A classification of simple spinnable structures on a 1-connected Alexander manifold

By Mitsuyoshi KATO

(Received May 22, 1973)

§ 1. Introduction.

The notion of a spinnable structure on a closed smooth manifold has been introduced by I. Tamura [5] and independently by Winkelnkemper [6] ("open book decomposition" in his term), who obtained necessary and sufficient conditions for existence of it on at least a simply connected closed manifold.

The purpose of the paper is to classify "simple" spinnable structures on a smooth 1-connected closed oriented "Alexander" (2n+1)-manifold in terms of their "Seifert matrices".

In the following all things will be considered from the oriented differentiable point of view. A closed oriented (2n+1)-manifold is an Alexander manifold, if $H_n(M) = H_{n+1}(M) = 0$.

In § 2, we shall define a Seifert form $\gamma(\mathcal{S})$ of a simple spinnable structure \mathcal{S} on an Alexander (2n+1)-manifold. A matrix $\Gamma(\mathcal{S})$ representing $\gamma(\mathcal{S})$ is called a Seifert matrix. It is shown that $\Gamma(\mathcal{S})$ is unimodular, i. e. det $\Gamma(\mathcal{S})$ = ± 1 , and determines the intersection matrix of the generator of \mathcal{S} and its n-th monodromy.

The following classification theorem of simple spinnable structures on S^{2n+1} $(n \ge 3)$ will be proved in §§ 3 and 4.

THEOREM A. For a unimodular $m \times m$ -matrix A, there is a spinnable structure S on S^{2n+1} with $\Gamma(S) = A$, provided that $n \ge 3$.

THEOREM B. If S_1 and S_2 are simple spinnable structures on S^{2n+1} with congruent* Seifert matrices, then they are isomorphic, provided that $n \ge 3^{**}$.

One should notice that Theorem B implies that isolated hypersurface singularities of complex dimension $n \geq 3$ are classified completely by means of Seifert matrices associated with Milnor's spinnable structures.

Based on Theorems A and B, in §5 we have the following classification theorem of simple spinnable structures on a 1-connected Alexander (2n+1)-manifold $(n \ge 3)$.

^{*)} Integral matrices A and B are congruent, if there exists a unimodular matrix P such that $A = P^t \cdot B \cdot P$.

^{**)} A. Durfee [7] independently proved Theorems A and B.

THEOREM C. There is a one to one correspondence of isomorphism classes of simple spinnable structures on a 1-connected Alexander (2n+1)-manifold M with congruence classes of unimodular matrices via Seifert matrices, provided that $n \ge 3$.

§ 2. Simple spinnable structures and Seifert forms.

Let F be an m-manifold with boundary ∂F , and $h: F \to F$ a diffeomorphism with $h/U = \mathrm{id}$. for some open neighborhood U of ∂F in F. Then an (m+1)-manifold T(F,h) without boundary is defined as follows; its underlying topological space is obtained from $F \times [0,1]$ by identifying

$$(x, 1)$$
 with $(h(x), 0)$ for all $x \in F$

and

$$(y, t)$$
 with $(y, 0)$ for all $(y, t) \in \partial F \times [0, 1]$.

Note that a part $T(F-\partial F, h/F-\partial F)$ of T(F,h) carries the natural smooth structure as a smooth fiber bundle over S^1 with fiber $F-\partial F$. Taking a small collar $\partial F \times [0,1)$ of ∂F in $U \subset F$, a coordinate homeomorphism $T(\partial F \times [0,1), \text{id.}) \to \partial F \times \text{Int } D^2$ is defined by sending $(x,s,t) \in (\partial F \times [0,1)) \times [0,1]$ to $(x,se^{i2\pi t}) \in \partial F \times \text{Int } D^2$. Since those smooth structures are compatible at the intersection, it follows that the smooth manifold T(F,h) is obtained. A *spinnable structure* on a manifold M is a triple $S = \{F,h,g\}$ which consists of T(F,h) and a diffeomorphism $g:T(F,h)\to M$. The manifold F, the diffeomorphism F and F are called *generator*, characteristic diffeomorphism and F are spinnable structures F and F on oriented manifolds F and F are isomorphic, if there is an orientation preserving diffeomorphism

