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Abstract

We study representations of subgroups of the mapping class gvéumf a surface of genus
g = 2 arising from the actions of them on the first cohnomology groups of the surface with local
coefficient systems which are defined by nontrivial homomorphigii’y, *) — Zo = Aut(Z). As
an application, in the case gf= 2, we construct a function oM, which agrees with the Meyer
function¢ : Mo — Q on the Torelli group7,. O 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A well-known representation of the mapping class group of a surface of gemais
Sp2g, Z) is obtained from the action of it on the first cohomology group of the surface.
In this case the coefficient group of the cohomology group,imore precisely, the local
coefficient system obtained from the trivial (X, *x)-moduleZ. In this paper we take
local coefficient systems obtained from nontrivial(X,, x)-moduleZ’s and consider
representations of subgroups of the mapping class group of the surface arising from
the action of them on the first conomology groups of the surface with the above local
coefficient systems. Moreover as an application, we construct a function of the mapping
class group of the surface of genus 2 and show some properties of it.

We state them more precisely as follows. gt be a closed oriented surface of genus
g > 2 with a base point. For any nonzero clags € Hl(Eg; Zp) = Hom(nr1 (X, %), Zp =
{0,1}), Z is regarded as the1(X,, *)-module with the actiorie, m) — (—1)*@m for
(o, m) € (X, %) x Z, which is denoted b¥.,, and the local coefficient system obtained
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from it is also denoted by the same letter. So we have the cohomologyglrb(lmg; Loy)-

In this paper, it is identified with the first cohomology groHﬁ(nl(zg, x), Zyy) Of the
surface groupry (X, %) with coefficients inz,, sinceX, is an Eilenberg—MacLane space.
Let M. be the mapping class group df, relative to the base point andty, the
subgroup ofM,.. whose elements preserve the classThen the subgroupy, acts
on the cohomology grouff 1 (1 (X, ), Z,)/torsionmodulo torsion by the pull back of
the inverse.

In order to state our results, we introduce subgroupstf. and M,. Let J, be the
subgroup ofM, acting on the first conomology grouﬁjl(zg, Z) trivially. Let IC, be the
subgroup ofM, generated by all the Dehn twists along separating simple closed curves.
Then we haveC, C J, C My C M,. Similarly the subgroupk’s.. and 7. of M, are
defined and we havkg, C Jgs C My, C M,s. The subgroups/, and 7. are called
Torelli groups (see [4]).

The following proposition is a collection of some results of Section 2.

Proposition 1. For each nonzero class € Hl(Eg; Z>), the above action oﬁ\/t?* on
Hl(nl(xg, *), Zy)/torsion gives a surjective homomorphigfi : My, — Sp2(g — 1),

Z), whose restriction tdC,, is nontrivial. Moreover it descends to a surjective homomor-
phism¢,”: My’ — PSp2(g — 1), Z) whose restriction tdC, is also nontrivial.

Next we define a representation of the whole gradp,..
Let Aut(H, £2) be the group of automorphismsHfpreserving2 whereH is the direct
sum

P  H'(7u(Z¢. ). Zy)/torsion
weHY(Z4:Z2)\(0)

and 2 is the symplectic form defined by the cup product. For any elemerf
Aut(H, £2), we can putf = (f,,), where f,, is an isomorphism or the zero map
from H(mw1(Zy, %), Zy)/torsion to H(w1(X,, *), Z,)/torsion and u and v run over
the nonzero classes aHl(Eg; Z2). Let S be the subgroup ofut(H, £2) consisting of
those elementg = (f,,) for which there existe € Aut(Hl(Eg; Z), V) such thatf,,

is not O if and only ifv = o (x). The action of Mg, on H induces a homomorphism
{gv Mg — S. The image of the kernel of the homomorphisi,, — M, agrees
with a normal subgroupy = {((—=1)*“(V8,,) € S | T € 71(Z,, )} of S, wheres,, is the
identity map onHl(nl(Eg, x), Zy,) if u = v, and is zero if not. Hence the homomorphism
{¢+ descends to a homomorphisgp: M, — S/N. With these notations, we have the
following result which is stated as Corollary 9 in Section 2.

Corollary 2. The restrictions of,. and¢, to IC and g, respectively are nontrivial.
Here we state some relations between our representations and others. There is a

representation ofM, 1 constructed by Morita (see [12]) and Trapp (see [15]) which is
nontrivial onJ, 1, whereM, 1 is the mapping class group &f, relative to an embedded
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disk (x €)D? C X, and Jg 1 is the corresponding Torelli group. It was shown that it
descends to a representation/of,,.. Morita showed that this representation can be also
obtained from his representation.®, 1 to the semi-direct product

%/\3H1(2g; 7) x Sp(2g; 7).
Morita’s representation is an extension of Johnson’s homomorphism ffom to
A3 H(Z,; 7). It descends to a representation/ef,. to 2 \® H1(Z,; Z) x Sp2g; 7).
Moreover it descends to a representation.of, to %AsHl(Eg;Z)/Hl(Eg;Z) X
Sp2g; Z). The kernels of the Morita’s representations/of, 1 and M, are K, 1 and
K., respectively (see [5,13]). This fact together with Proposition 1 and Corollary 2 imply
that our representationg, and¢, are different from the above representations.

