4 5

)
= 1

3
,

we obtain

Ψw∗ (f )=
{

0 if ζw2∗(f )= id,
1
3 if not.

Next we shall computeµw∗ (f ).
Letw be a class ofH 1(Σ2;Z2) satisfying(w(α1),w(α2),w(β2))= (1,0,1). Then we

have the representation matrix

(f−n)∗ =
(

1 4
0 1

)n
=
(

1 4n
0 1

)
,

with respect to the above basis. Hence we obtain

Ψw∗ (f n)= 1
3φ

(
1 4n
0 1

)
− ν

(
1 4n
0 1

)
= 4

3n− sgn(n).

Lemma 20. For anyw ∈H 1(Σ2;Z2), the set{ρw(Mfn)(Mfn) | n ∈Z} is bounded.
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Proof. We only prove the case of the classw given by(w(α1),w(β1),w(α2),w(β2)) =
(1,0,1,0), since the other cases are shown in the same way.

Let H2 be a handlebody of genus 2 with boundaryΣ2 such that the loop in Fig. 3 is a
boundary of an embedded disk. The diffeomorphismsf n (n ∈ Z) of Σ2= ∂H2 extend to
diffeomorphisms ofH2. Let

H2,f n =H2× [0,1]/H2× 1
f−n∼ H2× 0

be the mapping torus, then it is a compact 4-manifold with a boundary∂H2,f n =Mfn .
Clearly there exists a classw(n) ∈H 1(H2,f n;Z2) whose restriction to the boundaryMfn

iswMfn
. In order to prove this lemma, by Theorem 14 and the definition of signature, we

have only to show that the set{dimQH 2(H2,f n;Q),dimCH 2(H2,f n;Cw(n))} is bounded.
But it is true since the manifoldsH2,f n are homotopic to each other, so the proof of this
lemma is finished. 2

Sincef n belongs toJ2∗ andµw∗ is a homomorphism onJ2∗, we have

µw∗ (f n)= nµw∗ (f )= n
(
ρwMf (Mf )+Ψw∗ (f )

)= n(ρwMf (Mf )+ 1
3

)
.

On the other hand, we have

µw∗ (f n)= ρwMfn (Mf n)+Ψw∗ (f n)= ρwMfn (Mf n)+ 4
3n− sgn(n).

We considern→∞. By Lemma 20, we obtainρwMf (Mf )= 1, henceµw∗ (f n)= 4
3n and

ρwMfn
(Mf n)= sgn(n).

Similarly, for anyw ∈H 1(Σ2;Z2) such that the representation matrix of(f−1)∗ is not
the identity, we obtainµw∗ (f n) = 4

3n. As a result, we haveµw∗ (f n)= 4
3n for the nine of

the fifteen nonzero classes ofH 1(Σ2;Z2) andµw∗ (f n) = 0 for the other classes. Finally
we obtain

µ∗(f n)= 1
15

∑
w∈H1(Σ2;Z2)\{0}

(f n)∗w=w

µw∗ (f n)= 1
15 · 9 · 4

3n= 4
5n.

By Corollary 18, the functionsµw andµ take the same values atf n asµw∗ andµ∗ do,
respectively.
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