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Appendix: Symplectic geometry

Summary

We collect here the basic tools of symplectic geometry which are used throughout
the book. In §1 and §2 we discuss some basic notions concerning symplectic
vector spaces and homogeneous symplectic manifolds. All results are well-known
and more or less elementary. Hence we shall omit some proofs, and we refer to
Arnold [2], Duistermaat [ 1], Abraham-Mardsen [1] and especially Hormander
[4 Chapter XXTI].

In §3 we introduce the inertia index of a triplet of Lagrangian planes. Our
presentation is close to that of Lion-Vergne [ 1] and for the reader’s convenience,
we give all proofs. We also collect some of its properties, that we need in Chapter
7, as exercises.

A.1. Symplectic vector spaces

In this section and the next one we shall treat symplectic spaces in the real case
but the theory is the same in the complex case.

Let E be a real finite-dimensional vector space. A symplectic form ¢ on E is
a non-degenerate alternate bilinear form on E. A vector space E endowed with
a symplectic form ¢ is called a symplectic vector space. If E is symplectic, then
dim E is even.

If(E,,0,)and (E,, g,) are two symplectic vector spaces, a linearmap u: E, —
E, is called symplectic if u*o, = a,. If u is symplectic, then u is necessarily
injective.

One denotes by Sp(E) the group of symplectic automorphisms of a symplectic
vector space E. It is a closed subgroup of the group GL(E) of linear automor-
phisms of E.

Example A.1.1. Let V be a real finite-dimensional vector space, and V* its dual
space. The space E = V@ V* is naturally endowed with a symplectic structure
by setting for (x; &) and (x'; &) in V@ V*:

(A.1L1) a((x;¢),(x";8)) = {x, &) — {x, &) .

We call this form the natural symplectic form on E.



478 Appendix: Symplectic geometry

) . ) ) 0
If E=V®V* and u is a linear isomorphism of V, then the map <g . _1)
u

is a symplectic automorphism of E.
Let (E, o) be a symplectic vector space. Since ¢ is non-degenerate, it defines
a linear isomorphism H from E* to E by the formula:

(A.12) 0,05 =0c(,H®O), veE, 0ecE*.

This isomorphism H is called the Hamiltonian isomorphism. If § € E* one some-
times writes H, instead of H(0) and calls H, the Hamiltonian vector of 6.

Since H is an isomorphism, the skew bilinear form on E* : (u,v)—a(H,, H,)
is a symplectic form on E*. It is called the Poisson bracket, and denoted {u, v}.
Thus :

(A.1.3) {u,v} = o(H,,H,) = {v,H,) .
Let p be a linear subspace of E. One sets:
(A.1.4) pt={xeE;a(x,p)=0} .
Then:
pri=p,  (ptp)=pinpr .  (pop)=pi i
The space p* is called the orthogonal space to p.

Definition A.1.2. A linear subspace p of E is called isotropic (resp. Lagrangian,
resp. involutive) if p = p* (resp. p = p*, resp. p o p?).

Some authors use “co-isotropic” instead of “involutive”.

Note that if p is isotropic (resp. Lagrangian, resp. involutive) then dimp < n
(resp. = n, resp. > n) where n = 3dim E.

A line (resp. a hyperplane) is always isotropic (resp. involutive). If dimp = n
and if p is isotropic or else involutive, then p is Lagrangian.

Assume p is isotropic. Then the space p~/p is naturally endowed with a
symplectic structure by setting o(xX, y) = a(x, y), where X (resp. y) is the image of
x (resp. y) in pt/p. (We still denote by ¢ the symplectic form on p*/p.)

If A is a linear subspace of E one sets:

(A.15) #=(Anpt)+p)p
In particular, E? = p*/p. Then it is easily checked that:
(A.1.6) (A1 = A7)+ .

In particular, if A is Lagrangian in E, then A? is Lagrangian in E”.
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Conversely, denote by i the embedding p* = E and by j the projection
pt — p*/p. Then if u is a Lagrangian subspace of p*/p, ij “(y) is a Lagrangian
subspace of E, containing p.

The symplectic space described in Example A.1.1 is not so special. In fact,
we have:

Proposition A.1.3. Let Ay, be a Lagrangian subspace of E. Then there exists a
Lagrangian subspace A, of E such that E = A, @ A,. Moreover for such a Lagran-
gian space A,,themap u: A, @ A§ — E defined by u(x, y) = x — H(y) is a symplectic
isomorphism. Here H(y) is given by A§ ~ (E/A,)* — E* » E.

Proof. (i) Let p be an isotropic space with pn 4, = {0}. If p # p*, then p* ¢
Ao + p, otherwise p = (p* N 4,), hence p N4y = {0}, which contradicts dim p*+ >
n. Choose e € p*\(4y + p). Then p + Re is isotropic and (p + Re) n 4, = {0}.
Then we argue by induction on dim p to get 4,.

(i) Let x and x’ belong to 4, and y and y’ to A¥. Then:

o(x — H(y),x' — H(y")) = —a(x, H(y')) + o(x", H(y)) = —<y",x) + {», %) .

Hence the map u is symplectic. Since dim(4, @ A¥) = dim E, u is an isomor-
phism. []

Let (E, ) be a symplectic vector space. We denote by E* the space E endowed
with the symplectic form —ao, i.e. E* = (E, —0).

For two symplectic vector spaces (E,,0,) and (E,,0,), E, ® E, has also a
structure of a symplectic space by g, ® 0,.

Let E;, (i = 1,2, 3) be three symplectic vector spaces, and denote by p,] the
(i, j)-th projection defined on E, x E, x E; (e.g. p,3 is the projection onto
E, x Ej).

™~

Proposition A.1.4. Let A and p be two Lagrangian subspaces of E, @ E% and
E, @ E4, respectively. Set Ao u = p,3(p1sA 0 pa3u). Then Ao pis a Lagrangian
subspace of E; ® ES.

Proof. The diagonal 4 of E4 @ E, is a Lagrangian subspace. Hence p = {0} x
A4 x {0} is an isotropic subspace of E;, ® E§ ® E, ® E;.Since E, ® E; = (E, ®
ES® E,®E;) and Ao u = (1 @ p), we get the result. []

Now we shall study symplectic bases. Let (E, g) be a symplectic vector space,
say of dimension 2n.
A basis (eq,..., e, f1,- .., f,) is called symplectic if denoting (e}, ..., eF; fi*,...,
"*) the dual basis on E*, we have:

(A.1.7) o= ;j;* AeF .

J
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Of course, (A.1.7) is equivalent to:

{G(eja ek) = G(.f;:ﬁ:) = 0 s

O'(ejafk) = —O'(ﬁnej)z —5j,k 1<jk<n,

(A.1.8)

where J;, denotes the Kronecker symbol (9, = 1if j = k, and is 0 otherwise).
For such a symplectic basis, the symplectic isomorphism H defined in (A.1.2)
satisfies:

(A.19) H(e)= —f,, H(f*)=¢, 1<j<n.

Let J and K be two subsets of {1,...,n}, and let ((¢;);c s, (fi)rex) b€ a linearly
independent family satisfying the relations (A.1.8). Then it is easily proved that
this family can be completed into a symplectic basis. In particular, if p is an
isotropic (resp. Lagrangian, resp. involutive) subspace, then there exists a sym-
plectic basis such that p is generated by (ey,...,e;) (resp. (ey,. .., e,), resp. (ey,...,
€, f1,---» i) for some j and k.

Denote by G(E, n) the Grassmannian manifold of n-dimensional linear sub-
spaces of E (recall that dim E = 2n). This is a compact manifold (cf. e.g. Griffith-
Harris [1]). One denotes by A(E) the subset of G(E, n) consisting of Lagrangian
subspaces. This is a closed (smooth) submanifold, called the Lagrangian Grass-
mannian manifold.

Let ue A(E). We set:

(A.1.10) A(E) = {A e A(E); . p={0}}.

Assume E is endowed with a symplectic basis, and let (x; £) denote the associated
linear coordinates, (i.e. each p e E is written p = ) 1, (x;¢; + ;). For any
A € G(E, n), there exist n x n matrices A and B such that:

(A.1.11)  the matrix (A4, B) has rank n , A= {(x;&); BE = Ax} .

Then A € A(E) if and only if A'B is symmetric.