On the other hand there is a representation of subgroups of the mapping clasafgoup
defined by Looijenga using finite abelian coverings. They are defined as follows (see [7]).
Letr: X, — X, be a connected finite abelian covering with covering gréyghen we
obtain the homomorphism: H1(X,; Z) — G from it. Let Mg be the subgroup oM,
consisting of those elements which preserve the homomorphisynpullback. LetSg;
be the group of symplectic transformationsif( X ; Z) which commute with the action
of the covering grour. The image ofG is contained in the center &p,. Any element
of Mg lifts to a mapping class of), and the difference from any other lift is a covering
transformation. It follows that we have a well-defined homomorphiefp — Sp; /G.

We consider the case 6f = Zp, hencec = w. If we consider the local coefficient system
Z,, over X, as one overr;, via the projectionr, then it is trivial. This implies that we
have the induced homomorphisat : H1(Z,; Z,,) — H(Z); Z). It turns out that its
image is identified wittHl(Eg; Zy)/torsionand is preserved by the image of Looijenga’s
representation. If we replace the rargg,, /Z» of it by its image, our representatiqt
factors through Looijenga’s representation.

As an application, in the case @f= 2, we construct a function on the mapping class
group My from our representations in the same way as [1]. This function is related to the
signature of 4-manifolds which atE>-bundles over surfaces. Its restriction to the Torelli
group 72 agrees with the restriction of the Meyer functiono 7>. We explain them more
precisely as follows.

There is a unique conjugacy invaria@tvalued functionyr on Sp2, Z) = SL(2, Z)
satisfyingo (A, B) = ¥(B) — ¥ (AB) + ¥ (A) for any A, B € SL(2,Z) whereo is the
signature 2-cocycle oSL(2,Z). This functiony is described explicitly by using the
Dedekind sums or the Rademachkiefunction (see [1,6,9,14]). Composing with ¢,
we obtain the functiow” : M}, — Q.

For any f € M%, let M; — S be the Z,-bundle overs? with the sections where
My is given by X, x [0, 1]/(x, 1) ~ (f~(x), 0) and the section is determined from the
base point ofz. Letwy, be a unique class dVl(Mf; 7Z>) such that its restriction to the
fiber X, at the base point @ [0, 1]/~ is w and its restriction to the image of the section
is 0. By consideringvy, as a homomorphismy (Mg, ¥) — Zz = $9 c U(1), we obtain
a flat complex line bundle ove¥ s. Then we have the Atiyah—Patodi-Singemvariant
P, (My) for (Mg, wM,) (see [2]). In this case the value pLMf(Mf) is in Q. We
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define the functiop : M5, — Q by u (f) = puwy,, (My) + W (f). Itturns out that this

function 1 descends to a function ait}’, which is denoted by.* (f). Hence we can

define the functionu: M2 — Q by u(f) = %Zw u¥, wherew runs over the nonzero
classes o (X,; Z,) fixed by f*.

Itis known that there is a unique function, which is called the Meyer funcfionf, —

Q such that the equality sigm, b) = ¢ (b) — ¢ (ab) + ¢ (a) holds for anya, b € M2 (see
[8,9]). Here the signature cocycle sign.bi; is defined as follows.

Let P denote the 2 sphere with 3 holé€ \ [[?int D2, thenz1(P, %) is a rank 2
free group whose generators are givendbynd 8. For anya, b € M», we define the
homomorphisnk : 1 (P, x) — Mz by a +— a, B +— b. Let Z; be theX»-bundle overP
(the inverse of) whose monodromy is given bySinceZ;, is also a compact oriented 4-
manifold, we have the signature sigh,) of it which depends only on andb, so we can
put sign(a, b) = sign(Zy,).

Let M be the subgroup ok acting trivially on H1( X, Z»).

Theorem 3. The functionu is conjugacy invariant onM2 and satisfies the equality
sign(a, b) = u(b) — n(ab) 4+ n(a) foranya, b € Mg. Its restriction to the Torelli group
J2 is a nontrivial homomorphism, and agrees with the restriction of Meyer fungtitm
J2.

This theorem can be obtained by combining Corollary 18 and Proposition 19.

This paper is organized as follows. In Section 2, we construct our representations and
show some properties of them. In Section 3, we review a certain functiobL() Z)
related to the signature 2-cocycle of it. In Section 4, we define the fungtiomheorem 3
and prove this theorem. In Section 5, we give an example, which is needed to show
Theorem 3.

2. Cohomologies of surfaces with twisted coefficients

In this section, for any nonzero class of the first cohomology group of a surface with
Zo-coefficient, we construct a representation of the subgroup of the mapping class group
of the surface whose elements preserve the class.

Let X, be a closed oriented surface of gegus 2 andx € X, a base point.

Letw:m1(X,, %) — Zp be a homomorphism, then it determines a cohomology class of
Hl(Eg; Z3) which is denoted by the same letier 71(X,, %) acts onzZ by

m1(Xg, %) X L — 7,
(rom) >y -mi=(=)""m,
where the homomorphism takes values in0, 1}. So Z is regarded as a1 (X, *)-
module, which is denoted 13, .
Next we shall compute the first cohomology grdHE)(nl(Eg, %), Zy) (see [3]).

