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This is a continuation or our previous paper [Ⅰ]. We retain the de丘nitions

and notation in lI], and refer to, for example, Theorem 2.1 of ll] as Theorem

I.2.1.

The main purpose of this paper is to gⅣe a condition fわr a link to be the

middle, upper or lower crossISeCtional link of a surface in the 41dimensional

euclidean space R4 in the normal form (recall Definition I.1.9.). This paper

divides into six sections･ Section 1 is preliminaries on normal singular su血ces in

the 31dimensional euclidean space R3. 1n Section 2 we will determine the crossI

sectionallinks of locallyflat surfaces in R4 in the normal form･ In particular,

we shall show the following (A) and (B):

(A) ThefoLlowings are equivalent:

(al) A lllnk CCR3 with FL COmPOneT71s I-s a ribbon link in the weaksense,

(a2) A link C⊂尺3[0] is the middle cross-sectional link of a closed

(possibly disconnected) orienlabLe surface FcR4 in the TIOrmal

form such thai the (total) genus ofF plus the number of the com-

panents ofF z's equal to IL,

(a3) A link G⊂R3[0:=s the mt-dale cross-Sectional link of a conncted

orientable surface FCR4 of genus p-1 in the normal form.

(B) Thefollowings are equivalent:

(bl) A link CCR3 withFL COmPOneTTtS is a ribbon link tln the strong sense,

(b2) A Link eCR3[o] is the upper (or lower) cross-sectional lz'nk of a

surface FcR4 With p components in the normal form,

(b3) A link e⊂R3[0] is the middle crossISeCtional link of a szlrface

FCR4 consisting ofp 2-spheres in the normal form.

The definitions of ribbon links in the weak sense andinthe strong sense are

given in 2.2･ In Section 3, We shall investigate the crossISeCtional links of nonl

locallyflat surfaces in R4 in the normal form. Section 4 is a construction of a

3-manifold in R4 bounded by a locally nat surface FCR4, in particular, a ribbon

surface･ In Section 5, we shallgive some topics Of 2-knots related to our theme.

Final Section is a geometric approach to explorlng a dinTerence between a slice
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link in the weak (strong) sense and a ribbon link in the weak (strong) sense､

In particular, We shall characterize a slice link in the weak (strong) sense in terms

of a normal singular 2-diskinR3 bounded by the link. This characterization was

suggested to the authors by F･ Hosokawa and T･ Yanagawa.

The authors would like to express their gratitude to the members of Kobe

Topology Seminar fわr numerous discussions.
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l･ Preliminaries on Normal Singular Surfaces iJl R3

Let D* be a compact, orientable and oriented surface (possibly disconnected)

with boundary ∂D*-UT-lS,l･ Consider a piecewise-linear map I: D*ーR3

such that the restriction fJeD･‥ ∂D*-R3 is injective; let C-f(∂D.)- ∪た1 I(S,i).

The imagef(D*)-D is called a singular surface bounded by the link P. In

particular, if the genus of D* is 0 and D* contans no 2lSphere as a component,

then D is called a singular disk bounded by the link B. The orientation ofD is

chosen so as to be induced from that ofD* andf The set

E(I) - IxED'lrlf(X) contains at least two pointsl

is called the singularity of the map I: D*-R3 and the image I-I(I(I)) is

called the singularity of the sL'ngular surface DI It is easily checked that the

singu】arities ∫(∫) and ∑ are polyhedra･ (See Hudson [24, p･ 90].) It should be

noticed that the closures off(I) in D+ and off in D are subpolyhedra of D* and

D, respectively･ but neither r(I) nor I is in general a subpolyhedron of D･ and D.

See for example, FigA 2(d) or (e) below･ The points of Cl(I(I))-I(f) and

Cl(I)-I-f(Cl(I(I))-i(I))will be called the branch points of the map I:

D*-R3 and the singular surface D=f(D*), respectively.

In general the singularities r(I) and I are too much complicated, but in many

case it suffices to treat somewhat simple singularities, Cal)ed the normal singu-

1al･ities defined as follows:

1･11 DEFINITIONI The singularity I of the singular surface D⊂R3 is said

to be normal, iffeach point XEE has a small cubic neighborhood V(X) in R3

such that the quadruplet
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(V(X), V(X) ∩ D, V(X) ∩ I, X)

corresponds to one or the fわllowing cases (1), (2) and (3):

(1) V(X)nE is a proper simple arc in V(X), and I-1(V(X)nD) consists of

two sheets Sf and S2* such that Sl-I(Sf) and S2-jtSき) are proper sheets in

V(X) with V(X) 〔D-SI U S2 Crossing with each other along the arc V(X) 〔Z, as

shown in Fig. 1 (1),

(2) V(X)nE consists of three proper simple arcs, say Al, Al, A,, in V(X)

with Al nA2 〔A3=X･ andf-1(V(X)nD) consists of three sheets S芋, S苦and S,.

such that Sl-I(S字), S2-I(S2*) and S3-f(S芳) are proper sheets in V(X)with

V(X)nD=SI U S2 US3 and each two sheets of Sl, S2 and S, crosses each other

along Al, A2 0r A3, aS Shown in Fig. 1(2),

(3) x belongs to the link 6-aD, and V(X)〔r is a simple arc having x and

a point jn aV(X) as the end points, andrl(V(X) n D) consists of two sheets Sf
and S2* such that Sl -f(ST) is not proper in V(X) and S2-I(S2*) is proper in V(X)

with V(X) ∩ D-SI U S2 CrOSSingwith each other along the arc V(X) ∩ I, as in Fig. 1

(3),and

(B) each branch point b∈Cl(I)-I has a small neighborhood V(b) in R3

such that aV(b) n I consists of two points; see Fig. 2(d), (e) below.

(1) (3)

The singularity I(I)-f~1(I) of the map I: D*→R3 is said to be normal

i打E is normal.

By the general position argument and obvious modifications, we have the

following Well-known result :

1･2･ PROPOSmONI In the above notation,I is homotopic to a piecewise-

Linear mapf': D*-R3 relative to ∂D* whosesingularityE(f′) is normal.　□

Suppose that the singularity I of the singular surface DcR3 is normal.
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clearly, a point x off as in Case (2) ofDehition Ill occurs only at hjte times.

such a polnt X is called a trt･ple point of the normal singular surface D.

Let Jq-LF(D) be the set of triple poilltS Of D; and set I-Lr(D)-U.4=l JLP

with Jl? a connected component･ clearly, for each i, J･? l･s a simple arc or loop･

UJF and JJO (i≠j) have a triple point x as the common boundary point and if

two points xiEJF and xjEJJ? sufBciently near to x are on the same one ofAl, A2

and A3in(2) ofDefinjtion ]･1, then wejoin JL? and J,? with thepojnt x; and we

perform this modification for all triple points Of D･ Then we obtain distinct

curves Jl, J2"･･,Jmwith JI UJ2 U ･･, UJm-E･ ltwill be noticed that each triple

point of D corresponds to a self-intersection point of some J.･ or an intersection

point of some J.. and some Jj (i≠j)･ lt is clear that the normal singular surface

D determines the set 9(D)-(Jl, J2,-･Jmi uniquely; and each J.･ is caHed a

double line of D･ From the construction of Ji, We may canonjcalZy specify two

curves J; and J;.'jn the preimagef-1(Jf) in D..

Let J∈9(D)-iJl, J2,･･･,Jm} be a double 一ine ofD･ J must correspond to

one or the curves in tlle fb-low】ng fわur cases:

(1) A closed curve ∫ whose preimage ･′-1(∫) consists or two closed curves

J'and J" that lie in the interior Int (D*) ofD*, see, for example, Fjg･ 2 (a),

(2) An arc ∫ whose preimage′-1(∫) consists of an arc J′ that spans the

boundary aD* ofD* and an arc J" that lies in Int(D*), see, for example, Fig･ 2 (b).

(3) An arc J whose preimagerl(J) consists of two arcs, each of which has
one end point in aD* and another in lnt (D*), see, for example, Figl 2 (C).

(4) An arc J whose preimagef-1(I) consists of two arcs J′ and J′′ such that

the closures J-′ and J-′′ in D* have a common end point･ which is a branch point Of

βJJ

(b)

Fig. 2

βJl

(C)
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I,and

(4.) j′ and J-′′ have just one common end point, see for example, Fig1 2

(d),or

(42) J7'and JL" have two common end points, see Fig1 2 (e)I

1.3. DEFINITION, A double line J∈iP(D) of (1), (2), (3) or (4) is caHed

the loop singularity, the ribbon singutarT'ty, the clasp singularT'ty or the branch

singularity of D, respectively･

1.4. DEFlNITION, A double line J∈fP(D) is said to be simple, iffJ has no

self-intersection polntS.

From the construction of the double lines, the followlng two lemmas are

obvious:

1.5　LEMMA. A double line J∈9(D) 7'5 57.mPLe if and only zf two curves

J′ and J′′ ワff-1(J) are simple curves and J'〔J′′-玖　　□

1.6. LEMMA. Let 9(D) be the setofdouble lines ofD, and letJ㌘CD* be

one of the curvesf~1(Ji), Ji∈9(D)･ IfJ紺J芋≠Qi with繕ノ, then J㌢ and J芋

cross each other (that is, interesect transversalTy) in D* ai any point ofJ㌢ ∩ J芋･

[コ

1.7. DEFINITION. Let D⊂R3 be a slngular surface whose slngu)arlty I

is normal, and let a(D)-(Jl,J2,...,Jm) be the set of double lines ofDI For

each J∈ a(D), let J′ 〕 J′′-f-1(J).

ln the cases (2) and (41), J′ or ∫′′ that has an end point in ∂β* is called a

b-line, and the other that has no end polntS in aD* is called an L'-Line.

1n the cases (1), (3) and (42), We Call any one ofJ'and J" a b-line and the

other ar) i-line.