$$f: M \longrightarrow M'$$

such that $f \circ g(F \times t) = g'(F' \times t)$ for all $t \in [0, 1]$. By the uniqueness of collar neighborhoods, the isotopy class of a diffeomorphism of F keeping ∂F fixed determines unique isotopy class of a diffeomorphism h of F keeping some open neighborhoods of ∂F in F fixed, which determines unique spinnable structure $\{F, h, \text{id}\}$ on T(F, h) up to isomorphism. Thus, in the following, we shall be concerned with an isotopy class of a characteristic diffeomorphism keeping ∂F fixed. A spinnable structure $S = \{F, h, g\}$ on an m-manifold M is simple, if F is obtained from a ball by attaching handles of indices $\subseteq [m/2]$.

First of all we prove:

PROPOSITION 2.1. If $S = \{F, h, g\}$ is a simple spinnable structure on a closed orientable (2n+1)-manifold M and $n \ge 2$, then $g \mid F \times t : F \times t \to M$ is n-connected, in particular, if $M = S^{2n+1}$, then F is (n-1)-connected and hence is of the homotopy type of a bouquet of n-spheres;

$$F \simeq \bigvee_{i=1}^m S_i^n$$
.

PROOF. For the proof, putting $F_t = g(F \times t)$, it suffices to show that (M, F_0) is n-connected. We put $W = g(F \times [0, 1/2])$ and $W' = g(F \times [1/2, 1])$. Since $\mathcal S$ is simple, it follows from the general position that there is a PL embedding $f: K \to \operatorname{Int} W'$ from an n-dimensional compact polyhedron K into $\operatorname{Int} W'$ which is a homotopy equivalence. Since $2n+1 \ge 5$, $\pi_1(\partial F) \cong \pi_1(F)$ and hence $\partial W' = \partial W$ is a deformation retract of W' - f(K), we have that

$$\pi_i(M, F_0) \cong \pi_i(M, W) = \pi_i(M, M - W')$$

$$\cong \pi_i(M, M - f(K))$$

$$= 0 \quad \text{for } i \leq n.$$

completing the proof.

We shall call a closed oriented (2n+1)-manifold M is an Alexander manifold, if $H_n(M) = H_{n+1}(M) = 0$. By the Poincaré duality, then $H_{n-1}(M)$ is torsion free and hence if S is a simple spinnable structure on M, then $H_{n-1}(F)$ and $H_n(F)$ are torsion free. Then a bilinear form, called Seifert form;

$$\gamma: H_n(F) \otimes H_n(F) \longrightarrow \mathbf{Z}$$

is defined by

$$\gamma(\alpha \otimes \beta) = L(g_{\#}(\alpha \times t_0), g_{\#}(\beta \times t_1))$$
 ,

where $0 \le t_0 < 1/2$, $1/2 \le t_1 < 1$, and $L(\xi, \eta)$ stands for the linking number of cycles ξ and η in M so that $L(\xi, \eta) = \text{intersection number } \langle \lambda, \eta \rangle$ of chains λ and η in M for some λ with $\partial \lambda = \xi$.

For a basis $\alpha_1, \dots, \alpha_m$ of a free abelian group $H_n(F)$, a square matrix $(\gamma(\alpha_i \otimes \alpha_j)) = (\gamma_{ij})$ will be called a *Seifert matrix* of $\mathcal S$ and denoted by $\Gamma(\mathcal S)$. It is a routine work to make sure that the congruence class of $\Gamma(\mathcal S)$ is invariant under the isomorphism class of $(M, \mathcal S)$. Namely, if $\mathcal S$ and $\mathcal S'$ are isomorphic, then there is a unimodular matrix A such that $A^t\Gamma(\mathcal S)A = \Gamma(\mathcal S')$.