Let Z1 = ZY(m1(X,, %), Zy) be the space oiv-crossed homomorphisms from
m1(X,, %) to Z which satisfy the equalities(ef) = u(«) + o -u(B) for Vo, € m1(Xg, *).
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Let B = BY(m1(X,, %), Z,) be the space of principab-crossed homomorphisms
for which there existsn € Z satisfyingu(e) = « - m — m for Ya € m1(X,,%). Then
HY(m1(Zg, %), Zy) is given byz1/BL.

The fundamental group: (X, *) is presented by

g
<Oli,/3i 1<i <g)‘ H[ai,ﬂi] =1>~
i=1

For anyu € Z1, putu(a;) = x; andu(B;) = y;. Then we can regard® as a subset df28
by the inclusion: > (x;, yi)¥_;.
Direct computation shows

L

8
zt= {(xi, vi) € 2% ( {w(Bixi —wla)yi} = 0},
=1

Bl= [(xi, ;) € 228 ‘ (xi, yi) = —2(w(e)m, w(Bi)m), m € Z},
wherew(w;) andw(B;) are inZy = {0, 1}. Thus we obtain the following lemma.

Lemma 4.

728 w =0,

1 ~
H (7‘[1(25;, *), Ly) = {ZZ(g—l)®ZZ w;éo

Remark. Since X, is a K (7, 1)-space, if we considef,, as a local coefficient system,
then we have the identificatiol*(X; Z,,) = H*(71(X, %), Zy,). Hereafter we identify
these groups by this identification.

Let M,,. be the mapping class group of orientation and base point preserving
diffeomorphisms ofX,. For a nonzero clas® ¢ Hl(Eg; Zp), the subgroup ofM.
whose elements preserve the classis denoted byMy,. This subgroup acts on
Hl(nl(xg, *), Zyw)/torsion In this paper, the action of € Mg, is defined by the pull-
back (f~1)* of the inverse off. Moreover this action preserves the symplectic form
on Hl(nl(zg, %), Zy) /torsion which is given by the cup-product and the identification
H?(m1(Zg, %), 2) = 7,

Lemma 5. The above symplectic IatticHl(nl(Eg, x), Zyy)/torsion is isomorphic to
72=D with the standard symplectic form.

By Lemma 5, taking a symplectic basis fﬁfl(nl(xg, x), Zy,)/torsion, we obtain a
homomorphism

Cgn Mgy — Sp(2(g — 1), Z).

Lemma 6. The above homomorphisgyf, is surjective.
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Fig. 1. A basigy;, 8; and the submanifold'.

Proof of Lemmas 5 and 6. Since the action of the mapping class group of the surface on
Hl(Eg; Z)\{0} is transitive, it is sufficient to prove the casewt= oy wherea;; belongs
to the dual basis of the ong, g; (1 <i < g) of Hi(X,; Zp) which is given in Fig. 1. Let
T C X, be the submanifold oE, depicted in Fig. 1.

Let X;_1.1 be the closure of the complementBfin X,. By the exact sequence of the
pair (X, T);

0=HOT; Zy) - HY(Z,, T; Zy) — HY(Zy; Zy) — HNT; Zoy)
— H(Z,, T; L) — H*(54; L) — HA(T; Zy) =0,
and isomorphismst\(T; Z,,) = 7 @® Zp, H*(Zy, T; Zy) =7 and HA(Zy; Zy) = Zo,

we have an isomorphisiH}(Z,, T; Z,,) = H(2,; Z,,)/torsion There is the following
commutative diagram:

HY(Zg; Zy) x HY(Zg; L) —————=HX(Z; 7)

i :

HYZ,, T:Zy) x HY(Zy, T Zy) ——2—= HX(5,.T: Z)
HYZ, 11, 8% Z) x H(Z4-11, 8% 2) —= HX(Z,_11, 5% 2)

whereS? is the boundary ofZ,_1 1. From this we can deduce the following commutative
diagram:

HY(Z,; Zy)/torsionx HY(Z; Z,,) /torsion————= H2(,; 7)

2 2

HYZy 11,8 7) x HN(Z, 11, 8% 2) —2—> H%(%, 11, 5% 7Z)

Since the symplectic structure (Hll(zg,l,l, sl 7) = Hl(Eg,l; 7) is the standard one,
the proof of Lemma 5 is finished.

Let M,_1,1 denote the group of isotopy classes of diffeomorphism&ef; ; whose
restriction to the boundary is the identity of it. For any element¢f_1 1, extending it to
an isotopy class of diffeomorphism &f, by the identity ori", we have a homomorphism
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Mg_11 — Meg,. By the choice ofw, the image of the homomorphism is contained in
My Clearly the following diagram commutes:

Mg-11——=AUH (Zg-11, S5 2), V)

|

Mg, ——= Aut(H(Z,; Z,,) /torsion U)

2

The fact that M,_1 — Aut(Hl(Eg,l;Z),u) is surjective implies that the upper
homomorphism in the above diagram is surjective, hence so is the lower one. The proof of
Lemma 6 is completed. O

Next we see that,’, descends to a homomorphism frobty’ to PSp2(g — 1), Z).
There is the following exact sequence

1—> nl(zgs *) $ Mg* — Mg — 1.