Suppose that the b-line and the Hine are specified for the preimage of any

double line ofD. A crossing POlnt Oftwo b-lines, a b-lineand an illine, ortwo

i-lines js caHed a point of type(b, b), (b, i) or (i, i), respectively1

1.8. DEFINITION. Let DcR3 be a normal singular surface, and we suppose

that the blline and the i-line are specified for the preimage of any double line

J∈9(D). Let p∈tylD) be a triple point of D with double lines Jl, J2 and J3

cuttingatp. (lt mayhappenthat Jl-J2,J2-J3 0r J1-J3, if Jl,J2 0r J3 is

not simple.) Let p*, p'* and p"* be the three points forming the preimage of p･

A point p∈tylD) is called a triple point of type I, iffall of the points p*,

p'*, p"* are of type (b, i)A See, for example, Figl 3(I)･ A point p∈L9'G7J(D) is

called a irz-plc point of type Jl, iffthe points p*, p'* and p"* are of type (b, b),

(b, i) and (i, i), respectively. See, for example, Fig･ 3(II)･

Since the preimage of each double line of D necessarily consists of one b-line



36　　　　　　Akio KAWAUCHI, Tetsuo SHIBUYA and Shin,ichi SuzUKI

〔Ⅰ〕
(ⅠⅠ)

Fig.3

and one I-〕ine, we obtain the following:

1･9･ PROPOSITION･ In l･8, every triple point p｡Lr(D) is of eithe, type I

or type II.　□

1･10･ REMARK･ In the preimage ofa loop singularity (1)'a clasp singularity

(3) or a branch singularity or (42), the types or related triple points depend on the

choices of b-】ines and i-linesI See Fig･ 4.

A triplepolnt P Oftype I A triple point p of type Tt

Fig.4

We record here two existence results of normal singular surfaces in R3

without proofs,

1･11･ PROPOSmON･ (SH.BUYA [53, Lemmal], etc･) Any LL･nk C⊂R3

bounds a singular disk DcR3 whose sl･ngutarity I consists of only mutually

disjoint, sz-mple clasp singularities.　□

such a singular disk is called an elementary disk, Nakagawa [47]. In

general, a knot may bound various elementary disks･ The uniqueness Of some

classes of elementary disks was discussed in Seifert l52] and Nakagawa l47].

l･12･ PROPOSmON. (KAPLANl29]) Any knot iCR3 bounds a no,mat
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singular disk D⊂R3 whose singularity I consists of only simple ribbon sin-

guEarl･ties and which contains only triple points oftypeI･ □

2. Cross-Sectional Links of Surfaces in the Normal Form

Let D⊂R3 be a normal singular diskgiven by a piecewise-linear map f:

D*ーR3,I(D*)-D･ By the component number c(D) of D, wewill mean the

number of the components ofD*･ Since D* is a compact surface of genus 0 con-

taining no 21SPhere as a component, C(D) does not exceed the number of the

components of the link B -f(∂D*) -∂D･

2.1. DEFINITION. A normal singular disk D⊂R3 is called a ribbon, i打the

slngularity I of D consists of mutuauy disjoint, simple ribbon slngularities alone.

Further, a ribbon D is a ribbon in the weak sense, iffC(D)-1, and a ribbon z'n the

strong sense, iW c(D) is equal to the number of the components of the link A-∂D･

2.2. DEFINITION. Alink B⊂尺3 iscalled a ribbon linkiffB bounds a ribbon

in R3. Fu,ther, alink A isa ribbon link in the weak(resp･ strong) senseiffB

bounds a ribbon in the weak (resp･ strong) sense･ In particular, if B is con-

nected, if is simply called a ribbon knot.

The following theorem is essential in this sectionl

2.3. THEOREM. Thefollowings are equivalent:

(1) A link B⊂R3 boundsa ribbonDCR3 with c(D)=FL,

(2) There exists a sequence B→U-0 of hyperbolic transformations of

links, such that BーP'is a fusion from a link B to a lz'nk B′ withlL components

and B･一O is ajissionfrom B'to a trivial tink仇

pROOF. (1)辛(2)‥　Consider a ribbon D⊂R3with c(D)-p given by a piece-

wise-linea, map I: D*ぅR3,f(D*)-D, and bounded by the link B･ We suppose

that D has m mutually disjoint, simple ribbon slngularities ∝い-I,αm･Let略

･-,璃be the corresponding i-lines in D* and we choose a small regular neigh-

bo,hood Nj-N(帝D･) of 可in D* for eachj-1,-･- Then Do-I(Cl(DL

uT-1 Nj)) is a non-singular disk with new resulting boundary components 01 -

I(∂Nl),-,Om-I(∂Nm) as well as the boundary aD-BI We note that Do has

just p components, Say Dol,･･･,Dop･ Let BFBn∂Do" and let ci≧l be the

number of the components of Bi. For each i with ci>1, we choose mutually

disjoint (cr1) bands, say軌on Dol that span the link βi SO that the union

aiU Bi is connected･ By performlng the fusion along these bands軌the link

p is transformed into a link, say B′, with FL COmPOnentSI Let kE be the component

of β′ obtained from Ci, and let Dai be the corresponding disk obtained from

Dol by splitting Dot along範if cl> 1･
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Next, let q-(01U･-UOm)naDol, and let c;≧O be the number of the

components ofoi･ For each iwith c;>1, we choose mutually disjoint (C:Ill)

bands, say a;, on Dムi that span theknot ki SO that Cl(D;rm;) consists of

mutually disjolnt C; annu]i and the boundary of each annulus has Just one com-

ponent of oil By performlng the fission along these bands @l(, the link g′ is

transformed into a trivial link, say a, since oI U - U OmCR3 is a trivial link.

Thus we obtain a desired sequence 6-8′→0.

(2)s(1): We may assume that the bands a used for the hyperbolic trans-
formations of 8-6′-a are mutually disjoint, see Lemma I11･14･ We suppose

that a has )I Components, and Jet 6 be the union of mutually disjoint i. 2-disks

in R3with ∂8-0･ Since 0-8 is also the hyperbo一ic transformation along

a, the union c U a may be a ribbon, say D, jfnecessary'by deforming the bands

a into sunciently narrow bands･ (see, for example, Fig･ 7 of lⅠ].) since

0-8′ is a fusion and P′ has p components and e′-G js a Bssion, C(D)-p.

The boundary ∂D is clearly of the same type as the link P.

Thiscompletestheproof.　□

We have the following three corollaries to Theorem 2.3.

2･4･ CoROLLARY･ Thefollowings are equivalent:

(1) A link CcR3 With p components is a ribbon link in the weak sense,

(2) A link GCR3lo] is the middle cross-sectz･onal link of a locally Gal,

closed (possibly disconnected) surface FcR4 l･n the normal form such that the

(Lotal) genus ofF plus the number of the components ofF is equal to p,

(3) A link B⊂R3[0] is the mL･ddle crossISeCtional link of a connected,

locallyjtat, closed surface F⊂R4 of genus p- 1 in the normal form.

pROOF･ (1)-～(3) follows from Theorem 2･3･ Tn fact, a required surface

FCR4 is obtained as the closed realizing surface of 0-6,-6-6′-0, where

8-8'-o is the sequence in Theorem 2･3(2) and 0-8′-G is its inverse. since

(3)-(2) is obvious, jt sumces to show (2)辛(1)･ By Theorem 2.3, 8 bounds a

ribbon D'with c(D')≧]･ If c(D′)>1, then we connect the components of D′

by c(D′)-i pipes to obtain a ribbon D with c(D)-1; this ihlPlies (2)⇒(1).ロ

2･5･ CoROLLARY･ ThefoILowings are equlualent:

(1) A link e⊂R3 With p components is a ribbon link in thestrong sense,

(2) A link P⊂R3[0] is the upper(or lower) cross-sectional link ofa locally

jlat, closed surface FcR4 With p components in the normal form,

(3) JHink BCR3lo] is the middle crossISeCtional link of a locallyPat,
closed surface FcR4 consistt･ng ofp 2-spheres in the normal form.

pROOF･ The proof is straightforwards from Theorem 2･3. D
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2･61 CoROLLARY. ThefoIZowE'ngs are equivalent:

(1) A knotiCR3isa ribbonknof,

(2) A knot iCR3[0] is the upper (or lower) cross-sectional knot of a

connected, /Ocally Hat, closed surface FCR4 En lhe normal form,

(3) A knot Jt⊂R3[0] I-s the middle cross-5eCtional knot of a Locally flat

2-Lq.Phere F｡⊂R4 1'n the normal form.　ロ

2171 ExAMPLES･ The link in Fig. 5(a) is a ribbon link in the strong

嘩嘩rqo
sense, and the link in Fig. 5(b) is a ribbon link in the weak sense, since these 】inks

certainly bound in R3ribbons in the strong sense and in the weak sense, re-

spectively･ From Corollaries 2･4 and 2.5, it js easily seen that every ribbon link

in the strong sense js a ribbon link in the weak sense. However, the converse is

not true･ h fact, the link in Figl 5(b) js not a ribbon link in the strong sense.

To see this, we need the fbllowlng Sublemma:

2･711･ SUBLEMMA･ For any oriented link LZ=klU･･･〕kv⊂R3[0], the

linking number tk(kl, kj)-Ofor l≦i≠j≦p zfand only lfthere exist mutually

disjoint proper (posssibly now-locallyjTat) surfaces FI U - U FvCR3[0, 00) with

aFi-kifor i-I,..･, p.

It follows from Sublemma 2.7.1 and Corollary 2.5 that the link in Fig. 5(b)

is not a ribbon link in the strong sense.

The link in Fig･ 5(C) is not a ribbon link in the weak sense. To see this,

suppose the link in Fig･5(C) is a ribbon link in the weak sense. Then by

Corollary 2･4 this link bounds a connected, locally舶t su血ce or genus 0 in

R3[0, 00). This implies that the trefoil knot bounds a locallyflat 2-disk in

R3[0, co). (Such a knot is called a slice knot, FoxIMilnor l10], Fox l7]. See

Section 6 1ater･) However, it is known that the trefoil knot never bounds a locally

flat 2ldisk in R3[0,の) by using algebraic invariants, e.g., the Alexander polynomial

(FoxIMilnor [10]), the signature (Murasugi[46]), etc. Thus, the link in Fig. 5(C)
is not a ribbon link in the weak sense.　口

2･7･2･ PROOF･ Of Sublemma2･7･ll Suppose that lk(kl, kj)-0 for l≦繕

j≦p･ Wecan easily丘nd asurfaceFl in R3[0] with ∂Fl-kl and Fl 〔kj-伊for
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j≧2･ Pushing the interior of Fl into R3[0, m), we have a proper, locally nat

surface Fl⊂R3[0, cD)I Inductively, we can obtain desired surfaces FI U ･･･ U

FpcR3lo, q)with aF,I-kいConversely, We assume that there exist mutually

disjoint, proper surfaces FI U -･ UFpcR3[0,叫with aF.･=kl･ Since kl bounds

the surface FL･ in R3[0･叫-Fj, i#, kL is homo】ogous to o in R3[0･町)-Fj.