We have an alternative expression of $\Gamma(\mathcal{S})$ in terms of an isomorphism

$$a: H_n(W) \cong H_{n+1}(M, W) \stackrel{\operatorname{exc}^{-1}}{\cong} H_{n+1}(W', \partial W') \stackrel{\operatorname{P.}}{\cong} H^n(W') \stackrel{\operatorname{D.}}{\cong} H_n(W')$$

which will be called the *Alexander isomorphism*, where P is the Poincaré duality isomorphism and D is the dual isomorphism.

We have homomorphisms

$$\varphi \colon H_n(W) \cong H_{n+1}(M, W) \cong H_{n+1}(W', \partial W) \longrightarrow H_n(\partial W)$$

and

$$\varphi': H_n(W') \cong H_{n+1}(M, W') \cong H_{n+1}(W, \partial W) \longrightarrow H_n(\partial W)$$

so that $i_* \circ \varphi = id$. and $i'_* \circ \varphi'_* = id$. and the following sequences are exact:

$$0 \longrightarrow H_n(W') \xrightarrow{\varphi'} H_n(\partial W) \xrightarrow{i_*} H_n(W) \longrightarrow 0,$$

$$0 \longrightarrow H_n(W) \xrightarrow{\varphi} H_n(\partial W) \xrightarrow{i_*'} H_n(W') \longrightarrow 0,$$

where $i_*: H_n(\partial W) \to H_n(W)$ and $i_*': H_n(\partial W) \to H_n(W')$ are homomorphisms induced from the inclusion maps. Let $\alpha_1, \cdots, \alpha_m$ be a basis of $H_n(W)$. Then, putting $\beta_i = a(\alpha_i), \ i = 1, \cdots, m$, we have a basis β_1, \cdots, β_m of $H_n(W')$. By the definition of the Alexander isomorphism, if we put $\bar{\alpha}_i = \varphi(\alpha_i)$ and $\bar{\beta}_i = \varphi'(\beta_i)$, $i = 1, \cdots, m$, then we have that the intersection number in ∂W

$$\langle \bar{\alpha}_i, \bar{\beta}_j \rangle = \delta_{ij} = \left\{ egin{array}{ll} 0 & ext{for } i
eq j \ , \\ 1 & ext{for } i = j \ . \end{array} \right.$$

Let $g_t: F \rightarrow M$ be an embedding defined by

$$g_t(x) = g(x, t)$$
 for all $x \in F$, $t \in [0, 1]$.

For a subspace X of M with $g_t(F) \subset X$, we denote the range restriction of g_t to X by $X|g_t: F \to X$;

$$X|g_t(x) = g_t(x)$$
 for all $x \in F$.

We identify a basis $\alpha_1, \dots, \alpha_m$ of $H_n(W)$ with that of $H_n(F)$ via $(W|g_{1/3})_*$ and a basis β_1, \dots, β_m of $H_n(W')$ with that of $H_n(F)$ via $(W|g_{2/3})_*$.

Again by the definition of the Alexander isomorphism, we have that

$$L(\alpha_i, \beta_j) = \delta_{ij}$$
 for $i, j = 1, \dots, m$.

Since $W|g_{1/3}$ and $W|g_{1/2}=i\circ(\partial W|g_{1/2})$ are homotopic in W and $W'|g_{2/3}$ and $W'|g_{1/2}=i'\circ(\partial W|g_{1/2})$ are homotopic in W', it follows that $(\partial W|g_{1/2})_*(\alpha_i)$ is of a form

$$(\partial W | g_{1/2})_*(\alpha_i) = \bar{\alpha}_i + \sum_{j=1}^m a_{ij}\bar{\beta}_j$$

and hence that $(W'|g_{2/3})_*(\alpha_i) = \sum\limits_{j=1}^m a_{ij}\beta_j = \sum\limits_{j=1}^m a_{ij}a(\alpha_j)$. Therefore, we have that $\gamma_{ij} = L((g_{1/3})_*\alpha_i, (g_{2/3})_*\alpha_j) = L(\alpha_i, \sum a_{jk}\beta_k) = a_{ji}$ for $i,j=1,\cdots,m$. Thus we conclude as follows:

PROPOSITION 2.2. For a basis $\alpha_1, \dots, \alpha_m$ of $H_n(F) \stackrel{(W|g_{1/3})_*}{\cong} H_n(W)$, the following (1), (2) and (3) are equivalent.