Since the image afis in Mg, we have the following exact sequence

1> 71(Tg. %) > MY, - MY — 1.
Lemma 7. For any T € m1(X,. %), the equality;?}, o 1(z) = (—=1)*I holds. Hence the
image of{é‘jﬁ otis{I} CcSp2(g—1),7Z).

Proof. For eacht € m1(X,, %), the action ofi(r) € Mg, on w1 (X, %) is given by
1(T)e(y) =1yt Lorall y e m1(Xg, ) (see [11]).
For anyu € ZY(m1(Z,, %), Zy), we have

e ) =ucyny=—rtu@ T u) oty cuo)
=t Loup)+ &y -Drtu).

Since the mapy — (y — Dt~ - u(z) belongs to B(w1(Z,, %), Zy), we obtain
(Y ) = e u] = (—D)PC O] = ()P OLu], where[u] € HX(w1(Zg, %), Zu)
is the class ofi. The proof is completed. O

By this lemma, the homomorphisgyf, descends to a homomorphism
¢y My — PSp(2(g — 1), Z).

Let kg be the subgroup oM. generated by all the Dehn twists along separating
simple closed curves oB,. Similarly the subgrouf, C M, is defined. ClearlyC,. and
K, are subgroups oMy, and My, respectively for any € HY(Z,; 7).

The example in Section 5 shows the following proposition in the casge-ef2. For

g > 2, similar examples can be given.

Proposition 8. The restrictions of the homomorphisgf$ and¢,’ to the subgroup&C,.
andC,, respectively are nontrivial.



226 R. Kasagawa / Topology and its Applications 102 (2000) 219-237

We define a representation of the whole groufy.. as follows. LetH be the direct sum

&y HY(1(Zg, %), Zu) /torsion

weH(Z,:Z2)\{0}
and 2 be the symplectic form on it given by the direct sum of the cup products on
HY(71(Z,, ), Z,,) /torsions. By Lemma 5,(H, £2) is isomorphic t072@* =D& with
the standard symplectic form. Clearly1,, acts onH and preserves the symplectic
form 2. Let Aut(H, £2) be the group of automorphisms &f preservings2. For any
f € Aut(, £2), we put f = (fuv) Where f,, is an isomorphism or the zero map
from HY(w1(Z,, %), Zy) /torsionto HY(w1(Z,, %), Z,)/torsionandu andv run over the
nonzero classes dii1(X; Z,). Let S be the subgroup oAut(H, £2) consisting of those
elementsf = (f,») for which there existg € Aut(Hl(Eg; Z3), V) such thatf,, is not 0
if and only if v = o (). Clearly the action ofM,, onH induces a homomorphism

Sow Mgy — S.

By Lemma 7, the image af,. o« agrees withV = {((—=1)“(V8,,) € S| T € m1(Zy, %)} C
S, wheres,,, is the identity map orHl(nl(Eg, %), Zy) if u=v, and is zero if not. It is
easy to see tha¥ is a normal subgroup &. Hence the homomorphisty. descends to a
homomorphism

Lg: Mg — S/N.
Clearly the restriction o to M, is identified with

I ch M - sp2(g - 1): Z
weH(E;Z2)\(0}

)22f~'—1

For¢,, a similar result holds. Proposition 8 implies the following corollary.
Corollary 9. The restrictions of. and¢, to IC, and g, respectively are nontrivial.

Remark. The above homomorphisngg; are also obtained from the action of diffeo-
morphisms of¥, on the moduli spaces of fla® (2)-connections or®,. More precisely,

for nonzero classv € Hl(Eg, Zp), we regard it as a homomorphism from(X,, %) to

Zy C O(2) whose image is not contained in the identity componer@@). Then it de-

fines a nontrivial flatO (2) bundle overX,. We consider the moduli space of flat(2)
connections on this bundle modulo automorphisms of the bundle which preserve an ori-
entation of the fiber at the base point. For any diffeomorphisth pfvhich preserves the
base point, orientation and the class by taking a lift of it to an automorphism of the
aboveO (2)-bundle which preserves an orientation of the fiber at the base point, we obtain
the action of the diffeomorphism on the moduli space. This action is independent of the
choice of a lift and a representative of an isotopy class of a diffeomorphism. It is easy to
see that the moduli space can be identified with@-21)-dim torus72@~1D . The above
action induces the action g1, on the first homology group of the moduli space, so we
obtain a homomorphism from1%, to Aut(Hy(T?¢~P, Z)). It is easy to check that this
homomorphism agrees wit, .
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3. Some functions onM5, and Mo,

In this section we consider the casegof 2 and construct some functions on mapping
class groups with values iQ.

Letw be anonzero class ah‘l(zg; 7). Take an oriented basis féf (71( X2, %), Zw)/
torsion and fix it. Then by Lemma 4HY(1(X>, %), Z,,)/torsion is identified withZ?2.
Hence the action oM7), on the cohomology group induces the homomorphism

c M — SL(2, 7).