By using the inclusion isomorphism Hl(R3[0トkj; Z)2Hl(R3lo, n)-Fj; Z),

kl is homologous o in R3[o]-kj･ Hence, lk(kE, kj)-0 for itj･ This proves

Sublemma2･7･1･ □

2･8･ REMARK･ Forarjbbon link c⊂R3[0] in the weak (resp･ strong) sense,

we have a ]ocally月at, closed surface FCR4 in the normal form by Corollary 2.4(2)

or (3) (resp･ corollary 2･5(2) or (3)-t is easily seen that such a surface is not
unique up to ambient isotopy of R41 In particular･ Nakanishi-Nakagawa l49]

showed the following :

FoT-y integer n≧1, there exists a prime ribbon knot iCR3lo] such

that i is the middle cross-sectional knot of n distinct toca"y jZat 2-spheres

FE⊂R4inthenormalform, i-1,-,n. □

3l Cross-sectionalLinks of Non-I･oca】Iy Flat Surfaces

As described叫, pp 121-122 and Cor･ 2･18], a non-locally恥closed su血e

(with m components) FcR4 in the no"nalform js understood as the disjoint

union FI U ･･･ uFm such that･ for some fixed a<b, each Fl is the closed reauzing

surface in R3[a, b+ 1] of some sequence ot･-小CEL→-;okz･10-10k.･V. of knots

ii,i.i and links oE･ Pi, 0;okllO-硯･ ill,･･･,m. The links ur=1i.･, ur=16l

and ur=1 i; are called the lower, middle and upper cross-sectiona‖inks of the

surface FCR4 in the normal form, respectively. The knots k,･j, i-1,A.., m;

j-1,-, pi, represent the types of the locally knotted points ofF in R4.

In this section, We shall give a survey of crossISeCtional links of non-loca"y

Bat･ closed surfaces FCR4 in the normal form.

3･1･ PROPOSmON･ A link p⊂R3 is the lower cross-seci7･onal lz.nk ofa non-

locallyjlat, closed surface FCR4 in the normal form lfand only Tf B is a ribbon

link in the strong sense.

pROOF･ If C is the lower cross-sectionallink･ then there exist a fusion

0-A from a trivial link o to c, which implies that the inverse c→o is afission.

By Theorem 2･3, 8 is aribbon link in the strong sense.

converse】y, suppose that B⊂R3lo] is aribbon link with ln COmPOnents in

the strong sense･ Let kl0-Ohm be an arbitrary, convexly and completely split-

table link･ one can find a locally Bat, proper surface FI U -･ UFm in R3[0, 1]

such that, for each i, FL･ nR3[0] is one component, say - Bl0]⊂R3[0] and
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♂＼ -a･C,

○＼ 士=a+Erl

○＼七三a

○＼
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＼
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七三a_EJ

⇒♂＼ -a･C･

○＼ t=a+Ell

二､　-　　　-

毒＼ t=a_Ell

壷ふ､士-a-E･

41

(0<EJ'<E'<E)

Fig.6

Fz･〔R3[]]-kt･ll]･ As in Lemma ll2･7, we may assume that FI U-UF". has

only elementary critical bands. Further, by using a mOdはcation illustrated ]･n

Fig･ 6, we can assume that FI U- UFm does not contain minimal bands. (It

should be noticed that, by this modi鮎ation, the genus of the resulting surface

becomes greater than the original one･) Ther曲re, by Lemma I.1.14 and Lemma

I･2･8, we can血d a locally Rat, proper surface F'. U ･- u FL in R3[0, 1】 such that

each Fi is the realizing surface in R3[0, 1] of a sequence kF-Bl-kト@tok1 0f

complete丘ssions and a complete fusion, where kFl0]-F, n R3[0], A. is a link,

k; is a knot and of is a trivial link･ In particular, uT=l alOkl is a convexly and

completely splittable link･ Thus･ the ribbon link e in the strong sense js the lower
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cross-sectional link of a non-locallyflat surface in the normal form.　□

Scrutlny Or the proof of Proposition 3･1 shows the followlng more detailed

result:

3･2･ PROPOSmON･ Given a rE-bbon /ink e⊂R3 with m c''mponenls Lln the

LStrOng Sense and an arbitrary, Convexly and completely splittable link uT=.

(kElい-0転) W71th each kij l1-nOtted, there exLIsts a locally knotted surface F-

Fl 〕 -. UFm⊂R4 With m components in thenoTUnalform,such that e I-s the lower

crossISeCtional link ofF, and for each i, the local knot types ofFi are represented

by the knots k.I,-, kipL･　□

Any oriented link B⊂R3[0] always bounds a proper, locaJly月at, Connected

and oriented surface in R3[0, co). The minimum genus of such a surface js called

the 4-dimensional genus of e (Fox [3]), alld js denoted by g*(P). According

to 3･2, for a ribbon link B-kl U - UkmCR3 in the strong sense and a convexly

and completely splittable link uT-1(kilo-Ok.lp,) with each k.1] knotted, let

g-(kl U ･- U km; Kl,･･･,Km) denote the minimum of ttle genera Of the locally

knotted surfaces F's in R4 that appear in Proposition 3･2, where K,･- (kil,‥･,転i

for i-1,..,,m.

3･3. PROPOSITION. tn the above notation, it holds that

g-(kl 〕 ･.. 〕 k,"; Kl,-, Km) ≧ ∑箆1g*(k.･l#-#kipl),

where ‡ denotes the usual composition of knots (Fox l7]).　□

3･41 REMARK･ Obviously, in 3･3, there exists a ribbon link kl U- Ukm

establishing the equality For an given, COnVeXly and completely splittable link

UTヒ1 (kilo-10転)･ However, the Inequality can not always be replaced by the

equality･ Let kCR3 be a knot with g*(k)-0 (i.e. a slice knot) and with non-

trivial Alexander polynomial A(i)･ lTake, for example, the stevedore's knot 61

or the square knot 31#-3f etc.] For a trivial knot OCR3, it follows that

g-(0; k)≧1･ [For example, g_(0; 61)-g_(0; 3.♯-3苧)t=1.] Tn fact, this js

established by uslng the fbllowlng proposition :

3･5･ PROPOSITION･ Lei A-klO･･･Ok".CR3 be a completely splittable /ink.

If the Alexander polynomial AJ(i) of some complete fusion P′ of i7 Z's trl'vial,

then the Alexander polynomia1 4(i) of each component k.I must be trivial.

PROOF･ lt follows from the equality A′(i)- ±laF(t)F(t~1)Al(t)-Am(i) for

some integer a and some integral polynomial F(i) with F(1)- ± 1. (cf. Terasaka

[57], Fox-Milnor [10].)　口

3･6･ LEMMA･ For anylink BCR3 with m components, ihereexists a col-
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leclion ofmutualty disjoLnt bands虜-iBl,･･,, Bm-1日n R3, 50 that the complete

fusion i-A(A; a) is a non-trF'vial knot･

pROOF. lt sumces to provethis lemmain the case m-21 Let /be a regular

projection of BER3 1n a suitably chosen hyperplane R岩⊂R3, and we take an

over path on eachcomponent of ,i(B), as in Fig･ 7(0)･ Let kl･ k2 and k3 bethree
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fusions of C, illustrated in Flg･ 7(I), (2) and (3), respectively. From these dia一

grams, we have the followlng触ite presentations ‥

7Tl(R3-kl)

nl(R3-k2)

Tll(R3-k3)

(

Xl, X2,yl,y2

ZlT･.･1 I,.

(

rl)･･･1 rn+1,

R(.1) - ylXfl, R(21) - X2y言lxIXil

xl, X2, yl'y2/1'･･･r,,+1,

zl,‥･,Zn tRt12) -xTlylXIX;I,Rt22) -ylyilyi

(

xl,X2,yl,y2'V,W

ZII･"Zn

rl,･･･, r州,　＼

R,13,, R,23,, R(,3', Ri" /

with R(13) - ylV-lwvyTIxEl,　　R(23) - ylXIV-lwv~1W~1vyTl,

｣吋'- X2ylW-lvw-lv-Iwxil, Ri3) - X2W~1vwxTly言1xIXill

The Alexander matrices of kl, k2 and k, are as follows:
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巨1,･･.,I"巨llxZIyliy2

_=　　_-　　f li

二l~∵:

Hence theAlexander polynomials Al(i), A2(i) and A3(i) of kl, k2 and k3, re-

spectively, are as follows :

Al(i) = 0:(i) + β(i),

A2(i) - α(i) + lP(i) + (ト-1)γ(t),

A3(i) - (2t215t+2)α(I) + (2-3t)β(t) + 2t(I-i)γ(t),

where α(t)-detllMa2", β(i)-det HMblll and γ(I)-det HMb2日. We shall show

that at least one ofAl(I), A2(i) and A3(t) is not of the form j:ta. Suppose that

al一 of Al(t), A2(t) and A3(t) are of the form　±to. Let Gi-Ai(-1), i-1,2,3.

Clearly, lGi)-), i-1, 2, 3, and we have:

♂1 -α(-1)+β(-1),

♂2 -α(-1)-β(-1)-2γ(-I),

63 - 9C((-1)+ 5β(-1) -4γ(-1).

Hence 83-282=7α(-1)+7β(-1)-761. This is a contradiction, since

憐l-1, i-1, 2, 3. This completes theproof.　ロ

From Corollary 2.4 and Lemma 3.6, we have the following:

3.7. PROPOSITION. Let C⊂R3　be a link that is not a iriuz'al knot.　G is
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a ribbon Zt'nk T'n the weak sense if and only if e is the middle crossISeCtionaL

tF'nk of a connected, nonllocally jlat, closed surface FcR4 in tl7e normal form.

[コ

3･8･ PROPOSlTION･ A link C-kl 〕 - UkmCR3 is the upper cross-sectionat

link ofa locally knotted, closed i-face F-F. U ･- u FmcR4 1ln the normal form

such that the types of the locally knotted poz'nts of each component F. are given

by knots k山-り転, Ef and only lf B is afusion of a convexly and completely

splittable link

(@ilokllO･･･Okl〝,)o･ - -｡(OA-ok桝10-Ckmp".)

transforming each sublink oLL｡kEI0-0転into k.･, 71-1,日., m.