(1)
$$(\partial W | g_{1/2})_*(\alpha_i) = \bar{\alpha}_i + \sum_{j=1}^m a_{ij} \bar{\beta}_j$$

(2)
$$a^{-1} \circ (W' | g_{2/3})_*(\alpha_i) = \sum_{j=1}^m a_{ij} \alpha_j$$

(3)
$$\Gamma^t = (a_{i,i})$$
.

In particular, the Seifert matrix Γ is unimodular.

Now we determine algebraic structures of simple spinnable structures on an Alexander manifold.

THEOREM 2.3. Let $S = \{F, h, g\}$ be a simple spinnable structure on an Alexander manifold M^{2n+1} .

(1) The intersection matrix I = I(F) of F and the Seifert matrix $\Gamma = \Gamma(S)$ of S are related in a formula:

$$-I = \Gamma + (-1)^n \Gamma^t$$

where Γ^t is the transposed matrix of Γ .

(2) The n-th monodromy $h_*: H_n(F) \to H_n(F)$ is given by a formula:

$$h_* = (-1)^{n+1} \Gamma^t \cdot \Gamma^{-1}$$

or

$$h_*-E=(-1)^nI\cdot\Gamma^{-1}$$
, where E is the identity matrix.

PROOF. For the proof of (1), we follow Levine [3], p. 542. We take chains $d = (-1)^n g_*(\alpha_i \times [1/3, 2/3])$, e_1 and e_2 in M such that

$$\begin{split} \partial d &= g_{\#}(\alpha_i \times 2/3) - g_{\#}(\alpha_i \times 1/3) = (g_{2/3})_{\#}(\alpha_i) - (g_{1/3})_{\#}(\alpha_i) \,, \\ \\ \partial e_1 &= -(g_{2/3})_{\#}(\alpha_i) \end{split}$$

and

$$\partial e_2 = (g_{1/3})_{\sharp}(\alpha_i)$$
.

Since $d+e_1+e_2$ is a cycle, we have that

$$\begin{split} 0 &= \langle \, d + e_1 + e_2, \, (\, g_{1/2})_{\sharp}(\alpha_j) \, \rangle \\ &= \langle \, d, \, (\, g_{1/2})_{\sharp}(\alpha_j) \, \rangle + \langle \, e_1, \, (\, g_{1/2})_{\sharp}(\alpha_j) \, \rangle + \langle \, e_2, \, (\, g_{1/2})_{\sharp}(\alpha_j) \, \rangle \\ &= \langle \, \alpha_i, \, \alpha_j \, \rangle + (-1) L((\, g_{2/3})_{\sharp}(\alpha_i), \, (\, g_{1/2})_{\sharp}\alpha_j) + L((\, g_{1/3})_{\sharp}(\alpha_i), \, (\, g_{1/2})_{\sharp}\alpha_j) \, . \end{split}$$

Since

$$\begin{split} L((g_{2/3})_{\#}(\alpha_i), (g_{1/2})_{\#}(\alpha_j)) &= (-1)^{n+1} L((g_{1/2})_{\#}(\alpha_j), (g_{2/3})_{\#}(\alpha_i)) \\ &= (-1)^{n+1} \gamma(\alpha_j \otimes \alpha_i) \end{split}$$

and

$$L((g_{1/3})_{\sharp}(\alpha_i), (g_{1/2})_{\sharp}(\alpha_j)) = \gamma(\alpha_i \otimes \alpha_j),$$