Next we introduce some functions &w(2, Z) andPSL(2, Z) (see [1,6,9,14]).
Let

¢:PSL2,7Z) - Z
be the Rademacherfunction which is defined by

_f(ab | b/d if c=0,
A_(cd)|_>¢(A)_{(a+d)/c—12$igr(c)s(a,c) if ¢ £0,

whereA € SL(2,7) is aliftof [A] € PSL(2, Z) and

le[-1

wwo= 2 ((E)E))

is the Dedekind sums for coprime integerandc. Here((x)) = 0 if x is an integer, and
=x —[x]—1/2if not.
Moreover we define th&-valued function

V:SL2,Z) > Z
by

AZ(ab)l_)v(A)z{s?gr(b) ?fA:((l)'D,keZ,
cd sign(c(a +d — 2)) if not,

and theQ-valued function
v:Sl2,72) - Q

by
A Y (A) = 3¢(A) — v(A).

It is known thatys is a unique function oiSL(2, Z) with values inQ satisfyinge = 8/,
where

0:SU2,7) x SL2,7) — 7

is the signature 2-cocycle aidds the coboundary operator.
We define the function

¥ M — Q
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by
L () = (6u()-
Sinceyr is conjugacy invariant o8L(2, Z), ¥.” is independent of the choice of a basis for

H(1(X>, %), Z,,) /torsion
We also define the function

lI’>t<:/\/12>x< - Q
by

(=% Y. WA

we HY(Z5;Z,)\{0}

frw=w
The following lemma is clear from the conjugacy invariancejof

Lemma 10. ¥” is MY, -conjugacy invariant an@’, is Mz,-conjugacy invariant.

4. The signature of surface bundles

In this section we define the functignin Theorem 3 and show some properties of it.

Let X be a compact oriented surface with a base pajrand possibly with boundaries.

Letr :Z — X be aX,-bundle with a sectios: X — Z whereg > 2. Considering (the
inverse of) the monodromies of it, we have a homomorphism

h:m1(X, x0) —> Mg*,

where we identifyX, with the fiber Z,, at the base pointg of X. Conversely if a
homomorphism fromry(X, xo) to My, is given, then we can construct a surface bundle
with a section sinc®Diff T (X, *) ~ K (M, 1) holds forg > 2 (see [10]).

Lemma 11. Let w be a nonzero class o‘?l(Eg; Z5). Under the above setting, suppose
Imh C Mg, then there exists a unique clagg € HY(Z:7,) satisfyinguwz|y, = w in
HY(2,,7Z2) ands*wz =0in HY(X; Zp).

Proof. We consider a spectral sequencg/ ?,d,) for the cohomologyH*(Z; Z5)
with E5? = HP(X; H1(X,; Z»)) of the fibrationz:Z — X. In this case, we have
isomorphismsEy = H1(%,; Z,)™X-% and E3® = H1(X; Zy). Clearly we haver;© =

Ez°=...= EX0. Itis easy to see thak: Eo* — E5is 0 because of the existence of
a sectiorny of the fibration by the assumption. So we g}]%tl = Eg’l =...= Egél. Hence

we obtain isomorphisms

HYZ; 7o) = EX0 @ EQY = E;% @ EQY = HY(X; Zo) @ HY(Zy; Zp)™s ).
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For the above splitting oH1(Z; Z5), the projection to the second factor agrees with the
restriction and one to the first factor may be given by pullback &y the hypothesis, the
classw is in H1(Xy; Z2)™(X-*0), This completes the proof.0

Hereafter we assume the hypothesis of Lemma 11, thatds0 and Im: C Mg,.

Let Cy,, be themr1(Z, x)-moduleZ,,, ® C over C. It defines the flat complex line
bundle overZ, which is also denoted b{,,,, so the cohomology group8*(Z; C,,,)
andH*(Z,9dZ; C,,) are defined. Put

H*(Z;Cy,):=IM[H*(Z,9Z; Cy,) — H*(Z; Cyy)].

There is the nondegenerate hermitian formmA(Z; Cy,) which is defined by the cup-
product, the inner product offi and evaluation on the fundamental cy¢le, 9Z]. Its
signature is denoted by sign(2).

On the other hand, from the surface bun@le> X with a sections, we construct the
flat vector bundlég over X with the hermitian form as follows.

The fiberH, atx € X is the cohomology group

Hl(nl(nfl(X), S(x)); (sz|ﬂ,1(x)) o~ Hl(Z‘g; C,) = C2eD,

The hermitian form is given by times the cup-product, the inner product Ghand
evaluation on the fundamental class of the fibet (x).

By the definition ofH, (the inverse of ) the holonomy homomorphism of the flat bundle
‘H is given by

T:m1(X, x0) — S[(Z(g— 1),Z) —U(g—1g-1),

which agrees with the homomorphism (X, %) > a > (h(a)™1)* € Aut(HY(Z,; Cy),

i x (-U-)). By considering+ as a local coefficient system, we obtain the first cohomology
group H(X; H) with the skew-hermitian form which is also defined by the cup-product
and the hermitian form of the bundle. The skew-hermitian form multiplied by a
hermitian form onH1(X; H), so we get its signature, which is denoted by &griH).