SKETCHPROOF･ lr B-klU･-LJk,n⊂R3 is a fusion of the completely

splittable link uT-1 (OIzokEIO･-0転), it js easily checked that Lk(ki, kj)-0 for

i≠j･ Hence G[0] boundsalocallyfiat surfacewith m components in R3(-co, 0]

containing no maximal bands, (cr. Sublemma 2.7.I and Fig. 6). Hence ♂ is the

upper cross-sectional link of a desired 一ocally knotted surface in the normal form,

The converse is easy.　□

Theminimal genus of the surface that appears in Proposition 3,8 is denoted

by g'(kl 〕 - 〕km; Kl,-I, Km), where K.I-(Kz･1,-日k,･pL)･

319･ PROPOSmON. In the above notatl'on, it holds that

g'(kl U - Ukm; Kl,-,Km) ≧ E畏1g*(kEl#･-#k.lp.)･

Further, there exists a link k; U - u k品establL'shing the equalT'ty for any gz'ven

collection ofknolsKL-tk山-Hk如), i-し･,m.　□

Proposition 3･8 asserts that every knot k⊂R3 is the upper crosssectional

knot of a (possibly locally knotted) connected, closed surface Fc R4 in the normal

form･ The minimal genus of such a surface is called the 4-dimensional ribbon

genus of k and denoted by g,*(k)･ More generally, for an arbitray link C⊂R3,

we de月ne a,*(G) to be theminimal genus of locally nat, connected surfaces in

R3[0, cxj) boullded by the )ink Bl0] and having no minimal bands (or points).

The relations among g*(B), 9,*(A) and other numerical invariants were

studied in Shibuya [53], cr. Murasugi [46], etc.

3･10･ PROPOSmON･ For any link C⊂R3 with p components, we have:

i(lq(e)I -〟+1)≦g*(B) and
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g*(C) ≦ g,～(C) ≦ g(B)

l^　　　　F^　　　l^

C*(8) ≦ C,*(A) 蛋 C(P)

爪　　　　日　　　lV

u*(P) ≦ u,*(B) _< u(C)

Here, q(A)-the Murasugi signature of P,

g*(e)-the 4-dimensional genus of A,

9,*(e)-the 4-dimensional ribbon genus of e,

g(G)-the (3-dimensional) germs Of A,

C*(C)-the clasp number in the 4-dimensL'onal sense,

C,a(B)-the clasp number t'n the 4-dimensE'onal ribbon sense,

C(C)- the clasp number (in the 3-dt'mensional sense), cf. (1.1 1),

u*(A)-the unlinking number in the 4-dimenstlonal sense,

u,*(P)-the unlinking number in the 4-diemnsional ribbon sense,

u(A)-the unLinkL'ng number (in the 3-dtlmenslonal Mse).

See Shibuya [53] for the details and the proof.

3･11･ REMARK･ Tf a link C⊂R3 is the upper cross-sectional link of a

(possibly non-locallyflat) closed surface F CR4 1n the normal form, then each tw.

components or ♂ has the linking number 0 by Sublemma 2･7･1･ However, every

link with linking number 0 on each two components is not the upper cross-

sectional link of a (possibly non-locally触t) closed surface in R4 in the normal

form. For example･ consider the link Eo-kl Uk2CR3 in Fjg･ 8, called the

Whitehead link.

た1重た2
Fig. 8; the Whitehead link

ltis obvious that lk(kl, k2)-0, but we can prove that Co never bounds in R3[0, W)

disjoint (piecewise-Iinearly embedded) proper two 21disks･ Tn fact, if not, by

Kawauchi [33, Corollary 4･8] the Alexander polynomial A(t) of C｡ (in the sense

of l33]) would satisfy A(1)≠0･ However, Co has A(i)-(i-1)3 and so A(1)=0.

The same conclusion can be also derived from calculating the nullity or go de丘ned

by Murasugi [46], since the nullity is an invariant or topological (and hence

piecewise-linear) link concordances, Kaunnan-Taylor [28]. (Note that the
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nullity n(4.)- 1, and for the trivial link 02 with 2 Components, n(02)-2･)　□

4, 3-Manifolds Bounded by Surfaces in R4

Throughout this section, a surface in R4-R3(- cxj, + co) will mean a totally

jlat, closed, orientable and ort'ented surface･

First, We consider a surface ofa special type, called a ribbon surface･ This

concept was studied by Yajima l58], [59] and Yanagawa l62]･

By Corollary I.2.16, a (possibly disconnected) surface FER3(-co, +cx3)

is ambient isotopic to a surface F'⊂R3(-co, +cxj) in the normal formgiven by

a sequence a_-G_-6-6.-0. of oriented ljnks･

4.1. DEFrNTTION. A surface F⊂R3(-1-JD, +co) is called a ribbon surface

iffF is ambient isotopic to a surface F′CR3(-∝㌧ +co) in the normal formgivell

by a sequence a)_-C_-6-6.-0. such that the sequence 0:-+P1-6 is

precisely the converse of the sequence A-L7十一0.･

4.2. LEMMA. A rL-bbon surface F-Flu-〕F,⊂R3(-co,+co) qr r

components bounds a 31mantfold L'n R3(-cx3, +co) homeomorphic to the con-

nected sum Tl‡･･･#T,井q(Sl xS2) ofL"lid torT'T.I 0fgenus g(Fi), i-I,-, r, and q

copE'eL"fSl x S2for some q≧0,

PROOF, We may identify F withtheclosed realizing surface F竺q jn R3[-a, a]

of a sequence 0-6′→4-g′-0, where a-C'-C is the converse of e→

G'-仇　From the proof of Theorem2.3, we can assume that the image

p.(PeanR3[0, a])-D of the projection p.: R3[0, a]-)R3, p.(X,y,Z,t)-

(X, y, I), is a normal singular disk whose singularity I consists ofmutually djsjoint

ヒ竺]
α!

7.

Fig, 9

丹
{
α.

?.
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simple ribbon slngularities･ Clearly, D consists of mutually disjoint, oriented

21disks, say Dl- Dl･with aDI U ･･. U ∂DA-0, and mutually disjoint bands, say

Bl,-,Bm･ which span the trivial link Owith BI U ･･･ UBl related to CぅB′ and

Bt+1 U -I U Bmrelated t0 8,-0. It shou】dbenoted that the blline of each simple

ribbon slngularlty OfD is in BIU-UB加･ For each z･, i-1,日･,m, 】et αE and a;I

be the attaching arcs ofBl tO O･ ･Then we can give a Slgn tO each simpleribbon

slngularlty OfD as in Figl 9･ We can assume that the bands Bl,･.･, Bm are satisfied

with one additional condition that, for each i, 7･- 1,･-･ m, the sum of the signs of

simple ribbon singularities ofD along Bz･ is zero･ (see, for example, a modi丘cation

shown in Fig. 10 below.)

二二ここ
[ド｣

Fig.10

The additional condition guarantees us that, by removlng from DI U ･- U DA

small neighborhoods Al,-, A2〃 Of simple ribbon slngu】arities, we can attach

tubes (-annuli), say Al,････ All, Surrounding Bl,-,B,n･ to the new resulting

boundaries of CL(DI U ･･･ UDA-(AI U ･･･ UA2p)) to obtain an oriented surface

G-(D-(AIU･-UAIp))U(AIU-UAp) bounded by the link C･ See Fig. ll

for an illustration of this modification. we now re-index ‡Al,-リA2pi as ‡Al,

All,･･･, Ap, AL), so that叫-aAi〕 aA;, i-1,…,FL.

If G is disconnected, then we choose mutually disjoint 31disks, say p1,-, 7"

in R3 such that･ for eachj,j-1,-リV, Gn Vj-Gn∂Vj COnSists of two 2ldisks,

say Aj U A1., and Aj and A弔. are contained in the interiors of distinct components

of G, and the resulting su血∝

6 = cl(GIALI UA-/1 U ･- UA-VUA-,V)) U (ALl ∩.- UA-V)
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Fig.ll

is an orientable, oriented and connected surface･ Here･ Aj-CE(aVj-G n Fj)-

Cl(∂Vj-A-j-A-;･), j- 1,…, V.

Let O<tl<l2<t,<14<t5<a, Where the bands of the fusion CーB, and the

bands ofthefission P′-0 occur at the levels t=11 and i-t3'reSPeCtively. We

define a 3-manifold W. CR3[0, co) as follows:

W+ ∩ R3lL]-

G-lt]　　　　　　　　for O≦t<tl,

(Gu Flu-U Vy)[t]　　for i-ll,

G[t]　　　　　　　　for tl <t≦12,

Cl(G-(BI U-UB,))[t]　for t2 < t≦ i,,

Cl(G-(BI U ･･･ U Bm))ll]

-(Cl(DIU･-UDA-(AIUAiu-uApuAL))

U(AIU-UAp))[l]　for i,<t≦t4.

Next･ we choose an innermost 2lSPhere, say AI U AI U A,lI in the 2-spheres

AIUAIUA'1,A2UA2UA;,-･,ApuApuAL･ The 2-sphere AIUAIUA,., then,

bounds a unique 3-disk Vl in R3 with Vln(A2U-･UA〝)-¢. Let O<81<82

be sumciently small numbers. We define:

W+ n R3lt]=

(Cl(DIU-UDA-(AIUAiu.･･uApUAL))

U(AIU-〕A〟))[t]　for t4<t<t4+81,

(Cl(DIU- UDA-(A2UA;U･-uApuAL))
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〕(A2U-･UAp)uVl)[t]　for i-t4+sl,

(Cl(Dl 〕- UDA-(A2UA;U.･･UAauAL))

U(AヱU･-〕Ap))[t]　for t4+81<t≦t4+E2.

By the repetition of the procedure, we obtain, at the level t-t5, W+ n R3lt5]-

(DI U･- UDA)[t]L So,wedefine w. asfoll｡ws:

W･ n R3lt]- (:DIU'.'UD}'[(] ff.0,r tt5,<a?≦ロ,

From this construction, we have: ∂W. -(F一旦q n R3[0, a]) u GTO].

similarly, we_can obtain a 31manifold W- in R3[-a, o] which is a copy of

w･with ∂取-(FEanR3トa,0])uG-[0]･ Then, the union w-W. u w_ is an

orientable, connected 3-manifold oriented and bounded by the surface P!a･ It is

easily seen that Wis homeomorphic to the connected sum Tl#･,･#T,#q(SI xS2)

of solid tori T,･ofgenus a(F.I), i-i,･･･, r, and q (≧0) copies of Sl x S2.