Note that in this case BE = Ax iff x = ‘Bz, £ = 'Az for some z € R".

If uis the Lagrangian subspace {x = 0}, then 4 € 4, (E)if A = {(x;£); £ = Ax}
for some symmetric matrix 4. Hence 4,(E) is open and dense in A(E) and
isomorphic to R*"*1/2,

We shall sometimes say that a property “P” holds for generic 4 (4 in A(E)) if
there exists an open dense subset 2 of A(E) such that the property “P” holds for
Ae Q.

We shall also encounter the following situation: 4 is Lagrangian in E and
contains a line p. We are looking for u € A(E), with un A = p. Consider the
maps i:p-— Eandj:pt — p'/p. Then it is enough to choose u’ € A(E?) with
' nA? =0, and set u=i(j '(u')). By abuse of language, we shall say that
for generic pu with u > p, we have Anu = p.
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A.2. Homogeneous symplectic manifolds

All manifolds and morphisms of manifolds considered here will be real, of class
C* or real analytic. Unless otherwise specified, a real function on a manifold is
supposed to be of class C* or real analytic. However, most of the results we shall
state still hold with suitable modifications for complex analytic manifolds.

Let X be a manifold. We denote by 7: TX — X its tangent bundle and by
n: T*X — X its cotangent bundle. We denote by TX and T*X the bundles TX
and T*X, with the zero-section removed, and we denote by 7 and 7 the maps 1
and 7 restricted to TX and T*X, respectively. Let us recall that if M is a
submanifold of X, the normal bundle T,, X and the conormal bundle T} X to M
in X are defined by the exact sequences of vector bundles on M:

05>TM>Mx TX > T, X >0,

X

(A.2.1)
0> TFX->MxT*X > T*M -0 .
b

Let f: Y —» X be a morphism of manifolds. To f are associated the morphisms:

TY— Y x TX—TX ,

(A.2.2) X :
T*Y—— Y x T*X — T*X .

1 X ia

In particular if one considers the projection 7: T*X — X we get the map ‘n'":
T*X x, T*X > T*T*X.

If we restrict this map to the diagonal of T*X x, T*X, we get a map
T*X — T*T*X, which is a section of the bundle T*T*X — T*X, that is, a
differential form of degree 1 (one says: a 1-form). This 1-form on T*X is called
the canonical 1-form and denoted by o, or simply a if there is no risk of confusion.

Let (x,,...,x,) be a system of local coordinates on X. Then the x;’s are real
functions defined on some open subset U, satisfying dx; A --- A dx, # 0 on U.
Ateach x € U,(dx,,...,dx,) defines a basis of the vector space T.* X, and a vector
¢ e T*X is uniquely written as £ = ) 7_; & dx;. The system (x,...,X,;&q,...,&,)
is called the coordinate system on T*X associated to the coordinate system
(%y,.-.,X,). It is easily checked that the canonical 1-form ay is nothing but the
form ) 7_; £;dx;. Let 0 = do. Hence ¢ = ) 1, d&; A dx; is a symplectic form on
T*X (i.e.: at each p e T*X, ¢ induces a symplectic structure on the vector space
T,T*X). In other word the manifold T*X is naturally endowed with a symplectic
structure, by da. We can then extend to T*X some of the notions introduced
in §1.

A submanifold V of T*X is called isotropic (resp. Lagrangian, resp. involu-
tive) if at each p € ¥ the tangent space T,V has the corresponding property in
T,T*X. If f is a real function defined on some open subset U of T*X, the
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Hamiltonian vector field H, of f is the vector field on U, the image of df by the
Hamiltonian isomorphism H : T*T*X ~ TT*X.
The Poisson bracket of two functions f and g is defined by:

(A.2.3) {f.9} = H(g) = da(H,,H,) .
One checks the relations:

{fig}=—{9.f},
(A.24) {fihg} = h{f.g} + g{f.h} ,

{£.g5,0} + {{g.h}.f} + {{h.f}.g} =0 .

In particular [H,, H,] = H{;, ,, where [u,v] = uv — vu is the commutator of the
vector fields u and v.

If (xq,...,x,) is a system of local coordinates on X, (x;¢) the associated
coordinates on T*X and f is a real function on U < T*X, we have:

S (of & of @ )

A2.5 Ho=) |5 —— = .
(A.23) d ; (aej 0x; 0x; 0

A submanifold V of T*X is involutive iff the Poisson bracket { f, g} vanishes
on V for any functions f and g which vanish on V. In fact the vector bundle (TV)*
is generated by the vector fields H,, with |, = 0. Thus (TV)* = TV is equivalent
to Hy(g) = O for any f, g with f|, = 0, g|,, = 0. Moreover by (A.2.4), we find that
if V is involutive, the sub-bundle (TV)* of TV satisfies the Frobenius integrability
conditions (i.e.: the sheaf of sections of (TV)? is closed under bracket [-, -]). By
the Frobenius theorem (cf. Hormander [4, Appendix C]), an involutive manifold
V admits a foliation, and the leaves of this foliation are called the bicharacteristic
leaves of V. Note that the dimension of the leaves is the codimension of V. In
particular if V is Lagrangian, the leaves are open in V.

Example A.2.1. Let Z be a submanifold of X. The manifold Z xy T*X is
involutive and the manifold T} X is Lagrangian. Notice the extreme case where
Z = X: we get the Lagrangian manifold T*X, the zero-section of T*X.

The 1-form o on T*X induces a richer structure than merely that of a
symplectic manifold, and we shall describe this homogeneous symplectic structure
on T*X.

Let H(x) be the image of « by the Hamiltonian isomorphism. If we have

chosen coordinates (x; £) as above, then:
0
(A.2.6) o« = Z gdx; ,  H(o) = —z 51‘551. .
Thus — H(x) is just the radial vector field on the vector bundle T*X (i.e. the

infinitesimal generator of the action of R* on T*X). This vector field is also called
the Euler vector field.
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We say that a subset S of T*X is conic (resp. locally conic) if it is invariant
(resp. locally invariant) by the action of R*. Hence S is locally conic if its
intersection with any orbit of R* is open in this orbit. A function f defined on an
open subset U of T*X is said to be homogeneous if f satisfies the differential
equation H(a)f = kf for some k € C. Note that a submanifold V is locally conic
iff H(x) is tangent to V or equivalently iff V is locally defined by homogeneous
equations.

A locally conic submanifold Visisotropiciffa|, =0, since (o, v)> = da(v, H()),
forve TT*X.

One says that a locally conic involutive submanifold V is regular if «, is
everywhere different from zero. This is equivalent to the local existence of
homogeneous functions f;, ..., f, vanishing on V, with r = codim V, such that:

{{fi,)j-}=0 onVforanyi,je{l,...,r} ,
dfi A~ Adf,Aa#0 onV .

(A2.7)

This is again equivalent to saying that the Euler vector field is not tangent to
any bicharacteristic leaves at any point.

Example A.2.2. Let Z be a submanifold of X. Then Z x, T*X is regular involu-
tive outside of T}*X.

Convention A.2.3. In this Appendix, unless otherwise specified, all submanifolds
of T*X are locally conic.

Let p(p) denote the linear subspace of T, T*X generated by the Euler vector
field at p. If p e T¥X, p(p) = {0}, otherwise p(p) is a line.

If V is a (locally conic) submanifold, at each p € ¥V, T,V contains p(p). Let
p e T*X. One sets:

(A.2.8) Ao(p) = T,n ' n(p) .

This is a Lagrangian linear subspace of T, T*X.

Let A4 be a Lagrangian submanifold. The corank of the projection | ,: 4 - X
is, by definition, the dimension of the space T,4 N 44(p). On T*X, this corank is
at least one since both 7,4 and 4,(p) contain p(p). If this corank is constant, say
d, then locally on A, n(A) is a smooth submanifold M of X of codimension d,
and A4 = T35 X. In particular if this corank is one at some p, then A is the conormal
bundle to a hypersurface in a neighborhood of p.

Now let X and Y be two manifolds of the same dimension, Uy (resp. Uy) an
open subset of T*X (resp. T*Y). Let x be a diffecomorphism from Uy onto Uy. If
x*(day) = day, one says that y is a symplectic isomorphism. If moreover y is
homogeneous (i..: y commutes with the action of R*), then y*(ay) = ay and we
shall say that x is a contact transformation, although this is not really correct,
since a contact structure is the structure obtained on the quotient space T*X/R™.