we have that

$$-I = \Gamma + (-1)^n \Gamma^t$$
,

completing the proof of (1). To prove (2), we take chains $d=(-1)^n g_*(\alpha_i \times [0,1])$, e_0 and e_1 in M so that $\partial d = g_{1*}(\alpha_i) - g_{0*}(\alpha_i)$, $\partial e_0 = g_{0*}(\alpha_i)$ and $\partial e_1 = -g_{1*}(\alpha_i) = -g_{0*}(h_*(\alpha_i))$. Since $d+e_0+e_1$ is an (n+1)-cycle in M, we have that

$$\begin{split} 0 &= \langle d + e_0 + e_1, (g_{1/2})_{\sharp}(\alpha_j) \rangle \\ &= \langle d, (g_{1/2})_{\sharp}(\alpha_j) \rangle + \langle e_0, (g_{1/2})_{\sharp}(\alpha_j) \rangle + \langle e_1, (g_{1/2})_{\sharp}(\alpha_j) \rangle \\ &= \langle \alpha_i, \alpha_j \rangle + L(g_{0\sharp}(\alpha_i), (g_{1/2})_{\sharp}(\alpha_j)) + (-1)L(g_{0\sharp}(h_{\sharp}(\alpha_i)), (g_{1/2})_{\sharp}(\alpha_j)) \\ &= \langle \alpha_i, \alpha_j \rangle + \gamma(\alpha_i \otimes \alpha_j) - \gamma(h_{\sharp}(\alpha_i) \otimes \alpha_j) \\ &= \langle \alpha_i, \alpha_j \rangle + \gamma((\mathrm{id} - h_{\sharp})(\alpha_i) \otimes \alpha_j) \end{split}$$

and hence that

$$-I = (E - h_*) \cdot \Gamma$$
,

where E is the identity matrix (δ_{ij}) . Therefore, by making use of (1), we have that

$$(h_*-E) = I \cdot \Gamma^{-1}$$

= $-E + (-1)^{n+1} \Gamma^t \cdot \Gamma^{-1}$,

or

$$h_* = (-1)^{n+1} \Gamma^t \cdot \Gamma^{-1}$$
,

completing the proof.

§ 3. Proof of Theorem A.

Suppose that we are given an $m \times m$ unimodular matrix $A = (a_{ij})$. Let K denote a bouquet of m n-dimensional spheres; $K = \bigvee_{i=1}^m S_i^n$. We have a PL embedding $f: K \to S^{2n+1}$. Let W be a smooth regular neighborhood of f(K) in $S^{2n+1} = S$ and W' = S—Int W. We denote the Alexander isomorphism

$$H_n(W) \cong H^n(S-\operatorname{Int} W) = H^n(W') = \operatorname{Hom} (H_n(W')) \cong H_n(W')$$

by $a: H_n(W) \cong H_n(W')$. Thus we have that W, W' and ∂W are (n-1)-connected, and there are splittings

$$\varphi:\ H_n(W^{\,})\cong H_{n+1}(S,\,W^{\,})\cong H_{n+1}(W^{\prime},\,\widehat{o}\,W)\longrightarrow H_n(\widehat{o}\,W^{\,})\,,$$

$$\varphi': H_n(W') \cong H_{n+1}(S, W') \cong H_{n+1}(W, \partial W) \longrightarrow H_n(\partial W)$$

of $i_*: H_n(\partial W) \to H_n(W)$ and $i_*': H_n(\partial W) \to H_n(W')$, respectively. Note that the following sequences are exact.

$$0 \longrightarrow H_n(W) \stackrel{\varphi}{\longrightarrow} H_n(\partial W) \stackrel{i'_*}{\longrightarrow} H_n(W') \longrightarrow 0$$

and

$$0 \longrightarrow H_n(W') \stackrel{\varphi}{\longrightarrow} H_n(\partial W) \longrightarrow H_n(W) \longrightarrow 0.$$