This completes theproofofLemma4.2.　D

4･3･ DEFINmON･ Let W be a 31manifold in R4 homeomorphic to the

connected sum Tl#-･#T,#q(Slxs2) of solid tori T,I of genus gL, l･-1"-., r, and

q copleS Of Slxs2･ wis said to be semz1-unknotted iffw contains mutually
disjoint 2-spheres Sl, S'.,-, Ss, S;,with s-r+q, such that

(1) the surface SI US'l U - USsuS; is unknotted in R4, that is, there exist

mutually disjolnt 3-disks Df, D,13,･･･, Ds3, D:3 in R4with aDz?-SゎaD;3-S;I,

i- 1-･, S, (See Definition 4.7 below.),

(2) SiUS;～bounds a spherical shell串S2×[0, 1] in W such that A行

A,3-¢ for i≠j,

(3) Cl(W-∪言三l At) is the disjoint union of T7,-, T,o and S8, where T.p

is homeomorphic to TI With afinite number of open 3-disks removed and Sa is a

3-spherewith a触ite number of open 3-disks removed.

4･4･ THEOREM･ AsurfaceF⊂R4 is a ribbonsurface lfandonly lfF bounds

a semi-unknotted 3-mamfold W in R4.

The proof of Theorem 4･4 will be given in (4.12) below.

4･5･ CoROLLARY･ (YA.NAGAWA l62]) A 21SPhere K2cR4 is a ,ibbon

2-sphere lf and only lf K2 bounds a semL･-unknotted 31mantfold of a type

D3#q(slxS2)(q≧o)wz'ihD3 a 3ldisk.　□

Let FcR4 be a (possibly disconnected) surface･ An oriented 3-disk B3 in

R4 spans F as a 1-handle, iffB3 nF-(∂B3)nF consists of two 2-disks and the
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surface Cl(F u aB3-(aB3) n F) can have an orientation compatible with both the

orientations of F-(aB3) n F and aB31(aB3) n F.

4･61 DEFINITION. (HosoKAWA-KAWAUCIII [22]) lf札.., B孟are mutually

disjolnt, Oriented 3-disks in R4 which span F as 1-handles, then the resulting closed

surface hl(F;軌‥,B孟)-Cl(FU∂BfU - 〕∂B孟-F ∩(aB子U ･- U∂Ba))with the

orientation induced from that of F-F ∩ (∂Bn ･- U ∂Ba) is called the surface

obta71nedfrom F by the hyperboloidal transformations along 1-handles Bf,. ", Ba.

4･7･ DEFINmON･ Let F-Flu-UFA⊂R4 be a closed surfacewith Fl

a component of genus g(Ff)･ F is said to be unknotted, iffthere exist mutually

disjoht A solid tori Tl,-, Tl in R4 of genus g(Fl)with aTE-F,･, i-1,‥,汁 Tf

such a collection ofsolid tori does not exist, then F is said to be knotted in R4.

This definition lS Justified by the followlng:

4･8･ LEMMA･ (HosoKAWAIKAWAUCHI l22, THEOREM 1.2]) FcR4 is un-

knotEed if and only ifF is ambt'ent isotop,Ic to the boundary ofa regular neigh-

borhood ofa 1-complex L-Ll 〕 - 〕L3 in R3[0] such that the I_dimensional

Betti number ofLi is g(Fz･), i-1,‥., i.　□

To prove this lemma, we need the fbllowlng lemma:

4A9･ LEMMA･ (HosoKAWA-KAWAUCH, [22, LEMMA 1.4]) Let a 1-sphere

Sl be contained in a 2-sphere S2 and consider a proper surface Y in S2× [0, 1],

homeomorphic to Slx[0, 1]. If Y〔(S2Xo)-slxO and Yn(S2×1)-Slxl,

then Yis ambient isotopic to SI x l0, 1] by an isotopic deformation ofS2 x lo, 1]

keeping S2XoU s2× 1 jxed.　□

See Hosokawa-Kawauchi l22] for the proof and some topics of unknotted

suぬces･ We only record the fわllowing:

4･10･ PROPOSITION･ 1f a surface F⊂R4 with A components is unknotted,

then the fundamental group 7;1(R4-F) is afreegroup ofrankA.　□

4･11･ LEMMA･ Let FcR4 be an unknotted (possibly disconnected) surface.

If FIcR4 ,'S obtained from F by the hyperbotoidal transformations along l-

handles, then F'is a ribbon surface.

PROOF･ We deform F so that F is the closed realizing surface P三2 0f a se-

quence O′→010'with o′-o afission of triviallinks o′ and a and O→0′ the

converse of o′-o･ Let B1,.,リBm be 1-handles used for the hyperboloidal trans-

formations F-F′ and let α1,-, ∝m be simple, proper unknotted arcs in B1,-., Bm,

respectively,with (B.I,αl)芸(DlxD2,Dlxo) for i-1,.‥,m. We can assume

that, for each i, the two attaching pointS極of ∝l tO F三2 are in the middle c,｡ss_
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section P三2 nR3[0]･ Since the inclusion homomorphism打1(R3[0]-R3lo] ∩

P呈2)-nl(R4-P三2) is onto,警is isotopic to an arc a; in R3[0] by an isotopjc

deformation of R4 keeping FZ2fixed･ We take a regular neighborhood or α;

of the type B;[一g, £] in R4 such that B;[0] ∩ P三2 consists of two simple arcs in

the boundary of B;･[0], where Bいs a 3-disk in R3 and B is a sufnciently small

positive number, We can assume that the 1-handles Bl"･･,Bm are properly
embedded in Bllト8,8],-HBこ,[-,E], respectively, such that BlnPま2-

B'E[-8, 8] 〔P呈21 (Take triangulations of ∝ECBLCR4 so that αi is full in both

Bi and R4l Next, use the uniqueness theorem of regular neighborhood.)

Using Lemma 4･9, for a certain proper 2-disk Bf in B;, we conclude that

Cl(aBL-(∂Bi) ∩ P三2) is ambient isotopic to Cl(∂(Bfl--a, 6]ト∂(Btx l-8, 8]) ∩

F三2 by an isotopic deformation of ∂(B;[-8, 8]) keeping two 3-disks containing

♂(B;ト8, £])〔F-呈2fixed･ Using a collar of ∂(B;ト8, 6]) in R4, it follows that

Cl(∂BL-(∂BE)〔F呈2) is ambient isotopic to Cl(∂(Bfl-a, E])-♂(Bfl-a, £])∩

P三2) by an isotopic deformation of R4 keeping FL三2触ed. Hence F′ is regarded

as the surface obtained from FZ2 by the hyperboloidal transformations along the

1-handles Bfト8, 6],A.I, B孟[-8, 8]. This shows that F'is a ribbon surface, and

this completes the proof or Lemma 4.ll.　□

4･12･ PROOF Of Theorem 4･4･ The 3-manifold constructed in the proof of

Lemma 4･2 is certainly a semi-unknotted 21manifold･ Conversely, we assume that

a surface FCR4 bounds a semi-unknotted 3-manifold W as in Definition 4.3,

Let (∂T.p)〔F-Fz and ∂T卜F.A-S(lわu -us皇≡),哩) a 2-sphere. Let TE be a

solid torus in Ti Such that Cl(Tr Tz･)=F.×[0, 1] and T.･〔S5･0-0, j-1,‥H si.

Let F･･-aTl･ We regard Fi aS the surface obtained from the boundary瑚of a

3-simplex AP in Tnt (TT) by the hyperboloidal transformations along ]-handles

V1,-- Vg･ in lht(TF)･ We choose mutually disjoint, simple, proper arcs β1,･･･, βsf

in Cl(TデーTi) such that, for eachj, βj spans βA卜(V. U.- 〕 Vg.) and Sij', and

then we take in Cl(TT- Ti) a small regular neighborhood Uj Of βj meeting the

boundary regularly, with Uj n Uk-Ql forj≠k･ Then Cl(T7- Tl-Ul-･･･-Usz)

is homeomorphic to F,･×[0, 1]. Let F;-∂Cl(TアーTrU1---Us.)-Fi,

SinceF-Flu-UF, is ambientisotoplCtO F'lU -〕F; and Flu ･･･ 〕Fニis ob-

tained from a trivial surface u7-1∂A?uS(lH u - 〕 S三…) by the hyperboloidal

transformations along 1-handlesI By Lemma 4･11, F, is a ribborl Surface, and

completing the proof.　口

From Theorem 4･4 (4･12) and Lemma 4･11, we also have the fわllowing char-

acterization of ribbon surfaces :

4113･ CoROLLARY･ F⊂R4 is a ribbon surface lfand only 'fF '.S obtained

from an unknotted surface consisting of 2-spheres by hyperbotoidal i,ans_

formations along 1-handles.　□
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ItwiIl be noticed that an unknotted surface in R4 is a consequence of an

unknotted surface consistlng Of 2-Spheres by hyperboloidal transformations

along 1-handles･

4.14. CoROLLARY. For a ribbon surface FcR4 with non-zero genus, the

L･ncZu.u･on homomorpflism冗1(∂N(F))-7;.(Cl (R4-N(F)) is not injective, where

N(F) i.M regular neigi7borhoodofF z'n R4.　□

Combining this with the rollowlng･ We have in血itely many non-ribbon

surfaces in R4.