Let y be a homogeneous diffecomorphism Uy = Uy, 4, its graph in Uy x Uy.
The inverse image y*(f) of a 1-form g on Uy is characterized by the condition



484 Appendix: Symplectic geometry

@*(B) — Pl 4, = 0. Let 47 denote the image of A, by the antipodal map on T*Y.
Then x*(ay) = axiff(ay + ay)| o= 0, that is, iff A5 is isotropic, hence iff it is
Lagrangian. In other words, x is a contact transformation iff A7 is a (locally conic)
Lagrangian submanifold of T*(X x Y).

We call 4} the Lagrangian manifold associated to the graph of the contact
transformation y.

Let (y) be a system of local coordinates on Y, and let (y;#) denote the
associated coordinates on T*Y. Then a homogeneous map y : Uy — Uy is defined
by two sets of functions, f; homogeneous of degree 0, g, homogeneous of degree
1, (1 <j,k <n), with y; = f, i, = gx. The map y is a contact transformation iff
A5 is involutive, that is, iff :

(A29) {fpﬁc} = O H {gja gk} = 0 ] {f}a gk} = —_6j,k .

Example A.2.4. Let (x;&) denote the coordinates on T*R", and let ¢(£) be a
function homogeneous of degree one defined on some open subset U of (R")*
(e.g.: 9(&) = (2;¢})? on R"\{0}). Then the map x:(x; &) (x + @'(§); &) is a
contact transformation.

The next result is a useful tool in order to construct contact transformations.

Proposition A.2.5. Let V be aregular involutive submanifold of T*X,peV T*X.
Let A be a Lagrangian linear subspace of T,T*X such that p(p) = A = T,V.(Recall
that p(p) is the line generated by the Euler vector field.) Then there exists a
Lagrangian manifold A < T*X suchthat A < V and T)A = A.

Proof. Letn = dim X, r = codim V. Let (f1,..., f,) be a system of homogeneous
functions vanishing on V and satisfying (A.2.7). If r =n — 1 we set e = a(p).
Otherwise we choose v € A\ (T, V + RH(«)) and sete = H™'(v)|,,. By the classical
theory of differential equations, we may find a function g on V such that:

{H(“NV(Q) =0, Hf,lV(g) =0, (<1

dg(p)=e, g(p)=0,

because e is not tangent to the bicharacteristic leaf passing through p.

Set V; = {q e V;g(q) = 0}. Then V, is a conic manifold which satisfies the
required properties if »r = n — 1 and otherwise V] is regular involutive. In this
case we argue by inductiononr. []

Let X, Y, Z be three manifolds. One denotes by p; and p, the first and second
projection defined on T*X x T*Y orelse on T*Y x T*Z, and by p,; the (i, j)-th
projection defined on T*X x T*Y x T*Z. We set p5 = a o p,, where “a” is the
antipodalmap. Let 4, < T*(X x Y),4, < T*(Y x Z)be two Lagrangian mani-
folds. Let (py,py) € 44, (py,p%) € 4,, and assume:

(A.2.10)

the maps p3l4, : A, = T*Y and py|4,: 4, > T*Y
are transversal at py .
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Then replacing 4, and 4, by 4, nU and 4, "V, where U and V are sulffi-
ciently small open neighborhoods of (py, py) and (py, p3) respectively, the map
P13 induces an isomorphism of A4, X .y 4, with a Lagrangian manifold 4 of
T*(X x Z), and one sets:

(A2.11) A=A,04, .

(Cf. Lemma 7.4.4 and Definition 7.4.5.)

Proposition A.2.6. Let A, be a Lagrangian submanifold of T*(X x Y), (px,py) €
Ay with py ¢ Ty*Y. Assume that the map p,|4,: A, —» T*X is smooth. Then there
exists a manifold Z of the same dimension as Y, and a Lagrangian manifold
A, € T*(Y x Z) defined in a neighborhood of (py, p3), such that :

(i) 4, = TF(Y x Z), where S is a hypersurface of Y x Z,
(i) A4, is associated to the graph of a contact transformation (i.e.: p| 4, and p3| 4,

are local isomorphisms),
(iil) A, 0 A, = TF(X x Z), where S’ is a hypersurface of X x Z.

Proof. Set Ex = T, T*X, Ey = T, T*Y and let E} denote the space Ey endowed
with the opposite symplectic structure. Then (p,, p5) defines a symplectic isomor-
phism Tj, ,a,T*(X x Y) ~ Ey x Ey, and we shall identify a Lagrangian space
inTj,, »eyT*(X X Y)and its image in Ex x Ey.

Let py denote the linear space generated by the Euler vector field at py in Ey
and define similarly py in Ey, pyy in Ex X EY, pyyin Ey x E%. Set:

Ay = T o041 Aox = 7;;,(71_1”(1’)() > Aoy = 7;;,773_17‘(1’1/) ’

and identify A, and 4,4 to Lagrangian subspaces of Ey x E§ and E, respectively.

By the hypothesis that p,|; : 4, — Ey is surjective, we get that p,|; : 4; - Ey
is injective (cf. Exercise A.4). Moreover p;t(py) N Ay = pyy. Since p,(p1 (Aox) O
/) is Lagrangian in E, (Proposition A.1.4), we have for a generic Lagrangian
space A < Ey, with py, < A:

A pa(p1t(Rox) 0 A1) = py -
This implies pyy = p31(2) N p7 (Aox) N 44, thus:

(A.2.12) Pxy = (Aox X )N 44, for a generic Lagrangian space
A < E¢such that py < 4 .

Then for a generic Lagrangian space u < E; x E$ with pyy < u, we have:
(A.2.13) Pil,:u— Eyand p,|,: p — Ey are isomorphisms ,
(A.2.14) (Aoy X doy) M= pyy .

Since 4 = p,(unp3'(Aoy)) is generic we may assume further A satisfies the
condition (A.2.12). Then we have:
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(A.2.15) (A4y o ) N (Aox X Aoy) = pxy -

Now take Y, py and 4,y as Z, p, and A, respectively. By Proposition A.2.5 we
may find a Lagrangian manifold 4, = T*(Y x Z)such that T, .4, = p. Then
A, will satisfy all the required conditions, by (A.2.13),(A.2.14)and (A.2.15). [

Corollary A2.7. Let A = T*X be a Lagrangian manifold, p € A. Then there
exists a contact transformation y defined in a neighborhood of p such that x(A) is
the conormal bundle to a hypersurface, and moreover the Lagrangian manifold
associated to the graph of y is the conormal bundle to a hypersurface.

Proof. This is nothing but Proposition A.2.5 when X = {pt}. []

Corollary A.2.8. Let A = T*(X x Y) be a Lagrangian manifold associated with
a contact transformation (i.e.: p,| 4 and p4| 4 are local isomorphisms). Then, locally
on A, there exists a manifold Z of the same dimension as X and two Lagrangian
manifolds A, < T*(X x Z), A, < T*(Z x Y)suchthat A, and A, are associated
with contact transformations, A, and A, are the conormal bundles to hypersurfaces
of X x Z and Z x Y respectively,and A = A, o A,.

Proof. By Proposition A.2.6 there exists a contact transformation y such that if
A, is the Lagrangian manifold associated to the graph of y, then 4, and 40 4,
are the conormal bundies to hypersurfaces. Then 4 = (4 o 4,) o A5, where A,
is the Lagrangian manifold associated to y~1. [

To end this section, let us recall the following well-known result.

Proposition A.2.9. Let A be a conic submanifold of T*X, pe A. Assume A is
isotropic (resp. Lagrangian, resp. regular involutive). Then there exists a contact
transformation y defined in a neighborhood of p such that x(p) = (0;dx,) € T*R"
and A = {(x;€);x =0,&;, ==& =0 <n)} (resp. A = {(x;&);x = 0}, resp.
A={(;¢x¢ ==& =0,(p<m})

The proof is left as an exercise.

A.3. Inertia index

Let (E, o) be a real symplectic vector space of dimension 2n and let 4, 4,, 45 be
three Lagrangian subspaces. (In this section, unless otherwise specified, a sub-
space means a linear subspace.)