Lemma 12. Under the above setting, the equaliign,, (Z) = sign(X; H) holds.

Proof. There exists a spectral sequerié&g ?, d,) for the cohomology groupl*(Z, dZ;
Cuw,) With ES'? = HP(X,0X; H1(Z,; Cy)) of the fibration Z — X. Note that the
cohomology groupH?”(X,0X; H1(¥,;C,)) depends on the section, hence the
isomorphism frome4? to it does so, and note tha, ' = HY(X, 9X; HY(Z,; Cy)) =
H(X,3X; H). Since we havél%(Z,; C,)) = H?(Z,; Cy) = 0, we obtaine3® = E9? =
0. Hence we get the isomorphisms

HXZ,0Z:Cyy)= Y ELI= EX'= HY(X,0X; H).
pt+q=2
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Similarly we obtain isomorphism&?(Z; C,,,) = HX(X; H) andH?(X, dX; H(Z,; C))

=~ H%(Z,8Z; C). Moreover we have the following commutative diagrams:
H%(Z,3Z;C,,) — H(Z;C,,)

4 4

HY(X,0X;H) HYX; H)

H2(Z,0Z;C,,) x HX(Z;C,,) o H*Z,0Z:;C)

2 ¢

HY(X,0X: H) x HY{(X; H) —©

H?%(X,3X; H*(Z,; C)) = H(X, 3X; C)

where—(U) on the lower arrow denotes minus the cup product on cohomology with local
coefficient system. In this case(U) agrees with the cup product in the spectral sequence.
Taking the two times multiple by in the definition of sigiX; H) into consideration, we
obtain the equality sigp, (Z2) =sign(X; H). O

PutP : = $2\ [ [3int D2, thenrr1 (P, *) is a rank 2 free group whose generators are given
by @ andp.

Any homomorphisng from w1 (P, *) to U(p, q) defines a flat vector bundig: over P
with a hermitian form. In the same way as above, we have the signatu(ésigg) of the
hermitian form onH(P; E¢):=Im[H(P, 3 P; Es) — H(P; E¢)]. The flat bundle;
depends only on the homomorphigmhence on the two elemenis(«), £(8)) =: (A, B)
of U(p, g). So we can put sigid, B) : = sign(P, E¢) (see [1]).

Now we shall consider the case o 2.

Since the restriction of sign 8L(2, Z) — U (1, 1) agrees with the signature 2-cocycle
o (see [1]), we have siga o = §v. Thus we obtain

SigN(A, B) =¥/ (B) — ¥ (AB) + ¥ (A).
Let X be a compact oriented surface with boundaky= [ [; S,.l. Let
¢ :m1(X, x0) > SU2,7Z)

be a homomorphism angthe composition o’ with SL(2, Z) — U (1, 1), then by the
signature additivity, we have

Sign(X, Ee) =Y ¥ (&'(SD).

where S,.1 denotes also a class im (X, xo) corresponding to the boundarS;’L which
is determined up to conjugation. Here we note that, siicis conjugacy invariant on
SL(2, Z), the right hand side of the above equality is well-defined.

Lemma 13.

sign,, (2) =Y w2 (h(sh).
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Proof. The flat bundle in Lemma 12 is constructed from the representatios:
& :m(X,x0) - SW2,Z) — U(1, 1), so we get{ = E¢. Hence we have

sign,,, (Z) = sign(X, H) =sign(X, E¢) = Y ¥ (£'(SH).

Since&’ = ¢ h and¥” = ¢ o ¢5. holds by definitions, we obtain
v (E'(SH) =y (e3h(SH) = ¥ h(SH,
hence sigp, (Z2) = >y (h(Sl.l)). This completes the proof.0

Now we recall the definition of the-invariants (see [2]).
Let M be an oriented Riemannian manifold of dimensiér-2 ando : 71(M) — U (n)
a unitary representation. The self-adjoint operator on even formig:on

D: Q2% M; C) —» 2% M; C)
is defined by
D(¢) =i'(~1)PTL(xd — d%)g,

where¢ is a form of degree 2. Moreover the extension ab to the even forms with
coefficients in the flat vector bundle of ranldefined by is denoted byD,,, which is also
a self-adjoint operator.

For the operatoD,,, we define the function, (s) by

Na(s) =Y _(signi)[a| ™",
A£0
whereA runs over the eigenvalues 6%,. The corresponding function tb is denoted by
n(s). These functions extend at= 0 and have finite values here. Its valug8) andn,, (0)
are called they-invariants of a Riemannian manifold.

Putny (s) := ne(s) — nn(s).

Theorem 14 (Atiyah, Patodi and Singer [2])j, (0) is independent of the metric. It is a
diffeomorphism invariant a#7 anda which we shall denote by, (M). If M = dN with
extending to a unitary representationef(N) then

pa(M) = nsign(N) — sign, (N).