4.15. PROPOSmON (AsANO l1], LtvINGSTON l39]). There exist injinitely

many LWfaces F⊂R4 (of genus 1) having the property that the inclusion hom0-

morphism 7Tl(∂N(F))-7Tl(Cl (尺4- N(F))) is injectEve･　ロ

For general surfaces in R4, we have the followlng Weaker result, corresponding

to Theorem 4.4. (cr. Suzuki [56, §5])

4.16. THEOREM (GLUCK [11]). An orl-entable surface FcR4 bounds a

compact orientable 31manifold in R41

pROOF. From Lemmas I.1.14and I.2.8, we may consider that ∫ istheclosed

realizing surface P2 0fa sequence 0-0'oftrivial links Q and o', and let至宝be

the lower closed realizing surface, that is至宝is the closure of声望〔 R3la, b) in R41

we may set o′-h(0; Bl,-, Bm)･ Let D be the image of至宝underthe projection

p: R3la, b]-R3･ With suitable modiBeations of bands (see, for example･ Fig･ 7
of lT]), We can assume that D is a normal singular surface whose singularity r

consists ofmutualLy disjoint, simple, ribbon singularities･ In fact, D is the union

of mutually disjoint, oriented 2-disks Dl,･･･, DA With uf=l aDL-0 and the bands

Bl,･･･,Bm spannlng O･ As we have seen in the proof of Lemrna4･2, we can

assume that the sum of the signs of simple ribbon slngularities off) along the band

Bl for each i is zero･ Tn particular, the number of simple ribbon singularities of

D is even, say 2FL. For small regular neighborhoods Al,-I, A2p Of these slngu-
larities in DI U - U DA, there exist FL tubes Al,-リAv attached to the new resulting

boundaries of Cl(D-A1-,.～-A2p) such that the union G-(D-dl-A'l一･･･- ･

Ap-AL) U (AI U - U Ap) is an orientable surface bounded by the trivial link O',

where A., A'1,‥., Ap, AL are the same as Al,-･, A2V, but re-indexed so that ∂Ai-

aAiU叫, i-1,…,FL. Weasstlmethatatthelevel i-lo with a<to<b,thebands

of O→Ol occur. A required 3-manifold, say W, bounded by Pdb js constructed

as follows: Consider the mutually disjoint 2･spheres AI U AI U All,-･, Av〕 Apu

AL in R3･ Find an innermost 2-sphere, say AI U AI UA'l･ in these 2-spheres, and

let Vl bethe 3-diskin R3 bounded by AIUAIUAJl･ Let El be a sumciently

small positive number, and we take
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Wn R3la] -(DIU-UDIU Vl)la],

W〔R3lt]-((DIU･･.UDAIAl-All)uAl)[t]　for a<t≦a+£1.

Repeating of this procedure, we obtain, at the level i with a+E<t<to,

where 81<82<-<£A,

W〔 R3lt] -((Dl 〕 ･.I UDl-Al-Ai-･--Ap-AL)U(Al 〕 -･ UAp))[t].

At i-to, we have

W〔 R3[to] - ((DIAl-All-I--ALIAl)U(AI U -. UAp))[to] - Glt｡].

Let D'1,･･･,DL be mutually disjolnt V 2-disks in R3 with u.Y=1aD;-0,.

Consider the intersection G n (D'l U ･･･ U DL), which consists of mutually disjoint

simple curves･ (see Figl 4 oflI]･) Letcl be an innermost curve on D,I U ･･･ UDL

in the interesection curves and dl⊂D'l U ･- U DL be the 2-disk cut o打by cI With

Int(dl)∩(D'lU･･. UDL)-臥　Let dl be a 3-disk obtained by thickenning dl

such that alnG-(∂dl)nG is an annulus and dlU(D,1U･･･UD,V)-dl. Let

£;>8'1>O be sufBciently small numbers. Now we define as follows:

W〔R3[t]-Gli]　fort｡<t<t｡+gi,

W ∩ R3[(0+811] - (Gu al)[t｡+8'1],

W〔R3ll]-Gl[t]　for t｡+8'1<i≦t｡+占;,

where Gl-(G-(∂dl)〔G)UCl(∂dl-(∂dl)〔G), and jt win be noticed that

GI〔(DllU-UDL)-G〔(DllU-〕DLトcl.

Repeating of this procedure, we obtainthe manifold Wn R3la, to+8,],

to<to+8'<b,占uch that WnR3lt｡+8']-G′[t｡+8′], Where G, is an 0,iented

surfacewith ∂G'-O'and G′ 〔Int(Di U ･- UDL)-臥

Now we need the fわllowing proposition due to R･ H･ Fox [6]; compare

Proposition 4. 15.

4117･ PROPOSmON･ For any closed orientable (possibly disconnected)

surfacef in R3 with nonTZerO genus, there exL'sts a 2-dz･sk e2 in R3 such that

e2〔f-∂e2andthz's loop∂e2 does not boundany2-diskonf. □

We apply Proposition 4･17 to the closed surface Go-G′ uDi u.I. 〕DL. If

g(Go)≠0, then we can find a 21disk e2 in R3 such that e2 n Go-∂e2⊂Int(G,)and

∂e2 does not bound any 2-disk on G,･Let i be a 31disk obtained by thickennlng

eヱsuch that否〔 G′-(ai) n G′ is an annulus･ Let £;>811,>O be sunciently small

numberswith to+8′<t｡+8'1'<l｡+811<b, and we define as follows:

WnR3[t]-G'[t]　for l｡+81<l<t｡+6'1,,
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W〔 R3[t｡+811'] - (G′U否)[to+描,

W〔R3[t]-G'llt]　for to+己'1<t≦to+e'1,

where G･1-(G′一百n G,) u Cl(∂5-(∂e) n G′), and it should be noted that x(G'1)-

2+X(G'), where x denotes the Euler characteristicI

Repeating of this procedure,触ally we obtain the manifold Wn R3[a, to +8′′],

t｡+£,<to+£〝<b, such that WnR3[to+£･′]-G"lto+8"], Where g(G′′)-0 and

G′′ 〔Tnt(D'lU ･･･ 〕Dl)-Ql･

since Ga-G√′ 〕 D･1 U.･･ U DI consists of mutually disjoint 2-Spheres in R3,

we can触d an innermost 2-sphere, say E1, in G岩･ which bounds a 3-disk ql in R3

such that Int(ql) ∩ G,i-玖Let車種>O be sumciently srnall numberswith

t.+£〝<t｡+8苦くt｡+e苦くb, and let

w〔R3[t]-G"lt]　for t.+£′′<t<to+症

W ∩ R3[t｡+堵] -(G′′〕ql)[to+碕],

W〔R3[t]-(G′′-Zl)lt]　for to+£苦くt<Jo+£芳･

Repeating of this procedure, we obtainfinally Wn R3[to+£**]-el for a

level i-i.+8** with to+8′･<to+8**<b. By the Cellular Move Lemma (ProI

position l･1･7), oWis ambient isotopic to P三･ Hence F bounds a 3-manifold in

R3la, b] ambient isotopic to W, and this completes the proof of Theorem 4･16･

□

we call a compact, oriented (connected) 31manifold WcR4 a Seifert manifold

for the surface FcR4, provided aW-F･

It is well-known that any compact, COnneCted and orientable 31manifold W3

with non-empty boundary can be represented as T U h2(Dl) U - 〕 h2(Dk) where

Tis a solid-torus, Di is a 2-disk for each i and h2(Di)≡D2 X Dl is a 2-handle along

the core Di･ This representation will be called a Heegaard splitt,'ng for W3,

and the genus of the splitting is the genus of rand the smallest possible genus of

Heegaard splitting for W3 will be denoted by Hg(W3)･

By Theorem 4･16 and Definition 4･7, we have the followlng:

4.18. THEOREM (HosoKAWAIKAWAUCm l22, THEOREM 2･3])･ For any

surface F in R4, there exists ajinite number ofl-handles Bl,･･,, By such that the

surface hl(F; B1,.-, Bu) is aワunknotted surface of genus g(F)'u･ □

4.19. DEFINmON ([23]). The unknotling number, u(F), of a surface F in

R4 is the least numbe, of 1-handles Bl,･･･,Bu for F so that hl(F; B1,日.,Bu) is

unknotted.

4.20. PROPOSITION ([23])･ Let FCR4 be a connected surface of genus
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g(F), and let Wbe a Seifert manifold for F･ Then it holds that:

0≦ u(F) ≦ Hg(W)一g(F) < co･　口

4.21. THEOREM ([23]), For arbitray TIOn-Ttegative integers n and a, there

exists a connected surface F z'n R4 with a(F)-n, u(F)=u.　ロ

see Hosokawa-Maeda-Suzuki l23] for the proof and some related topics of

unknotting number of surfaces in R41

5. Some Topics of 2-Knots

By a 2-knot, we mean a locally Bat 2-sphere in R4 (or in S4), considered from

the piecewise-linear point of view･ GerLeral references to the 2-knot theory are

Fox [7], Suzuki l56] and Kervaire-Weber [35]･ ln this section, we shallgive

some toplCS Or 2-knots related to our theme･

we rerormulate the results in §4 on ribbon 2-kmots･

5.1. THEOREM. ThefoIEowings are equivalent:

(1) A 2-knot K⊂R4 is a ribbon 2-knot,

(2) A 2-knot K⊂R4 has a semi-unknotted Sezferl manifold in R4,

(3) A 2･knot KcR4 is obtaz'nedfrom an unknotted surface consisting of

2-Spheres by the hyperboloidal transformations along 1-handles.　ロ

5.2. ExAMPLES. (a) The 21knot obtained by spinning an arbitrary knot is

a ribbon 2-kmot. (See Fox-Milnor [10], etc-)

(b) The 2-knots constructed by Sumners l55] are ribbon 2-knots･ (See

omae l50] for the proof, and see also Asano-MarumotoIYanagawa l2]･)

The fundamental group of the complementary domain R4-K of a 2lknot

K⊂R4 is usually called a 21knot group. Kervaire [34] discussed the characteri-

zation problem of knot groups･ Cr･ Levine [36], Suzuki [56]･

5.3. THEOREM (KERVAIRE [34]). Ira group G is a 2-knot group, then

(0) G is ajinitely presented group,

(1) the abelianized group G/G′ is iTljinite cyclic,

(2) there exists an element FLeG with G/(ip:?-1,

(3) the second homology group H2(G; Z)-11　□

In fact, Kervaire l34, Theorem l] asserted that these conditions (0), (1), (2)

and (3) are su氏cient conditions for a group G to be an n-knot group with n>-3･

However, the problem of characterizing 21knot groups by algebraic conditions

remains unsolved. The following Characterization of ribbon 21knot groups was

given by Yajima l59], [60]･
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5.4. THEOREM (YAJIMA l59], [60])･ L4 group G is a ribbon 2-knot group if

and only if

'(i', tGhehaasbea'Lniitzeedw?,rt霊/pG,'esi:niinajiToiteocfySt;C;iency i. □

A bite presentationくxl･=･, XnL rl,･･･, rm) ofa group G is called a Wlrtinger

presentation iq each relator rl has the form xpLW戒W{1, where wL･ lS a WOrd in

xl"･･, Xn･ The condition (4) implies the conditions (0), (i) and (3) of Theorem 513･

Levine l36] gave a sumcient condition for a group G to be a 2-knot group, but as

Yoshikawa l69] Pointed out･ this condition is equivalent to Yajima's condi-

ti.ns and the 21knots constructed in l36] are ribbon 2-knots･

5.5. CoROLLARY. For a T･ibbon 21knot group G, the abelianlzed com-

mutator subgroup G,/G〝 is a tors7･on-free abelian group and i71ejisri elementary

idea1610fGisprincipaL.　ロ

This corollary follows from Theorem 514 and the following somewhat general

lemma:

5.6. LEMMA. Let G be a group with a jinlte presentation ofdejiciency l･

IfG/G, is injnite cyclic, then G,/G" is a torsion-free abellan group and thefrst

elementary ideal 61 0fG is principal.

pROOF. Let (i, xl,･･r, X"trl,-, rn) be a presentation of G of deficiency l･

we can assume that the epimorphism γ: G-(i) satisBes y(xf)-1 for i-1,-, n,

and γ(i)-(, where (t〉 is the inhite cyclic group generated by the symbol t･

(Take a pre-abelian presentation of Gt See Magnus-Karras-Solitar [42, pp.