Definition A.3.1. The inertia index of the triplet (1,,2,, 13), denoted tg(1,, 4,, A3)
(or simply 1(4,, A,, 43)) is the signature of the quadratic form q defined on the 3n
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dimensional vector space A, ® A, ® A3 by:
q(x1,X3,X3) = 0(X1,X;) + (x5, X3) + 0(x3,%;) .

This index is also sometimes called the “Maslov index”.

In a suitable basis of 1; @ 4, @ A; one can represent g by a diagonal matrix
whose diagonal entries consist of p_ -uples of + 1, p_-uplesof —land 3n — p, —
p_-uples of 0. Then the signature of g, denoted sgn(g) is equal to p, — p_.

The index 7 has the following properties.

Theorem A.3.2. (i) t(4;,4,,43) is alternating with respect to the permutations of
the A;/s, that is:

T(}mlz»'{s) = —1(12,11,13) = “T(}q,ls,lz) .

(i) t satisfies the “cocycle condition”: for any quadruplet A,, A,, A3, A4 Of
Lagrangian spaces, we have :

T(Al,lz, 2,3) - T(ﬂ,l, iz, 14) + T(ll, 13, 14) - T()bz, 13, 14) = O .

(iii) When the Lagrangian subspaces A, 4,, A3 move continuously in the
Lagrangian Grassmannian A(E) in such a manner that dim(4, N 4,), dim(4, N 43)
and dim(4; N A,) remain constant, then 1(4,, 4,, A3) remains constant.

(iv) 1(44,4;5,43) =n + dim(4,; N 4,) + dim(4, N 43) + dim(4; N 4;) mod 2Z.

(v) If p is an isotropic space contained in (A, N A,) + (A, N 43) + (A3 4,)
then:
Tp(A1, 425 43) = t(49, 45, 45) .

(vi) Let E* = (E, — o) be the vector space E endowed with the symplectic form
—a. Then:

Tga(dy, 42, 43) = —15(A1,42,43) .

(vii) Let (E,,o,)and (E,, 0,) be two symplectic vector spaces, and let 1., A,, A4
(resp. uy, 1,, u3) be a triplet of Lagrangian subspaces of E, (resp. E,). Then:

TEle)Ez()”l D Has Ay @ Upy A3 D pi3) = TEl(}mlz,ls) + TEz(ﬂlaﬂb”S) .

(Here E, @ E, is endowed with the symplectic form o, ® 0,.)

Proof. (i)is clear since the quadratic form q(x,, x,, x3) is alternating with respect
to the permutations of the 4;s.
(iii) Set, for x = (x;,X,,x3) and y = (y1,y,,y3) in 4, ® 4, @ 45:

B(x,y) = 0(x1,y,) + 6(x3,y3) + 6(x3,¥1) + 0(y1, %) + 6(y2,x3) + 6(y3,%1) -

The totally isotropic space I of g is by the definition the space:
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(A.3.1) I={x€el ®4,® i3;B(x,y) = 0 for any y} .
since B(x,y) = a(y1,X, — X3) + 6(y,,%X3 — x;) + 6(y3,x; — Xx,), we have:
I={(x1,%3,X3) €A DAy ®A3;X; — X3 €A1, X3 — X1 €Az, X; — Xy € A3} .
Set y, =x, + X3 — Xy, Y, = X3 + X; — X5, Y3 = X; + X, — x3. Then:
y1€EA,N Az, Y, €A3N Ay, Y3 E€EA N4, .

Moreover

2x, =y, + 3, 2x, =y3+ 1, 2x3=y; + ¥, .

Therefore, by the linear transformation (x,, x,, x3)— (¥4, ¥,, ¥3), I is isomorphic
to (A, N 4,) ® (A, N A3) @ (A3 N 4). Since the rank of g (denoted rk(q)) is 3n —

dim I, we get:
(A3.2) r1k(g)=3n—dim(A; n4i,) —dim(d, n43) — dim(A;n 4;) .

With the hypotheses of (iii), we get that rk(qg) is constant. Since ¢ moves contin-
uously when the 4;’s move continuously, this implies (iii).
(iv) We have:

(A.3.3) sgn(q) = rk(gymod 27 .

Hence (iv) follows from (A.3.2).
(ii) Assume for a while that A, and 4, intersect transversally and denote by

p, and p, the projections:
piE=A®1, -4 i=12).
For x and y in E we have:
a(p1(x),y) = 0(p1(x), p1(¥) + p2(¥)
= a(p1(x), p2(¥))
= a(x,p2(y) -

Lemma A.3.3. Suppose A, and A, are transversal. Then t(4,,A,, A3) is equal to the
signature of the quadratic form q5 on A5 defined by :

43(x3) = —0(p1(x3), p2(x3)) = —a(p1(x3), x3) .
Proof of Lemma A.3.3. Let x = (x{,X,,X3) € 44 ® 4, ® A5. Then:
q(x) = o(xy,%x,) + 0(x5,x3) + 0(x3,%1)
= 0(x1,%2) = 0(p1(x3), X3) — 0(x1,P2(x3))

= 0(x; — p1(x3), X2 — p2(x3)) — a(p1(x3), p2(x3)) -
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By the linear transformation (x,,x,,x3)—(x; — p;(x3),x, — p,(x3),x3), the
quadratic form (x,,x,,x3)— o(x; — p;(x3),x, — p,(x3)) is equivalent to the
quadratic form (x,, x,, x3)— a(x,, x,). Hence its signature is zero, which proves
the Lemma. []

Lemma A34. Let A, (j=1,2,3) and p be four Lagrangian subspaces such that
Anp={0},(j=1,2,3). Then:

(A.3.4) T(A1,42,43) = ©(Ag, Ay, 1) + T(A2, A3, 1) + T(A3, 44, 1) .

Proof of Lemma A.3.4. By Lemma (A.3.3), the right hand side of (A.3.4) is the
signature of the quadratic formon 4, ® 1, ® 45:

4'(¥1,¥2,¥3) = 0(p1(y2), y2) + 6(p2(y3), ¥3) + a(p3(y1), 1) »
where now p; denote the projection:
pith®pu—4  (j=123).
Consider the linear automorphism of 4, @ 1, @ A; defined by:
X1 =y1+0:1(y2) s xX2=y,+D020y3), X3 =y3+p:(n1)
y1 =01 = pi(x2) + p1(x3))/2 ,  ya=(x3— palx3) + pa(x1))/2,
y3 = (x3 — p3(x1) + p3(x,))/2 .

An easy calculation shows:

(A.3.5) q(x1,%2,%3) = q'(¥1,¥2,V3) »

which proves the lemma. []

End of the proof of Theorem A.3.2. Choose a Lagrangian subspace u transversal
to all A’s (j = 1,2,3,4) and apply (A.3.4). Then (ii) follows in view of (i).

(v) We shall decompose the proof in several steps.

(a) Firstassume p < 4; N 4, N A;. Then the quadraticformqon i, @ 4, ® 4,
is the pull-back of the corresponding quadratic form on 14 @ 15 @ 14, by the
surjectivemap A, ® A, ® A3 » 1 @ 15 @ 15. The assertion follows in that case.

(b) Now assume p = 4, N A5 and 1§ = 4. Consider the quadratic form g” on
MDA ® (AN pt)® p defined by:

q"(x1,%5,u,0) = 0(x1,X%5) + 0(x3,u +v) + o(u + v,x;) .

Then q"(x,,x,,u,v) = a(x;,Xx,) + a(x,,u) + a(v,x,) = a(x; — u,x, — v). Hence
the signature of q” is zero. By the hypothesis, A; = (4; " p*) + p. This implies
that the signature of g on A, @ 1, @ A5 is that of ¢”. Thus 7 = 0 in that case.

©) Setl;=(np)+p=0G+pnpti=123 Wehave:

(A.3.6) l{flf\lz _ ;1'};-1 ndy
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Infactp c A, + A, N A3 < A, + A, N pt implies
pci +0G +pni,nptci, +1,nk,.

We obtain 4, = 4, + (4, " 4,) thus i, = [4; + (4; n4,)1n(4; + 4,) which
gives:

(A.3.7) Jhink _ phinds

Since both spaces in (A.3.7) are Lagrangian, (A.3.6) follows. Similarly we have:

(A3.8) Ahinds _ Jhinds
Therefore we get by (b):
(A.3.9) 1(A;,4,4)=0 for j=2,3.