If $\alpha_1, \dots, \alpha_m$ is a basis of $H_n(K) \cong H_n(W)$ represented by S_1^n, \dots, S_m^n and we put $a(\alpha_i) = \beta_i$, $\varphi(\alpha_i) = \bar{\alpha}_i$, and $\varphi(\beta_i) = \bar{\beta}_i$, $i = 1, \dots, m$, then we have that the

intersection numbers in $\partial W \langle \bar{\alpha}_i, \bar{\alpha}_j \rangle = 0$, $\langle \bar{\beta}_i, \bar{\beta}_j \rangle = 0$ and $\langle \bar{\alpha}_i, \bar{\beta}_j \rangle = \delta_{ij}$ for $i, j = 1, \dots, m$, and the linking numbers in $S L(\alpha_i, \beta_j) = \delta_{ij}$, $i, j = 1, \dots, m$.

A splitting $s: H_n(W) \to H_n(\partial W)$ of $i_*: H_n(\partial W) \to H_n(W)$ will be called a non-singular section, if $i'_* \circ s: H_n(W) \to H_n(W')$ is an isomorphism. Indeed, a section $s: H_n(W) \to H_n(\partial W)$ has to be of a form

$$s(\alpha_i) = \bar{\alpha}_i + \sum_{j=1}^m a_{ij} \bar{\beta}_j$$

and hence $i'_* \circ s(\alpha_i) = \sum\limits_{j=1}^m a_{ij}\beta_j$. Thus the correspondence $s \mapsto (a_{ij})$ gives rise to a one to one correspondence of non-singular sections $H_n(W) \to H_n(\partial W)$ with unimodular $m \times m$ matrices (a_{ij}) . As is found by Winkelnkemper [6] and also Tamura [4] for a non-singular section $s: H_n(W) \to H_n(\partial W)$, there is a PL embedding $f': K^n \to \partial W$, provided that $n \geq 3$, which is homotopic to $f: K \to W$ and $f'_*(\alpha_i) = s(\alpha_i)$ in ∂W . Moreover, if F is a regular neighborhood of f'(K) in ∂W and $F' = \partial W - \text{Int } F$, then (W; F, F') and (W'; F', F) are relative h-cobordisms, since $s(\alpha_1), \dots, s(\alpha_m)$ is a basis of $H_n(F)$ as a subgroup of $H_n(\partial W)$ and the inclusion maps induce isomorphisms

and

$$\begin{split} j_*: & \ H_n(F) \cong H_n(W) \; ; \qquad j_*(s(\alpha_i)) = \alpha_i \\ \\ j_*: & \ H_n(F) \cong H_n(W') \; ; \qquad j'_*(s(\alpha_i)) = i'_* \circ s(\alpha_i) = \sum_{j=1}^m a_{ij} \beta_j \end{split}$$

and W, W', F, F' are 1-connected.

It follows that by the h-cobordism theorem, S^{2n+1} admits a spinnable structure $S_A = \{F, h, g\}$ for a given unimodular matrix $A = (a_{ij})$ such that

$$g(F \times [0, 1/2]) = W$$
,
 $g(F \times [1/2, 1]) = W'$

and

$$g(x, 1/2)$$
 for all $x \in F$.

We would like to show that $\Gamma(S_A) = A^t$. We have seen that $(\partial W | g_{1/2})_*(\alpha_i) = s(\alpha_i) = \bar{\alpha}_i + \sum_{j=1}^m a_{ij}\beta_j$. It follows from Proposition 2.2 that $\Gamma(S_A) = A^t$. Therefore, for a given unimodular matrix A, S_{At} is the required spinnable structure on S^{2n+1} , completing the proof.

§ 4. Proof of Theorem B.

The crux of the proof of Theorem B is due to J. Levine [2], who proved essentially the following:

PROPOSITION 4.1 (Levine). Let $S = \{F, h, g\}$ and $S' = \{F', h', g'\}$ be spin-nable structures on S^{2n+1} . Suppose that $n \ge 3$. Then two generators F_0 and F'_0 are ambient isotopic in S^{2n+2} if $\Gamma(S)$ and $\Gamma(S')$ are congruent.