1401149].) Thenthe n x n matrix Itv(∂rzJaxj)" Obtained by the Fox free calculus

is a presentation matrix of the Z(i)-module G,/G"A (See Kawauchi l32, Lernma

2.6].) Here Zくt) denotes the integral group ring of the groupくt)･ The nrst

elementary ideal 61 0f G is generated by the socalled Alexander polynomial

A(t)-det Llγ(∂ri/axj)LI of G･ Hence 61 is a principal ideal･ Further, lA(I)I-1,

since G/G, is in帥ite cyclic･ (In fact, notice that the integral matrix lh軌/∂刷-.

is a presentation matrix of (G′/G") ⑳r-1 Z-0･ See, for example, Kawauchi

[32, Lemma 2･7]･) This implies that G′/G′′ is a torsion-free abelian group by

crowell [5, Theorem l･3]. This completes theproof.ロ

5･7･ CoROLLARY･ For.a rl･bbon 2-knot group G, G/G" Z's a torsion-free

grOuP･

pROOF. This follows from Corollary 5･5 and the short exact sequence l-

G′/G〝-G/G′′-G/G･→1･ (See Marumoto [44] and Hi一t [18]･)口

5.8. QUESTIONOF T･ YANAGAWA･ I丘a ribbon 2-knot group necessarily



58　　　　　　　　Akio KAWAUCM, Tetsuo SfIIBUYA and Shin'ichi SuzuxI

tors ion-free?

Asano-Marumoto-Yanagawa [2] discussed this question and gave an af-

firmative answer in l2, Corollary 3.8], but they did not give the proof of l2,

Proposition 3.2]･

5.9. THEOREM(YAJIMA [59]). There exL'st infnitely many 2-kywts thai

are not ribbon 21knots.

七-3⑳　⑳

∴＼､＼､∴

一　二!二■_l　▲

'し_　.　_

七-0匡…璽

0 ..i,..H O

･　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　1

＼.

七三一3⑳　⑳
Fig. 12

早
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X

lR･･吠
2n crossings
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pROOF. Considerthe21knotsKncR4, n-1, 2, 3,...,dueto Fox l7, Example

15]), illustrated in Fig. 12･ The 2-knot group Gn-冗.(R4-Kn) has a presentation

(i, blb2n'1-1, tbt-1-b-I). Hence the commutator subgroup G'n is a cyclic

group of order 2n+ 1･ Therefore, Gn is not a ribbon 2-knot group by Corollary

5.5.　□

5.10. REMARKS. (a) Kanenobu [27] showed that Fox'S 2-knots given in

Fig. 12 are 21tWist spun knots l70], see also Litherland l37].

(b) Kanenobu [26] asserted, under an amrmative answer to 5A8, that there

exists a non_ribbon　2-knot whose Seifert manifold is homeomorphic to

D3㌔(Sl xS2)･ Recall Definition 413 and Corol1ary415･　□

on the second homology group H2(7tl(R4-F); Z) of TEl(R4-F) for a closed

orientable surface FC R4, we have the followlng:

5.ll. PROl'OSITION.

(1) (MAEDA [41]) For the group A5XZ,A5 the alternatz-ng group of

degree 5, there exists a locally jlat closed surface F⊂尺4 with 771(R4-F)≡

A5×ZandH2(A5XZ; Z) hasorder2･

(2) (GoRDON [13]) For any hjtely generated abelian group A, there
exists a locallyjTat closed surface F⊂R4 with H2(nl(R4-F); Z)窒A･

(3) (LITHERLAND l38]) For any abelia,1 group A generated by 2g ele-

ments, there exists a locallyjlat closed surface F⊂R4 of genus 2g such ihaE

H2(花1(R4-F); Z)≡A･　□

we also refer the reader to Simon l54], Kanenobu l25], Hillman l17],

Yoshikawa l67], [68] for 2-knot groups･

A 2-knot KLCR4 (or S4) is said to be unknotled, iffthere exists a 3-disk

B3⊂R4 (or S4) with ∂B3-K; recall Definition 4･7･ (This is equivalent to saying

that K is ambient isotopIC tO the boundary of a 3-simplex in a triangulated R4 by

the Cellular Move Lemma (Proposition I.I.7)I)

The unknottlng COnjeCture is usually stated as follows :

5.12. UNKNOTTING CoNJECTURE. For a 2-knot K⊂S4, lhe complement

s41K is homotopy equivalent lo lhe circle Sl lf and only lf KcS4 is

uTZkotled.

REMARK. YANAGAWA l63] Showed that the unknotting conjecture is true

for ribbon 2-knots, however the second-step of the proof of [63, (2･2)′] is

incorrect. Thus, the unknottlng COnjecture is unsettled even for ribbon

2-knots.

5.13. THEOREM(MARUMOTO l43]). Let KcR4 be a ribbon 2-knot ob-

LaL'ned from an unknoled surface consisting of two 2-Spheres by the hyper-
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boloidal transformation alon.q a 1-handle. If7Tl(R4-K) is inPnife cyclic, then

K⊂R4 is mknotled.　ロ

5.14. FoxIHosoKAWA CoNJECTURE FOR UNKNOTTING 2-KNOTS. A 21knot

KcR4 ls unknotted, lf K isambient z-Sotopic to a 21knot in the normalform

whose middle croLSS-Sectional knot is unknotted.

REMARK･ One of the simplest case of 5･14 was given by Hosokawa [20].

However, it has a gap in the prooror [20, Lemma 2].

We say that a 2-knot satisfying the assumptlOn Of 5･14 is a 21knot of FoxI

Hosokawa type･ lt is easily seen that a 2-knot KcR4 0f FoxIHosokawa type

has the infinite cyclic knot group; 7Tl(R4-K)芸7Tl(Sl), Cf. for example, Suzuki

[56,§3].

5･151 QUESTION･ IfTEl(R4-K)窒Tl1(Sl), then t's the 2lknot KCR4 ofFox-

Hosokawa type?

The FoxIHosokawa Conjecture 5･14 is a special case of the Unknottlng Con-

jecture 5･12, Shce the foIJowlng theorem shows that, for a 2-knot KcR4 of

Fox-Hosokawa type, the complement R4 U (co) -K is homotopy equivalent to

a circle.

5･16･ THEOREM(KAwAUCHt l30])I For a 2lknot KcS4 if 7T.(S41K)2

7Tl(Sl), then the complement S4-K is homotopy equivalent to Sl.

PROOF･ Let N be a regular neighborhood of K in S4. Since K is locally

nat in S4, N is homeomorphic to S2XD2, and so the boundary of E-Cl(S4-N)

is homeomorphic to S2xSl. We take the universal cover E of E, which is

obviously an infinite cyclic cover･ H2(E; Z)-0 implies that H2(E; Q) isfinitely

generated over the rational numberfield Q･ Then by the partial Poincar占duality

theorem [31], there is a duality ∩IL: Hl(E; Z)窒H,_i(E～,∂E;Z), i-0, 1. (Note

that H.(E; Z)-0, since E is simply connected.) Hence H2(E, aE; Z)-o and

H,(E, ∂E; Z)-Z.Asshown in Theorem 4.16, one can find a compact oriented

proper 31manifold V⊂E such that ∂V-S2Xx⊂S2×sl-∂E for a polnt X∈Sl.

Let VCE be a lift of V (Such a P certainly exists, since the inclusion V⊂E

induces the trivial homomorphism Hl(V; Z)-Hl(E; Z)-TEl(E).) The boundary

homomorphism ∂‥ H,(E, ∂E; Z)-H2(∂E; Z) sends the homology class [V]

onto a generator [∂V] ofHユ(∂E; Z)窒Z･ Since H,(a,∂E; Z)≡Z, theboundary

homomorphism a: H3(E, aE; Z).H2(aE; Z) is an isomorphism. From the

exact sequence of the pair ∂E⊂E, it follows that jf*(E; Z)-0. since E is simply

connected, E is contractible, and hence E is homotopy equivalent to Sl. This

completes the proof.　口
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6. Slices and Ribbons

6.1. DEFINITION. A knot d⊂R3-R3[0] is called a sIT'ce knot, iffthere

exists a 2-knot K2CR4with i-K2 ∩ R3[0].

Equivalently, a knot iCR3-R3[0] is a sliceknot, iHthere is a locallyflat,

proper 2-disk ECR3lo, +co)with ∂E-i･ By Corollary 2･6, every ribbon knot

is a slice knot. We are interested in the converse question: Is every slice knot

a rt'bbon knot?