Now we have:
T(As Azs A3) = T(A15 A2, A1) + T(Aay A3, A1) + T(A3, A1, 4g)
=1(A1, A5, 43) .
Repeating this argument, we obtain
T(Ays Agy A3) = T(Ay, Aa, 43)

and the term on the right-hand side equals t(1£, 15, 1%) by (a).
(vi) and (vii) are obvious. []

Remark A.3.5. The “cocycle condition”, written in Theorem A.3.2 (ii), may be
visualized by figure A.3.1.

Ay Ay
(A1, 45, 43) = T(A1, 42, 44) + T(A3, A3, 44) + T(43,44,44)

Fig. A3.1
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We shall calculate explicitly the Maslov index in a special case. Assume E
endowed with a symplectic basis, and denote by (x;¢) the associated linear
coordinates. Let A and B be two (n x n)-matrices satisfying the hypothesis
(A.1.11) with A’'B symmetric, and define:

llz{x=0} ’ 2’2={6=0} ’ A3={(x9€)’Ax=B€} .
Proposition A.3.6. One has:
©(A1,42,43) = —sgn(4'B) .

Proof. Denote by p, and p, the projections from E=41;, ® 4, to 4; and 4,
respectively. By Lemma A.3.3, —t(4,,4,,43) is the signature of the quadratic
form g5 on A5, defined by:

q3((x; &) = a(p1(x; &), p2(x;£))
= 0(¢,x)
={&x) .

The map from R" to A, given by z+>('Bz,’Az) is a linear isomorphism. Hence
(&, x> = {z, A'Bz), and the result follows. []

Let 4,, ..., 4y be Lagrangian subspaces with N > 3 and let u be another
Lagrangian subspace. By Theorem A.3.2 (i1) we have the identity:

T(A1,45,43) + ©(A1,43,44) + - + T(A4, An—1, Ax)
(A.3.10)
= 1(11,129#) + 1(1‘29}'3911) + -+ T(A’N-—la’le#) + T(AN’A’MH) .
This can be visualized by Figure A.3.2 (in which N = 5).
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Definition A.3.7. Let A,, ..., Ay be Lagrangian subspaces, N > 3. One defines the
index t(Aq, ..., Ay) as the left hand side of (A.3.10).

Proposition A.3.8.

(i) T(}‘l’ 12, ceey A’N) = T(Az, 243, ceey A‘N’ 21) = —T(AN, A’N—-l’ ceey A’l)‘

(i) Assume N >4 and let je{3,...,N—1}. Then 1t(Ay,...,4y) =
T(Ay, s &) + T(A1, 45, Ajigs oo Ap).

(ii1) When the Ajs move continuously in such a manner that dim(4; N 4,),
dim(4, n43), ..., dim(Ay_; n4dy) and dim(Ayn A,) remain constant, then
(A4, ..., Ay) remains constant.

@iv) 1(A44, ..., Ay) =nN + dim(4; N 4,) + - + dim(ly N 4;) mod 27Z.

Proof. (1) and (ii) are obvious by the definition and Theorem A.3.2. (iii) and
(@iv) follow immediately from Theorem A.3.2 and (A.3.10) when choosing the
Lagrangian space u transversal to all 4;’s. [

As before, denote by E* the space E endowed with the symplectic form — o,
and denote by “a” the identity E — E°. If A is a subspace of E, we denote by A°
its image by a. Then, we have 1g.(A],45,45) = —1e(41, 45, 43).

Proposition A.3.9. Let A, 4,, u,, u, be four Lagrangian subspaces of E, and denote
by A the diagonal of E* @ E (which is Lagrangian). Then:

(A.3.11) Tpage(A] @ A2, Ui @ pa, 4) = Tp(A1, A2, Uas 1y) -
Proof. Denote by t the left hand side of (A.3.11). Then T = 7, + t, + 15, with:
Ty =141 @ 42, 1 @ 42, A @ 112)
T, = T(u] @ 1, 4, A1 ® )
T3 =1(4, A1 D 4,, A D uy) .
Then:
Ty = T(A1, 41, 41) + 142, 25 02) = 0,
Ty = t(ui, 13, 41)
T3 = T(A1,42, 12) -

(To calculuate t, and 75 we apply Theorem A.3.2 (v) with p = {0} ® u,
and p = A{ @ {0}, respectively.) Therefore t = 1(A,45,1,) — T(Uy, 12, 41) =
(A1 A2 25 1y) O

To end this section, let us describe the action of the symplectic group Sp(E)
on the space 4>(E) of triplets of Lagrangian subspaces of E.
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Forr = (ry, 7,75, 13,d) € N* x Z we set:
W, ={(A1,A2,43) e A>(E) ; dim(A;,nd,ni3) =7, ,
dim(d, " A,) =1, , dim(i,nA) =7, ,
dim(snA) =7, ,  T(yAyds) =d) .

Then Sp(E) acts naturally on 43(E), and the W,’s are invariant by Sp(E). Consider
the conditions:

0<ro<ry,r,r<n, rn+r+rss<n+4r,

A.3.12
( ) {Idl <Sn+2rp—(ry+r,+r;3), d=n+r +r,+r; mod2Z .

It can be easily shown that (A.3.12) is a necessary and sufficient condition in order
that W, is non-empty. The action of Sp(E) on A>(E) has only finitely many orbits,
and these orbits are the W,, where r satisfies (A.3.12). Since we do not use this
result, we leave the proof as an exercise.

Exercises to the Appendix

Exercise A.1. Let (x) = (x,,...,Xx,) be a system of local coordinates on X, and
(x; &) the associated coordinates on T*X. Let ¢ = (¢y,...,9,): X > R? be a
smooth map, and let S = {x; ¢(x) = 0}, (hence dp; A -~ A dg, #0 and S is
smooth). Let x, € S, p = (x,; ) ; a;dg;(x,)) € T X. Prove that:

X = (53 o) = 05—215"’11 &},

£ = i aq’"(x )i, + i iwka AeRY .
J A axj o/ L L ’(?xk(?xj s /Y

Exercise A.2. Let A be a closed conic Lagrangian submanifold of T*X. Prove
that there exists a submanifold M of X such that 4 = T} X.

Exercise A.3. Let X and Y be two manifolds of the same dimension, f a real
function on X x Y withdf #0on S = {f = 0}. Set 4 = Tg*(X x Y).
Prove that p,|, and p5|, are local isomorphisms (from 4 to T*X and 4 to

. . . . 0 4,
T*Y, respectively) if and only if the determinant ( d.f d j}) does not vanish

on S.
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Exercise A4. Let (E,,0;) and (E,, 0,) be two symplectic vector spaces and let 4
be a Lagrangian linear subspace of E; @ E,. Prove that p, |, is injective if and
only if p,|, is surjective.

Exercise A.5. Let f: Y > X beamorphism of manifoldsandletp e Y x, T*X.

(@) Let A, be a Lagrangian submanifold of T*Y. Assume that ’f” is clean with
respect to Ay at py. Prove that for U a sufficiently small neighborhood of p,
f:(U N'f""1(Ay)) is a smooth Lagrangian manifold.

(b) Let Ay be a Lagrangian submanifold of T*X. Assume that f, is clean with
respect to Ay at py. Prove that for U a sufficiently small neighborhood of p,
''(U n f,71(Ay)) is a smooth Lagrangian manifold.

Exercise A.6. Let E; and E, be two symplectic vector spaces, v a Lagrangian
subspace of E; @ E% andlet 4; and y; be two Lagrangian subspaces of E; (i = 1, 2).
Prove:

TE, @E‘z‘(’ll @ A%, 4 @ p3,v) = TEI(/lbl‘uV ° Uy) — TEz(iZal‘Qa Ay o vY)
= 1E1(’11aul9v o TEZ('lz’#zaM ov?) .

Exercise A.7. Let (E,o) be a complex symplectic vector space, and endow the
real underlying vector space E® with the real symplectic form 2 Reo. Let 4, 4,,
A3 be three complex Lagrangian subspaces of E. Prove that tge(4,,4,,45) = 0.