Now we return to our setting. LeétZ = [ [; 9; Z be the decomposition of the boundary
of Z by the connected components. Thg# is the > bundle overSl.1 with (the inverse
of) a monodromyh(Sil) e M3, where Sl.1 is a connected component of the boundary
X =11, Sl.l. In Theorem 14, we pulV = Z, M = dZ anda = wz|3z. Then using
Lemma 13 we obtain

SIGNZ) =Y~ puy,, i Z) + iGN, (2) = Y {puy, 2 3 Z) + ¥ (h(SD) }-
For an orientation and base point preserving diffeomorphisof X or its isotopy
class, letM ; denote theZ, bundle overs? with a monodromyf 2.
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For a nonzero class € H1(X; Z5), the function
py Mz, —Q
is defined by

1y (f) = puy, (Mp) + L (f)

for f € M5, . Then we can rewrite the above equality as follows:
sign(Z) = Z 1 (h(SH).

Since the signature of a surface bundlgover a compact surfack is determined by
the action of the corresponding monodromy on the first cohnomology group of the fiber
302, the equality sigfiZ;,) = 0 holds for any homomorphisi: 1 (X, xg) — J2.. This and
the above equality imply that the restrictionof to J. is a homomorphism.

Let ity : M2, — Q be function defined by

we(f)=1 Y. ui)
weH(£:22)\(0}
ffw=w
for f € Mp,. The above argument and the example in Section 5 imply the following
proposition.

Proposition 15. The restrictions oft,. anduY (w # 0) to J2, are nontrivial homomor-
phisms.

Next we shall prove that, for any nonzero clas; H(2>; Z,,), the magu® : 5=
QQ descends to the map

u? i M5 — Q.
For anya, b € Ma,, let signa, b) be the signature sig#,) of the surface bundl&;,
over P constructed from the homomorphigmrn1(P, x) — Mo, defined byx — a and

B — b. Then we have siga, b) = sign(A, B), whereA, B € U(2, 2) is the image of:, b
by the obvious homomorphism

Mo, — Aut(H(Z; Z), U) — Sp4,Z) — U(2,2),

where we used a fixed basis B ( Zy; 7).

Note that sigiA,B) =0 if A=1, B=1 or AB =1 (see [1]). Hence we have
sign(a, b) =0if a € m1 (X2, %), b € m1(X2, *) Orab € w1 (X2, *).

The following lemma is easy or have already been proven.

Lemma 16. For any nonzero class € H(Xy; Z,), the mapu! satisfies the following
properties.

(1) uy (@) =0,

2) pl@ ™t =—-ul(a,
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@) 1 (faf b =pnl @),
(4) signa, b) = ¥ (b) — u¥(ab) + u¥(a),
wherea, b e M3, and f € Ma,.

Lemma 17. For anya € w1(Xg, ) and f € M3, the followings hold.
(1) ng(@) =0,
(2) p(af) =pi(fa)=pn(f).

Proof. (1) Since we haveVl, = ¥, x ST = 3(X, x D?), there existsi € H1(¥, x
D?; Zy) satisfyingi|y s, p2) = wi,. By Theorem 14 and/?(X> x D% Cg) =0, we
have

Pur, (M) = SIgN(Z2 x D?) — signg; (¥ x D?) =0,
By Lemma 7, we have
(@) = ¥ (L) =y (£1) =0.

So we obtainy (&) = pw,,, (Ma) + %" (o) =0.
(2) signf, @) =0, (4) of Lemma 16 and (1) of this lemma imply (2)0

Corollary 18. The functiong:}’ and 1., descend to the functions” and . on M3 and
Moy, respectively. For the functions” and w, the similar properties to Lemm&6 hold
except for(4) for u, but the restriction ofx to /\/lg satisfies the corresponding property to
(4) of Lemmal6. Their restrictions tq72 are nontrivial homomorphisms.

It is well known that sign defines a 2-cocycle dvi over Z, which is called the
signature cocycle, and that it is a coboundary d@eBy the fact thatd1(M>, Q) = 0,
there exists a unigue function, which is called Meyer function,

o M2—Q

such that sigeu, b) = ¢ (b) — ¢ (ab) + ¢ (a). Itis known thatp satisfies the corresponding
properties to Lemma 16 o, and its image is ir%Z (see [8,9)]).

Proposition 19. On the Torelli group7z, the functionu agrees with the Meyer functian

Proof. The Torelli group 72 is normally generated inM, by the Dehn twist along
a separating simple closed curve ai (see [4]). Such a Dehn twist is given by the
diffeomorphismf in the example in Section 5. The functiopsand ¢ are conjugacy
invariant onM3y and are homomorphisms @i». Thus in order to prove this proposition,
we have only to show the equality(f) = ¢(f), but it is true from Corollary 3.7 in [8]
and the example in Section 50
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5. An example

In this section we shall give an example.

Let ;, B; (i = 1,2) be the generators for the fundamental grougs, ) of X»
depicted in Fig. 2.

We use the same lettexs, §; for the corresponding basis féf (X2; Z2).

Take a classw € H1(X»; Z») and fix it. We assume (a1) = 1.