PROOF. By a suitable change of bases, we may assume that $\Gamma(\mathcal{S}) = \Gamma(\mathcal{S}')$. The rest of the proof is what Levine has done in his classification of simple knots (Lemma 3, [2], §14—§16, pp. 191-192). His arguments work equally well in our case, completing the proof.

Thus we have a diffeomorphism $f: S^{2n+1} \to S^{2n+1}$ such that $f(F_0) = F'_0$, and f is diffeotopic to the identity. By opening out the spinnable structure, we have a diffeomorphism $H: F \times [0, 1] \to F' \times [0, 1]$ such that

$$H(x,0) = (k(x),t) \qquad \text{for all} \quad (x,t) \in \partial F \times [0,1]$$

$$H(x,0) = (k(x),0) \qquad \text{for all} \quad x \in F$$
 and
$$H(x,1) = (h'^{-1} \circ k \circ h(x),1) \qquad \text{for all} \quad x \in F,$$
 where
$$(k(x),0) = (g')^{-1} \circ f \circ g(x,0) \qquad \text{for all} \quad x \in F.$$

This implies that $(k^{-1} \times \mathrm{id}) \circ H \colon F \times [0, 1] \to F \times [0, 1]$ is an pseudo-diffeotopy from id to $k^{-1} \circ h'^{-1} \circ k \circ h$ keeping ∂F fixed. Since $n \geq 3$, F and ∂F are 1-connected, it follows from Cerf [1] that the pseudo-diffeotopy is diffeotopic to a diffeotopy $G \colon F \times I \to F \times I$ keeping $\partial (F \times I)$ fixed. This implies that f is diffeotopic to an isomorphism $(S^{2n+1}, \mathcal{S}) \to (S^{2n+1}, \mathcal{S}')$ keeping F_0 fixed. Therefore, \mathcal{S} and \mathcal{S}' are isomorphic, completing the proof.

REMARK. As is known from the proof, S and S' are isomorphic by an ambient diffeotopy.

§ 5. Proof of Theorem C.

Let M be a 1-connected closed Alexander (2n+1)-manifold. A simple spinnable structure $\mathcal{S} = \{F, h, g\}$ on M is canonical, if $H^n(F) = 0$, that is, F is of the homotopy type of a finite CW-complex of dimension n-1. A canonical simple spinnable structure on M is "canonical" in the following sense:

THEOREM D. There exist canonical simple spinnable structures on a 1-connected closed Alexander (2n+1)-manifold which are unique up to ambient isotopy, provided that $n \ge 3$.

PROOF. The existence is proved by the arguments of Winkelnkemper [6] together with the condition that $H^n(M) = 0$. The uniqueness is proved by easy isotopy arguments making use of simple engulfing and the h-cobordism theorem for matching generators together with the arguments in the proof of Theorem B, completing the proof of Theorem D.

For simple spinnable structures S_1 and S_2 on Alexander (2n+1)-manifolds M_1 and M_2 , we have a connected sum $S_1 \# S_2$ which is simple on an Alexander manifold $M_1 \# M_2$. Then we have that the Seifert form $\gamma(S_1 \# S_2)$ is a direct sum $\gamma(S_1) \oplus \gamma(S_2)$. Let S_0 be the canonical simple spinnable structure on a

1-connected Alexander (2n+1)-manifold M. If \mathcal{S}_1 is a simple spinnable structure on S^{2n+1} , then a connected sum $\mathcal{S}_0 \# \mathcal{S}_1$ is regarded as a simple spinnable structure on M and $\gamma(\mathcal{S}_0 \# \mathcal{S}_1) = \gamma(\mathcal{S}_1)$. This implies that any unimodular matrix can be realized as a Seifert matrix of a simple spinnable structure on M. Further, we have the following decomposition theorem:

THEOREM E (Unique decomposition theorem). Let M be a 1-connected Alexander (2n+1)-manifold with a canonical simple spinnable structure S_0 .

Suppose that $n \ge 3$.