Exercise A.8. Let E; (i = 1,2, 3,4) be a symplectic vector space and let 4; = E; ®
Ef., (i=1,2,3) be a Lagrangian plane.
Prove that (1; 0 4,) 0 A3 = 4; o (4, 0 43).

Exercise A.9. Let (E,, ;) be a pair of a symplectic vector space E; and a Lagrangian
plane y; of E; (i = 1, 2, 3, 4).

Then for Lagrangian planes 4, < E; @ E% and A, c E, @ Ej, we define
(cf. (7.5.10)):

(A1 4y) = ‘CEz(NZ’AZ o 3, py o A7) .
Now, let 4; be a Lagrangian plane of E; ® E{,; (i = 1,2, 3). Prove the equality:
T(A:1d043) +t(Ay:43) =1t(A1 04,1 43) + 1(A1: 4,) .
(Hint: Using Exercise A.6, prove that both sides are equal to:
e, ors(M2 © p3, 1y © A1 @ A5 0 g, 4,))

Exercise A.10. Let E; be a symplectic vector space and 4; and y; two Lagrangian
subspaces of E; (i = 1,2, 3). Let vand v’ be Lagrangian subspaces of E; @ Ej and
E, ® Ej5, respectively. Prove:
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TE, @E;(/11 @D A%, v, u; @ u3) + TE, @E‘;(AZ @D A3, V', 1y @ p3)
- TEI @53(11 @ ’lg’ Vo V', 1231 @ “g)
= th()'Za Vo3, Ayov?) — TEz(#zaV' o 3, py © V).

(Hint: use Exercise A.6.)

Notes

Symplectic and contact geometry are classical subjects which go back to Hamil-
ton and Jacobi, and that we shall not review here. As pointed out at the beginning
of this appendix, the results of §1 and §2 are well-known and may be found for
example in Hormander [4].

In 1965, in order to calculate asymptotic expansions “in a neighborhood of
a caustic” (i.e. when the projection of a smooth Lagrangian manifold has not a
constant rank), Maslov [1] (cf. also Keller [1]) introduced the index of a closed
curve in a Lagrangian submanifold of a symplectic space. His theory was clarified
and reformulated by Arnold [1], then by Hormander [2] and Leray [4] who
defined the index of three Lagrangian planes intersecting transversally, until
Kashiwara (cf. Lion-Vergne [1]) defined the index 7 in the general case by the
simple method we have given here. Note that in Lion-Vergne (loc. cit.) the index
T \is generalized to the local field case.
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List of notations and conventions

General notations

N: set of non-negative integers

Z: ring of integers

Q: field of rational numbers

R: field of real numbers

C: field of complex numbers

R*: multiplicative group of positive real numbers
R™: the set of negative real numbers

R (resp. Reo): {ce R; ¢ =0, (resp. ¢ < 0)}

C*: multiplicative group of non-zero complex numbers
#A: number of elements of a finite set 4

A\B: the complementary set to B in A

J; j: Kronecker symbol, 9, ; =0fori #jand §; ; = 1 fori =j
S: the closure of a subset S

0S: S\S cf. (9.2.4)

X xg Y: fiber product over S cf. Notations 2.3.13

R": Euclidian n-space

lim: inductive limit

lim: projective limit

“lim”: ind-object cf. I §11

“li_rp”: pro-object cf. I §11

{X,}ner: asequence indexed by I; (I = N or Z)

x,7> Xx:  the sequence {x,}, converges to x

{pt}: the set consisting of a single element

O: means the square is Cartesian

Manifolds

X, Y, ...: real or complex manifolds

00rdy:X < X x X: the diagonal embedding
7: TX — X: the tangent vector bundle to X
n: T*X — X: the cotangent vector bundle to X

TyX:

the normal vector bundle to a submanifold M of X cf. A.2.1
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TyX: the conormal vector bundle to a submanifold M of X cf. A.2.1
T X ~ X: the zero section, identified to X

E,: the vector space E endowed with the y-topology cf. III §5

X, the space X endowed with the y-topology cf. I1I §5

?,: the continuous map X — X, cf. III §5

f:Y - X: amorphism of manifolds
fly: N - M: the morphism induced by f, (N < Y,M c X)

Tf : TY> T xx TX TX cf. (4.18)

T*Y<Tf,— Y xy T*X — T*X cf. (4.3.2)
¥ YT N xy TiiX —— TifX cf. (4.3.3)
T X : ker(*(f': Y x4y T*X - T*Y) cf. (4.3.4)

Ay: the map X — {pt}

X: the complex conjugate manifold associated to a complex manifold X
cf. X §1

X®: the real underlying manifold to a complex manifold X cf. X §1

dim Y/X, codim, Y: the relative dimension and codimension cf. Notation 3.3.8

dim X, dimz X : dimension of X cf. II §9 and Notation 3.3.8 (at the exception of
XI §3)

dimcX: complex dimension of X cf. II §9

Vector bundles

1: E > Z: avector bundle over Z

n: E¥ - Z: the dual vector bundle

Z is identified to the zero-section of a vector bundle over Z
E=E\Z E* = EX\Z

T=71T|g, T =T|g

a: the antipodal map on E

S4: the image of Sby a, S c E
S°: the polar set to S cf. (3.7.6)
e: the Euler vector field cf. V §5

A+ B:  sumin a vector bundle cf. (5.4.5)
S = E/R*: sphere bundle associated to the vector bundle E cf. (3.6.3)
T*(E/Z): the relative cotangent bundle cf. (5.5.3)

Normal cones

Cy(S):  normal cone of S along M cf. Definition 4.1.1
C(S;,S,): normal cone of §; x S, along the diagonal cf. Definition 4.1.1
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C.(A,B), f (A, B), f.*(A4,B), f *(4), .#(4), A+ B, A ¥ B: cf. Definition 6.2.3

N(S) = TX\C(X\S,S): cf. Definition 5.3.6
N*(S) = N(S)°: cf. Definition 5.3.6
Xy normal deformation of M in X cf. IV §1

Symplectic geometry

g: symplectic form cf. A §1

oy Oora: canonical 1-form on T*X cf. A §2
H: Hamiltonian isomorphism cf. A §1
H,: Hamiltonian vector field cf. A §2

{-,}: Poisson bracket cf. A §2

7(-,-,): inertia index cf. A §3

E’: p*/p, p isotropic in E cf. A §1

A? = (Anpt + p)/p, A Lagrangian, p isotropic cf. A §1

A0 4, composition of Lagrangian planes cf. A §1

A, 0 A4,: composition of Lagrangian manifolds cf. Definition 7.4.5

A, Lagrangian manifold associated to ¢ cf. (7.5.1)
A.(p) = T,n ' n(p) cf. (7.5.2)

Aq(p) = T,4

Tyt cf. (7.5.3)

T(4; 1 4,): cf. (7.5.10)

Algebra

A: a ring (all rings are unitary)

A-module: left 4-module (all modules are unitary)

A°P: the opposite ring to 4 (an 4°°-module is a right 4-module)
€ a category, Ob(%), Homy(-, -) cf. I §1

¢ the opposite category cf. I §1

id: the identity morphism

€ : the category of functors from %° to Set

%/\ : %0 Vo

Ker, Coker, Im, Coim: cf. I §2

C*(¥): ==, +, —, b: categories of complexes of € cf. I §3

K*®): *=, +, —, b:cf. Definition 1.3.4

Ht(X, Y): the group of morphisms from X to Y homotopic to zero cf. I §3
K(%¥): Grothendieck group of a category € cf. Exercise 1.27

X[k]: translated complex cf. Definition 1.3.2

TS, 170 truncation functors cf. (1.3.10), (1.3.11), X §1

H*(X):  k-th cohomology object of a complex X cf. Definition 1.3.5
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M(f): mapping cone of f cf. I §4

X »Y — Z ——: triangle cf. Notation 1.5.8

Cs: localization of € by S cf. Definition 1.6.2

¢/N: localization of € by N cf. Notation 1.6.8

D*(®), * = &, +, —, b: derived categories cf. Definition 1.7.1

RF: right derived functor of F cf. Definition 1.8.1

LF: left derived functor of F cf. I §8

DZ%.(%): the full subcategory of D*(%) consisting of complexes whose coho-
mology objects belong to ¢’ cf. 1 §7