Here is one criterion to this question, which follows easily from Section 3

or[H, Cr. Fox [9]･

6.2. PROPOSITtON. A knol iCR3 is a slice knot tfa17d only if for some

integer n≧0, the l'･nk icon T's a rL'bbon link ,'n The weak sense, where ioO" is

ike (convexly) completely spliltable link conL"'sting of the knot i and a trivzral

link On with n components･　ロ

Let i⊂R3[0] be a slice knot and ECR3[0, 2) be a locally nat, proper 2-disk

with ∂E=∠. From the argumentin [l], We can assume that E has only elementary

critical bands in R3[0, 2) such that the intersection E'-E〔 R3[1, 2) is a proper

2_disk without minimal bands and the intersection E ∩ R3[0, 1] is a proper annulus

with onlyminimal bands; see Fig･ 13･ Since E'does not have minimal bands,

the knot i.-∂E'⊂R3[1] is a ribbon knot･ Thus, i｡ is obtained by a complete

fusion from a trivial link Om+1 with m+ l components for some m≧0･

芽∩R3[1,2)≡ 

ko � 

首∩㌔【0,ll 

良 

Fig.13

Let 9-uT=｡Di be a union of mutually disjoint, non-slngular 21disks Di in R3

with ∂9-UT=｡∂Dl=Om'1･ Let a-uT=1Bj be a union of mutually disjoint

bands Bj in R3 used for the complete fusion Om+1-ioI Then we have p(E′)-

9 〕 a, where p: R3(-co, +co)-R3 is the natural projection･ We may assume
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that the minimal bands of E appear on R3[1/2] at the same time. Let虚=

U7-1 Di be a union of mutually disjolnt 2-disks in R3 representing the minimal

bandsofE, an°let or,･=∂虚-∪㌢=l aDi･ Let虚-〕㌢=1 Bi beamiOnofmutual1y

disjoint bands Bl in R3 used forthe completefission i｡十か0-H. we now c.nsider

the singular 2-disk E-盟U a u壷∪虚that istheimageofE under the projection

p and whose boundary ∂E is i･ First we may assumethatthe slngularlty OfE is

normal. (One canmodify E by a level preserving isotopy of R3(一CO, +m) So

that the singularity of the image E-p(E) is normal.) Further, we assume that

(∂9-) ∩ (∂9)-(吻∩ (aDo) and for each i, i-1,･‥, n, (∂9-zL) ∩ (∂虚)-(∂勧〔 (∂15L.).

Fig.14

We suppose that the normal slngular 21disk E is given by a pleCeWisel

linear mapf:E*-Ewith E* a non-singular2-disk･ Let 9*,が,虚* and虚* be

the unions of 21disks in E* corresponding to乳M, a- and 9, respectively, under

the mapf; see Fig･ 14 for our situation. Let us observe the singularities between

9, a,虚andゑ　There are sixdifferentcases. Since虚isthe union of bands

relating to theminimal bands of E, the intersection虚n i is empty. Thus, We

can reduce the types or the singularities to the fbllowlng types by doing suitable

modifications of 9, a, iW-and 99 as in Fig･ 14:

(1) 9 mg has only mutually disjoint, simple ribbon singularities,

(2) 9 ∩虚has only mutually disjoint, simpleribbon singularities,

(3) 1g ∩虚has mutually disjoint, simple singularities,

(4) a 〔虚is empty by taking narrow bands,

(5)虜〔虚has only mutually disjoint, simple ribbon singularities,

(6)虚∩虚has only mutually disjoint, simple ribbon singularities. We now
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claim that :

6.3. LEMMA. E does not have clasp singularities.

pROOF･ Suppose E has a clasp slngularity αwith ∂∝-p U q･ As illustrated

in Fig. 15, cc-f(C(a)-I(Ge'*), P-f(p*)-f(p'*)

and q-I(q*)-I(q′*) with p*, q'*∈∂E* and

p'+,q*∈Int(E*). Since虚〔i-珍 and虜is

theunion of bands of nssions and a is the

union of bands of fusions and a 〔顔-a, the

pointp'* iscontained in none of Q*, a* and

3g串. So p'* is contained jn 9* and another

point P* is not contained ill Q*. Hence p*

rnustbein a*U虚辞. Ifp* ∈9㌔then p∈　P*

9〔G, which would imply that p IS an end

polnt Ofaribbon slngularlty･ Thus, p*¢@*

and p*∈虚*. we can prove that q*∈9* by

the similar way to show that p'*∈9*･ Hence

C(*〔(が〔(虚*〕虚))≠8. However, from the singularity of type (6) above,

we see that α*〔9*〔虚*-0. So ∝*〔9*〔虚*≠0; we take a point r*∈

.∝* ∩ 9* 〔虚喪. Since 9 and虚are non-slngular, another point r′* Correspond-

lngtO r* is not contained in Q*U虚*･ On the other hand, r′*宅3g*〕虜*,

since a and虚　are the unions of bands of fusions and fissions, respectively.

This is a contradiction. Therefore, E does not have clasp slngularities, com-

pleting the proof.　□

6.4. LEMMA. Leio: be a double lineon E. The b-line 7-n thepreEmageof

cH's contained in either 9*um* or虜*, and the i-line z.s contained t'n 9*〕

@* 〕 18-㌔ Provided that the bJine and ike i-line are suitably specEJiedin the case

ofa loop singularity ofFig･ 2(a) Or a branch singularity with two branch points

as in Fig. 2(e).

pROOF. We say that a loop α* in the preimage of a loop slngularity α is a

b-line, if GC* is contained in lnt(虚*). Since虚〔 i-0,虚* contains no i-lines of

the ribbon slngularity and the branch singularity with a slngle branch point

(cf. Fig. 2(d)). Suppos与that a double line α intersects with Int(5), but is not a

loop_singularity･ Then, the closure of each line β*こかin the preimage of

α ∩ 9 intersects with ∂12'*. If (∂β*) ∩ (∂彦*)≠玖it can be shown that each point

of(∂β*) ∩ (∂虚*) is a branch point by the similar way to the proof of Lemma 6･3r

so, β* cannot be extended into the interior of 9*･ If ∂β*⊂∂盟*, then G( is a

branch line with two branch points, and we say that β*(-∝*) is a bl1ine･ Assume
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that β*n(紛-∂9*)≠0, and we choose a point p* in β*∩(∂虚*-∂9*).

Since a-* U虚* is non-singular and -顔-0･ another point p,*ef-1(p) is con-

tained in 9*, where p-f(p*)･ Hence the point p is contained in動乱

Therefore, β*will be extended into d* toward ∂新一- by the property (2), see

Fjg･ 141 Sothisextended IJ･neα*isa b-lineon E*anddoesnotintersectwith ∂9*.

This imp一ies that each b-line α* is contained in eitherかU虚* or a*. (A b-line

contained in m* is in the preimage of a n 9 with property (1)'see Fig･ 14.),

since a double line that intersectswith lnt(15*) is a b-line, we also have that an

i-lineiscontainedinm*UかU針Thiscompletestheproof･ □

6･5･ THEOREM･ E is a normal ".ngular 2-disk without a clasp singularity

and a triple point of type I.

pROOF･ By Lemma 6･3, E does not have a clasp slngularlty･ Since each of

9,象m and虚is non-singular and mn虚輔, we have a point p*∈釦in the

preimage oreach triple point p･ By Lemma 614, p* is of type (b, b). So, the

other two points in the preimage ofp are those of types (b, i) and (i, i), and this

completestheproor･　□

6･6･ SUppLEMFNTS･ The points of types (b, b), (b, i) and (i, E･) in the pre-

image ofa trlple polnt in E are contained in針がUかand 9*, respectively.

The following has been suggested by F･ Hosokawa and T･ Yanagawa to the

authors.

6･71 CoROLLARY･ A knoti⊂R3 isasllceknot Lfandonly lf i bounds a

normal Ldngu/ar 2-df.Sk wL.thouT a clasp i".ngulart.ty and a triple point of type I

inR3.

pROOF･ By Theorem 6･5, a slice knot certainly boLInds a desired normal

singular 2-disk･ Conversely, we assume that a knot iCR3 bounds a normal

singular 21disk E without a clasp singularity and a triple point of type I, where E

isgiven by a map I: E*-E such that E* is a non･singular 2ldisk. Remove from

E* a small open 21disk neighborhood of each point of(b, b)-type. For b-]ines of

the branch singu]arities, further remove small open 21disks from E* as in Fig･ 16

below.

Next for a simple loop singularity, we remove from E* a small open 21disk

neighborhood of an arbitrary polnt in the b-line･ Then theresulting holey 2-disk

E′*gives a ribbon E′-I(E,T)･ Since ∂E′ (-f(∂E′*)) is the link ioUn for some

n, from proposition 6･2 we conclude that i is a slice knot･ This completes the

proof.　□
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A branch singularity with a single branch point

A branch singularity with two branch points

Fig.16

6r8･ REMARK･ The question "Ts every slice knot a ribbon knot?" asks

whether one can always eliminate the triple point Of type ll in E without changing

the knot typeofthe boundary ∂E. For example, assume that a slice knot LCR3

bounds a much simpliBed singular 2-disk E with preimage E* as shown in Fig. 17.

E contains a slrrgle triple polnt Of type Il. This triple point can be in fact elimi-

nated･ Take a simple arc w* in E* such that w* connects a point ofaE* and the

point p+ of type(b, b) as shown in Fig. 17. Remove from E* a neighborhood of

Fig.17

㌔, The resulting 2ldisk El牛 determines a ribbon E′. Since ∂E′ is obviously

isotopic to the knot ,6, it follows that i is a ribbon knot.　□
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6･9･ DEFINmoNI An oriented ユink ccR3lo]with I-Omponents is said to

be a slice link in the weak sense･ iffG bounds a localJy月at oriented, proper,

connected surface of genus o in R3[0, +叫, and a slice link z･n the strong sense,

肝e bounds a union of mutually disjoint･ p locally Bat proper 2-disks in R3 lo,

+孤).

clearly, a slice link in the strong sense is a slice link in the weak sense, and a

ribbon link in the weak (resp･ strong) sense is a slice link in the weak (resp･ strong)

sense･ By parallel arguments of Theorem 615 and Corollary 6･7, we may also

have the following.･

6･101 CoROLLARY. (1) A link pcR3 is a slice link in the weaksense lf

and only lf C bounds in R3 a normal sL･ngular holey 2-disk without a clasp

singularity and a triple point of type I.

(2) A link BcR3 wL.th p components is a slice link in the sfrohg sense lf
and only lf G bounds in R3 a normal singular 21disk with component number

p and without a clasp singularity and a triple point of type "

REMARK･ We refer the reader to casson-Gordon [丑[4] and Fox l9] for

our problem HIs every slice knot a ribbon knot?,,.
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Added in Proof. Recently, Cochran [71] has obtained some remarkable
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