(Existence) For a simple spinnable structure S on M there is a simple spinnable structure S_1 on S^{2n+1} so that S is isomorphic with $S_0 \# S_1$.

(Uniqueness) If $S_0 \# S_2$ is a second decomposition of S, then S_1 and S_2 are isomorphic.

PROOF OF THEOREM E. The uniqueness follows from the fact that $\gamma(S_0 \# S_1) = \gamma(S_1)$ and $\gamma(S_0 \# S_2) = \gamma(S_2)$ together with Theorem B. The existence follows from the following together with Theorem D:

LEMMA 5.1. Let F be a generator of a simple spinnable structure on a 1-connected Alexander (2n+1)-manifold.

Suppose that $n \ge 3$.

- (II) A diffeomorphism $h: F \to F$ with $h/\partial F = \mathrm{id}$, is diffeotopic to a diffeomorphism $h': F \to F$ keeping ∂F fixed such that $h'(F_0) = F_0$, $h'(F_1) = F_1$ and $h'/D^{2n-1} = \mathrm{id}$, where $D^{2n-1} = F_0 \cap F_1$.

OUTLINE OF THE PROOF OF LEMMA 5.1. Observe that F is homotopy equivalent to a polyhedron K obtained from a finite CW-complex of dimension n-1 and a bouquet of n-spheres by connecting them an arc. By the embedding arguments and the h-cobordism theorem, we can realize K as a spine of F, which implies the conclusion (I). For the proof of (II), we take a mapping cylinder of $h: F \rightarrow F$. By making use of the relative h-cobordism theorem on the submapping cylinders of $h/F_0: F_0 \to h(F_0)$ and $h/F_1: F_1 \to h(F_1)$, we have a pseudo-isotopy from h to $h_1: F \to F$ keeping ∂F fixed such that $h_1(F_0) = F_0$ and $h_1(F_1) = F_1$. In particular, we have that $h_1(D^{2n-1}) = D^{2n-1}$ and $h_1/\partial D^{2n-1} = \mathrm{id}$, and hence $h_2 = h_1/D^{2n-1}$ determines an element α of Γ_{2n} . If we put $\Sigma = T(D^{2n-1}, h_2)$, then Σ is a homotopy 2n-sphere representing α . The homotopy sphere Σ separates M into two parts. Let Δ be a part containing F_1 . Since the inclusion map $F_0 \subset M$ —Int Δ is n-connected and $\Sigma = \partial \Delta$ is a homotopy 2n-sphere. it follows that Δ is contractible, and hence Σ is a 2n-sphere. This implies that h_1/D^{2n-1} is pseudo-isotopic to the identity keeping ∂D^{2n-1} fixed. Thus we may assume that h is pseudo-isotopic to $h': F \rightarrow F$ keeping ∂F fixed such that $h'(F_0) = F_0$, $h'(F_1) = F_1$ and $h'/D^{2n-1} = \mathrm{id}$. By Cerf's theorem, h and h' are actually isotopic keeping ∂F fixed, completing the proof.

PROOF OF THEOREM C. Theorem C is an easy consequence of Theorems A, B, D and E, completing the proof.

References

- [1] J. Cerf, La stratification naturelle des espaces de fonction différentiables réelles et théorème de la pseudo-isotopie (mimeographed).
- [2] J. Levine, An algebraic classification of some knots of codimension two, Comm. Math. Helv., 45 (1970), 185-198.
- [3] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math., 84 (1966), 537-554.
- [4] I. Tamura, Every odd dimensional homotopy sphere has a foliation of codimension one, Comm. Math. Helv., 47 (1972), 73-79.
- [5] I. Tamura, Spinnable structures on differentiable manifolds (to appear in Proc. Japan Acad.).
- [6] H.E. Winkelnkemper, Manifolds as open books (to appear).
- [7] A. Durfee, Fibered knots and algebraic singularities, Topology, 13 (1974), 47-59.

Mitsuyoshi KATO
Department of Mathematics
College of General Education
University of Tokyo
Komaba, Meguro-ku
Tokyo, Japan