H(X), H;;(X), s(X): complexes associated to a double complex cf. I §9

N®,Mor N® M: tensor product (over a ring A4)

Hom,(N, M) or Hom(N, M): group of homomorphisms (over a ring A4)

TorA(N, M) = H"(N ®%4 M) cf. Example 1.10.12

Ext(N, M) = H"(RHom (N, M))

M-L : Mittag-Leffler cf. I §12

®: direct sum cf. I §2

X x; Y: product over Z cf. Exercise 1.6

X ®, Y: direct sum over Z cf. Exercise 1.6

Ext/(X,Y) = Hom p)(X, Y[ j]) cf. Exercise 1.17

hd(¥):  homological dimension of € cf. Exercise 1.17

gld(4):  global homological dimension of A cf. Exercise 1.28

wgld(A4): weak global homological dimension of A4 cf. Exercise 1.29

tr: trace cf. Exercise 1.32

x: Euler-Poincaré index cf. Exercise 1.32

bi(V) = dim H/(V) cf. (5.4.17)

b¥(V) = (—1) Y<; (— )b (V) cf. Exercise 1.34 and (5.4.18)

Sheaves

F, G, H, ...: sheaves, # a sheaf of rings on a space X

Hom 4(F, G) or #om(F,G): sheaf of Z-homomorphisms of F in G cf. Definition
2.2.7

Hom(F, G) = I'(X; #o»(F, G))

RP: the opposite ring

F®g4 Gor F ® G: tensor product sheaf of F and G (over £) cf. Definition 2.2.8

F|;: inverse image of F on Z

F, = F|,: thestalk of F at x

S|z, 8y: the restriction of a section s to Z and the germ of s at x

supp(s): the support of a section s

I'(X;F): globalsection of F on X

I'(Z;F)=TI'(Z;F|z)

fIF: inverse image of a sheaf F cf. Definition 2.3.1

fiF: direct image of a sheaf F cf. Definition 2.3.1
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SF: direct image with proper supports cf. (2.5.1)
f*: see Definition 2.7.4
F;: sheafon X such that F|, = F|z, Fz|x\z = 0, Zlocally closed cf. I1 §3

I,(F): subsheaf of F consisting of sections supported by Z cf. I1 §3

M, = ay*M: constant sheaf on X with stalk M (M : an A-module)

M, = (My),, Z c X, Z locally closed

F®g G: external tensor product (a sheaf on X x4 Y) cf. Notation 2.3.12

I (X;F) = ay,F: global section with compact supports cf. (2.5.2)

Rf,, RI;, RI'(X, ), Rf;, ®%, &", R#zm: derived functors of the preceding ones
cf. I1 §6

Hj(F),Hi(X; F), H/(X; F), 8z¢4(F, G), Ext§(F, G), Z014(F, G): cf. Notation 2.6.8

wgld(2): cf. Definition 2.6.2

supp(F) = closure of { );supp H(F) cf. (2.6.34) and II §2

€ (%;F): Cech complex associated to a family of open subsets cf. II §8

1 right adjoint of Rf, cf. III §1

Dy F = R#om(F, wy) cf. Definition 3.1.16

Dy F = R#zm(F, Ay) cf. Definition 3.1.16

the morphism H}(X; 02yx) —» A cf. (3.3.15)

Fourier-Sato transform cf. Definition 3.7.8

FY: inverse Fourier-Sato transform cf. Definition 3.7.8

@y, Px: functors associated to the kernel K cf. Definitions 3.6.1 and 7.1.3

K, o K,: composition of kernels, cf. (3.6.2) and Proposition 7.1.2

K, o, K,: microlocal composition of kernels cf. Definition 7.3.2

v (F): specialisation of F along M cf. Definition 4.2.2

uy(F):  microlocalization of F along M cf. Definition 4.3.1

78 £ fE fi*: microlocal operations cf. VI §1

ptonw(G — F), utom(F < G), utom(F,G): microlocalisation functors cf. Defi-
nition 4.4.1

SS(F): micro-support of F cf. V §1

D*(X) = D*(Ay), (x = &, +, b, —): derived category of the category of sheaves
of A-modules cf. I1 §6

N(X, Y;Q4,8y): category of kernels cf. Definition 7.1.1

N(X, Y; py, py): category of kernels cf. Definition 7.3.7

Jx:
F/\.

¢y vanishing-cycle functor cf. VIII §6
¥, nearby-cycle functor cf. VIII §6
PH*. perverse cohomology cf. X §2

Special sheaves

oty orientation sheaf cf. Definition 3.3.3
ory relative orientation sheaf, cf. (3.3.3)
Wy dualizing complex cf. Definition 3.1.16

Oyx: relative dualizing complex cf. Definition 3.1.16
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Dl - sheaf of distributions cf. I §9.6

By sheaf of hyperfunctions cf. IT §9.6 and Definition 10.5.1
Vv sheaf of densities on a manifold cf. IT §9.5
€ sheaf of microfunctions cf. Definition 11.5.1

Sheaves on complex manifolds

Ox: sheaf of holomorphic functions on X

0P sheaf of holomorphic p-forms

Qy: OP ® o1y (n = dimcX)

Dy sheaf of rings of holomorphic differential operators of finite order
Dyx: bimodule of differential operators from Y to X cf. Definition 11.2.8

Icar(.#): cf. (11.2.7)

char(.#): characteristic variety of a Zy-module .# cf. (11.2.14)

Ay = Dx Qg Q%' [dimcX] cf. (11.2.18)

N* = RHom g (N, Hy) cf. (11.2.19)

X,: external tensor product in the category of 2y-modules cf. (11.2.21)

f7':  inverse image in the category of Dy-modules cf. Definition 11.2.10
SN fiA": direct image in the category of Zy-modules cf. Definition 11.2.10

EL, &Ry, Ex_y: ring and bimodules of holomorphic microlocal operators cf.
Definition 11.4.2 and Proposition 11.4.3

Csix: sheaf of microfunctions on a complex submanifold S cf. Definition
114.2

Categories

Set: category of sets

Ab: category of abelian groups

Mod(A): abelian category of left A-modules
Mobd”/ (4): category of finitely generated left A-modules
Mod(X): category of sheaves of Z-modules (Z: a sheaf of rings on X)
Mod(Ay): category of sheaves of A-modules on X
Sh(X) = Mob(Zy): category of sheaves of abelian groups on X
D(4) = D(Mod(A)) cf. Notations 1.7.14 and 2.6.1
D(X) = D(Ay) = D(3Mod(Ay)) cf. Notations 2.6.11
D®(X; Q): localization of D?(X) on Q = T*X cf. VI §1
D®(X; p) = D*(X; {p}): localization of D*(X) at p cf. VI §1
w+(E): subcategory of D*(E) consisting of conic objects cf. Definition 3.7.1
Cons(S), w-Cons(S): categories of constructible and weakly constructible sheaves
on S cf. VIII §1



508 List of notations and conventions

DE_.(S) and D?_g_.(S): subcategories of D®(|S|) consisting of objects with con-
structible and weakly constructible cohomologies cf. VIII §1

R-Cons(X) and w-R-Cons(X): categories of R-constructible and weakly
R-constructible sheaves on X cf. Definition 8.4.3

D?_.(X) and D?_,_.(X): subcategories of D®(X) consisting of objects with
R-constructible and weakly R-constructible cohomology cf. VIII §4

D%_.(X)and D?_._.(X): cf. VIII §5

K g_.(X): Grothendieck group of D%_ (X) cf. IX §7

PDSO%_(X), PD>°%_.(X), etc.: t-structure associated to a perversity p cf. X §2
and §3

*DS%h_(X), D2 % _(X), etc.: t-structure defined microlocaly cf. X §3

_ w—R-—

Cycles, traces and constructible functions

X(F)(x), x.(F)(x), x(X; F), x.(X; F): Euler-Poincaré indices cf. IX §1

try: trace morphism cf. (9.1.3)

Ix: H?(X,wy) = k cf. IIT §3 and IX §1

€S,(F): sheaf of subanalytic p-chains with values in F cf. Definition 9.2.1
CS) =€ (Ax) =%,

0,:%%,— €<,_,: boundary operator cf. (9.2.10)