We can identify the spac&!:= Z1(71(2>, %), Z,) of w-crossed homomorphisms
from m1(X>2, %) to Z with the subsei{(x,-,y,-)izzl e74 | Zizzl{w(ﬂ,')x,' — w(w)yi} =
0} of Z* by the mapt:u — (x1, y1, x2, y2) := (u(e1), u(B1), u(e2), u(B2)). We give
elementsE, F and W of Z1 by (E = (0, —w(a2), 0, 1), tF = (0, w(B2), 1,0) and'W =
(w(a1), w(Br), w(az), w(B2)). It is easy to check that these elements form a basis for
71~ 73 and 2 is a basis for the spad@! : = BL(1(Z>, %), Z,,) = 2Z of the principal
w-crossed homomorphisms. Thus we obtain

Hl(ﬂl(zz, %), Zw) ZLE ® LF ® ZoW.

Let f: X, — X be the base point preserving diffeomorphismXf which is the
positive Dehn twist along the loop in Fig. 3, hentdelongs taCy..
The action off on the fundamental group &> is given by

Se 1m1(X2, %) > m1(X2, %),
a1 = lallfl
Br> 1Bal~t
o — 02

B2 — B2,

wherel = [B1, a1].

Fig. 2. Generators of1 (X2, *).

Fig. 3. The loop defining .
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Direct computation shows the following equalities:

FYE = (1+ dw(a2)w(B2)) E + 4w (@2)’F — 4w (a) W,
[¥F =—4w(B2)’E + (1 — 4w () w(e2)) F + 4w (B) W,
f*W=Ww.
Then the representation matrix of the homomorphism
[ HY(m1(Z2, %), Zy) /torsion— HY(w1(Z2, %), Z) /torsion

with respect to the basig, F is given by

1+ dw(a2)w(p2) — 4w (B2)?
Aw(ap)? 1— 4w (B2)w(a2)

Forw € HY(X,, Z») such thatw(az), w(B2)) = (0, 0), (0, 1), (1,0), (1, 1), the represen-
tation matrices of f ~1)*, which arezy (f) by the definition, are obtained as

(03) (01 (L3) (539

respectively. Here we note that, the bakisF is oriented in the case @fv(a2), w(B2)) =
(0,1), (1,0), (1,1) and is not in the case @fv(a2), w(B2)) = (0, 0). Butin the latter case,
since the representation matrix of ~1)* is identity, the one with respect to an oriented
basis is also identity. Thus we have eight matrices in all in the cas€maf) = 1.

Similarly in the case ofw(a1) = 0, under appropriate choices of oriented bases, we
obtain the same representation matricesfof!)* as above, but the number of the matrices
are 41,1 and 1, respectively. Hence we obtain seven matrices in all.

Since we have

10 1 4 1 0 -3 4\ 1
w(o 1)20’ 1/”<o 1)2‘”(—4 1>:‘”<—4 5)25’

we obtain

. 0 il =id,
v, (f):{% if not.

Next we shall computgy (f).
Let w be a class oH1(Xy; Zy) satisfying(w(e1), w(az2), w(B2)) = (1,0, 1). Then we
have the representation matrix

(1A (1 4
a=(5 1) =(c 7).

with respect to the above basis. Hence we obtain
woeny 1, (1 4\ (1 dn\_ 4
o= 3¢ (0 1 % o 1/~ 3N sgn(n).

Lemma 20. For anyw € H1(X>; Z»), the et pu(u ) (M) | n € Z} is bounded.
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Proof. We only prove the case of the classgiven by (w(a1), w(B1), w(az), w(B2)) =
(1,0,1,0), since the other cases are shown in the same way.

Let H, be a handlebody of genus 2 with boundary such that the loop in Fig. 3 is a
boundary of an embedded disk. The diffeomorphigitisn € Z) of X2 = 9 H» extend to
diffeomorphisms ofH». Let

Ho g = Hp x [0, 1]/ H2 x lf’:’ Hy> x 0

be the mapping torus, then it is a compact 4-manifold with a boundl&y » = M ¢».
Clearly there exists a class(n) Hl(Hz,fn; Zp) whose restriction to the boundadf s«

is WM - IN order to prove this lemma, by Theorem 14 and the definition of signature, we
have only to show that the sedimg H2(Ha, f+; Q), dimg H?(Hz, pn; Cyyn))} is bounded.

But it is true since the manifoldH>, ;» are homotopic to each other, so the proof of this
lemma is finished. O

Since " belongs ta7, andu! is a homomorphism ogz., we have
Y P =l () =n(puy, (M) + W2 () =1 (puy, (M5) + 5).
On the other hand, we have
WIS = Pung, (M) + 9L (") = Py, (Mpn) + 30— SQN(n).

We considern — oco. By Lemma 20, we obtaiprf (My)=1, henceuy (f") = %n and
Pun, (M pn) = Sgn(n). ‘

Similarly, for anyw € H1(X>; Z,) such that the representation matrix(gf1)* is not
the identity, we obtainu? (") = %n. As a result, we have? (") = %n for the nine of
the fifteen nonzero classes Hf'(Xy; Z») andu (") = 0 for the other classes. Finally
we obtain

(M=% Y, wUM=1-9-3n=2n
weHY (22, Z2)\{0}
f"w=w
By Corollary 18, the functiong® andu take the same values @t asu? andu.. do,
respectively.
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