Z%):  sheaf of subanalytic p-cycles cf. Definition 9.2.5

C, n C,: intersection of two cycles cf. Definition 9.2.12

#(C,; n C,): intersection number of two cycles cf. Definition 9.2.12

x: sheaf of Lagrangian cycles cf. Definition 9.3.1
f* f,: inverse and direct images of Lagrangian cycles cf. Definition 9.3.3
: external product of cycles cf. (9.3.2)

[Ty¥X]: the Lagrangian cycle associated to Y <» X cf. Example 9.3.4
[oo]: cycle associated to the zero section cf. Definition 9.3.5
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abelian category 26

additive (category, functor) 26

adjoint functor (right, left) 69

analytic set (C-) 344

antidistinguished triangle 40

antipodal map 169

associated coordinate system (on the cotan-
gent bundle) 481

— sheaf (to a presheaf) 86

— simple complex (to a double complex) 55

bicharacteristic (curve, leaf) 271, 482
biconic set 242

— sheaf 168

bifunctor 56

boundary operator 369

— value 467

bounded complex (from below, above) 31

can 352

canonical 1-form 481

Cartesian square 106

category 23

Cauchy-Kowalevski theorem 453

Cauchy problem 454

Cauchy residues formula 183

Cauchy-Riemann system 468

C*-conic 344

characteristic class (of a sheaf, of ¢) 362, 390

— cycle 377

— variety (of a 2-module) 449

Cech cohomology 125

clean (map) 190

cocycle condition 487

cofinal 81

coherent 443

cohomological dimension (of a left exact
functor) 75

— functor 39

cohomologically constructible complex 158

cohomology 32

coimage 28

cokernel 28

complex 30

conic set (in a vector bundle) 169, 483, 344

— sheaf 167

conormal bundle 481

constant sheaf 90

constructible function 398

— sheaf (R-, C-, S-) 339, 347, 322

contact transformation 483

convex set (in a vector bundle) 169

convolution (of sheaves, of constructible
functions) 135, 409

contravariant 25

cotangent bundle 481

covariant 25

c-soft dimension 133

c-soft sheaf 104

cup product 134

curve selection lemma 327

derived category 45

— functor (right, left) 50, 52
desingularization theorem 328
differential (of a complex) 31
differential operators (ring of) 448
directed ordered set 63

direct image (of a 9-module) 453
—— (of a microfunction) 470

—— (of a sheaf) 90

—— with proper supports 103

- sum 27

— summand 70

distinguished triangle 35
Dolbeault complex 128

double complex 54

dual (of a complex of sheaves) 148
dualizing complex (relative) 148

elliptic system 468

enough injectives (projectives) 48
epimorphism 24

equivalence of categories 25
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Euler class 179

Euler morphism 406

Euler-Poincaré index 240, 361

Euler vector field 241, 482

exact (left, right) functor 29, 30

— sequence 29

expanding space 395

extended contact transformation 292
external tensor product 97

F-acyclic 75

F-injective 50
F-projective 52

filtered ring (and module) 445, 446
filtrant category 62

final object 24

finer (covering) 334

five lemma 72

flabby dimension 98

— sheaf 98

flat module 77

— sheaf 101

Fourier-Sato transform 172
f-soft sheaf 140

full subcategory 24

fully faithful 25

functor 24

fundamental class 445

y-closed 161

y-open 161

y-topology 161
generalized eigenspace 395
generic 480

germ (of a section) 84
global homological dimension 77
good filtration 446

graded ring 447
Grothendieck group 77, 399
Gysinmap 179

half-bicharacteristic curve 271
Hamiltonian isomorphism 258, 478
Hamiltonian vector field 482, 469
heart 411

Hilbert syzygy theorem 443
holomorphic function 128
holomorphic differential operator 449
holonomic (2-module) 450
homogeneous symplectic 482
homological dimension (of a category) 75
homotopic (cycles) 371

— (maps) 119

— (morphisms) 31

— (sheaves) 246

Hopf index theorem 408
hyperbolic system 468

image 28

index 361

ind-object 62

induced Cauchy-Riemann system 474

inductive system 61

inertia index 486

infinite-order differential operators (ring of)
462

initial object 24

injective object 30

injective subcategory (with respect to a
functor) 50

inverse Fourier-Sato transform 172

— image (of a 9-module) 453

— image (of a microfunction) 470

— image (of a sheaf) 91

involutive 271, 478, 481

involutivity theorem 272

isomorphism (of objects, of functors) 24

— (on a subset of the cotangent bundle) 221

isotropic 478, 481

— set (subanalytic, C-analytic) 331, 344

kernel 27, 164
Kiinneth formula 135

Lagrangian 478, 481

Lagrangian chain 380

Lagrangian cycle 373

Lagrangian Grassmannian manifold 480

Lagrangian set (subanalytic, C-analytic)
331,344

Laplace operator 469

Leibniz formula 449

Lefschetz fixed point formula 392

Lefschetz fixed point theorem 390

Legendre transformation (partial) 318

Leray acyclic theorem 125

localization (of a category) 41

locally cohomologically trivial 178

locally conic (R*,C*) 483, 344

— constant sheaf 90

mapping cone 34

Maslov index 487
Mayer-Vietoris sequence 115
microdifferential operator 462
micro-hyperbolic system 468



microlocal Bertini-Sard theorem 332
— composition of kernels 294

— cut-off lemma (dual, refined) 225, 252,
253,254

— (proper) direct image 255

— inverse image 255

microlocal Morse lemma 239
microlocal operators (ring of) 462
microlocalization 198

microlocally composable 294
micro-support 221

middle perversity 426
Mittag-Leffler condition 64

module (over a sheaf of rings) 87
monodromy 351

monomorphism 24

morphism 23

Morse function (with respect to an isotropic
subset) 388

Morse inequalities 239
u-condition 334

p-filtration 337

phom 202

p-stratification 334

multiplicative system 41

nearby-cycle functor 350
Noetherian sheaf 443

Noetherian filtered ring 446
non-characteristic 235, 262
non-characteristic deformation lemma 117
non-characteristic (2-module) 453
non-characteristic for 4 on V 262
normal bundle 185, 481

— cone 187

— deformation 186

null system 43

object 23

opposite category 24

— ring 29

order (in a filtered ring) 447
orientation sheaf (relative) 126, 153

paracompact space 102

perfect (complex of A-modules) 78
perverse (sheaf) 427

perversity 419

Poincaré-Verdier duality 140

Poisson bracket 478, 482, 447

polar set 170

presentation (s-, finite free, free ...) 443
presheaf 83

Index

principal symbol 449

projective object 30

— (system, limit) 61

pro-object 62

propagation of singularities 468
proper cone (in a vector bundle) 169
— map 103

properly homotopic maps 119

pure sheaf 312

quantized contact transformation 465
quasi-inverse 25
quasi-isomorphism 40

regular involutive 483

relative cotangent bundle 238, 241
representable functor 25
representative 25

residue morphism 182

de Rham complex 127

ring (sheaf of) 87

S-acyclic (sheaf) 324

Sato hyperfunctions 127, 130, 466

Sato microfunctions 466

Schwartz distributions 127

section (of a presheaf) 84

sheaf 85

shift (functor) 31

— (of a sheaf) 312

shrinking space 395

signature (of a quadratic form) 487

simple sheaf 312

simplicial complex 321

simplex 321

singular support 467

soft sheaf 132

specialization 191

splits (a sequence) 70

stack 424

stalk (of a presheaf) 84

stratification 334

stratum 334

strictly exact 446

subanalytic chain 366

— cycle 369

— set 327

subcategory 24

supple sheaf 132

support (of a sheaf, of a section) 85,
116

symplectic form 477

— vector space 477
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tangent bundle 481
thick subcategory 49
Thom class 179
topological submersion 151
trace 79, 361

transversal (map) 190
triangle 35

triangular inequalities 222
triangulated category 38
triangulation theorem 328
truncated complex 33
t-structure 411

vanishing-cycle functor 351
var 352

vertex 321
Vietoris-Begle theorem 121

wave operator 469

weak global dimension (of a ring or a sheaf of
rings) 78,110

weakly constructible (R-, C-,S-) 339, 347,
322

Weierstrass division theorem 458

Whitney conditions ((a) and (b)) 357

Yoneda’s extension 81

Zariskian filtered ring 446
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